smesh/src/StdMeshers/StdMeshers_QuadToTriaAdaptor.cxx
eap e3409934a4 0021130: EDF 1746 SMESH: Issue with export in STL format
move TNodeXYZ from SMESH_MeshEditor to SMESH_TypeDefs.hxx as SMESH_TNodeXYZ
2011-01-27 16:45:55 +00:00

1208 lines
42 KiB
C++

// Copyright (C) 2007-2010 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementaion of SMESH idl descriptions
// File : StdMeshers_QuadToTriaAdaptor.cxx
// Module : SMESH
// Created : Wen May 07 16:37:07 2008
// Author : Sergey KUUL (skl)
//
#include "StdMeshers_QuadToTriaAdaptor.hxx"
#include "SMDS_SetIterator.hxx"
#include "SMESH_Algo.hxx"
#include "SMESH_MesherHelper.hxx"
#include <IntAna_IntConicQuad.hxx>
#include <IntAna_Quadric.hxx>
#include <TColgp_HArray1OfPnt.hxx>
#include <TColgp_HArray1OfVec.hxx>
#include <TColgp_HSequenceOfPnt.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <gp_Lin.hxx>
#include <gp_Pln.hxx>
#include <numeric>
using namespace std;
enum EQuadNature { NOT_QUAD, QUAD, DEGEN_QUAD, PYRAM_APEX = 4, TRIA_APEX = 0 };
// std-like iterator used to get coordinates of nodes of mesh element
typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator;
namespace
{
//================================================================================
/*!
* \brief Return true if two nodes of triangles are equal
*/
//================================================================================
bool EqualTriangles(const SMDS_MeshElement* F1,const SMDS_MeshElement* F2)
{
return
( F1->GetNode(1)==F2->GetNode(2) && F1->GetNode(2)==F2->GetNode(1) ) ||
( F1->GetNode(1)==F2->GetNode(1) && F1->GetNode(2)==F2->GetNode(2) );
}
//================================================================================
/*!
* \brief Return true if two adjacent pyramids are too close one to another
* so that a tetrahedron to built between them would have too poor quality
*/
//================================================================================
bool TooCloseAdjacent( const SMDS_MeshElement* PrmI,
const SMDS_MeshElement* PrmJ,
const bool hasShape)
{
const SMDS_MeshNode* nApexI = PrmI->GetNode(4);
const SMDS_MeshNode* nApexJ = PrmJ->GetNode(4);
if ( nApexI == nApexJ ||
nApexI->getshapeId() != nApexJ->getshapeId() )
return false;
// Find two common base nodes and their indices within PrmI and PrmJ
const SMDS_MeshNode* baseNodes[2] = { 0,0 };
int baseNodesIndI[2], baseNodesIndJ[2];
for ( int i = 0; i < 4 ; ++i )
{
int j = PrmJ->GetNodeIndex( PrmI->GetNode(i));
if ( j >= 0 )
{
int ind = baseNodes[0] ? 1:0;
if ( baseNodes[ ind ])
return false; // pyramids with a common base face
baseNodes [ ind ] = PrmI->GetNode(i);
baseNodesIndI[ ind ] = i;
baseNodesIndJ[ ind ] = j;
}
}
if ( !baseNodes[1] ) return false; // not adjacent
// Get normals of triangles sharing baseNodes
gp_XYZ apexI = SMESH_TNodeXYZ( nApexI );
gp_XYZ apexJ = SMESH_TNodeXYZ( nApexJ );
gp_XYZ base1 = SMESH_TNodeXYZ( baseNodes[0]);
gp_XYZ base2 = SMESH_TNodeXYZ( baseNodes[1]);
gp_Vec baseVec( base1, base2 );
gp_Vec baI( base1, apexI );
gp_Vec baJ( base1, apexJ );
gp_Vec nI = baseVec.Crossed( baI );
gp_Vec nJ = baseVec.Crossed( baJ );
// Check angle between normals
double angle = nI.Angle( nJ );
bool tooClose = ( angle < 15 * PI180 );
// Check if pyramids collide
bool isOutI, isOutJ;
if ( !tooClose && baI * baJ > 0 )
{
// find out if nI points outside of PrmI or inside
int dInd = baseNodesIndI[1] - baseNodesIndI[0];
isOutI = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0;
// find out sign of projection of nJ to baI
double proj = baI * nJ;
tooClose = isOutI ? proj > 0 : proj < 0;
}
// Check if PrmI and PrmJ are in same domain
if ( tooClose && !hasShape )
{
// check order of baseNodes within pyramids, it must be opposite
int dInd;
dInd = baseNodesIndI[1] - baseNodesIndI[0];
isOutI = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0;
dInd = baseNodesIndJ[1] - baseNodesIndJ[0];
isOutJ = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0;
if ( isOutJ == isOutI )
return false; // other domain
// check absence of a face separating domains between pyramids
TIDSortedElemSet emptySet, avoidSet;
int i1, i2;
while ( const SMDS_MeshElement* f =
SMESH_MeshEditor::FindFaceInSet( baseNodes[0], baseNodes[1],
emptySet, avoidSet, &i1, &i2 ))
{
avoidSet.insert( f );
// face node other than baseNodes
int otherNodeInd = 0;
while ( otherNodeInd == i1 || otherNodeInd == i2 ) otherNodeInd++;
const SMDS_MeshNode* otherFaceNode = f->GetNode( otherNodeInd );
// check if f is a base face of either of pyramids
if ( f->NbCornerNodes() == 4 &&
( PrmI->GetNodeIndex( otherFaceNode ) >= 0 ||
PrmJ->GetNodeIndex( otherFaceNode ) >= 0 ))
continue; // f is a base quadrangle
// check projections of face direction (baOFN) to triange normals (nI and nJ)
gp_Vec baOFN( base1, SMESH_TNodeXYZ( otherFaceNode ));
( isOutI ? nJ : nI ).Reverse();
if ( nI * baOFN > 0 && nJ * baOFN > 0 )
{
tooClose = false; // f is between pyramids
break;
}
}
}
return tooClose;
}
}
//================================================================================
/*!
* \brief Merge the two pyramids (i.e. fuse their apex) and others already merged with them
*/
//================================================================================
void StdMeshers_QuadToTriaAdaptor::MergePiramids( const SMDS_MeshElement* PrmI,
const SMDS_MeshElement* PrmJ,
set<const SMDS_MeshNode*> & nodesToMove)
{
const SMDS_MeshNode* Nrem = PrmJ->GetNode(4); // node to remove
int nbJ = Nrem->NbInverseElements( SMDSAbs_Volume );
SMESH_TNodeXYZ Pj( Nrem );
// an apex node to make common to all merged pyramids
SMDS_MeshNode* CommonNode = const_cast<SMDS_MeshNode*>(PrmI->GetNode(4));
if ( CommonNode == Nrem ) return; // already merged
int nbI = CommonNode->NbInverseElements( SMDSAbs_Volume );
SMESH_TNodeXYZ Pi( CommonNode );
gp_XYZ Pnew = ( nbI*Pi + nbJ*Pj ) / (nbI+nbJ);
CommonNode->setXYZ( Pnew.X(), Pnew.Y(), Pnew.Z() );
nodesToMove.insert( CommonNode );
nodesToMove.erase ( Nrem );
typedef SMDS_StdIterator< const SMDS_MeshElement*, SMDS_ElemIteratorPtr > TStdElemIterator;
TStdElemIterator itEnd;
// find and remove coincided faces of merged pyramids
vector< const SMDS_MeshElement* > inverseElems
// copy inverse elements to avoid iteration on changing conainer
( TStdElemIterator( CommonNode->GetInverseElementIterator(SMDSAbs_Face)), itEnd);
for ( unsigned i = 0; i < inverseElems.size(); ++i )
{
const SMDS_MeshElement* FI = inverseElems[i];
const SMDS_MeshElement* FJEqual = 0;
SMDS_ElemIteratorPtr triItJ = Nrem->GetInverseElementIterator(SMDSAbs_Face);
while ( !FJEqual && triItJ->more() )
{
const SMDS_MeshElement* FJ = triItJ->next();
if ( EqualTriangles( FJ, FI ))
FJEqual = FJ;
}
if ( FJEqual )
{
removeTmpElement( FI );
removeTmpElement( FJEqual );
myRemovedTrias.insert( FI );
myRemovedTrias.insert( FJEqual );
}
}
// set the common apex node to pyramids and triangles merged with J
inverseElems.assign( TStdElemIterator( Nrem->GetInverseElementIterator()), itEnd );
for ( unsigned i = 0; i < inverseElems.size(); ++i )
{
const SMDS_MeshElement* elem = inverseElems[i];
vector< const SMDS_MeshNode* > nodes( elem->begin_nodes(), elem->end_nodes() );
nodes[ elem->GetType() == SMDSAbs_Volume ? PYRAM_APEX : TRIA_APEX ] = CommonNode;
GetMeshDS()->ChangeElementNodes( elem, &nodes[0], nodes.size());
}
ASSERT( Nrem->NbInverseElements() == 0 );
GetMeshDS()->RemoveFreeNode( Nrem,
GetMeshDS()->MeshElements( Nrem->getshapeId()),
/*fromGroups=*/false);
}
//================================================================================
/*!
* \brief Merges adjacent pyramids
*/
//================================================================================
void StdMeshers_QuadToTriaAdaptor::MergeAdjacent(const SMDS_MeshElement* PrmI,
set<const SMDS_MeshNode*>& nodesToMove)
{
TIDSortedElemSet adjacentPyrams;
bool mergedPyrams = false;
for(int k=0; k<4; k++) // loop on 4 base nodes of PrmI
{
const SMDS_MeshNode* n = PrmI->GetNode(k);
SMDS_ElemIteratorPtr vIt = n->GetInverseElementIterator( SMDSAbs_Volume );
while ( vIt->more() )
{
const SMDS_MeshElement* PrmJ = vIt->next();
if ( PrmJ->NbCornerNodes() != 5 || !adjacentPyrams.insert( PrmJ ).second )
continue;
if ( PrmI != PrmJ && TooCloseAdjacent( PrmI, PrmJ, GetMesh()->HasShapeToMesh() ))
{
MergePiramids( PrmI, PrmJ, nodesToMove );
mergedPyrams = true;
// container of inverse elements can change
vIt = n->GetInverseElementIterator( SMDSAbs_Volume );
}
}
}
if ( mergedPyrams )
{
TIDSortedElemSet::iterator prm;
for (prm = adjacentPyrams.begin(); prm != adjacentPyrams.end(); ++prm)
MergeAdjacent( *prm, nodesToMove );
}
}
//================================================================================
/*!
* \brief Constructor
*/
//================================================================================
StdMeshers_QuadToTriaAdaptor::StdMeshers_QuadToTriaAdaptor():
myElemSearcher(0)
{
}
//================================================================================
/*!
* \brief Destructor
*/
//================================================================================
StdMeshers_QuadToTriaAdaptor::~StdMeshers_QuadToTriaAdaptor()
{
// temporary faces are deleted by ~SMESH_ProxyMesh()
if ( myElemSearcher ) delete myElemSearcher;
myElemSearcher=0;
}
//=======================================================================
//function : FindBestPoint
//purpose : Return a point P laying on the line (PC,V) so that triangle
// (P, P1, P2) to be equilateral as much as possible
// V - normal to (P1,P2,PC)
//=======================================================================
static gp_Pnt FindBestPoint(const gp_Pnt& P1, const gp_Pnt& P2,
const gp_Pnt& PC, const gp_Vec& V)
{
double a = P1.Distance(P2);
double b = P1.Distance(PC);
double c = P2.Distance(PC);
if( a < (b+c)/2 )
return PC;
else {
// find shift along V in order a to became equal to (b+c)/2
double shift = sqrt( a*a + (b*b-c*c)*(b*b-c*c)/16/a/a - (b*b+c*c)/2 );
gp_Dir aDir(V);
gp_Pnt Pbest = PC.XYZ() + aDir.XYZ() * shift;
return Pbest;
}
}
//=======================================================================
//function : HasIntersection3
//purpose : Auxilare for HasIntersection()
// find intersection point between triangle (P1,P2,P3)
// and segment [PC,P]
//=======================================================================
static bool HasIntersection3(const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint,
const gp_Pnt& P1, const gp_Pnt& P2, const gp_Pnt& P3)
{
//cout<<"HasIntersection3"<<endl;
//cout<<" PC("<<PC.X()<<","<<PC.Y()<<","<<PC.Z()<<")"<<endl;
//cout<<" P("<<P.X()<<","<<P.Y()<<","<<P.Z()<<")"<<endl;
//cout<<" P1("<<P1.X()<<","<<P1.Y()<<","<<P1.Z()<<")"<<endl;
//cout<<" P2("<<P2.X()<<","<<P2.Y()<<","<<P2.Z()<<")"<<endl;
//cout<<" P3("<<P3.X()<<","<<P3.Y()<<","<<P3.Z()<<")"<<endl;
gp_Vec VP1(P1,P2);
gp_Vec VP2(P1,P3);
IntAna_Quadric IAQ(gp_Pln(P1,VP1.Crossed(VP2)));
IntAna_IntConicQuad IAICQ(gp_Lin(PC,gp_Dir(gp_Vec(PC,P))),IAQ);
if(IAICQ.IsDone()) {
if( IAICQ.IsInQuadric() )
return false;
if( IAICQ.NbPoints() == 1 ) {
gp_Pnt PIn = IAICQ.Point(1);
const double preci = 1.e-10 * P.Distance(PC);
// check if this point is internal for segment [PC,P]
bool IsExternal =
( (PC.X()-PIn.X())*(P.X()-PIn.X()) > preci ) ||
( (PC.Y()-PIn.Y())*(P.Y()-PIn.Y()) > preci ) ||
( (PC.Z()-PIn.Z())*(P.Z()-PIn.Z()) > preci );
if(IsExternal) {
return false;
}
// check if this point is internal for triangle (P1,P2,P3)
gp_Vec V1(PIn,P1);
gp_Vec V2(PIn,P2);
gp_Vec V3(PIn,P3);
if( V1.Magnitude()<preci ||
V2.Magnitude()<preci ||
V3.Magnitude()<preci ) {
Pint = PIn;
return true;
}
const double angularTol = 1e-6;
gp_Vec VC1 = V1.Crossed(V2);
gp_Vec VC2 = V2.Crossed(V3);
gp_Vec VC3 = V3.Crossed(V1);
if(VC1.Magnitude()<gp::Resolution()) {
if(VC2.IsOpposite(VC3,angularTol)) {
return false;
}
}
else if(VC2.Magnitude()<gp::Resolution()) {
if(VC1.IsOpposite(VC3,angularTol)) {
return false;
}
}
else if(VC3.Magnitude()<gp::Resolution()) {
if(VC1.IsOpposite(VC2,angularTol)) {
return false;
}
}
else {
if( VC1.IsOpposite(VC2,angularTol) || VC1.IsOpposite(VC3,angularTol) ||
VC2.IsOpposite(VC3,angularTol) ) {
return false;
}
}
Pint = PIn;
return true;
}
}
return false;
}
//=======================================================================
//function : HasIntersection
//purpose : Auxilare for CheckIntersection()
//=======================================================================
static bool HasIntersection(const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint,
Handle(TColgp_HSequenceOfPnt)& aContour)
{
if(aContour->Length()==3) {
return HasIntersection3( P, PC, Pint, aContour->Value(1),
aContour->Value(2), aContour->Value(3) );
}
else {
bool check = false;
if( (aContour->Value(1).Distance(aContour->Value(2)) > 1.e-6) &&
(aContour->Value(1).Distance(aContour->Value(3)) > 1.e-6) &&
(aContour->Value(2).Distance(aContour->Value(3)) > 1.e-6) ) {
check = HasIntersection3( P, PC, Pint, aContour->Value(1),
aContour->Value(2), aContour->Value(3) );
}
if(check) return true;
if( (aContour->Value(1).Distance(aContour->Value(4)) > 1.e-6) &&
(aContour->Value(1).Distance(aContour->Value(3)) > 1.e-6) &&
(aContour->Value(4).Distance(aContour->Value(3)) > 1.e-6) ) {
check = HasIntersection3( P, PC, Pint, aContour->Value(1),
aContour->Value(3), aContour->Value(4) );
}
if(check) return true;
}
return false;
}
//================================================================================
/*!
* \brief Checks if a line segment (P,PC) intersects any mesh face.
* \param P - first segment end
* \param PC - second segment end (it is a gravity center of quadrangle)
* \param Pint - (out) intersection point
* \param aMesh - mesh
* \param aShape - shape to check faces on
* \param NotCheckedFace - mesh face not to check
* \retval bool - true if there is an intersection
*/
//================================================================================
bool StdMeshers_QuadToTriaAdaptor::CheckIntersection (const gp_Pnt& P,
const gp_Pnt& PC,
gp_Pnt& Pint,
SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
const SMDS_MeshElement* NotCheckedFace)
{
if ( !myElemSearcher )
myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher();
SMESH_ElementSearcher* searcher = const_cast<SMESH_ElementSearcher*>(myElemSearcher);
//SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
//cout<<" CheckIntersection: meshDS->NbFaces() = "<<meshDS->NbFaces()<<endl;
bool res = false;
double dist = RealLast(); // find intersection closest to the segment
gp_Pnt Pres;
gp_Ax1 line( P, gp_Vec(P,PC));
vector< const SMDS_MeshElement* > suspectElems;
searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectElems);
for ( int i = 0; i < suspectElems.size(); ++i )
{
const SMDS_MeshElement* face = suspectElems[i];
if ( face == NotCheckedFace ) continue;
Handle(TColgp_HSequenceOfPnt) aContour = new TColgp_HSequenceOfPnt;
for ( int i = 0; i < face->NbCornerNodes(); ++i )
aContour->Append( SMESH_TNodeXYZ( face->GetNode(i) ));
if( HasIntersection(P, PC, Pres, aContour) ) {
res = true;
double tmp = PC.Distance(Pres);
if(tmp<dist) {
Pint = Pres;
dist = tmp;
}
}
}
return res;
}
//================================================================================
/*!
* \brief Prepare data for the given face
* \param PN - coordinates of face nodes
* \param VN - cross products of vectors (PC-PN(i)) ^ (PC-PN(i+1))
* \param FNodes - face nodes
* \param PC - gravity center of nodes
* \param VNorm - face normal (sum of VN)
* \param volumes - two volumes sharing the given face, the first is in VNorm direction
* \retval int - 0 if given face is not quad,
* 1 if given face is quad,
* 2 if given face is degenerate quad (two nodes are coincided)
*/
//================================================================================
int StdMeshers_QuadToTriaAdaptor::Preparation(const SMDS_MeshElement* face,
Handle(TColgp_HArray1OfPnt)& PN,
Handle(TColgp_HArray1OfVec)& VN,
vector<const SMDS_MeshNode*>& FNodes,
gp_Pnt& PC,
gp_Vec& VNorm,
const SMDS_MeshElement** volumes)
{
if( face->NbCornerNodes() != 4 )
{
return NOT_QUAD;
}
int i = 0;
gp_XYZ xyzC(0., 0., 0.);
for ( i = 0; i < 4; ++i )
{
gp_XYZ p = SMESH_TNodeXYZ( FNodes[i] = face->GetNode(i) );
PN->SetValue( i+1, p );
xyzC += p;
}
PC = xyzC/4;
int nbp = 4;
int j = 0;
for(i=1; i<4; i++) {
j = i+1;
for(; j<=4; j++) {
if( PN->Value(i).Distance(PN->Value(j)) < 1.e-6 )
break;
}
if(j<=4) break;
}
//int deg_num = IsDegenarate(PN);
//if(deg_num>0) {
bool hasdeg = false;
if(i<4) {
//cout<<"find degeneration"<<endl;
hasdeg = true;
gp_Pnt Pdeg = PN->Value(i);
list< const SMDS_MeshNode* >::iterator itdg = myDegNodes.begin();
const SMDS_MeshNode* DegNode = 0;
for(; itdg!=myDegNodes.end(); itdg++) {
const SMDS_MeshNode* N = (*itdg);
gp_Pnt Ptmp(N->X(),N->Y(),N->Z());
if(Pdeg.Distance(Ptmp)<1.e-6) {
DegNode = N;
//DegNode = const_cast<SMDS_MeshNode*>(N);
break;
}
}
if(!DegNode) {
DegNode = FNodes[i-1];
myDegNodes.push_back(DegNode);
}
else {
FNodes[i-1] = DegNode;
}
for(i=j; i<4; i++) {
PN->SetValue(i,PN->Value(i+1));
FNodes[i-1] = FNodes[i];
}
nbp = 3;
}
PN->SetValue(nbp+1,PN->Value(1));
FNodes[nbp] = FNodes[0];
// find normal direction
gp_Vec V1(PC,PN->Value(nbp));
gp_Vec V2(PC,PN->Value(1));
VNorm = V1.Crossed(V2);
VN->SetValue(nbp,VNorm);
for(i=1; i<nbp; i++) {
V1 = gp_Vec(PC,PN->Value(i));
V2 = gp_Vec(PC,PN->Value(i+1));
gp_Vec Vtmp = V1.Crossed(V2);
VN->SetValue(i,Vtmp);
VNorm += Vtmp;
}
// find volumes sharing the face
if ( volumes )
{
volumes[0] = volumes[1] = 0;
SMDS_ElemIteratorPtr vIt = FNodes[0]->GetInverseElementIterator( SMDSAbs_Volume );
while ( vIt->more() )
{
const SMDS_MeshElement* vol = vIt->next();
bool volSharesAllNodes = true;
for ( int i = 1; i < face->NbNodes() && volSharesAllNodes; ++i )
volSharesAllNodes = ( vol->GetNodeIndex( FNodes[i] ) >= 0 );
if ( volSharesAllNodes )
volumes[ volumes[0] ? 1 : 0 ] = vol;
// we could additionally check that vol has all FNodes in its one face using SMDS_VolumeTool
}
// define volume position relating to the face normal
if ( volumes[0] )
{
// get volume gc
SMDS_ElemIteratorPtr nodeIt = volumes[0]->nodesIterator();
gp_XYZ volGC(0,0,0);
volGC = accumulate( TXyzIterator(nodeIt), TXyzIterator(), volGC ) / volumes[0]->NbNodes();
if ( VNorm * gp_Vec( PC, volGC ) < 0 )
swap( volumes[0], volumes[1] );
}
}
//cout<<" VNorm("<<VNorm.X()<<","<<VNorm.Y()<<","<<VNorm.Z()<<")"<<endl;
return hasdeg ? DEGEN_QUAD : QUAD;
}
//=======================================================================
//function : Compute
//purpose :
//=======================================================================
bool StdMeshers_QuadToTriaAdaptor::Compute(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_ProxyMesh* aProxyMesh)
{
SMESH_ProxyMesh::setMesh( aMesh );
if ( aShape.ShapeType() != TopAbs_SOLID &&
aShape.ShapeType() != TopAbs_SHELL )
return false;
vector<const SMDS_MeshElement*> myPyramids;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
SMESH_MesherHelper helper(aMesh);
helper.IsQuadraticSubMesh(aShape);
helper.SetElementsOnShape( true );
if ( myElemSearcher ) delete myElemSearcher;
if ( aProxyMesh )
myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher( aProxyMesh->GetFaces(aShape));
else
myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher();
const SMESHDS_SubMesh * aSubMeshDSFace;
Handle(TColgp_HArray1OfPnt) PN = new TColgp_HArray1OfPnt(1,5);
Handle(TColgp_HArray1OfVec) VN = new TColgp_HArray1OfVec(1,4);
vector<const SMDS_MeshNode*> FNodes(5);
gp_Pnt PC;
gp_Vec VNorm;
for (TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next())
{
const TopoDS_Shape& aShapeFace = exp.Current();
if ( aProxyMesh )
aSubMeshDSFace = aProxyMesh->GetSubMesh( aShapeFace );
else
aSubMeshDSFace = meshDS->MeshElements( aShapeFace );
vector<const SMDS_MeshElement*> trias, quads;
bool hasNewTrias = false;
if ( aSubMeshDSFace )
{
bool isRev = false;
if ( helper.NbAncestors( aShapeFace, aMesh, aShape.ShapeType() ) > 1 )
isRev = SMESH_Algo::IsReversedSubMesh( TopoDS::Face(aShapeFace), meshDS );
SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
while ( iteratorElem->more() ) // loop on elements on a geometrical face
{
const SMDS_MeshElement* face = iteratorElem->next();
// preparation step to get face info
int stat = Preparation(face, PN, VN, FNodes, PC, VNorm);
switch ( stat )
{
case NOT_QUAD:
trias.push_back( face );
break;
case DEGEN_QUAD:
{
// degenerate face
// add triangles to result map
SMDS_MeshFace* NewFace;
if(!isRev)
NewFace = meshDS->AddFace( FNodes[0], FNodes[1], FNodes[2] );
else
NewFace = meshDS->AddFace( FNodes[0], FNodes[2], FNodes[1] );
storeTmpElement( NewFace );
trias.push_back ( NewFace );
quads.push_back( face );
hasNewTrias = true;
break;
}
case QUAD:
{
if(!isRev) VNorm.Reverse();
double xc = 0., yc = 0., zc = 0.;
int i = 1;
for(; i<=4; i++) {
gp_Pnt Pbest;
if(!isRev)
Pbest = FindBestPoint(PN->Value(i), PN->Value(i+1), PC, VN->Value(i).Reversed());
else
Pbest = FindBestPoint(PN->Value(i), PN->Value(i+1), PC, VN->Value(i));
xc += Pbest.X();
yc += Pbest.Y();
zc += Pbest.Z();
}
gp_Pnt PCbest(xc/4., yc/4., zc/4.);
// check PCbest
double height = PCbest.Distance(PC);
if(height<1.e-6) {
// create new PCbest using a bit shift along VNorm
PCbest = PC.XYZ() + VNorm.XYZ() * 0.001;
}
else {
// check possible intersection with other faces
gp_Pnt Pint;
bool check = CheckIntersection(PCbest, PC, Pint, aMesh, aShape, face);
if(check) {
//cout<<"--PC("<<PC.X()<<","<<PC.Y()<<","<<PC.Z()<<")"<<endl;
//cout<<" PCbest("<<PCbest.X()<<","<<PCbest.Y()<<","<<PCbest.Z()<<")"<<endl;
double dist = PC.Distance(Pint)/3.;
gp_Dir aDir(gp_Vec(PC,PCbest));
PCbest = PC.XYZ() + aDir.XYZ() * dist;
}
else {
gp_Vec VB(PC,PCbest);
gp_Pnt PCbestTmp = PC.XYZ() + VB.XYZ() * 3.0;
check = CheckIntersection(PCbestTmp, PC, Pint, aMesh, aShape, face);
if(check) {
double dist = PC.Distance(Pint)/3.;
if(dist<height) {
gp_Dir aDir(gp_Vec(PC,PCbest));
PCbest = PC.XYZ() + aDir.XYZ() * dist;
}
}
}
}
// create node for PCbest
SMDS_MeshNode* NewNode = helper.AddNode( PCbest.X(), PCbest.Y(), PCbest.Z() );
// add triangles to result map
for(i=0; i<4; i++)
{
trias.push_back ( meshDS->AddFace( NewNode, FNodes[i], FNodes[i+1] ));
storeTmpElement( trias.back() );
}
// create a pyramid
if ( isRev ) swap( FNodes[1], FNodes[3]);
SMDS_MeshVolume* aPyram =
helper.AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode );
myPyramids.push_back(aPyram);
quads.push_back( face );
hasNewTrias = true;
break;
} // case QUAD:
} // switch ( stat )
} // end loop on elements on a face submesh
bool sourceSubMeshIsProxy = false;
if ( aProxyMesh )
{
// move proxy sub-mesh from other proxy mesh to this
sourceSubMeshIsProxy = takeProxySubMesh( aShapeFace, aProxyMesh );
// move also tmp elements added in mesh
takeTmpElemsInMesh( aProxyMesh );
}
if ( hasNewTrias )
{
SMESH_ProxyMesh::SubMesh* prxSubMesh = getProxySubMesh( aShapeFace );
prxSubMesh->ChangeElements( trias.begin(), trias.end() );
// delete tmp quadrangles removed from aProxyMesh
if ( sourceSubMeshIsProxy )
{
for ( unsigned i = 0; i < quads.size(); ++i )
removeTmpElement( quads[i] );
delete myElemSearcher;
myElemSearcher =
SMESH_MeshEditor(&aMesh).GetElementSearcher( aProxyMesh->GetFaces(aShape));
}
}
}
} // end for(TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next()) {
return Compute2ndPart(aMesh, myPyramids);
}
//================================================================================
/*!
* \brief Computes pyramids in mesh with no shape
*/
//================================================================================
bool StdMeshers_QuadToTriaAdaptor::Compute(SMESH_Mesh& aMesh)
{
SMESH_ProxyMesh::setMesh( aMesh );
SMESH_ProxyMesh::_allowedTypes.push_back( SMDSEntity_Triangle );
SMESH_ProxyMesh::_allowedTypes.push_back( SMDSEntity_Quad_Triangle );
if ( aMesh.NbQuadrangles() < 1 )
return false;
vector<const SMDS_MeshElement*> myPyramids;
SMESH_MesherHelper helper(aMesh);
helper.IsQuadraticSubMesh(aMesh.GetShapeToMesh());
helper.SetElementsOnShape( true );
if ( !myElemSearcher )
myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher();
SMESH_ElementSearcher* searcher = const_cast<SMESH_ElementSearcher*>(myElemSearcher);
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
SMESH_ProxyMesh::SubMesh* prxSubMesh = getProxySubMesh();
SMDS_FaceIteratorPtr fIt = meshDS->facesIterator(/*idInceasingOrder=*/true);
while( fIt->more())
{
const SMDS_MeshElement* face = fIt->next();
if ( !face ) continue;
// retrieve needed information about a face
Handle(TColgp_HArray1OfPnt) PN = new TColgp_HArray1OfPnt(1,5);
Handle(TColgp_HArray1OfVec) VN = new TColgp_HArray1OfVec(1,4);
vector<const SMDS_MeshNode*> FNodes(5);
gp_Pnt PC;
gp_Vec VNorm;
const SMDS_MeshElement* volumes[2];
int what = Preparation(face, PN, VN, FNodes, PC, VNorm, volumes);
if ( what == NOT_QUAD )
continue;
if ( volumes[0] && volumes[1] )
continue; // face is shared by two volumes - no space for a pyramid
if ( what == DEGEN_QUAD )
{
// degenerate face
// add a triangle to the proxy mesh
SMDS_MeshFace* NewFace;
// check orientation
double tmp = PN->Value(1).Distance(PN->Value(2)) + PN->Value(2).Distance(PN->Value(3));
// far points in VNorm direction
gp_Pnt Ptmp1 = PC.XYZ() + VNorm.XYZ() * tmp * 1.e6;
gp_Pnt Ptmp2 = PC.XYZ() - VNorm.XYZ() * tmp * 1.e6;
// check intersection for Ptmp1 and Ptmp2
bool IsRev = false;
bool IsOK1 = false;
bool IsOK2 = false;
double dist1 = RealLast();
double dist2 = RealLast();
gp_Pnt Pres1,Pres2;
gp_Ax1 line( PC, VNorm );
vector< const SMDS_MeshElement* > suspectElems;
searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectElems);
for ( int iF = 0; iF < suspectElems.size(); ++iF ) {
const SMDS_MeshElement* F = suspectElems[iF];
if(F==face) continue;
Handle(TColgp_HSequenceOfPnt) aContour = new TColgp_HSequenceOfPnt;
for ( int i = 0; i < 4; ++i )
aContour->Append( SMESH_TNodeXYZ( F->GetNode(i) ));
gp_Pnt PPP;
if( !volumes[0] && HasIntersection(Ptmp1, PC, PPP, aContour) ) {
IsOK1 = true;
double tmp = PC.Distance(PPP);
if(tmp<dist1) {
Pres1 = PPP;
dist1 = tmp;
}
}
if( !volumes[1] && HasIntersection(Ptmp2, PC, PPP, aContour) ) {
IsOK2 = true;
double tmp = PC.Distance(PPP);
if(tmp<dist2) {
Pres2 = PPP;
dist2 = tmp;
}
}
}
if( IsOK1 && !IsOK2 ) {
// using existed direction
}
else if( !IsOK1 && IsOK2 ) {
// using opposite direction
IsRev = true;
}
else { // IsOK1 && IsOK2
double tmp1 = PC.Distance(Pres1);
double tmp2 = PC.Distance(Pres2);
if(tmp1<tmp2) {
// using existed direction
}
else {
// using opposite direction
IsRev = true;
}
}
if(!IsRev)
NewFace = meshDS->AddFace( FNodes[0], FNodes[1], FNodes[2] );
else
NewFace = meshDS->AddFace( FNodes[0], FNodes[2], FNodes[1] );
storeTmpElement( NewFace );
prxSubMesh->AddElement( NewFace );
continue;
}
// Case of non-degenerated quadrangle
// Find pyramid peak
gp_XYZ PCbest(0., 0., 0.); // pyramid peak
int i = 1;
for(; i<=4; i++) {
gp_Pnt Pbest = FindBestPoint(PN->Value(i), PN->Value(i+1), PC, VN->Value(i));
PCbest += Pbest.XYZ();
}
PCbest /= 4;
double height = PC.Distance(PCbest); // pyramid height to precise
if(height<1.e-6) {
// create new PCbest using a bit shift along VNorm
PCbest = PC.XYZ() + VNorm.XYZ() * 0.001;
height = PC.Distance(PCbest);
}
// Restrict pyramid height by intersection with other faces
gp_Vec tmpDir(PC,PCbest); tmpDir.Normalize();
double tmp = PN->Value(1).Distance(PN->Value(3)) + PN->Value(2).Distance(PN->Value(4));
// far points: in (PC, PCbest) direction and vice-versa
gp_Pnt farPnt[2] = { PC.XYZ() + tmpDir.XYZ() * tmp * 1.e6,
PC.XYZ() - tmpDir.XYZ() * tmp * 1.e6 };
// check intersection for farPnt1 and farPnt2
bool intersected[2] = { false, false };
double dist [2] = { RealLast(), RealLast() };
gp_Pnt intPnt[2];
gp_Ax1 line( PC, tmpDir );
vector< const SMDS_MeshElement* > suspectElems;
searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectElems);
for ( int iF = 0; iF < suspectElems.size(); ++iF )
{
const SMDS_MeshElement* F = suspectElems[iF];
if(F==face) continue;
Handle(TColgp_HSequenceOfPnt) aContour = new TColgp_HSequenceOfPnt;
int nbN = F->NbNodes() / ( F->IsQuadratic() ? 2 : 1 );
for ( i = 0; i < nbN; ++i )
aContour->Append( SMESH_TNodeXYZ( F->GetNode(i) ));
gp_Pnt intP;
for ( int isRev = 0; isRev < 2; ++isRev )
{
if( !volumes[isRev] && HasIntersection(farPnt[isRev], PC, intP, aContour) ) {
intersected[isRev] = true;
double d = PC.Distance( intP );
if( d < dist[isRev] )
{
intPnt[isRev] = intP;
dist [isRev] = d;
}
}
}
}
// Create one or two pyramids
for ( int isRev = 0; isRev < 2; ++isRev )
{
if( !intersected[isRev] ) continue;
double pyramidH = Min( height, PC.Distance(intPnt[isRev])/3.);
PCbest = PC.XYZ() + tmpDir.XYZ() * (isRev ? -pyramidH : pyramidH);
// create node for PCbest
SMDS_MeshNode* NewNode = helper.AddNode( PCbest.X(), PCbest.Y(), PCbest.Z() );
// add triangles to result map
for(i=0; i<4; i++) {
SMDS_MeshFace* NewFace;
if(isRev)
NewFace = meshDS->AddFace( NewNode, FNodes[i], FNodes[i+1] );
else
NewFace = meshDS->AddFace( NewNode, FNodes[i+1], FNodes[i] );
storeTmpElement( NewFace );
prxSubMesh->AddElement( NewFace );
}
// create a pyramid
SMDS_MeshVolume* aPyram;
if(isRev)
aPyram = helper.AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode );
else
aPyram = helper.AddVolume( FNodes[0], FNodes[3], FNodes[2], FNodes[1], NewNode );
myPyramids.push_back(aPyram);
}
} // end loop on all faces
return Compute2ndPart(aMesh, myPyramids);
}
//================================================================================
/*!
* \brief Update created pyramids and faces to avoid their intersection
*/
//================================================================================
bool StdMeshers_QuadToTriaAdaptor::Compute2ndPart(SMESH_Mesh& aMesh,
const vector<const SMDS_MeshElement*>& myPyramids)
{
if(myPyramids.empty())
return true;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
int i, j, k, myShapeID = myPyramids[0]->GetNode(4)->getshapeId();
if ( !myElemSearcher )
myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher();
SMESH_ElementSearcher* searcher = const_cast<SMESH_ElementSearcher*>(myElemSearcher);
set<const SMDS_MeshNode*> nodesToMove;
// check adjacent pyramids
for ( i = 0; i < myPyramids.size(); ++i )
{
const SMDS_MeshElement* PrmI = myPyramids[i];
MergeAdjacent( PrmI, nodesToMove );
}
// iterate on all pyramids
for ( i = 0; i < myPyramids.size(); ++i )
{
const SMDS_MeshElement* PrmI = myPyramids[i];
// compare PrmI with all the rest pyramids
// collect adjacent pyramids and nodes coordinates of PrmI
set<const SMDS_MeshElement*> checkedPyrams;
vector<gp_Pnt> PsI(5);
for(k=0; k<5; k++) // loop on 4 base nodes of PrmI
{
const SMDS_MeshNode* n = PrmI->GetNode(k);
PsI[k] = SMESH_TNodeXYZ( n );
SMDS_ElemIteratorPtr vIt = n->GetInverseElementIterator( SMDSAbs_Volume );
while ( vIt->more() )
checkedPyrams.insert( vIt->next() );
}
// check intersection with distant pyramids
for(k=0; k<4; k++) // loop on 4 base nodes of PrmI
{
gp_Vec Vtmp(PsI[k],PsI[4]);
gp_Pnt Pshift = PsI[k].XYZ() + Vtmp.XYZ() * 0.01; // base node moved a bit to apex
gp_Ax1 line( PsI[k], Vtmp );
vector< const SMDS_MeshElement* > suspectPyrams;
searcher->GetElementsNearLine( line, SMDSAbs_Volume, suspectPyrams);
for ( j = 0; j < suspectPyrams.size(); ++j )
{
const SMDS_MeshElement* PrmJ = suspectPyrams[j];
if ( PrmJ == PrmI || PrmJ->NbCornerNodes() != 5 )
continue;
if ( myShapeID != PrmJ->GetNode(4)->getshapeId())
continue; // pyramid from other SOLID
if ( PrmI->GetNode(4) == PrmJ->GetNode(4) )
continue; // pyramids PrmI and PrmJ already merged
if ( !checkedPyrams.insert( PrmJ ).second )
continue; // already checked
TXyzIterator xyzIt( PrmJ->nodesIterator() );
vector<gp_Pnt> PsJ( xyzIt, TXyzIterator() );
gp_Pnt Pint;
bool hasInt =
( HasIntersection3( Pshift, PsI[4], Pint, PsJ[0], PsJ[1], PsJ[4]) ||
HasIntersection3( Pshift, PsI[4], Pint, PsJ[1], PsJ[2], PsJ[4]) ||
HasIntersection3( Pshift, PsI[4], Pint, PsJ[2], PsJ[3], PsJ[4]) ||
HasIntersection3( Pshift, PsI[4], Pint, PsJ[3], PsJ[0], PsJ[4]) );
for(k=0; k<4 && !hasInt; k++) {
gp_Vec Vtmp(PsJ[k],PsJ[4]);
gp_Pnt Pshift = PsJ[k].XYZ() + Vtmp.XYZ() * 0.01;
hasInt =
( HasIntersection3( Pshift, PsJ[4], Pint, PsI[0], PsI[1], PsI[4]) ||
HasIntersection3( Pshift, PsJ[4], Pint, PsI[1], PsI[2], PsI[4]) ||
HasIntersection3( Pshift, PsJ[4], Pint, PsI[2], PsI[3], PsI[4]) ||
HasIntersection3( Pshift, PsJ[4], Pint, PsI[3], PsI[0], PsI[4]) );
}
if ( hasInt )
{
// count common nodes of base faces of two pyramids
int nbc = 0;
for (k=0; k<4; k++)
nbc += int ( PrmI->GetNodeIndex( PrmJ->GetNode(k) ) >= 0 );
if ( nbc == 4 )
continue; // pyrams have a common base face
if(nbc>0)
{
// Merge the two pyramids and others already merged with them
MergePiramids( PrmI, PrmJ, nodesToMove );
}
else { // nbc==0
// decrease height of pyramids
gp_XYZ PCi(0,0,0), PCj(0,0,0);
for(k=0; k<4; k++) {
PCi += PsI[k].XYZ();
PCj += PsJ[k].XYZ();
}
PCi /= 4; PCj /= 4;
gp_Vec VN1(PCi,PsI[4]);
gp_Vec VN2(PCj,PsJ[4]);
gp_Vec VI1(PCi,Pint);
gp_Vec VI2(PCj,Pint);
double ang1 = fabs(VN1.Angle(VI1));
double ang2 = fabs(VN2.Angle(VI2));
double coef1 = 0.5 - (( ang1<PI/3 ) ? cos(ang1)*0.25 : 0 );
double coef2 = 0.5 - (( ang2<PI/3 ) ? cos(ang2)*0.25 : 0 ); // cos(ang2) ?
// double coef2 = 0.5;
// if(ang2<PI/3)
// coef2 -= cos(ang1)*0.25;
VN1.Scale(coef1);
VN2.Scale(coef2);
SMDS_MeshNode* aNode1 = const_cast<SMDS_MeshNode*>(PrmI->GetNode(4));
aNode1->setXYZ( PCi.X()+VN1.X(), PCi.Y()+VN1.Y(), PCi.Z()+VN1.Z() );
SMDS_MeshNode* aNode2 = const_cast<SMDS_MeshNode*>(PrmJ->GetNode(4));
aNode2->setXYZ( PCj.X()+VN2.X(), PCj.Y()+VN2.Y(), PCj.Z()+VN2.Z() );
nodesToMove.insert( aNode1 );
nodesToMove.insert( aNode2 );
}
// fix intersections that could appear after apex movement
MergeAdjacent( PrmI, nodesToMove );
MergeAdjacent( PrmJ, nodesToMove );
} // end if(hasInt)
} // loop on suspectPyrams
} // loop on 4 base nodes of PrmI
} // loop on all pyramids
if( !nodesToMove.empty() && !meshDS->IsEmbeddedMode() )
{
set<const SMDS_MeshNode*>::iterator n = nodesToMove.begin();
for ( ; n != nodesToMove.end(); ++n )
meshDS->MoveNode( *n, (*n)->X(), (*n)->Y(), (*n)->Z() );
}
// erase removed triangles from the proxy mesh
if ( !myRemovedTrias.empty() )
{
for ( int i = 0; i <= meshDS->MaxShapeIndex(); ++i )
if ( SMESH_ProxyMesh::SubMesh* sm = findProxySubMesh(i))
{
vector<const SMDS_MeshElement *> faces;
faces.reserve( sm->NbElements() );
SMDS_ElemIteratorPtr fIt = sm->GetElements();
while ( fIt->more() )
{
const SMDS_MeshElement* tria = fIt->next();
set<const SMDS_MeshElement*>::iterator rmTria = myRemovedTrias.find( tria );
if ( rmTria != myRemovedTrias.end() )
myRemovedTrias.erase( rmTria );
else
faces.push_back( tria );
}
sm->ChangeElements( faces.begin(), faces.end() );
}
}
myDegNodes.clear();
delete myElemSearcher;
myElemSearcher=0;
return true;
}
//================================================================================
/*!
* \brief Return list of created triangles for given face
*/
//================================================================================
// const list<const SMDS_MeshFace* >* StdMeshers_QuadToTriaAdaptor::GetTriangles (const SMDS_MeshElement* aQuad)
// {
// TQuad2Trias::iterator it = myResMap.find(aQuad);
// return ( it != myResMap.end() ? & it->second : 0 );
// }