mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2024-12-25 17:00:34 +05:00
2838 lines
106 KiB
C++
2838 lines
106 KiB
C++
// Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
//
|
|
|
|
// File : StdMeshers_ViscousLayers2D.cxx
|
|
// Created : 23 Jul 2012
|
|
// Author : Edward AGAPOV (eap)
|
|
|
|
#include "StdMeshers_ViscousLayers2D.hxx"
|
|
|
|
#include "SMDS_EdgePosition.hxx"
|
|
#include "SMDS_FaceOfNodes.hxx"
|
|
#include "SMDS_FacePosition.hxx"
|
|
#include "SMDS_MeshNode.hxx"
|
|
#include "SMDS_SetIterator.hxx"
|
|
#include "SMESHDS_Group.hxx"
|
|
#include "SMESHDS_Hypothesis.hxx"
|
|
#include "SMESHDS_Mesh.hxx"
|
|
#include "SMESH_Algo.hxx"
|
|
#include "SMESH_ComputeError.hxx"
|
|
#include "SMESH_ControlsDef.hxx"
|
|
#include "SMESH_Gen.hxx"
|
|
#include "SMESH_Group.hxx"
|
|
#include "SMESH_HypoFilter.hxx"
|
|
#include "SMESH_Mesh.hxx"
|
|
#include "SMESH_MeshEditor.hxx"
|
|
#include "SMESH_MesherHelper.hxx"
|
|
#include "SMESH_ProxyMesh.hxx"
|
|
#include "SMESH_Quadtree.hxx"
|
|
#include "SMESH_subMesh.hxx"
|
|
#include "SMESH_subMeshEventListener.hxx"
|
|
#include "StdMeshers_FaceSide.hxx"
|
|
|
|
#include "utilities.h"
|
|
|
|
#include <BRepAdaptor_Curve.hxx>
|
|
#include <BRepAdaptor_Curve2d.hxx>
|
|
#include <BRep_Tool.hxx>
|
|
#include <Bnd_B2d.hxx>
|
|
#include <Bnd_B3d.hxx>
|
|
#include <ElCLib.hxx>
|
|
#include <GCPnts_AbscissaPoint.hxx>
|
|
#include <Geom2dAdaptor_Curve.hxx>
|
|
#include <Geom2dInt_GInter.hxx>
|
|
#include <Geom2d_Circle.hxx>
|
|
#include <Geom2d_Line.hxx>
|
|
#include <Geom2d_TrimmedCurve.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <Geom_Circle.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <IntRes2d_IntersectionPoint.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_ErrorHandler.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TopExp.hxx>
|
|
#include <TopExp_Explorer.hxx>
|
|
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
|
|
#include <TopTools_IndexedMapOfShape.hxx>
|
|
#include <TopTools_ListIteratorOfListOfShape.hxx>
|
|
#include <TopTools_ListOfShape.hxx>
|
|
#include <TopTools_MapOfShape.hxx>
|
|
#include <TopoDS.hxx>
|
|
#include <TopoDS_Edge.hxx>
|
|
#include <TopoDS_Face.hxx>
|
|
#include <TopoDS_Vertex.hxx>
|
|
#include <gp_Ax1.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_XY.hxx>
|
|
|
|
#include <list>
|
|
#include <string>
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#ifdef _DEBUG_
|
|
//#define __myDEBUG
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
//================================================================================
|
|
namespace VISCOUS_2D
|
|
{
|
|
typedef int TGeomID;
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Proxy Mesh of FACE with viscous layers. It's needed only to
|
|
* redefine newSubmesh().
|
|
*/
|
|
struct _ProxyMeshOfFace : public SMESH_ProxyMesh
|
|
{
|
|
//---------------------------------------------------
|
|
// Proxy sub-mesh of an EDGE. It contains nodes in _uvPtStructVec.
|
|
struct _EdgeSubMesh : public SMESH_ProxyMesh::SubMesh
|
|
{
|
|
_EdgeSubMesh(const SMDS_Mesh* mesh, int index=0): SubMesh(mesh,index) {}
|
|
//virtual int NbElements() const { return _elements.size()+1; }
|
|
virtual int NbNodes() const { return Max( 0, _uvPtStructVec.size()-2 ); }
|
|
void SetUVPtStructVec(UVPtStructVec& vec) { _uvPtStructVec.swap( vec ); }
|
|
UVPtStructVec& GetUVPtStructVec() { return _uvPtStructVec; }
|
|
};
|
|
_ProxyMeshOfFace(const SMESH_Mesh& mesh): SMESH_ProxyMesh(mesh) {}
|
|
_EdgeSubMesh* GetEdgeSubMesh(int ID) { return (_EdgeSubMesh*) getProxySubMesh(ID); }
|
|
virtual SubMesh* newSubmesh(int index=0) const { return new _EdgeSubMesh( GetMeshDS(), index); }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief SMESH_subMeshEventListener used to store _ProxyMeshOfFace, computed
|
|
* by _ViscousBuilder2D, in a SMESH_subMesh of the FACE.
|
|
* This is to delete _ProxyMeshOfFace when StdMeshers_ViscousLayers2D
|
|
* hypothesis is modified
|
|
*/
|
|
struct _ProxyMeshHolder : public SMESH_subMeshEventListener
|
|
{
|
|
_ProxyMeshHolder( const TopoDS_Face& face,
|
|
SMESH_ProxyMesh::Ptr& mesh)
|
|
: SMESH_subMeshEventListener( /*deletable=*/true, Name() )
|
|
{
|
|
SMESH_subMesh* faceSM = mesh->GetMesh()->GetSubMesh( face );
|
|
faceSM->SetEventListener( this, new _Data( mesh ), faceSM );
|
|
}
|
|
// Finds a proxy mesh of face
|
|
static SMESH_ProxyMesh::Ptr FindProxyMeshOfFace( const TopoDS_Shape& face,
|
|
SMESH_Mesh& mesh )
|
|
{
|
|
SMESH_ProxyMesh::Ptr proxy;
|
|
SMESH_subMesh* faceSM = mesh.GetSubMesh( face );
|
|
if ( EventListenerData* ld = faceSM->GetEventListenerData( Name() ))
|
|
proxy = static_cast< _Data* >( ld )->_mesh;
|
|
return proxy;
|
|
}
|
|
// Treat events
|
|
void ProcessEvent(const int event,
|
|
const int eventType,
|
|
SMESH_subMesh* subMesh,
|
|
EventListenerData* data,
|
|
const SMESH_Hypothesis* /*hyp*/)
|
|
{
|
|
if ( event == SMESH_subMesh::CLEAN && eventType == SMESH_subMesh::COMPUTE_EVENT)
|
|
((_Data*) data)->_mesh.reset();
|
|
}
|
|
private:
|
|
// holder of a proxy mesh
|
|
struct _Data : public SMESH_subMeshEventListenerData
|
|
{
|
|
SMESH_ProxyMesh::Ptr _mesh;
|
|
_Data( SMESH_ProxyMesh::Ptr& mesh )
|
|
:SMESH_subMeshEventListenerData( /*isDeletable=*/true), _mesh( mesh )
|
|
{}
|
|
};
|
|
// Returns identifier string
|
|
static const char* Name() { return "VISCOUS_2D::_ProxyMeshHolder"; }
|
|
};
|
|
|
|
struct _PolyLine;
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Segment connecting inner ends of two _LayerEdge's.
|
|
*/
|
|
struct _Segment
|
|
{
|
|
const gp_XY* _uv[2]; // pointer to _LayerEdge::_uvIn
|
|
int _indexInLine; // position in _PolyLine
|
|
|
|
_Segment() {}
|
|
_Segment(const gp_XY& p1, const gp_XY& p2):_indexInLine(-1) { _uv[0] = &p1; _uv[1] = &p2; }
|
|
const gp_XY& p1() const { return *_uv[0]; }
|
|
const gp_XY& p2() const { return *_uv[1]; }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Tree of _Segment's used for a faster search of _Segment's.
|
|
*/
|
|
struct _SegmentTree : public SMESH_Quadtree
|
|
{
|
|
typedef boost::shared_ptr< _SegmentTree > Ptr;
|
|
|
|
_SegmentTree( const vector< _Segment >& segments );
|
|
void GetSegmentsNear( const _Segment& seg, vector< const _Segment* >& found );
|
|
void GetSegmentsNear( const gp_Ax2d& ray, vector< const _Segment* >& found );
|
|
protected:
|
|
_SegmentTree() {}
|
|
_SegmentTree* newChild() const { return new _SegmentTree; }
|
|
void buildChildrenData();
|
|
Bnd_B2d* buildRootBox();
|
|
private:
|
|
static int maxNbSegInLeaf() { return 5; }
|
|
struct _SegBox
|
|
{
|
|
const _Segment* _seg;
|
|
bool _iMin[2];
|
|
void Set( const _Segment& seg )
|
|
{
|
|
_seg = &seg;
|
|
_iMin[0] = ( seg._uv[1]->X() < seg._uv[0]->X() );
|
|
_iMin[1] = ( seg._uv[1]->Y() < seg._uv[0]->Y() );
|
|
}
|
|
bool IsOut( const _Segment& seg ) const;
|
|
bool IsOut( const gp_Ax2d& ray ) const;
|
|
};
|
|
vector< _SegBox > _segments;
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Edge normal to FACE boundary, connecting a point on EDGE (_uvOut)
|
|
* and a point of a layer internal boundary (_uvIn)
|
|
*/
|
|
struct _LayerEdge
|
|
{
|
|
gp_XY _uvOut; // UV on the FACE boundary
|
|
gp_XY _uvIn; // UV inside the FACE
|
|
double _length2D; // distance between _uvOut and _uvIn
|
|
|
|
bool _isBlocked;// is more inflation possible or not
|
|
|
|
gp_XY _normal2D; // to curve
|
|
double _len2dTo3dRatio; // to pass 2D <--> 3D
|
|
gp_Ax2d _ray; // a ray starting at _uvOut
|
|
|
|
vector<gp_XY> _uvRefined; // divisions by layers
|
|
|
|
bool SetNewLength( const double length );
|
|
|
|
#ifdef _DEBUG_
|
|
int _ID;
|
|
#endif
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Poly line composed of _Segment's of one EDGE.
|
|
* It's used to detect intersection of inflated layers by intersecting
|
|
* _Segment's in 2D.
|
|
*/
|
|
struct _PolyLine
|
|
{
|
|
StdMeshers_FaceSide* _wire;
|
|
int _edgeInd; // index of my EDGE in _wire
|
|
bool _advancable; // true if there is a viscous layer on my EDGE
|
|
bool _isStraight2D;// pcurve type
|
|
_PolyLine* _leftLine; // lines of neighbour EDGE's
|
|
_PolyLine* _rightLine;
|
|
int _firstPntInd; // index in vector<UVPtStruct> of _wire
|
|
int _lastPntInd;
|
|
int _index; // index in _ViscousBuilder2D::_polyLineVec
|
|
|
|
vector< _LayerEdge > _lEdges; /* _lEdges[0] is usually is not treated
|
|
as it is equal to the last one of the _leftLine */
|
|
vector< _Segment > _segments; // segments connecting _uvIn's of _lEdges
|
|
_SegmentTree::Ptr _segTree;
|
|
|
|
vector< _PolyLine* > _reachableLines; // lines able to interfere with my layer
|
|
|
|
vector< const SMDS_MeshNode* > _leftNodes; // nodes built from a left VERTEX
|
|
vector< const SMDS_MeshNode* > _rightNodes; // nodes built from a right VERTEX
|
|
|
|
typedef vector< _Segment >::iterator TSegIterator;
|
|
typedef vector< _LayerEdge >::iterator TEdgeIterator;
|
|
|
|
TIDSortedElemSet _newFaces; // faces generated from this line
|
|
|
|
bool IsCommonEdgeShared( const _PolyLine& other );
|
|
size_t FirstLEdge() const
|
|
{
|
|
return ( _leftLine->_advancable && _lEdges.size() > 2 ) ? 1 : 0;
|
|
}
|
|
bool IsAdjacent( const _Segment& seg, const _LayerEdge* LE=0 ) const
|
|
{
|
|
if ( LE /*&& seg._indexInLine < _lEdges.size()*/ )
|
|
return ( seg._uv[0] == & LE->_uvIn ||
|
|
seg._uv[1] == & LE->_uvIn );
|
|
return ( & seg == &_leftLine->_segments.back() ||
|
|
& seg == &_rightLine->_segments[0] );
|
|
}
|
|
bool IsConcave() const;
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Intersector of _Segment's
|
|
*/
|
|
struct _SegmentIntersection
|
|
{
|
|
gp_XY _vec1, _vec2; // Vec( _seg.p1(), _seg.p2() )
|
|
gp_XY _vec21; // Vec( _seg2.p1(), _seg1.p1() )
|
|
double _D; // _vec1.Crossed( _vec2 )
|
|
double _param1, _param2; // intersection param on _seg1 and _seg2
|
|
|
|
_SegmentIntersection(): _D(0), _param1(0), _param2(0) {}
|
|
|
|
bool Compute(const _Segment& seg1, const _Segment& seg2, bool seg2IsRay = false )
|
|
{
|
|
// !!! If seg2IsRay, returns true at any _param2 !!!
|
|
const double eps = 1e-10;
|
|
_vec1 = seg1.p2() - seg1.p1();
|
|
_vec2 = seg2.p2() - seg2.p1();
|
|
_vec21 = seg1.p1() - seg2.p1();
|
|
_D = _vec1.Crossed(_vec2);
|
|
if ( fabs(_D) < std::numeric_limits<double>::min())
|
|
return false;
|
|
_param1 = _vec2.Crossed(_vec21) / _D;
|
|
if (_param1 < -eps || _param1 > 1 + eps )
|
|
return false;
|
|
_param2 = _vec1.Crossed(_vec21) / _D;
|
|
return seg2IsRay || ( _param2 > -eps && _param2 < 1 + eps );
|
|
}
|
|
bool Compute( const _Segment& seg1, const gp_Ax2d& ray )
|
|
{
|
|
gp_XY segEnd = ray.Location().XY() + ray.Direction().XY();
|
|
_Segment seg2( ray.Location().XY(), segEnd );
|
|
return Compute( seg1, seg2, true );
|
|
}
|
|
//gp_XY GetPoint() { return _seg1.p1() + _param1 * _vec1; }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
|
|
typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge;
|
|
typedef StdMeshers_ViscousLayers2D THypVL;
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Builder of viscous layers
|
|
*/
|
|
class _ViscousBuilder2D
|
|
{
|
|
public:
|
|
_ViscousBuilder2D(SMESH_Mesh& theMesh,
|
|
const TopoDS_Face& theFace,
|
|
vector< const THypVL* > & theHyp,
|
|
vector< TopoDS_Shape > & theHypShapes);
|
|
SMESH_ComputeErrorPtr GetError() const { return _error; }
|
|
// does it's job
|
|
SMESH_ProxyMesh::Ptr Compute();
|
|
|
|
private:
|
|
|
|
friend class ::StdMeshers_ViscousLayers2D;
|
|
|
|
bool findEdgesWithLayers();
|
|
bool makePolyLines();
|
|
bool inflate();
|
|
bool fixCollisions();
|
|
bool refine();
|
|
bool shrink();
|
|
bool improve();
|
|
bool toShrinkForAdjacent( const TopoDS_Face& adjFace,
|
|
const TopoDS_Edge& E,
|
|
const TopoDS_Vertex& V);
|
|
void setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut );
|
|
void setLayerEdgeData( _LayerEdge& lEdge,
|
|
const double u,
|
|
Handle(Geom2d_Curve)& pcurve,
|
|
Handle(Geom_Curve)& curve,
|
|
const gp_Pnt pOut,
|
|
const bool reverse,
|
|
GeomAPI_ProjectPointOnSurf* faceProj);
|
|
void adjustCommonEdge( _PolyLine& LL, _PolyLine& LR );
|
|
void calcLayersHeight(const double totalThick,
|
|
vector<double>& heights,
|
|
const THypVL* hyp);
|
|
bool removeMeshFaces(const TopoDS_Shape& face);
|
|
|
|
const THypVL* getLineHypothesis(int iPL);
|
|
double getLineThickness (int iPL);
|
|
|
|
bool error( const string& text );
|
|
SMESHDS_Mesh* getMeshDS() { return _mesh->GetMeshDS(); }
|
|
_ProxyMeshOfFace* getProxyMesh();
|
|
|
|
// debug
|
|
//void makeGroupOfLE();
|
|
|
|
private:
|
|
|
|
// input data
|
|
SMESH_Mesh* _mesh;
|
|
TopoDS_Face _face;
|
|
vector< const THypVL* > _hyps;
|
|
vector< TopoDS_Shape > _hypShapes;
|
|
|
|
// result data
|
|
SMESH_ProxyMesh::Ptr _proxyMesh;
|
|
SMESH_ComputeErrorPtr _error;
|
|
|
|
// working data
|
|
Handle(Geom_Surface) _surface;
|
|
SMESH_MesherHelper _helper;
|
|
TSideVector _faceSideVec; // wires (StdMeshers_FaceSide) of _face
|
|
vector<_PolyLine> _polyLineVec; // fronts to advance
|
|
vector< const THypVL* > _hypOfEdge; // a hyp per an EDGE of _faceSideVec
|
|
bool _is2DIsotropic; // is same U and V resoulution of _face
|
|
vector<TopoDS_Face> _clearedFaces; // FACEs whose mesh was removed by shrink()
|
|
|
|
//double _fPowN; // to compute thickness of layers
|
|
double _maxThickness; // max possible layers thickness
|
|
|
|
// sub-shapes of _face
|
|
set<TGeomID> _ignoreShapeIds; // ids of EDGEs w/o layers
|
|
set<TGeomID> _noShrinkVert; // ids of VERTEXes that are extremities
|
|
// of EDGEs along which _LayerEdge can't be inflated because no viscous layers
|
|
// defined on neighbour FACEs sharing an EDGE. Nonetheless _LayerEdge's
|
|
// are inflated along such EDGEs but then such _LayerEdge's are turned into
|
|
// a node on VERTEX, i.e. all nodes on a _LayerEdge are melded into one node.
|
|
|
|
int _nbLE; // for DEBUG
|
|
};
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns StdMeshers_ViscousLayers2D for the FACE
|
|
*/
|
|
bool findHyps(SMESH_Mesh& theMesh,
|
|
const TopoDS_Face& theFace,
|
|
vector< const StdMeshers_ViscousLayers2D* > & theHyps,
|
|
vector< TopoDS_Shape > & theAssignedTo)
|
|
{
|
|
theHyps.clear();
|
|
theAssignedTo.clear();
|
|
SMESH_HypoFilter hypFilter
|
|
( SMESH_HypoFilter::HasName( StdMeshers_ViscousLayers2D::GetHypType() ));
|
|
list< const SMESHDS_Hypothesis * > hypList;
|
|
list< TopoDS_Shape > hypShapes;
|
|
int nbHyps = theMesh.GetHypotheses
|
|
( theFace, hypFilter, hypList, /*ancestors=*/true, &hypShapes );
|
|
if ( nbHyps )
|
|
{
|
|
theHyps.reserve( nbHyps );
|
|
theAssignedTo.reserve( nbHyps );
|
|
list< const SMESHDS_Hypothesis * >::iterator hyp = hypList.begin();
|
|
list< TopoDS_Shape >::iterator shape = hypShapes.begin();
|
|
for ( ; hyp != hypList.end(); ++hyp, ++shape )
|
|
{
|
|
theHyps.push_back( static_cast< const StdMeshers_ViscousLayers2D* > ( *hyp ));
|
|
theAssignedTo.push_back( *shape );
|
|
}
|
|
}
|
|
return nbHyps;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns ids of EDGEs not to create Viscous Layers on
|
|
* \param [in] theHyp - the hypothesis, holding edges either to ignore or not to.
|
|
* \param [in] theFace - the FACE whose EDGEs are checked.
|
|
* \param [in] theMesh - the mesh.
|
|
* \param [in,out] theEdgeIds - container returning EDGEs to ignore.
|
|
* \return int - number of found EDGEs of the FACE.
|
|
*/
|
|
//================================================================================
|
|
|
|
int getEdgesToIgnore( const StdMeshers_ViscousLayers2D* theHyp,
|
|
const TopoDS_Shape& theFace,
|
|
const SMESHDS_Mesh* theMesh,
|
|
set< int > & theEdgeIds)
|
|
{
|
|
int nbEdgesToIgnore = 0;
|
|
vector<TGeomID> ids = theHyp->GetBndShapes();
|
|
if ( theHyp->IsToIgnoreShapes() ) // EDGEs to ignore are given
|
|
{
|
|
for ( size_t i = 0; i < ids.size(); ++i )
|
|
{
|
|
const TopoDS_Shape& E = theMesh->IndexToShape( ids[i] );
|
|
if ( !E.IsNull() &&
|
|
E.ShapeType() == TopAbs_EDGE &&
|
|
SMESH_MesherHelper::IsSubShape( E, theFace ))
|
|
{
|
|
theEdgeIds.insert( ids[i] );
|
|
++nbEdgesToIgnore;
|
|
}
|
|
}
|
|
}
|
|
else // EDGEs to make the Viscous Layers on are given
|
|
{
|
|
TopExp_Explorer E( theFace, TopAbs_EDGE );
|
|
for ( ; E.More(); E.Next(), ++nbEdgesToIgnore )
|
|
theEdgeIds.insert( theMesh->ShapeToIndex( E.Current() ));
|
|
|
|
for ( size_t i = 0; i < ids.size(); ++i )
|
|
nbEdgesToIgnore -= theEdgeIds.erase( ids[i] );
|
|
}
|
|
return nbEdgesToIgnore;
|
|
}
|
|
|
|
} // namespace VISCOUS_2D
|
|
|
|
//================================================================================
|
|
// StdMeshers_ViscousLayers hypothesis
|
|
//
|
|
StdMeshers_ViscousLayers2D::StdMeshers_ViscousLayers2D(int hypId, SMESH_Gen* gen)
|
|
:StdMeshers_ViscousLayers(hypId, gen)
|
|
{
|
|
_name = StdMeshers_ViscousLayers2D::GetHypType();
|
|
_param_algo_dim = -2; // auxiliary hyp used by 2D algos
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
bool StdMeshers_ViscousLayers2D::SetParametersByMesh(const SMESH_Mesh* theMesh,
|
|
const TopoDS_Shape& theShape)
|
|
{
|
|
// TODO ???
|
|
return false;
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
SMESH_ProxyMesh::Ptr
|
|
StdMeshers_ViscousLayers2D::Compute(SMESH_Mesh& theMesh,
|
|
const TopoDS_Face& theFace)
|
|
{
|
|
using namespace VISCOUS_2D;
|
|
vector< const StdMeshers_ViscousLayers2D* > hyps;
|
|
vector< TopoDS_Shape > hypShapes;
|
|
|
|
SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( theFace, theMesh );
|
|
if ( !pm )
|
|
{
|
|
if ( findHyps( theMesh, theFace, hyps, hypShapes ))
|
|
{
|
|
VISCOUS_2D::_ViscousBuilder2D builder( theMesh, theFace, hyps, hypShapes );
|
|
pm = builder.Compute();
|
|
SMESH_ComputeErrorPtr error = builder.GetError();
|
|
if ( error && !error->IsOK() )
|
|
theMesh.GetSubMesh( theFace )->GetComputeError() = error;
|
|
else if ( !pm )
|
|
pm.reset( new SMESH_ProxyMesh( theMesh ));
|
|
if ( getenv("__ONLY__VL2D__"))
|
|
pm.reset();
|
|
}
|
|
else
|
|
{
|
|
pm.reset( new SMESH_ProxyMesh( theMesh ));
|
|
}
|
|
}
|
|
return pm;
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
void StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( const StdMeshers_FaceSide& edgeNodes )
|
|
{
|
|
using namespace VISCOUS_2D;
|
|
SMESH_ProxyMesh::Ptr pm =
|
|
_ProxyMeshHolder::FindProxyMeshOfFace( edgeNodes.Face(), *edgeNodes.GetMesh() );
|
|
if ( !pm ) {
|
|
_ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *edgeNodes.GetMesh() );
|
|
pm.reset( proxyMeshOfFace );
|
|
new _ProxyMeshHolder( edgeNodes.Face(), pm );
|
|
}
|
|
_ProxyMeshOfFace* proxyMeshOfFace = static_cast<_ProxyMeshOfFace*>( pm.get() );
|
|
_ProxyMeshOfFace::_EdgeSubMesh* sm = proxyMeshOfFace->GetEdgeSubMesh( edgeNodes.EdgeID(0) );
|
|
sm->GetUVPtStructVec() = edgeNodes.GetUVPtStruct();
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
bool StdMeshers_ViscousLayers2D::HasProxyMesh( const TopoDS_Face& face, SMESH_Mesh& mesh )
|
|
{
|
|
return VISCOUS_2D::_ProxyMeshHolder::FindProxyMeshOfFace( face, mesh ).get();
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
SMESH_ComputeErrorPtr
|
|
StdMeshers_ViscousLayers2D::CheckHypothesis(SMESH_Mesh& theMesh,
|
|
const TopoDS_Shape& theShape,
|
|
SMESH_Hypothesis::Hypothesis_Status& theStatus)
|
|
{
|
|
SMESH_ComputeErrorPtr error = SMESH_ComputeError::New(COMPERR_OK);
|
|
theStatus = SMESH_Hypothesis::HYP_OK;
|
|
|
|
TopExp_Explorer exp( theShape, TopAbs_FACE );
|
|
for ( ; exp.More() && theStatus == SMESH_Hypothesis::HYP_OK; exp.Next() )
|
|
{
|
|
const TopoDS_Face& face = TopoDS::Face( exp.Current() );
|
|
vector< const StdMeshers_ViscousLayers2D* > hyps;
|
|
vector< TopoDS_Shape > hypShapes;
|
|
if ( VISCOUS_2D::findHyps( theMesh, face, hyps, hypShapes ))
|
|
{
|
|
VISCOUS_2D::_ViscousBuilder2D builder( theMesh, face, hyps, hypShapes );
|
|
builder._faceSideVec =
|
|
StdMeshers_FaceSide::GetFaceWires( face, theMesh, true, error,
|
|
NULL, SMESH_ProxyMesh::Ptr(),
|
|
/*theCheckVertexNodes=*/false);
|
|
if ( error->IsOK() && !builder.findEdgesWithLayers())
|
|
{
|
|
error = builder.GetError();
|
|
if ( error && !error->IsOK() )
|
|
theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS;
|
|
}
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
void StdMeshers_ViscousLayers2D::RestoreListeners() const
|
|
{
|
|
StudyContextStruct* sc = _gen->GetStudyContext();
|
|
std::map < int, SMESH_Mesh * >::iterator i_smesh = sc->mapMesh.begin();
|
|
for ( ; i_smesh != sc->mapMesh.end(); ++i_smesh )
|
|
{
|
|
SMESH_Mesh* smesh = i_smesh->second;
|
|
if ( !smesh ||
|
|
!smesh->HasShapeToMesh() ||
|
|
!smesh->GetMeshDS() ||
|
|
!smesh->GetMeshDS()->IsUsedHypothesis( this ))
|
|
continue;
|
|
|
|
// set event listeners to EDGE's of FACE where this hyp is used
|
|
TopoDS_Shape shape = i_smesh->second->GetShapeToMesh();
|
|
for ( TopExp_Explorer face( shape, TopAbs_FACE); face.More(); face.Next() )
|
|
if ( SMESH_Algo* algo = _gen->GetAlgo( *smesh, face.Current() ))
|
|
{
|
|
const std::list <const SMESHDS_Hypothesis *> & usedHyps =
|
|
algo->GetUsedHypothesis( *smesh, face.Current(), /*ignoreAuxiliary=*/false );
|
|
if ( std::find( usedHyps.begin(), usedHyps.end(), this ) != usedHyps.end() )
|
|
for ( TopExp_Explorer edge( face.Current(), TopAbs_EDGE); edge.More(); edge.Next() )
|
|
VISCOUS_3D::ToClearSubWithMain( smesh->GetSubMesh( edge.Current() ), face.Current() );
|
|
}
|
|
}
|
|
}
|
|
// END StdMeshers_ViscousLayers2D hypothesis
|
|
//================================================================================
|
|
|
|
using namespace VISCOUS_2D;
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Constructor of _ViscousBuilder2D
|
|
*/
|
|
//================================================================================
|
|
|
|
_ViscousBuilder2D::_ViscousBuilder2D(SMESH_Mesh& theMesh,
|
|
const TopoDS_Face& theFace,
|
|
vector< const THypVL* > & theHyps,
|
|
vector< TopoDS_Shape > & theAssignedTo):
|
|
_mesh( &theMesh ), _face( theFace ), _helper( theMesh )
|
|
{
|
|
_hyps.swap( theHyps );
|
|
_hypShapes.swap( theAssignedTo );
|
|
|
|
_helper.SetSubShape( _face );
|
|
_helper.SetElementsOnShape( true );
|
|
|
|
_face.Orientation( TopAbs_FORWARD ); // 2D logic works only in this case
|
|
_surface = BRep_Tool::Surface( _face );
|
|
|
|
_error = SMESH_ComputeError::New(COMPERR_OK);
|
|
|
|
_nbLE = 0;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Stores error description and returns false
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::error(const string& text )
|
|
{
|
|
_error->myName = COMPERR_ALGO_FAILED;
|
|
_error->myComment = string("Viscous layers builder 2D: ") + text;
|
|
if ( SMESH_subMesh* sm = _mesh->GetSubMesh( _face ) )
|
|
{
|
|
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
|
|
if ( smError && smError->myAlgo )
|
|
_error->myAlgo = smError->myAlgo;
|
|
smError = _error;
|
|
}
|
|
#ifdef _DEBUG_
|
|
cout << "_ViscousBuilder2D::error " << text << endl;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Does its job
|
|
*/
|
|
//================================================================================
|
|
|
|
SMESH_ProxyMesh::Ptr _ViscousBuilder2D::Compute()
|
|
{
|
|
_faceSideVec = StdMeshers_FaceSide::GetFaceWires( _face, *_mesh, true, _error, &_helper );
|
|
|
|
if ( !_error->IsOK() )
|
|
return _proxyMesh;
|
|
|
|
if ( !findEdgesWithLayers() ) // analysis of a shape
|
|
return _proxyMesh;
|
|
|
|
if ( ! makePolyLines() ) // creation of fronts
|
|
return _proxyMesh;
|
|
|
|
if ( ! inflate() ) // advance fronts
|
|
return _proxyMesh;
|
|
|
|
// remove elements and nodes from _face
|
|
removeMeshFaces( _face );
|
|
|
|
if ( !shrink() ) // shrink segments on edges w/o layers
|
|
return _proxyMesh;
|
|
|
|
if ( ! refine() ) // make faces
|
|
return _proxyMesh;
|
|
|
|
//improve();
|
|
|
|
return _proxyMesh;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Finds EDGE's to make viscous layers on.
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::findEdgesWithLayers()
|
|
{
|
|
// collect all EDGEs to ignore defined by _hyps
|
|
typedef std::pair< set<TGeomID>, const THypVL* > TEdgesOfHyp;
|
|
vector< TEdgesOfHyp > ignoreEdgesOfHyp( _hyps.size() );
|
|
for ( size_t i = 0; i < _hyps.size(); ++i )
|
|
{
|
|
ignoreEdgesOfHyp[i].second = _hyps[i];
|
|
getEdgesToIgnore( _hyps[i], _face, getMeshDS(), ignoreEdgesOfHyp[i].first );
|
|
}
|
|
|
|
// get all shared EDGEs
|
|
TopTools_MapOfShape sharedEdges;
|
|
TopTools_IndexedMapOfShape hypFaces; // faces with VL hyps
|
|
for ( size_t i = 0; i < _hypShapes.size(); ++i )
|
|
TopExp::MapShapes( _hypShapes[i], TopAbs_FACE, hypFaces );
|
|
TopTools_IndexedDataMapOfShapeListOfShape facesOfEdgeMap;
|
|
for ( int iF = 1; iF <= hypFaces.Extent(); ++iF )
|
|
TopExp::MapShapesAndAncestors( hypFaces(iF), TopAbs_EDGE, TopAbs_FACE, facesOfEdgeMap);
|
|
for ( int iE = 1; iE <= facesOfEdgeMap.Extent(); ++iE )
|
|
if ( facesOfEdgeMap( iE ).Extent() > 1 )
|
|
sharedEdges.Add( facesOfEdgeMap.FindKey( iE ));
|
|
|
|
// fill _hypOfEdge
|
|
if ( _hyps.size() > 1 )
|
|
{
|
|
// check if two hypotheses define different parameters for the same EDGE
|
|
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
|
|
{
|
|
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
|
|
for ( int iE = 0; iE < wire->NbEdges(); ++iE )
|
|
{
|
|
const THypVL* hyp = 0;
|
|
const TGeomID edgeID = wire->EdgeID( iE );
|
|
if ( !sharedEdges.Contains( wire->Edge( iE )))
|
|
{
|
|
for ( size_t i = 0; i < ignoreEdgesOfHyp.size(); ++i )
|
|
if ( ! ignoreEdgesOfHyp[i].first.count( edgeID ))
|
|
{
|
|
if ( hyp )
|
|
return error(SMESH_Comment("Several hypotheses define "
|
|
"Viscous Layers on the edge #") << edgeID );
|
|
hyp = ignoreEdgesOfHyp[i].second;
|
|
}
|
|
}
|
|
_hypOfEdge.push_back( hyp );
|
|
if ( !hyp )
|
|
_ignoreShapeIds.insert( edgeID );
|
|
}
|
|
// check if two hypotheses define different number of viscous layers for
|
|
// adjacent EDGEs
|
|
const THypVL *hyp, *prevHyp = _hypOfEdge.back();
|
|
size_t iH = _hypOfEdge.size() - wire->NbEdges();
|
|
for ( ; iH < _hypOfEdge.size(); ++iH )
|
|
{
|
|
hyp = _hypOfEdge[ iH ];
|
|
if ( hyp && prevHyp &&
|
|
hyp->GetNumberLayers() != prevHyp->GetNumberLayers() )
|
|
{
|
|
return error("Two hypotheses define different number of "
|
|
"viscous layers on adjacent edges");
|
|
}
|
|
prevHyp = hyp;
|
|
}
|
|
}
|
|
}
|
|
else if ( _hyps.size() == 1 )
|
|
{
|
|
_ignoreShapeIds.swap( ignoreEdgesOfHyp[0].first );
|
|
}
|
|
|
|
// check all EDGEs of the _face to fill _ignoreShapeIds and _noShrinkVert
|
|
|
|
int totalNbEdges = 0;
|
|
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
|
|
{
|
|
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
|
|
totalNbEdges += wire->NbEdges();
|
|
for ( int iE = 0; iE < wire->NbEdges(); ++iE )
|
|
{
|
|
if ( sharedEdges.Contains( wire->Edge( iE )))
|
|
{
|
|
// ignore internal EDGEs (shared by several FACEs)
|
|
const TGeomID edgeID = wire->EdgeID( iE );
|
|
_ignoreShapeIds.insert( edgeID );
|
|
|
|
// check if ends of an EDGE are to be added to _noShrinkVert
|
|
const TopTools_ListOfShape& faceList = facesOfEdgeMap.FindFromKey( wire->Edge( iE ));
|
|
TopTools_ListIteratorOfListOfShape faceIt( faceList );
|
|
for ( ; faceIt.More(); faceIt.Next() )
|
|
{
|
|
const TopoDS_Shape& neighbourFace = faceIt.Value();
|
|
if ( neighbourFace.IsSame( _face )) continue;
|
|
SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, neighbourFace );
|
|
if ( !algo ) continue;
|
|
|
|
const StdMeshers_ViscousLayers2D* viscHyp = 0;
|
|
const list <const SMESHDS_Hypothesis *> & allHyps =
|
|
algo->GetUsedHypothesis(*_mesh, neighbourFace, /*noAuxiliary=*/false);
|
|
list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin();
|
|
for ( ; hyp != allHyps.end() && !viscHyp; ++hyp )
|
|
viscHyp = dynamic_cast<const StdMeshers_ViscousLayers2D*>( *hyp );
|
|
|
|
// set<TGeomID> neighbourIgnoreEdges;
|
|
// if (viscHyp)
|
|
// getEdgesToIgnore( viscHyp, neighbourFace, getMeshDS(), neighbourIgnoreEdges );
|
|
|
|
for ( int iV = 0; iV < 2; ++iV )
|
|
{
|
|
TopoDS_Vertex vertex = iV ? wire->LastVertex(iE) : wire->FirstVertex(iE);
|
|
if ( !viscHyp )
|
|
_noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
|
|
else
|
|
{
|
|
PShapeIteratorPtr edgeIt = _helper.GetAncestors( vertex, *_mesh, TopAbs_EDGE );
|
|
while ( const TopoDS_Shape* edge = edgeIt->next() )
|
|
if ( !edge->IsSame( wire->Edge( iE )) &&
|
|
_helper.IsSubShape( *edge, neighbourFace ))
|
|
{
|
|
const TGeomID neighbourID = getMeshDS()->ShapeToIndex( *edge );
|
|
bool hasVL = !sharedEdges.Contains( *edge );
|
|
if ( hasVL )
|
|
{
|
|
hasVL = false;
|
|
for ( hyp = allHyps.begin(); hyp != allHyps.end() && !hasVL; ++hyp )
|
|
if (( viscHyp = dynamic_cast<const THypVL*>( *hyp )))
|
|
hasVL = viscHyp->IsShapeWithLayers( neighbourID );
|
|
}
|
|
if ( !hasVL )
|
|
{
|
|
_noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int nbMyEdgesIgnored = _ignoreShapeIds.size();
|
|
|
|
// add VERTEXes w/o layers to _ignoreShapeIds (this is used by toShrinkForAdjacent())
|
|
// for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
|
|
// {
|
|
// StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
|
|
// for ( int iE = 0; iE < wire->NbEdges(); ++iE )
|
|
// {
|
|
// TGeomID edge1 = wire->EdgeID( iE );
|
|
// TGeomID edge2 = wire->EdgeID( iE+1 );
|
|
// if ( _ignoreShapeIds.count( edge1 ) && _ignoreShapeIds.count( edge2 ))
|
|
// _ignoreShapeIds.insert( getMeshDS()->ShapeToIndex( wire->LastVertex( iE )));
|
|
// }
|
|
// }
|
|
|
|
return ( nbMyEdgesIgnored < totalNbEdges );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Create the inner front of the viscous layers and prepare data for inflation
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::makePolyLines()
|
|
{
|
|
// Create _PolyLines and _LayerEdge's
|
|
|
|
// count total nb of EDGEs to allocate _polyLineVec
|
|
int nbEdges = 0;
|
|
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
|
|
{
|
|
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
|
|
nbEdges += wire->NbEdges();
|
|
if ( wire->GetUVPtStruct().empty() && wire->NbPoints() > 0 )
|
|
return error("Invalid node parameters on some EDGE");
|
|
}
|
|
_polyLineVec.resize( nbEdges );
|
|
|
|
// check if 2D normal should be computed by 3D one by means of projection
|
|
GeomAPI_ProjectPointOnSurf* faceProj = 0;
|
|
TopLoc_Location loc;
|
|
{
|
|
_LayerEdge tmpLE;
|
|
const UVPtStruct& uv = _faceSideVec[0]->GetUVPtStruct()[0];
|
|
gp_Pnt p = SMESH_TNodeXYZ( uv.node );
|
|
tmpLE._uvOut.SetCoord( uv.u, uv.v );
|
|
tmpLE._normal2D.SetCoord( 1., 0. );
|
|
setLenRatio( tmpLE, p );
|
|
const double r1 = tmpLE._len2dTo3dRatio;
|
|
tmpLE._normal2D.SetCoord( 0., 1. );
|
|
setLenRatio( tmpLE, p );
|
|
const double r2 = tmpLE._len2dTo3dRatio;
|
|
// projection is needed if two _len2dTo3dRatio's differ too much
|
|
const double maxR = Max( r2, r1 );
|
|
if ( Abs( r2-r1 )/maxR > 0.2*maxR )
|
|
faceProj = & _helper.GetProjector( _face, loc );
|
|
}
|
|
_is2DIsotropic = !faceProj;
|
|
|
|
// Assign data to _PolyLine's
|
|
// ---------------------------
|
|
|
|
size_t iPoLine = 0;
|
|
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
|
|
{
|
|
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
|
|
const vector<UVPtStruct>& points = wire->GetUVPtStruct();
|
|
int iPnt = 0;
|
|
for ( int iE = 0; iE < wire->NbEdges(); ++iE )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iPoLine++ ];
|
|
L._index = iPoLine-1;
|
|
L._wire = wire.get();
|
|
L._edgeInd = iE;
|
|
L._advancable = !_ignoreShapeIds.count( wire->EdgeID( iE ));
|
|
|
|
int iRight = iPoLine - (( iE+1 < wire->NbEdges() ) ? 0 : wire->NbEdges() );
|
|
L._rightLine = &_polyLineVec[ iRight ];
|
|
_polyLineVec[ iRight ]._leftLine = &L;
|
|
|
|
L._firstPntInd = iPnt;
|
|
double lastNormPar = wire->LastParameter( iE ) - 1e-10;
|
|
while ( points[ iPnt ].normParam < lastNormPar )
|
|
++iPnt;
|
|
L._lastPntInd = iPnt;
|
|
L._lEdges.resize( Max( 3, L._lastPntInd - L._firstPntInd + 1 )); // 3 edges minimum
|
|
|
|
// TODO: add more _LayerEdge's to strongly curved EDGEs
|
|
// in order not to miss collisions
|
|
|
|
double u; gp_Pnt p;
|
|
Handle(Geom_Curve) curve = BRep_Tool::Curve( L._wire->Edge( iE ), loc, u, u );
|
|
Handle(Geom2d_Curve) pcurve = L._wire->Curve2d( L._edgeInd );
|
|
const bool reverse = (( L._wire->Edge( iE ).Orientation() == TopAbs_REVERSED ) ^
|
|
(_face.Orientation() == TopAbs_REVERSED ));
|
|
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
|
|
{
|
|
_LayerEdge& lEdge = L._lEdges[ i - L._firstPntInd ];
|
|
u = ( i == L._firstPntInd ? wire->FirstU(iE) : points[ i ].param );
|
|
p = SMESH_TNodeXYZ( points[ i ].node );
|
|
setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, faceProj );
|
|
setLenRatio( lEdge, p );
|
|
}
|
|
if ( L._lastPntInd - L._firstPntInd + 1 < 3 ) // add 3-d _LayerEdge in the middle
|
|
{
|
|
L._lEdges[2] = L._lEdges[1];
|
|
u = 0.5 * ( wire->FirstU(iE) + wire->LastU(iE) );
|
|
if ( !curve.IsNull() )
|
|
p = curve->Value( u );
|
|
else
|
|
p = 0.5 * ( SMESH_TNodeXYZ( points[ L._firstPntInd ].node ) +
|
|
SMESH_TNodeXYZ( points[ L._lastPntInd ].node ));
|
|
setLayerEdgeData( L._lEdges[1], u, pcurve, curve, p, reverse, faceProj );
|
|
setLenRatio( L._lEdges[1], p );
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fill _PolyLine's with _segments
|
|
// --------------------------------
|
|
|
|
double maxLen2dTo3dRatio = 0;
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iPoLine ];
|
|
L._segments.resize( L._lEdges.size() - 1 );
|
|
for ( size_t i = 1; i < L._lEdges.size(); ++i )
|
|
{
|
|
_Segment & S = L._segments[i-1];
|
|
S._uv[0] = & L._lEdges[i-1]._uvIn;
|
|
S._uv[1] = & L._lEdges[i ]._uvIn;
|
|
S._indexInLine = i-1;
|
|
if ( maxLen2dTo3dRatio < L._lEdges[i]._len2dTo3dRatio )
|
|
maxLen2dTo3dRatio = L._lEdges[i]._len2dTo3dRatio;
|
|
}
|
|
// // connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
|
|
// // becomes not connected to any segment
|
|
// if ( L._leftLine->_advancable )
|
|
// L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
|
|
|
|
L._segTree.reset( new _SegmentTree( L._segments ));
|
|
}
|
|
|
|
// Evaluate max possible _thickness if required layers thickness seems too high
|
|
// ----------------------------------------------------------------------------
|
|
|
|
_maxThickness = _hyps[0]->GetTotalThickness();
|
|
for ( size_t iH = 1; iH < _hyps.size(); ++iH )
|
|
_maxThickness = Max( _maxThickness, _hyps[iH]->GetTotalThickness() );
|
|
|
|
_SegmentTree::box_type faceBndBox2D;
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
faceBndBox2D.Add( *_polyLineVec[ iPoLine]._segTree->getBox() );
|
|
const double boxTol = 1e-3 * sqrt( faceBndBox2D.SquareExtent() );
|
|
|
|
if ( _maxThickness * maxLen2dTo3dRatio > sqrt( faceBndBox2D.SquareExtent() ) / 10 )
|
|
{
|
|
vector< const _Segment* > foundSegs;
|
|
double maxPossibleThick = 0;
|
|
_SegmentIntersection intersection;
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L1 = _polyLineVec[ iL1 ];
|
|
_SegmentTree::box_type boxL1 = * L1._segTree->getBox();
|
|
boxL1.Enlarge( boxTol );
|
|
// consider case of a circle as well!
|
|
for ( size_t iL2 = iL1; iL2 < _polyLineVec.size(); ++iL2 )
|
|
{
|
|
_PolyLine& L2 = _polyLineVec[ iL2 ];
|
|
_SegmentTree::box_type boxL2 = * L2._segTree->getBox();
|
|
boxL2.Enlarge( boxTol );
|
|
if ( boxL1.IsOut( boxL2 ))
|
|
continue;
|
|
for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
|
|
{
|
|
foundSegs.clear();
|
|
L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
|
|
for ( size_t i = 0; i < foundSegs.size(); ++i )
|
|
if ( intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
|
|
{
|
|
double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
|
|
double psblThick = distToL2 / ( 1 + L1._advancable + L2._advancable );
|
|
maxPossibleThick = Max( psblThick, maxPossibleThick );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ( maxPossibleThick > 0. )
|
|
_maxThickness = Min( _maxThickness, maxPossibleThick );
|
|
}
|
|
|
|
// Adjust _LayerEdge's at _PolyLine's extremities
|
|
// -----------------------------------------------
|
|
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& LL = _polyLineVec[ iPoLine ];
|
|
_PolyLine& LR = *LL._rightLine;
|
|
adjustCommonEdge( LL, LR );
|
|
}
|
|
// recreate _segments if some _LayerEdge's have been removed by adjustCommonEdge()
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iPoLine ];
|
|
// if ( L._segments.size() == L._lEdges.size() - 1 )
|
|
// continue;
|
|
L._segments.resize( L._lEdges.size() - 1 );
|
|
for ( size_t i = 1; i < L._lEdges.size(); ++i )
|
|
{
|
|
_Segment & S = L._segments[i-1];
|
|
S._uv[0] = & L._lEdges[i-1]._uvIn;
|
|
S._uv[1] = & L._lEdges[i ]._uvIn;
|
|
S._indexInLine = i-1;
|
|
}
|
|
L._segTree.reset( new _SegmentTree( L._segments ));
|
|
}
|
|
// connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
|
|
// becomes not connected to any segment
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iPoLine ];
|
|
if ( L._leftLine->_advancable )
|
|
L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
|
|
}
|
|
|
|
// Fill _reachableLines.
|
|
// ----------------------
|
|
|
|
// compute bnd boxes taking into account the layers total thickness
|
|
vector< _SegmentTree::box_type > lineBoxes( _polyLineVec.size() );
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
lineBoxes[ iPoLine ] = *_polyLineVec[ iPoLine ]._segTree->getBox();
|
|
lineBoxes[ iPoLine ].Enlarge( maxLen2dTo3dRatio * getLineThickness( iPoLine ) *
|
|
( _polyLineVec[ iPoLine ]._advancable ? 2. : 1.2 ));
|
|
}
|
|
// _reachableLines
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& L1 = _polyLineVec[ iPoLine ];
|
|
const double thick1 = getLineThickness( iPoLine );
|
|
for ( size_t iL2 = 0; iL2 < _polyLineVec.size(); ++iL2 )
|
|
{
|
|
_PolyLine& L2 = _polyLineVec[ iL2 ];
|
|
if ( iPoLine == iL2 || lineBoxes[ iPoLine ].IsOut( lineBoxes[ iL2 ]))
|
|
continue;
|
|
if ( !L1._advancable && ( L1._leftLine == &L2 || L1._rightLine == &L2 ))
|
|
continue;
|
|
// check reachability by _LayerEdge's
|
|
int iDelta = 1; //Max( 1, L1._lEdges.size() / 100 );
|
|
for ( size_t iLE = 1; iLE < L1._lEdges.size(); iLE += iDelta )
|
|
{
|
|
_LayerEdge& LE = L1._lEdges[iLE];
|
|
if ( !lineBoxes[ iL2 ].IsOut ( LE._uvOut,
|
|
LE._uvOut + LE._normal2D * thick1 * LE._len2dTo3dRatio ))
|
|
{
|
|
L1._reachableLines.push_back( & L2 );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// add self to _reachableLines
|
|
Geom2dAdaptor_Curve pcurve( L1._wire->Curve2d( L1._edgeInd ));
|
|
L1._isStraight2D = ( pcurve.GetType() == GeomAbs_Line );
|
|
if ( !L1._isStraight2D )
|
|
{
|
|
// TODO: check carefully
|
|
L1._reachableLines.push_back( & L1 );
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief adjust common _LayerEdge of two adjacent _PolyLine's
|
|
* \param LL - left _PolyLine
|
|
* \param LR - right _PolyLine
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder2D::adjustCommonEdge( _PolyLine& LL, _PolyLine& LR )
|
|
{
|
|
int nbAdvancableL = LL._advancable + LR._advancable;
|
|
if ( nbAdvancableL == 0 )
|
|
return;
|
|
|
|
_LayerEdge& EL = LL._lEdges.back();
|
|
_LayerEdge& ER = LR._lEdges.front();
|
|
gp_XY normL = EL._normal2D;
|
|
gp_XY normR = ER._normal2D;
|
|
gp_XY tangL ( normL.Y(), -normL.X() );
|
|
|
|
// set common direction to a VERTEX _LayerEdge shared by two _PolyLine's
|
|
gp_XY normCommon = ( normL * int( LL._advancable ) +
|
|
normR * int( LR._advancable )).Normalized();
|
|
EL._normal2D = normCommon;
|
|
EL._ray.SetLocation ( EL._uvOut );
|
|
EL._ray.SetDirection( EL._normal2D );
|
|
if ( nbAdvancableL == 1 ) { // _normal2D is true normal (not average)
|
|
EL._isBlocked = true; // prevent intersecting with _Segments of _advancable line
|
|
EL._length2D = 0;
|
|
}
|
|
// update _LayerEdge::_len2dTo3dRatio according to a new direction
|
|
const vector<UVPtStruct>& points = LL._wire->GetUVPtStruct();
|
|
setLenRatio( EL, SMESH_TNodeXYZ( points[ LL._lastPntInd ].node ));
|
|
|
|
ER = EL;
|
|
|
|
const double dotNormTang = normR * tangL;
|
|
const bool largeAngle = Abs( dotNormTang ) > 0.2;
|
|
if ( largeAngle ) // not 180 degrees
|
|
{
|
|
// recompute _len2dTo3dRatio to take into account angle between EDGEs
|
|
gp_Vec2d oldNorm( LL._advancable ? normL : normR );
|
|
double angleFactor = 1. / Max( 0.3, Cos( oldNorm.Angle( normCommon )));
|
|
EL._len2dTo3dRatio *= angleFactor;
|
|
ER._len2dTo3dRatio = EL._len2dTo3dRatio;
|
|
|
|
gp_XY normAvg = ( normL + normR ).Normalized(); // average normal at VERTEX
|
|
|
|
if ( dotNormTang < 0. ) // ---------------------------- CONVEX ANGLE
|
|
{
|
|
// Remove _LayerEdge's intersecting the normAvg to avoid collisions
|
|
// during inflate().
|
|
//
|
|
// find max length of the VERTEX-based _LayerEdge whose direction is normAvg
|
|
double maxLen2D = _maxThickness * EL._len2dTo3dRatio;
|
|
const gp_XY& pCommOut = ER._uvOut;
|
|
gp_XY pCommIn = pCommOut + normAvg * maxLen2D;
|
|
_Segment segCommon( pCommOut, pCommIn );
|
|
_SegmentIntersection intersection;
|
|
vector< const _Segment* > foundSegs;
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L1 = _polyLineVec[ iL1 ];
|
|
const _SegmentTree::box_type* boxL1 = L1._segTree->getBox();
|
|
if ( boxL1->IsOut ( pCommOut, pCommIn ))
|
|
continue;
|
|
for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
|
|
{
|
|
foundSegs.clear();
|
|
L1._segTree->GetSegmentsNear( segCommon, foundSegs );
|
|
for ( size_t i = 0; i < foundSegs.size(); ++i )
|
|
if ( intersection.Compute( *foundSegs[i], segCommon ) &&
|
|
intersection._param2 > 1e-10 )
|
|
{
|
|
double len2D = intersection._param2 * maxLen2D / ( 2 + L1._advancable );
|
|
if ( len2D < maxLen2D ) {
|
|
maxLen2D = len2D;
|
|
pCommIn = pCommOut + normAvg * maxLen2D; // here length of segCommon changes
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// remove _LayerEdge's intersecting segCommon
|
|
for ( int isR = 0; isR < 2; ++isR ) // loop on [ LL, LR ]
|
|
{
|
|
_PolyLine& L = isR ? LR : LL;
|
|
_PolyLine::TEdgeIterator eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2;
|
|
int dIt = isR ? +1 : -1;
|
|
if ( nbAdvancableL == 1 && L._advancable && normL * normR > -0.01 )
|
|
continue; // obtuse internal angle
|
|
// at least 3 _LayerEdge's should remain in a _PolyLine
|
|
if ( L._lEdges.size() < 4 ) continue;
|
|
size_t iLE = 1;
|
|
_SegmentIntersection lastIntersection;
|
|
for ( ; iLE < L._lEdges.size(); ++iLE, eIt += dIt )
|
|
{
|
|
gp_XY uvIn = eIt->_uvOut + eIt->_normal2D * _maxThickness * eIt->_len2dTo3dRatio;
|
|
_Segment segOfEdge( eIt->_uvOut, uvIn );
|
|
if ( !intersection.Compute( segCommon, segOfEdge ))
|
|
break;
|
|
lastIntersection._param1 = intersection._param1;
|
|
lastIntersection._param2 = intersection._param2;
|
|
}
|
|
if ( iLE >= L._lEdges.size() - 1 )
|
|
{
|
|
// all _LayerEdge's intersect the segCommon, limit inflation
|
|
// of remaining 3 _LayerEdge's
|
|
vector< _LayerEdge > newEdgeVec( Min( 3, L._lEdges.size() ));
|
|
newEdgeVec.front() = L._lEdges.front();
|
|
newEdgeVec.back() = L._lEdges.back();
|
|
if ( newEdgeVec.size() == 3 )
|
|
{
|
|
newEdgeVec[1] = L._lEdges[ isR ? (L._lEdges.size() - 2) : 1 ];
|
|
newEdgeVec[1]._len2dTo3dRatio *= lastIntersection._param2;
|
|
}
|
|
L._lEdges.swap( newEdgeVec );
|
|
if ( !isR ) std::swap( lastIntersection._param1 , lastIntersection._param2 );
|
|
L._lEdges.front()._len2dTo3dRatio *= lastIntersection._param1; // ??
|
|
L._lEdges.back ()._len2dTo3dRatio *= lastIntersection._param2;
|
|
}
|
|
else if ( iLE != 1 )
|
|
{
|
|
// eIt points to the _LayerEdge not intersecting with segCommon
|
|
if ( isR )
|
|
LR._lEdges.erase( LR._lEdges.begin()+1, eIt );
|
|
else
|
|
LL._lEdges.erase( eIt+1, --LL._lEdges.end() );
|
|
// eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2;
|
|
// for ( size_t i = 1; i < iLE; ++i, eIt += dIt )
|
|
// eIt->_isBlocked = true;
|
|
}
|
|
}
|
|
}
|
|
else // ------------------------------------------ CONCAVE ANGLE
|
|
{
|
|
if ( nbAdvancableL == 1 )
|
|
{
|
|
// make that the _LayerEdge at VERTEX is not shared by LL and LR:
|
|
// different normals is a sign that they are not shared
|
|
_LayerEdge& notSharedEdge = LL._advancable ? LR._lEdges[0] : LL._lEdges.back();
|
|
_LayerEdge& sharedEdge = LR._advancable ? LR._lEdges[0] : LL._lEdges.back();
|
|
|
|
notSharedEdge._normal2D.SetCoord( 0.,0. );
|
|
sharedEdge._normal2D = normAvg;
|
|
sharedEdge._isBlocked = false;
|
|
notSharedEdge._isBlocked = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief initialize data of a _LayerEdge
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder2D::setLayerEdgeData( _LayerEdge& lEdge,
|
|
const double u,
|
|
Handle(Geom2d_Curve)& pcurve,
|
|
Handle(Geom_Curve)& curve,
|
|
const gp_Pnt pOut,
|
|
const bool reverse,
|
|
GeomAPI_ProjectPointOnSurf* faceProj)
|
|
{
|
|
gp_Pnt2d uv;
|
|
if ( faceProj && !curve.IsNull() )
|
|
{
|
|
uv = pcurve->Value( u );
|
|
gp_Vec tangent; gp_Pnt p; gp_Vec du, dv;
|
|
curve->D1( u, p, tangent );
|
|
if ( reverse )
|
|
tangent.Reverse();
|
|
_surface->D1( uv.X(), uv.Y(), p, du, dv );
|
|
gp_Vec faceNorm = du ^ dv;
|
|
gp_Vec normal = faceNorm ^ tangent;
|
|
normal.Normalize();
|
|
p = pOut.XYZ() + normal.XYZ() * /*1e-2 * */_hyps[0]->GetTotalThickness() / _hyps[0]->GetNumberLayers();
|
|
faceProj->Perform( p );
|
|
if ( !faceProj->IsDone() || faceProj->NbPoints() < 1 )
|
|
return setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, NULL );
|
|
Standard_Real U,V;
|
|
faceProj->LowerDistanceParameters(U,V);
|
|
lEdge._normal2D.SetCoord( U - uv.X(), V - uv.Y() );
|
|
lEdge._normal2D.Normalize();
|
|
}
|
|
else
|
|
{
|
|
gp_Vec2d tangent;
|
|
pcurve->D1( u, uv, tangent );
|
|
tangent.Normalize();
|
|
if ( reverse )
|
|
tangent.Reverse();
|
|
lEdge._normal2D.SetCoord( -tangent.Y(), tangent.X() );
|
|
}
|
|
lEdge._uvOut = lEdge._uvIn = uv.XY();
|
|
lEdge._ray.SetLocation ( lEdge._uvOut );
|
|
lEdge._ray.SetDirection( lEdge._normal2D );
|
|
lEdge._isBlocked = false;
|
|
lEdge._length2D = 0;
|
|
#ifdef _DEBUG_
|
|
lEdge._ID = _nbLE++;
|
|
#endif
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Compute and set _LayerEdge::_len2dTo3dRatio
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder2D::setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut )
|
|
{
|
|
const double probeLen2d = 1e-3;
|
|
|
|
gp_Pnt2d p2d = LE._uvOut + LE._normal2D * probeLen2d;
|
|
gp_Pnt p3d = _surface->Value( p2d.X(), p2d.Y() );
|
|
double len3d = p3d.Distance( pOut );
|
|
if ( len3d < std::numeric_limits<double>::min() )
|
|
LE._len2dTo3dRatio = std::numeric_limits<double>::min();
|
|
else
|
|
LE._len2dTo3dRatio = probeLen2d / len3d;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Increase length of _LayerEdge's to reach the required thickness of layers
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::inflate()
|
|
{
|
|
// Limit size of inflation step by geometry size found by
|
|
// itersecting _LayerEdge's with _Segment's
|
|
double minSize = _maxThickness, maxSize = 0;
|
|
vector< const _Segment* > foundSegs;
|
|
_SegmentIntersection intersection;
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L1 = _polyLineVec[ iL1 ];
|
|
for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
|
|
{
|
|
_PolyLine& L2 = * L1._reachableLines[ iL2 ];
|
|
for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
|
|
{
|
|
foundSegs.clear();
|
|
L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
|
|
for ( size_t i = 0; i < foundSegs.size(); ++i )
|
|
if ( ! L1.IsAdjacent( *foundSegs[i], & L1._lEdges[iLE] ) &&
|
|
intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
|
|
{
|
|
double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
|
|
double size = distToL2 / ( 1 + L1._advancable + L2._advancable );
|
|
if ( 1e-10 < size && size < minSize )
|
|
minSize = size;
|
|
if ( size > maxSize )
|
|
maxSize = size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ( minSize > maxSize ) // no collisions possible
|
|
maxSize = _maxThickness;
|
|
#ifdef __myDEBUG
|
|
cout << "-- minSize = " << minSize << ", maxSize = " << maxSize << endl;
|
|
#endif
|
|
|
|
double curThick = 0, stepSize = minSize;
|
|
int nbSteps = 0;
|
|
if ( maxSize > _maxThickness )
|
|
maxSize = _maxThickness;
|
|
while ( curThick < maxSize )
|
|
{
|
|
curThick += stepSize * 1.25;
|
|
if ( curThick > _maxThickness )
|
|
curThick = _maxThickness;
|
|
|
|
// Elongate _LayerEdge's
|
|
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL ];
|
|
if ( !L._advancable ) continue;
|
|
const double lineThick = Min( curThick, getLineThickness( iL ));
|
|
bool lenChange = false;
|
|
for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE )
|
|
lenChange |= L._lEdges[iLE].SetNewLength( lineThick );
|
|
// for ( int k=0; k<L._segments.size(); ++k)
|
|
// cout << "( " << L._segments[k].p1().X() << ", " <<L._segments[k].p1().Y() << " ) "
|
|
// << "( " << L._segments[k].p2().X() << ", " <<L._segments[k].p2().Y() << " ) "
|
|
// << endl;
|
|
if ( lenChange )
|
|
L._segTree.reset( new _SegmentTree( L._segments ));
|
|
}
|
|
|
|
// Avoid intersection of _Segment's
|
|
bool allBlocked = fixCollisions();
|
|
if ( allBlocked )
|
|
{
|
|
break; // no more inflating possible
|
|
}
|
|
stepSize = Max( stepSize , _maxThickness / 10. );
|
|
nbSteps++;
|
|
}
|
|
|
|
// if (nbSteps == 0 )
|
|
// return error("failed at the very first inflation step");
|
|
|
|
|
|
// remove _LayerEdge's of one line intersecting with each other
|
|
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL ];
|
|
if ( !L._advancable ) continue;
|
|
|
|
// replace an inactive (1st) _LayerEdge with an active one of a neighbour _PolyLine
|
|
if ( /*!L._leftLine->_advancable &&*/ L.IsCommonEdgeShared( *L._leftLine ) ) {
|
|
L._lEdges[0] = L._leftLine->_lEdges.back();
|
|
}
|
|
if ( !L._rightLine->_advancable && L.IsCommonEdgeShared( *L._rightLine ) ) {
|
|
L._lEdges.back() = L._rightLine->_lEdges[0];
|
|
}
|
|
|
|
_SegmentIntersection intersection;
|
|
for ( int isR = 0; ( isR < 2 && L._lEdges.size() > 2 ); ++isR )
|
|
{
|
|
int nbRemove = 0, deltaIt = isR ? -1 : +1;
|
|
_PolyLine::TEdgeIterator eIt = isR ? L._lEdges.end()-1 : L._lEdges.begin();
|
|
if ( eIt->_length2D == 0 ) continue;
|
|
_Segment seg1( eIt->_uvOut, eIt->_uvIn );
|
|
for ( eIt += deltaIt; nbRemove < (int)L._lEdges.size()-1; eIt += deltaIt )
|
|
{
|
|
_Segment seg2( eIt->_uvOut, eIt->_uvIn );
|
|
if ( !intersection.Compute( seg1, seg2 ))
|
|
break;
|
|
++nbRemove;
|
|
}
|
|
if ( nbRemove > 0 ) {
|
|
if ( nbRemove == (int)L._lEdges.size()-1 ) // 1st and last _LayerEdge's intersect
|
|
{
|
|
--nbRemove;
|
|
_LayerEdge& L0 = L._lEdges.front();
|
|
_LayerEdge& L1 = L._lEdges.back();
|
|
L0._length2D *= intersection._param1 * 0.5;
|
|
L1._length2D *= intersection._param2 * 0.5;
|
|
L0._uvIn = L0._uvOut + L0._normal2D * L0._length2D;
|
|
L1._uvIn = L1._uvOut + L1._normal2D * L1._length2D;
|
|
if ( L.IsCommonEdgeShared( *L._leftLine ))
|
|
L._leftLine->_lEdges.back() = L0;
|
|
}
|
|
if ( isR )
|
|
L._lEdges.erase( L._lEdges.end()-nbRemove-1,
|
|
L._lEdges.end()-nbRemove );
|
|
else
|
|
L._lEdges.erase( L._lEdges.begin()+1,
|
|
L._lEdges.begin()+1+nbRemove );
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Remove intersection of _PolyLine's
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::fixCollisions()
|
|
{
|
|
// look for intersections of _Segment's by intersecting _LayerEdge's with
|
|
// _Segment's
|
|
vector< const _Segment* > foundSegs;
|
|
_SegmentIntersection intersection;
|
|
|
|
list< pair< _LayerEdge*, double > > edgeLenLimitList;
|
|
list< _LayerEdge* > blockedEdgesList;
|
|
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L1 = _polyLineVec[ iL1 ];
|
|
//if ( !L1._advancable ) continue;
|
|
for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
|
|
{
|
|
_PolyLine& L2 = * L1._reachableLines[ iL2 ];
|
|
for ( size_t iLE = L1.FirstLEdge(); iLE < L1._lEdges.size(); ++iLE )
|
|
{
|
|
_LayerEdge& LE1 = L1._lEdges[iLE];
|
|
if ( LE1._isBlocked ) continue;
|
|
foundSegs.clear();
|
|
L2._segTree->GetSegmentsNear( LE1._ray, foundSegs );
|
|
for ( size_t i = 0; i < foundSegs.size(); ++i )
|
|
{
|
|
if ( ! L1.IsAdjacent( *foundSegs[i], &LE1 ) &&
|
|
intersection.Compute( *foundSegs[i], LE1._ray ))
|
|
{
|
|
const double dist2DToL2 = intersection._param2;
|
|
double newLen2D = dist2DToL2 / 2;
|
|
if ( newLen2D < 1.1 * LE1._length2D ) // collision!
|
|
{
|
|
if ( newLen2D > 0 || !L1._advancable )
|
|
{
|
|
blockedEdgesList.push_back( &LE1 );
|
|
if ( L1._advancable && newLen2D > 0 )
|
|
{
|
|
edgeLenLimitList.push_back( make_pair( &LE1, newLen2D ));
|
|
blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine ]);
|
|
blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine + 1 ]);
|
|
}
|
|
else // here dist2DToL2 < 0 and LE1._length2D == 0
|
|
{
|
|
_LayerEdge* LE2[2] = { & L2._lEdges[ foundSegs[i]->_indexInLine ],
|
|
& L2._lEdges[ foundSegs[i]->_indexInLine + 1 ] };
|
|
_Segment outSeg2( LE2[0]->_uvOut, LE2[1]->_uvOut );
|
|
intersection.Compute( outSeg2, LE1._ray );
|
|
newLen2D = intersection._param2 / 2;
|
|
if ( newLen2D > 0 )
|
|
{
|
|
edgeLenLimitList.push_back( make_pair( LE2[0], newLen2D ));
|
|
edgeLenLimitList.push_back( make_pair( LE2[1], newLen2D ));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// limit length of _LayerEdge's that are extrema of _PolyLine's
|
|
// to avoid intersection of these _LayerEdge's
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL1 ];
|
|
if ( L._lEdges.size() < 4 ) // all intermediate _LayerEdge's intersect with extremum ones
|
|
{
|
|
_LayerEdge& LEL = L._leftLine->_lEdges.back();
|
|
_LayerEdge& LER = L._lEdges.back();
|
|
_Segment segL( LEL._uvOut, LEL._uvIn );
|
|
_Segment segR( LER._uvOut, LER._uvIn );
|
|
double newLen2DL, newLen2DR;
|
|
if ( intersection.Compute( segL, LER._ray ))
|
|
{
|
|
newLen2DR = intersection._param2 / 2;
|
|
newLen2DL = LEL._length2D * intersection._param1 / 2;
|
|
}
|
|
else if ( intersection.Compute( segR, LEL._ray ))
|
|
{
|
|
newLen2DL = intersection._param2 / 2;
|
|
newLen2DR = LER._length2D * intersection._param1 / 2;
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
if ( newLen2DL > 0 && newLen2DR > 0 )
|
|
{
|
|
if ( newLen2DL < 1.1 * LEL._length2D )
|
|
edgeLenLimitList.push_back( make_pair( &LEL, newLen2DL ));
|
|
if ( newLen2DR < 1.1 * LER._length2D )
|
|
edgeLenLimitList.push_back( make_pair( &LER, newLen2DR ));
|
|
}
|
|
}
|
|
}
|
|
|
|
// set limited length to _LayerEdge's
|
|
list< pair< _LayerEdge*, double > >::iterator edge2Len = edgeLenLimitList.begin();
|
|
for ( ; edge2Len != edgeLenLimitList.end(); ++edge2Len )
|
|
{
|
|
_LayerEdge* LE = edge2Len->first;
|
|
if ( LE->_length2D > edge2Len->second )
|
|
{
|
|
LE->_isBlocked = false;
|
|
LE->SetNewLength( edge2Len->second / LE->_len2dTo3dRatio );
|
|
}
|
|
LE->_isBlocked = true;
|
|
}
|
|
|
|
// block inflation of _LayerEdge's
|
|
list< _LayerEdge* >::iterator edge = blockedEdgesList.begin();
|
|
for ( ; edge != blockedEdgesList.end(); ++edge )
|
|
(*edge)->_isBlocked = true;
|
|
|
|
// find a not blocked _LayerEdge
|
|
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL ];
|
|
if ( !L._advancable ) continue;
|
|
for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE )
|
|
if ( !L._lEdges[ iLE ]._isBlocked )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Create new edges and shrink edges existing on a non-advancable _PolyLine
|
|
* adjacent to an advancable one.
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::shrink()
|
|
{
|
|
gp_Pnt2d uv; //gp_Vec2d tangent;
|
|
_SegmentIntersection intersection;
|
|
double sign;
|
|
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL1 ]; // line with no layers
|
|
if ( L._advancable )
|
|
continue;
|
|
const int nbAdvancable = ( L._rightLine->_advancable + L._leftLine->_advancable );
|
|
if ( nbAdvancable == 0 )
|
|
continue;
|
|
|
|
const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd );
|
|
const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd );
|
|
const int v1ID = getMeshDS()->ShapeToIndex( V1 );
|
|
const int v2ID = getMeshDS()->ShapeToIndex( V2 );
|
|
const bool isShrinkableL = ! _noShrinkVert.count( v1ID ) && L._leftLine->_advancable;
|
|
const bool isShrinkableR = ! _noShrinkVert.count( v2ID ) && L._rightLine->_advancable;
|
|
if ( !isShrinkableL && !isShrinkableR )
|
|
continue;
|
|
|
|
const TopoDS_Edge& E = L._wire->Edge ( L._edgeInd );
|
|
const int edgeID = L._wire->EdgeID ( L._edgeInd );
|
|
const double edgeLen = L._wire->EdgeLength ( L._edgeInd );
|
|
Handle(Geom2d_Curve) pcurve = L._wire->Curve2d ( L._edgeInd );
|
|
const bool edgeReversed = ( E.Orientation() == TopAbs_REVERSED );
|
|
|
|
SMESH_MesherHelper helper( *_mesh ); // to create nodes and edges on E
|
|
helper.SetSubShape( E );
|
|
helper.SetElementsOnShape( true );
|
|
|
|
// Check a FACE adjacent to _face by E
|
|
bool existingNodesFound = false;
|
|
TopoDS_Face adjFace;
|
|
PShapeIteratorPtr faceIt = _helper.GetAncestors( E, *_mesh, TopAbs_FACE );
|
|
while ( const TopoDS_Shape* f = faceIt->next() )
|
|
if ( !_face.IsSame( *f ))
|
|
{
|
|
adjFace = TopoDS::Face( *f );
|
|
SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( adjFace, *_mesh );
|
|
if ( !pm || pm->NbProxySubMeshes() == 0 /*|| !pm->GetProxySubMesh( E )*/)
|
|
{
|
|
// There are no viscous layers on an adjacent FACE, clear it's 2D mesh
|
|
removeMeshFaces( adjFace );
|
|
// if ( removeMeshFaces( adjFace ))
|
|
// _clearedFaces.push_back( adjFace ); // to re-compute after all
|
|
}
|
|
else
|
|
{
|
|
// There are viscous layers on the adjacent FACE; shrink must be already done;
|
|
//
|
|
// copy layer nodes
|
|
//
|
|
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
|
|
int iPFrom = L._firstPntInd, iPTo = L._lastPntInd;
|
|
if ( isShrinkableL )
|
|
{
|
|
const THypVL* hyp = getLineHypothesis( L._leftLine->_index );
|
|
vector<gp_XY>& uvVec = L._lEdges.front()._uvRefined;
|
|
for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) {
|
|
const UVPtStruct& uvPt = points[ iPFrom + i + 1 ];
|
|
L._leftNodes.push_back( uvPt.node );
|
|
uvVec.push_back ( pcurve->Value( uvPt.param ).XY() );
|
|
}
|
|
iPFrom += hyp->GetNumberLayers();
|
|
}
|
|
if ( isShrinkableR )
|
|
{
|
|
const THypVL* hyp = getLineHypothesis( L._rightLine->_index );
|
|
vector<gp_XY>& uvVec = L._lEdges.back()._uvRefined;
|
|
for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) {
|
|
const UVPtStruct& uvPt = points[ iPTo - i - 1 ];
|
|
L._rightNodes.push_back( uvPt.node );
|
|
uvVec.push_back ( pcurve->Value( uvPt.param ).XY() );
|
|
}
|
|
iPTo -= hyp->GetNumberLayers();
|
|
}
|
|
// make proxy sub-mesh data of present nodes
|
|
//
|
|
UVPtStructVec nodeDataVec( & points[ iPFrom ], & points[ iPTo + 1 ]);
|
|
|
|
double normSize = nodeDataVec.back().normParam - nodeDataVec.front().normParam;
|
|
for ( int iP = nodeDataVec.size()-1; iP >= 0 ; --iP )
|
|
nodeDataVec[iP].normParam =
|
|
( nodeDataVec[iP].normParam - nodeDataVec[0].normParam ) / normSize;
|
|
|
|
const SMDS_MeshNode* n = nodeDataVec.front().node;
|
|
if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
|
|
nodeDataVec.front().param = L._wire->FirstU( L._edgeInd );
|
|
n = nodeDataVec.back().node;
|
|
if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
|
|
nodeDataVec.back().param = L._wire->LastU( L._edgeInd );
|
|
|
|
_ProxyMeshOfFace::_EdgeSubMesh* myEdgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
|
|
myEdgeSM->SetUVPtStructVec( nodeDataVec );
|
|
|
|
existingNodesFound = true;
|
|
break;
|
|
}
|
|
} // loop on FACEs sharing E
|
|
|
|
// Check if L is an already shrinked seam
|
|
if ( adjFace.IsNull() && _helper.IsRealSeam( edgeID ))
|
|
if ( L._wire->Edge( L._edgeInd ).Orientation() == TopAbs_FORWARD )
|
|
continue;
|
|
// Commented as a case with a seam EDGE (issue 0052461) is hard to support
|
|
// because SMESH_ProxyMesh can't hold different sub-meshes for two
|
|
// 2D representations of the seam. But such a case is not a real practice one.
|
|
// {
|
|
// for ( int iL2 = iL1-1; iL2 > -1; --iL2 )
|
|
// {
|
|
// _PolyLine& L2 = _polyLineVec[ iL2 ];
|
|
// if ( edgeID == L2._wire->EdgeID( L2._edgeInd ))
|
|
// {
|
|
// // copy layer nodes
|
|
// const int seamPar = _helper.GetPeriodicIndex();
|
|
// vector<gp_XY>& uvVec = L._lEdges.front()._uvRefined;
|
|
// if ( isShrinkableL )
|
|
// {
|
|
// L._leftNodes = L2._rightNodes;
|
|
// uvVec = L2._lEdges.back()._uvRefined;
|
|
// }
|
|
// if ( isShrinkableR )
|
|
// {
|
|
// L._rightNodes = L2._leftNodes;
|
|
// uvVec = L2._lEdges.front()._uvRefined;
|
|
// }
|
|
// for ( size_t i = 0; i < uvVec.size(); ++i )
|
|
// {
|
|
// gp_XY & uv = uvVec[i];
|
|
// uv.SetCoord( seamPar, _helper.GetOtherParam( uv.Coord( seamPar )));
|
|
// }
|
|
|
|
// existingNodesFound = true;
|
|
// break;
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
if ( existingNodesFound )
|
|
continue; // nothing more to do in this case
|
|
|
|
double u1 = L._wire->FirstU( L._edgeInd ), uf = u1;
|
|
double u2 = L._wire->LastU ( L._edgeInd ), ul = u2;
|
|
|
|
// a ratio to pass 2D <--> 1D
|
|
const double len1D = 1e-3;
|
|
const double len2D = pcurve->Value(uf).Distance( pcurve->Value(uf+len1D));
|
|
double len1dTo2dRatio = len1D / len2D;
|
|
|
|
// create a vector of proxy nodes
|
|
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
|
|
UVPtStructVec nodeDataVec( & points[ L._firstPntInd ],
|
|
& points[ L._lastPntInd + 1 ]);
|
|
nodeDataVec.front().param = u1; // U on vertex is correct on only one of shared edges
|
|
nodeDataVec.back ().param = u2;
|
|
nodeDataVec.front().normParam = 0;
|
|
nodeDataVec.back ().normParam = 1;
|
|
|
|
// Get length of existing segments (from an edge start to a node) and their nodes
|
|
vector< double > segLengths( nodeDataVec.size() - 1 );
|
|
BRepAdaptor_Curve curve( E );
|
|
for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP )
|
|
{
|
|
const double len = GCPnts_AbscissaPoint::Length( curve, uf, nodeDataVec[iP].param );
|
|
segLengths[ iP-1 ] = len;
|
|
}
|
|
|
|
// Move first and last parameters on EDGE (U of n1) according to layers' thickness
|
|
// and create nodes of layers on EDGE ( -x-x-x )
|
|
|
|
// Before
|
|
// n1 n2 n3 n4
|
|
// x-----x-----x-----x-----
|
|
// | e1 e2 e3 e4
|
|
|
|
// After
|
|
// n1 n2 n3
|
|
// x-x-x-x-----x-----x----
|
|
// | | | | e1 e2 e3
|
|
|
|
int isRShrinkedForAdjacent = 0;
|
|
UVPtStructVec nodeDataForAdjacent;
|
|
for ( int isR = 0; isR < 2; ++isR )
|
|
{
|
|
_PolyLine* L2 = isR ? L._rightLine : L._leftLine; // line with layers
|
|
if ( !L2->_advancable &&
|
|
!toShrinkForAdjacent( adjFace, E, L._wire->FirstVertex( L._edgeInd + isR )))
|
|
continue;
|
|
if ( isR ? !isShrinkableR : !isShrinkableL )
|
|
continue;
|
|
|
|
double & u = isR ? u2 : u1; // param to move
|
|
double u0 = isR ? ul : uf; // init value of the param to move
|
|
int iPEnd = isR ? nodeDataVec.size() - 1 : 0;
|
|
|
|
_LayerEdge& nearLE = isR ? L._lEdges.back() : L._lEdges.front();
|
|
_LayerEdge& farLE = isR ? L._lEdges.front() : L._lEdges.back();
|
|
|
|
// try to find length of advancement along L by intersecting L with
|
|
// an adjacent _Segment of L2
|
|
|
|
double& length2D = nearLE._length2D;
|
|
double length1D = 0;
|
|
sign = ( isR ^ edgeReversed ) ? -1. : 1.;
|
|
|
|
bool isConvex = false;
|
|
if ( L2->_advancable )
|
|
{
|
|
const uvPtStruct& tang2P1 = points[ isR ? L2->_firstPntInd : L2->_lastPntInd ];
|
|
const uvPtStruct& tang2P2 = points[ isR ? L2->_firstPntInd+1 : L2->_lastPntInd-1 ];
|
|
gp_XY seg2Dir( tang2P2.u - tang2P1.u,
|
|
tang2P2.v - tang2P1.v );
|
|
int iFSeg2 = isR ? 0 : L2->_segments.size() - 1;
|
|
int iLSeg2 = isR ? 1 : L2->_segments.size() - 2;
|
|
gp_XY uvLSeg2In = L2->_lEdges[ iLSeg2 ]._uvIn;
|
|
Handle(Geom2d_Line) seg2Line = new Geom2d_Line( uvLSeg2In, seg2Dir );
|
|
|
|
Geom2dAdaptor_Curve edgeCurve( pcurve, Min( uf, ul ), Max( uf, ul ));
|
|
Geom2dAdaptor_Curve seg2Curve( seg2Line );
|
|
Geom2dInt_GInter curveInt( edgeCurve, seg2Curve, 1e-7, 1e-7 );
|
|
isConvex = ( curveInt.IsDone() && !curveInt.IsEmpty() );
|
|
if ( isConvex ) {
|
|
/* convex VERTEX */
|
|
length1D = Abs( u - curveInt.Point( 1 ).ParamOnFirst() );
|
|
double maxDist2d = 2 * L2->_lEdges[ iLSeg2 ]._length2D;
|
|
isConvex = ( length1D < maxDist2d * len1dTo2dRatio );
|
|
/* |L seg2
|
|
* | o---o---
|
|
* | / |
|
|
* |/ | L2
|
|
* x------x--- */
|
|
}
|
|
if ( !isConvex ) { /* concave VERTEX */ /* o-----o---
|
|
* \ |
|
|
* \ | L2
|
|
* x--x---
|
|
* /
|
|
* L / */
|
|
length2D = L2->_lEdges[ iFSeg2 ]._length2D;
|
|
//if ( L2->_advancable ) continue;
|
|
}
|
|
}
|
|
else // L2 is advancable but in the face adjacent by L
|
|
{
|
|
length2D = farLE._length2D;
|
|
if ( length2D == 0 ) {
|
|
_LayerEdge& neighborLE =
|
|
( isR ? L._leftLine->_lEdges.back() : L._rightLine->_lEdges.front() );
|
|
length2D = neighborLE._length2D;
|
|
if ( length2D == 0 )
|
|
length2D = _maxThickness * nearLE._len2dTo3dRatio;
|
|
}
|
|
}
|
|
|
|
// move u to the internal boundary of layers
|
|
// u --> u
|
|
// x-x-x-x-----x-----x----
|
|
double maxLen3D = Min( _maxThickness, edgeLen / ( 1 + nbAdvancable ));
|
|
double maxLen2D = maxLen3D * nearLE._len2dTo3dRatio;
|
|
if ( !length2D ) length2D = length1D / len1dTo2dRatio;
|
|
if ( Abs( length2D ) > maxLen2D )
|
|
length2D = maxLen2D;
|
|
nearLE._uvIn = nearLE._uvOut + nearLE._normal2D * length2D;
|
|
|
|
u += length2D * len1dTo2dRatio * sign;
|
|
nodeDataVec[ iPEnd ].param = u;
|
|
|
|
gp_Pnt2d newUV = pcurve->Value( u );
|
|
nodeDataVec[ iPEnd ].u = newUV.X();
|
|
nodeDataVec[ iPEnd ].v = newUV.Y();
|
|
|
|
// compute params of layers on L
|
|
vector<double> heights;
|
|
const THypVL* hyp = getLineHypothesis( L2->_index );
|
|
calcLayersHeight( u - u0, heights, hyp );
|
|
//
|
|
vector< double > params( heights.size() );
|
|
for ( size_t i = 0; i < params.size(); ++i )
|
|
params[ i ] = u0 + heights[ i ];
|
|
|
|
// create nodes of layers and edges between them
|
|
// x-x-x-x---
|
|
vector< const SMDS_MeshNode* >& layersNode = isR ? L._rightNodes : L._leftNodes;
|
|
vector<gp_XY>& nodeUV = ( isR ? L._lEdges.back() : L._lEdges[0] )._uvRefined;
|
|
nodeUV.resize ( hyp->GetNumberLayers() );
|
|
layersNode.resize( hyp->GetNumberLayers() );
|
|
const SMDS_MeshNode* vertexNode = nodeDataVec[ iPEnd ].node;
|
|
const SMDS_MeshNode * prevNode = vertexNode;
|
|
for ( size_t i = 0; i < params.size(); ++i )
|
|
{
|
|
const gp_Pnt p = curve.Value( params[i] );
|
|
layersNode[ i ] = helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, params[i] );
|
|
nodeUV [ i ] = pcurve->Value( params[i] ).XY();
|
|
helper.AddEdge( prevNode, layersNode[ i ] );
|
|
prevNode = layersNode[ i ];
|
|
}
|
|
|
|
// store data of layer nodes made for adjacent FACE
|
|
if ( !L2->_advancable )
|
|
{
|
|
isRShrinkedForAdjacent = isR;
|
|
nodeDataForAdjacent.resize( hyp->GetNumberLayers() );
|
|
|
|
size_t iFrw = 0, iRev = nodeDataForAdjacent.size()-1, *i = isR ? &iRev : &iFrw;
|
|
nodeDataForAdjacent[ *i ] = points[ isR ? L._lastPntInd : L._firstPntInd ];
|
|
nodeDataForAdjacent[ *i ].param = u0;
|
|
nodeDataForAdjacent[ *i ].normParam = isR;
|
|
for ( ++iFrw, --iRev; iFrw < layersNode.size(); ++iFrw, --iRev )
|
|
{
|
|
nodeDataForAdjacent[ *i ].node = layersNode[ iFrw - 1 ];
|
|
nodeDataForAdjacent[ *i ].u = nodeUV [ iFrw - 1 ].X();
|
|
nodeDataForAdjacent[ *i ].v = nodeUV [ iFrw - 1 ].Y();
|
|
nodeDataForAdjacent[ *i ].param = params [ iFrw - 1 ];
|
|
}
|
|
}
|
|
// replace a node on vertex by a node of last (most internal) layer
|
|
// in a segment on E
|
|
SMDS_ElemIteratorPtr segIt = vertexNode->GetInverseElementIterator( SMDSAbs_Edge );
|
|
const SMDS_MeshNode* segNodes[3];
|
|
while ( segIt->more() )
|
|
{
|
|
const SMDS_MeshElement* segment = segIt->next();
|
|
if ( segment->getshapeId() != edgeID ) continue;
|
|
|
|
const int nbNodes = segment->NbNodes();
|
|
for ( int i = 0; i < nbNodes; ++i )
|
|
{
|
|
const SMDS_MeshNode* n = segment->GetNode( i );
|
|
segNodes[ i ] = ( n == vertexNode ? layersNode.back() : n );
|
|
}
|
|
getMeshDS()->ChangeElementNodes( segment, segNodes, nbNodes );
|
|
break;
|
|
}
|
|
nodeDataVec[ iPEnd ].node = layersNode.back();
|
|
|
|
} // loop on the extremities of L
|
|
|
|
// Shrink edges to fit in between the layers at EDGE ends
|
|
|
|
double newLength = GCPnts_AbscissaPoint::Length( curve, u1, u2 );
|
|
double lenRatio = newLength / edgeLen * ( edgeReversed ? -1. : 1. );
|
|
for ( size_t iP = 1; iP < nodeDataVec.size()-1; ++iP )
|
|
{
|
|
const SMDS_MeshNode* oldNode = nodeDataVec[iP].node;
|
|
|
|
GCPnts_AbscissaPoint discret( curve, segLengths[iP-1] * lenRatio, u1 );
|
|
if ( !discret.IsDone() )
|
|
throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed"));
|
|
|
|
nodeDataVec[iP].param = discret.Parameter();
|
|
if ( oldNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_EDGE )
|
|
throw SALOME_Exception(SMESH_Comment("ViscousBuilder2D: not SMDS_TOP_EDGE node position: ")
|
|
<< oldNode->GetPosition()->GetTypeOfPosition()
|
|
<< " of node " << oldNode->GetID());
|
|
SMDS_EdgePositionPtr pos = oldNode->GetPosition();
|
|
pos->SetUParameter( nodeDataVec[iP].param );
|
|
|
|
gp_Pnt newP = curve.Value( nodeDataVec[iP].param );
|
|
getMeshDS()->MoveNode( oldNode, newP.X(), newP.Y(), newP.Z() );
|
|
|
|
gp_Pnt2d newUV = pcurve->Value( nodeDataVec[iP].param ).XY();
|
|
nodeDataVec[iP].u = newUV.X();
|
|
nodeDataVec[iP].v = newUV.Y();
|
|
nodeDataVec[iP].normParam = segLengths[iP-1] / edgeLen;
|
|
// nodeDataVec[iP].x = segLengths[iP-1] / edgeLen;
|
|
// nodeDataVec[iP].y = segLengths[iP-1] / edgeLen;
|
|
}
|
|
|
|
// Add nodeDataForAdjacent to nodeDataVec
|
|
|
|
if ( !nodeDataForAdjacent.empty() )
|
|
{
|
|
const double par1 = isRShrinkedForAdjacent ? u2 : uf;
|
|
const double par2 = isRShrinkedForAdjacent ? ul : u1;
|
|
const double shrinkLen = GCPnts_AbscissaPoint::Length( curve, par1, par2 );
|
|
|
|
// compute new normParam for nodeDataVec
|
|
for ( size_t iP = 0; iP < nodeDataVec.size()-1; ++iP )
|
|
nodeDataVec[iP+1].normParam = segLengths[iP] / ( edgeLen + shrinkLen );
|
|
double normDelta = 1 - nodeDataVec.back().normParam;
|
|
if ( !isRShrinkedForAdjacent )
|
|
for ( size_t iP = 0; iP < nodeDataVec.size(); ++iP )
|
|
nodeDataVec[iP].normParam += normDelta;
|
|
|
|
// compute new normParam for nodeDataForAdjacent
|
|
const double deltaR = isRShrinkedForAdjacent ? nodeDataVec.back().normParam : 0;
|
|
for ( size_t iP = !isRShrinkedForAdjacent; iP < nodeDataForAdjacent.size(); ++iP )
|
|
{
|
|
double lenFromPar1 =
|
|
GCPnts_AbscissaPoint::Length( curve, par1, nodeDataForAdjacent[iP].param );
|
|
nodeDataForAdjacent[iP].normParam = deltaR + normDelta * lenFromPar1 / shrinkLen;
|
|
}
|
|
// concatenate nodeDataVec and nodeDataForAdjacent
|
|
nodeDataVec.insert(( isRShrinkedForAdjacent ? nodeDataVec.end() : nodeDataVec.begin() ),
|
|
nodeDataForAdjacent.begin(), nodeDataForAdjacent.end() );
|
|
}
|
|
|
|
// Extend nodeDataVec by a node located at the end of not shared _LayerEdge
|
|
/* n - to add to nodeDataVec
|
|
* o-----o---
|
|
* |\ |
|
|
* | o---o---
|
|
* | |x--x--- L2
|
|
* | /
|
|
* |/ L
|
|
* x
|
|
* / */
|
|
for ( int isR = 0; isR < 2; ++isR )
|
|
{
|
|
_PolyLine& L2 = *( isR ? L._rightLine : L._leftLine ); // line with layers
|
|
if ( ! L2._advancable || L.IsCommonEdgeShared( L2 ) )
|
|
continue;
|
|
vector< const SMDS_MeshNode* >& layerNodes2 = isR ? L2._leftNodes : L2._rightNodes;
|
|
_LayerEdge& LE2 = isR ? L2._lEdges.front() : L2._lEdges.back();
|
|
if ( layerNodes2.empty() )
|
|
{
|
|
// refine the not shared _LayerEdge
|
|
vector<double> layersHeight;
|
|
calcLayersHeight( LE2._length2D, layersHeight, getLineHypothesis( L2._index ));
|
|
|
|
vector<gp_XY>& nodeUV2 = LE2._uvRefined;
|
|
nodeUV2.resize ( layersHeight.size() );
|
|
layerNodes2.resize( layersHeight.size() );
|
|
for ( size_t i = 0; i < layersHeight.size(); ++i )
|
|
{
|
|
gp_XY uv = LE2._uvOut + LE2._normal2D * layersHeight[i];
|
|
gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
|
|
nodeUV2 [ i ] = uv;
|
|
layerNodes2[ i ] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
|
|
}
|
|
}
|
|
UVPtStruct ptOfNode;
|
|
ptOfNode.u = LE2._uvRefined.back().X();
|
|
ptOfNode.v = LE2._uvRefined.back().Y();
|
|
ptOfNode.node = layerNodes2.back();
|
|
ptOfNode.param = isR ? ul : uf;
|
|
ptOfNode.normParam = isR ? 1 : 0;
|
|
|
|
nodeDataVec.insert(( isR ? nodeDataVec.end() : nodeDataVec.begin() ), ptOfNode );
|
|
|
|
// recompute normParam of nodes in nodeDataVec
|
|
newLength = GCPnts_AbscissaPoint::Length( curve,
|
|
nodeDataVec.front().param,
|
|
nodeDataVec.back().param);
|
|
for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP )
|
|
{
|
|
const double len = GCPnts_AbscissaPoint::Length( curve,
|
|
nodeDataVec.front().param,
|
|
nodeDataVec[iP].param );
|
|
nodeDataVec[iP].normParam = len / newLength;
|
|
}
|
|
}
|
|
|
|
// create a proxy sub-mesh containing the moved nodes
|
|
_ProxyMeshOfFace::_EdgeSubMesh* edgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
|
|
edgeSM->SetUVPtStructVec( nodeDataVec );
|
|
|
|
// set a sub-mesh event listener to remove just created edges when
|
|
// "ViscousLayers2D" hypothesis is modified
|
|
VISCOUS_3D::ToClearSubWithMain( _mesh->GetSubMesh( E ), _face );
|
|
|
|
} // loop on _polyLineVec
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns true if there will be a shrinked mesh on EDGE E of FACE adjFace
|
|
* near VERTEX V
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::toShrinkForAdjacent( const TopoDS_Face& adjFace,
|
|
const TopoDS_Edge& E,
|
|
const TopoDS_Vertex& V)
|
|
{
|
|
if ( _noShrinkVert.count( getMeshDS()->ShapeToIndex( V )) || adjFace.IsNull() )
|
|
return false;
|
|
|
|
vector< const StdMeshers_ViscousLayers2D* > hyps;
|
|
vector< TopoDS_Shape > hypShapes;
|
|
if ( VISCOUS_2D::findHyps( *_mesh, adjFace, hyps, hypShapes ))
|
|
{
|
|
VISCOUS_2D::_ViscousBuilder2D builder( *_mesh, adjFace, hyps, hypShapes );
|
|
builder._faceSideVec = StdMeshers_FaceSide::GetFaceWires( adjFace, *_mesh, true, _error );
|
|
builder.findEdgesWithLayers();
|
|
|
|
PShapeIteratorPtr edgeIt = _helper.GetAncestors( V, *_mesh, TopAbs_EDGE );
|
|
while ( const TopoDS_Shape* edgeAtV = edgeIt->next() )
|
|
{
|
|
if ( !edgeAtV->IsSame( E ) &&
|
|
_helper.IsSubShape( *edgeAtV, adjFace ) &&
|
|
!builder._ignoreShapeIds.count( getMeshDS()->ShapeToIndex( *edgeAtV )))
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Make faces
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::refine()
|
|
{
|
|
// find out orientation of faces to create
|
|
bool isReverse =
|
|
( _helper.GetSubShapeOri( _mesh->GetShapeToMesh(), _face ) == TopAbs_REVERSED );
|
|
|
|
// store a proxyMesh in a sub-mesh
|
|
// make faces on each _PolyLine
|
|
vector< double > layersHeight;
|
|
//double prevLen2D = -1;
|
|
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL ];
|
|
if ( !L._advancable ) continue;
|
|
|
|
// replace an inactive (1st) _LayerEdge with an active one of a neighbour _PolyLine
|
|
//size_t iLE = 0, nbLE = L._lEdges.size();
|
|
const bool leftEdgeShared = L.IsCommonEdgeShared( *L._leftLine );
|
|
const bool rightEdgeShared = L.IsCommonEdgeShared( *L._rightLine );
|
|
if ( /*!L._leftLine->_advancable &&*/ leftEdgeShared )
|
|
{
|
|
L._lEdges[0] = L._leftLine->_lEdges.back();
|
|
//iLE += int( !L._leftLine->_advancable );
|
|
}
|
|
if ( !L._rightLine->_advancable && rightEdgeShared )
|
|
{
|
|
L._lEdges.back() = L._rightLine->_lEdges[0];
|
|
//--nbLE;
|
|
}
|
|
|
|
// limit length of neighbour _LayerEdge's to avoid sharp change of layers thickness
|
|
|
|
vector< double > segLen( L._lEdges.size() );
|
|
segLen[0] = 0.0;
|
|
|
|
// check if length modification is useful: look for _LayerEdge's
|
|
// with length limited due to collisions
|
|
bool lenLimited = false;
|
|
for ( size_t iLE = 1; ( iLE < L._lEdges.size()-1 && !lenLimited ); ++iLE )
|
|
lenLimited = L._lEdges[ iLE ]._isBlocked;
|
|
|
|
if ( lenLimited )
|
|
{
|
|
for ( size_t i = 1; i < segLen.size(); ++i )
|
|
{
|
|
// accumulate length of segments
|
|
double sLen = (L._lEdges[i-1]._uvOut - L._lEdges[i]._uvOut ).Modulus();
|
|
segLen[i] = segLen[i-1] + sLen;
|
|
}
|
|
const double totSegLen = segLen.back();
|
|
// normalize the accumulated length
|
|
for ( size_t iS = 1; iS < segLen.size(); ++iS )
|
|
segLen[iS] /= totSegLen;
|
|
|
|
for ( int isR = 0; isR < 2; ++isR )
|
|
{
|
|
size_t iF = 0, iL = L._lEdges.size()-1;
|
|
size_t *i = isR ? &iL : &iF;
|
|
_LayerEdge* prevLE = & L._lEdges[ *i ];
|
|
double weight = 0;
|
|
for ( ++iF, --iL; iF < L._lEdges.size()-1; ++iF, --iL )
|
|
{
|
|
_LayerEdge& LE = L._lEdges[*i];
|
|
if ( prevLE->_length2D > 0 )
|
|
{
|
|
gp_XY tangent ( LE._normal2D.Y(), -LE._normal2D.X() );
|
|
weight += Abs( tangent * ( prevLE->_uvIn - LE._uvIn )) / totSegLen;
|
|
// gp_XY prevTang( LE._uvOut - prevLE->_uvOut );
|
|
// gp_XY prevNorm( -prevTang.Y(), prevTang.X() );
|
|
gp_XY prevNorm = LE._normal2D;
|
|
double prevProj = prevNorm * ( prevLE->_uvIn - prevLE->_uvOut );
|
|
if ( prevProj > 0 ) {
|
|
prevProj /= prevNorm.Modulus();
|
|
if ( LE._length2D < prevProj )
|
|
weight += 0.75 * ( 1 - weight ); // length decrease is more preferable
|
|
LE._length2D = weight * LE._length2D + ( 1 - weight ) * prevProj;
|
|
LE._uvIn = LE._uvOut + LE._normal2D * LE._length2D;
|
|
}
|
|
}
|
|
prevLE = & LE;
|
|
}
|
|
}
|
|
}
|
|
// DEBUG: to see _uvRefined. cout can be redirected to hide NETGEN output
|
|
// cerr << "import smesh" << endl << "mesh = smesh.Mesh()"<< endl;
|
|
|
|
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
|
|
|
|
// analyse extremities of the _PolyLine to find existing nodes
|
|
const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd );
|
|
const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd );
|
|
const int v1ID = getMeshDS()->ShapeToIndex( V1 );
|
|
const int v2ID = getMeshDS()->ShapeToIndex( V2 );
|
|
const bool isShrinkableL = ! _noShrinkVert.count( v1ID );
|
|
const bool isShrinkableR = ! _noShrinkVert.count( v2ID );
|
|
|
|
bool hasLeftNode = ( !L._leftLine->_rightNodes.empty() && leftEdgeShared );
|
|
bool hasRightNode = ( !L._rightLine->_leftNodes.empty() && rightEdgeShared );
|
|
bool hasOwnLeftNode = ( !L._leftNodes.empty() );
|
|
bool hasOwnRightNode = ( !L._rightNodes.empty() );
|
|
bool isClosedEdge = ( points[ L._firstPntInd ].node == points[ L._lastPntInd ].node );
|
|
const size_t
|
|
nbN = L._lastPntInd - L._firstPntInd + 1,
|
|
iN0 = ( hasLeftNode || hasOwnLeftNode || isClosedEdge || !isShrinkableL ),
|
|
iNE = nbN - ( hasRightNode || hasOwnRightNode || !isShrinkableR );
|
|
|
|
// update _uvIn of end _LayerEdge's by existing nodes
|
|
const SMDS_MeshNode *nL = 0, *nR = 0;
|
|
if ( hasOwnLeftNode ) nL = L._leftNodes.back();
|
|
else if ( hasLeftNode ) nL = L._leftLine->_rightNodes.back();
|
|
if ( hasOwnRightNode ) nR = L._rightNodes.back();
|
|
else if ( hasRightNode ) nR = L._rightLine->_leftNodes.back();
|
|
if ( nL )
|
|
L._lEdges[0]._uvIn = _helper.GetNodeUV( _face, nL, points[ L._firstPntInd + 1 ].node );
|
|
if ( nR )
|
|
L._lEdges.back()._uvIn = _helper.GetNodeUV( _face, nR, points[ L._lastPntInd - 1 ].node );
|
|
|
|
// compute normalized [0;1] node parameters of nodes on a _PolyLine
|
|
vector< double > normPar( nbN );
|
|
const double
|
|
normF = L._wire->FirstParameter( L._edgeInd ),
|
|
normL = L._wire->LastParameter ( L._edgeInd ),
|
|
normDist = normL - normF;
|
|
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
|
|
normPar[ i - L._firstPntInd ] = ( points[i].normParam - normF ) / normDist;
|
|
|
|
// Calculate UV of most inner nodes
|
|
|
|
vector< gp_XY > innerUV( nbN );
|
|
|
|
// check if innerUV should be interpolated between _LayerEdge::_uvIn's
|
|
const size_t nbLE = L._lEdges.size();
|
|
bool needInterpol = ( nbN != nbLE );
|
|
if ( !needInterpol )
|
|
{
|
|
// more check: compare length of inner and outer end segments
|
|
double lenIn, lenOut;
|
|
for ( int isR = 0; isR < 2 && !needInterpol; ++isR )
|
|
{
|
|
const _Segment& segIn = isR ? L._segments.back() : L._segments[0];
|
|
const gp_XY& uvIn1 = segIn.p1();
|
|
const gp_XY& uvIn2 = segIn.p2();
|
|
const gp_XY& uvOut1 = L._lEdges[ isR ? nbLE-1 : 0 ]._uvOut;
|
|
const gp_XY& uvOut2 = L._lEdges[ isR ? nbLE-2 : 1 ]._uvOut;
|
|
if ( _is2DIsotropic )
|
|
{
|
|
lenIn = ( uvIn1 - uvIn2 ).Modulus();
|
|
lenOut = ( uvOut1 - uvOut2 ).Modulus();
|
|
}
|
|
else
|
|
{
|
|
lenIn = _surface->Value( uvIn1.X(), uvIn1.Y() )
|
|
.Distance( _surface->Value( uvIn2.X(), uvIn2.Y() ));
|
|
lenOut = _surface->Value( uvOut1.X(), uvOut1.Y() )
|
|
.Distance( _surface->Value( uvOut2.X(), uvOut2.Y() ));
|
|
}
|
|
needInterpol = ( lenIn < 0.66 * lenOut );
|
|
}
|
|
}
|
|
|
|
if ( needInterpol )
|
|
{
|
|
// compute normalized accumulated length of inner segments
|
|
size_t iS;
|
|
if ( _is2DIsotropic )
|
|
for ( iS = 1; iS < segLen.size(); ++iS )
|
|
{
|
|
double sLen = ( L._lEdges[iS-1]._uvIn - L._lEdges[iS]._uvIn ).Modulus();
|
|
segLen[iS] = segLen[iS-1] + sLen;
|
|
}
|
|
else
|
|
for ( iS = 1; iS < segLen.size(); ++iS )
|
|
{
|
|
const gp_XY& uv1 = L._lEdges[iS-1]._uvIn;
|
|
const gp_XY& uv2 = L._lEdges[iS ]._uvIn;
|
|
gp_Pnt p1 = _surface->Value( uv1.X(), uv1.Y() );
|
|
gp_Pnt p2 = _surface->Value( uv2.X(), uv2.Y() );
|
|
double sLen = p1.Distance( p2 );
|
|
segLen[iS] = segLen[iS-1] + sLen;
|
|
}
|
|
// normalize the accumulated length
|
|
for ( iS = 1; iS < segLen.size(); ++iS )
|
|
segLen[iS] /= segLen.back();
|
|
|
|
// calculate UV of most inner nodes according to the normalized node parameters
|
|
iS = 0;
|
|
for ( size_t i = 0; i < innerUV.size(); ++i )
|
|
{
|
|
while ( normPar[i] > segLen[iS+1] )
|
|
++iS;
|
|
double r = ( normPar[i] - segLen[iS] ) / ( segLen[iS+1] - segLen[iS] );
|
|
innerUV[ i ] = r * L._lEdges[iS+1]._uvIn + (1-r) * L._lEdges[iS]._uvIn;
|
|
}
|
|
}
|
|
else // ! needInterpol
|
|
{
|
|
for ( size_t i = 0; i < nbLE; ++i )
|
|
innerUV[ i ] = L._lEdges[i]._uvIn;
|
|
}
|
|
|
|
// normalized height of layers
|
|
const THypVL* hyp = getLineHypothesis( iL );
|
|
calcLayersHeight( 1., layersHeight, hyp);
|
|
|
|
// Create layers of faces
|
|
|
|
// nodes to create 1 layer of faces
|
|
vector< const SMDS_MeshNode* > outerNodes( nbN );
|
|
vector< const SMDS_MeshNode* > innerNodes( nbN );
|
|
|
|
// initialize outerNodes by nodes of the L._wire
|
|
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
|
|
outerNodes[ i-L._firstPntInd ] = points[i].node;
|
|
|
|
L._leftNodes .reserve( hyp->GetNumberLayers() );
|
|
L._rightNodes.reserve( hyp->GetNumberLayers() );
|
|
int cur = 0, prev = -1; // to take into account orientation of _face
|
|
if ( isReverse ) std::swap( cur, prev );
|
|
for ( int iF = 0; iF < hyp->GetNumberLayers(); ++iF ) // loop on layers of faces
|
|
{
|
|
// create innerNodes of a current layer
|
|
for ( size_t i = iN0; i < iNE; ++i )
|
|
{
|
|
gp_XY uvOut = points[ L._firstPntInd + i ].UV();
|
|
gp_XY& uvIn = innerUV[ i ];
|
|
gp_XY uv = layersHeight[ iF ] * uvIn + ( 1.-layersHeight[ iF ]) * uvOut;
|
|
gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
|
|
innerNodes[i] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
|
|
}
|
|
// use nodes created for adjacent _PolyLine's
|
|
if ( hasOwnLeftNode ) innerNodes.front() = L._leftNodes [ iF ];
|
|
else if ( hasLeftNode ) innerNodes.front() = L._leftLine->_rightNodes[ iF ];
|
|
if ( hasOwnRightNode ) innerNodes.back() = L._rightNodes[ iF ];
|
|
else if ( hasRightNode ) innerNodes.back() = L._rightLine->_leftNodes[ iF ];
|
|
if ( isClosedEdge ) innerNodes.front() = innerNodes.back(); // circle
|
|
if ( !isShrinkableL ) innerNodes.front() = outerNodes.front();
|
|
if ( !isShrinkableR ) innerNodes.back() = outerNodes.back();
|
|
if ( !hasOwnLeftNode ) L._leftNodes.push_back( innerNodes.front() );
|
|
if ( !hasOwnRightNode ) L._rightNodes.push_back( innerNodes.back() );
|
|
|
|
// create faces
|
|
for ( size_t i = 1; i < innerNodes.size(); ++i )
|
|
if ( SMDS_MeshElement* f = _helper.AddFace( outerNodes[ i+prev ], outerNodes[ i+cur ],
|
|
innerNodes[ i+cur ], innerNodes[ i+prev ]))
|
|
L._newFaces.insert( L._newFaces.end(), f );
|
|
|
|
outerNodes.swap( innerNodes );
|
|
}
|
|
|
|
// Add faces to a group
|
|
SMDS_MeshGroup* group = StdMeshers_ViscousLayers::CreateGroup( hyp->GetGroupName(),
|
|
*_helper.GetMesh(),
|
|
SMDSAbs_Face );
|
|
if ( group )
|
|
{
|
|
TIDSortedElemSet::iterator fIt = L._newFaces.begin();
|
|
for ( ; fIt != L._newFaces.end(); ++fIt )
|
|
group->Add( *fIt );
|
|
}
|
|
|
|
// faces between not shared _LayerEdge's (at concave VERTEX)
|
|
for ( int isR = 0; isR < 2; ++isR )
|
|
{
|
|
if ( isR ? rightEdgeShared : leftEdgeShared )
|
|
continue;
|
|
vector< const SMDS_MeshNode* > &
|
|
lNodes = (isR ? L._rightNodes : L._leftLine->_rightNodes ),
|
|
rNodes = (isR ? L._rightLine->_leftNodes : L._leftNodes );
|
|
if ( lNodes.empty() || rNodes.empty() || lNodes.size() != rNodes.size() )
|
|
continue;
|
|
|
|
const SMDS_MeshElement* face = 0;
|
|
for ( size_t i = 1; i < lNodes.size(); ++i )
|
|
{
|
|
face = _helper.AddFace( lNodes[ i+prev ], rNodes[ i+prev ],
|
|
rNodes[ i+cur ], lNodes[ i+cur ]);
|
|
if ( group )
|
|
group->Add( face );
|
|
}
|
|
|
|
const UVPtStruct& ptOnVertex = points[ isR ? L._lastPntInd : L._firstPntInd ];
|
|
if ( isReverse )
|
|
face = _helper.AddFace( ptOnVertex.node, lNodes[ 0 ], rNodes[ 0 ]);
|
|
else
|
|
face = _helper.AddFace( ptOnVertex.node, rNodes[ 0 ], lNodes[ 0 ]);
|
|
if ( group )
|
|
group->Add( face );
|
|
}
|
|
|
|
// Fill the _ProxyMeshOfFace
|
|
|
|
UVPtStructVec nodeDataVec( outerNodes.size() ); // outerNodes swapped with innerNodes
|
|
for ( size_t i = 0; i < outerNodes.size(); ++i )
|
|
{
|
|
gp_XY uv = _helper.GetNodeUV( _face, outerNodes[i] );
|
|
nodeDataVec[i].u = uv.X();
|
|
nodeDataVec[i].v = uv.Y();
|
|
nodeDataVec[i].node = outerNodes[i];
|
|
nodeDataVec[i].param = points [i + L._firstPntInd].param;
|
|
nodeDataVec[i].normParam = normPar[i];
|
|
nodeDataVec[i].x = normPar[i];
|
|
nodeDataVec[i].y = normPar[i];
|
|
}
|
|
nodeDataVec.front().param = L._wire->FirstU( L._edgeInd );
|
|
nodeDataVec.back() .param = L._wire->LastU ( L._edgeInd );
|
|
|
|
if (( nodeDataVec[0].node == nodeDataVec.back().node ) &&
|
|
( _helper.GetPeriodicIndex() == 1 || _helper.GetPeriodicIndex() == 2 )) // closed EDGE
|
|
{
|
|
const int iCoord = _helper.GetPeriodicIndex();
|
|
gp_XY uv = nodeDataVec[0].UV();
|
|
uv.SetCoord( iCoord, L._lEdges[0]._uvOut.Coord( iCoord ));
|
|
nodeDataVec[0].SetUV( uv );
|
|
|
|
uv = nodeDataVec.back().UV();
|
|
uv.SetCoord( iCoord, L._lEdges.back()._uvOut.Coord( iCoord ));
|
|
nodeDataVec.back().SetUV( uv );
|
|
}
|
|
|
|
_ProxyMeshOfFace::_EdgeSubMesh* edgeSM
|
|
= getProxyMesh()->GetEdgeSubMesh( L._wire->EdgeID( L._edgeInd ));
|
|
edgeSM->SetUVPtStructVec( nodeDataVec );
|
|
|
|
} // loop on _PolyLine's
|
|
|
|
// re-compute FACEs whose mesh was removed by shrink()
|
|
for ( size_t i = 0; i < _clearedFaces.size(); ++i )
|
|
{
|
|
SMESH_subMesh* sm = _mesh->GetSubMesh( _clearedFaces[i] );
|
|
if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE )
|
|
sm->ComputeStateEngine( SMESH_subMesh::COMPUTE );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Improve quality of the created mesh elements
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::improve()
|
|
{
|
|
if ( !_proxyMesh )
|
|
return false;
|
|
|
|
// fixed nodes on EDGE's
|
|
std::set<const SMDS_MeshNode*> fixedNodes;
|
|
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
|
|
{
|
|
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
|
|
const vector<UVPtStruct>& points = wire->GetUVPtStruct();
|
|
for ( size_t i = 0; i < points.size(); ++i )
|
|
fixedNodes.insert( fixedNodes.end(), points[i].node );
|
|
}
|
|
// fixed proxy nodes
|
|
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL ];
|
|
const TopoDS_Edge& E = L._wire->Edge( L._edgeInd );
|
|
if ( const SMESH_ProxyMesh::SubMesh* sm = _proxyMesh->GetProxySubMesh( E ))
|
|
{
|
|
const UVPtStructVec& points = sm->GetUVPtStructVec();
|
|
for ( size_t i = 0; i < points.size(); ++i )
|
|
fixedNodes.insert( fixedNodes.end(), points[i].node );
|
|
}
|
|
for ( size_t i = 0; i < L._rightNodes.size(); ++i )
|
|
fixedNodes.insert( fixedNodes.end(), L._rightNodes[i] );
|
|
}
|
|
|
|
// smoothing
|
|
SMESH_MeshEditor editor( _mesh );
|
|
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL ];
|
|
if ( L._isStraight2D ) continue;
|
|
// SMESH_MeshEditor::SmoothMethod how =
|
|
// L._isStraight2D ? SMESH_MeshEditor::LAPLACIAN : SMESH_MeshEditor::CENTROIDAL;
|
|
//editor.Smooth( L._newFaces, fixedNodes, how, /*nbIt = */3 );
|
|
//editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::LAPLACIAN, /*nbIt = */1 );
|
|
editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::CENTROIDAL, /*nbIt = */3 );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Remove elements and nodes from a face
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::removeMeshFaces(const TopoDS_Shape& face)
|
|
{
|
|
// we don't use SMESH_subMesh::ComputeStateEngine() because of a listener
|
|
// which clears EDGEs together with _face.
|
|
bool thereWereElems = false;
|
|
SMESH_subMesh* sm = _mesh->GetSubMesh( face );
|
|
if ( SMESHDS_SubMesh* smDS = sm->GetSubMeshDS() )
|
|
{
|
|
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
|
|
thereWereElems = eIt->more();
|
|
while ( eIt->more() ) getMeshDS()->RemoveFreeElement( eIt->next(), smDS );
|
|
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
|
|
while ( nIt->more() ) getMeshDS()->RemoveFreeNode( nIt->next(), smDS );
|
|
}
|
|
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
|
|
|
|
return thereWereElems;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns a hypothesis for a _PolyLine
|
|
*/
|
|
//================================================================================
|
|
|
|
const StdMeshers_ViscousLayers2D* _ViscousBuilder2D::getLineHypothesis(int iPL)
|
|
{
|
|
return iPL < (int)_hypOfEdge.size() ? _hypOfEdge[ iPL ] : _hyps[0];
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns a layers thickness for a _PolyLine
|
|
*/
|
|
//================================================================================
|
|
|
|
double _ViscousBuilder2D::getLineThickness(int iPL)
|
|
{
|
|
if ( const StdMeshers_ViscousLayers2D* h = getLineHypothesis( iPL ))
|
|
return Min( _maxThickness, h->GetTotalThickness() );
|
|
return _maxThickness;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Creates a _ProxyMeshOfFace and store it in a sub-mesh of FACE
|
|
*/
|
|
//================================================================================
|
|
|
|
_ProxyMeshOfFace* _ViscousBuilder2D::getProxyMesh()
|
|
{
|
|
if ( _proxyMesh.get() )
|
|
return (_ProxyMeshOfFace*) _proxyMesh.get();
|
|
|
|
_ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *_mesh );
|
|
_proxyMesh.reset( proxyMeshOfFace );
|
|
new _ProxyMeshHolder( _face, _proxyMesh );
|
|
|
|
return proxyMeshOfFace;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Calculate height of layers for the given thickness. Height is measured
|
|
* from the outer boundary
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder2D::calcLayersHeight(const double totalThick,
|
|
vector<double>& heights,
|
|
const THypVL* hyp)
|
|
{
|
|
const double fPowN = pow( hyp->GetStretchFactor(), hyp->GetNumberLayers() );
|
|
heights.resize( hyp->GetNumberLayers() );
|
|
double h0;
|
|
if ( fPowN - 1 <= numeric_limits<double>::min() )
|
|
h0 = totalThick / hyp->GetNumberLayers();
|
|
else
|
|
h0 = totalThick * ( hyp->GetStretchFactor() - 1 )/( fPowN - 1 );
|
|
|
|
double hSum = 0, hi = h0;
|
|
for ( int i = 0; i < hyp->GetNumberLayers(); ++i )
|
|
{
|
|
hSum += hi;
|
|
heights[ i ] = hSum;
|
|
hi *= hyp->GetStretchFactor();
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Elongate this _LayerEdge
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _LayerEdge::SetNewLength( const double length3D )
|
|
{
|
|
if ( _isBlocked ) return false;
|
|
|
|
//_uvInPrev = _uvIn;
|
|
_length2D = length3D * _len2dTo3dRatio;
|
|
_uvIn = _uvOut + _normal2D * _length2D;
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return true if _LayerEdge at a common VERTEX between EDGEs with
|
|
* and w/o layer is common to the both _PolyLine's. If this is true, nodes
|
|
* of this _LayerEdge are inflated along a _PolyLine w/o layer, else the nodes
|
|
* are inflated along _normal2D of _LayerEdge of EDGE with layer
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _PolyLine::IsCommonEdgeShared( const _PolyLine& other )
|
|
{
|
|
const double tol = 1e-30;
|
|
|
|
if ( & other == _leftLine )
|
|
return _lEdges[0]._normal2D.IsEqual( _leftLine->_lEdges.back()._normal2D, tol );
|
|
|
|
if ( & other == _rightLine )
|
|
return _lEdges.back()._normal2D.IsEqual( _rightLine->_lEdges[0]._normal2D, tol );
|
|
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return \c true if the EDGE of this _PolyLine is concave
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _PolyLine::IsConcave() const
|
|
{
|
|
if ( _lEdges.size() < 2 )
|
|
return false;
|
|
|
|
gp_Vec2d v1( _lEdges[0]._uvOut, _lEdges[1]._uvOut );
|
|
gp_Vec2d v2( _lEdges[0]._uvOut, _lEdges[2]._uvOut );
|
|
const double size2 = v2.Magnitude();
|
|
|
|
return ( v1 ^ v2 ) / size2 < -1e-3 * size2;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Constructor of SegmentTree
|
|
*/
|
|
//================================================================================
|
|
|
|
_SegmentTree::_SegmentTree( const vector< _Segment >& segments ):
|
|
SMESH_Quadtree()
|
|
{
|
|
_segments.resize( segments.size() );
|
|
for ( size_t i = 0; i < segments.size(); ++i )
|
|
_segments[i].Set( segments[i] );
|
|
|
|
compute();
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return the maximal bnd box
|
|
*/
|
|
//================================================================================
|
|
|
|
_SegmentTree::box_type* _SegmentTree::buildRootBox()
|
|
{
|
|
_SegmentTree::box_type* box = new _SegmentTree::box_type;
|
|
for ( size_t i = 0; i < _segments.size(); ++i )
|
|
{
|
|
box->Add( *_segments[i]._seg->_uv[0] );
|
|
box->Add( *_segments[i]._seg->_uv[1] );
|
|
}
|
|
return box;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Redistrubute _segments among children
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SegmentTree::buildChildrenData()
|
|
{
|
|
for ( size_t i = 0; i < _segments.size(); ++i )
|
|
for (int j = 0; j < nbChildren(); j++)
|
|
if ( !myChildren[j]->getBox()->IsOut( *_segments[i]._seg->_uv[0],
|
|
*_segments[i]._seg->_uv[1] ))
|
|
((_SegmentTree*)myChildren[j])->_segments.push_back( _segments[i]);
|
|
|
|
SMESHUtils::FreeVector( _segments ); // = _elements.clear() + free memory
|
|
|
|
for (int j = 0; j < nbChildren(); j++)
|
|
{
|
|
_SegmentTree* child = static_cast<_SegmentTree*>( myChildren[j]);
|
|
child->myIsLeaf = ((int) child->_segments.size() <= maxNbSegInLeaf() );
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return elements which can include the point
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SegmentTree::GetSegmentsNear( const _Segment& seg,
|
|
vector< const _Segment* >& found )
|
|
{
|
|
if ( getBox()->IsOut( *seg._uv[0], *seg._uv[1] ))
|
|
return;
|
|
|
|
if ( isLeaf() )
|
|
{
|
|
for ( size_t i = 0; i < _segments.size(); ++i )
|
|
if ( !_segments[i].IsOut( seg ))
|
|
found.push_back( _segments[i]._seg );
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < nbChildren(); i++)
|
|
((_SegmentTree*) myChildren[i])->GetSegmentsNear( seg, found );
|
|
}
|
|
}
|
|
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return segments intersecting a ray
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SegmentTree::GetSegmentsNear( const gp_Ax2d& ray,
|
|
vector< const _Segment* >& found )
|
|
{
|
|
if ( getBox()->IsOut( ray ))
|
|
return;
|
|
|
|
if ( isLeaf() )
|
|
{
|
|
for ( size_t i = 0; i < _segments.size(); ++i )
|
|
if ( !_segments[i].IsOut( ray ))
|
|
found.push_back( _segments[i]._seg );
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < nbChildren(); i++)
|
|
((_SegmentTree*) myChildren[i])->GetSegmentsNear( ray, found );
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Classify a _Segment
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _SegmentTree::_SegBox::IsOut( const _Segment& seg ) const
|
|
{
|
|
const double eps = std::numeric_limits<double>::min();
|
|
for ( int iC = 0; iC < 2; ++iC )
|
|
{
|
|
if ( seg._uv[0]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps &&
|
|
seg._uv[1]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps )
|
|
return true;
|
|
if ( seg._uv[0]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps &&
|
|
seg._uv[1]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps )
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Classify a ray
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _SegmentTree::_SegBox::IsOut( const gp_Ax2d& ray ) const
|
|
{
|
|
double distBoxCenter2Ray =
|
|
ray.Direction().XY() ^ ( ray.Location().XY() - 0.5 * (*_seg->_uv[0] + *_seg->_uv[1]));
|
|
|
|
double boxSectionDiam =
|
|
Abs( ray.Direction().X() ) * ( _seg->_uv[1-_iMin[1]]->Y() - _seg->_uv[_iMin[1]]->Y() ) +
|
|
Abs( ray.Direction().Y() ) * ( _seg->_uv[1-_iMin[0]]->X() - _seg->_uv[_iMin[0]]->X() );
|
|
|
|
return Abs( distBoxCenter2Ray ) > 0.5 * boxSectionDiam;
|
|
}
|