smesh/src/StdMeshers/StdMeshers_Quadrangle_2D.cxx
eap 0df1e71b77 For redesigned StdMeshers_Hexa_3D (to work with composed cube edges)
1) Store TopoDS_Face in FaceQuadStruct
2) Make CheckNbEdges() public
2011-01-26 14:08:42 +00:00

3201 lines
113 KiB
C++

// Copyright (C) 2007-2010 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
// File : StdMeshers_Quadrangle_2D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
#include "StdMeshers_Quadrangle_2D.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "StdMeshers_QuadrangleParams.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_Block.hxx"
#include "SMESH_Comment.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FacePosition.hxx"
#include <BRep_Tool.hxx>
#include <Geom_Surface.hxx>
#include <NCollection_DefineArray2.hxx>
#include <Precision.hxx>
#include <TColStd_SequenceOfReal.hxx>
#include <TColStd_SequenceOfInteger.hxx>
#include <TColgp_SequenceOfXY.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include "utilities.h"
#include "Utils_ExceptHandlers.hxx"
#ifndef StdMeshers_Array2OfNode_HeaderFile
#define StdMeshers_Array2OfNode_HeaderFile
typedef const SMDS_MeshNode* SMDS_MeshNodePtr;
DEFINE_BASECOLLECTION (StdMeshers_BaseCollectionNodePtr, SMDS_MeshNodePtr)
DEFINE_ARRAY2(StdMeshers_Array2OfNode,
StdMeshers_BaseCollectionNodePtr, SMDS_MeshNodePtr)
#endif
using namespace std;
typedef gp_XY gp_UV;
typedef SMESH_Comment TComm;
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D (int hypId, int studyId,
SMESH_Gen* gen)
: SMESH_2D_Algo(hypId, studyId, gen)
{
MESSAGE("StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D");
_name = "Quadrangle_2D";
_shapeType = (1 << TopAbs_FACE);
_compatibleHypothesis.push_back("QuadrangleParams");
_compatibleHypothesis.push_back("QuadranglePreference");
_compatibleHypothesis.push_back("TrianglePreference");
myTool = 0;
}
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Quadrangle_2D::~StdMeshers_Quadrangle_2D()
{
MESSAGE("StdMeshers_Quadrangle_2D::~StdMeshers_Quadrangle_2D");
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
bool isOk = true;
aStatus = SMESH_Hypothesis::HYP_OK;
const list <const SMESHDS_Hypothesis * >& hyps =
GetUsedHypothesis(aMesh, aShape, false);
const SMESHDS_Hypothesis * aHyp = 0;
myTriaVertexID = -1;
myQuadType = QUAD_STANDARD;
myQuadranglePreference = false;
myTrianglePreference = false;
bool isFirstParams = true;
// First assigned hypothesis (if any) is processed now
if (hyps.size() > 0) {
aHyp = hyps.front();
if (strcmp("QuadrangleParams", aHyp->GetName()) == 0) {
const StdMeshers_QuadrangleParams* aHyp1 =
(const StdMeshers_QuadrangleParams*)aHyp;
myTriaVertexID = aHyp1->GetTriaVertex();
myQuadType = aHyp1->GetQuadType();
if (myQuadType == QUAD_QUADRANGLE_PREF ||
myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
myQuadranglePreference = true;
else if (myQuadType == QUAD_TRIANGLE_PREF)
myTrianglePreference = true;
}
else if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
isFirstParams = false;
myQuadranglePreference = true;
}
else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
isFirstParams = false;
myTrianglePreference = true;
}
else {
isFirstParams = false;
}
}
// Second(last) assigned hypothesis (if any) is processed now
if (hyps.size() > 1) {
aHyp = hyps.back();
if (isFirstParams) {
if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
myQuadranglePreference = true;
myTrianglePreference = false;
myQuadType = QUAD_STANDARD;
}
else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
myQuadranglePreference = false;
myTrianglePreference = true;
myQuadType = QUAD_STANDARD;
}
}
else {
const StdMeshers_QuadrangleParams* aHyp2 =
(const StdMeshers_QuadrangleParams*)aHyp;
myTriaVertexID = aHyp2->GetTriaVertex();
if (!myQuadranglePreference && !myTrianglePreference) { // priority of hypos
myQuadType = aHyp2->GetQuadType();
if (myQuadType == QUAD_QUADRANGLE_PREF ||
myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
myQuadranglePreference = true;
else if (myQuadType == QUAD_TRIANGLE_PREF)
myTrianglePreference = true;
}
}
}
return isOk;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::Compute (SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape)// throw (SALOME_Exception)
{
// PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside
//Unexpect aCatchSalomeException);
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
aMesh.GetSubMesh(aShape);
SMESH_MesherHelper helper (aMesh);
myTool = &helper;
_quadraticMesh = myTool->IsQuadraticSubMesh(aShape);
FaceQuadStruct *quad = CheckNbEdges(aMesh, aShape);
std::auto_ptr<FaceQuadStruct> quadDeleter (quad); // to delete quad at exit from Compute()
if (!quad)
return false;
if (myQuadranglePreference) {
int n1 = quad->side[0]->NbPoints();
int n2 = quad->side[1]->NbPoints();
int n3 = quad->side[2]->NbPoints();
int n4 = quad->side[3]->NbPoints();
int nfull = n1+n2+n3+n4;
int ntmp = nfull/2;
ntmp = ntmp*2;
if (nfull == ntmp && ((n1 != n3) || (n2 != n4))) {
// special path for using only quandrangle faces
bool ok = ComputeQuadPref(aMesh, aShape, quad);
return ok;
}
}
else if (myQuadType == QUAD_REDUCED) {
int n1 = quad->side[0]->NbPoints();
int n2 = quad->side[1]->NbPoints();
int n3 = quad->side[2]->NbPoints();
int n4 = quad->side[3]->NbPoints();
int n13 = n1 - n3;
int n24 = n2 - n4;
int n13tmp = n13/2; n13tmp = n13tmp*2;
int n24tmp = n24/2; n24tmp = n24tmp*2;
if ((n1 == n3 && n2 != n4 && n24tmp == n24) ||
(n2 == n4 && n1 != n3 && n13tmp == n13)) {
bool ok = ComputeReduced(aMesh, aShape, quad);
return ok;
}
}
// set normalized grid on unit square in parametric domain
if (!SetNormalizedGrid(aMesh, aShape, quad))
return false;
// --- compute 3D values on points, store points & quadrangles
int nbdown = quad->side[0]->NbPoints();
int nbup = quad->side[2]->NbPoints();
int nbright = quad->side[1]->NbPoints();
int nbleft = quad->side[3]->NbPoints();
int nbhoriz = Min(nbdown, nbup);
int nbvertic = Min(nbright, nbleft);
const TopoDS_Face& F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
// internal mesh nodes
int i, j, geomFaceID = meshDS->ShapeToIndex(F);
for (i = 1; i < nbhoriz - 1; i++) {
for (j = 1; j < nbvertic - 1; j++) {
int ij = j * nbhoriz + i;
double u = quad->uv_grid[ij].u;
double v = quad->uv_grid[ij].v;
gp_Pnt P = S->Value(u, v);
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(node, geomFaceID, u, v);
quad->uv_grid[ij].node = node;
}
}
// mesh faces
// [2]
// --.--.--.--.--.-- nbvertic
// | | ^
// | | ^
// [3] | | ^ j [1]
// | | ^
// | | ^
// ---.----.----.--- 0
// 0 > > > > > > > > nbhoriz
// i
// [0]
i = 0;
int ilow = 0;
int iup = nbhoriz - 1;
if (quad->isEdgeOut[3]) { ilow++; } else { if (quad->isEdgeOut[1]) iup--; }
int jlow = 0;
int jup = nbvertic - 1;
if (quad->isEdgeOut[0]) { jlow++; } else { if (quad->isEdgeOut[2]) jup--; }
// regular quadrangles
for (i = ilow; i < iup; i++) {
for (j = jlow; j < jup; j++) {
const SMDS_MeshNode *a, *b, *c, *d;
a = quad->uv_grid[j * nbhoriz + i].node;
b = quad->uv_grid[j * nbhoriz + i + 1].node;
c = quad->uv_grid[(j + 1) * nbhoriz + i + 1].node;
d = quad->uv_grid[(j + 1) * nbhoriz + i].node;
SMDS_MeshFace* face = myTool->AddFace(a, b, c, d);
if (face) {
meshDS->SetMeshElementOnShape(face, geomFaceID);
}
}
}
const vector<UVPtStruct>& uv_e0 = quad->side[0]->GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_e1 = quad->side[1]->GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_e2 = quad->side[2]->GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_e3 = quad->side[3]->GetUVPtStruct(false,0);
if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
return error(COMPERR_BAD_INPUT_MESH);
double eps = Precision::Confusion();
// Boundary quadrangles
if (quad->isEdgeOut[0]) {
// Down edge is out
//
// |___|___|___|___|___|___|
// | | | | | | |
// |___|___|___|___|___|___|
// | | | | | | |
// |___|___|___|___|___|___| __ first row of the regular grid
// . . . . . . . . . __ down edge nodes
//
// >->->->->->->->->->->->-> -- direction of processing
int g = 0; // number of last processed node in the regular grid
// number of last node of the down edge to be processed
int stop = nbdown - 1;
// if right edge is out, we will stop at a node, previous to the last one
if (quad->isEdgeOut[1]) stop--;
// for each node of the down edge find nearest node
// in the first row of the regular grid and link them
for (i = 0; i < stop; i++) {
const SMDS_MeshNode *a, *b, *c, *d;
a = uv_e0[i].node;
b = uv_e0[i + 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the regular grid, which will be linked with node b
int near = g;
if (i == stop - 1) {
// right bound reached, link with the rightmost node
near = iup;
c = quad->uv_grid[nbhoriz + iup].node;
}
else {
// find in the grid node c, nearest to the b
double mind = RealLast();
for (int k = g; k <= iup; k++) {
const SMDS_MeshNode *nk;
if (k < ilow) // this can be, if left edge is out
nk = uv_e3[1].node; // get node from the left edge
else
nk = quad->uv_grid[nbhoriz + k].node; // get one of middle nodes
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
SMDS_MeshFace* face = myTool->AddFace(a, b, c);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else { // make quadrangle
if (near - 1 < ilow)
d = uv_e3[1].node;
else
d = quad->uv_grid[nbhoriz + near - 1].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
if (!myTrianglePreference){
SMDS_MeshFace* face = myTool->AddFace(a, b, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else {
SplitQuad(meshDS, geomFaceID, a, b, c, d);
}
// if node d is not at position g - make additional triangles
if (near - 1 > g) {
for (int k = near - 1; k > g; k--) {
c = quad->uv_grid[nbhoriz + k].node;
if (k - 1 < ilow)
d = uv_e3[1].node;
else
d = quad->uv_grid[nbhoriz + k - 1].node;
SMDS_MeshFace* face = myTool->AddFace(a, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
}
g = near;
}
}
} else {
if (quad->isEdgeOut[2]) {
// Up edge is out
//
// <-<-<-<-<-<-<-<-<-<-<-<-< -- direction of processing
//
// . . . . . . . . . __ up edge nodes
// ___ ___ ___ ___ ___ ___ __ first row of the regular grid
// | | | | | | |
// |___|___|___|___|___|___|
// | | | | | | |
// |___|___|___|___|___|___|
// | | | | | | |
int g = nbhoriz - 1; // last processed node in the regular grid
int stop = 0;
// if left edge is out, we will stop at a second node
if (quad->isEdgeOut[3]) stop++;
// for each node of the up edge find nearest node
// in the first row of the regular grid and link them
for (i = nbup - 1; i > stop; i--) {
const SMDS_MeshNode *a, *b, *c, *d;
a = uv_e2[i].node;
b = uv_e2[i - 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the grid, which will be linked with node b
int near = g;
if (i == stop + 1) { // left bound reached, link with the leftmost node
c = quad->uv_grid[nbhoriz*(nbvertic - 2) + ilow].node;
near = ilow;
} else {
// find node c in the grid, nearest to the b
double mind = RealLast();
for (int k = g; k >= ilow; k--) {
const SMDS_MeshNode *nk;
if (k > iup)
nk = uv_e1[nbright - 2].node;
else
nk = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
SMDS_MeshFace* face = myTool->AddFace(a, b, c);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else { // make quadrangle
if (near + 1 > iup)
d = uv_e1[nbright - 2].node;
else
d = quad->uv_grid[nbhoriz*(nbvertic - 2) + near + 1].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
if (!myTrianglePreference){
SMDS_MeshFace* face = myTool->AddFace(a, b, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else {
SplitQuad(meshDS, geomFaceID, a, b, c, d);
}
if (near + 1 < g) { // if d not is at g - make additional triangles
for (int k = near + 1; k < g; k++) {
c = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
if (k + 1 > iup)
d = uv_e1[nbright - 2].node;
else
d = quad->uv_grid[nbhoriz*(nbvertic - 2) + k + 1].node;
SMDS_MeshFace* face = myTool->AddFace(a, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
}
g = near;
}
}
}
}
// right or left boundary quadrangles
if (quad->isEdgeOut[1]) {
// MESSAGE("right edge is out");
int g = 0; // last processed node in the grid
int stop = nbright - 1;
if (quad->isEdgeOut[2]) stop--;
for (i = 0; i < stop; i++) {
const SMDS_MeshNode *a, *b, *c, *d;
a = uv_e1[i].node;
b = uv_e1[i + 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the grid, nearest to the b
int near = g;
if (i == stop - 1) { // up bondary reached
c = quad->uv_grid[nbhoriz*(jup + 1) - 2].node;
near = jup;
} else {
double mind = RealLast();
for (int k = g; k <= jup; k++) {
const SMDS_MeshNode *nk;
if (k < jlow)
nk = uv_e0[nbdown - 2].node;
else
nk = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
SMDS_MeshFace* face = myTool->AddFace(a, b, c);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else { // make quadrangle
if (near - 1 < jlow)
d = uv_e0[nbdown - 2].node;
else
d = quad->uv_grid[nbhoriz*near - 2].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
if (!myTrianglePreference){
SMDS_MeshFace* face = myTool->AddFace(a, b, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else {
SplitQuad(meshDS, geomFaceID, a, b, c, d);
}
if (near - 1 > g) { // if d not is at g - make additional triangles
for (int k = near - 1; k > g; k--) {
c = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
if (k - 1 < jlow)
d = uv_e0[nbdown - 2].node;
else
d = quad->uv_grid[nbhoriz*k - 2].node;
SMDS_MeshFace* face = myTool->AddFace(a, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
}
g = near;
}
}
} else {
if (quad->isEdgeOut[3]) {
// MESSAGE("left edge is out");
int g = nbvertic - 1; // last processed node in the grid
int stop = 0;
if (quad->isEdgeOut[0]) stop++;
for (i = nbleft - 1; i > stop; i--) {
const SMDS_MeshNode *a, *b, *c, *d;
a = uv_e3[i].node;
b = uv_e3[i - 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the grid, nearest to the b
int near = g;
if (i == stop + 1) { // down bondary reached
c = quad->uv_grid[nbhoriz*jlow + 1].node;
near = jlow;
} else {
double mind = RealLast();
for (int k = g; k >= jlow; k--) {
const SMDS_MeshNode *nk;
if (k > jup)
nk = uv_e2[1].node;
else
nk = quad->uv_grid[nbhoriz*k + 1].node;
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
SMDS_MeshFace* face = myTool->AddFace(a, b, c);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else { // make quadrangle
if (near + 1 > jup)
d = uv_e2[1].node;
else
d = quad->uv_grid[nbhoriz*(near + 1) + 1].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
if (!myTrianglePreference){
SMDS_MeshFace* face = myTool->AddFace(a, b, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else {
SplitQuad(meshDS, geomFaceID, a, b, c, d);
}
if (near + 1 < g) { // if d not is at g - make additional triangles
for (int k = near + 1; k < g; k++) {
c = quad->uv_grid[nbhoriz*k + 1].node;
if (k + 1 > jup)
d = uv_e2[1].node;
else
d = quad->uv_grid[nbhoriz*(k + 1) + 1].node;
SMDS_MeshFace* face = myTool->AddFace(a, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
}
g = near;
}
}
}
}
bool isOk = true;
return isOk;
}
//=============================================================================
/*!
* Evaluate
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::Evaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
MapShapeNbElems& aResMap)
{
aMesh.GetSubMesh(aShape);
std::vector<int> aNbNodes(4);
bool IsQuadratic = false;
if (!CheckNbEdgesForEvaluate(aMesh, aShape, aResMap, aNbNodes, IsQuadratic)) {
std::vector<int> aResVec(SMDSEntity_Last);
for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aResVec));
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
if (myQuadranglePreference) {
int n1 = aNbNodes[0];
int n2 = aNbNodes[1];
int n3 = aNbNodes[2];
int n4 = aNbNodes[3];
int nfull = n1+n2+n3+n4;
int ntmp = nfull/2;
ntmp = ntmp*2;
if (nfull==ntmp && ((n1!=n3) || (n2!=n4))) {
// special path for using only quandrangle faces
return EvaluateQuadPref(aMesh, aShape, aNbNodes, aResMap, IsQuadratic);
//return true;
}
}
int nbdown = aNbNodes[0];
int nbup = aNbNodes[2];
int nbright = aNbNodes[1];
int nbleft = aNbNodes[3];
int nbhoriz = Min(nbdown, nbup);
int nbvertic = Min(nbright, nbleft);
int dh = Max(nbdown, nbup) - nbhoriz;
int dv = Max(nbright, nbleft) - nbvertic;
//int kdh = 0;
//if (dh>0) kdh = 1;
//int kdv = 0;
//if (dv>0) kdv = 1;
int nbNodes = (nbhoriz-2)*(nbvertic-2);
//int nbFaces3 = dh + dv + kdh*(nbvertic-1)*2 + kdv*(nbhoriz-1)*2;
int nbFaces3 = dh + dv;
//if (kdh==1 && kdv==1) nbFaces3 -= 2;
//if (dh>0 && dv>0) nbFaces3 -= 2;
//int nbFaces4 = (nbhoriz-1-kdh)*(nbvertic-1-kdv);
int nbFaces4 = (nbhoriz-1)*(nbvertic-1);
std::vector<int> aVec(SMDSEntity_Last);
for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
if (IsQuadratic) {
aVec[SMDSEntity_Quad_Triangle] = nbFaces3;
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4;
int nbbndedges = nbdown + nbup + nbright + nbleft -4;
int nbintedges = (nbFaces4*4 + nbFaces3*3 - nbbndedges) / 2;
aVec[SMDSEntity_Node] = nbNodes + nbintedges;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Quad_Triangle] = nbFaces3 + aNbNodes[3] -1;
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4 - aNbNodes[3] +1;
}
}
else {
aVec[SMDSEntity_Node] = nbNodes;
aVec[SMDSEntity_Triangle] = nbFaces3;
aVec[SMDSEntity_Quadrangle] = nbFaces4;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Triangle] = nbFaces3 + aNbNodes[3] - 1;
aVec[SMDSEntity_Quadrangle] = nbFaces4 - aNbNodes[3] + 1;
}
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aVec));
return true;
}
//================================================================================
/*!
* \brief Return true if only two given edges meat at their common vertex
*/
//================================================================================
static bool twoEdgesMeatAtVertex(const TopoDS_Edge& e1,
const TopoDS_Edge& e2,
SMESH_Mesh & mesh)
{
TopoDS_Vertex v;
if (!TopExp::CommonVertex(e1, e2, v))
return false;
TopTools_ListIteratorOfListOfShape ancestIt(mesh.GetAncestors(v));
for (; ancestIt.More() ; ancestIt.Next())
if (ancestIt.Value().ShapeType() == TopAbs_EDGE)
if (!e1.IsSame(ancestIt.Value()) && !e2.IsSame(ancestIt.Value()))
return false;
return true;
}
//=============================================================================
/*!
*
*/
//=============================================================================
FaceQuadStruct* StdMeshers_Quadrangle_2D::CheckNbEdges(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape)
//throw(SALOME_Exception)
{
TopoDS_Face F = TopoDS::Face(aShape);
if ( F.Orientation() >= TopAbs_INTERNAL ) F.Orientation( TopAbs_FORWARD );
const bool ignoreMediumNodes = _quadraticMesh;
// verify 1 wire only, with 4 edges
TopoDS_Vertex V;
list< TopoDS_Edge > edges;
list< int > nbEdgesInWire;
int nbWire = SMESH_Block::GetOrderedEdges (F, V, edges, nbEdgesInWire);
if (nbWire != 1) {
error(COMPERR_BAD_SHAPE, TComm("Wrong number of wires: ") << nbWire);
return 0;
}
FaceQuadStruct* quad = new FaceQuadStruct;
quad->uv_grid = 0;
quad->side.reserve(nbEdgesInWire.front());
quad->face = F;
int nbSides = 0;
list< TopoDS_Edge >::iterator edgeIt = edges.begin();
if (nbEdgesInWire.front() == 3) // exactly 3 edges
{
SMESH_Comment comment;
SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
if (myTriaVertexID == -1)
{
comment << "No Base vertex parameter provided for a trilateral geometrical face";
}
else
{
TopoDS_Vertex V = TopoDS::Vertex(meshDS->IndexToShape(myTriaVertexID));
if (!V.IsNull()) {
TopoDS_Edge E1,E2,E3;
for (; edgeIt != edges.end(); ++edgeIt) {
TopoDS_Edge E = *edgeIt;
TopoDS_Vertex VF, VL;
TopExp::Vertices(E, VF, VL, true);
if (VF.IsSame(V))
E1 = E;
else if (VL.IsSame(V))
E3 = E;
else
E2 = E;
}
if (!E1.IsNull() && !E2.IsNull() && !E3.IsNull())
{
quad->side.push_back(new StdMeshers_FaceSide(F, E1, &aMesh, true, ignoreMediumNodes));
quad->side.push_back(new StdMeshers_FaceSide(F, E2, &aMesh, true, ignoreMediumNodes));
quad->side.push_back(new StdMeshers_FaceSide(F, E3, &aMesh, false,ignoreMediumNodes));
const vector<UVPtStruct>& UVPSleft = quad->side[0]->GetUVPtStruct(true,0);
/* vector<UVPtStruct>& UVPStop = */quad->side[1]->GetUVPtStruct(false,1);
/* vector<UVPtStruct>& UVPSright = */quad->side[2]->GetUVPtStruct(true,1);
const SMDS_MeshNode* aNode = UVPSleft[0].node;
gp_Pnt2d aPnt2d(UVPSleft[0].u, UVPSleft[0].v);
quad->side.push_back(new StdMeshers_FaceSide(aNode, aPnt2d, quad->side[1]));
return quad;
}
}
comment << "Invalid Base vertex parameter: " << myTriaVertexID << " is not among [";
TopTools_MapOfShape vMap;
for (TopExp_Explorer v(aShape, TopAbs_VERTEX); v.More(); v.Next())
if (vMap.Add(v.Current()))
comment << meshDS->ShapeToIndex(v.Current()) << (vMap.Extent()==3 ? "]" : ", ");
}
error(comment);
delete quad;
return quad = 0;
}
else if (nbEdgesInWire.front() == 4) { // exactly 4 edges
for (; edgeIt != edges.end(); ++edgeIt, nbSides++)
quad->side.push_back(new StdMeshers_FaceSide(F, *edgeIt, &aMesh,
nbSides<TOP_SIDE, ignoreMediumNodes));
}
else if (nbEdgesInWire.front() > 4) { // more than 4 edges - try to unite some
list< TopoDS_Edge > sideEdges;
while (!edges.empty()) {
sideEdges.clear();
sideEdges.splice(sideEdges.end(), edges, edges.begin()); // edges.front() -> sideEdges.end()
bool sameSide = true;
while (!edges.empty() && sameSide) {
sameSide = SMESH_Algo::IsContinuous(sideEdges.back(), edges.front());
if (sameSide)
sideEdges.splice(sideEdges.end(), edges, edges.begin());
}
if (nbSides == 0) { // go backward from the first edge
sameSide = true;
while (!edges.empty() && sameSide) {
sameSide = SMESH_Algo::IsContinuous(sideEdges.front(), edges.back());
if (sameSide)
sideEdges.splice(sideEdges.begin(), edges, --edges.end());
}
}
quad->side.push_back(new StdMeshers_FaceSide(F, sideEdges, &aMesh,
nbSides<TOP_SIDE, ignoreMediumNodes));
++nbSides;
}
// issue 20222. Try to unite only edges shared by two same faces
if (nbSides < 4) {
// delete found sides
{ FaceQuadStruct cleaner(*quad); }
quad->side.clear();
quad->side.reserve(nbEdgesInWire.front());
nbSides = 0;
SMESH_Block::GetOrderedEdges (F, V, edges, nbEdgesInWire);
while (!edges.empty()) {
sideEdges.clear();
sideEdges.splice(sideEdges.end(), edges, edges.begin());
bool sameSide = true;
while (!edges.empty() && sameSide) {
sameSide =
SMESH_Algo::IsContinuous(sideEdges.back(), edges.front()) &&
twoEdgesMeatAtVertex(sideEdges.back(), edges.front(), aMesh);
if (sameSide)
sideEdges.splice(sideEdges.end(), edges, edges.begin());
}
if (nbSides == 0) { // go backward from the first edge
sameSide = true;
while (!edges.empty() && sameSide) {
sameSide =
SMESH_Algo::IsContinuous(sideEdges.front(), edges.back()) &&
twoEdgesMeatAtVertex(sideEdges.front(), edges.back(), aMesh);
if (sameSide)
sideEdges.splice(sideEdges.begin(), edges, --edges.end());
}
}
quad->side.push_back(new StdMeshers_FaceSide(F, sideEdges, &aMesh,
nbSides<TOP_SIDE, ignoreMediumNodes));
++nbSides;
}
}
}
if (nbSides != 4) {
#ifdef _DEBUG_
MESSAGE ("StdMeshers_Quadrangle_2D. Edge IDs of " << nbSides << " sides:\n");
for (int i = 0; i < nbSides; ++i) {
MESSAGE (" (");
for (int e = 0; e < quad->side[i]->NbEdges(); ++e)
MESSAGE (myTool->GetMeshDS()->ShapeToIndex(quad->side[i]->Edge(e)) << " ");
MESSAGE (")\n");
}
//cout << endl;
#endif
if (!nbSides)
nbSides = nbEdgesInWire.front();
error(COMPERR_BAD_SHAPE, TComm("Face must have 4 sides but not ") << nbSides);
delete quad;
quad = 0;
}
return quad;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::CheckNbEdgesForEvaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap,
std::vector<int>& aNbNodes,
bool& IsQuadratic)
{
const TopoDS_Face & F = TopoDS::Face(aShape);
// verify 1 wire only, with 4 edges
TopoDS_Vertex V;
list< TopoDS_Edge > edges;
list< int > nbEdgesInWire;
int nbWire = SMESH_Block::GetOrderedEdges (F, V, edges, nbEdgesInWire);
if (nbWire != 1) {
return false;
}
aNbNodes.resize(4);
int nbSides = 0;
list< TopoDS_Edge >::iterator edgeIt = edges.begin();
SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<int> aVec = (*anIt).second;
IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
if (nbEdgesInWire.front() == 3) { // exactly 3 edges
if (myTriaVertexID>0) {
SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
TopoDS_Vertex V = TopoDS::Vertex(meshDS->IndexToShape(myTriaVertexID));
if (!V.IsNull()) {
TopoDS_Edge E1,E2,E3;
for (; edgeIt != edges.end(); ++edgeIt) {
TopoDS_Edge E = TopoDS::Edge(*edgeIt);
TopoDS_Vertex VF, VL;
TopExp::Vertices(E, VF, VL, true);
if (VF.IsSame(V))
E1 = E;
else if (VL.IsSame(V))
E3 = E;
else
E2 = E;
}
SMESH_subMesh * sm = aMesh.GetSubMesh(E1);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) return false;
std::vector<int> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[0] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[0] = aVec[SMDSEntity_Node] + 2;
sm = aMesh.GetSubMesh(E2);
anIt = aResMap.find(sm);
if (anIt==aResMap.end()) return false;
aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[1] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[1] = aVec[SMDSEntity_Node] + 2;
sm = aMesh.GetSubMesh(E3);
anIt = aResMap.find(sm);
if (anIt==aResMap.end()) return false;
aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[2] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[2] = aVec[SMDSEntity_Node] + 2;
aNbNodes[3] = aNbNodes[1];
aNbNodes.resize(5);
nbSides = 4;
}
}
}
if (nbEdgesInWire.front() == 4) { // exactly 4 edges
for (; edgeIt != edges.end(); edgeIt++) {
SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<int> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[nbSides] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[nbSides] = aVec[SMDSEntity_Node] + 2;
nbSides++;
}
}
else if (nbEdgesInWire.front() > 4) { // more than 4 edges - try to unite some
list< TopoDS_Edge > sideEdges;
while (!edges.empty()) {
sideEdges.clear();
sideEdges.splice(sideEdges.end(), edges, edges.begin()); // edges.front() -> sideEdges.end()
bool sameSide = true;
while (!edges.empty() && sameSide) {
sameSide = SMESH_Algo::IsContinuous(sideEdges.back(), edges.front());
if (sameSide)
sideEdges.splice(sideEdges.end(), edges, edges.begin());
}
if (nbSides == 0) { // go backward from the first edge
sameSide = true;
while (!edges.empty() && sameSide) {
sameSide = SMESH_Algo::IsContinuous(sideEdges.front(), edges.back());
if (sameSide)
sideEdges.splice(sideEdges.begin(), edges, --edges.end());
}
}
list<TopoDS_Edge>::iterator ite = sideEdges.begin();
aNbNodes[nbSides] = 1;
for (; ite!=sideEdges.end(); ite++) {
SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<int> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
else
aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
}
++nbSides;
}
// issue 20222. Try to unite only edges shared by two same faces
if (nbSides < 4) {
nbSides = 0;
SMESH_Block::GetOrderedEdges (F, V, edges, nbEdgesInWire);
while (!edges.empty()) {
sideEdges.clear();
sideEdges.splice(sideEdges.end(), edges, edges.begin());
bool sameSide = true;
while (!edges.empty() && sameSide) {
sameSide =
SMESH_Algo::IsContinuous(sideEdges.back(), edges.front()) &&
twoEdgesMeatAtVertex(sideEdges.back(), edges.front(), aMesh);
if (sameSide)
sideEdges.splice(sideEdges.end(), edges, edges.begin());
}
if (nbSides == 0) { // go backward from the first edge
sameSide = true;
while (!edges.empty() && sameSide) {
sameSide =
SMESH_Algo::IsContinuous(sideEdges.front(), edges.back()) &&
twoEdgesMeatAtVertex(sideEdges.front(), edges.back(), aMesh);
if (sameSide)
sideEdges.splice(sideEdges.begin(), edges, --edges.end());
}
}
list<TopoDS_Edge>::iterator ite = sideEdges.begin();
aNbNodes[nbSides] = 1;
for (; ite!=sideEdges.end(); ite++) {
SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<int> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
else
aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
}
++nbSides;
}
}
}
if (nbSides != 4) {
if (!nbSides)
nbSides = nbEdgesInWire.front();
error(COMPERR_BAD_SHAPE, TComm("Face must have 4 sides but not ") << nbSides);
return false;
}
return true;
}
//=============================================================================
/*!
* CheckAnd2Dcompute
*/
//=============================================================================
FaceQuadStruct *StdMeshers_Quadrangle_2D::CheckAnd2Dcompute
(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool CreateQuadratic) //throw(SALOME_Exception)
{
_quadraticMesh = CreateQuadratic;
FaceQuadStruct *quad = CheckNbEdges(aMesh, aShape);
if (!quad) return 0;
// set normalized grid on unit square in parametric domain
bool stat = SetNormalizedGrid(aMesh, aShape, quad);
if (!stat) {
if (quad) delete quad;
quad = 0;
}
return quad;
}
//=============================================================================
/*!
*
*/
//=============================================================================
faceQuadStruct::~faceQuadStruct()
{
for (int i = 0; i < side.size(); i++) {
if (side[i]) delete side[i];
}
if (uv_grid) delete [] uv_grid;
}
namespace {
inline const vector<UVPtStruct>& GetUVPtStructIn(FaceQuadStruct* quad, int i, int nbSeg)
{
bool isXConst = (i == BOTTOM_SIDE || i == TOP_SIDE);
double constValue = (i == BOTTOM_SIDE || i == LEFT_SIDE) ? 0 : 1;
return
quad->isEdgeOut[i] ?
quad->side[i]->SimulateUVPtStruct(nbSeg,isXConst,constValue) :
quad->side[i]->GetUVPtStruct(isXConst,constValue);
}
inline gp_UV CalcUV(double x, double y,
const gp_UV& a0,const gp_UV& a1,const gp_UV& a2,const gp_UV& a3,
const gp_UV& p0,const gp_UV& p1,const gp_UV& p2,const gp_UV& p3)
{
return
((1 - y) * p0 + x * p1 + y * p2 + (1 - x) * p3 ) -
((1 - x) * (1 - y) * a0 + x * (1 - y) * a1 + x * y * a2 + (1 - x) * y * a3);
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::SetNormalizedGrid (SMESH_Mesh & aMesh,
const TopoDS_Shape& aShape,
FaceQuadStruct* & quad) //throw (SALOME_Exception)
{
// Algorithme décrit dans "Génération automatique de maillages"
// P.L. GEORGE, MASSON, § 6.4.1 p. 84-85
// traitement dans le domaine paramétrique 2d u,v
// transport - projection sur le carré unité
// MESSAGE("StdMeshers_Quadrangle_2D::SetNormalizedGrid");
// const TopoDS_Face& F = TopoDS::Face(aShape);
// 1 --- find orientation of the 4 edges, by test on extrema
// max min 0 x1 1
// |<----north-2-------^ a3 -------------> a2
// | | ^1 1^
// west-3 east-1 =right | |
// | | ==> | |
// y0 | | y1 | |
// | | |0 0|
// v----south-0--------> a0 -------------> a1
// min max 0 x0 1
// =down
//
// 3 --- 2D normalized values on unit square [0..1][0..1]
int nbhoriz = Min(quad->side[0]->NbPoints(), quad->side[2]->NbPoints());
int nbvertic = Min(quad->side[1]->NbPoints(), quad->side[3]->NbPoints());
quad->isEdgeOut[0] = (quad->side[0]->NbPoints() > quad->side[2]->NbPoints());
quad->isEdgeOut[1] = (quad->side[1]->NbPoints() > quad->side[3]->NbPoints());
quad->isEdgeOut[2] = (quad->side[2]->NbPoints() > quad->side[0]->NbPoints());
quad->isEdgeOut[3] = (quad->side[3]->NbPoints() > quad->side[1]->NbPoints());
UVPtStruct *uv_grid = quad->uv_grid = new UVPtStruct[nbvertic * nbhoriz];
const vector<UVPtStruct>& uv_e0 = GetUVPtStructIn(quad, 0, nbhoriz - 1);
const vector<UVPtStruct>& uv_e1 = GetUVPtStructIn(quad, 1, nbvertic - 1);
const vector<UVPtStruct>& uv_e2 = GetUVPtStructIn(quad, 2, nbhoriz - 1);
const vector<UVPtStruct>& uv_e3 = GetUVPtStructIn(quad, 3, nbvertic - 1);
if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
//return error("Can't find nodes on sides");
return error(COMPERR_BAD_INPUT_MESH);
// nodes Id on "in" edges
if (! quad->isEdgeOut[0]) {
int j = 0;
for (int i = 0; i < nbhoriz; i++) { // down
int ij = j * nbhoriz + i;
uv_grid[ij].node = uv_e0[i].node;
}
}
if (! quad->isEdgeOut[1]) {
int i = nbhoriz - 1;
for (int j = 0; j < nbvertic; j++) { // right
int ij = j * nbhoriz + i;
uv_grid[ij].node = uv_e1[j].node;
}
}
if (! quad->isEdgeOut[2]) {
int j = nbvertic - 1;
for (int i = 0; i < nbhoriz; i++) { // up
int ij = j * nbhoriz + i;
uv_grid[ij].node = uv_e2[i].node;
}
}
if (! quad->isEdgeOut[3]) {
int i = 0;
for (int j = 0; j < nbvertic; j++) { // left
int ij = j * nbhoriz + i;
uv_grid[ij].node = uv_e3[j].node;
}
}
// normalized 2d values on grid
for (int i = 0; i < nbhoriz; i++) {
for (int j = 0; j < nbvertic; j++) {
int ij = j * nbhoriz + i;
// --- droite i cste : x = x0 + y(x1-x0)
double x0 = uv_e0[i].normParam; // bas - sud
double x1 = uv_e2[i].normParam; // haut - nord
// --- droite j cste : y = y0 + x(y1-y0)
double y0 = uv_e3[j].normParam; // gauche-ouest
double y1 = uv_e1[j].normParam; // droite - est
// --- intersection : x=x0+(y0+x(y1-y0))(x1-x0)
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
uv_grid[ij].x = x;
uv_grid[ij].y = y;
//MESSAGE("-xy-01 "<<x0<<" "<<x1<<" "<<y0<<" "<<y1);
//MESSAGE("-xy-norm "<<i<<" "<<j<<" "<<x<<" "<<y);
}
}
// 4 --- projection on 2d domain (u,v)
gp_UV a0(uv_e0.front().u, uv_e0.front().v);
gp_UV a1(uv_e0.back().u, uv_e0.back().v);
gp_UV a2(uv_e2.back().u, uv_e2.back().v);
gp_UV a3(uv_e2.front().u, uv_e2.front().v);
for (int i = 0; i < nbhoriz; i++) {
for (int j = 0; j < nbvertic; j++) {
int ij = j * nbhoriz + i;
double x = uv_grid[ij].x;
double y = uv_grid[ij].y;
double param_0 = uv_e0[0].normParam + x * (uv_e0.back().normParam - uv_e0[0].normParam); // sud
double param_2 = uv_e2[0].normParam + x * (uv_e2.back().normParam - uv_e2[0].normParam); // nord
double param_1 = uv_e1[0].normParam + y * (uv_e1.back().normParam - uv_e1[0].normParam); // est
double param_3 = uv_e3[0].normParam + y * (uv_e3.back().normParam - uv_e3[0].normParam); // ouest
//MESSAGE("params "<<param_0<<" "<<param_1<<" "<<param_2<<" "<<param_3);
gp_UV p0 = quad->side[0]->Value2d(param_0).XY();
gp_UV p1 = quad->side[1]->Value2d(param_1).XY();
gp_UV p2 = quad->side[2]->Value2d(param_2).XY();
gp_UV p3 = quad->side[3]->Value2d(param_3).XY();
gp_UV uv = CalcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
uv_grid[ij].u = uv.X();
uv_grid[ij].v = uv.Y();
}
}
return true;
}
//=======================================================================
//function : ShiftQuad
//purpose : auxilary function for ComputeQuadPref
//=======================================================================
static void ShiftQuad(FaceQuadStruct* quad, const int num, bool)
{
StdMeshers_FaceSide* side[4] = { quad->side[0], quad->side[1], quad->side[2], quad->side[3] };
for (int i = BOTTOM_SIDE; i < NB_SIDES; ++i) {
int id = (i + num) % NB_SIDES;
bool wasForward = (i < TOP_SIDE);
bool newForward = (id < TOP_SIDE);
if (wasForward != newForward)
side[ i ]->Reverse();
quad->side[ id ] = side[ i ];
}
}
//=======================================================================
//function : CalcUV
//purpose : auxilary function for ComputeQuadPref
//=======================================================================
static gp_UV CalcUV(double x0, double x1, double y0, double y1,
FaceQuadStruct* quad,
const gp_UV& a0, const gp_UV& a1,
const gp_UV& a2, const gp_UV& a3)
{
const vector<UVPtStruct>& uv_eb = quad->side[0]->GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er = quad->side[1]->GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_et = quad->side[2]->GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el = quad->side[3]->GetUVPtStruct(false,0);
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
double param_b = uv_eb[0].normParam + x * (uv_eb.back().normParam - uv_eb[0].normParam);
double param_t = uv_et[0].normParam + x * (uv_et.back().normParam - uv_et[0].normParam);
double param_r = uv_er[0].normParam + y * (uv_er.back().normParam - uv_er[0].normParam);
double param_l = uv_el[0].normParam + y * (uv_el.back().normParam - uv_el[0].normParam);
gp_UV p0 = quad->side[BOTTOM_SIDE]->Value2d(param_b).XY();
gp_UV p1 = quad->side[RIGHT_SIDE ]->Value2d(param_r).XY();
gp_UV p2 = quad->side[TOP_SIDE ]->Value2d(param_t).XY();
gp_UV p3 = quad->side[LEFT_SIDE ]->Value2d(param_l).XY();
gp_UV uv = CalcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
return uv;
}
//=======================================================================
//function : CalcUV2
//purpose : auxilary function for ComputeQuadPref
//=======================================================================
static gp_UV CalcUV2(double x, double y,
FaceQuadStruct* quad,
const gp_UV& a0, const gp_UV& a1,
const gp_UV& a2, const gp_UV& a3)
{
gp_UV p0 = quad->side[BOTTOM_SIDE]->Value2d(x).XY();
gp_UV p1 = quad->side[RIGHT_SIDE ]->Value2d(y).XY();
gp_UV p2 = quad->side[TOP_SIDE ]->Value2d(x).XY();
gp_UV p3 = quad->side[LEFT_SIDE ]->Value2d(y).XY();
gp_UV uv = CalcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
return uv;
}
//=======================================================================
/*!
* Create only quandrangle faces
*/
//=======================================================================
bool StdMeshers_Quadrangle_2D::ComputeQuadPref (SMESH_Mesh & aMesh,
const TopoDS_Shape& aShape,
FaceQuadStruct* quad)
{
// Auxilary key in order to keep old variant
// of meshing after implementation new variant
// for bug 0016220 from Mantis.
bool OldVersion = false;
if (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
OldVersion = true;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
const TopoDS_Face& F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
bool WisF = true;
int i,j,geomFaceID = meshDS->ShapeToIndex(F);
int nb = quad->side[0]->NbPoints();
int nr = quad->side[1]->NbPoints();
int nt = quad->side[2]->NbPoints();
int nl = quad->side[3]->NbPoints();
int dh = abs(nb-nt);
int dv = abs(nr-nl);
if (dh>=dv) {
if (nt>nb) {
// it is a base case => not shift quad but me be replacement is need
ShiftQuad(quad,0,WisF);
}
else {
// we have to shift quad on 2
ShiftQuad(quad,2,WisF);
}
}
else {
if (nr>nl) {
// we have to shift quad on 1
ShiftQuad(quad,1,WisF);
}
else {
// we have to shift quad on 3
ShiftQuad(quad,3,WisF);
}
}
nb = quad->side[0]->NbPoints();
nr = quad->side[1]->NbPoints();
nt = quad->side[2]->NbPoints();
nl = quad->side[3]->NbPoints();
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
// ----------- Old version ---------------
// orientation of face and 3 main domain for future faces
// 0 top 1
// 1------------1
// | | | |
// | | | |
// | L | | R |
// left | | | | rigth
// | / \ |
// | / C \ |
// |/ \|
// 0------------0
// 0 bottom 1
// ----------- New version ---------------
// orientation of face and 3 main domain for future faces
// 0 top 1
// 1------------1
// | |____| |
// | / \ |
// | / C \ |
// left |/________\| rigth
// | |
// | |
// | |
// 0------------0
// 0 bottom 1
if (dh>dv) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv>=dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
const vector<UVPtStruct>& uv_eb = quad->side[0]->GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er = quad->side[1]->GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_et = quad->side[2]->GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el = quad->side[3]->GetUVPtStruct(false,0);
if (uv_eb.size() != nb || uv_er.size() != nr || uv_et.size() != nt || uv_el.size() != nl)
return error(COMPERR_BAD_INPUT_MESH);
// arrays for normalized params
//cout<<"Dump B:"<<endl;
TColStd_SequenceOfReal npb, npr, npt, npl;
for (i=0; i<nb; i++) {
npb.Append(uv_eb[i].normParam);
//cout<<"i="<<i<<" par="<<uv_eb[i].normParam<<" npar="<<uv_eb[i].normParam;
//const SMDS_MeshNode* N = uv_eb[i].node;
//cout<<" node("<<N->X()<<","<<N->Y()<<","<<N->Z()<<")"<<endl;
}
for (i=0; i<nr; i++) {
npr.Append(uv_er[i].normParam);
}
for (i=0; i<nt; i++) {
npt.Append(uv_et[i].normParam);
}
for (i=0; i<nl; i++) {
npl.Append(uv_el[i].normParam);
}
int dl,dr;
if (OldVersion) {
// add some params to right and left after the first param
// insert to right
dr = nbv - nr;
double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
for (i=1; i<=dr; i++) {
npr.InsertAfter(1,npr.Value(2)-dpr);
}
// insert to left
dl = nbv - nl;
dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
for (i=1; i<=dl; i++) {
npl.InsertAfter(1,npl.Value(2)-dpr);
}
}
//cout<<"npb:";
//for (i=1; i<=npb.Length(); i++) {
// cout<<" "<<npb.Value(i);
//}
//cout<<endl;
gp_XY a0(uv_eb.front().u, uv_eb.front().v);
gp_XY a1(uv_eb.back().u, uv_eb.back().v);
gp_XY a2(uv_et.back().u, uv_et.back().v);
gp_XY a3(uv_et.front().u, uv_et.front().v);
//cout<<" a0("<<a0.X()<<","<<a0.Y()<<")"<<" a1("<<a1.X()<<","<<a1.Y()<<")"
// <<" a2("<<a2.X()<<","<<a2.Y()<<")"<<" a3("<<a3.X()<<","<<a3.Y()<<")"<<endl;
int nnn = Min(nr,nl);
// auxilary sequence of XY for creation nodes
// in the bottom part of central domain
// Length of UVL and UVR must be == nbv-nnn
TColgp_SequenceOfXY UVL, UVR, UVT;
if (OldVersion) {
// step1: create faces for left domain
StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
// add left nodes
for (j=1; j<=nl; j++)
NodesL.SetValue(1,j,uv_el[j-1].node);
if (dl>0) {
// add top nodes
for (i=1; i<=dl; i++)
NodesL.SetValue(i+1,nl,uv_et[i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dl; i++) {
double x0 = npt.Value(i+1);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,1,N);
if (UVL.Length()<nbv-nnn) UVL.Append(UV);
// internal nodes
for (j=2; j<nl; j++) {
double y0 = npl.Value(dl+j);
double y1 = npr.Value(dl+j);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,j,N);
if (i==dl) UVtmp.Append(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn; i++) {
UVL.Append(UVtmp.Value(i));
}
//cout<<"Dump NodesL:"<<endl;
//for (i=1; i<=dl+1; i++) {
// cout<<"i="<<i;
// for (j=1; j<=nl; j++) {
// cout<<" ("<<NodesL.Value(i,j)->X()<<","<<NodesL.Value(i,j)->Y()<<","<<NodesL.Value(i,j)->Z()<<")";
// }
// cout<<endl;
//}
// create faces
for (i=1; i<=dl; i++) {
for (j=1; j<nl; j++) {
if (WisF) {
SMDS_MeshFace* F =
myTool->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
myTool->AddFace(NodesL.Value(i,j), NodesL.Value(i,j+1),
NodesL.Value(i+1,j+1), NodesL.Value(i+1,j));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
}
else {
// fill UVL using c2d
for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn; i++) {
UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
}
}
// step2: create faces for right domain
StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
// add right nodes
for (j=1; j<=nr; j++)
NodesR.SetValue(1,j,uv_er[nr-j].node);
if (dr>0) {
// add top nodes
for (i=1; i<=dr; i++)
NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dr; i++) {
double x0 = npt.Value(nt-i);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,nr,N);
if (UVR.Length()<nbv-nnn) UVR.Append(UV);
// internal nodes
for (j=2; j<nr; j++) {
double y0 = npl.Value(nbv-j+1);
double y1 = npr.Value(nbv-j+1);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,j,N);
if (i==dr) UVtmp.Prepend(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn; i++) {
UVR.Append(UVtmp.Value(i));
}
// create faces
for (i=1; i<=dr; i++) {
for (j=1; j<nr; j++) {
if (WisF) {
SMDS_MeshFace* F =
myTool->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
myTool->AddFace(NodesR.Value(i,j), NodesR.Value(i,j+1),
NodesR.Value(i+1,j+1), NodesR.Value(i+1,j));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
}
else {
// fill UVR using c2d
for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn; i++) {
UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
}
}
// step3: create faces for central domain
StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
// add first line using NodesL
for (i=1; i<=dl+1; i++)
NodesC.SetValue(1,i,NodesL(i,1));
for (i=2; i<=nl; i++)
NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
// add last line using NodesR
for (i=1; i<=dr+1; i++)
NodesC.SetValue(nb,i,NodesR(i,nr));
for (i=1; i<nr; i++)
NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
// add top nodes (last columns)
for (i=dl+2; i<nbh-dr; i++)
NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
// add bottom nodes (first columns)
for (i=2; i<nb; i++)
NodesC.SetValue(i,1,uv_eb[i-1].node);
// create and add needed nodes
// add linear layers
for (i=2; i<nb; i++) {
double x0 = npt.Value(dl+i);
double x1 = x0;
for (j=1; j<nnn; j++) {
double y0 = npl.Value(nbv-nnn+j);
double y1 = npr.Value(nbv-nnn+j);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(i,nbv-nnn+j,N);
if ( j==1 )
UVT.Append( UV );
}
}
// add diagonal layers
//cout<<"UVL.Length()="<<UVL.Length()<<" UVR.Length()="<<UVR.Length()<<endl;
//cout<<"Dump UVL:"<<endl;
//for (i=1; i<=UVL.Length(); i++) {
// cout<<" ("<<UVL.Value(i).X()<<","<<UVL.Value(i).Y()<<")";
//}
//cout<<endl;
gp_UV A2 = UVR.Value(nbv-nnn);
gp_UV A3 = UVL.Value(nbv-nnn);
for (i=1; i<nbv-nnn; i++) {
gp_UV p1 = UVR.Value(i);
gp_UV p3 = UVL.Value(i);
double y = i / double(nbv-nnn);
for (j=2; j<nb; j++) {
double x = npb.Value(j);
gp_UV p0( uv_eb[j-1].u, uv_eb[j-1].v );
gp_UV p2 = UVT.Value( j-1 );
gp_UV UV = CalcUV(x, y, a0, a1, A2, A3, p0,p1,p2,p3 );
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
NodesC.SetValue(j,i+1,N);
}
}
// create faces
for (i=1; i<nb; i++) {
for (j=1; j<nbv; j++) {
if (WisF) {
SMDS_MeshFace* F =
myTool->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
myTool->AddFace(NodesC.Value(i,j), NodesC.Value(i,j+1),
NodesC.Value(i+1,j+1), NodesC.Value(i+1,j));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
}
else { // New version (!OldVersion)
// step1: create faces for bottom rectangle domain
StdMeshers_Array2OfNode NodesBRD(1,nb,1,nnn-1);
// fill UVL and UVR using c2d
for (j=0; j<nb; j++) {
NodesBRD.SetValue(j+1,1,uv_eb[j].node);
}
for (i=1; i<nnn-1; i++) {
NodesBRD.SetValue(1,i+1,uv_el[i].node);
NodesBRD.SetValue(nb,i+1,uv_er[i].node);
for (j=2; j<nb; j++) {
double x = npb.Value(j);
double y = (1-x) * npl.Value(i+1) + x * npr.Value(i+1);
gp_UV UV = CalcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
NodesBRD.SetValue(j,i+1,N);
}
}
for (j=1; j<nnn-1; j++) {
for (i=1; i<nb; i++) {
if (WisF) {
SMDS_MeshFace* F =
myTool->AddFace(NodesBRD.Value(i,j), NodesBRD.Value(i+1,j),
NodesBRD.Value(i+1,j+1), NodesBRD.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
myTool->AddFace(NodesBRD.Value(i,j), NodesBRD.Value(i,j+1),
NodesBRD.Value(i+1,j+1), NodesBRD.Value(i+1,j));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
int drl = abs(nr-nl);
// create faces for region C
StdMeshers_Array2OfNode NodesC(1,nb,1,drl+1+addv);
// add nodes from previous region
for (j=1; j<=nb; j++) {
NodesC.SetValue(j,1,NodesBRD.Value(j,nnn-1));
}
if ((drl+addv) > 0) {
int n1,n2;
if (nr>nl) {
n1 = 1;
n2 = drl + 1;
TColgp_SequenceOfXY UVtmp;
double drparam = npr.Value(nr) - npr.Value(nnn-1);
double dlparam = npl.Value(nnn) - npl.Value(nnn-1);
double y0,y1;
for (i=1; i<=drl; i++) {
// add existed nodes from right edge
NodesC.SetValue(nb,i+1,uv_er[nnn+i-2].node);
//double dtparam = npt.Value(i+1);
y1 = npr.Value(nnn+i-1); // param on right edge
double dpar = (y1 - npr.Value(nnn-1))/drparam;
y0 = npl.Value(nnn-1) + dpar*dlparam; // param on left edge
double dy = y1 - y0;
for (j=1; j<nb; j++) {
double x = npt.Value(i+1) + npb.Value(j)*(1-npt.Value(i+1));
double y = y0 + dy*x;
gp_UV UV = CalcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+1,N);
}
}
double dy0 = (1-y0)/(addv+1);
double dy1 = (1-y1)/(addv+1);
for (i=1; i<=addv; i++) {
double yy0 = y0 + dy0*i;
double yy1 = y1 + dy1*i;
double dyy = yy1 - yy0;
for (j=1; j<=nb; j++) {
double x = npt.Value(i+1+drl) +
npb.Value(j) * (npt.Value(nt-i) - npt.Value(i+1+drl));
double y = yy0 + dyy*x;
gp_UV UV = CalcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+drl+1,N);
}
}
}
else { // nr<nl
n2 = 1;
n1 = drl + 1;
TColgp_SequenceOfXY UVtmp;
double dlparam = npl.Value(nl) - npl.Value(nnn-1);
double drparam = npr.Value(nnn) - npr.Value(nnn-1);
double y0 = npl.Value(nnn-1);
double y1 = npr.Value(nnn-1);
for (i=1; i<=drl; i++) {
// add existed nodes from right edge
NodesC.SetValue(1,i+1,uv_el[nnn+i-2].node);
y0 = npl.Value(nnn+i-1); // param on left edge
double dpar = (y0 - npl.Value(nnn-1))/dlparam;
y1 = npr.Value(nnn-1) + dpar*drparam; // param on right edge
double dy = y1 - y0;
for (j=2; j<=nb; j++) {
double x = npb.Value(j)*npt.Value(nt-i);
double y = y0 + dy*x;
gp_UV UV = CalcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+1,N);
}
}
double dy0 = (1-y0)/(addv+1);
double dy1 = (1-y1)/(addv+1);
for (i=1; i<=addv; i++) {
double yy0 = y0 + dy0*i;
double yy1 = y1 + dy1*i;
double dyy = yy1 - yy0;
for (j=1; j<=nb; j++) {
double x = npt.Value(i+1) +
npb.Value(j) * (npt.Value(nt-i-drl) - npt.Value(i+1));
double y = yy0 + dyy*x;
gp_UV UV = CalcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+drl+1,N);
}
}
}
// create faces
for (j=1; j<=drl+addv; j++) {
for (i=1; i<nb; i++) {
if (WisF) {
SMDS_MeshFace* F =
myTool->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
myTool->AddFace(NodesC.Value(i,j), NodesC.Value(i,j+1),
NodesC.Value(i+1,j+1), NodesC.Value(i+1,j));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
} // end nr<nl
StdMeshers_Array2OfNode NodesLast(1,nt,1,2);
for (i=1; i<=nt; i++) {
NodesLast.SetValue(i,2,uv_et[i-1].node);
}
int nnn=0;
for (i=n1; i<drl+addv+1; i++) {
nnn++;
NodesLast.SetValue(nnn,1,NodesC.Value(1,i));
}
for (i=1; i<=nb; i++) {
nnn++;
NodesLast.SetValue(nnn,1,NodesC.Value(i,drl+addv+1));
}
for (i=drl+addv; i>=n2; i--) {
nnn++;
NodesLast.SetValue(nnn,1,NodesC.Value(nb,i));
}
for (i=1; i<nt; i++) {
if (WisF) {
SMDS_MeshFace* F =
myTool->AddFace(NodesLast.Value(i,1), NodesLast.Value(i+1,1),
NodesLast.Value(i+1,2), NodesLast.Value(i,2));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
myTool->AddFace(NodesLast.Value(i,1), NodesLast.Value(i,2),
NodesLast.Value(i+1,2), NodesLast.Value(i+1,2));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
} // if ((drl+addv) > 0)
} // end new version implementation
bool isOk = true;
return isOk;
}
//=======================================================================
/*!
* Evaluate only quandrangle faces
*/
//=======================================================================
bool StdMeshers_Quadrangle_2D::EvaluateQuadPref(SMESH_Mesh & aMesh,
const TopoDS_Shape& aShape,
std::vector<int>& aNbNodes,
MapShapeNbElems& aResMap,
bool IsQuadratic)
{
// Auxilary key in order to keep old variant
// of meshing after implementation new variant
// for bug 0016220 from Mantis.
bool OldVersion = false;
if (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
OldVersion = true;
const TopoDS_Face& F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
int nb = aNbNodes[0];
int nr = aNbNodes[1];
int nt = aNbNodes[2];
int nl = aNbNodes[3];
int dh = abs(nb-nt);
int dv = abs(nr-nl);
if (dh>=dv) {
if (nt>nb) {
// it is a base case => not shift
}
else {
// we have to shift on 2
nb = aNbNodes[2];
nr = aNbNodes[3];
nt = aNbNodes[0];
nl = aNbNodes[1];
}
}
else {
if (nr>nl) {
// we have to shift quad on 1
nb = aNbNodes[3];
nr = aNbNodes[0];
nt = aNbNodes[1];
nl = aNbNodes[2];
}
else {
// we have to shift quad on 3
nb = aNbNodes[1];
nr = aNbNodes[2];
nt = aNbNodes[3];
nl = aNbNodes[0];
}
}
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
if (dh>dv) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv>=dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
int dl,dr;
if (OldVersion) {
// add some params to right and left after the first param
// insert to right
dr = nbv - nr;
// insert to left
dl = nbv - nl;
}
int nnn = Min(nr,nl);
int nbNodes = 0;
int nbFaces = 0;
if (OldVersion) {
// step1: create faces for left domain
if (dl>0) {
nbNodes += dl*(nl-1);
nbFaces += dl*(nl-1);
}
// step2: create faces for right domain
if (dr>0) {
nbNodes += dr*(nr-1);
nbFaces += dr*(nr-1);
}
// step3: create faces for central domain
nbNodes += (nb-2)*(nnn-1) + (nbv-nnn-1)*(nb-2);
nbFaces += (nb-1)*(nbv-1);
}
else { // New version (!OldVersion)
nbNodes += (nnn-2)*(nb-2);
nbFaces += (nnn-2)*(nb-1);
int drl = abs(nr-nl);
nbNodes += drl*(nb-1) + addv*nb;
nbFaces += (drl+addv)*(nb-1) + (nt-1);
} // end new version implementation
std::vector<int> aVec(SMDSEntity_Last);
for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
if (IsQuadratic) {
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces;
aVec[SMDSEntity_Node] = nbNodes + nbFaces*4;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Quad_Triangle] = aNbNodes[3] - 1;
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces - aNbNodes[3] + 1;
}
}
else {
aVec[SMDSEntity_Node] = nbNodes;
aVec[SMDSEntity_Quadrangle] = nbFaces;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Triangle] = aNbNodes[3] - 1;
aVec[SMDSEntity_Quadrangle] = nbFaces - aNbNodes[3] + 1;
}
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aVec));
return true;
}
//=============================================================================
/*! Split quadrangle in to 2 triangles by smallest diagonal
*
*/
//=============================================================================
void StdMeshers_Quadrangle_2D::SplitQuad(SMESHDS_Mesh *theMeshDS,
int theFaceID,
const SMDS_MeshNode* theNode1,
const SMDS_MeshNode* theNode2,
const SMDS_MeshNode* theNode3,
const SMDS_MeshNode* theNode4)
{
gp_Pnt a(theNode1->X(),theNode1->Y(),theNode1->Z());
gp_Pnt b(theNode2->X(),theNode2->Y(),theNode2->Z());
gp_Pnt c(theNode3->X(),theNode3->Y(),theNode3->Z());
gp_Pnt d(theNode4->X(),theNode4->Y(),theNode4->Z());
SMDS_MeshFace* face;
if (a.Distance(c) > b.Distance(d)){
face = myTool->AddFace(theNode2, theNode4 , theNode1);
if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
face = myTool->AddFace(theNode2, theNode3, theNode4);
if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
}
else{
face = myTool->AddFace(theNode1, theNode2 ,theNode3);
if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
face = myTool->AddFace(theNode1, theNode3, theNode4);
if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
}
}
//=======================================================================
/*!
* Implementation of Reduced algorithm (meshing with quadrangles only)
*/
//=======================================================================
bool StdMeshers_Quadrangle_2D::ComputeReduced (SMESH_Mesh & aMesh,
const TopoDS_Shape& aShape,
FaceQuadStruct* quad)
{
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
const TopoDS_Face& F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
int i,j,geomFaceID = meshDS->ShapeToIndex(F);
int nb = quad->side[0]->NbPoints();
int nr = quad->side[1]->NbPoints();
int nt = quad->side[2]->NbPoints();
int nl = quad->side[3]->NbPoints();
// Simple Reduce 8->6->4->2 (3 steps) Multiple Reduce 8->2 (1 step)
//
// .-----.-----.-----.-----. .-----.-----.-----.-----.
// | / \ | / \ | | / \ | / \ |
// | / .--.--. \ | | / \ | / \ |
// | / / | \ \ | | / .----.----. \ |
// .---.---.---.---.---.---. | / / \ | / \ \ |
// | / / \ | / \ \ | | / / \ | / \ \ |
// | / / .-.-. \ \ | | / / .---.---. \ \ |
// | / / / | \ \ \ | | / / / \ | / \ \ \ |
// .--.--.--.--.--.--.--.--. | / / / \ | / \ \ \ |
// | / / / \ | / \ \ \ | | / / / .-.-. \ \ \ |
// | / / / .-.-. \ \ \ | | / / / / | \ \ \ \ |
// | / / / / | \ \ \ \ | | / / / / | \ \ \ \ |
// .-.-.-.--.--.--.--.-.-.-. .-.-.-.--.--.--.--.-.-.-.
bool MultipleReduce = false;
{
int nb1 = nb;
int nr1 = nr;
int nt1 = nt;
int nl1 = nl;
if (nr == nl) {
if (nb < nt) {
nt1 = nb;
nb1 = nt;
}
}
else if (nb == nt) {
nl1 = nb; // and == nt
nr1 = nb; // and == nt
if (nl < nr) {
nt1 = nl;
nb1 = nr;
}
else {
nt1 = nr;
nb1 = nl;
}
}
else {
return false;
}
// number of rows and columns
int nrows = nr1 - 1; // and also == nl1 - 1
int ncol_top = nt1 - 1;
int ncol_bot = nb1 - 1;
int npair_top = ncol_top / 2;
// maximum number of bottom elements for "linear" simple reduce
//int max_lin = ncol_top + npair_top * 2 * nrows;
// maximum number of bottom elements for "tree" simple reduce
int max_tree = npair_top * pow(2.0, nrows + 1);
if (ncol_top > npair_top * 2) {
int delta = ncol_bot - max_tree;
for (int irow = 1; irow < nrows; irow++) {
int nfour = delta / 4;
delta -= nfour*2;
}
if (delta <= (ncol_top - npair_top * 2))
max_tree = ncol_bot;
}
if (ncol_bot > max_tree)
MultipleReduce = true;
}
if (MultipleReduce) { // == ComputeQuadPref QUAD_QUADRANGLE_PREF_REVERSED
//==================================================
int dh = abs(nb-nt);
int dv = abs(nr-nl);
if (dh >= dv) {
if (nt > nb) {
// it is a base case => not shift quad but may be replacement is need
ShiftQuad(quad,0,true);
}
else {
// we have to shift quad on 2
ShiftQuad(quad,2,true);
}
}
else {
if (nr > nl) {
// we have to shift quad on 1
ShiftQuad(quad,1,true);
}
else {
// we have to shift quad on 3
ShiftQuad(quad,3,true);
}
}
nb = quad->side[0]->NbPoints();
nr = quad->side[1]->NbPoints();
nt = quad->side[2]->NbPoints();
nl = quad->side[3]->NbPoints();
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
if (dh>dv) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv>=dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
const vector<UVPtStruct>& uv_eb = quad->side[0]->GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er = quad->side[1]->GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_et = quad->side[2]->GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el = quad->side[3]->GetUVPtStruct(false,0);
if (uv_eb.size() != nb || uv_er.size() != nr || uv_et.size() != nt || uv_el.size() != nl)
return error(COMPERR_BAD_INPUT_MESH);
// arrays for normalized params
TColStd_SequenceOfReal npb, npr, npt, npl;
for (j = 0; j < nb; j++) {
npb.Append(uv_eb[j].normParam);
}
for (i = 0; i < nr; i++) {
npr.Append(uv_er[i].normParam);
}
for (j = 0; j < nt; j++) {
npt.Append(uv_et[j].normParam);
}
for (i = 0; i < nl; i++) {
npl.Append(uv_el[i].normParam);
}
int dl,dr;
// orientation of face and 3 main domain for future faces
// 0 top 1
// 1------------1
// | | | |
// | | | |
// | L | | R |
// left | | | | rigth
// | / \ |
// | / C \ |
// |/ \|
// 0------------0
// 0 bottom 1
// add some params to right and left after the first param
// insert to right
dr = nbv - nr;
double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
for (i=1; i<=dr; i++) {
npr.InsertAfter(1,npr.Value(2)-dpr);
}
// insert to left
dl = nbv - nl;
dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
for (i=1; i<=dl; i++) {
npl.InsertAfter(1,npl.Value(2)-dpr);
}
gp_XY a0 (uv_eb.front().u, uv_eb.front().v);
gp_XY a1 (uv_eb.back().u, uv_eb.back().v);
gp_XY a2 (uv_et.back().u, uv_et.back().v);
gp_XY a3 (uv_et.front().u, uv_et.front().v);
int nnn = Min(nr,nl);
// auxilary sequence of XY for creation nodes
// in the bottom part of central domain
// it's length must be == nbv-nnn-1
TColgp_SequenceOfXY UVL;
TColgp_SequenceOfXY UVR;
//==================================================
// step1: create faces for left domain
StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
// add left nodes
for (j=1; j<=nl; j++)
NodesL.SetValue(1,j,uv_el[j-1].node);
if (dl>0) {
// add top nodes
for (i=1; i<=dl; i++)
NodesL.SetValue(i+1,nl,uv_et[i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dl; i++) {
double x0 = npt.Value(i+1);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,1,N);
if (UVL.Length()<nbv-nnn-1) UVL.Append(UV);
// internal nodes
for (j=2; j<nl; j++) {
double y0 = npl.Value(dl+j);
double y1 = npr.Value(dl+j);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,j,N);
if (i==dl) UVtmp.Append(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn-1; i++) {
UVL.Append(UVtmp.Value(i));
}
// create faces
for (i=1; i<=dl; i++) {
for (j=1; j<nl; j++) {
SMDS_MeshFace* F =
myTool->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
else {
// fill UVL using c2d
for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn-1; i++) {
UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
}
}
// step2: create faces for right domain
StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
// add right nodes
for (j=1; j<=nr; j++)
NodesR.SetValue(1,j,uv_er[nr-j].node);
if (dr>0) {
// add top nodes
for (i=1; i<=dr; i++)
NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dr; i++) {
double x0 = npt.Value(nt-i);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,nr,N);
if (UVR.Length()<nbv-nnn-1) UVR.Append(UV);
// internal nodes
for (j=2; j<nr; j++) {
double y0 = npl.Value(nbv-j+1);
double y1 = npr.Value(nbv-j+1);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,j,N);
if (i==dr) UVtmp.Prepend(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn-1; i++) {
UVR.Append(UVtmp.Value(i));
}
// create faces
for (i=1; i<=dr; i++) {
for (j=1; j<nr; j++) {
SMDS_MeshFace* F =
myTool->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
else {
// fill UVR using c2d
for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn-1; i++) {
UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
}
}
// step3: create faces for central domain
StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
// add first line using NodesL
for (i=1; i<=dl+1; i++)
NodesC.SetValue(1,i,NodesL(i,1));
for (i=2; i<=nl; i++)
NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
// add last line using NodesR
for (i=1; i<=dr+1; i++)
NodesC.SetValue(nb,i,NodesR(i,nr));
for (i=1; i<nr; i++)
NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
// add top nodes (last columns)
for (i=dl+2; i<nbh-dr; i++)
NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
// add bottom nodes (first columns)
for (i=2; i<nb; i++)
NodesC.SetValue(i,1,uv_eb[i-1].node);
// create and add needed nodes
// add linear layers
for (i=2; i<nb; i++) {
double x0 = npt.Value(dl+i);
double x1 = x0;
for (j=1; j<nnn; j++) {
double y0 = npl.Value(nbv-nnn+j);
double y1 = npr.Value(nbv-nnn+j);
gp_UV UV = CalcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(i,nbv-nnn+j,N);
}
}
// add diagonal layers
for (i=1; i<nbv-nnn; i++) {
double du = UVR.Value(i).X() - UVL.Value(i).X();
double dv = UVR.Value(i).Y() - UVL.Value(i).Y();
for (j=2; j<nb; j++) {
double u = UVL.Value(i).X() + du*npb.Value(j);
double v = UVL.Value(i).Y() + dv*npb.Value(j);
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, u, v);
NodesC.SetValue(j,i+1,N);
}
}
// create faces
for (i=1; i<nb; i++) {
for (j=1; j<nbv; j++) {
SMDS_MeshFace* F =
myTool->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
// TODO ???
} // end Multiple Reduce implementation
else { // Simple Reduce (!MultipleReduce)
//=========================================================
if (nr == nl) {
if (nt < nb) {
// it is a base case => not shift quad
//ShiftQuad(quad,0,true);
}
else {
// we have to shift quad on 2
ShiftQuad(quad,2,true);
}
}
else {
if (nl > nr) {
// we have to shift quad on 1
ShiftQuad(quad,1,true);
}
else {
// we have to shift quad on 3
ShiftQuad(quad,3,true);
}
}
nb = quad->side[0]->NbPoints();
nr = quad->side[1]->NbPoints();
nt = quad->side[2]->NbPoints();
nl = quad->side[3]->NbPoints();
// number of rows and columns
int nrows = nr - 1; // and also == nl - 1
int ncol_top = nt - 1;
int ncol_bot = nb - 1;
int npair_top = ncol_top / 2;
// maximum number of bottom elements for "linear" simple reduce
int max_lin = ncol_top + npair_top * 2 * nrows;
// maximum number of bottom elements for "tree" simple reduce
//int max_tree = npair_top * pow(2, nrows + 1);
//if (ncol_bot > max_tree)
// MultipleReduce = true;
const vector<UVPtStruct>& uv_eb = quad->side[0]->GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er = quad->side[1]->GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_et = quad->side[2]->GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el = quad->side[3]->GetUVPtStruct(false,0);
if (uv_eb.size() != nb || uv_er.size() != nr || uv_et.size() != nt || uv_el.size() != nl)
return error(COMPERR_BAD_INPUT_MESH);
// arrays for normalized params
TColStd_SequenceOfReal npb, npr, npt, npl;
for (j = 0; j < nb; j++) {
npb.Append(uv_eb[j].normParam);
}
for (i = 0; i < nr; i++) {
npr.Append(uv_er[i].normParam);
}
for (j = 0; j < nt; j++) {
npt.Append(uv_et[j].normParam);
}
for (i = 0; i < nl; i++) {
npl.Append(uv_el[i].normParam);
}
// We will ajust new points to this grid
if (!SetNormalizedGrid(aMesh, aShape, quad))
return false;
// TODO ???
gp_XY a0 (uv_eb.front().u, uv_eb.front().v);
gp_XY a1 (uv_eb.back().u, uv_eb.back().v);
gp_XY a2 (uv_et.back().u, uv_et.back().v);
gp_XY a3 (uv_et.front().u, uv_et.front().v);
//=========================================================
TColStd_SequenceOfInteger curr_base, next_base;
TColStd_SequenceOfReal curr_par_u, curr_par_v;
TColStd_SequenceOfReal next_par_u, next_par_v;
StdMeshers_Array2OfNode NodesBRD (1,nb, 1,nr);
for (j = 1; j <= nb; j++) {
NodesBRD.SetValue(j, 1, uv_eb[j - 1].node); // bottom
curr_base.Append(j);
next_base.Append(-1);
curr_par_u.Append(uv_eb[j-1].u);
curr_par_v.Append(uv_eb[j-1].v);
next_par_u.Append(0.);
next_par_v.Append(0.);
}
for (j = 1; j <= nt; j++) {
NodesBRD.SetValue(j, nr, uv_et[j - 1].node); // top
}
int curr_base_len = nb;
int next_base_len = 0;
if (ncol_bot > max_lin) {
// "tree" simple reduce 2->4->8->16->32->...
//
// .---------------.---------------.---------------.---------------. nr
// | \ | / | \ | / |
// | \ .-------.-------. / | \ .-------.-------. / |
// | | | | | | | | |
// .-------.-------.-------.-------.-------.-------.-------.-------.
// |\ | /|\ | /|\ | /|\ | /|
// | \.---.---./ | \.---.---./ | \.---.---./ | \.---.---./ | i
// | | | | | | | | | | | | | | | | |
// .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
// |\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|
// | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. |
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. 1
// 1 j nb
for (i = 1; i < nr; i++) { // layer by layer
// left
NodesBRD.SetValue(1, i+1, uv_el[i].node);
next_base.SetValue(++next_base_len, 1);
// right
NodesBRD.SetValue(nb, i+1, uv_er[i].node);
next_par_u.SetValue(next_base_len, uv_el[i].u);
next_par_v.SetValue(next_base_len, uv_el[i].v);
// to stop reducing, if number of nodes reaches nt
int delta = curr_base_len - nt;
//double du = uv_er[i].u - uv_el[i].u;
//double dv = uv_er[i].v - uv_el[i].v;
// to calculate normalized parameter, we must know number of points in next layer
int nb_four = (curr_base_len - 1) / 4;
int nb_next = nb_four*2 + (curr_base_len - nb_four*4);
if (nb_next < nt) nb_next = nt;
for (j = 1; j + 4 <= curr_base_len && delta > 0; j += 4, delta -= 2) {
// add one "HH": nodes a,b,c,d,e and faces 1,2,3,4,5,6
//
// .-----a-----b i + 1
// |\ 5 | 6 /|
// | \ | / |
// | c--d--e |
// |1 |2 |3 |4 |
// | | | | |
// .--.--.--.--. i
//
// j j+2 j+4
double u,v;
// a (i + 1, j + 2)
const SMDS_MeshNode* Na;
next_base_len++;
next_base.SetValue(next_base_len, curr_base.Value(j + 2));
if (i + 1 == nr) { // top
Na = uv_et[next_base_len - 1].node;
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Na);
u = uv_et[next_base_len - 1].u;
v = uv_et[next_base_len - 1].v;
}
else {
//double norm_par = double(next_base_len - 1)/double(nb_next - 1);
//u = uv_el[i].u + du * norm_par;
//v = uv_el[i].v + dv * norm_par;
{
double rel = double(next_base_len - 1) * double(nt - 1) / double(nb_next - 1) + 1;
int nearest_node_j = (int)rel;
rel -= nearest_node_j;
int ij = (i + 1 - 1) * nt + (nearest_node_j - 1);
double u1 = quad->uv_grid[ij].u;
double v1 = quad->uv_grid[ij].v;
double u2 = quad->uv_grid[ij + 1].u;
double v2 = quad->uv_grid[ij + 1].v;
double duj = (u2 - u1) * rel;
double dvj = (v2 - v1) * rel;
u = u1 + duj;
v = v1 + dvj;
}
//u = uv_el[i].u + du*npb.Value(curr_base.Value(j + 2));
//v = uv_el[i].v + dv*npb.Value(curr_base.Value(j + 2));
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Na1 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Na1, geomFaceID, u, v);
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Na1);
Na = Na1;
}
next_par_u.SetValue(next_base_len, u);
next_par_v.SetValue(next_base_len, v);
// b (i + 1, j + 4)
const SMDS_MeshNode* Nb;
next_base_len++;
next_base.SetValue(next_base_len, curr_base.Value(j + 4));
if (i + 1 == nr) { // top
Nb = uv_et[next_base_len - 1].node;
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nb);
u = uv_et[next_base_len - 1].u;
v = uv_et[next_base_len - 1].v;
}
else if (j + 4 == curr_base_len) { // right
Nb = NodesBRD.Value(next_base.Value(next_base_len), i + 1);
u = uv_er[i].u;
v = uv_er[i].v;
}
else {
//double norm_par = double(next_base_len - 1)/double(nb_next - 1);
//u = uv_el[i].u + du * norm_par;
//v = uv_el[i].v + dv * norm_par;
{
double rel = double(next_base_len - 1) * double(nt - 1) / double(nb_next - 1) + 1;
int nearest_node_j = (int)rel;
rel -= nearest_node_j;
int ij = (i + 1 - 1) * nt + (nearest_node_j - 1);
double u1 = quad->uv_grid[ij].u;
double v1 = quad->uv_grid[ij].v;
double u2 = quad->uv_grid[ij + 1].u;
double v2 = quad->uv_grid[ij + 1].v;
double duj = (u2 - u1) * rel;
double dvj = (v2 - v1) * rel;
u = u1 + duj;
v = v1 + dvj;
}
//u = uv_el[i].u + du*npb.Value(curr_base.Value(j + 4));
//v = uv_el[i].v + dv*npb.Value(curr_base.Value(j + 4));
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nb1 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nb1, geomFaceID, u, v);
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nb1);
Nb = Nb1;
}
next_par_u.SetValue(next_base_len, u);
next_par_v.SetValue(next_base_len, v);
// c
u = (curr_par_u.Value(j + 2) + next_par_u.Value(next_base_len - 2)) / 2.0;
v = (curr_par_v.Value(j + 2) + next_par_v.Value(next_base_len - 2)) / 2.0;
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nc = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nc, geomFaceID, u, v);
// d
u = (curr_par_u.Value(j + 2) + next_par_u.Value(next_base_len - 1)) / 2.0;
v = (curr_par_v.Value(j + 2) + next_par_v.Value(next_base_len - 1)) / 2.0;
P = S->Value(u,v);
SMDS_MeshNode* Nd = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nd, geomFaceID, u, v);
// e
u = (curr_par_u.Value(j + 2) + next_par_u.Value(next_base_len)) / 2.0;
v = (curr_par_v.Value(j + 2) + next_par_v.Value(next_base_len)) / 2.0;
P = S->Value(u,v);
SMDS_MeshNode* Ne = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Ne, geomFaceID, u, v);
// Faces
SMDS_MeshFace* F1 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j + 0), i),
NodesBRD.Value(curr_base.Value(j + 1), i),
Nc,
NodesBRD.Value(next_base.Value(next_base_len - 2), i + 1));
if (F1) meshDS->SetMeshElementOnShape(F1, geomFaceID);
SMDS_MeshFace* F2 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j + 1), i),
NodesBRD.Value(curr_base.Value(j + 2), i),
Nd, Nc);
if (F2) meshDS->SetMeshElementOnShape(F2, geomFaceID);
SMDS_MeshFace* F3 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j + 2), i),
NodesBRD.Value(curr_base.Value(j + 3), i),
Ne, Nd);
if (F3) meshDS->SetMeshElementOnShape(F3, geomFaceID);
SMDS_MeshFace* F4 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j + 3), i),
NodesBRD.Value(curr_base.Value(j + 4), i),
Nb, Ne);
if (F4) meshDS->SetMeshElementOnShape(F4, geomFaceID);
SMDS_MeshFace* F5 = myTool->AddFace(Nc, Nd, Na,
NodesBRD.Value(next_base.Value(next_base_len - 2), i + 1));
if (F5) meshDS->SetMeshElementOnShape(F5, geomFaceID);
SMDS_MeshFace* F6 = myTool->AddFace(Nd, Ne, Nb, Na);
if (F6) meshDS->SetMeshElementOnShape(F6, geomFaceID);
}
// not reduced side elements (if any)
for (; j < curr_base_len; j++) {
// f (i + 1, j + 1)
const SMDS_MeshNode* Nf;
double u,v;
next_base.SetValue(++next_base_len, curr_base.Value(j + 1));
if (i + 1 == nr) { // top
Nf = uv_et[next_base_len - 1].node;
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nf);
u = uv_et[next_base_len - 1].u;
v = uv_et[next_base_len - 1].v;
}
else if (j + 1 == curr_base_len) { // right
Nf = NodesBRD.Value(next_base.Value(next_base_len), i + 1);
u = uv_er[i].u;
v = uv_er[i].v;
}
else {
//double norm_par = double(next_base_len - 1)/double(nb_next - 1);
//u = uv_el[i].u + du * norm_par;
//v = uv_el[i].v + dv * norm_par;
{
double rel = double(next_base_len - 1) * double(nt - 1) / double(nb_next - 1) + 1;
int nearest_node_j = (int)rel;
rel -= nearest_node_j;
int ij = (i + 1 - 1) * nt + (nearest_node_j - 1);
double u1 = quad->uv_grid[ij].u;
double v1 = quad->uv_grid[ij].v;
double u2 = quad->uv_grid[ij + 1].u;
double v2 = quad->uv_grid[ij + 1].v;
double duj = (u2 - u1) * rel;
double dvj = (v2 - v1) * rel;
u = u1 + duj;
v = v1 + dvj;
}
//u = uv_el[i].u + du*npb.Value(curr_base.Value(j + 1));
//v = uv_el[i].v + dv*npb.Value(curr_base.Value(j + 1));
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nf1 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nf1, geomFaceID, u, v);
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nf1);
Nf = Nf1;
}
next_par_u.SetValue(next_base_len, u);
next_par_v.SetValue(next_base_len, v);
SMDS_MeshFace* F1 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j), i),
NodesBRD.Value(curr_base.Value(j + 1), i),
NodesBRD.Value(next_base.Value(next_base_len), i + 1),
NodesBRD.Value(next_base.Value(next_base_len - 1), i + 1));
if (F1) meshDS->SetMeshElementOnShape(F1, geomFaceID);
}
curr_base_len = next_base_len;
curr_base = next_base;
curr_par_u = next_par_u;
curr_par_v = next_par_v;
next_base_len = 0;
}
} // end "tree" simple reduce
else {
// "linear" simple reduce 4->8->12->16 (3 steps)
//
// .---------------.---------------.---------------.---------------. nr
// | \ | / | \ | / |
// | \ .-------.-------. / | \ .-------.-------. / |
// | | | | | | | | |
// .-------.-------.-------.-------.-------.-------.-------.-------.
// | / \ | / \ | / \ | / \ |
// | / \.----.----./ \ | / \.----.----./ \ | i
// | / | | | \ | / | | | \ |
// .-----.----.----.----.----.-----.-----.----.----.----.----.-----.
// | / / \ | / \ \ | / / \ | / \ \ |
// | / / .-.-. \ \ | / / .-.-. \ \ |
// | / / / | \ \ \ | / / / | \ \ \ |
// .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---. 1
// 1 j nb
// nt = 5, nb = 7, nr = 4
//int delta_all = 2;
//int delta_one_col = 6;
//int nb_col = 0;
//int remainder = 2;
//if (remainder > 0) nb_col++;
//nb_col = 1;
//int free_left = 1;
//free_left += 2;
//int free_middle = 4;
int delta_all = nb - nt;
int delta_one_col = (nr - 1) * 2;
int nb_col = delta_all / delta_one_col;
int remainder = delta_all - nb_col * delta_one_col;
if (remainder > 0) {
nb_col++;
}
int free_left = ((nt - 1) - nb_col * 2) / 2;
free_left += nr - 2;
int free_middle = (nr - 2) * 2;
if (remainder > 0 && nb_col == 1) {
int nb_rows_short_col = remainder / 2;
int nb_rows_thrown = (nr - 1) - nb_rows_short_col;
free_left -= nb_rows_thrown;
}
// nt = 5, nb = 17, nr = 4
//int delta_all = 12;
//int delta_one_col = 6;
//int nb_col = 2;
//int remainder = 0;
//int free_left = 2;
//int free_middle = 4;
for (i = 1; i < nr; i++, free_middle -= 2, free_left -= 1) { // layer by layer
// left
NodesBRD.SetValue(1, i+1, uv_el[i].node);
next_base.SetValue(++next_base_len, 1);
// right
NodesBRD.SetValue(nb, i+1, uv_er[i].node);
// left
next_par_u.SetValue(next_base_len, uv_el[i].u);
next_par_v.SetValue(next_base_len, uv_el[i].v);
// to calculate normalized parameter, we must know number of points in next layer
int nb_next = curr_base_len - nb_col * 2;
if (remainder > 0 && i > remainder / 2)
// take into account short "column"
nb_next += 2;
if (nb_next < nt) nb_next = nt;
// not reduced left elements
for (j = 1; j <= free_left; j++) {
// f (i + 1, j + 1)
const SMDS_MeshNode* Nf;
double u,v;
next_base.SetValue(++next_base_len, curr_base.Value(j + 1));
if (i + 1 == nr) { // top
Nf = uv_et[next_base_len - 1].node;
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nf);
u = uv_et[next_base_len - 1].u;
v = uv_et[next_base_len - 1].v;
}
else {
{
double rel = double(next_base_len - 1) * double(nt - 1) / double(nb_next - 1) + 1;
int nearest_node_j = (int)rel;
rel -= nearest_node_j;
int ij = (i + 1 - 1) * nt + (nearest_node_j - 1);
double u1 = quad->uv_grid[ij].u;
double v1 = quad->uv_grid[ij].v;
double u2 = quad->uv_grid[ij + 1].u;
double v2 = quad->uv_grid[ij + 1].v;
double duj = (u2 - u1) * rel;
double dvj = (v2 - v1) * rel;
u = u1 + duj;
v = v1 + dvj;
}
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nf1 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nf1, geomFaceID, u, v);
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nf1);
Nf = Nf1;
}
next_par_u.SetValue(next_base_len, u);
next_par_v.SetValue(next_base_len, v);
SMDS_MeshFace* F1 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j), i),
NodesBRD.Value(curr_base.Value(j + 1), i),
NodesBRD.Value(next_base.Value(next_base_len), i + 1),
NodesBRD.Value(next_base.Value(next_base_len - 1), i + 1));
if (F1) meshDS->SetMeshElementOnShape(F1, geomFaceID);
}
for (int icol = 1; icol <= nb_col; icol++) {
if (remainder > 0 && icol == nb_col && i > remainder / 2)
// stop short "column"
break;
// add one "HH": nodes a,b,c,d,e and faces 1,2,3,4,5,6
//
// .-----a-----b i + 1
// |\ 5 | 6 /|
// | \ | / |
// | c--d--e |
// |1 |2 |3 |4 |
// | | | | |
// .--.--.--.--. i
//
// j j+2 j+4
double u,v;
// a (i + 1, j + 2)
const SMDS_MeshNode* Na;
next_base_len++;
next_base.SetValue(next_base_len, curr_base.Value(j + 2));
if (i + 1 == nr) { // top
Na = uv_et[next_base_len - 1].node;
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Na);
u = uv_et[next_base_len - 1].u;
v = uv_et[next_base_len - 1].v;
}
else {
{
double rel = double(next_base_len - 1) * double(nt - 1) / double(nb_next - 1) + 1;
int nearest_node_j = (int)rel;
rel -= nearest_node_j;
int ij = (i + 1 - 1) * nt + (nearest_node_j - 1);
double u1 = quad->uv_grid[ij].u;
double v1 = quad->uv_grid[ij].v;
double u2 = quad->uv_grid[ij + 1].u;
double v2 = quad->uv_grid[ij + 1].v;
double duj = (u2 - u1) * rel;
double dvj = (v2 - v1) * rel;
u = u1 + duj;
v = v1 + dvj;
}
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Na1 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Na1, geomFaceID, u, v);
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Na1);
Na = Na1;
}
next_par_u.SetValue(next_base_len, u);
next_par_v.SetValue(next_base_len, v);
// b (i + 1, j + 4)
const SMDS_MeshNode* Nb;
next_base_len++;
next_base.SetValue(next_base_len, curr_base.Value(j + 4));
if (i + 1 == nr) { // top
Nb = uv_et[next_base_len - 1].node;
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nb);
u = uv_et[next_base_len - 1].u;
v = uv_et[next_base_len - 1].v;
}
else if (j + 4 == curr_base_len) { // right
Nb = NodesBRD.Value(next_base.Value(next_base_len), i + 1);
u = uv_er[i].u;
v = uv_er[i].v;
}
else {
{
double rel = double(next_base_len - 1) * double(nt - 1) / double(nb_next - 1) + 1;
int nearest_node_j = (int)rel;
rel -= nearest_node_j;
int ij = (i + 1 - 1) * nt + (nearest_node_j - 1);
double u1 = quad->uv_grid[ij].u;
double v1 = quad->uv_grid[ij].v;
double u2 = quad->uv_grid[ij + 1].u;
double v2 = quad->uv_grid[ij + 1].v;
double duj = (u2 - u1) * rel;
double dvj = (v2 - v1) * rel;
u = u1 + duj;
v = v1 + dvj;
}
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nb1 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nb1, geomFaceID, u, v);
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nb1);
Nb = Nb1;
}
next_par_u.SetValue(next_base_len, u);
next_par_v.SetValue(next_base_len, v);
// c
u = (curr_par_u.Value(j + 2) + next_par_u.Value(next_base_len - 2)) / 2.0;
v = (curr_par_v.Value(j + 2) + next_par_v.Value(next_base_len - 2)) / 2.0;
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nc = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nc, geomFaceID, u, v);
// d
u = (curr_par_u.Value(j + 2) + next_par_u.Value(next_base_len - 1)) / 2.0;
v = (curr_par_v.Value(j + 2) + next_par_v.Value(next_base_len - 1)) / 2.0;
P = S->Value(u,v);
SMDS_MeshNode* Nd = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nd, geomFaceID, u, v);
// e
u = (curr_par_u.Value(j + 2) + next_par_u.Value(next_base_len)) / 2.0;
v = (curr_par_v.Value(j + 2) + next_par_v.Value(next_base_len)) / 2.0;
P = S->Value(u,v);
SMDS_MeshNode* Ne = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Ne, geomFaceID, u, v);
// Faces
SMDS_MeshFace* F1 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j + 0), i),
NodesBRD.Value(curr_base.Value(j + 1), i),
Nc,
NodesBRD.Value(next_base.Value(next_base_len - 2), i + 1));
if (F1) meshDS->SetMeshElementOnShape(F1, geomFaceID);
SMDS_MeshFace* F2 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j + 1), i),
NodesBRD.Value(curr_base.Value(j + 2), i),
Nd, Nc);
if (F2) meshDS->SetMeshElementOnShape(F2, geomFaceID);
SMDS_MeshFace* F3 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j + 2), i),
NodesBRD.Value(curr_base.Value(j + 3), i),
Ne, Nd);
if (F3) meshDS->SetMeshElementOnShape(F3, geomFaceID);
SMDS_MeshFace* F4 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j + 3), i),
NodesBRD.Value(curr_base.Value(j + 4), i),
Nb, Ne);
if (F4) meshDS->SetMeshElementOnShape(F4, geomFaceID);
SMDS_MeshFace* F5 = myTool->AddFace(Nc, Nd, Na,
NodesBRD.Value(next_base.Value(next_base_len - 2), i + 1));
if (F5) meshDS->SetMeshElementOnShape(F5, geomFaceID);
SMDS_MeshFace* F6 = myTool->AddFace(Nd, Ne, Nb, Na);
if (F6) meshDS->SetMeshElementOnShape(F6, geomFaceID);
j += 4;
// not reduced middle elements
if (icol < nb_col) {
if (remainder > 0 && icol == nb_col - 1 && i > remainder / 2)
// pass middle elements before stopped short "column"
break;
int free_add = free_middle;
if (remainder > 0 && icol == nb_col - 1)
// next "column" is short
free_add -= (nr - 1) - (remainder / 2);
for (int imiddle = 1; imiddle <= free_add; imiddle++) {
// f (i + 1, j + imiddle)
const SMDS_MeshNode* Nf;
double u,v;
next_base.SetValue(++next_base_len, curr_base.Value(j + imiddle));
if (i + 1 == nr) { // top
Nf = uv_et[next_base_len - 1].node;
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nf);
u = uv_et[next_base_len - 1].u;
v = uv_et[next_base_len - 1].v;
}
else if (j + imiddle == curr_base_len) { // right
Nf = NodesBRD.Value(next_base.Value(next_base_len), i + 1);
u = uv_er[i].u;
v = uv_er[i].v;
}
else {
{
double rel = double(next_base_len - 1) * double(nt - 1) / double(nb_next - 1) + 1;
int nearest_node_j = (int)rel;
rel -= nearest_node_j;
int ij = (i + 1 - 1) * nt + (nearest_node_j - 1);
double u1 = quad->uv_grid[ij].u;
double v1 = quad->uv_grid[ij].v;
double u2 = quad->uv_grid[ij + 1].u;
double v2 = quad->uv_grid[ij + 1].v;
double duj = (u2 - u1) * rel;
double dvj = (v2 - v1) * rel;
u = u1 + duj;
v = v1 + dvj;
}
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nf1 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nf1, geomFaceID, u, v);
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nf1);
Nf = Nf1;
}
next_par_u.SetValue(next_base_len, u);
next_par_v.SetValue(next_base_len, v);
SMDS_MeshFace* F1 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j - 1 + imiddle), i),
NodesBRD.Value(curr_base.Value(j + imiddle), i),
NodesBRD.Value(next_base.Value(next_base_len), i + 1),
NodesBRD.Value(next_base.Value(next_base_len - 1), i + 1));
if (F1) meshDS->SetMeshElementOnShape(F1, geomFaceID);
}
j += free_add;
}
}
// not reduced right elements
for (; j < curr_base_len; j++) {
// f (i + 1, j + 1)
const SMDS_MeshNode* Nf;
double u,v;
next_base.SetValue(++next_base_len, curr_base.Value(j + 1));
if (i + 1 == nr) { // top
Nf = uv_et[next_base_len - 1].node;
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nf);
u = uv_et[next_base_len - 1].u;
v = uv_et[next_base_len - 1].v;
}
else if (j + 1 == curr_base_len) { // right
Nf = NodesBRD.Value(next_base.Value(next_base_len), i + 1);
u = uv_er[i].u;
v = uv_er[i].v;
}
else {
{
double rel = double(next_base_len - 1) * double(nt - 1) / double(nb_next - 1) + 1;
int nearest_node_j = (int)rel;
rel -= nearest_node_j;
int ij = (i + 1 - 1) * nt + (nearest_node_j - 1);
double u1 = quad->uv_grid[ij].u;
double v1 = quad->uv_grid[ij].v;
double u2 = quad->uv_grid[ij + 1].u;
double v2 = quad->uv_grid[ij + 1].v;
double duj = (u2 - u1) * rel;
double dvj = (v2 - v1) * rel;
u = u1 + duj;
v = v1 + dvj;
}
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nf1 = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(Nf1, geomFaceID, u, v);
NodesBRD.SetValue(next_base.Value(next_base_len), i + 1, Nf1);
Nf = Nf1;
}
next_par_u.SetValue(next_base_len, u);
next_par_v.SetValue(next_base_len, v);
SMDS_MeshFace* F1 = myTool->AddFace(NodesBRD.Value(curr_base.Value(j), i),
NodesBRD.Value(curr_base.Value(j + 1), i),
NodesBRD.Value(next_base.Value(next_base_len), i + 1),
NodesBRD.Value(next_base.Value(next_base_len - 1), i + 1));
if (F1) meshDS->SetMeshElementOnShape(F1, geomFaceID);
}
curr_base_len = next_base_len;
curr_base = next_base;
curr_par_u = next_par_u;
curr_par_v = next_par_v;
next_base_len = 0;
}
} // end "linear" simple reduce
} // end Simple Reduce implementation
bool isOk = true;
return isOk;
}