mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-13 18:20:34 +05:00
348 lines
7.9 KiB
C++
348 lines
7.9 KiB
C++
// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
//
|
|
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
|
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
//
|
|
|
|
// SMESH StdMeshers : implementaion of point distribution algorithm
|
|
// File : StdMeshers_Distribution.cxx
|
|
// Author : Alexandre SOLOVYOV
|
|
// Module : SMESH
|
|
// $Header$
|
|
//
|
|
#include "StdMeshers_Distribution.hxx"
|
|
|
|
#include <math_GaussSingleIntegration.hxx>
|
|
#include <utilities.h>
|
|
|
|
#if (OCC_VERSION_MAJOR << 16 | OCC_VERSION_MINOR << 8 | OCC_VERSION_MAINTENANCE) > 0x060100
|
|
#define NO_CAS_CATCH
|
|
#endif
|
|
|
|
#include <Standard_Failure.hxx>
|
|
|
|
#ifdef NO_CAS_CATCH
|
|
#include <Standard_ErrorHandler.hxx>
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
Function::Function( const int conv )
|
|
: myConv( conv )
|
|
{
|
|
}
|
|
|
|
Function::~Function()
|
|
{
|
|
}
|
|
|
|
bool Function::value( const double, double& f ) const
|
|
{
|
|
bool ok = true;
|
|
if (myConv == 0) {
|
|
try {
|
|
#ifdef NO_CAS_CATCH
|
|
OCC_CATCH_SIGNALS;
|
|
#endif
|
|
f = pow( 10., f );
|
|
} catch(Standard_Failure) {
|
|
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
|
|
f = 0.0;
|
|
ok = false;
|
|
}
|
|
}
|
|
else if( myConv==1 && f<0.0 )
|
|
f = 0.0;
|
|
|
|
return ok;
|
|
}
|
|
|
|
FunctionIntegral::FunctionIntegral( const Function* f, const double st )
|
|
: Function( -1 ),
|
|
myFunc( const_cast<Function*>( f ) ),
|
|
myStart( st )
|
|
{
|
|
}
|
|
|
|
FunctionIntegral::~FunctionIntegral()
|
|
{
|
|
}
|
|
|
|
bool FunctionIntegral::value( const double t, double& f ) const
|
|
{
|
|
f = myFunc ? myFunc->integral( myStart, t ) : 0;
|
|
return myFunc!=0 && Function::value( t, f );
|
|
}
|
|
|
|
double FunctionIntegral::integral( const double, const double ) const
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
FunctionTable::FunctionTable( const std::vector<double>& data, const int conv )
|
|
: Function( conv )
|
|
{
|
|
myData = data;
|
|
}
|
|
|
|
FunctionTable::~FunctionTable()
|
|
{
|
|
}
|
|
|
|
bool FunctionTable::value( const double t, double& f ) const
|
|
{
|
|
int i1, i2;
|
|
if( !findBounds( t, i1, i2 ) )
|
|
return false;
|
|
|
|
if( i1==i2 ) {
|
|
f = myData[ 2*i1+1 ];
|
|
Function::value( t, f );
|
|
return true;
|
|
}
|
|
|
|
double
|
|
x1 = myData[2*i1], y1 = myData[2*i1+1],
|
|
x2 = myData[2*i2], y2 = myData[2*i2+1];
|
|
|
|
Function::value( x1, y1 );
|
|
Function::value( x2, y2 );
|
|
|
|
f = y1 + ( y2-y1 ) * ( t-x1 ) / ( x2-x1 );
|
|
return true;
|
|
}
|
|
|
|
double FunctionTable::integral( const int i ) const
|
|
{
|
|
if( i>=0 && i<myData.size()-1 )
|
|
return integral( i, myData[2*(i+1)]-myData[2*i] );
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
double FunctionTable::integral( const int i, const double d ) const
|
|
{
|
|
double f1,f2, res = 0.0;
|
|
if( value( myData[2*i]+d, f1 ) )
|
|
if(!value(myData[2*i], f2)) {
|
|
f2 = myData[2*i+1];
|
|
Function::value( 1, f2 );
|
|
}
|
|
res = (f2+f1) * d / 2.0;
|
|
return res;
|
|
}
|
|
|
|
double FunctionTable::integral( const double a, const double b ) const
|
|
{
|
|
int x1s, x1f, x2s, x2f;
|
|
findBounds( a, x1s, x1f );
|
|
findBounds( b, x2s, x2f );
|
|
double J = 0;
|
|
for( int i=x1s; i<x2s; i++ )
|
|
J+=integral( i );
|
|
J-=integral( x1s, a-myData[2*x1s] );
|
|
J+=integral( x2s, b-myData[2*x2s] );
|
|
return J;
|
|
}
|
|
|
|
bool FunctionTable::findBounds( const double x, int& x_ind_1, int& x_ind_2 ) const
|
|
{
|
|
int n = myData.size() / 2;
|
|
if( n==0 || x<myData[0] )
|
|
{
|
|
x_ind_1 = x_ind_2 = 0;
|
|
return false;
|
|
}
|
|
|
|
for( int i=0; i<n-1; i++ )
|
|
if( myData[2*i]<=x && x<myData[2*(i+1)] )
|
|
{
|
|
x_ind_1 = i;
|
|
x_ind_2 = i+1;
|
|
return true;
|
|
}
|
|
x_ind_1 = n-1;
|
|
x_ind_2 = n-1;
|
|
return ( fabs( x - myData[2*x_ind_2] ) < 1.e-10 );
|
|
}
|
|
|
|
FunctionExpr::FunctionExpr( const char* str, const int conv )
|
|
: Function( conv ),
|
|
myVars( 1, 1 ),
|
|
myValues( 1, 1 )
|
|
{
|
|
bool ok = true;
|
|
try {
|
|
#ifdef NO_CAS_CATCH
|
|
OCC_CATCH_SIGNALS;
|
|
#endif
|
|
myExpr = ExprIntrp_GenExp::Create();
|
|
myExpr->Process( ( Standard_CString )str );
|
|
} catch(Standard_Failure) {
|
|
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
|
|
ok = false;
|
|
}
|
|
|
|
if( !ok || !myExpr->IsDone() )
|
|
myExpr.Nullify();
|
|
|
|
myVars.ChangeValue( 1 ) = new Expr_NamedUnknown( "t" );
|
|
}
|
|
|
|
FunctionExpr::~FunctionExpr()
|
|
{
|
|
}
|
|
|
|
Standard_Boolean FunctionExpr::Value( const Standard_Real T, Standard_Real& F )
|
|
{
|
|
double f;
|
|
Standard_Boolean res = value( T, f );
|
|
F = f;
|
|
return res;
|
|
}
|
|
|
|
bool FunctionExpr::value( const double t, double& f ) const
|
|
{
|
|
if( myExpr.IsNull() )
|
|
return false;
|
|
|
|
( ( TColStd_Array1OfReal& )myValues ).ChangeValue( 1 ) = t;
|
|
bool ok = true;
|
|
try {
|
|
#ifdef NO_CAS_CATCH
|
|
OCC_CATCH_SIGNALS;
|
|
#endif
|
|
f = myExpr->Expression()->Evaluate( myVars, myValues );
|
|
} catch(Standard_Failure) {
|
|
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
|
|
f = 0.0;
|
|
ok = false;
|
|
}
|
|
|
|
ok = Function::value( t, f ) && ok;
|
|
return ok;
|
|
}
|
|
|
|
double FunctionExpr::integral( const double a, const double b ) const
|
|
{
|
|
double res = 0.0;
|
|
try {
|
|
#ifdef NO_CAS_CATCH
|
|
OCC_CATCH_SIGNALS;
|
|
#endif
|
|
math_GaussSingleIntegration _int
|
|
( *static_cast<math_Function*>( const_cast<FunctionExpr*> (this) ), a, b, 20 );
|
|
if( _int.IsDone() )
|
|
res = _int.Value();
|
|
} catch(Standard_Failure) {
|
|
res = 0.0;
|
|
MESSAGE( "Exception in integral calculating" );
|
|
}
|
|
return res;
|
|
}
|
|
|
|
double dihotomySolve( Function& f, const double val, const double _start, const double _fin, const double eps, bool& ok )
|
|
{
|
|
double start = _start, fin = _fin, start_val, fin_val; bool ok1, ok2;
|
|
ok1 = f.value( start, start_val );
|
|
ok2 = f.value( fin, fin_val );
|
|
|
|
if( !ok1 || !ok2 )
|
|
{
|
|
ok = false;
|
|
return 0.0;
|
|
}
|
|
|
|
bool start_pos = start_val>=val, fin_pos = fin_val>=val;
|
|
ok = true;
|
|
|
|
while( fin-start>eps )
|
|
{
|
|
double mid = ( start+fin )/2.0, mid_val;
|
|
ok = f.value( mid, mid_val );
|
|
if( !ok )
|
|
return 0.0;
|
|
|
|
//char buf[1024];
|
|
//sprintf( buf, "start=%f\nfin=%f\nmid_val=%f\n", float( start ), float( fin ), float( mid_val ) );
|
|
//MESSAGE( buf );
|
|
|
|
bool mid_pos = mid_val>=val;
|
|
if( start_pos!=mid_pos )
|
|
{
|
|
fin_pos = mid_pos;
|
|
fin = mid;
|
|
}
|
|
else if( fin_pos!=mid_pos )
|
|
{
|
|
start_pos = mid_pos;
|
|
start = mid;
|
|
}
|
|
else
|
|
{
|
|
ok = false;
|
|
break;
|
|
}
|
|
}
|
|
return (start+fin)/2.0;
|
|
}
|
|
|
|
bool buildDistribution( const TCollection_AsciiString& f, const int conv, const double start, const double end,
|
|
const int nbSeg, vector<double>& data, const double eps )
|
|
{
|
|
FunctionExpr F( f.ToCString(), conv );
|
|
return buildDistribution( F, start, end, nbSeg, data, eps );
|
|
}
|
|
|
|
bool buildDistribution( const std::vector<double>& f, const int conv, const double start, const double end,
|
|
const int nbSeg, vector<double>& data, const double eps )
|
|
{
|
|
FunctionTable F( f, conv );
|
|
return buildDistribution( F, start, end, nbSeg, data, eps );
|
|
}
|
|
|
|
bool buildDistribution( const Function& func, const double start, const double end, const int nbSeg,
|
|
vector<double>& data, const double eps )
|
|
{
|
|
if( nbSeg<=0 )
|
|
return false;
|
|
|
|
data.resize( nbSeg+1 );
|
|
data[0] = start;
|
|
double J = func.integral( start, end ) / nbSeg;
|
|
if( J<1E-10 )
|
|
return false;
|
|
|
|
bool ok;
|
|
//MESSAGE( "distribution:" );
|
|
//char buf[1024];
|
|
for( int i=1; i<nbSeg; i++ )
|
|
{
|
|
FunctionIntegral f_int( &func, data[i-1] );
|
|
data[i] = dihotomySolve( f_int, J, data[i-1], end, eps, ok );
|
|
//sprintf( buf, "%f\n", float( data[i] ) );
|
|
//MESSAGE( buf );
|
|
if( !ok )
|
|
return false;
|
|
}
|
|
|
|
data[nbSeg] = end;
|
|
return true;
|
|
}
|