smesh/src/SMESH_SWIG/StdMeshersBuilder.py

1362 lines
62 KiB
Python

# Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
##
# @package StdMeshersBuilder
# Python API for the standard meshing plug-in module.
from salome.smesh.smesh_algorithm import Mesh_Algorithm
from salome.smesh.smeshBuilder import AssureGeomPublished, IsEqual, ParseParameters
from salome.smesh.smeshBuilder import GetName, TreatHypoStatus
from salome.smesh.smeshBuilder import Mesh
import StdMeshers
#----------------------------
# Mesh algo type identifiers
#----------------------------
## Algorithm type: Regular 1D algorithm, see StdMeshersBuilder_Segment
REGULAR = "Regular_1D"
## Algorithm type: Python 1D algorithm, see StdMeshersBuilder_Segment_Python
PYTHON = "Python_1D"
## Algorithm type: Composite segment 1D algorithm, see StdMeshersBuilder_CompositeSegment
COMPOSITE = "CompositeSegment_1D"
## Algorithm type: Triangle MEFISTO 2D algorithm, see StdMeshersBuilder_Triangle_MEFISTO
MEFISTO = "MEFISTO_2D"
## Algorithm type: Hexahedron 3D (i-j-k) algorithm, see StdMeshersBuilder_Hexahedron
Hexa = "Hexa_3D"
## Algorithm type: Quadrangle 2D algorithm, see StdMeshersBuilder_Quadrangle
QUADRANGLE = "Quadrangle_2D"
## Algorithm type: Radial Quadrangle 1D-2D algorithm, see StdMeshersBuilder_RadialQuadrangle1D2D
RADIAL_QUAD = "RadialQuadrangle_1D2D"
# import items of enum QuadType
for e in StdMeshers.QuadType._items: exec('%s = StdMeshers.%s'%(e,e))
#----------------------
# Algorithms
#----------------------
## Defines segment 1D algorithm for edges discretization.
#
# It can be created by calling smeshBuilder.Mesh.Segment(geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_Segment(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Segment"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = REGULAR
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## doc string of the method
# @internal
docHelper = "Creates segment 1D algorithm for edges"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, self.algoType)
pass
## Defines "LocalLength" hypothesis to cut an edge in several segments with the same length
# @param l for the length of segments that cut an edge
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @param p precision, used for calculation of the number of segments.
# The precision should be a positive, meaningful value within the range [0,1].
# In general, the number of segments is calculated with the formula:
# nb = ceil((edge_length / l) - p)
# Function ceil rounds its argument to the higher integer.
# So, p=0 means rounding of (edge_length / l) to the higher integer,
# p=0.5 means rounding of (edge_length / l) to the nearest integer,
# p=1 means rounding of (edge_length / l) to the lower integer.
# Default value is 1e-07.
# @return an instance of StdMeshers_LocalLength hypothesis
# @ingroup l3_hypos_1dhyps
def LocalLength(self, l, UseExisting=0, p=1e-07):
comFun=lambda hyp, args: IsEqual(hyp.GetLength(), args[0]) and IsEqual(hyp.GetPrecision(), args[1])
hyp = self.Hypothesis("LocalLength", [l,p], UseExisting=UseExisting, CompareMethod=comFun)
hyp.SetLength(l)
hyp.SetPrecision(p)
return hyp
## Defines "MaxSize" hypothesis to cut an edge into segments not longer than given value
# @param length is optional maximal allowed length of segment, if it is omitted
# the preestimated length is used that depends on geometry size
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @return an instance of StdMeshers_MaxLength hypothesis
# @ingroup l3_hypos_1dhyps
def MaxSize(self, length=0.0, UseExisting=0):
hyp = self.Hypothesis("MaxLength", [length], UseExisting=UseExisting)
if length > 0.0:
# set given length
hyp.SetLength(length)
if not UseExisting:
# set preestimated length
gen = self.mesh.smeshpyD
initHyp = gen.GetHypothesisParameterValues("MaxLength", "libStdMeshersEngine.so",
self.mesh.GetMesh(), self.mesh.GetShape(),
False) # <- byMesh
preHyp = initHyp._narrow(StdMeshers.StdMeshers_MaxLength)
if preHyp:
hyp.SetPreestimatedLength( preHyp.GetPreestimatedLength() )
pass
pass
hyp.SetUsePreestimatedLength( length == 0.0 )
return hyp
## Defines "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments
# @param n for the number of segments that cut an edge
# @param s for the scale factor (optional)
# @param reversedEdges is a list of edges to mesh using reversed orientation.
# A list item can also be a tuple (edge, 1st_vertex_of_edge)
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - create a new one
# @return an instance of StdMeshers_NumberOfSegments hypothesis
# @ingroup l3_hypos_1dhyps
def NumberOfSegments(self, n, s=[], reversedEdges=[], UseExisting=0):
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
reversedEdges, UseExisting = [], reversedEdges
entry = self.MainShapeEntry()
reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges)
if s == []:
hyp = self.Hypothesis("NumberOfSegments", [n, reversedEdgeInd, entry],
UseExisting=UseExisting,
CompareMethod=self._compareNumberOfSegments)
else:
hyp = self.Hypothesis("NumberOfSegments", [n,s, reversedEdgeInd, entry],
UseExisting=UseExisting,
CompareMethod=self._compareNumberOfSegments)
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
hyp.SetReversedEdges( reversedEdgeInd )
hyp.SetObjectEntry( entry )
return hyp
## Private method
#
# Checks if the given "NumberOfSegments" hypothesis has the same parameters as the given arguments
def _compareNumberOfSegments(self, hyp, args):
if hyp.GetNumberOfSegments() == args[0]:
if len(args) == 3:
if hyp.GetReversedEdges() == args[1]:
if not args[1] or hyp.GetObjectEntry() == args[2]:
return True
else:
if hyp.GetReversedEdges() == args[2]:
if not args[2] or hyp.GetObjectEntry() == args[3]:
if hyp.GetDistrType() == 1:
if IsEqual(hyp.GetScaleFactor(), args[1]):
return True
return False
## Defines "Arithmetic1D" hypothesis to cut an edge in several segments with increasing arithmetic length
# @param start defines the length of the first segment
# @param end defines the length of the last segment
# @param reversedEdges is a list of edges to mesh using reversed orientation.
# A list item can also be a tuple (edge, 1st_vertex_of_edge)
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @return an instance of StdMeshers_Arithmetic1D hypothesis
# @ingroup l3_hypos_1dhyps
def Arithmetic1D(self, start, end, reversedEdges=[], UseExisting=0):
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
reversedEdges, UseExisting = [], reversedEdges
reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges)
entry = self.MainShapeEntry()
compFun = lambda hyp, args: ( IsEqual(hyp.GetLength(1), args[0]) and \
IsEqual(hyp.GetLength(0), args[1]) and \
hyp.GetReversedEdges() == args[2] and \
(not args[2] or hyp.GetObjectEntry() == args[3]))
hyp = self.Hypothesis("Arithmetic1D", [start, end, reversedEdgeInd, entry],
UseExisting=UseExisting, CompareMethod=compFun)
hyp.SetStartLength(start)
hyp.SetEndLength(end)
hyp.SetReversedEdges( reversedEdgeInd )
hyp.SetObjectEntry( entry )
return hyp
## Defines "FixedPoints1D" hypothesis to cut an edge using parameter
# on curve from 0 to 1 (additionally it is neecessary to check
# orientation of edges and create list of reversed edges if it is
# needed) and sets numbers of segments between given points (default
# values are equals 1
# @param points defines the list of parameters on curve
# @param nbSegs defines the list of numbers of segments
# @param reversedEdges is a list of edges to mesh using reversed orientation.
# A list item can also be a tuple (edge, 1st_vertex_of_edge)
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @return an instance of StdMeshers_Arithmetic1D hypothesis
# @ingroup l3_hypos_1dhyps
def FixedPoints1D(self, points, nbSegs=[1], reversedEdges=[], UseExisting=0):
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
reversedEdges, UseExisting = [], reversedEdges
reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges)
entry = self.MainShapeEntry()
compFun = lambda hyp, args: ( hyp.GetPoints() == args[0] and \
hyp.GetNbSegments() == args[1] and \
hyp.GetReversedEdges() == args[2] and \
(not args[2] or hyp.GetObjectEntry() == args[3]))
hyp = self.Hypothesis("FixedPoints1D", [points, nbSegs, reversedEdgeInd, entry],
UseExisting=UseExisting, CompareMethod=compFun)
hyp.SetPoints(points)
hyp.SetNbSegments(nbSegs)
hyp.SetReversedEdges(reversedEdgeInd)
hyp.SetObjectEntry(entry)
return hyp
## Defines "StartEndLength" hypothesis to cut an edge in several segments with increasing geometric length
# @param start defines the length of the first segment
# @param end defines the length of the last segment
# @param reversedEdges is a list of edges to mesh using reversed orientation.
# A list item can also be a tuple (edge, 1st_vertex_of_edge)
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @return an instance of StdMeshers_StartEndLength hypothesis
# @ingroup l3_hypos_1dhyps
def StartEndLength(self, start, end, reversedEdges=[], UseExisting=0):
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
reversedEdges, UseExisting = [], reversedEdges
reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges)
entry = self.MainShapeEntry()
compFun = lambda hyp, args: ( IsEqual(hyp.GetLength(1), args[0]) and \
IsEqual(hyp.GetLength(0), args[1]) and \
hyp.GetReversedEdges() == args[2] and \
(not args[2] or hyp.GetObjectEntry() == args[3]))
hyp = self.Hypothesis("StartEndLength", [start, end, reversedEdgeInd, entry],
UseExisting=UseExisting, CompareMethod=compFun)
hyp.SetStartLength(start)
hyp.SetEndLength(end)
hyp.SetReversedEdges( reversedEdgeInd )
hyp.SetObjectEntry( entry )
return hyp
## Defines "Deflection1D" hypothesis
# @param d for the deflection
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - create a new one
# @ingroup l3_hypos_1dhyps
def Deflection1D(self, d, UseExisting=0):
compFun = lambda hyp, args: IsEqual(hyp.GetDeflection(), args[0])
hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting, CompareMethod=compFun)
hyp.SetDeflection(d)
return hyp
## Defines "Propagation" hypothesis that propagates all other hypotheses on all other edges that are at
# the opposite side in case of quadrangular faces
# @ingroup l3_hypos_additi
def Propagation(self):
return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp)
## Defines "AutomaticLength" hypothesis
# @param fineness for the fineness [0-1]
# @param UseExisting if ==true - searches for an existing hypothesis created with the
# same parameters, else (default) - create a new one
# @ingroup l3_hypos_1dhyps
def AutomaticLength(self, fineness=0, UseExisting=0):
compFun = lambda hyp, args: IsEqual(hyp.GetFineness(), args[0])
hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting,
CompareMethod=compFun)
hyp.SetFineness( fineness )
return hyp
## Defines "SegmentLengthAroundVertex" hypothesis
# @param length for the segment length
# @param vertex for the length localization: the vertex index [0,1] | vertex object.
# Any other integer value means that the hypothesis will be set on the
# whole 1D shape, where Mesh_Segment algorithm is assigned.
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_algos_segmarv
def LengthNearVertex(self, length, vertex=0, UseExisting=0):
import types
store_geom = self.geom
if type(vertex) is types.IntType:
if vertex == 0 or vertex == 1:
from salome.geom import geomBuilder
vertex = self.mesh.geompyD.ExtractShapes(self.geom, geomBuilder.ShapeType["VERTEX"],True)[vertex]
self.geom = vertex
pass
pass
else:
self.geom = vertex
pass
# 0D algorithm
if self.geom is None:
raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape"
AssureGeomPublished( self.mesh, self.geom )
name = GetName(self.geom)
algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD)
if algo is None:
algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so")
pass
status = self.mesh.mesh.AddHypothesis(self.geom, algo)
TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True)
#
comFun = lambda hyp, args: IsEqual(hyp.GetLength(), args[0])
hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting,
CompareMethod=comFun)
self.geom = store_geom
hyp.SetLength( length )
return hyp
## Defines "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
# If the 2D mesher sees that all boundary edges are quadratic,
# it generates quadratic faces, else it generates linear faces using
# medium nodes as if they are vertices.
# The 3D mesher generates quadratic volumes only if all boundary faces
# are quadratic, else it fails.
#
# @ingroup l3_hypos_additi
def QuadraticMesh(self):
hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp)
return hyp
pass # end of StdMeshersBuilder_Segment class
## Segment 1D algorithm for discretization of a set of adjacent edges as one edge.
#
# It is created by calling smeshBuilder.Mesh.Segment(smesh.COMPOSITE,geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_CompositeSegment(StdMeshersBuilder_Segment):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Segment"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = COMPOSITE
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = False
## doc string of the method
# @internal
docHelper = "Creates segment 1D algorithm for edges"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, self.algoType)
pass
pass # end of StdMeshersBuilder_CompositeSegment class
## Defines a segment 1D algorithm for discretization of edges with Python function
#
# It is created by calling smeshBuilder.Mesh.Segment(smesh.PYTHON,geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_Segment_Python(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Segment"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = PYTHON
## doc string of the method
# @internal
docHelper = "Creates tetrahedron 3D algorithm for solids"
## doc string of the method
# @internal
docHelper = "Creates segment 1D algorithm for edges"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
import Python1dPlugin
self.Create(mesh, geom, self.algoType, "libPython1dEngine.so")
pass
## Defines "PythonSplit1D" hypothesis
# @param n for the number of segments that cut an edge
# @param func for the python function that calculates the length of all segments
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_hypos_1dhyps
def PythonSplit1D(self, n, func, UseExisting=0):
compFun = lambda hyp, args: False
hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so",
UseExisting=UseExisting, CompareMethod=compFun)
hyp.SetNumberOfSegments(n)
hyp.SetPythonLog10RatioFunction(func)
return hyp
pass # end of StdMeshersBuilder_Segment_Python class
## Triangle MEFISTO 2D algorithm
#
# It is created by calling smeshBuilder.Mesh.Triangle(smesh.MEFISTO,geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_Triangle_MEFISTO(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Triangle"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = MEFISTO
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## doc string of the method
# @internal
docHelper = "Creates triangle 2D algorithm for faces"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, self.algoType)
pass
## Defines "MaxElementArea" hypothesis basing on the definition of the maximum area of each triangle
# @param area for the maximum area of each triangle
# @param UseExisting if ==true - searches for an existing hypothesis created with the
# same parameters, else (default) - creates a new one
#
# @ingroup l3_hypos_2dhyps
def MaxElementArea(self, area, UseExisting=0):
comparator = lambda hyp, args: IsEqual(hyp.GetMaxElementArea(), args[0])
hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting,
CompareMethod=comparator)
hyp.SetMaxElementArea(area)
return hyp
## Defines "LengthFromEdges" hypothesis to build triangles
# based on the length of the edges taken from the wire
#
# @ingroup l3_hypos_2dhyps
def LengthFromEdges(self):
hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp)
return hyp
pass # end of StdMeshersBuilder_Triangle_MEFISTO class
## Defines a quadrangle 2D algorithm
#
# It is created by calling smeshBuilder.Mesh.Quadrangle(geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_Quadrangle(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Quadrangle"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = QUADRANGLE
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## doc string of the method
# @internal
docHelper = "Creates quadrangle 2D algorithm for faces"
## hypothesis associated with algorithm
# @internal
params = 0
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, self.algoType)
pass
## Defines "QuadrangleParameters" hypothesis
# @param quadType defines the algorithm of transition between differently descretized
# sides of a geometrical face:
# - QUAD_STANDARD - both triangles and quadrangles are possible in the transition
# area along the finer meshed sides.
# - QUAD_TRIANGLE_PREF - only triangles are built in the transition area along the
# finer meshed sides.
# - QUAD_QUADRANGLE_PREF - only quadrangles are built in the transition area along
# the finer meshed sides, iff the total quantity of segments on
# all four sides of the face is even (divisible by 2).
# - QUAD_QUADRANGLE_PREF_REVERSED - same as QUAD_QUADRANGLE_PREF but the transition
# area is located along the coarser meshed sides.
# - QUAD_REDUCED - only quadrangles are built and the transition between the sides
# is made gradually, layer by layer. This type has a limitation on
# the number of segments: one pair of opposite sides must have the
# same number of segments, the other pair must have an even difference
# between the numbers of segments on the sides.
# @param triangleVertex: vertex of a trilateral geometrical face, around which triangles
# will be created while other elements will be quadrangles.
# Vertex can be either a GEOM_Object or a vertex ID within the
# shape to mesh
# @param UseExisting: if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_hypos_quad
def QuadrangleParameters(self, quadType=StdMeshers.QUAD_STANDARD, triangleVertex=0, UseExisting=0):
import GEOM
vertexID = triangleVertex
if isinstance( triangleVertex, GEOM._objref_GEOM_Object ):
vertexID = self.mesh.geompyD.GetSubShapeID( self.mesh.geom, triangleVertex )
if not self.params:
compFun = lambda hyp,args: \
hyp.GetQuadType() == args[0] and \
( hyp.GetTriaVertex()==args[1] or ( hyp.GetTriaVertex()<1 and args[1]<1))
self.params = self.Hypothesis("QuadrangleParams", [quadType,vertexID],
UseExisting = UseExisting, CompareMethod=compFun)
pass
if self.params.GetQuadType() != quadType:
self.params.SetQuadType(quadType)
if vertexID > 0:
self.params.SetTriaVertex( vertexID )
return self.params
## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
# quadrangles are built in the transition area along the finer meshed sides,
# iff the total quantity of segments on all four sides of the face is even.
# @param reversed if True, transition area is located along the coarser meshed sides.
# @param UseExisting: if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_hypos_quad
def QuadranglePreference(self, reversed=False, UseExisting=0):
if reversed:
return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF_REVERSED,UseExisting=UseExisting)
return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF,UseExisting=UseExisting)
## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
# triangles are built in the transition area along the finer meshed sides.
# @param UseExisting: if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_hypos_quad
def TrianglePreference(self, UseExisting=0):
return self.QuadrangleParameters(QUAD_TRIANGLE_PREF,UseExisting=UseExisting)
## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
# quadrangles are built and the transition between the sides is made gradually,
# layer by layer. This type has a limitation on the number of segments: one pair
# of opposite sides must have the same number of segments, the other pair must
# have an even difference between the numbers of segments on the sides.
# @param UseExisting: if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_hypos_quad
def Reduced(self, UseExisting=0):
return self.QuadrangleParameters(QUAD_REDUCED,UseExisting=UseExisting)
## Defines "QuadrangleParams" hypothesis with QUAD_STANDARD type of quadrangulation
# @param vertex: vertex of a trilateral geometrical face, around which triangles
# will be created while other elements will be quadrangles.
# Vertex can be either a GEOM_Object or a vertex ID within the
# shape to mesh
# @param UseExisting: if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_hypos_quad
def TriangleVertex(self, vertex, UseExisting=0):
return self.QuadrangleParameters(QUAD_STANDARD,vertex,UseExisting)
pass # end of StdMeshersBuilder_Quadrangle class
## Defines a hexahedron 3D algorithm
#
# It is created by calling smeshBuilder.Mesh.Hexahedron(geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_Hexahedron(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Hexahedron"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = Hexa
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## doc string of the method
# @internal
docHelper = "Creates hexahedron 3D algorithm for volumes"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, Hexa)
pass
pass # end of StdMeshersBuilder_Hexahedron class
## Defines a projection 1D algorithm
#
# It is created by calling smeshBuilder.Mesh.Projection1D(geom=0)
#
# @ingroup l3_algos_proj
class StdMeshersBuilder_Projection1D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Projection1D"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "Projection_1D"
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## doc string of the method
# @internal
docHelper = "Creates projection 1D algorithm for edges"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, self.algoType)
pass
## Defines "Source Edge" hypothesis, specifying a meshed edge, from where
# a mesh pattern is taken, and, optionally, the association of vertices
# between the source edge and a target edge (to which a hypothesis is assigned)
# @param edge from which nodes distribution is taken
# @param mesh from which nodes distribution is taken (optional)
# @param srcV a vertex of \a edge to associate with \a tgtV (optional)
# @param tgtV a vertex of \a the edge to which the algorithm is assigned,
# to associate with \a srcV (optional)
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0):
AssureGeomPublished( self.mesh, edge )
AssureGeomPublished( self.mesh, srcV )
AssureGeomPublished( self.mesh, tgtV )
hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV],
UseExisting=0)
# it does not seem to be useful to reuse the existing "SourceEdge" hypothesis
#UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge)
hyp.SetSourceEdge( edge )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV, tgtV )
return hyp
pass # end of StdMeshersBuilder_Projection1D class
## Defines a projection 2D algorithm
#
# It is created by calling smeshBuilder.Mesh.Projection2D(geom=0)
#
# @ingroup l3_algos_proj
class StdMeshersBuilder_Projection2D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Projection2D"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "Projection_2D"
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## doc string of the method
# @internal
docHelper = "Creates projection 2D algorithm for faces"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, self.algoType)
pass
## Defines "Source Face" hypothesis, specifying a meshed face, from where
# a mesh pattern is taken, and, optionally, the association of vertices
# between the source face and the target face (to which a hypothesis is assigned)
# @param face from which the mesh pattern is taken
# @param mesh from which the mesh pattern is taken (optional)
# @param srcV1 a vertex of \a face to associate with \a tgtV1 (optional)
# @param tgtV1 a vertex of \a the face to which the algorithm is assigned,
# to associate with \a srcV1 (optional)
# @param srcV2 a vertex of \a face to associate with \a tgtV1 (optional)
# @param tgtV2 a vertex of \a the face to which the algorithm is assigned,
# to associate with \a srcV2 (optional)
# @param UseExisting if ==true - forces the search for the existing hypothesis created with
# the same parameters, else (default) - forces the creation a new one
#
# Note: all association vertices must belong to one edge of a face
def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None,
srcV2=None, tgtV2=None, UseExisting=0):
from salome.smesh.smeshBuilder import Mesh
if isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
for geom in [ face, srcV1, tgtV1, srcV2, tgtV2 ]:
AssureGeomPublished( self.mesh, geom )
hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2],
UseExisting=0)
# it does not seem to be useful to reuse the existing "SourceFace" hypothesis
#UseExisting=UseExisting, CompareMethod=self.CompareSourceFace)
hyp.SetSourceFace( face )
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
return hyp
pass # end of StdMeshersBuilder_Projection2D class
## Defines a projection 1D-2D algorithm
#
# It is created by calling smeshBuilder.Mesh.Projection1D2D(geom=0)
#
# @ingroup l3_algos_proj
class StdMeshersBuilder_Projection1D2D(StdMeshersBuilder_Projection2D):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Projection1D2D"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "Projection_1D2D"
## doc string of the method
# @internal
docHelper = "Creates projection 1D-2D algorithm for edges and faces"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
StdMeshersBuilder_Projection2D.__init__(self, mesh, geom)
pass
pass # end of StdMeshersBuilder_Projection1D2D class
## Defines a projection 3D algorithm
#
# It is created by calling smeshBuilder.Mesh.Projection3D(geom=0)
#
# @ingroup l3_algos_proj
class StdMeshersBuilder_Projection3D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Projection3D"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "Projection_3D"
## doc string of the method
# @internal
docHelper = "Creates projection 3D algorithm for volumes"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, self.algoType)
pass
## Defines the "Source Shape 3D" hypothesis, specifying a meshed solid, from where
# the mesh pattern is taken, and, optionally, the association of vertices
# between the source and the target solid (to which a hipothesis is assigned)
# @param solid from where the mesh pattern is taken
# @param mesh from where the mesh pattern is taken (optional)
# @param srcV1 a vertex of \a solid to associate with \a tgtV1 (optional)
# @param tgtV1 a vertex of \a the solid where the algorithm is assigned,
# to associate with \a srcV1 (optional)
# @param srcV2 a vertex of \a solid to associate with \a tgtV1 (optional)
# @param tgtV2 a vertex of \a the solid to which the algorithm is assigned,
# to associate with \a srcV2 (optional)
# @param UseExisting - if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
#
# Note: association vertices must belong to one edge of a solid
def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0,
srcV2=0, tgtV2=0, UseExisting=0):
for geom in [ solid, srcV1, tgtV1, srcV2, tgtV2 ]:
AssureGeomPublished( self.mesh, geom )
hyp = self.Hypothesis("ProjectionSource3D",
[solid,mesh,srcV1,tgtV1,srcV2,tgtV2],
UseExisting=0)
# seems to be not really useful to reuse existing "SourceShape3D" hypothesis
#UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D)
hyp.SetSource3DShape( solid )
if isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
if mesh:
hyp.SetSourceMesh( mesh )
if srcV1 and srcV2 and tgtV1 and tgtV2:
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
#elif srcV1 or srcV2 or tgtV1 or tgtV2:
return hyp
pass # end of StdMeshersBuilder_Projection3D class
## Defines a Prism 3D algorithm, which is either "Extrusion 3D" or "Radial Prism"
# depending on geometry
#
# It is created by calling smeshBuilder.Mesh.Prism(geom=0)
#
# @ingroup l3_algos_3dextr
class StdMeshersBuilder_Prism3D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Prism"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "Prism_3D"
## doc string of the method
# @internal
docHelper = "Creates prism 3D algorithm for volumes"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
shape = geom
if not shape:
shape = mesh.geom
from geompy import SubShapeAll, ShapeType
nbSolids = len( SubShapeAll( shape, ShapeType["SOLID"] ))
nbShells = len( SubShapeAll( shape, ShapeType["SHELL"] ))
if nbSolids == 0 or nbSolids == nbShells:
self.Create(mesh, geom, "Prism_3D")
pass
else:
self.algoType = "RadialPrism_3D"
self.Create(mesh, geom, "RadialPrism_3D")
self.distribHyp = None #self.Hypothesis("LayerDistribution", UseExisting=0)
self.nbLayers = None
pass
pass
## Return 3D hypothesis holding the 1D one
def Get3DHypothesis(self):
if self.algoType != "RadialPrism_3D":
print "Prism_3D algorith doesn't support any hyposesis"
return None
return self.distribHyp
## Private method creating a 1D hypothesis and storing it in the LayerDistribution
# hypothesis. Returns the created hypothesis
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
if self.algoType != "RadialPrism_3D":
print "Prism_3D algorith doesn't support any hyposesis"
return None
if not self.nbLayers is None:
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
self.mesh.smeshpyD.SetCurrentStudy( None )
hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
if not self.distribHyp:
self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0)
self.distribHyp.SetLayerDistribution( hyp )
return hyp
## Defines "NumberOfLayers" hypothesis, specifying the number of layers of
# prisms to build between the inner and outer shells
# @param n number of layers
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
def NumberOfLayers(self, n, UseExisting=0):
if self.algoType != "RadialPrism_3D":
print "Prism_3D algorith doesn't support any hyposesis"
return None
self.mesh.RemoveHypothesis( self.distribHyp, self.geom )
compFun = lambda hyp, args: IsEqual(hyp.GetNumberOfLayers(), args[0])
self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting,
CompareMethod=compFun)
self.nbLayers.SetNumberOfLayers( n )
return self.nbLayers
## Defines "LocalLength" hypothesis, specifying the segment length
# to build between the inner and the outer shells
# @param l the length of segments
# @param p the precision of rounding
def LocalLength(self, l, p=1e-07):
if self.algoType != "RadialPrism_3D":
print "Prism_3D algorith doesn't support any hyposesis"
return None
hyp = self.OwnHypothesis("LocalLength", [l,p])
hyp.SetLength(l)
hyp.SetPrecision(p)
return hyp
## Defines "NumberOfSegments" hypothesis, specifying the number of layers of
# prisms to build between the inner and the outer shells.
# @param n the number of layers
# @param s the scale factor (optional)
def NumberOfSegments(self, n, s=[]):
if self.algoType != "RadialPrism_3D":
print "Prism_3D algorith doesn't support any hyposesis"
return None
if s == []:
hyp = self.OwnHypothesis("NumberOfSegments", [n])
else:
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
return hyp
## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments
# to build between the inner and the outer shells with a length that changes in arithmetic progression
# @param start the length of the first segment
# @param end the length of the last segment
def Arithmetic1D(self, start, end ):
if self.algoType != "RadialPrism_3D":
print "Prism_3D algorith doesn't support any hyposesis"
return None
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Defines "StartEndLength" hypothesis, specifying distribution of segments
# to build between the inner and the outer shells as geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def StartEndLength(self, start, end):
if self.algoType != "RadialPrism_3D":
print "Prism_3D algorith doesn't support any hyposesis"
return None
hyp = self.OwnHypothesis("StartEndLength", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Defines "AutomaticLength" hypothesis, specifying the number of segments
# to build between the inner and outer shells
# @param fineness defines the quality of the mesh within the range [0-1]
def AutomaticLength(self, fineness=0):
if self.algoType != "RadialPrism_3D":
print "Prism_3D algorith doesn't support any hyposesis"
return None
hyp = self.OwnHypothesis("AutomaticLength")
hyp.SetFineness( fineness )
return hyp
pass # end of StdMeshersBuilder_Prism3D class
## Defines a Prism 3D algorithm, which is either "Extrusion 3D" or "Radial Prism"
# depending on geometry
#
# It is created by calling smeshBuilder.Mesh.Prism(geom=0)
#
# @ingroup l3_algos_3dextr
class StdMeshersBuilder_RadialPrism3D(StdMeshersBuilder_Prism3D):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Prism"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "RadialPrism_3D"
## doc string of the method
# @internal
docHelper = "Creates prism 3D algorithm for volumes"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
shape = geom
if not shape:
shape = mesh.geom
self.Create(mesh, geom, "RadialPrism_3D")
self.distribHyp = None
self.nbLayers = None
return
## Defines a Radial Quadrangle 1D-2D algorithm
#
# It is created by calling smeshBuilder.Mesh.Quadrangle(smesh.RADIAL_QUAD,geom=0)
#
# @ingroup l2_algos_radialq
class StdMeshersBuilder_RadialQuadrangle1D2D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "Quadrangle"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = RADIAL_QUAD
## doc string of the method
# @internal
docHelper = "Creates quadrangle 1D-2D algorithm for triangular faces"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, self.algoType)
self.distribHyp = None #self.Hypothesis("LayerDistribution2D", UseExisting=0)
self.nbLayers = None
pass
## Return 2D hypothesis holding the 1D one
def Get2DHypothesis(self):
if not self.distribHyp:
self.distribHyp = self.Hypothesis("LayerDistribution2D", UseExisting=0)
return self.distribHyp
## Private method creating a 1D hypothesis and storing it in the LayerDistribution
# hypothesis. Returns the created hypothesis
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
if self.nbLayers:
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
if self.distribHyp is None:
self.distribHyp = self.Hypothesis("LayerDistribution2D", UseExisting=0)
else:
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
self.mesh.smeshpyD.SetCurrentStudy( None )
hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
self.distribHyp.SetLayerDistribution( hyp )
return hyp
## Defines "NumberOfLayers" hypothesis, specifying the number of layers
# @param n number of layers
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
def NumberOfLayers(self, n, UseExisting=0):
if self.distribHyp:
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
compFun = lambda hyp, args: IsEqual(hyp.GetNumberOfLayers(), args[0])
self.nbLayers = self.Hypothesis("NumberOfLayers2D", [n], UseExisting=UseExisting,
CompareMethod=compFun)
self.nbLayers.SetNumberOfLayers( n )
return self.nbLayers
## Defines "LocalLength" hypothesis, specifying the segment length
# @param l the length of segments
# @param p the precision of rounding
def LocalLength(self, l, p=1e-07):
hyp = self.OwnHypothesis("LocalLength", [l,p])
hyp.SetLength(l)
hyp.SetPrecision(p)
return hyp
## Defines "NumberOfSegments" hypothesis, specifying the number of layers
# @param n the number of layers
# @param s the scale factor (optional)
def NumberOfSegments(self, n, s=[]):
if s == []:
hyp = self.OwnHypothesis("NumberOfSegments", [n])
else:
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
return hyp
## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments
# with a length that changes in arithmetic progression
# @param start the length of the first segment
# @param end the length of the last segment
def Arithmetic1D(self, start, end ):
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Defines "StartEndLength" hypothesis, specifying distribution of segments
# as geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def StartEndLength(self, start, end):
hyp = self.OwnHypothesis("StartEndLength", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Defines "AutomaticLength" hypothesis, specifying the number of segments
# @param fineness defines the quality of the mesh within the range [0-1]
def AutomaticLength(self, fineness=0):
hyp = self.OwnHypothesis("AutomaticLength")
hyp.SetFineness( fineness )
return hyp
pass # end of StdMeshersBuilder_RadialQuadrangle1D2D class
## Defines a Use Existing Elements 1D algorithm
#
# It is created by calling smeshBuilder.Mesh.UseExisting1DElements(geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_UseExistingElements_1D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "UseExisting1DElements"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "Import_1D"
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## doc string of the method
# @internal
docHelper = "Creates 1D algorithm for edges with reusing of existing mesh elements"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, self.algoType)
pass
## Defines "Source edges" hypothesis, specifying groups of edges to import
# @param groups list of groups of edges
# @param toCopyMesh if True, the whole mesh \a groups belong to is imported
# @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
def SourceEdges(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False):
for group in groups:
AssureGeomPublished( self.mesh, group )
compFun = lambda hyp, args: ( hyp.GetSourceEdges() == args[0] and \
hyp.GetCopySourceMesh() == args[1], args[2] )
hyp = self.Hypothesis("ImportSource1D", [groups, toCopyMesh, toCopyGroups],
UseExisting=UseExisting, CompareMethod=compFun)
hyp.SetSourceEdges(groups)
hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups)
return hyp
pass # end of StdMeshersBuilder_UseExistingElements_1D class
## Defines a Use Existing Elements 1D-2D algorithm
#
# It is created by calling smeshBuilder.Mesh.UseExisting2DElements(geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_UseExistingElements_1D2D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "UseExisting2DElements"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "Import_1D2D"
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## doc string of the method
# @internal
docHelper = "Creates 1D-2D algorithm for edges/faces with reusing of existing mesh elements"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, self.algoType)
pass
## Defines "Source faces" hypothesis, specifying groups of faces to import
# @param groups list of groups of faces
# @param toCopyMesh if True, the whole mesh \a groups belong to is imported
# @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
def SourceFaces(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False):
for group in groups:
AssureGeomPublished( self.mesh, group )
compFun = lambda hyp, args: ( hyp.GetSourceFaces() == args[0] and \
hyp.GetCopySourceMesh() == args[1], args[2] )
hyp = self.Hypothesis("ImportSource2D", [groups, toCopyMesh, toCopyGroups],
UseExisting=UseExisting, CompareMethod=compFun)
hyp.SetSourceFaces(groups)
hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups)
return hyp
pass # end of StdMeshersBuilder_UseExistingElements_1D2D class
## Defines a Body Fitting 3D algorithm
#
# It is created by calling smeshBuilder.Mesh.BodyFitted(geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_Cartesian_3D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "BodyFitted"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "Cartesian_3D"
## flag pointing either this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## doc string of the method
# @internal
docHelper = "Creates body fitting 3D algorithm for volumes"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, self.algoType)
self.hyp = None
pass
## Defines "Body Fitting parameters" hypothesis
# @param xGridDef is definition of the grid along the X asix.
# It can be in either of two following forms:
# - Explicit coordinates of nodes, e.g. [-1.5, 0.0, 3.1] or range( -100,200,10)
# - Functions f(t) defining grid spacing at each point on grid axis. If there are
# several functions, they must be accompanied by relative coordinates of
# points dividing the whole shape into ranges where the functions apply; points
# coodrinates should vary within (0.0, 1.0) range. Parameter \a t of the spacing
# function f(t) varies from 0.0 to 1.0 witin a shape range.
# Examples:
# - "10.5" - defines a grid with a constant spacing
# - [["1", "1+10*t", "11"] [0.1, 0.6]] - defines different spacing in 3 ranges.
# @param yGridDef defines the grid along the Y asix the same way as \a xGridDef does
# @param zGridDef defines the grid along the Z asix the same way as \a xGridDef does
# @param sizeThreshold (> 1.0) defines a minimal size of a polyhedron so that
# a polyhedron of size less than hexSize/sizeThreshold is not created
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
def SetGrid(self, xGridDef, yGridDef, zGridDef, sizeThreshold=4.0, UseExisting=False):
if not self.hyp:
compFun = lambda hyp, args: False
self.hyp = self.Hypothesis("CartesianParameters3D",
[xGridDef, yGridDef, zGridDef, sizeThreshold],
UseExisting=UseExisting, CompareMethod=compFun)
if not self.mesh.IsUsedHypothesis( self.hyp, self.geom ):
self.mesh.AddHypothesis( self.hyp, self.geom )
for axis, gridDef in enumerate( [xGridDef, yGridDef, zGridDef]):
if not gridDef: raise ValueError, "Empty grid definition"
if isinstance( gridDef, str ):
self.hyp.SetGridSpacing( [gridDef], [], axis )
elif isinstance( gridDef[0], str ):
self.hyp.SetGridSpacing( gridDef, [], axis )
elif isinstance( gridDef[0], int ) or \
isinstance( gridDef[0], float ):
self.hyp.SetGrid(gridDef, axis )
else:
self.hyp.SetGridSpacing( gridDef[0], gridDef[1], axis )
self.hyp.SetSizeThreshold( sizeThreshold )
return self.hyp
pass # end of StdMeshersBuilder_Cartesian_3D class
## Defines a stub 1D algorithm, which enables "manual" creation of nodes and
# segments usable by 2D algoritms
#
# It is created by calling smeshBuilder.Mesh.UseExistingSegments(geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_UseExisting_1D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "UseExistingSegments"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "UseExisting_1D"
## doc string of the method
# @internal
docHelper = "Creates 1D algorithm for edges with reusing of existing mesh elements"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, self.algoType)
pass
pass # end of StdMeshersBuilder_UseExisting_1D class
## Defines a stub 2D algorithm, which enables "manual" creation of nodes and
# faces usable by 3D algoritms
#
# It is created by calling smeshBuilder.Mesh.UseExistingFaces(geom=0)
#
# @ingroup l3_algos_basic
class StdMeshersBuilder_UseExisting_2D(Mesh_Algorithm):
## name of the dynamic method in smeshBuilder.Mesh class
# @internal
meshMethod = "UseExistingFaces"
## type of algorithm used with helper function in smeshBuilder.Mesh class
# @internal
algoType = "UseExisting_2D"
## doc string of the method
# @internal
docHelper = "Creates 2D algorithm for faces with reusing of existing mesh elements"
## Private constructor.
# @param mesh parent mesh object algorithm is assigned to
# @param geom geometry (shape/sub-shape) algorithm is assigned to;
# if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, self.algoType)
pass
pass # end of StdMeshersBuilder_UseExisting_2D class