smesh/src/SMESHUtils/SMESH_Slot.cxx
2023-06-19 22:11:37 +01:00

1038 lines
38 KiB
C++

// Copyright (C) 2018-2023 CEA, EDF, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : SMESH_Slot.cxx
// Created : Fri Nov 30 15:58:37 2018
// Author : Edward AGAPOV (eap)
#include "SMESH_MeshAlgos.hxx"
#include "ObjectPool.hxx"
#include "SMDS_LinearEdge.hxx"
#include "SMDS_Mesh.hxx"
#include "SMDS_MeshGroup.hxx"
#include <IntAna_IntConicQuad.hxx>
#include <IntAna_Quadric.hxx>
#include <NCollection_DataMap.hxx>
#include <NCollection_Map.hxx>
#include <Precision.hxx>
#include <gp_Ax1.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Dir.hxx>
#include <gp_Lin.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Utils_SALOME_Exception.hxx>
namespace
{
typedef SMESH_MeshAlgos::Edge TEdge;
//================================================================================
//! point of intersection of a face edge with the cylinder
struct IntPoint
{
SMESH_NodeXYZ myNode; // point and a node
int myEdgeIndex; // face edge index
bool myIsOutPln[2]; // isOut of two planes
double SquareDistance( const IntPoint& p ) const { return ( myNode-p.myNode ).SquareModulus(); }
};
//================================================================================
//! cut of a face
struct Cut
{
IntPoint myIntPnt1, myIntPnt2;
const SMDS_MeshElement* myFace;
const IntPoint& operator[]( size_t i ) const { return i ? myIntPnt2 : myIntPnt1; }
double SquareDistance( const gp_Pnt& p, gp_XYZ & pClosest ) const
{
gp_Vec edge( myIntPnt1.myNode, myIntPnt2.myNode );
gp_Vec n1p ( myIntPnt1.myNode, p );
double u = ( edge * n1p ) / edge.SquareMagnitude(); // param [0,1] on the edge
if ( u <= 0. )
{
pClosest = myIntPnt1.myNode;
return n1p.SquareMagnitude();
}
if ( u >= 1. )
{
pClosest = myIntPnt2.myNode;
return p.SquareDistance( myIntPnt2.myNode );
}
pClosest = myIntPnt1.myNode + u * edge.XYZ(); // projection of the point on the edge
return p.SquareDistance( pClosest );
}
};
//================================================================================
//! poly-line segment
struct Segment
{
typedef std::vector< Cut > TCutList;
const SMDS_MeshElement* myEdge;
TCutList myCuts;
std::vector< const IntPoint* > myFreeEnds; // ends of cut edges
Segment( const SMDS_MeshElement* e = 0 ): myEdge(e) { myCuts.reserve( 4 ); }
// return its axis
gp_Ax1 Ax1( bool reversed = false ) const
{
SMESH_NodeXYZ n1 = myEdge->GetNode( reversed );
SMESH_NodeXYZ n2 = myEdge->GetNode( !reversed );
return gp_Ax1( n1, gp_Dir( n2 - n1 ));
}
// return a node
const SMDS_MeshNode* Node(int i) const
{
return myEdge->GetNode( i % 2 );
}
// store an intersection edge forming the slot border
void AddCutEdge( const IntPoint& p1,
const IntPoint& p2,
const SMDS_MeshElement* myFace )
{
myCuts.push_back( Cut({ p1, p2, myFace }));
}
// return number of not shared IntPoint's
int NbFreeEnds( double tol )
{
if ( myCuts.empty() )
return 0;
if ( myFreeEnds.empty() )
{
// remove degenerated cuts
// for ( size_t iC1 = 0; iC1 < myCuts.size(); ++iC1 )
// if ( myCuts[ iC1 ][ 0 ].myNode == myCuts[ iC1 ][ 1 ].myNode )
// {
// if ( iC1 < myCuts.size() - 1 )
// myCuts[ iC1 ] = myCuts.back();
// myCuts.pop_back();
// }
int nbShared = 0;
std::vector< bool > isSharedPnt( myCuts.size() * 2, false );
for ( size_t iC1 = 0; iC1 < myCuts.size() - 1; ++iC1 )
for ( size_t iP1 = 0; iP1 < 2; ++iP1 )
{
size_t i1 = iC1 * 2 + iP1;
if ( isSharedPnt[ i1 ])
continue;
for ( size_t iC2 = iC1 + 1; iC2 < myCuts.size(); ++iC2 )
for ( size_t iP2 = 0; iP2 < 2; ++iP2 )
{
size_t i2 = iC2 * 2 + iP2;
if ( isSharedPnt[ i2 ])
continue;
if ( myCuts[ iC1 ][ iP1 ].SquareDistance( myCuts[ iC2 ][ iP2 ]) < tol * tol )
{
nbShared += 2;
if ( myCuts[ iC1 ][ 0 ].SquareDistance( myCuts[ iC1 ][ 1 ]) < tol * tol )
isSharedPnt[ iC1 * 2 ] = isSharedPnt[ iC1 * 2 + 1 ] = true;
else if ( myCuts[ iC2 ][ 0 ].SquareDistance( myCuts[ iC2 ][ 1 ]) < tol * tol )
isSharedPnt[ iC2 * 2 ] = isSharedPnt[ iC2 * 2 + 1 ] = true;
else
isSharedPnt[ i1 ] = isSharedPnt[ i2 ] = true;
}
}
}
myFreeEnds.reserve( isSharedPnt.size() - nbShared );
for ( size_t i = 0; i < isSharedPnt.size(); ++i )
if ( !isSharedPnt[ i ] )
{
int iP = i % 2;
int iC = i / 2;
myFreeEnds.push_back( & myCuts[ iC ][ iP ]);
}
}
return myFreeEnds.size();
}
};
typedef ObjectPoolIterator<Segment> TSegmentIterator;
//================================================================================
//! Segments and plane separating domains of segments, at common node
struct NodeData
{
std::vector< Segment* > mySegments;
gp_Ax1 myPlane; // oriented OK for mySegments[0]
void AddSegment( Segment* seg, const SMDS_MeshNode* n )
{
mySegments.reserve(2);
mySegments.push_back( seg );
if ( mySegments.size() == 1 )
{
myPlane = mySegments[0]->Ax1( mySegments[0]->myEdge->GetNodeIndex( n ));
}
else
{
gp_Ax1 axis2 = mySegments[1]->Ax1( mySegments[1]->myEdge->GetNodeIndex( n ));
myPlane.SetDirection( myPlane.Direction().XYZ() - axis2.Direction().XYZ() );
}
}
gp_Ax1 Plane( const Segment* seg )
{
return ( seg == mySegments[0] ) ? myPlane : myPlane.Reversed();
}
};
typedef NCollection_DataMap< const SMDS_MeshNode*, NodeData, SMESH_Hasher > TSegmentsOfNode;
//================================================================================
/*!
* \brief Intersect a face edge given by its nodes with a cylinder.
*/
//================================================================================
bool intersectEdge( const gp_Cylinder& cyl,
const SMESH_NodeXYZ& n1,
const SMESH_NodeXYZ& n2,
const double tol,
std::vector< IntPoint >& intPoints )
{
gp_Lin line( gp_Ax1( n1, gp_Dir( n2 - n1 )));
IntAna_IntConicQuad intersection( line, IntAna_Quadric( cyl ));
if ( !intersection.IsDone() ||
intersection.IsParallel() ||
intersection.IsInQuadric() ||
intersection.NbPoints() == 0 )
return false;
gp_Vec edge( n1, n2 );
size_t oldNbPnts = intPoints.size();
for ( int iP = 1; iP <= intersection.NbPoints(); ++iP )
{
const gp_Pnt& p = intersection.Point( iP );
gp_Vec n1p ( n1, p );
const SMDS_MeshNode* n = 0;
double u = ( edge * n1p ) / edge.SquareMagnitude(); // param [0,1] on the edge
if ( u <= 0. ) {
if ( p.SquareDistance( n1 ) < tol * tol )
n = n1.Node();
else
continue;
}
else if ( u >= 1. ) {
if ( p.SquareDistance( n2 ) < tol * tol )
n = n2.Node();
else
continue;
}
else {
if ( p.SquareDistance( n1 ) < tol * tol )
n = n1.Node();
else if ( p.SquareDistance( n2 ) < tol * tol )
n = n2.Node();
}
intPoints.push_back( IntPoint() );
if ( n )
intPoints.back().myNode.Set( n );
else
intPoints.back().myNode.SetCoord( p.X(),p.Y(),p.Z() );
}
// set points order along an edge
if ( intPoints.size() - oldNbPnts == 2 &&
intersection.ParamOnConic( 1 ) > intersection.ParamOnConic( 2 ))
{
int i = intPoints.size() - 1;
std::swap( intPoints[ i ], intPoints[ i - 1 ]);
}
return intPoints.size() - oldNbPnts > 0;
}
//================================================================================
/*!
* \brief Return signed distance between a point and a plane
*/
//================================================================================
double signedDist( const gp_Pnt& p, const gp_Ax1& planeNormal )
{
const gp_Pnt& O = planeNormal.Location();
gp_Vec Op( O, p );
return Op * planeNormal.Direction();
}
//================================================================================
/*!
* \brief Check if a point is outside a segment domain bound by two planes
*/
//================================================================================
bool isOut( const gp_Pnt& p, const gp_Ax1* planeNormal, bool* isOutPtr, int nbPln = 2 )
{
isOutPtr[0] = isOutPtr[1] = false;
for ( int i = 0; i < nbPln; ++i )
{
isOutPtr[i] = ( signedDist( p, planeNormal[i] ) <= 0. );
}
return ( isOutPtr[0] && isOutPtr[1] );
}
//================================================================================
/*!
* \brief Check if a segment between two points is outside a segment domain bound by two planes
*/
//================================================================================
bool isSegmentOut( bool* isOutPtr1, bool* isOutPtr2 )
{
return (( isOutPtr1[0] && isOutPtr2[0] ) ||
( isOutPtr1[1] && isOutPtr2[1] ));
}
//================================================================================
/*!
* \brief cut off ip1 from edge (ip1 - ip2) by a plane
*/
//================================================================================
void cutOff( IntPoint & ip1, const IntPoint & ip2, const gp_Ax1& planeNormal, double tol )
{
gp_Lin lin( ip1.myNode, ( ip2.myNode - ip1.myNode ));
gp_Pln pln( planeNormal.Location(), planeNormal.Direction() );
IntAna_IntConicQuad intersection( lin, pln, Precision::Angular/*Tolerance*/() );
if ( intersection.IsDone() &&
!intersection.IsParallel() &&
!intersection.IsInQuadric() &&
intersection.NbPoints() == 1 )
{
if ( intersection.Point( 1 ).SquareDistance( ip1.myNode ) > tol * tol )
{
static_cast< gp_XYZ& >( ip1.myNode ) = intersection.Point( 1 ).XYZ();
ip1.myNode._node = 0;
ip1.myEdgeIndex = -1;
}
}
}
//================================================================================
/*!
* \brief Assure that face normal is computed in faceNormals vector
*/
//================================================================================
const gp_XYZ& computeNormal( const SMDS_MeshElement* face,
std::vector< gp_XYZ >& faceNormals )
{
bool toCompute;
if ((int) faceNormals.size() <= face->GetID() )
{
toCompute = true;
faceNormals.resize( face->GetID() + 1 );
}
else
{
toCompute = faceNormals[ face->GetID() ].SquareModulus() == 0.;
}
if ( toCompute )
SMESH_MeshAlgos::FaceNormal( face, faceNormals[ face->GetID() ], /*normalized=*/false );
return faceNormals[ face->GetID() ];
}
typedef std::vector< SMDS_MeshGroup* > TGroupVec;
//================================================================================
/*!
* \brief Fill theFaceID2Groups map for a given face
* \param [in] theFace - the face
* \param [in] theGroupsToUpdate - list of groups to treat
* \param [out] theFaceID2Groups - the map to fill in
* \param [out] theWorkGroups - a working buffer of groups
*/
//================================================================================
void findGroups( const SMDS_MeshElement * theFace,
TGroupVec & theGroupsToUpdate,
NCollection_DataMap< smIdType, TGroupVec, smIdHasher > & theFaceID2Groups,
TGroupVec & theWorkGroups )
{
theWorkGroups.clear();
for ( size_t i = 0; i < theGroupsToUpdate.size(); ++i )
if ( theGroupsToUpdate[i]->Contains( theFace ))
theWorkGroups.push_back( theGroupsToUpdate[i] );
if ( !theWorkGroups.empty() )
theFaceID2Groups.Bind( theFace->GetID(), theWorkGroups );
}
//================================================================================
/*!
* \brief Check distance between a point and an edge defined by a couple of nodes
*/
//================================================================================
bool isOnEdge( const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const gp_Pnt& p,
const double tol )
{
SMDS_LinearEdge edge( n1, n2 );
return ( SMESH_MeshAlgos::GetDistance( &edge, p ) < tol );
}
//================================================================================
/*!
* \return Index of intersection point detected on a triangle cut by planes
* \param [in] i - index of a cut triangle side
* \param [in] n1 - 1st point of a cut triangle side
* \param [in] n2 - 2nd point of a cut triangle side
* \param [in] face - a not cut triangle
* \param [in] intPoint - the intersection point
* \param [in] faceNodes - nodes of not cut triangle
* \param [in] tol - tolerance
*/
//================================================================================
int edgeIndex( const int i,
const SMESH_NodeXYZ& n1,
const SMESH_NodeXYZ& n2,
const SMDS_MeshElement* face,
const IntPoint& intPoint,
const std::vector< const SMDS_MeshNode* >& faceNodes,
const double tol )
{
if ( n1.Node() && n2.Node() )
return face->GetNodeIndex( n1.Node() );
// project intPoint to sides of face
for ( size_t i = 1; i < faceNodes.size(); ++i )
if ( isOnEdge( faceNodes[ i-1 ], faceNodes[ i ], intPoint.myNode, tol ))
return i - 1;
return -(i+1);
}
//================================================================================
/*!
* \brief Find a neighboring segment and its next node
* \param [in] curSegment - a current segment
* \param [in,out] curNode - a current node to update
* \param [in] segmentsOfNode - map of segments of nodes
* \return Segment* - the found segment
*/
//================================================================================
Segment* nextSegment( const Segment* curSegment,
const SMDS_MeshNode* & curNode,
const TSegmentsOfNode& segmentsOfNode )
{
Segment* neighborSeg = 0;
const NodeData& noData = segmentsOfNode( curNode );
for ( size_t iS = 0; iS < noData.mySegments.size() && !neighborSeg; ++iS )
if ( noData.mySegments[ iS ] != curSegment )
neighborSeg = noData.mySegments[ iS ];
if ( neighborSeg )
{
int iN = ( neighborSeg->Node(0) == curNode );
curNode = neighborSeg->Node( iN );
}
return neighborSeg;
}
//================================================================================
/*!
* \brief Tries to find a segment to which a given point is too close
* \param [in] p - the point
* \param [in] minDist - minimal allowed distance from segment
* \param [in] curSegment - start segment
* \param [in] curNode - start node
* \param [in] segmentsOfNode - map of segments of nodes
* \return bool - true if a too close segment found
*/
//================================================================================
const Segment* findTooCloseSegment( const IntPoint& p,
const double minDist,
const double /*tol*/,
const Segment* curSegment,
const SMDS_MeshNode* curNode,
const TSegmentsOfNode& segmentsOfNode )
{
double prevDist = Precision::Infinite();
while ( curSegment )
{
double dist = SMESH_MeshAlgos::GetDistance( curSegment->myEdge, p.myNode );
if ( dist < minDist )
{
// check if dist is less than distance of curSegment to its cuts
// double minCutDist = prevDist;
// bool coincide = false;
// for ( size_t iC = 0; iC < curSegment->myCuts.size(); ++iC )
// {
// if (( coincide = ( curSegment->myCuts[iC].SquareDistance( p.myNode ) < tol * tol )))
// break;
// for ( size_t iP = 0; iP < 2; ++iP )
// {
// double cutDist = SMESH_MeshAlgos::GetDistance( curSegment->myEdge,
// curSegment->myCuts[iC][iP].myNode );
// minCutDist = std::min( minCutDist, cutDist );
// }
// }
// if ( !coincide && minCutDist > dist )
return curSegment;
}
if ( dist > prevDist )
break;
prevDist = dist;
curSegment = nextSegment( curSegment, curNode, segmentsOfNode );
}
return 0;
}
}
//================================================================================
/*!
* \brief Create a slot of given width around given 1D elements lying on a triangle mesh.
* The slot is constructed by cutting faces by cylindrical surfaces made around each segment.
* \return Edges located at the slot boundary
*/
//================================================================================
std::vector< SMESH_MeshAlgos::Edge >
SMESH_MeshAlgos::MakeSlot( SMDS_ElemIteratorPtr theSegmentIt,
double theWidth,
SMDS_Mesh* theMesh,
std::vector< SMDS_MeshGroup* > & theGroupsToUpdate)
{
std::vector< Edge > bndEdges;
if ( !theSegmentIt || !theSegmentIt->more() || !theMesh || theWidth == 0.)
return bndEdges;
// ----------------------------------------------------------------------------------
// put the input segments to a data map in order to be able finding neighboring ones
// ----------------------------------------------------------------------------------
TSegmentsOfNode segmentsOfNode;
ObjectPool< Segment > segmentPool;
while( theSegmentIt->more() )
{
const SMDS_MeshElement* edge = theSegmentIt->next();
if ( edge->GetType() != SMDSAbs_Edge )
throw SALOME_Exception( "A segment is not a mesh edge");
Segment* segment = segmentPool.getNew();
segment->myEdge = edge;
for ( SMDS_NodeIteratorPtr nIt = edge->nodeIterator(); nIt->more(); )
{
const SMDS_MeshNode* n = nIt->next();
NodeData* noData = segmentsOfNode.ChangeSeek( n );
if ( !noData )
noData = segmentsOfNode.Bound( n, NodeData() );
noData->AddSegment( segment, n );
}
}
// ---------------------------------
// Cut the mesh around the segments
// ---------------------------------
const double tol = Precision::Confusion();
const double angularTol = 1e-5;
std::vector< gp_XYZ > faceNormals;
SMESH_MeshAlgos::Intersector meshIntersector( theMesh, tol, faceNormals );
std::unique_ptr< SMESH_ElementSearcher> faceSearcher;
std::vector< NLink > startEdges;
std::vector< const SMDS_MeshNode* > faceNodes(4), edgeNodes(2);
std::vector<const SMDS_MeshElement *> faces(2);
NCollection_Map<const SMDS_MeshElement*, SMESH_Hasher > checkedFaces;
std::vector< IntPoint > intPoints, p(2);
std::vector< SMESH_NodeXYZ > facePoints(4);
std::vector< Intersector::TFace > cutFacePoints;
NCollection_DataMap< smIdType, TGroupVec, smIdHasher > faceID2Groups;
TGroupVec groupVec;
std::vector< gp_Ax1 > planeNormalVec(2);
gp_Ax1 * planeNormal = & planeNormalVec[0];
for ( TSegmentIterator segIt( segmentPool ); segIt.more(); ) // loop on all segments
{
Segment* segment = const_cast< Segment* >( segIt.next() );
gp_Lin segLine( segment->Ax1() );
gp_Ax3 cylAxis( segLine.Location(), segLine.Direction() );
gp_Cylinder segCylinder( cylAxis, 0.5 * theWidth );
double radius2( segCylinder.Radius() * segCylinder.Radius() );
// get normals of planes separating domains of neighboring segments
for ( int i = 0; i < 2; ++i ) // loop on 2 segment ends
{
const SMDS_MeshNode* n = segment->Node( i );
planeNormal[i] = segmentsOfNode( n ).Plane( segment );
}
// we explore faces around a segment starting from face edges;
// initialize a list of starting edges
startEdges.clear();
{
// get a face to start searching intersected faces from
const SMDS_MeshNode* n0 = segment->Node( 0 );
SMDS_ElemIteratorPtr fIt = n0->GetInverseElementIterator( SMDSAbs_Face );
const SMDS_MeshElement* face = ( fIt->more() ) ? fIt->next() : 0;
if ( !theMesh->Contains( face ))
{
if ( !faceSearcher )
faceSearcher.reset( SMESH_MeshAlgos::GetElementSearcher( *theMesh ));
face = faceSearcher->FindClosestTo( SMESH_NodeXYZ( n0 ), SMDSAbs_Face );
}
// collect face edges
int nbNodes = face->NbCornerNodes();
faceNodes.assign( face->begin_nodes(), face->end_nodes() );
faceNodes.resize( nbNodes + 1 );
faceNodes[ nbNodes ] = faceNodes[ 0 ];
for ( int i = 0; i < nbNodes; ++i )
startEdges.push_back( NLink( faceNodes[i], faceNodes[i+1] ));
}
// intersect faces located around a segment
checkedFaces.Clear();
while ( !startEdges.empty() )
{
edgeNodes[0] = startEdges[0].first;
edgeNodes[1] = startEdges[0].second;
theMesh->GetElementsByNodes( edgeNodes, faces, SMDSAbs_Face );
for ( size_t iF = 0; iF < faces.size(); ++iF ) // loop on faces sharing a start edge
{
const SMDS_MeshElement* face = faces[iF];
if ( !checkedFaces.Add( face ))
continue;
int nbNodes = face->NbCornerNodes();
if ( nbNodes != 3 )
throw SALOME_Exception( "MakeSlot() accepts triangles only" );
faceNodes.assign( face->begin_nodes(), face->end_nodes() );
faceNodes.resize( nbNodes + 1 );
faceNodes[ nbNodes ] = faceNodes[ 0 ];
facePoints.assign( faceNodes.begin(), faceNodes.end() );
// check if cylinder axis || face
const gp_XYZ& faceNorm = computeNormal( face, faceNormals );
bool isCylinderOnFace = ( Abs( faceNorm * cylAxis.Direction().XYZ() ) < tol );
if ( !isCylinderOnFace )
{
if ( Intersector::CutByPlanes( face, planeNormalVec, tol, cutFacePoints ))
continue; // whole face cut off
facePoints.swap( cutFacePoints[0] );
facePoints.push_back( facePoints[0] );
}
// find intersection points on face edges
intPoints.clear();
int nbPoints = facePoints.size()-1;
int nbFarPoints = 0;
for ( int i = 0; i < nbPoints; ++i )
{
const SMESH_NodeXYZ& n1 = facePoints[i];
const SMESH_NodeXYZ& n2 = facePoints[i+1];
size_t iP = intPoints.size();
intersectEdge( segCylinder, n1, n2, tol, intPoints );
// save edge index
if ( isCylinderOnFace )
for ( ; iP < intPoints.size(); ++iP )
intPoints[ iP ].myEdgeIndex = i;
else
for ( ; iP < intPoints.size(); ++iP )
intPoints[ iP ].myEdgeIndex = edgeIndex( i, n1, n2, face,
intPoints[ iP ], faceNodes, tol );
nbFarPoints += ( segLine.SquareDistance( n1 ) > radius2 );
}
// feed startEdges
if ( nbFarPoints < nbPoints || !intPoints.empty() )
for ( size_t i = 1; i < faceNodes.size(); ++i )
{
const SMESH_NodeXYZ& n1 = faceNodes[i];
const SMESH_NodeXYZ& n2 = faceNodes[i-1];
isOut( n1, planeNormal, p[0].myIsOutPln );
isOut( n2, planeNormal, p[1].myIsOutPln );
if ( !isSegmentOut( p[0].myIsOutPln, p[1].myIsOutPln ))
{
startEdges.push_back( NLink( n1.Node(), n2.Node() ));
}
}
if ( intPoints.size() < 2 )
continue;
// classify intPoints by planes
for ( size_t i = 0; i < intPoints.size(); ++i )
isOut( intPoints[i].myNode, planeNormal, intPoints[i].myIsOutPln );
// cut the face
if ( intPoints.size() > 2 )
intPoints.push_back( intPoints[0] );
for ( size_t iE = 1; iE < intPoints.size(); ++iE ) // 2 <= intPoints.size() <= 5
{
if (( intPoints[iE].myIsOutPln[0] && intPoints[iE].myIsOutPln[1] ) ||
( isSegmentOut( intPoints[iE].myIsOutPln, intPoints[iE-1].myIsOutPln )))
continue; // intPoint is out of domain
// check if a cutting edge connecting two intPoints is on cylinder surface
if ( intPoints[iE].myEdgeIndex == intPoints[iE-1].myEdgeIndex )
continue; // on same edge
if ( intPoints[iE].myNode.Node() &&
intPoints[iE].myNode == intPoints[iE-1].myNode ) // coincide
continue;
gp_XYZ edegDir = intPoints[iE].myNode - intPoints[iE-1].myNode;
bool toCut; // = edegDir.SquareModulus() > tol * tol;
if ( intPoints.size() == 2 )
toCut = true;
else if ( isCylinderOnFace )
toCut = cylAxis.Direction().IsParallel( edegDir, angularTol );
else
{
SMESH_NodeXYZ nBetween;
int eInd = intPoints[iE-1].myEdgeIndex;
if ( eInd < 0 )
nBetween = facePoints[( 1 - (eInd-1)) % nbPoints ];
else
nBetween = faceNodes[( 1 + eInd ) % nbNodes ];
toCut = ( segLine.SquareDistance( nBetween ) > radius2 );
}
if ( !toCut )
continue;
// limit the edge by planes
if ( intPoints[iE].myIsOutPln[0] ||
intPoints[iE].myIsOutPln[1] )
cutOff( intPoints[iE], intPoints[iE-1],
planeNormal[ intPoints[iE].myIsOutPln[1] ], tol );
if ( intPoints[iE-1].myIsOutPln[0] ||
intPoints[iE-1].myIsOutPln[1] )
cutOff( intPoints[iE-1], intPoints[iE],
planeNormal[ intPoints[iE-1].myIsOutPln[1] ], tol );
gp_XYZ edegDirNew = intPoints[iE].myNode - intPoints[iE-1].myNode;
if ( edegDir * edegDirNew < 0 ||
edegDir.SquareModulus() < tol * tol )
continue; // fully cut off
segment->AddCutEdge( intPoints[iE], intPoints[iE-1], face );
}
} // loop on faces sharing an edge
startEdges[0] = startEdges.back();
startEdges.pop_back();
} // loop on startEdges
} // loop on all input segments
// ----------------------------------------------------------
// If a plane fully cuts off edges of one side of a segment,
// it also may cut edges of adjacent segments
// ----------------------------------------------------------
for ( TSegmentIterator segIt( segmentPool ); segIt.more(); ) // loop on all segments
{
Segment* segment = const_cast< Segment* >( segIt.next() );
if ( segment->NbFreeEnds( tol ) >= 4 )
continue;
for ( int iE = 0; iE < 2; ++iE ) // loop on 2 segment ends
{
const SMDS_MeshNode* n1 = segment->Node( iE );
const SMDS_MeshNode* n2 = segment->Node( 1 - iE );
planeNormal[0] = segmentsOfNode( n1 ).Plane( segment );
bool isNeighborCut;
Segment* neighborSeg = segment;
do // check segments connected to the segment via n2
{
neighborSeg = nextSegment( neighborSeg, n2, segmentsOfNode );
if ( !neighborSeg )
break;
isNeighborCut = false;
for ( size_t iC = 0; iC < neighborSeg->myCuts.size(); ++iC ) // check cut edges
{
IntPoint* intPnt = &( neighborSeg->myCuts[iC].myIntPnt1 );
isOut( intPnt[0].myNode, planeNormal, intPnt[0].myIsOutPln, 1 );
isOut( intPnt[1].myNode, planeNormal, intPnt[1].myIsOutPln, 1 );
const Segment * closeSeg[2] = { 0, 0 };
if ( intPnt[0].myIsOutPln[0] )
closeSeg[0] = findTooCloseSegment( intPnt[0], 0.5 * theWidth - 1e-3*tol, tol,
segment, n1, segmentsOfNode );
if ( intPnt[1].myIsOutPln[0] )
closeSeg[1] = findTooCloseSegment( intPnt[1], 0.5 * theWidth - 1e-3*tol, tol,
segment, n1, segmentsOfNode );
int nbCut = bool( closeSeg[0] ) + bool( closeSeg[1] );
if ( nbCut == 0 )
continue;
isNeighborCut = true;
if ( nbCut == 2 ) // remove a cut
{
if ( iC < neighborSeg->myCuts.size() - 1 )
neighborSeg->myCuts[iC] = neighborSeg->myCuts.back();
neighborSeg->myCuts.pop_back();
}
else // shorten cuts of 1) neighborSeg and 2) closeSeg
{
// 1)
int iP = bool( closeSeg[1] );
gp_Lin segLine( closeSeg[iP]->Ax1() );
gp_Ax3 cylAxis( segLine.Location(), segLine.Direction() );
gp_Cylinder cyl( cylAxis, 0.5 * theWidth );
intPoints.clear();
if ( intersectEdge( cyl, intPnt[iP].myNode, intPnt[1-iP].myNode, tol, intPoints ) &&
intPoints[0].SquareDistance( intPnt[iP] ) > tol * tol )
intPnt[iP].myNode = intPoints[0].myNode;
// 2)
double minCutDist = theWidth;
gp_XYZ projection, closestProj;
int iCut = -1;
for ( size_t iC2 = 0; iC2 < closeSeg[iP]->myCuts.size(); ++iC2 )
{
double cutDist = closeSeg[iP]->myCuts[iC2].SquareDistance( intPnt[iP].myNode,
projection );
if ( cutDist < minCutDist )
{
closestProj = projection;
minCutDist = cutDist;
iCut = iC2;
if ( minCutDist < tol * tol )
break;
}
}
if ( iCut < 0 )
continue; // ???
double d1 = SMESH_MeshAlgos::GetDistance( neighborSeg->myEdge,
closeSeg[iP]->myCuts[iCut][0].myNode );
double d2 = SMESH_MeshAlgos::GetDistance( neighborSeg->myEdge,
closeSeg[iP]->myCuts[iCut][1].myNode );
int iP2 = ( d2 < d1 );
IntPoint& ip = const_cast< IntPoint& >( closeSeg[iP]->myCuts[iCut][iP2] );
ip = intPnt[iP];
}
// update myFreeEnds
neighborSeg->myFreeEnds.clear();
neighborSeg->NbFreeEnds( tol );
}
}
while ( isNeighborCut );
}
}
// -----------------------
// Cut faces by cut edges
// -----------------------
for ( TSegmentIterator segIt( segmentPool ); segIt.more(); ) // loop on all segments
{
Segment* segment = const_cast< Segment* >( segIt.next() );
for ( size_t iC = 0; iC < segment->myCuts.size(); ++iC )
{
Cut & cut = segment->myCuts[ iC ];
computeNormal( cut.myFace, faceNormals );
meshIntersector.Cut( cut.myFace,
cut.myIntPnt1.myNode, cut.myIntPnt1.myEdgeIndex,
cut.myIntPnt2.myNode, cut.myIntPnt2.myEdgeIndex );
Edge e = { cut.myIntPnt1.myNode.Node(), cut.myIntPnt2.myNode.Node(), 0 };
bndEdges.push_back( e );
findGroups( cut.myFace, theGroupsToUpdate, faceID2Groups, groupVec );
}
}
// -----------------------------------------
// Make cut at the end of group of segments
// -----------------------------------------
std::vector<const SMDS_MeshElement*> polySegments;
for ( TSegmentsOfNode::Iterator nSegsIt( segmentsOfNode ); nSegsIt.More(); nSegsIt.Next() )
{
const NodeData& noData = nSegsIt.Value();
if ( noData.mySegments.size() != 1 )
continue;
const Segment* segment = noData.mySegments[0];
// find two IntPoint's of cut edges to make a cut between
if ( segment->myFreeEnds.size() != 4 )
throw SALOME_Exception( "MakeSlot(): too short end edge?" );
std::multimap< double, const IntPoint* > dist2IntPntMap;
for ( size_t iE = 0; iE < segment->myFreeEnds.size(); ++iE )
{
const SMESH_NodeXYZ& n = segment->myFreeEnds[ iE ]->myNode;
double d = Abs( signedDist( n, noData.myPlane ));
dist2IntPntMap.insert( std::make_pair( d, segment->myFreeEnds[ iE ]));
}
std::multimap< double, const IntPoint* >::iterator d2ip = dist2IntPntMap.begin();
SMESH_MeshAlgos::PolySegment linkNodes;
linkNodes.myXYZ[0] = d2ip->second->myNode;
linkNodes.myXYZ[1] = (++d2ip)->second->myNode;
linkNodes.myVector = noData.myPlane.Direction() ^ (linkNodes.myXYZ[0] - linkNodes.myXYZ[1]);
linkNodes.myNode1[ 0 ] = linkNodes.myNode2[ 0 ] = 0;
linkNodes.myNode1[ 1 ] = linkNodes.myNode2[ 1 ] = 0;
// create segments connecting linkNodes
std::vector<const SMDS_MeshElement*> newSegments;
std::vector<const SMDS_MeshNode*> newNodes;
SMESH_MeshAlgos::TListOfPolySegments polySegs(1, linkNodes);
SMESH_MeshAlgos::MakePolyLine( theMesh, polySegs, newSegments, newNodes,
/*group=*/0, faceSearcher.get() );
// cut faces by newSegments
intPoints.resize(2);
for ( size_t i = 0; i < newSegments.size(); ++i )
{
intPoints[0].myNode = edgeNodes[0] = newSegments[i]->GetNode(0);
intPoints[1].myNode = edgeNodes[1] = newSegments[i]->GetNode(1);
// find an underlying face
gp_XYZ middle = 0.5 * ( intPoints[0].myNode + intPoints[1].myNode );
const SMDS_MeshElement* face = faceSearcher->FindClosestTo( middle, SMDSAbs_Face );
// find intersected edges of the face
int nbNodes = face->NbCornerNodes();
faceNodes.assign( face->begin_nodes(), face->end_nodes() );
faceNodes.resize( nbNodes + 1 );
faceNodes[ nbNodes ] = faceNodes[ 0 ];
for ( int iP = 0; iP < 2; ++iP )
{
intPoints[iP].myEdgeIndex = -1;
for ( int iN = 0; iN < nbNodes && intPoints[iP].myEdgeIndex < 0; ++iN )
{
if ( isOnEdge( faceNodes[iN], faceNodes[iN+1], intPoints[iP].myNode, tol ))
intPoints[iP].myEdgeIndex = iN;
}
}
// face cut
computeNormal( face, faceNormals );
meshIntersector.Cut( face,
intPoints[0].myNode, intPoints[0].myEdgeIndex,
intPoints[1].myNode, intPoints[1].myEdgeIndex );
Edge e = { intPoints[0].myNode.Node(), intPoints[1].myNode.Node(), 0 };
bndEdges.push_back( e );
findGroups( face, theGroupsToUpdate, faceID2Groups, groupVec );
// add cut points to an adjacent face at ends of poly-line
// if they fall onto face edges
if (( i == 0 && intPoints[0].myEdgeIndex >= 0 ) ||
( i == newSegments.size() - 1 && intPoints[1].myEdgeIndex >= 0 ))
{
for ( int iE = 0; iE < 2; ++iE ) // loop on ends of a new segment
{
if ( iE ? ( i != newSegments.size() - 1 ) : ( i != 0 ))
continue;
int iEdge = intPoints[ iE ].myEdgeIndex;
edgeNodes[0] = faceNodes[ iEdge ];
edgeNodes[1] = faceNodes[ iEdge+1 ];
theMesh->GetElementsByNodes( edgeNodes, faces, SMDSAbs_Face );
for ( size_t iF = 0; iF < faces.size(); ++iF )
if ( faces[iF] != face )
{
int iN1 = faces[iF]->GetNodeIndex( edgeNodes[0] );
int iN2 = faces[iF]->GetNodeIndex( edgeNodes[1] );
intPoints[ iE ].myEdgeIndex = Abs( iN1 - iN2 ) == 1 ? Min( iN1, iN2 ) : 2;
computeNormal( faces[iF], faceNormals );
meshIntersector.Cut( faces[iF],
intPoints[iE].myNode, intPoints[iE].myEdgeIndex,
intPoints[iE].myNode, intPoints[iE].myEdgeIndex );
findGroups( faces[iF], theGroupsToUpdate, faceID2Groups, groupVec );
}
}
}
} // loop on newSegments
polySegments.insert( polySegments.end(), newSegments.begin(), newSegments.end() );
} // loop on map of input segments
// actual mesh splitting
TElemIntPairVec new2OldFaces;
TNodeIntPairVec new2OldNodes;
meshIntersector.MakeNewFaces( new2OldFaces, new2OldNodes, /*sign=*/1, /*optimize=*/true );
// add new faces to theGroupsToUpdate
for ( size_t i = 0; i < new2OldFaces.size(); ++i )
{
const SMDS_MeshElement* newFace = new2OldFaces[i].first;
const int oldFaceID = new2OldFaces[i].second;
if ( !newFace ) continue;
if ( TGroupVec* groups = const_cast< TGroupVec* >( faceID2Groups.Seek( oldFaceID )))
for ( size_t iG = 0; iG < groups->size(); ++iG )
(*groups)[ iG ]->Add( newFace );
}
// remove poly-line edges
for ( size_t i = 0; i < polySegments.size(); ++i )
{
edgeNodes[0] = polySegments[i]->GetNode(0);
edgeNodes[1] = polySegments[i]->GetNode(1);
theMesh->RemoveFreeElement( polySegments[i] );
if ( edgeNodes[0]->NbInverseElements() == 0 )
theMesh->RemoveNode( edgeNodes[0] );
if ( edgeNodes[1]->NbInverseElements() == 0 )
theMesh->RemoveNode( edgeNodes[1] );
}
return bndEdges;
}