smesh/src/StdMeshers/StdMeshers_Regular_1D.cxx
2020-04-15 18:19:44 +03:00

1424 lines
48 KiB
C++

// Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_Regular_1D.cxx
// Moved here from SMESH_Regular_1D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
//
#include "StdMeshers_Regular_1D.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "StdMeshers_Adaptive1D.hxx"
#include "StdMeshers_Arithmetic1D.hxx"
#include "StdMeshers_AutomaticLength.hxx"
#include "StdMeshers_Geometric1D.hxx"
#include "StdMeshers_Deflection1D.hxx"
#include "StdMeshers_Distribution.hxx"
#include "StdMeshers_FixedPoints1D.hxx"
#include "StdMeshers_LocalLength.hxx"
#include "StdMeshers_MaxLength.hxx"
#include "StdMeshers_NumberOfSegments.hxx"
#include "StdMeshers_Propagation.hxx"
#include "StdMeshers_SegmentLengthAroundVertex.hxx"
#include "StdMeshers_StartEndLength.hxx"
#include <Utils_SALOME_Exception.hxx>
#include <utilities.h>
#include <BRepAdaptor_Curve.hxx>
#include <BRep_Tool.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GCPnts_UniformAbscissa.hxx>
#include <GCPnts_UniformDeflection.hxx>
#include <Precision.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Vertex.hxx>
#include <string>
#include <limits>
using namespace std;
using namespace StdMeshers;
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId,
SMESH_Gen * gen)
:SMESH_1D_Algo( hypId, gen )
{
_name = "Regular_1D";
_shapeType = (1 << TopAbs_EDGE);
_fpHyp = 0;
_compatibleHypothesis.push_back("LocalLength");
_compatibleHypothesis.push_back("MaxLength");
_compatibleHypothesis.push_back("NumberOfSegments");
_compatibleHypothesis.push_back("StartEndLength");
_compatibleHypothesis.push_back("Deflection1D");
_compatibleHypothesis.push_back("Arithmetic1D");
_compatibleHypothesis.push_back("GeometricProgression");
_compatibleHypothesis.push_back("FixedPoints1D");
_compatibleHypothesis.push_back("AutomaticLength");
_compatibleHypothesis.push_back("Adaptive1D");
// auxiliary:
_compatibleHypothesis.push_back("QuadraticMesh");
_compatibleHypothesis.push_back("Propagation");
_compatibleHypothesis.push_back("PropagOfDistribution");
}
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Regular_1D::~StdMeshers_Regular_1D()
{
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Regular_1D::CheckHypothesis( SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
Hypothesis_Status& aStatus )
{
_hypType = NONE;
_quadraticMesh = false;
_onlyUnaryInput = true;
// check propagation in a redefined GetUsedHypothesis()
const list <const SMESHDS_Hypothesis * > & hyps =
GetUsedHypothesis(aMesh, aShape, /*ignoreAuxiliaryHyps=*/false);
const SMESH_HypoFilter & propagFilter = StdMeshers_Propagation::GetFilter();
// find non-auxiliary hypothesis
const SMESHDS_Hypothesis *theHyp = 0;
set< string > propagTypes;
list <const SMESHDS_Hypothesis * >::const_iterator h = hyps.begin();
for ( ; h != hyps.end(); ++h ) {
if ( static_cast<const SMESH_Hypothesis*>(*h)->IsAuxiliary() ) {
if ( strcmp( "QuadraticMesh", (*h)->GetName() ) == 0 )
_quadraticMesh = true;
if ( propagFilter.IsOk( static_cast< const SMESH_Hypothesis*>( *h ), aShape ))
propagTypes.insert( (*h)->GetName() );
}
else {
if ( !theHyp )
theHyp = *h; // use only the first non-auxiliary hypothesis
}
}
if ( !theHyp )
{
aStatus = SMESH_Hypothesis::HYP_MISSING;
return false; // can't work without a hypothesis
}
string hypName = theHyp->GetName();
if ( !_mainEdge.IsNull() && _hypType == DISTRIB_PROPAGATION )
{
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "LocalLength" )
{
const StdMeshers_LocalLength * hyp =
dynamic_cast <const StdMeshers_LocalLength * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = hyp->GetLength();
_value[ PRECISION_IND ] = hyp->GetPrecision();
ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
_hypType = LOCAL_LENGTH;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "MaxLength" )
{
const StdMeshers_MaxLength * hyp =
dynamic_cast <const StdMeshers_MaxLength * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = hyp->GetLength();
if ( hyp->GetUsePreestimatedLength() ) {
if ( int nbSeg = aMesh.GetGen()->GetBoundaryBoxSegmentation() )
_value[ BEG_LENGTH_IND ] = aMesh.GetShapeDiagonalSize() / nbSeg;
}
ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
_hypType = MAX_LENGTH;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "NumberOfSegments" )
{
const StdMeshers_NumberOfSegments * hyp =
dynamic_cast <const StdMeshers_NumberOfSegments * >(theHyp);
ASSERT(hyp);
_ivalue[ NB_SEGMENTS_IND ] = hyp->GetNumberOfSegments();
ASSERT( _ivalue[ NB_SEGMENTS_IND ] > 0 );
_ivalue[ DISTR_TYPE_IND ] = (int) hyp->GetDistrType();
switch (_ivalue[ DISTR_TYPE_IND ])
{
case StdMeshers_NumberOfSegments::DT_Scale:
_value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor();
_revEdgesIDs = hyp->GetReversedEdges();
break;
case StdMeshers_NumberOfSegments::DT_TabFunc:
_vvalue[ TAB_FUNC_IND ] = hyp->GetTableFunction();
_revEdgesIDs = hyp->GetReversedEdges();
break;
case StdMeshers_NumberOfSegments::DT_ExprFunc:
_svalue[ EXPR_FUNC_IND ] = hyp->GetExpressionFunction();
_revEdgesIDs = hyp->GetReversedEdges();
break;
case StdMeshers_NumberOfSegments::DT_Regular:
break;
default:
ASSERT(0);
break;
}
if (_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_TabFunc ||
_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_ExprFunc)
_ivalue[ CONV_MODE_IND ] = hyp->ConversionMode();
_hypType = NB_SEGMENTS;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "Arithmetic1D" )
{
const StdMeshers_Arithmetic1D * hyp =
dynamic_cast <const StdMeshers_Arithmetic1D * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
_value[ END_LENGTH_IND ] = hyp->GetLength( false );
ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
_hypType = ARITHMETIC_1D;
_revEdgesIDs = hyp->GetReversedEdges();
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "GeometricProgression" )
{
const StdMeshers_Geometric1D * hyp =
dynamic_cast <const StdMeshers_Geometric1D * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = hyp->GetStartLength();
_value[ END_LENGTH_IND ] = hyp->GetCommonRatio();
ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
_hypType = GEOMETRIC_1D;
_revEdgesIDs = hyp->GetReversedEdges();
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "FixedPoints1D" ) {
_fpHyp = dynamic_cast <const StdMeshers_FixedPoints1D*>(theHyp);
ASSERT(_fpHyp);
_hypType = FIXED_POINTS_1D;
_revEdgesIDs = _fpHyp->GetReversedEdges();
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "StartEndLength" )
{
const StdMeshers_StartEndLength * hyp =
dynamic_cast <const StdMeshers_StartEndLength * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
_value[ END_LENGTH_IND ] = hyp->GetLength( false );
ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
_hypType = BEG_END_LENGTH;
_revEdgesIDs = hyp->GetReversedEdges();
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "Deflection1D" )
{
const StdMeshers_Deflection1D * hyp =
dynamic_cast <const StdMeshers_Deflection1D * >(theHyp);
ASSERT(hyp);
_value[ DEFLECTION_IND ] = hyp->GetDeflection();
ASSERT( _value[ DEFLECTION_IND ] > 0 );
_hypType = DEFLECTION;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "AutomaticLength" )
{
StdMeshers_AutomaticLength * hyp = const_cast<StdMeshers_AutomaticLength *>
(dynamic_cast <const StdMeshers_AutomaticLength * >(theHyp));
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape );
ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
_hypType = MAX_LENGTH;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if ( hypName == "Adaptive1D" )
{
_adaptiveHyp = dynamic_cast < const StdMeshers_Adaptive1D* >(theHyp);
ASSERT(_adaptiveHyp);
_hypType = ADAPTIVE;
_onlyUnaryInput = false;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else
{
aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE;
}
if ( propagTypes.size() > 1 && aStatus == HYP_OK )
{
// detect concurrent Propagation hyps
_usedHypList.clear();
list< TopoDS_Shape > assignedTo;
if ( aMesh.GetHypotheses( aShape, propagFilter, _usedHypList, true, &assignedTo ) > 1 )
{
// find most simple shape and a hyp on it
int simpleShape = TopAbs_COMPOUND;
const SMESHDS_Hypothesis* localHyp = 0;
list< TopoDS_Shape >::iterator shape = assignedTo.begin();
list< const SMESHDS_Hypothesis *>::iterator hyp = _usedHypList.begin();
for ( ; shape != assignedTo.end(); ++shape )
if ( shape->ShapeType() > simpleShape )
{
simpleShape = shape->ShapeType();
localHyp = (*hyp);
}
// check if there a different hyp on simpleShape
shape = assignedTo.begin();
hyp = _usedHypList.begin();
for ( ; hyp != _usedHypList.end(); ++hyp, ++shape )
if ( shape->ShapeType() == simpleShape &&
!localHyp->IsSameName( **hyp ))
{
aStatus = HYP_INCOMPAT_HYPS;
return error( SMESH_Comment("Hypotheses of both \"")
<< StdMeshers_Propagation::GetName() << "\" and \""
<< StdMeshers_PropagOfDistribution::GetName()
<< "\" types can't be applied to the same edge");
}
}
}
return ( aStatus == SMESH_Hypothesis::HYP_OK );
}
static bool computeParamByFunc(Adaptor3d_Curve& C3d,
double first, double last, double length,
bool theReverse, int nbSeg, Function& func,
list<double>& theParams)
{
// never do this way
//OSD::SetSignal( true );
if ( nbSeg <= 0 )
return false;
int nbPnt = 1 + nbSeg;
vector<double> x( nbPnt, 0. );
const double eps = Min( 1E-4, 1./nbSeg/100. );
if ( !buildDistribution( func, 0.0, 1.0, nbSeg, x, eps ))
return false;
// apply parameters in range [0,1] to the space of the curve
double prevU = first;
double sign = 1.;
if ( theReverse )
{
prevU = last;
sign = -1.;
}
for ( int i = 1; i < nbSeg; i++ )
{
double curvLength = length * (x[i] - x[i-1]) * sign;
double tol = Min( Precision::Confusion(), curvLength / 100. );
GCPnts_AbscissaPoint Discret( tol, C3d, curvLength, prevU );
if ( !Discret.IsDone() )
return false;
double U = Discret.Parameter();
if ( U > first && U < last )
theParams.push_back( U );
else
return false;
prevU = U;
}
if ( theReverse )
theParams.reverse();
return true;
}
//================================================================================
/*!
* \brief adjust internal node parameters so that the last segment length == an
* \param a1 - the first segment length
* \param an - the last segment length
* \param U1 - the first edge parameter
* \param Un - the last edge parameter
* \param length - the edge length
* \param C3d - the edge curve
* \param theParams - internal node parameters to adjust
* \param adjustNeighbors2an - to adjust length of segments next to the last one
* and not to remove parameters
*/
//================================================================================
static void compensateError(double a1, double an,
double U1, double Un,
double length,
Adaptor3d_Curve& C3d,
list<double> & theParams,
bool adjustNeighbors2an = false)
{
int i, nPar = theParams.size();
if ( a1 + an <= length && nPar > 1 )
{
bool reverse = ( U1 > Un );
double tol = Min( Precision::Confusion(), 0.01 * an );
GCPnts_AbscissaPoint Discret( tol, C3d, reverse ? an : -an, Un );
if ( !Discret.IsDone() )
return;
double Utgt = Discret.Parameter(); // target value of the last parameter
list<double>::reverse_iterator itU = theParams.rbegin();
double Ul = *itU++; // real value of the last parameter
double dUn = Utgt - Ul; // parametric error of <an>
double dU = Abs( Ul - *itU ); // parametric length of the last but one segment
if ( Abs(dUn) <= 1e-3 * dU )
return;
if ( adjustNeighbors2an || Abs(dUn) < 0.5 * dU ) { // last segment is a bit shorter than it should
// move the last parameter to the edge beginning
}
else { // last segment is much shorter than it should -> remove the last param and
theParams.pop_back(); nPar--; // move the rest points toward the edge end
dUn = Utgt - theParams.back();
}
if ( !adjustNeighbors2an )
{
double q = dUn / ( Utgt - Un ); // (signed) factor of segment length change
for ( itU = theParams.rbegin(), i = 1; i < nPar; i++ ) {
double prevU = *itU;
(*itU) += dUn;
++itU;
dUn = q * (*itU - prevU) * (prevU-U1)/(Un-U1);
}
}
else if ( nPar == 1 )
{
theParams.back() += dUn;
}
else
{
double q = dUn / ( nPar - 1 );
theParams.back() += dUn;
double sign = reverse ? -1 : 1;
double prevU = theParams.back();
itU = theParams.rbegin();
for ( ++itU, i = 2; i < nPar; ++itU, i++ ) {
double newU = *itU + dUn;
if ( newU*sign < prevU*sign ) {
prevU = *itU = newU;
dUn -= q;
}
else { // set U between prevU and next valid param
list<double>::reverse_iterator itU2 = itU;
++itU2;
int nb = 2;
while ( (*itU2)*sign > prevU*sign ) {
++itU2; ++nb;
}
dU = ( *itU2 - prevU ) / nb;
while ( itU != itU2 ) {
*itU += dU; ++itU;
}
break;
}
}
}
}
}
//================================================================================
/*!
* \brief Class used to clean mesh on edges when 0D hyp modified.
* Common approach doesn't work when 0D algo is missing because the 0D hyp is
* considered as not participating in computation whereas it is used by 1D algo.
*/
//================================================================================
// struct VertexEventListener : public SMESH_subMeshEventListener
// {
// VertexEventListener():SMESH_subMeshEventListener(0) // won't be deleted by submesh
// {}
// /*!
// * \brief Clean mesh on edges
// * \param event - algo_event or compute_event itself (of SMESH_subMesh)
// * \param eventType - ALGO_EVENT or COMPUTE_EVENT (of SMESH_subMesh)
// * \param subMesh - the submesh where the event occurs
// */
// void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh,
// EventListenerData*, const SMESH_Hypothesis*)
// {
// if ( eventType == SMESH_subMesh::ALGO_EVENT) // all algo events
// {
// subMesh->ComputeStateEngine( SMESH_subMesh::MODIF_ALGO_STATE );
// }
// }
// }; // struct VertexEventListener
//=============================================================================
/*!
* \brief Sets event listener to vertex submeshes
* \param subMesh - submesh where algo is set
*
* This method is called when a submesh gets HYP_OK algo_state.
* After being set, event listener is notified on each event of a submesh.
*/
//=============================================================================
void StdMeshers_Regular_1D::SetEventListener(SMESH_subMesh* subMesh)
{
StdMeshers_Propagation::SetPropagationMgr( subMesh );
}
//=============================================================================
/*!
* \brief Do nothing
* \param subMesh - restored submesh
*
* This method is called only if a submesh has HYP_OK algo_state.
*/
//=============================================================================
void StdMeshers_Regular_1D::SubmeshRestored(SMESH_subMesh* subMesh)
{
}
//=============================================================================
/*!
* \brief Return StdMeshers_SegmentLengthAroundVertex assigned to vertex
*/
//=============================================================================
const StdMeshers_SegmentLengthAroundVertex*
StdMeshers_Regular_1D::getVertexHyp(SMESH_Mesh & theMesh,
const TopoDS_Vertex & theV)
{
static SMESH_HypoFilter filter( SMESH_HypoFilter::HasName("SegmentAroundVertex_0D"));
if ( const SMESH_Hypothesis * h = theMesh.GetHypothesis( theV, filter, true ))
{
SMESH_Algo* algo = const_cast< SMESH_Algo* >( static_cast< const SMESH_Algo* > ( h ));
const list <const SMESHDS_Hypothesis *> & hypList = algo->GetUsedHypothesis( theMesh, theV, 0 );
if ( !hypList.empty() && string("SegmentLengthAroundVertex") == hypList.front()->GetName() )
return static_cast<const StdMeshers_SegmentLengthAroundVertex*>( hypList.front() );
}
return 0;
}
//================================================================================
/*!
* \brief Tune parameters to fit "SegmentLengthAroundVertex" hypothesis
* \param theC3d - wire curve
* \param theLength - curve length
* \param theParameters - internal nodes parameters to modify
* \param theVf - 1st vertex
* \param theVl - 2nd vertex
*/
//================================================================================
void StdMeshers_Regular_1D::redistributeNearVertices (SMESH_Mesh & theMesh,
Adaptor3d_Curve & theC3d,
double theLength,
std::list< double > & theParameters,
const TopoDS_Vertex & theVf,
const TopoDS_Vertex & theVl)
{
double f = theC3d.FirstParameter(), l = theC3d.LastParameter();
int nPar = theParameters.size();
for ( int isEnd1 = 0; isEnd1 < 2; ++isEnd1 )
{
const TopoDS_Vertex & V = isEnd1 ? theVf : theVl;
const StdMeshers_SegmentLengthAroundVertex* hyp = getVertexHyp (theMesh, V );
if ( hyp ) {
double vertexLength = hyp->GetLength();
if ( vertexLength > theLength / 2.0 )
continue;
if ( isEnd1 ) { // to have a segment of interest at end of theParameters
theParameters.reverse();
std::swap( f, l );
}
if ( _hypType == NB_SEGMENTS )
{
compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true );
}
else if ( nPar <= 3 )
{
if ( !isEnd1 )
vertexLength = -vertexLength;
double tol = Min( Precision::Confusion(), 0.01 * vertexLength );
GCPnts_AbscissaPoint Discret( tol, theC3d, vertexLength, l );
if ( Discret.IsDone() ) {
if ( nPar == 0 )
theParameters.push_back( Discret.Parameter());
else {
double L = GCPnts_AbscissaPoint::Length( theC3d, theParameters.back(), l);
if ( vertexLength < L / 2.0 )
theParameters.push_back( Discret.Parameter());
else
compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true );
}
}
}
else
{
// recompute params between the last segment and a middle one.
// find size of a middle segment
int nHalf = ( nPar-1 ) / 2;
list< double >::reverse_iterator itU = theParameters.rbegin();
std::advance( itU, nHalf );
double Um = *itU++;
double Lm = GCPnts_AbscissaPoint::Length( theC3d, Um, *itU);
double L = GCPnts_AbscissaPoint::Length( theC3d, *itU, l);
static StdMeshers_Regular_1D* auxAlgo = 0;
if ( !auxAlgo ) {
auxAlgo = new StdMeshers_Regular_1D( _gen->GetANewId(), _gen );
auxAlgo->_hypType = BEG_END_LENGTH;
}
auxAlgo->_value[ BEG_LENGTH_IND ] = Lm;
auxAlgo->_value[ END_LENGTH_IND ] = vertexLength;
double from = *itU, to = l;
if ( isEnd1 ) {
std::swap( from, to );
std::swap( auxAlgo->_value[ BEG_LENGTH_IND ], auxAlgo->_value[ END_LENGTH_IND ]);
}
list<double> params;
if ( auxAlgo->computeInternalParameters( theMesh, theC3d, L, from, to, params, false ))
{
if ( isEnd1 ) params.reverse();
while ( 1 + nHalf-- )
theParameters.pop_back();
theParameters.splice( theParameters.end(), params );
}
else
{
compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true );
}
}
if ( isEnd1 )
theParameters.reverse();
}
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh,
Adaptor3d_Curve& theC3d,
double theLength,
double theFirstU,
double theLastU,
list<double> & theParams,
const bool theReverse,
bool theConsiderPropagation)
{
theParams.clear();
double f = theFirstU, l = theLastU;
// Propagation Of Distribution
//
if ( !_mainEdge.IsNull() && _hypType == DISTRIB_PROPAGATION )
{
TopoDS_Edge mainEdge = TopoDS::Edge( _mainEdge ); // should not be a reference!
_gen->Compute( theMesh, mainEdge, SMESH_Gen::SHAPE_ONLY_UPWARD );
SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( mainEdge );
if ( !smDS )
return error("No mesh on the source edge of Propagation Of Distribution");
if ( smDS->NbNodes() < 1 )
return true; // 1 segment
map< double, const SMDS_MeshNode* > mainEdgeParamsOfNodes;
if ( ! SMESH_Algo::GetSortedNodesOnEdge( theMesh.GetMeshDS(), mainEdge, _quadraticMesh,
mainEdgeParamsOfNodes, SMDSAbs_Edge ))
return error("Bad node parameters on the source edge of Propagation Of Distribution");
vector< double > segLen( mainEdgeParamsOfNodes.size() - 1 );
double totalLen = 0;
BRepAdaptor_Curve mainEdgeCurve( mainEdge );
map< double, const SMDS_MeshNode* >::iterator
u_n2 = mainEdgeParamsOfNodes.begin(), u_n1 = u_n2++;
for ( size_t i = 1; i < mainEdgeParamsOfNodes.size(); ++i, ++u_n1, ++u_n2 )
{
segLen[ i-1 ] = GCPnts_AbscissaPoint::Length( mainEdgeCurve,
u_n1->first,
u_n2->first);
totalLen += segLen[ i-1 ];
}
for ( size_t i = 0; i < segLen.size(); ++i )
segLen[ i ] *= theLength / totalLen;
size_t iSeg = theReverse ? segLen.size()-1 : 0;
size_t dSeg = theReverse ? -1 : +1;
double param = theFirstU;
size_t nbParams = 0;
for ( int i = 0, nb = segLen.size()-1; i < nb; ++i, iSeg += dSeg )
{
double tol = Min( Precision::Confusion(), 0.01 * segLen[ iSeg ]);
GCPnts_AbscissaPoint Discret( tol, theC3d, segLen[ iSeg ], param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
theParams.push_back( param );
++nbParams;
}
if ( nbParams != segLen.size()-1 )
return error( SMESH_Comment("Can't divide into ") << segLen.size() << " segments");
compensateError( segLen[ theReverse ? segLen.size()-1 : 0 ],
segLen[ theReverse ? 0 : segLen.size()-1 ],
f, l, theLength, theC3d, theParams, true );
return true;
}
switch( _hypType )
{
case LOCAL_LENGTH:
case MAX_LENGTH:
case NB_SEGMENTS:
{
double eltSize = 1;
int nbSegments;
if ( _hypType == MAX_LENGTH )
{
double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup
if (nbseg <= 0)
nbseg = 1; // degenerated edge
eltSize = theLength / nbseg * ( 1. - 1e-9 );
nbSegments = (int) nbseg;
}
else if ( _hypType == LOCAL_LENGTH )
{
// Local Length hypothesis
double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup
// NPAL17873:
bool isFound = false;
if (theConsiderPropagation && !_mainEdge.IsNull()) // propagated from some other edge
{
// Advanced processing to assure equal number of segments in case of Propagation
SMESH_subMesh* sm = theMesh.GetSubMeshContaining(_mainEdge);
if (sm) {
bool computed = sm->IsMeshComputed();
if (!computed) {
if (sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) {
_gen->Compute( theMesh, _mainEdge, /*anUpward=*/true);
computed = sm->IsMeshComputed();
}
}
if (computed) {
SMESHDS_SubMesh* smds = sm->GetSubMeshDS();
int nb_segments = smds->NbElements();
if (nbseg - 1 <= nb_segments && nb_segments <= nbseg + 1) {
isFound = true;
nbseg = nb_segments;
}
}
}
}
if (!isFound) // not found by meshed edge in the propagation chain, use precision
{
double aPrecision = _value[ PRECISION_IND ];
double nbseg_prec = ceil((theLength / _value[ BEG_LENGTH_IND ]) - aPrecision);
if (nbseg_prec == (nbseg - 1)) nbseg--;
}
if (nbseg <= 0)
nbseg = 1; // degenerated edge
eltSize = theLength / nbseg;
nbSegments = (int) nbseg;
}
else
{
// Number Of Segments hypothesis
nbSegments = _ivalue[ NB_SEGMENTS_IND ];
if ( nbSegments < 1 ) return false;
if ( nbSegments == 1 ) return true;
switch (_ivalue[ DISTR_TYPE_IND ])
{
case StdMeshers_NumberOfSegments::DT_Scale:
{
double scale = _value[ SCALE_FACTOR_IND ];
if (fabs(scale - 1.0) < Precision::Confusion()) {
// special case to avoid division by zero
for (int i = 1; i < nbSegments; i++) {
double param = f + (l - f) * i / nbSegments;
theParams.push_back( param );
}
} else {
// general case of scale distribution
if ( theReverse )
scale = 1.0 / scale;
double alpha = pow(scale, 1.0 / (nbSegments - 1));
double factor = (l - f) / (1.0 - pow(alpha, nbSegments));
for (int i = 1; i < nbSegments; i++) {
double param = f + factor * (1.0 - pow(alpha, i));
theParams.push_back( param );
}
}
const double lenFactor = theLength/(l-f);
const double minSegLen = Min( theParams.front() - f, l - theParams.back() );
const double tol = Min( Precision::Confusion(), 0.01 * minSegLen );
list<double>::iterator u = theParams.begin(), uEnd = theParams.end();
for ( ; u != uEnd; ++u )
{
GCPnts_AbscissaPoint Discret( tol, theC3d, ((*u)-f) * lenFactor, f );
if ( Discret.IsDone() )
*u = Discret.Parameter();
}
return true;
}
break;
case StdMeshers_NumberOfSegments::DT_TabFunc:
{
FunctionTable func(_vvalue[ TAB_FUNC_IND ], _ivalue[ CONV_MODE_IND ]);
return computeParamByFunc(theC3d, f, l, theLength, theReverse,
_ivalue[ NB_SEGMENTS_IND ], func,
theParams);
}
break;
case StdMeshers_NumberOfSegments::DT_ExprFunc:
{
FunctionExpr func(_svalue[ EXPR_FUNC_IND ].c_str(), _ivalue[ CONV_MODE_IND ]);
return computeParamByFunc(theC3d, f, l, theLength, theReverse,
_ivalue[ NB_SEGMENTS_IND ], func,
theParams);
}
break;
case StdMeshers_NumberOfSegments::DT_Regular:
eltSize = theLength / nbSegments;
break;
default:
return false;
}
}
double tol = Min( Precision::Confusion(), 0.01 * eltSize );
GCPnts_UniformAbscissa Discret(theC3d, nbSegments + 1, f, l, tol );
if ( !Discret.IsDone() )
return error( "GCPnts_UniformAbscissa failed");
if ( Discret.NbPoints() < nbSegments + 1 )
Discret.Initialize(theC3d, nbSegments + 2, f, l, tol );
int NbPoints = Min( Discret.NbPoints(), nbSegments + 1 );
for ( int i = 2; i < NbPoints; i++ ) // skip 1st and last points
{
double param = Discret.Parameter(i);
theParams.push_back( param );
}
compensateError( eltSize, eltSize, f, l, theLength, theC3d, theParams, true ); // for PAL9899
return true;
}
case BEG_END_LENGTH: {
// geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = theLength
double a1 = _value[ BEG_LENGTH_IND ];
double an = _value[ END_LENGTH_IND ];
double q = ( theLength - a1 ) / ( theLength - an );
if ( q < theLength/1e6 || 1.01*theLength < a1 + an)
return error ( SMESH_Comment("Invalid segment lengths (")<<a1<<" and "<<an<<") "<<
"for an edge of length "<<theLength);
double U1 = theReverse ? l : f;
double Un = theReverse ? f : l;
double param = U1;
double eltSize = theReverse ? -a1 : a1;
double tol = Min( Precision::Confusion(), 0.01 * Min( a1, an ));
while ( 1 ) {
// computes a point on a curve <theC3d> at the distance <eltSize>
// from the point of parameter <param>.
GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( f < param && param < l )
theParams.push_back( param );
else
break;
eltSize *= q;
}
compensateError( a1, an, U1, Un, theLength, theC3d, theParams );
if (theReverse) theParams.reverse(); // NPAL18025
return true;
}
case ARITHMETIC_1D:
{
// arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = theLength
double a1 = _value[ BEG_LENGTH_IND ];
double an = _value[ END_LENGTH_IND ];
if ( 1.01*theLength < a1 + an )
return error ( SMESH_Comment("Invalid segment lengths (")<<a1<<" and "<<an<<") "<<
"for an edge of length "<<theLength);
double q = ( an - a1 ) / ( 2 *theLength/( a1 + an ) - 1 );
int n = int(fabs(q) > numeric_limits<double>::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 ));
double U1 = theReverse ? l : f;
double Un = theReverse ? f : l;
double param = U1;
double eltSize = a1;
double tol = Min( Precision::Confusion(), 0.01 * Min( a1, an ));
if ( theReverse ) {
eltSize = -eltSize;
q = -q;
}
while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) {
// computes a point on a curve <theC3d> at the distance <eltSize>
// from the point of parameter <param>.
GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( param > f && param < l )
theParams.push_back( param );
else
break;
eltSize += q;
}
compensateError( a1, an, U1, Un, theLength, theC3d, theParams );
if ( theReverse ) theParams.reverse(); // NPAL18025
return true;
}
case GEOMETRIC_1D:
{
double a1 = _value[ BEG_LENGTH_IND ], an = 0;
double q = _value[ END_LENGTH_IND ];
double U1 = theReverse ? l : f;
double Un = theReverse ? f : l;
double param = U1;
double eltSize = a1;
if ( theReverse )
eltSize = -eltSize;
int nbParams = 0;
while ( true ) {
// computes a point on a curve <theC3d> at the distance <eltSize>
// from the point of parameter <param>.
double tol = Min( Precision::Confusion(), 0.01 * eltSize );
GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( f < param && param < l )
theParams.push_back( param );
else
break;
an = eltSize;
eltSize *= q;
++nbParams;
if ( q < 1. && eltSize < 1e-100 )
return error("Too small common ratio causes too many segments");
}
if ( nbParams > 1 )
{
if ( Abs( param - Un ) < 0.2 * Abs( param - theParams.back() ))
{
compensateError( a1, Abs(eltSize), U1, Un, theLength, theC3d, theParams );
}
else if ( Abs( Un - theParams.back() ) <
0.2 * Abs( theParams.back() - *(++theParams.rbegin())))
{
theParams.pop_back();
compensateError( a1, Abs(an), U1, Un, theLength, theC3d, theParams );
}
}
if (theReverse) theParams.reverse(); // NPAL18025
return true;
}
case FIXED_POINTS_1D:
{
const std::vector<double>& aPnts = _fpHyp->GetPoints();
std::vector<int> nbsegs = _fpHyp->GetNbSegments();
// sort normalized params, taking into account theReverse
TColStd_SequenceOfReal Params;
double tol = 1e-7 / theLength; // GCPnts_UniformAbscissa allows u2-u1 > 1e-7
for ( size_t i = 0; i < aPnts.size(); i++ )
{
if( aPnts[i] < tol || aPnts[i] > 1 - tol )
continue;
double u = theReverse ? ( 1 - aPnts[i] ) : aPnts[i];
int j = 1;
bool IsExist = false;
for ( ; j <= Params.Length(); j++ ) {
if ( Abs( u - Params.Value(j) ) < tol ) {
IsExist = true;
break;
}
if ( u < Params.Value(j) ) break;
}
if ( !IsExist ) Params.InsertBefore( j, u );
}
// transform normalized Params into real ones
std::vector< double > uVec( Params.Length() + 2 );
uVec[ 0 ] = theFirstU;
double abscissa;
for ( int i = 1; i <= Params.Length(); i++ )
{
abscissa = Params( i ) * theLength;
tol = Min( Precision::Confusion(), 0.01 * abscissa );
GCPnts_AbscissaPoint APnt( tol, theC3d, abscissa, theFirstU );
if ( !APnt.IsDone() )
return error( "GCPnts_AbscissaPoint failed");
uVec[ i ] = APnt.Parameter();
}
uVec.back() = theLastU;
// divide segments
if ( theReverse )
{
if ((int) nbsegs.size() > Params.Length() + 1 )
nbsegs.resize( Params.Length() + 1 );
std::reverse( nbsegs.begin(), nbsegs.end() );
}
if ( nbsegs.empty() )
{
nbsegs.push_back( 1 );
}
Params.InsertBefore( 1, 0.0 );
Params.Append( 1.0 );
double eltSize, segmentSize, par1, par2;
for ( size_t i = 0; i < uVec.size()-1; i++ )
{
par1 = uVec[ i ];
par2 = uVec[ i+1 ];
int nbseg = ( i < nbsegs.size() ) ? nbsegs[i] : nbsegs[0];
if ( nbseg == 1 )
{
theParams.push_back( par2 );
}
else
{
segmentSize = ( Params( i+2 ) - Params( i+1 )) * theLength;
eltSize = segmentSize / nbseg;
tol = Min( Precision::Confusion(), 0.01 * eltSize );
GCPnts_UniformAbscissa Discret( theC3d, eltSize, par1, par2, tol );
if ( !Discret.IsDone() )
return error( "GCPnts_UniformAbscissa failed");
if ( Discret.NbPoints() < nbseg + 1 ) {
eltSize = segmentSize / ( nbseg + 0.5 );
Discret.Initialize( theC3d, eltSize, par1, par2, tol );
}
int NbPoints = Discret.NbPoints();
for ( int i = 2; i <= NbPoints; i++ ) {
double param = Discret.Parameter(i);
theParams.push_back( param );
}
}
}
theParams.pop_back();
return true;
}
case DEFLECTION:
{
GCPnts_UniformDeflection Discret( theC3d, _value[ DEFLECTION_IND ], f, l, true );
if ( !Discret.IsDone() )
return false;
int NbPoints = Discret.NbPoints();
for ( int i = 2; i < NbPoints; i++ )
{
double param = Discret.Parameter(i);
theParams.push_back( param );
}
return true;
}
default:;
}
return false;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & theMesh, const TopoDS_Shape & theShape)
{
if ( _hypType == NONE )
return false;
if ( _hypType == ADAPTIVE )
{
_adaptiveHyp->GetAlgo()->InitComputeError();
_adaptiveHyp->GetAlgo()->Compute( theMesh, theShape );
return error( _adaptiveHyp->GetAlgo()->GetComputeError() );
}
SMESHDS_Mesh * meshDS = theMesh.GetMeshDS();
const TopoDS_Edge & EE = TopoDS::Edge(theShape);
TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD));
int shapeID = meshDS->ShapeToIndex( E );
double f, l;
Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l);
TopoDS_Vertex VFirst, VLast;
TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l
ASSERT(!VFirst.IsNull());
ASSERT(!VLast.IsNull());
const SMDS_MeshNode * nFirst = SMESH_Algo::VertexNode( VFirst, meshDS );
const SMDS_MeshNode * nLast = SMESH_Algo::VertexNode( VLast, meshDS );
if ( !nFirst || !nLast )
return error( COMPERR_BAD_INPUT_MESH, "No node on vertex");
// remove elements created by e.g. pattern mapping (PAL21999)
// CLEAN event is incorrectly ptopagated seemingly due to Propagation hyp
// so TEMPORARY solution is to clean the submesh manually
if (SMESHDS_SubMesh * subMeshDS = meshDS->MeshElements(theShape))
{
SMDS_ElemIteratorPtr ite = subMeshDS->GetElements();
while (ite->more())
meshDS->RemoveFreeElement(ite->next(), subMeshDS);
SMDS_NodeIteratorPtr itn = subMeshDS->GetNodes();
while (itn->more()) {
const SMDS_MeshNode * node = itn->next();
if ( node->NbInverseElements() == 0 )
meshDS->RemoveFreeNode(node, subMeshDS);
else
meshDS->RemoveNode(node);
}
}
double length = EdgeLength( E );
if ( !Curve.IsNull() && length > 0 )
{
list< double > params;
bool reversed = false;
if ( theMesh.GetShapeToMesh().ShapeType() >= TopAbs_WIRE && _revEdgesIDs.empty() ) {
// if the shape to mesh is WIRE or EDGE
reversed = ( EE.Orientation() == TopAbs_REVERSED );
}
if ( !_mainEdge.IsNull() ) {
// take into account reversing the edge the hypothesis is propagated from
// (_mainEdge.Orientation() marks mutual orientation of EDGEs in propagation chain)
reversed = ( _mainEdge.Orientation() == TopAbs_REVERSED );
if ( _hypType != DISTRIB_PROPAGATION ) {
int mainID = meshDS->ShapeToIndex(_mainEdge);
if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), mainID) != _revEdgesIDs.end())
reversed = !reversed;
}
}
// take into account this edge reversing
if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), shapeID) != _revEdgesIDs.end())
reversed = !reversed;
BRepAdaptor_Curve C3d( E );
if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, reversed, true )) {
return false;
}
redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast );
// edge extrema (indexes : 1 & NbPoints) already in SMDS (TopoDS_Vertex)
// only internal nodes receive an edge position with param on curve
const SMDS_MeshNode * nPrev = nFirst;
double parPrev = f;
double parLast = l;
for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++) {
double param = *itU;
gp_Pnt P = Curve->Value(param);
//Add the Node in the DataStructure
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnEdge(node, shapeID, param);
if(_quadraticMesh) {
// create medium node
double prm = ( parPrev + param )/2;
gp_Pnt PM = Curve->Value(prm);
SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z());
meshDS->SetNodeOnEdge(NM, shapeID, prm);
SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node, NM);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
else {
SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
nPrev = node;
parPrev = param;
}
if(_quadraticMesh) {
double prm = ( parPrev + parLast )/2;
gp_Pnt PM = Curve->Value(prm);
SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z());
meshDS->SetNodeOnEdge(NM, shapeID, prm);
SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, nLast, NM);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
else {
SMDS_MeshEdge* edge = meshDS->AddEdge(nPrev, nLast);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
}
else
{
// Edge is a degenerated Edge : We put n = 5 points on the edge.
const int NbPoints = 5;
BRep_Tool::Range( E, f, l ); // PAL15185
double du = (l - f) / (NbPoints - 1);
gp_Pnt P = BRep_Tool::Pnt(VFirst);
const SMDS_MeshNode * nPrev = nFirst;
for (int i = 2; i < NbPoints; i++) {
double param = f + (i - 1) * du;
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
if(_quadraticMesh) {
// create medium node
double prm = param - du/2.;
SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnEdge(NM, shapeID, prm);
SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node, NM);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
else {
SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
meshDS->SetNodeOnEdge(node, shapeID, param);
nPrev = node;
}
if(_quadraticMesh) {
// create medium node
double prm = l - du/2.;
SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnEdge(NM, shapeID, prm);
SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, nLast, NM);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
else {
SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, nLast);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
}
return true;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Regular_1D::Evaluate(SMESH_Mesh & theMesh,
const TopoDS_Shape & theShape,
MapShapeNbElems& theResMap)
{
if ( _hypType == NONE )
return false;
if ( _hypType == ADAPTIVE )
{
_adaptiveHyp->GetAlgo()->InitComputeError();
_adaptiveHyp->GetAlgo()->Evaluate( theMesh, theShape, theResMap );
return error( _adaptiveHyp->GetAlgo()->GetComputeError() );
}
const TopoDS_Edge & EE = TopoDS::Edge(theShape);
TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD));
double f, l;
Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l);
TopoDS_Vertex VFirst, VLast;
TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l
ASSERT(!VFirst.IsNull());
ASSERT(!VLast.IsNull());
std::vector<int> aVec(SMDSEntity_Last,0);
double length = EdgeLength( E );
if ( !Curve.IsNull() && length > 0 )
{
list< double > params;
BRepAdaptor_Curve C3d( E );
if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, false, true )) {
SMESH_subMesh * sm = theMesh.GetSubMesh(theShape);
theResMap.insert(std::make_pair(sm,aVec));
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast );
if(_quadraticMesh) {
aVec[SMDSEntity_Node ] = 2*params.size() + 1;
aVec[SMDSEntity_Quad_Edge] = params.size() + 1;
}
else {
aVec[SMDSEntity_Node] = params.size();
aVec[SMDSEntity_Edge] = params.size() + 1;
}
}
else {
// Edge is a degenerated Edge : We put n = 5 points on the edge.
if ( _quadraticMesh ) {
aVec[SMDSEntity_Node ] = 11;
aVec[SMDSEntity_Quad_Edge] = 6;
}
else {
aVec[SMDSEntity_Node] = 5;
aVec[SMDSEntity_Edge] = 6;
}
}
SMESH_subMesh * sm = theMesh.GetSubMesh( theShape );
theResMap.insert( std::make_pair( sm, aVec ));
return true;
}
//=============================================================================
/*!
* See comments in SMESH_Algo.cxx
*/
//=============================================================================
const list <const SMESHDS_Hypothesis *> &
StdMeshers_Regular_1D::GetUsedHypothesis(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool ignoreAuxiliary)
{
_usedHypList.clear();
_mainEdge.Nullify();
SMESH_HypoFilter auxiliaryFilter( SMESH_HypoFilter::IsAuxiliary() );
const SMESH_HypoFilter* compatibleFilter = GetCompatibleHypoFilter(/*ignoreAux=*/true );
// get non-auxiliary assigned directly to aShape
int nbHyp = aMesh.GetHypotheses( aShape, *compatibleFilter, _usedHypList, false );
if (nbHyp == 0 && aShape.ShapeType() == TopAbs_EDGE)
{
// Check, if propagated from some other edge
bool isPropagOfDistribution = false;
_mainEdge = StdMeshers_Propagation::GetPropagationSource( aMesh, aShape,
isPropagOfDistribution );
if ( !_mainEdge.IsNull() )
{
if ( isPropagOfDistribution )
_hypType = DISTRIB_PROPAGATION;
// Propagation of 1D hypothesis from <aMainEdge> on this edge;
// get non-auxiliary assigned to _mainEdge
nbHyp = aMesh.GetHypotheses( _mainEdge, *compatibleFilter, _usedHypList, true );
}
}
if (nbHyp == 0) // nothing propagated nor assigned to aShape
{
SMESH_Algo::GetUsedHypothesis( aMesh, aShape, ignoreAuxiliary );
nbHyp = _usedHypList.size();
}
else
{
// get auxiliary hyps from aShape
aMesh.GetHypotheses( aShape, auxiliaryFilter, _usedHypList, true );
}
if ( nbHyp > 1 && ignoreAuxiliary )
_usedHypList.clear(); //only one compatible non-auxiliary hypothesis allowed
return _usedHypList;
}
//================================================================================
/*!
* \brief Pass CancelCompute() to a child algorithm
*/
//================================================================================
void StdMeshers_Regular_1D::CancelCompute()
{
SMESH_Algo::CancelCompute();
if ( _hypType == ADAPTIVE )
_adaptiveHyp->GetAlgo()->CancelCompute();
}