smesh/src/SMESHUtils/SMESH_Delaunay.cxx
2020-04-15 18:19:44 +03:00

392 lines
13 KiB
C++

// Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : SMESH_Delaunay.cxx
// Created : Wed Apr 19 15:41:15 2017
// Author : Edward AGAPOV (eap)
#include "SMESH_Delaunay.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_File.hxx"
#include "SMESH_MeshAlgos.hxx"
#include <BRepAdaptor_Surface.hxx>
#include <BRepMesh_Delaun.hxx>
#include <Basics_OCCTVersion.hxx>
//================================================================================
/*!
* \brief Construct a Delaunay triangulation of given boundary nodes
* \param [in] boundaryNodes - vector of nodes of a wire
* \param [in] face - the face
* \param [in] faceID - the face ID
*/
//================================================================================
SMESH_Delaunay::SMESH_Delaunay(const std::vector< const UVPtStructVec* > & boundaryNodes,
const TopoDS_Face& face,
const int faceID)
: _face( face ), _faceID( faceID ), _scale( 1., 1. )
{
// compute _scale
BRepAdaptor_Surface surf( face );
if ( surf.GetType() != GeomAbs_Plane )
{
const int nbDiv = 100;
const double uRange = surf.LastUParameter() - surf.FirstUParameter();
const double vRange = surf.LastVParameter() - surf.FirstVParameter();
const double uFixed = surf.FirstUParameter() + 0.5 * uRange;
const double vFixed = surf.FirstVParameter() + 0.5 * vRange;
const double dU = uRange / nbDiv;
const double dV = vRange / nbDiv;
double u = surf.FirstUParameter(), v = surf.FirstVParameter();
gp_Pnt p0U = surf.Value( u, v ), p0V = p0U;
double lenU = 0, lenV = 0;
for ( ; u < surf.LastUParameter(); u += dU, v += dV )
{
gp_Pnt p1U = surf.Value( u, vFixed );
lenU += p1U.Distance( p0U );
p0U = p1U;
gp_Pnt p1V = surf.Value( uFixed, v );
lenV += p1V.Distance( p0V );
p0V = p1V;
}
_scale.SetCoord( lenU / uRange, lenV / vRange );
}
// count boundary points
int iP = 1, nbP = 0;
for ( size_t iW = 0; iW < boundaryNodes.size(); ++iW ) // loop on wires
{
nbP += boundaryNodes[iW]->size();
if ( boundaryNodes[iW]->front().node == boundaryNodes[iW]->back().node )
--nbP; // 1st and last points coincide
}
_bndNodes.resize( nbP );
// fill boundary points
#if OCC_VERSION_LARGE <= 0x07030000
BRepMesh::Array1OfVertexOfDelaun bndVert( 1, 1 + nbP );
#else
IMeshData::Array1OfVertexOfDelaun bndVert( 1, 1 + nbP );
#endif
BRepMesh_Vertex v( 0, 0, BRepMesh_Frontier );
for ( size_t iW = 0; iW < boundaryNodes.size(); ++iW )
{
const UVPtStructVec& bndPnt = *boundaryNodes[iW];
int i = 0, nb = bndPnt.size();
if ( bndPnt[0].node == bndPnt.back().node )
--nb;
for ( ; i < nb; ++i, ++iP )
{
_bndNodes[ iP-1 ] = bndPnt[i].node;
bndPnt[i].node->setIsMarked( true );
v.ChangeCoord() = bndPnt[i].UV().Multiplied( _scale );
bndVert( iP ) = v;
}
}
// triangulate the srcFace in 2D
BRepMesh_Delaun Delaunay( bndVert );
_triaDS = Delaunay.Result();
}
//================================================================================
/*!
* \brief Prepare to the exploration of nodes
*/
//================================================================================
void SMESH_Delaunay::InitTraversal(const int nbNodesToVisit)
{
_nbNodesToVisit = (size_t) nbNodesToVisit;
_nbVisitedNodes = _iBndNode = 0;
_noTriQueue.clear();
}
//================================================================================
/*!
* \brief Return a node with its Barycentric Coordinates within the triangle
* defined by its node indices (zero based)
* \param [out] bc - Barycentric Coordinates of the returned node
* \param [out] triaNodes - indices of triangle nodes
* \return const SMDS_MeshNode* - the next node or NULL
*/
//================================================================================
const SMDS_MeshNode* SMESH_Delaunay::NextNode( double bc[3], int triaNodes[3] )
{
while ( _nbVisitedNodes < _nbNodesToVisit )
{
while ( !_noTriQueue.empty() )
{
const SMDS_MeshNode* node = _noTriQueue.front().first;
const BRepMesh_Triangle* tria = _noTriQueue.front().second;
_noTriQueue.pop_front();
if ( node->isMarked() )
continue;
++_nbVisitedNodes;
node->setIsMarked( true );
// find a Delaunay triangle containing the src node
gp_XY uv = getNodeUV( _face, node );
tria = FindTriangle( uv, tria, bc, triaNodes );
if ( tria )
{
addCloseNodes( node, tria, _faceID, _noTriQueue );
return node;
}
}
for ( ; _iBndNode < _bndNodes.size() && _noTriQueue.empty(); ++_iBndNode )
{
if ( const BRepMesh_Triangle* tria = GetTriangleNear( _iBndNode ))
addCloseNodes( _bndNodes[ _iBndNode ], tria, _faceID, _noTriQueue );
}
if ( _noTriQueue.empty() )
break;
}
// if ( _nbVisitedNodes < _nbNodesToVisit )
// _nbVisitedNodes = std::numeric_limits<int>::max();
return NULL;
}
//================================================================================
/*!
* \brief Find a Delaunay triangle containing a given 2D point and return
* barycentric coordinates within the found triangle
*/
//================================================================================
const BRepMesh_Triangle* SMESH_Delaunay::FindTriangle( const gp_XY& UV,
const BRepMesh_Triangle* tria,
double bc[3],
int triaNodes[3] )
{
int nodeIDs[3];
gp_XY nodeUVs[3];
int linkIDs[3];
Standard_Boolean ori[3];
gp_XY uv = UV.Multiplied( _scale );
while ( tria )
{
// check if the uv is in tria
_triaDS->ElementNodes( *tria, nodeIDs );
nodeUVs[0] = _triaDS->GetNode( nodeIDs[0] ).Coord();
nodeUVs[1] = _triaDS->GetNode( nodeIDs[1] ).Coord();
nodeUVs[2] = _triaDS->GetNode( nodeIDs[2] ).Coord();
SMESH_MeshAlgos::GetBarycentricCoords( uv,
nodeUVs[0], nodeUVs[1], nodeUVs[2],
bc[0], bc[1] );
if ( bc[0] >= 0 && bc[1] >= 0 && bc[0] + bc[1] <= 1 )
{
if ( _triaDS->GetNode( nodeIDs[0] ).Movability() != BRepMesh_Frontier ||
_triaDS->GetNode( nodeIDs[1] ).Movability() != BRepMesh_Frontier ||
_triaDS->GetNode( nodeIDs[2] ).Movability() != BRepMesh_Frontier )
{
return 0;
}
bc[2] = 1 - bc[0] - bc[1];
triaNodes[0] = nodeIDs[0] - 1;
triaNodes[1] = nodeIDs[1] - 1;
triaNodes[2] = nodeIDs[2] - 1;
return tria;
}
// look for a neighbor triangle, which is adjacent to a link intersected
// by a segment( triangle center -> uv )
gp_XY gc = ( nodeUVs[0] + nodeUVs[1] + nodeUVs[2] ) / 3.;
gp_XY seg = uv - gc;
tria->Edges( linkIDs, ori );
const BRepMesh_Triangle* prevTria = tria;
tria = 0;
for ( int i = 0; i < 3; ++i )
{
const BRepMesh_PairOfIndex & triIDs = _triaDS->ElementsConnectedTo( linkIDs[i] );
if ( triIDs.Extent() < 2 )
continue; // no neighbor triangle
// check if a link intersects gc2uv
const BRepMesh_Edge & link = _triaDS->GetLink( linkIDs[i] );
const BRepMesh_Vertex & n1 = _triaDS->GetNode( link.FirstNode() );
const BRepMesh_Vertex & n2 = _triaDS->GetNode( link.LastNode() );
gp_XY uv1 = n1.Coord();
gp_XY lin = n2.Coord() - uv1; // link direction
double crossSegLin = seg ^ lin;
if ( Abs( crossSegLin ) < std::numeric_limits<double>::min() )
continue; // parallel
double uSeg = ( uv1 - gc ) ^ lin / crossSegLin;
if ( 0. <= uSeg && uSeg <= 1. )
{
tria = & _triaDS->GetElement( triIDs.Index( 1 ));
if ( tria == prevTria )
tria = & _triaDS->GetElement( triIDs.Index( 2 ));
if ( tria->Movability() != BRepMesh_Deleted )
break;
}
}
}
return tria;
}
//================================================================================
/*!
* \brief Return a triangle sharing a given boundary node
* \param [in] iBndNode - index of the boundary node
* \return const BRepMesh_Triangle* - a found triangle
*/
//================================================================================
const BRepMesh_Triangle* SMESH_Delaunay::GetTriangleNear( int iBndNode )
{
if ( iBndNode >= _triaDS->NbNodes() )
return 0;
int nodeIDs[3];
int nbNbNodes = _bndNodes.size();
#if OCC_VERSION_LARGE <= 0x07030000
typedef BRepMesh::ListOfInteger TLinkList;
#else
typedef IMeshData::ListOfInteger TLinkList;
#endif
const TLinkList & linkIds = _triaDS->LinksConnectedTo( iBndNode + 1 );
TLinkList::const_iterator iLink = linkIds.cbegin();
for ( ; iLink != linkIds.cend(); ++iLink )
{
const BRepMesh_PairOfIndex & triaIds = _triaDS->ElementsConnectedTo( *iLink );
{
const BRepMesh_Triangle& tria = _triaDS->GetElement( triaIds.Index(1) );
if ( tria.Movability() != BRepMesh_Deleted )
{
_triaDS->ElementNodes( tria, nodeIDs );
if ( nodeIDs[0]-1 < nbNbNodes &&
nodeIDs[1]-1 < nbNbNodes &&
nodeIDs[2]-1 < nbNbNodes )
return &tria;
}
}
if ( triaIds.Extent() > 1 )
{
const BRepMesh_Triangle& tria = _triaDS->GetElement( triaIds.Index(2) );
if ( tria.Movability() != BRepMesh_Deleted )
{
_triaDS->ElementNodes( tria, nodeIDs );
if ( nodeIDs[0]-1 < nbNbNodes &&
nodeIDs[1]-1 < nbNbNodes &&
nodeIDs[2]-1 < nbNbNodes )
return &tria;
}
}
}
return 0;
}
//================================================================================
/*!
* \brief Return UV of the i-th source boundary node (zero based)
*/
//================================================================================
gp_XY SMESH_Delaunay::GetBndUV(const int iNode) const
{
return _triaDS->GetNode( iNode+1 ).Coord();
}
//================================================================================
/*!
* \brief Add non-marked nodes surrounding a given one to a queue
*/
//================================================================================
void SMESH_Delaunay::addCloseNodes( const SMDS_MeshNode* node,
const BRepMesh_Triangle* tria,
const int faceID,
TNodeTriaList & _noTriQueue )
{
// find in-FACE nodes
SMDS_ElemIteratorPtr elems = node->GetInverseElementIterator(SMDSAbs_Face);
while ( elems->more() )
{
const SMDS_MeshElement* elem = elems->next();
if ( elem->getshapeId() == faceID )
{
for ( int i = 0, nb = elem->NbNodes(); i < nb; ++i )
{
const SMDS_MeshNode* n = elem->GetNode( i );
if ( !n->isMarked() /*&& n->getshapeId() == faceID*/ )
_noTriQueue.push_back( std::make_pair( n, tria ));
}
}
}
}
//================================================================================
/*!
* \brief Write a python script that creates an equal mesh in Mesh module
*/
//================================================================================
void SMESH_Delaunay::ToPython() const
{
SMESH_Comment text;
text << "import salome, SMESH\n";
text << "salome.salome_init()\n";
text << "from salome.smesh import smeshBuilder\n";
text << "smesh = smeshBuilder.New()\n";
text << "mesh=smesh.Mesh()\n";
const char* endl = "\n";
for ( int i = 0; i < _triaDS->NbNodes(); ++i )
{
const BRepMesh_Vertex& v = _triaDS->GetNode( i+1 );
text << "mesh.AddNode( " << v.Coord().X() << ", " << v.Coord().Y() << ", 0 )" << endl;
}
int nodeIDs[3];
for ( int i = 0; i < _triaDS->NbElements(); ++i )
{
const BRepMesh_Triangle& t = _triaDS->GetElement( i+1 );
if ( t.Movability() == BRepMesh_Deleted )
continue;
_triaDS->ElementNodes( t, nodeIDs );
text << "mesh.AddFace([ " << nodeIDs[0] << ", " << nodeIDs[1] << ", " << nodeIDs[2] << " ])" << endl;
}
const char* fileName = "/tmp/Delaunay.py";
SMESH_File file( fileName, false );
file.remove();
file.openForWriting();
file.write( text.c_str(), text.size() );
std::cout << "exec(open('" << fileName << "', 'rb').read())";
}