smesh/src/StdMeshers/StdMeshers_Cartesian_3D.cxx

2190 lines
78 KiB
C++

// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_Cartesian_3D.cxx
// Module : SMESH
//
#include "StdMeshers_Cartesian_3D.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESH_Block.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "StdMeshers_CartesianParameters3D.hxx"
#include "utilities.h"
#include "Utils_ExceptHandlers.hxx"
#include <Basics_OCCTVersion.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <BRepBndLib.hxx>
#include <BRepBuilderAPI_Copy.hxx>
#include <BRepTools.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_Box.hxx>
#include <ElSLib.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <IntAna_IntConicQuad.hxx>
#include <IntAna_IntLinTorus.hxx>
#include <IntAna_Quadric.hxx>
#include <IntCurveSurface_TransitionOnCurve.hxx>
#include <IntCurvesFace_Intersector.hxx>
#include <Poly_Triangulation.hxx>
#include <Precision.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopLoc_Location.hxx>
#include <TopTools_MapIteratorOfMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_TShape.hxx>
#include <gp_Cone.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Lin.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Sphere.hxx>
#include <gp_Torus.hxx>
//#undef WITH_TBB
#ifdef WITH_TBB
#include <tbb/parallel_for.h>
//#include <tbb/enumerable_thread_specific.h>
#endif
using namespace std;
//#define _MY_DEBUG_
#if OCC_VERSION_LARGE <= 0x06050300
// workaround it required only for OCCT6.5.3 and older (see OCC22809)
#define ELLIPSOLID_WORKAROUND
#endif
#ifdef ELLIPSOLID_WORKAROUND
#include <BRepIntCurveSurface_Inter.hxx>
#include <BRepTopAdaptor_TopolTool.hxx>
#include <BRepAdaptor_HSurface.hxx>
#endif
//=============================================================================
/*!
* Constructor
*/
//=============================================================================
StdMeshers_Cartesian_3D::StdMeshers_Cartesian_3D(int hypId, int studyId, SMESH_Gen * gen)
:SMESH_3D_Algo(hypId, studyId, gen)
{
_name = "Cartesian_3D";
_shapeType = (1 << TopAbs_SOLID); // 1 bit /shape type
_compatibleHypothesis.push_back("CartesianParameters3D");
_onlyUnaryInput = false; // to mesh all SOLIDs at once
_requireDiscreteBoundary = false; // 2D mesh not needed
_supportSubmeshes = false; // do not use any existing mesh
}
//=============================================================================
/*!
* Check presence of a hypothesis
*/
//=============================================================================
bool StdMeshers_Cartesian_3D::CheckHypothesis (SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
Hypothesis_Status& aStatus)
{
aStatus = SMESH_Hypothesis::HYP_MISSING;
const list<const SMESHDS_Hypothesis*>& hyps = GetUsedHypothesis(aMesh, aShape);
list <const SMESHDS_Hypothesis* >::const_iterator h = hyps.begin();
if ( h == hyps.end())
{
return false;
}
for ( ; h != hyps.end(); ++h )
{
if (( _hyp = dynamic_cast<const StdMeshers_CartesianParameters3D*>( *h )))
{
aStatus = _hyp->IsDefined() ? HYP_OK : HYP_BAD_PARAMETER;
break;
}
}
return aStatus == HYP_OK;
}
namespace
{
//=============================================================================
// Definitions of internal utils
// --------------------------------------------------------------------------
enum Transition {
Trans_TANGENT = IntCurveSurface_Tangent,
Trans_IN = IntCurveSurface_In,
Trans_OUT = IntCurveSurface_Out,
Trans_APEX
};
// --------------------------------------------------------------------------
/*!
* \brief Data of intersection between a GridLine and a TopoDS_Face
*/
struct IntersectionPoint
{
double _paramOnLine;
mutable Transition _transition;
mutable const SMDS_MeshNode* _node;
mutable size_t _indexOnLine;
IntersectionPoint(): _node(0) {}
bool operator< ( const IntersectionPoint& o ) const { return _paramOnLine < o._paramOnLine; }
};
// --------------------------------------------------------------------------
/*!
* \brief A line of the grid and its intersections with 2D geometry
*/
struct GridLine
{
gp_Lin _line;
double _length; // line length
multiset< IntersectionPoint > _intPoints;
void RemoveExcessIntPoints( const double tol );
bool GetIsOutBefore( multiset< IntersectionPoint >::iterator ip, bool prevIsOut );
};
// --------------------------------------------------------------------------
/*!
* \brief Iterator on the parallel grid lines of one direction
*/
struct LineIndexer
{
size_t _size [3];
size_t _curInd[3];
size_t _iVar1, _iVar2, _iConst;
string _name1, _name2, _nameConst;
LineIndexer() {}
LineIndexer( size_t sz1, size_t sz2, size_t sz3,
size_t iv1, size_t iv2, size_t iConst,
const string& nv1, const string& nv2, const string& nConst )
{
_size[0] = sz1; _size[1] = sz2; _size[2] = sz3;
_curInd[0] = _curInd[1] = _curInd[2] = 0;
_iVar1 = iv1; _iVar2 = iv2; _iConst = iConst;
_name1 = nv1; _name2 = nv2; _nameConst = nConst;
}
size_t I() const { return _curInd[0]; }
size_t J() const { return _curInd[1]; }
size_t K() const { return _curInd[2]; }
void SetIJK( size_t i, size_t j, size_t k )
{
_curInd[0] = i; _curInd[1] = j; _curInd[2] = k;
}
void operator++()
{
if ( ++_curInd[_iVar1] == _size[_iVar1] )
_curInd[_iVar1] = 0, ++_curInd[_iVar2];
}
bool More() const { return _curInd[_iVar2] < _size[_iVar2]; }
size_t LineIndex () const { return _curInd[_iVar1] + _curInd[_iVar2]* _size[_iVar1]; }
size_t LineIndex10 () const { return (_curInd[_iVar1] + 1 ) + _curInd[_iVar2]* _size[_iVar1]; }
size_t LineIndex01 () const { return _curInd[_iVar1] + (_curInd[_iVar2] + 1 )* _size[_iVar1]; }
size_t LineIndex11 () const { return (_curInd[_iVar1] + 1 ) + (_curInd[_iVar2] + 1 )* _size[_iVar1]; }
void SetIndexOnLine (size_t i) { _curInd[ _iConst ] = i; }
size_t NbLines() const { return _size[_iVar1] * _size[_iVar2]; }
};
// --------------------------------------------------------------------------
/*!
* \brief Container of GridLine's
*/
struct Grid
{
vector< double > _coords[3]; // coordinates of grid nodes
vector< GridLine > _lines [3]; // in 3 directions
double _tol, _minCellSize;
vector< const SMDS_MeshNode* > _nodes; // mesh nodes at grid nodes
vector< bool > _isBndNode; // is mesh node at intersection with geometry
size_t CellIndex( size_t i, size_t j, size_t k ) const
{
return i + j*(_coords[0].size()-1) + k*(_coords[0].size()-1)*(_coords[1].size()-1);
}
size_t NodeIndex( size_t i, size_t j, size_t k ) const
{
return i + j*_coords[0].size() + k*_coords[0].size()*_coords[1].size();
}
size_t NodeIndexDX() const { return 1; }
size_t NodeIndexDY() const { return _coords[0].size(); }
size_t NodeIndexDZ() const { return _coords[0].size() * _coords[1].size(); }
LineIndexer GetLineIndexer(size_t iDir) const;
void SetCoordinates(const vector<double>& xCoords,
const vector<double>& yCoords,
const vector<double>& zCoords,
const TopoDS_Shape& shape );
void ComputeNodes(SMESH_MesherHelper& helper);
};
#ifdef ELLIPSOLID_WORKAROUND
// --------------------------------------------------------------------------
/*!
* \brief struct temporary replacing IntCurvesFace_Intersector until
* OCCT bug 0022809 is fixed
* http://tracker.dev.opencascade.org/view.php?id=22809
*/
struct TMP_IntCurvesFace_Intersector
{
BRepAdaptor_Surface _surf;
double _tol;
BRepIntCurveSurface_Inter _intcs;
vector<IntCurveSurface_IntersectionPoint> _points;
BRepTopAdaptor_TopolTool _clsf;
TMP_IntCurvesFace_Intersector(const TopoDS_Face& face, const double tol)
:_surf( face ), _tol( tol ), _clsf( new BRepAdaptor_HSurface(_surf) ) {}
Bnd_Box Bounding() const { Bnd_Box b; BRepBndLib::Add (_surf.Face(), b); return b; }
void Perform( const gp_Lin& line, const double w0, const double w1 )
{
_points.clear();
for ( _intcs.Init( _surf.Face(), line, _tol ); _intcs.More(); _intcs.Next() )
if ( w0 <= _intcs.W() && _intcs.W() <= w1 )
_points.push_back( _intcs.Point() );
}
bool IsDone() const { return true; }
int NbPnt() const { return _points.size(); }
IntCurveSurface_TransitionOnCurve Transition( const int i ) const { return _points[ i-1 ].Transition(); }
double WParameter( const int i ) const { return _points[ i-1 ].W(); }
TopAbs_State ClassifyUVPoint(const gp_Pnt2d& p) { return _clsf.Classify( p, _tol ); }
};
#define __IntCurvesFace_Intersector TMP_IntCurvesFace_Intersector
#else
#define __IntCurvesFace_Intersector IntCurvesFace_Intersector
#endif
// --------------------------------------------------------------------------
/*!
* \brief Intersector of TopoDS_Face with all GridLine's
*/
struct FaceGridIntersector
{
TopoDS_Face _face;
Grid* _grid;
Bnd_Box _bndBox;
__IntCurvesFace_Intersector* _surfaceInt;
vector< std::pair< GridLine*, IntersectionPoint > > _intersections;
FaceGridIntersector(): _grid(0), _surfaceInt(0) {}
void Intersect();
bool IsInGrid(const Bnd_Box& gridBox);
void StoreIntersections()
{
for ( size_t i = 0; i < _intersections.size(); ++i )
_intersections[i].first->_intPoints.insert( _intersections[i].second );
}
const Bnd_Box& GetFaceBndBox()
{
GetCurveFaceIntersector();
return _bndBox;
}
__IntCurvesFace_Intersector* GetCurveFaceIntersector()
{
if ( !_surfaceInt )
{
_surfaceInt = new __IntCurvesFace_Intersector( _face, Precision::PConfusion() );
_bndBox = _surfaceInt->Bounding();
if ( _bndBox.IsVoid() )
BRepBndLib::Add (_face, _bndBox);
}
return _surfaceInt;
}
bool IsThreadSafe(set< const Standard_Transient* >& noSafeTShapes) const;
};
// --------------------------------------------------------------------------
/*!
* \brief Intersector of a surface with a GridLine
*/
struct FaceLineIntersector
{
double _tol;
double _u, _v, _w; // params on the face and the line
Transition _transition; // transition of at intersection (see IntCurveSurface.cdl)
Transition _transIn, _transOut; // IN and OUT transitions depending of face orientation
gp_Pln _plane;
gp_Cylinder _cylinder;
gp_Cone _cone;
gp_Sphere _sphere;
gp_Torus _torus;
__IntCurvesFace_Intersector* _surfaceInt;
vector< IntersectionPoint > _intPoints;
void IntersectWithPlane (const GridLine& gridLine);
void IntersectWithCylinder(const GridLine& gridLine);
void IntersectWithCone (const GridLine& gridLine);
void IntersectWithSphere (const GridLine& gridLine);
void IntersectWithTorus (const GridLine& gridLine);
void IntersectWithSurface (const GridLine& gridLine);
bool UVIsOnFace() const;
void addIntPoint(const bool toClassify=true);
bool isParamOnLineOK( const double linLength )
{
return -_tol < _w && _w < linLength + _tol;
}
FaceLineIntersector():_surfaceInt(0) {}
~FaceLineIntersector() { if (_surfaceInt ) delete _surfaceInt; _surfaceInt = 0; }
};
// --------------------------------------------------------------------------
/*!
* \brief Class representing topology of the hexahedron and creating a mesh
* volume basing on analysis of hexahedron intersection with geometry
*/
class Hexahedron
{
// --------------------------------------------------------------------------------
struct _Face;
struct _Link;
// --------------------------------------------------------------------------------
struct _Node //!< node either at a hexahedron corner or at GridLine intersection
{
const SMDS_MeshNode* _node; // mesh node at hexahedron corner
const IntersectionPoint* _intPoint;
_Node(const SMDS_MeshNode* n=0, const IntersectionPoint* ip=0):_node(n), _intPoint(ip) {}
const SMDS_MeshNode* Node() const { return _intPoint ? _intPoint->_node : _node; }
//bool IsCorner() const { return _node; }
};
// --------------------------------------------------------------------------------
struct _Link // link connecting two _Node's
{
_Node* _nodes[2];
vector< _Node> _intNodes; // _Node's at GridLine intersections
vector< _Link > _splits;
vector< _Face*> _faces;
};
// --------------------------------------------------------------------------------
struct _OrientedLink
{
_Link* _link;
bool _reverse;
_OrientedLink( _Link* link=0, bool reverse=false ): _link(link), _reverse(reverse) {}
void Reverse() { _reverse = !_reverse; }
int NbResultLinks() const { return _link->_splits.size(); }
_OrientedLink ResultLink(int i) const
{
return _OrientedLink(&_link->_splits[_reverse ? NbResultLinks()-i-1 : i],_reverse);
}
_Node* FirstNode() const { return _link->_nodes[ _reverse ]; }
_Node* LastNode() const { return _link->_nodes[ !_reverse ]; }
};
// --------------------------------------------------------------------------------
struct _Face
{
vector< _OrientedLink > _links;
vector< _Link > _polyLinks; // links added to close a polygonal face
};
// --------------------------------------------------------------------------------
struct _volumeDef // holder of nodes of a volume mesh element
{
vector< const SMDS_MeshNode* > _nodes;
vector< int > _quantities;
typedef boost::shared_ptr<_volumeDef> Ptr;
void set( const vector< const SMDS_MeshNode* >& nodes,
const vector< int > quant = vector< int >() )
{ _nodes = nodes; _quantities = quant; }
// static Ptr New( const vector< const SMDS_MeshNode* >& nodes,
// const vector< int > quant = vector< int >() )
// {
// _volumeDef* def = new _volumeDef;
// def->_nodes = nodes;
// def->_quantities = quant;
// return Ptr( def );
// }
};
// topology of a hexahedron
int _nodeShift[8];
_Node _hexNodes[8];
_Link _hexLinks[12];
_Face _hexQuads[6];
// faces resulted from hexahedron intersection
vector< _Face > _polygons;
// computed volume elements
//vector< _volumeDef::Ptr > _volumeDefs;
_volumeDef _volumeDefs;
Grid* _grid;
double _sizeThreshold, _sideLength[3];
int _nbCornerNodes, _nbIntNodes, _nbBndNodes;
int _origNodeInd; // index of _hexNodes[0] node within the _grid
size_t _i,_j,_k;
public:
Hexahedron(const double sizeThreshold, Grid* grid);
int MakeElements(SMESH_MesherHelper& helper);
void ComputeElements();
void Init() { init( _i, _j, _k ); }
private:
Hexahedron(const Hexahedron& other );
void init( size_t i, size_t j, size_t k );
void init( size_t i );
int addElements(SMESH_MesherHelper& helper);
bool isInHole() const;
bool checkPolyhedronSize() const;
bool addHexa ();
bool addTetra();
bool addPenta();
bool addPyra ();
};
#ifdef WITH_TBB
// --------------------------------------------------------------------------
/*!
* \brief Hexahedron computing volumes in one thread
*/
struct ParallelHexahedron
{
vector< Hexahedron* >& _hexVec;
vector<int>& _index;
ParallelHexahedron( vector< Hexahedron* >& hv, vector<int>& ind): _hexVec(hv), _index(ind) {}
void operator() ( const tbb::blocked_range<size_t>& r ) const
{
for ( size_t i = r.begin(); i != r.end(); ++i )
if ( Hexahedron* hex = _hexVec[ _index[i]] )
hex->ComputeElements();
}
};
// --------------------------------------------------------------------------
/*!
* \brief Structure intersecting certain nb of faces with GridLine's in one thread
*/
struct ParallelIntersector
{
vector< FaceGridIntersector >& _faceVec;
ParallelIntersector( vector< FaceGridIntersector >& faceVec): _faceVec(faceVec){}
void operator() ( const tbb::blocked_range<size_t>& r ) const
{
for ( size_t i = r.begin(); i != r.end(); ++i )
_faceVec[i].Intersect();
}
};
#endif
//=============================================================================
// Implementation of internal utils
//=============================================================================
/*
* Remove coincident intersection points
*/
void GridLine::RemoveExcessIntPoints( const double tol )
{
if ( _intPoints.size() < 2 ) return;
set< Transition > tranSet;
multiset< IntersectionPoint >::iterator ip1, ip2 = _intPoints.begin();
while ( ip2 != _intPoints.end() )
{
tranSet.clear();
ip1 = ip2++;
while ( ip2->_paramOnLine - ip1->_paramOnLine <= tol && ip2 != _intPoints.end())
{
tranSet.insert( ip1->_transition );
tranSet.insert( ip2->_transition );
_intPoints.erase( ip1 );
ip1 = ip2++;
}
if ( tranSet.size() > 1 ) // points with different transition coincide
{
bool isIN = tranSet.count( Trans_IN );
bool isOUT = tranSet.count( Trans_OUT );
if ( isIN && isOUT )
(*ip1)._transition = Trans_TANGENT;
else
(*ip1)._transition = isIN ? Trans_IN : Trans_OUT;
}
}
}
//================================================================================
/*
* Return "is OUT" state for nodes before the given intersection point
*/
bool GridLine::GetIsOutBefore( multiset< IntersectionPoint >::iterator ip, bool prevIsOut )
{
if ( ip->_transition == Trans_IN )
return true;
if ( ip->_transition == Trans_OUT )
return false;
if ( ip->_transition == Trans_APEX )
{
// singularity point (apex of a cone)
if ( _intPoints.size() == 1 || ip == _intPoints.begin() )
return true;
multiset< IntersectionPoint >::iterator ipBef = ip, ipAft = ++ip;
if ( ipAft == _intPoints.end() )
return false;
--ipBef;
if ( ipBef->_transition != ipAft->_transition )
return ( ipBef->_transition == Trans_OUT );
return ( ipBef->_transition != Trans_OUT );
}
return prevIsOut; // _transition == Trans_TANGENT
}
//================================================================================
/*
* Return an iterator on GridLine's in a given direction
*/
LineIndexer Grid::GetLineIndexer(size_t iDir) const
{
const size_t indices[] = { 1,2,0, 0,2,1, 0,1,2 };
const string s[] = { "X", "Y", "Z" };
LineIndexer li( _coords[0].size(), _coords[1].size(), _coords[2].size(),
indices[iDir*3], indices[iDir*3+1], indices[iDir*3+2],
s[indices[iDir*3]], s[indices[iDir*3+1]], s[indices[iDir*3+2]]);
return li;
}
//=============================================================================
/*
* Creates GridLine's of the grid
*/
void Grid::SetCoordinates(const vector<double>& xCoords,
const vector<double>& yCoords,
const vector<double>& zCoords,
const TopoDS_Shape& shape)
{
_coords[0] = xCoords;
_coords[1] = yCoords;
_coords[2] = zCoords;
// compute tolerance
_minCellSize = Precision::Infinite();
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
for ( size_t i = 1; i < _coords[ iDir ].size(); ++i )
{
double cellLen = _coords[ iDir ][ i ] - _coords[ iDir ][ i-1 ];
if ( cellLen < _minCellSize )
_minCellSize = cellLen;
}
}
if ( _minCellSize < Precision::Confusion() )
throw SMESH_ComputeError (COMPERR_ALGO_FAILED,
SMESH_Comment("Too small cell size: ") << _tol );
_tol = _minCellSize / 1000.;
// attune grid extremities to shape bounding box computed by vertices
Bnd_Box shapeBox;
for ( TopExp_Explorer vExp( shape, TopAbs_VERTEX ); vExp.More(); vExp.Next() )
shapeBox.Add( BRep_Tool::Pnt( TopoDS::Vertex( vExp.Current() )));
double sP[6]; // aXmin, aYmin, aZmin, aXmax, aYmax, aZmax
shapeBox.Get(sP[0],sP[1],sP[2],sP[3],sP[4],sP[5]);
double* cP[6] = { &_coords[0].front(), &_coords[1].front(), &_coords[2].front(),
&_coords[0].back(), &_coords[1].back(), &_coords[2].back() };
for ( int i = 0; i < 6; ++i )
if ( fabs( sP[i] - *cP[i] ) < _tol )
*cP[i] = sP[i] + _tol/1000. * ( i < 3 ? +1 : -1 );
// create lines
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
LineIndexer li = GetLineIndexer( iDir );
_lines[iDir].resize( li.NbLines() );
double len = _coords[ iDir ].back() - _coords[iDir].front();
gp_Vec dir( iDir==0, iDir==1, iDir==2 );
for ( ; li.More(); ++li )
{
GridLine& gl = _lines[iDir][ li.LineIndex() ];
gl._line.SetLocation(gp_Pnt(_coords[0][li.I()], _coords[1][li.J()], _coords[2][li.K()]));
gl._line.SetDirection( dir );
gl._length = len;
}
}
}
//================================================================================
/*
* Creates all nodes
*/
void Grid::ComputeNodes(SMESH_MesherHelper& helper)
{
// state of each node of the grid relative to the geomerty
const size_t nbGridNodes = _coords[0].size() * _coords[1].size() * _coords[2].size();
vector< bool > isNodeOut( nbGridNodes, false );
_nodes.resize( nbGridNodes, 0 );
_isBndNode.resize( nbGridNodes, false );
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
LineIndexer li = GetLineIndexer( iDir );
// find out a shift of node index while walking along a GridLine in this direction
li.SetIndexOnLine( 0 );
size_t nIndex0 = NodeIndex( li.I(), li.J(), li.K() );
li.SetIndexOnLine( 1 );
const size_t nShift = NodeIndex( li.I(), li.J(), li.K() ) - nIndex0;
const vector<double> & coords = _coords[ iDir ];
for ( ; li.More(); ++li ) // loop on lines in iDir
{
li.SetIndexOnLine( 0 );
nIndex0 = NodeIndex( li.I(), li.J(), li.K() );
GridLine& line = _lines[ iDir ][ li.LineIndex() ];
line.RemoveExcessIntPoints( _tol );
multiset< IntersectionPoint >& intPnts = _lines[ iDir ][ li.LineIndex() ]._intPoints;
multiset< IntersectionPoint >::iterator ip = intPnts.begin();
bool isOut = true;
const double* nodeCoord = & coords[0], *coord0 = nodeCoord, *coordEnd = coord0 + coords.size();
double nodeParam = 0;
for ( ; ip != intPnts.end(); ++ip )
{
// set OUT state or just skip IN nodes before ip
if ( nodeParam < ip->_paramOnLine - _tol )
{
isOut = line.GetIsOutBefore( ip, isOut );
while ( nodeParam < ip->_paramOnLine - _tol )
{
if ( isOut )
isNodeOut[ nIndex0 + nShift * ( nodeCoord-coord0 ) ] = isOut;
if ( ++nodeCoord < coordEnd )
nodeParam = *nodeCoord - *coord0;
else
break;
}
if ( nodeCoord == coordEnd ) break;
}
// create a mesh node on a GridLine at ip if it does not coincide with a grid node
if ( nodeParam > ip->_paramOnLine + _tol )
{
li.SetIndexOnLine( 0 );
double xyz[3] = { _coords[0][ li.I() ], _coords[1][ li.J() ], _coords[2][ li.K() ]};
xyz[ li._iConst ] += ip->_paramOnLine;
ip->_node = helper.AddNode( xyz[0], xyz[1], xyz[2] );
ip->_indexOnLine = nodeCoord-coord0-1;
}
// create a mesh node at ip concident with a grid node
else
{
int nodeIndex = nIndex0 + nShift * ( nodeCoord-coord0 );
if ( ! _nodes[ nodeIndex ] )
{
li.SetIndexOnLine( nodeCoord-coord0 );
double xyz[3] = { _coords[0][ li.I() ], _coords[1][ li.J() ], _coords[2][ li.K() ]};
_nodes[ nodeIndex ] = helper.AddNode( xyz[0], xyz[1], xyz[2] );
_isBndNode[ nodeIndex ] = true;
}
//ip->_node = _nodes[ nodeIndex ];
ip->_indexOnLine = nodeCoord-coord0;
if ( ++nodeCoord < coordEnd )
nodeParam = *nodeCoord - *coord0;
}
}
// set OUT state to nodes after the last ip
for ( ; nodeCoord < coordEnd; ++nodeCoord )
isNodeOut[ nIndex0 + nShift * ( nodeCoord-coord0 ) ] = true;
}
}
// Create mesh nodes at !OUT nodes of the grid
for ( size_t z = 0; z < _coords[2].size(); ++z )
for ( size_t y = 0; y < _coords[1].size(); ++y )
for ( size_t x = 0; x < _coords[0].size(); ++x )
{
size_t nodeIndex = NodeIndex( x, y, z );
if ( !isNodeOut[ nodeIndex ] && !_nodes[ nodeIndex] )
_nodes[ nodeIndex ] = helper.AddNode( _coords[0][x], _coords[1][y], _coords[2][z] );
}
#ifdef _MY_DEBUG_
// check validity of transitions
const char* trName[] = { "TANGENT", "IN", "OUT", "APEX" };
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
LineIndexer li = GetLineIndexer( iDir );
for ( ; li.More(); ++li )
{
multiset< IntersectionPoint >& intPnts = _lines[ iDir ][ li.LineIndex() ]._intPoints;
if ( intPnts.empty() ) continue;
if ( intPnts.size() == 1 )
{
if ( intPnts.begin()->_transition != Trans_TANGENT &&
intPnts.begin()->_transition != Trans_APEX )
throw SMESH_ComputeError (COMPERR_ALGO_FAILED,
SMESH_Comment("Wrong SOLE transition of GridLine (")
<< li._curInd[li._iVar1] << ", " << li._curInd[li._iVar2]
<< ") along " << li._nameConst
<< ": " << trName[ intPnts.begin()->_transition] );
}
else
{
if ( intPnts.begin()->_transition == Trans_OUT )
throw SMESH_ComputeError (COMPERR_ALGO_FAILED,
SMESH_Comment("Wrong START transition of GridLine (")
<< li._curInd[li._iVar1] << ", " << li._curInd[li._iVar2]
<< ") along " << li._nameConst
<< ": " << trName[ intPnts.begin()->_transition ]);
if ( intPnts.rbegin()->_transition == Trans_IN )
throw SMESH_ComputeError (COMPERR_ALGO_FAILED,
SMESH_Comment("Wrong END transition of GridLine (")
<< li._curInd[li._iVar1] << ", " << li._curInd[li._iVar2]
<< ") along " << li._nameConst
<< ": " << trName[ intPnts.rbegin()->_transition ]);
}
}
}
#endif
}
//=============================================================================
/*
* Checks if the face is encosed by the grid
*/
bool FaceGridIntersector::IsInGrid(const Bnd_Box& gridBox)
{
double x0,y0,z0, x1,y1,z1;
const Bnd_Box& faceBox = GetFaceBndBox();
faceBox.Get(x0,y0,z0, x1,y1,z1);
if ( !gridBox.IsOut( gp_Pnt( x0,y0,z0 )) &&
!gridBox.IsOut( gp_Pnt( x1,y1,z1 )))
return true;
double X0,Y0,Z0, X1,Y1,Z1;
gridBox.Get(X0,Y0,Z0, X1,Y1,Z1);
double faceP[6] = { x0,y0,z0, x1,y1,z1 };
double gridP[6] = { X0,Y0,Z0, X1,Y1,Z1 };
gp_Dir axes[3] = { gp::DX(), gp::DY(), gp::DZ() };
for ( int iDir = 0; iDir < 6; ++iDir )
{
if ( iDir < 3 && gridP[ iDir ] <= faceP[ iDir ] ) continue;
if ( iDir >= 3 && gridP[ iDir ] >= faceP[ iDir ] ) continue;
// check if the face intersects a side of a gridBox
gp_Pnt p = iDir < 3 ? gp_Pnt( X0,Y0,Z0 ) : gp_Pnt( X1,Y1,Z1 );
gp_Ax1 norm( p, axes[ iDir % 3 ] );
if ( iDir < 3 ) norm.Reverse();
gp_XYZ O = norm.Location().XYZ(), N = norm.Direction().XYZ();
TopLoc_Location loc = _face.Location();
Handle(Poly_Triangulation) aPoly = BRep_Tool::Triangulation(_face,loc);
if ( !aPoly.IsNull() )
{
if ( !loc.IsIdentity() )
{
norm.Transform( loc.Transformation().Inverted() );
O = norm.Location().XYZ(), N = norm.Direction().XYZ();
}
const double deflection = aPoly->Deflection();
const TColgp_Array1OfPnt& nodes = aPoly->Nodes();
for ( int i = nodes.Lower(); i <= nodes.Upper(); ++i )
if (( nodes( i ).XYZ() - O ) * N > _grid->_tol + deflection )
return false;
}
else
{
BRepAdaptor_Surface surf( _face );
double u0, u1, v0, v1, du, dv, u, v;
BRepTools::UVBounds( _face, u0, u1, v0, v1);
if ( surf.GetType() == GeomAbs_Plane ) {
du = u1 - u0, dv = v1 - v0;
}
else {
du = surf.UResolution( _grid->_minCellSize / 10. );
dv = surf.VResolution( _grid->_minCellSize / 10. );
}
for ( u = u0, v = v0; u <= u1 && v <= v1; u += du, v += dv )
{
gp_Pnt p = surf.Value( u, v );
if (( p.XYZ() - O ) * N > _grid->_tol )
{
TopAbs_State state = GetCurveFaceIntersector()->ClassifyUVPoint(gp_Pnt2d( u, v ));
if ( state == TopAbs_IN || state == TopAbs_ON )
return false;
}
}
}
}
return true;
}
//=============================================================================
/*
* Intersects TopoDS_Face with all GridLine's
*/
void FaceGridIntersector::Intersect()
{
FaceLineIntersector intersector;
intersector._surfaceInt = GetCurveFaceIntersector();
intersector._tol = _grid->_tol;
intersector._transOut = _face.Orientation() == TopAbs_REVERSED ? Trans_IN : Trans_OUT;
intersector._transIn = _face.Orientation() == TopAbs_REVERSED ? Trans_OUT : Trans_IN;
typedef void (FaceLineIntersector::* PIntFun )(const GridLine& gridLine);
PIntFun interFunction;
BRepAdaptor_Surface surf( _face );
switch ( surf.GetType() ) {
case GeomAbs_Plane:
intersector._plane = surf.Plane();
interFunction = &FaceLineIntersector::IntersectWithPlane;
break;
case GeomAbs_Cylinder:
intersector._cylinder = surf.Cylinder();
interFunction = &FaceLineIntersector::IntersectWithCylinder;
break;
case GeomAbs_Cone:
intersector._cone = surf.Cone();
interFunction = &FaceLineIntersector::IntersectWithCone;
break;
case GeomAbs_Sphere:
intersector._sphere = surf.Sphere();
interFunction = &FaceLineIntersector::IntersectWithSphere;
break;
case GeomAbs_Torus:
intersector._torus = surf.Torus();
interFunction = &FaceLineIntersector::IntersectWithTorus;
break;
default:
interFunction = &FaceLineIntersector::IntersectWithSurface;
}
_intersections.clear();
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
if ( surf.GetType() == GeomAbs_Plane )
{
// check if all lines in this direction are parallel to a plane
if ( intersector._plane.Axis().IsNormal( _grid->_lines[iDir][0]._line.Position(),
Precision::Angular()))
continue;
// find out a transition, that is the same for all lines of a direction
gp_Dir plnNorm = intersector._plane.Axis().Direction();
gp_Dir lineDir = _grid->_lines[iDir][0]._line.Direction();
intersector._transition =
( plnNorm * lineDir < 0 ) ? intersector._transIn : intersector._transOut;
}
if ( surf.GetType() == GeomAbs_Cylinder )
{
// check if all lines in this direction are parallel to a cylinder
if ( intersector._cylinder.Axis().IsParallel( _grid->_lines[iDir][0]._line.Position(),
Precision::Angular()))
continue;
}
// intersect the grid lines with the face
for ( size_t iL = 0; iL < _grid->_lines[iDir].size(); ++iL )
{
GridLine& gridLine = _grid->_lines[iDir][iL];
if ( _bndBox.IsOut( gridLine._line )) continue;
intersector._intPoints.clear();
(intersector.*interFunction)( gridLine );
for ( size_t i = 0; i < intersector._intPoints.size(); ++i )
_intersections.push_back( make_pair( &gridLine, intersector._intPoints[i] ));
}
}
}
//================================================================================
/*
* Return true if (_u,_v) is on the face
*/
bool FaceLineIntersector::UVIsOnFace() const
{
TopAbs_State state = _surfaceInt->ClassifyUVPoint(gp_Pnt2d( _u,_v ));
return ( state == TopAbs_IN || state == TopAbs_ON );
}
//================================================================================
/*
* Store an intersection if it is IN or ON the face
*/
void FaceLineIntersector::addIntPoint(const bool toClassify)
{
if ( !toClassify || UVIsOnFace() )
{
IntersectionPoint p;
p._paramOnLine = _w;
p._transition = _transition;
_intPoints.push_back( p );
}
}
//================================================================================
/*
* Intersect a line with a plane
*/
void FaceLineIntersector::IntersectWithPlane (const GridLine& gridLine)
{
IntAna_IntConicQuad linPlane( gridLine._line, _plane, Precision::Angular());
_w = linPlane.ParamOnConic(1);
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_plane, linPlane.Point(1) ,_u,_v);
addIntPoint();
}
}
//================================================================================
/*
* Intersect a line with a cylinder
*/
void FaceLineIntersector::IntersectWithCylinder(const GridLine& gridLine)
{
IntAna_IntConicQuad linCylinder( gridLine._line,_cylinder);
if ( linCylinder.IsDone() && linCylinder.NbPoints() > 0 )
{
_w = linCylinder.ParamOnConic(1);
if ( linCylinder.NbPoints() == 1 )
_transition = Trans_TANGENT;
else
_transition = _w < linCylinder.ParamOnConic(2) ? _transIn : _transOut;
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_cylinder, linCylinder.Point(1) ,_u,_v);
addIntPoint();
}
if ( linCylinder.NbPoints() > 1 )
{
_w = linCylinder.ParamOnConic(2);
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_cylinder, linCylinder.Point(2) ,_u,_v);
_transition = ( _transition == Trans_OUT ) ? Trans_IN : Trans_OUT;
addIntPoint();
}
}
}
}
//================================================================================
/*
* Intersect a line with a cone
*/
void FaceLineIntersector::IntersectWithCone (const GridLine& gridLine)
{
IntAna_IntConicQuad linCone(gridLine._line,_cone);
if ( !linCone.IsDone() ) return;
gp_Pnt P;
gp_Vec du, dv, norm;
for ( int i = 1; i <= linCone.NbPoints(); ++i )
{
_w = linCone.ParamOnConic( i );
if ( !isParamOnLineOK( gridLine._length )) continue;
ElSLib::Parameters(_cone, linCone.Point(i) ,_u,_v);
if ( UVIsOnFace() )
{
ElSLib::D1( _u, _v, _cone, P, du, dv );
norm = du ^ dv;
double normSize2 = norm.SquareMagnitude();
if ( normSize2 > Precision::Angular() * Precision::Angular() )
{
double cos = norm.XYZ() * gridLine._line.Direction().XYZ();
cos /= sqrt( normSize2 );
if ( cos < -Precision::Angular() )
_transition = _transIn;
else if ( cos > Precision::Angular() )
_transition = _transOut;
else
_transition = Trans_TANGENT;
}
else
{
_transition = Trans_APEX;
}
addIntPoint( /*toClassify=*/false);
}
}
}
//================================================================================
/*
* Intersect a line with a sphere
*/
void FaceLineIntersector::IntersectWithSphere (const GridLine& gridLine)
{
IntAna_IntConicQuad linSphere(gridLine._line,_sphere);
if ( linSphere.IsDone() && linSphere.NbPoints() > 0 )
{
_w = linSphere.ParamOnConic(1);
if ( linSphere.NbPoints() == 1 )
_transition = Trans_TANGENT;
else
_transition = _w < linSphere.ParamOnConic(2) ? _transIn : _transOut;
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_sphere, linSphere.Point(1) ,_u,_v);
addIntPoint();
}
if ( linSphere.NbPoints() > 1 )
{
_w = linSphere.ParamOnConic(2);
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_sphere, linSphere.Point(2) ,_u,_v);
_transition = ( _transition == Trans_OUT ) ? Trans_IN : Trans_OUT;
addIntPoint();
}
}
}
}
//================================================================================
/*
* Intersect a line with a torus
*/
void FaceLineIntersector::IntersectWithTorus (const GridLine& gridLine)
{
IntAna_IntLinTorus linTorus(gridLine._line,_torus);
if ( !linTorus.IsDone()) return;
gp_Pnt P;
gp_Vec du, dv, norm;
for ( int i = 1; i <= linTorus.NbPoints(); ++i )
{
_w = linTorus.ParamOnLine( i );
if ( !isParamOnLineOK( gridLine._length )) continue;
linTorus.ParamOnTorus( i, _u,_v );
if ( UVIsOnFace() )
{
ElSLib::D1( _u, _v, _torus, P, du, dv );
norm = du ^ dv;
double normSize = norm.Magnitude();
double cos = norm.XYZ() * gridLine._line.Direction().XYZ();
cos /= normSize;
if ( cos < -Precision::Angular() )
_transition = _transIn;
else if ( cos > Precision::Angular() )
_transition = _transOut;
else
_transition = Trans_TANGENT;
addIntPoint( /*toClassify=*/false);
}
}
}
//================================================================================
/*
* Intersect a line with a non-analytical surface
*/
void FaceLineIntersector::IntersectWithSurface (const GridLine& gridLine)
{
_surfaceInt->Perform( gridLine._line, 0.0, gridLine._length );
if ( !_surfaceInt->IsDone() ) return;
for ( int i = 1; i <= _surfaceInt->NbPnt(); ++i )
{
_transition = Transition( _surfaceInt->Transition( i ) );
_w = _surfaceInt->WParameter( i );
addIntPoint(/*toClassify=*/false);
}
}
//================================================================================
/*
* check if its face can be safely intersected in a thread
*/
bool FaceGridIntersector::IsThreadSafe(set< const Standard_Transient* >& noSafeTShapes) const
{
bool isSafe = true;
// check surface
TopLoc_Location loc;
Handle(Geom_Surface) surf = BRep_Tool::Surface( _face, loc );
Handle(Geom_RectangularTrimmedSurface) ts =
Handle(Geom_RectangularTrimmedSurface)::DownCast( surf );
while( !ts.IsNull() ) {
surf = ts->BasisSurface();
ts = Handle(Geom_RectangularTrimmedSurface)::DownCast(surf);
}
if ( surf->IsKind( STANDARD_TYPE(Geom_BSplineSurface )) ||
surf->IsKind( STANDARD_TYPE(Geom_BezierSurface )))
if ( !noSafeTShapes.insert((const Standard_Transient*) _face.TShape() ).second )
isSafe = false;
double f, l;
TopExp_Explorer exp( _face, TopAbs_EDGE );
for ( ; exp.More(); exp.Next() )
{
bool edgeIsSafe = true;
const TopoDS_Edge& e = TopoDS::Edge( exp.Current() );
// check 3d curve
{
Handle(Geom_Curve) c = BRep_Tool::Curve( e, loc, f, l);
if ( !c.IsNull() )
{
Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(c);
while( !tc.IsNull() ) {
c = tc->BasisCurve();
tc = Handle(Geom_TrimmedCurve)::DownCast(c);
}
if ( c->IsKind( STANDARD_TYPE(Geom_BSplineCurve )) ||
c->IsKind( STANDARD_TYPE(Geom_BezierCurve )))
edgeIsSafe = false;
}
}
// check 2d curve
if ( edgeIsSafe )
{
Handle(Geom2d_Curve) c2 = BRep_Tool::CurveOnSurface( e, surf, loc, f, l);
if ( !c2.IsNull() )
{
Handle(Geom2d_TrimmedCurve) tc = Handle(Geom2d_TrimmedCurve)::DownCast(c2);
while( !tc.IsNull() ) {
c2 = tc->BasisCurve();
tc = Handle(Geom2d_TrimmedCurve)::DownCast(c2);
}
if ( c2->IsKind( STANDARD_TYPE(Geom2d_BSplineCurve )) ||
c2->IsKind( STANDARD_TYPE(Geom2d_BezierCurve )))
edgeIsSafe = false;
}
}
if ( !edgeIsSafe && !noSafeTShapes.insert((const Standard_Transient*) e.TShape() ).second )
isSafe = false;
}
return isSafe;
}
//================================================================================
/*!
* \brief Creates topology of the hexahedron
*/
Hexahedron::Hexahedron(const double sizeThreshold, Grid* grid)
: _grid( grid ), _sizeThreshold( sizeThreshold ), _nbIntNodes(0)
{
_polygons.reserve(100); // to avoid reallocation;
//set nodes shift within grid->_nodes from the node 000
size_t dx = _grid->NodeIndexDX();
size_t dy = _grid->NodeIndexDY();
size_t dz = _grid->NodeIndexDZ();
size_t i000 = 0;
size_t i100 = i000 + dx;
size_t i010 = i000 + dy;
size_t i110 = i010 + dx;
size_t i001 = i000 + dz;
size_t i101 = i100 + dz;
size_t i011 = i010 + dz;
size_t i111 = i110 + dz;
_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V000 )] = i000;
_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V100 )] = i100;
_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V010 )] = i010;
_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V110 )] = i110;
_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V001 )] = i001;
_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V101 )] = i101;
_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V011 )] = i011;
_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V111 )] = i111;
vector< int > idVec;
// set nodes to links
for ( int linkID = SMESH_Block::ID_Ex00; linkID <= SMESH_Block::ID_E11z; ++linkID )
{
SMESH_Block::GetEdgeVertexIDs( linkID, idVec );
_Link& link = _hexLinks[ SMESH_Block::ShapeIndex( linkID )];
link._nodes[0] = &_hexNodes[ SMESH_Block::ShapeIndex( idVec[0] )];
link._nodes[1] = &_hexNodes[ SMESH_Block::ShapeIndex( idVec[1] )];
link._intNodes.reserve( 10 ); // to avoid reallocation
link._splits.reserve( 10 );
}
// set links to faces
int interlace[4] = { 0, 3, 1, 2 }; // to walk by links around a face: { u0, 1v, u1, 0v }
for ( int faceID = SMESH_Block::ID_Fxy0; faceID <= SMESH_Block::ID_F1yz; ++faceID )
{
SMESH_Block::GetFaceEdgesIDs( faceID, idVec );
_Face& quad = _hexQuads[ SMESH_Block::ShapeIndex( faceID )];
bool revFace = ( faceID == SMESH_Block::ID_Fxy0 ||
faceID == SMESH_Block::ID_Fx1z ||
faceID == SMESH_Block::ID_F0yz );
quad._links.resize(4);
vector<_OrientedLink>::iterator frwLinkIt = quad._links.begin();
vector<_OrientedLink>::reverse_iterator revLinkIt = quad._links.rbegin();
for ( int i = 0; i < 4; ++i )
{
bool revLink = revFace;
if ( i > 1 ) // reverse links u1 and v0
revLink = !revLink;
_OrientedLink& link = revFace ? *revLinkIt++ : *frwLinkIt++;
link = _OrientedLink( & _hexLinks[ SMESH_Block::ShapeIndex( idVec[interlace[i]] )],
revLink );
}
}
}
//================================================================================
/*!
* \brief Copy constructor
*/
Hexahedron::Hexahedron( const Hexahedron& other )
:_grid( other._grid ), _sizeThreshold( other._sizeThreshold ), _nbIntNodes(0)
{
_polygons.reserve(100); // to avoid reallocation;
for ( int i = 0; i < 8; ++i )
_nodeShift[i] = other._nodeShift[i];
for ( int i = 0; i < 12; ++i )
{
const _Link& srcLink = other._hexLinks[ i ];
_Link& tgtLink = this->_hexLinks[ i ];
tgtLink._nodes[0] = _hexNodes + ( srcLink._nodes[0] - other._hexNodes );
tgtLink._nodes[1] = _hexNodes + ( srcLink._nodes[1] - other._hexNodes );
tgtLink._intNodes.reserve( 10 ); // to avoid reallocation
tgtLink._splits.reserve( 10 );
}
for ( int i = 0; i < 6; ++i )
{
const _Face& srcQuad = other._hexQuads[ i ];
_Face& tgtQuad = this->_hexQuads[ i ];
tgtQuad._links.resize(4);
for ( int j = 0; j < 4; ++j )
{
const _OrientedLink& srcLink = srcQuad._links[ j ];
_OrientedLink& tgtLink = tgtQuad._links[ j ];
tgtLink._reverse = srcLink._reverse;
tgtLink._link = _hexLinks + ( srcLink._link - other._hexLinks );
}
}
}
//================================================================================
/*!
* \brief Initializes its data by given grid cell
*/
void Hexahedron::init( size_t i, size_t j, size_t k )
{
_i = i; _j = j; _k = k;
// set nodes of grid to nodes of the hexahedron and
// count nodes at hexahedron corners located IN and ON geometry
_nbCornerNodes = _nbBndNodes = 0;
_origNodeInd = _grid->NodeIndex( i,j,k );
for ( int iN = 0; iN < 8; ++iN )
{
_hexNodes[iN]._node = _grid->_nodes[ _origNodeInd + _nodeShift[iN] ];
_nbCornerNodes += bool( _hexNodes[iN]._node );
_nbBndNodes += _grid->_isBndNode[ _origNodeInd + _nodeShift[iN] ];
}
_sideLength[0] = _grid->_coords[0][i+1] - _grid->_coords[0][i];
_sideLength[1] = _grid->_coords[1][j+1] - _grid->_coords[1][j];
_sideLength[2] = _grid->_coords[2][k+1] - _grid->_coords[2][k];
if ( _nbCornerNodes < 8 && _nbIntNodes + _nbCornerNodes > 3)
{
_Link split;
// create sub-links (_splits) by splitting links with _intNodes
for ( int iLink = 0; iLink < 12; ++iLink )
{
_Link& link = _hexLinks[ iLink ];
link._splits.clear();
split._nodes[ 0 ] = link._nodes[0];
for ( size_t i = 0; i < link._intNodes.size(); ++ i )
{
if ( split._nodes[ 0 ]->Node() )
{
split._nodes[ 1 ] = &link._intNodes[i];
link._splits.push_back( split );
}
split._nodes[ 0 ] = &link._intNodes[i];
}
if ( link._nodes[ 1 ]->Node() && split._nodes[ 0 ]->Node() )
{
split._nodes[ 1 ] = link._nodes[1];
link._splits.push_back( split );
}
}
}
}
//================================================================================
/*!
* \brief Initializes its data by given grid cell (countered from zero)
*/
void Hexahedron::init( size_t iCell )
{
size_t iNbCell = _grid->_coords[0].size() - 1;
size_t jNbCell = _grid->_coords[1].size() - 1;
_i = iCell % iNbCell;
_j = ( iCell % ( iNbCell * jNbCell )) / iNbCell;
_k = iCell / iNbCell / jNbCell;
init( _i, _j, _k );
}
//================================================================================
/*!
* \brief Compute mesh volumes resulted from intersection of the Hexahedron
*/
void Hexahedron::ComputeElements()
{
Init();
if ( _nbCornerNodes + _nbIntNodes < 4 )
return;
if ( _nbBndNodes == _nbCornerNodes && isInHole() )
return;
_polygons.clear();
vector<const SMDS_MeshNode* > polyhedraNodes;
vector<int> quantities;
// create polygons from quadrangles and get their nodes
vector<_Node*> nodes;
nodes.reserve( _nbCornerNodes + _nbIntNodes );
_Link polyLink;
polyLink._faces.reserve( 1 );
for ( int iF = 0; iF < 6; ++iF ) // loop on 6 sides of a hexahedron
{
const _Face& quad = _hexQuads[ iF ] ;
_polygons.resize( _polygons.size() + 1 );
_Face& polygon = _polygons.back();
polygon._links.clear();
polygon._polyLinks.clear(); polygon._polyLinks.reserve( 10 );
// add splits of a link to a polygon and collect info on nodes
//int nbIn = 0, nbOut = 0, nbCorners = 0;
nodes.clear();
for ( int iE = 0; iE < 4; ++iE ) // loop on 4 sides of a quadrangle
{
int nbSpits = quad._links[ iE ].NbResultLinks();
for ( int iS = 0; iS < nbSpits; ++iS )
{
_OrientedLink split = quad._links[ iE ].ResultLink( iS );
_Node* n = split.FirstNode();
if ( !polygon._links.empty() )
{
_Node* nPrev = polygon._links.back().LastNode();
if ( nPrev != n )
{
polyLink._nodes[0] = nPrev;
polyLink._nodes[1] = n;
polygon._polyLinks.push_back( polyLink );
polygon._links.push_back( _OrientedLink( &polygon._polyLinks.back() ));
nodes.push_back( nPrev );
}
}
polygon._links.push_back( split );
nodes.push_back( n );
}
}
if ( polygon._links.size() > 1 )
{
_Node* n1 = polygon._links.back().LastNode();
_Node* n2 = polygon._links.front().FirstNode();
if ( n1 != n2 )
{
polyLink._nodes[0] = n1;
polyLink._nodes[1] = n2;
polygon._polyLinks.push_back( polyLink );
polygon._links.push_back( _OrientedLink( &polygon._polyLinks.back() ));
nodes.push_back( n1 );
}
// add polygon to its links
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
polygon._links[ iL ]._link->_faces.push_back( &polygon );
// store polygon nodes
quantities.push_back( nodes.size() );
for ( size_t i = 0; i < nodes.size(); ++i )
polyhedraNodes.push_back( nodes[i]->Node() );
}
else
{
_polygons.resize( _polygons.size() - 1 );
}
}
// create polygons closing holes in a polyhedron
// find free links
vector< _OrientedLink* > freeLinks;
for ( size_t iP = 0; iP < _polygons.size(); ++iP )
{
_Face& polygon = _polygons[ iP ];
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
if ( polygon._links[ iL ]._link->_faces.size() < 2 )
freeLinks.push_back( & polygon._links[ iL ]);
}
// make closed chains of free links
int nbFreeLinks = freeLinks.size();
if ( 0 < nbFreeLinks && nbFreeLinks < 3 ) return;
while ( nbFreeLinks > 0 )
{
nodes.clear();
_polygons.resize( _polygons.size() + 1 );
_Face& polygon = _polygons.back();
polygon._links.clear();
// get a remaining link to start from
_OrientedLink* curLink = 0;
for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL )
if (( curLink = freeLinks[ iL ] ))
freeLinks[ iL ] = 0;
nodes.push_back( curLink->LastNode() );
polygon._links.push_back( *curLink );
// find all links connected to curLink
_Node* curNode = 0;
do
{
curNode = curLink->FirstNode();
curLink = 0;
for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL )
if ( freeLinks[ iL ] && freeLinks[ iL ]->LastNode() == curNode )
{
curLink = freeLinks[ iL ];
freeLinks[ iL ] = 0;
nodes.push_back( curNode );
polygon._links.push_back( *curLink );
}
} while ( curLink );
nbFreeLinks -= polygon._links.size();
if ( curNode != nodes.front() || polygon._links.size() < 3 )
return; // closed polygon not found -> invalid polyhedron
quantities.push_back( nodes.size() );
for ( size_t i = 0; i < nodes.size(); ++i )
polyhedraNodes.push_back( nodes[i]->Node() );
// add polygon to its links and reverse links
for ( size_t i = 0; i < polygon._links.size(); ++i )
{
polygon._links[i].Reverse();
polygon._links[i]._link->_faces.push_back( &polygon );
}
//const size_t firstPoly = _polygons.size();
}
if ( ! checkPolyhedronSize() )
{
return;
}
// create a classic cell if possible
const int nbNodes = _nbCornerNodes + _nbIntNodes;
bool isClassicElem = false;
if ( nbNodes == 8 && _polygons.size() == 6 ) isClassicElem = addHexa();
else if ( nbNodes == 4 && _polygons.size() == 4 ) isClassicElem = addTetra();
else if ( nbNodes == 6 && _polygons.size() == 5 ) isClassicElem = addPenta();
else if ( nbNodes == 5 && _polygons.size() == 5 ) isClassicElem = addPyra ();
if ( !isClassicElem )
_volumeDefs.set( polyhedraNodes, quantities );
}
//================================================================================
/*!
* \brief Create elements in the mesh
*/
int Hexahedron::MakeElements(SMESH_MesherHelper& helper)
{
SMESHDS_Mesh* mesh = helper.GetMeshDS();
size_t nbCells[3] = { _grid->_coords[0].size() - 1,
_grid->_coords[1].size() - 1,
_grid->_coords[2].size() - 1 };
const size_t nbGridCells = nbCells[0] *nbCells [1] * nbCells[2];
vector< Hexahedron* > intersectedHex( nbGridCells, 0 );
int nbIntHex = 0;
// set intersection nodes from GridLine's to links of intersectedHex
int i,j,k, iDirOther[3][2] = {{ 1,2 },{ 0,2 },{ 0,1 }};
for ( int iDir = 0; iDir < 3; ++iDir )
{
int dInd[4][3] = { {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0} };
dInd[1][ iDirOther[iDir][0] ] = -1;
dInd[2][ iDirOther[iDir][1] ] = -1;
dInd[3][ iDirOther[iDir][0] ] = -1; dInd[3][ iDirOther[iDir][1] ] = -1;
// loop on GridLine's parallel to iDir
LineIndexer lineInd = _grid->GetLineIndexer( iDir );
for ( ; lineInd.More(); ++lineInd )
{
GridLine& line = _grid->_lines[ iDir ][ lineInd.LineIndex() ];
multiset< IntersectionPoint >::const_iterator ip = line._intPoints.begin();
for ( ; ip != line._intPoints.end(); ++ip )
{
if ( !ip->_node ) continue;
lineInd.SetIndexOnLine( ip->_indexOnLine );
for ( int iL = 0; iL < 4; ++iL ) // loop on 4 cells sharing a link
{
i = int(lineInd.I()) + dInd[iL][0];
j = int(lineInd.J()) + dInd[iL][1];
k = int(lineInd.K()) + dInd[iL][2];
if ( i < 0 || i >= nbCells[0] ||
j < 0 || j >= nbCells[1] ||
k < 0 || k >= nbCells[2] ) continue;
const size_t hexIndex = _grid->CellIndex( i,j,k );
Hexahedron *& hex = intersectedHex[ hexIndex ];
if ( !hex)
{
hex = new Hexahedron( *this );
hex->_i = i;
hex->_j = j;
hex->_k = k;
++nbIntHex;
}
const int iLink = iL + iDir * 4;
hex->_hexLinks[iLink]._intNodes.push_back( _Node( 0, &(*ip) ));
hex->_nbIntNodes++;
}
}
}
}
// add not split hexadrons to the mesh
int nbAdded = 0;
vector<int> intHexInd( nbIntHex );
nbIntHex = 0;
for ( size_t i = 0; i < intersectedHex.size(); ++i )
{
Hexahedron * & hex = intersectedHex[ i ];
if ( hex )
{
intHexInd[ nbIntHex++ ] = i;
if ( hex->_nbIntNodes > 0 ) continue;
init( hex->_i, hex->_j, hex->_k );
}
else
{
init( i );
}
if ( _nbCornerNodes == 8 && ( _nbBndNodes < _nbCornerNodes || !isInHole() ))
{
// order of _hexNodes is defined by enum SMESH_Block::TShapeID
SMDS_MeshElement* el =
mesh->AddVolume( _hexNodes[0].Node(), _hexNodes[2].Node(),
_hexNodes[3].Node(), _hexNodes[1].Node(),
_hexNodes[4].Node(), _hexNodes[6].Node(),
_hexNodes[7].Node(), _hexNodes[5].Node() );
mesh->SetMeshElementOnShape( el, helper.GetSubShapeID() );
++nbAdded;
if ( hex )
{
delete hex;
intersectedHex[ i ] = 0;
--nbIntHex;
}
}
else if ( _nbCornerNodes > 3 && !hex )
{
// all intersection of hex with geometry are at grid nodes
hex = new Hexahedron( *this );
hex->init( i );
intHexInd.push_back(0);
intHexInd[ nbIntHex++ ] = i;
}
}
// add elements resulted from hexadron intersection
#ifdef WITH_TBB
intHexInd.resize( nbIntHex );
tbb::parallel_for ( tbb::blocked_range<size_t>( 0, nbIntHex ),
ParallelHexahedron( intersectedHex, intHexInd ),
tbb::simple_partitioner()); // ComputeElements() is called here
for ( size_t i = 0; i < intHexInd.size(); ++i )
if ( Hexahedron * hex = intersectedHex[ intHexInd[ i ]] )
nbAdded += hex->addElements( helper );
#else
for ( size_t i = 0; i < intHexInd.size(); ++i )
if ( Hexahedron * hex = intersectedHex[ intHexInd[ i ]] )
{
hex->ComputeElements();
nbAdded += hex->addElements( helper );
}
#endif
for ( size_t i = 0; i < intersectedHex.size(); ++i )
if ( intersectedHex[ i ] )
delete intersectedHex[ i ];
return nbAdded;
}
//================================================================================
/*!
* \brief Adds computed elements to the mesh
*/
int Hexahedron::addElements(SMESH_MesherHelper& helper)
{
int nbAdded = 0;
// add elements resulted from hexahedron intersection
//for ( size_t i = 0; i < _volumeDefs.size(); ++i )
{
vector< const SMDS_MeshNode* >& nodes = _volumeDefs._nodes;
if ( !_volumeDefs._quantities.empty() )
{
helper.AddPolyhedralVolume( nodes, _volumeDefs._quantities );
}
else
{
switch ( nodes.size() )
{
case 8: helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3],
nodes[4],nodes[5],nodes[6],nodes[7] );
break;
case 4: helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3] );
break;
case 6: helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3], nodes[4],nodes[5] );
break;
case 5:
helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3],nodes[4] );
break;
}
}
nbAdded += int ( _volumeDefs._nodes.size() > 0 );
}
return nbAdded;
}
//================================================================================
/*!
* \brief Return true if the element is in a hole
*/
bool Hexahedron::isInHole() const
{
const int ijk[3] = { _i, _j, _k };
IntersectionPoint curIntPnt;
// consider a cell to be in a hole if all links in any direction
// comes OUT of geometry
for ( int iDir = 0; iDir < 3; ++iDir )
{
const vector<double>& coords = _grid->_coords[ iDir ];
LineIndexer li = _grid->GetLineIndexer( iDir );
li.SetIJK( _i,_j,_k );
size_t lineIndex[4] = { li.LineIndex (),
li.LineIndex10(),
li.LineIndex01(),
li.LineIndex11() };
bool allLinksOut = true, hasLinks = false;
for ( int iL = 0; iL < 4 && allLinksOut; ++iL ) // loop on 4 links parallel to iDir
{
const _Link& link = _hexLinks[ iL + 4*iDir ];
// check transition of the first node of a link
const IntersectionPoint* firstIntPnt = 0;
if ( link._nodes[0]->Node() ) // 1st node is a hexa corner
{
curIntPnt._paramOnLine = coords[ ijk[ iDir ]] - coords[0];
const GridLine& line = _grid->_lines[ iDir ][ lineIndex[ iL ]];
multiset< IntersectionPoint >::const_iterator ip =
line._intPoints.upper_bound( curIntPnt );
--ip;
firstIntPnt = &(*ip);
}
else if ( !link._intNodes.empty() )
{
firstIntPnt = link._intNodes[0]._intPoint;
}
if ( firstIntPnt )
{
hasLinks = true;
allLinksOut = ( firstIntPnt->_transition == Trans_OUT );
}
}
if ( hasLinks && allLinksOut )
return true;
}
return false;
}
//================================================================================
/*!
* \brief Return true if a polyhedron passes _sizeThreshold criterion
*/
bool Hexahedron::checkPolyhedronSize() const
{
double volume = 0;
for ( size_t iP = 0; iP < _polygons.size(); ++iP )
{
const _Face& polygon = _polygons[iP];
gp_XYZ area (0,0,0);
SMESH_TNodeXYZ p1 ( polygon._links[ 0 ].FirstNode()->Node() );
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
{
SMESH_TNodeXYZ p2 ( polygon._links[ iL ].LastNode()->Node() );
area += p1 ^ p2;
p1 = p2;
}
volume += p1 * area;
}
volume /= 6;
double initVolume = _sideLength[0] * _sideLength[1] * _sideLength[2];
return volume > initVolume / _sizeThreshold;
}
//================================================================================
/*!
* \brief Tries to create a hexahedron
*/
bool Hexahedron::addHexa()
{
if ( _polygons[0]._links.size() != 4 ||
_polygons[1]._links.size() != 4 ||
_polygons[2]._links.size() != 4 ||
_polygons[3]._links.size() != 4 ||
_polygons[4]._links.size() != 4 ||
_polygons[5]._links.size() != 4 )
return false;
const SMDS_MeshNode* nodes[8];
int nbN = 0;
for ( int iL = 0; iL < 4; ++iL )
{
// a base node
nodes[iL] = _polygons[0]._links[iL].FirstNode()->Node();
++nbN;
// find a top node above the base node
_Link* link = _polygons[0]._links[iL]._link;
ASSERT( link->_faces.size() > 1 );
// a quadrangle sharing <link> with _polygons[0]
_Face* quad = link->_faces[ bool( link->_faces[0] == & _polygons[0] )];
for ( int i = 0; i < 4; ++i )
if ( quad->_links[i]._link == link )
{
// 1st node of a link opposite to <link> in <quad>
nodes[iL+4] = quad->_links[(i+2)%4].FirstNode()->Node();
++nbN;
break;
}
}
if ( nbN == 8 )
_volumeDefs.set( vector< const SMDS_MeshNode* >( nodes, nodes+8 ));
return nbN == 8;
}
//================================================================================
/*!
* \brief Tries to create a tetrahedron
*/
bool Hexahedron::addTetra()
{
const SMDS_MeshNode* nodes[4];
nodes[0] = _polygons[0]._links[0].FirstNode()->Node();
nodes[1] = _polygons[0]._links[1].FirstNode()->Node();
nodes[2] = _polygons[0]._links[2].FirstNode()->Node();
_Link* link = _polygons[0]._links[0]._link;
ASSERT( link->_faces.size() > 1 );
// a triangle sharing <link> with _polygons[0]
_Face* tria = link->_faces[ bool( link->_faces[0] == & _polygons[0] )];
for ( int i = 0; i < 3; ++i )
if ( tria->_links[i]._link == link )
{
nodes[3] = tria->_links[(i+1)%3].LastNode()->Node();
_volumeDefs.set( vector< const SMDS_MeshNode* >( nodes, nodes+4 ));
return true;
}
return false;
}
//================================================================================
/*!
* \brief Tries to create a pentahedron
*/
bool Hexahedron::addPenta()
{
// find a base triangular face
int iTri = -1;
for ( int iF = 0; iF < 5 && iTri < 0; ++iF )
if ( _polygons[ iF ]._links.size() == 3 )
iTri = iF;
if ( iTri < 0 ) return false;
// find nodes
const SMDS_MeshNode* nodes[6];
int nbN = 0;
for ( int iL = 0; iL < 3; ++iL )
{
// a base node
nodes[iL] = _polygons[ iTri ]._links[iL].FirstNode()->Node();
++nbN;
// find a top node above the base node
_Link* link = _polygons[ iTri ]._links[iL]._link;
ASSERT( link->_faces.size() > 1 );
// a quadrangle sharing <link> with a base triangle
_Face* quad = link->_faces[ bool( link->_faces[0] == & _polygons[ iTri ] )];
if ( quad->_links.size() != 4 ) return false;
for ( int i = 0; i < 4; ++i )
if ( quad->_links[i]._link == link )
{
// 1st node of a link opposite to <link> in <quad>
nodes[iL+3] = quad->_links[(i+2)%4].FirstNode()->Node();
++nbN;
break;
}
}
if ( nbN == 6 )
_volumeDefs.set( vector< const SMDS_MeshNode* >( nodes, nodes+6 ));
return ( nbN == 6 );
}
//================================================================================
/*!
* \brief Tries to create a pyramid
*/
bool Hexahedron::addPyra()
{
// find a base quadrangle
int iQuad = -1;
for ( int iF = 0; iF < 5 && iQuad < 0; ++iF )
if ( _polygons[ iF ]._links.size() == 4 )
iQuad = iF;
if ( iQuad < 0 ) return false;
// find nodes
const SMDS_MeshNode* nodes[5];
nodes[0] = _polygons[iQuad]._links[0].FirstNode()->Node();
nodes[1] = _polygons[iQuad]._links[1].FirstNode()->Node();
nodes[2] = _polygons[iQuad]._links[2].FirstNode()->Node();
nodes[3] = _polygons[iQuad]._links[3].FirstNode()->Node();
_Link* link = _polygons[iQuad]._links[0]._link;
ASSERT( link->_faces.size() > 1 );
// a triangle sharing <link> with a base quadrangle
_Face* tria = link->_faces[ bool( link->_faces[0] == & _polygons[ iQuad ] )];
if ( tria->_links.size() != 3 ) return false;
for ( int i = 0; i < 3; ++i )
if ( tria->_links[i]._link == link )
{
nodes[4] = tria->_links[(i+1)%3].LastNode()->Node();
_volumeDefs.set( vector< const SMDS_MeshNode* >( nodes, nodes+5 ));
return true;
}
return false;
}
} // namespace
//=============================================================================
/*!
* \brief Generates 3D structured Cartesian mesh in the internal part of
* solid shapes and polyhedral volumes near the shape boundary.
* \param theMesh - mesh to fill in
* \param theShape - a compound of all SOLIDs to mesh
* \retval bool - true in case of success
*/
//=============================================================================
bool StdMeshers_Cartesian_3D::Compute(SMESH_Mesh & theMesh,
const TopoDS_Shape & theShape)
{
// The algorithm generates the mesh in following steps:
// 1) Intersection of grid lines with the geometry boundary.
// This step allows to find out if a given node of the initial grid is
// inside or outside the geometry.
// 2) For each cell of the grid, check how many of it's nodes are outside
// of the geometry boundary. Depending on a result of this check
// - skip a cell, if all it's nodes are outside
// - skip a cell, if it is too small according to the size threshold
// - add a hexahedron in the mesh, if all nodes are inside
// - add a polyhedron in the mesh, if some nodes are inside and some outside
_computeCanceled = false;
try
{
Grid grid;
TopTools_MapOfShape faceMap;
for ( TopExp_Explorer fExp( theShape, TopAbs_FACE ); fExp.More(); fExp.Next() )
if ( !faceMap.Add( fExp.Current() ))
faceMap.Remove( fExp.Current() ); // remove a face shared by two solids
Bnd_Box shapeBox;
vector<FaceGridIntersector> facesItersectors( faceMap.Extent() );
TopTools_MapIteratorOfMapOfShape faceMppIt( faceMap );
for ( int i = 0; faceMppIt.More(); faceMppIt.Next(), ++i )
{
facesItersectors[i]._face = TopoDS::Face( faceMppIt.Key() );
facesItersectors[i]._grid = &grid;
shapeBox.Add( facesItersectors[i].GetFaceBndBox() );
}
vector<double> xCoords, yCoords, zCoords;
_hyp->GetCoordinates( xCoords, yCoords, zCoords, shapeBox );
grid.SetCoordinates( xCoords, yCoords, zCoords, theShape );
// check if the grid encloses the shape
if ( !_hyp->IsGridBySpacing(0) ||
!_hyp->IsGridBySpacing(1) ||
!_hyp->IsGridBySpacing(2) )
{
Bnd_Box gridBox;
gridBox.Add( gp_Pnt( xCoords[0], yCoords[0], zCoords[0] ));
gridBox.Add( gp_Pnt( xCoords.back(), yCoords.back(), zCoords.back() ));
double x0,y0,z0, x1,y1,z1;
shapeBox.Get(x0,y0,z0, x1,y1,z1);
if ( gridBox.IsOut( gp_Pnt( x0,y0,z0 )) ||
gridBox.IsOut( gp_Pnt( x1,y1,z1 )))
for ( size_t i = 0; i < facesItersectors.size(); ++i )
{
if ( !facesItersectors[i].IsInGrid( gridBox ))
return error("The grid doesn't enclose the geometry");
#ifdef ELLIPSOLID_WORKAROUND
delete facesItersectors[i]._surfaceInt, facesItersectors[i]._surfaceInt = 0;
#endif
}
}
if ( _computeCanceled ) return false;
#ifdef WITH_TBB
{ // copy partner faces and curves of not thread-safe types
set< const Standard_Transient* > tshapes;
BRepBuilderAPI_Copy copier;
for ( size_t i = 0; i < facesItersectors.size(); ++i )
{
if ( !facesItersectors[i].IsThreadSafe(tshapes) )
{
copier.Perform( facesItersectors[i]._face );
facesItersectors[i]._face = TopoDS::Face( copier );
}
}
}
// Intersection of grid lines with the geometry boundary.
tbb::parallel_for ( tbb::blocked_range<size_t>( 0, facesItersectors.size() ),
ParallelIntersector( facesItersectors ),
tbb::simple_partitioner());
#else
for ( size_t i = 0; i < facesItersectors.size(); ++i )
facesItersectors[i].Intersect();
#endif
// put interesection points onto the GridLine's; this is done after intersection
// to avoid contention of facesItersectors for writing into the same GridLine
// in case of parallel work of facesItersectors
for ( size_t i = 0; i < facesItersectors.size(); ++i )
facesItersectors[i].StoreIntersections();
SMESH_MesherHelper helper( theMesh );
TopExp_Explorer solidExp (theShape, TopAbs_SOLID);
helper.SetSubShape( solidExp.Current() );
helper.SetElementsOnShape( true );
if ( _computeCanceled ) return false;
// create nodes on the geometry
grid.ComputeNodes(helper);
if ( _computeCanceled ) return false;
// create volume elements
Hexahedron hex( _hyp->GetSizeThreshold(), &grid );
int nbAdded = hex.MakeElements( helper );
SMESHDS_Mesh* meshDS = theMesh.GetMeshDS();
if ( nbAdded > 0 )
{
// make all SOLIDS computed
if ( SMESHDS_SubMesh* sm1 = meshDS->MeshElements( solidExp.Current()) )
{
SMDS_ElemIteratorPtr volIt = sm1->GetElements();
for ( ; solidExp.More() && volIt->more(); solidExp.Next() )
{
const SMDS_MeshElement* vol = volIt->next();
sm1->RemoveElement( vol, /*isElemDeleted=*/false );
meshDS->SetMeshElementOnShape( vol, solidExp.Current() );
}
}
// make other sub-shapes computed
setSubmeshesComputed( theMesh, theShape );
}
// remove free nodes
if ( SMESHDS_SubMesh * smDS = meshDS->MeshElements( helper.GetSubShapeID() ))
{
// intersection nodes
for ( int iDir = 0; iDir < 3; ++iDir )
{
vector< GridLine >& lines = grid._lines[ iDir ];
for ( size_t i = 0; i < lines.size(); ++i )
{
multiset< IntersectionPoint >::iterator ip = lines[i]._intPoints.begin();
for ( ; ip != lines[i]._intPoints.end(); ++ip )
if ( ip->_node && ip->_node->NbInverseElements() == 0 )
meshDS->RemoveFreeNode( ip->_node, smDS, /*fromGroups=*/false );
}
}
// grid nodes
for ( size_t i = 0; i < grid._nodes.size(); ++i )
if ( !grid._isBndNode[i] ) // nodes on boundary are already removed
if ( grid._nodes[i] && grid._nodes[i]->NbInverseElements() == 0 )
meshDS->RemoveFreeNode( grid._nodes[i], smDS, /*fromGroups=*/false );
}
return nbAdded;
}
// SMESH_ComputeError is not caught at SMESH_submesh level for an unknown reason
catch ( SMESH_ComputeError& e)
{
return error( SMESH_ComputeErrorPtr( new SMESH_ComputeError( e )));
}
return false;
}
//=============================================================================
/*!
* Evaluate
*/
//=============================================================================
bool StdMeshers_Cartesian_3D::Evaluate(SMESH_Mesh & theMesh,
const TopoDS_Shape & theShape,
MapShapeNbElems& theResMap)
{
// TODO
// std::vector<int> aResVec(SMDSEntity_Last);
// for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
// if(IsQuadratic) {
// aResVec[SMDSEntity_Quad_Cartesian] = nb2d_face0 * ( nb2d/nb1d );
// int nb1d_face0_int = ( nb2d_face0*4 - nb1d ) / 2;
// aResVec[SMDSEntity_Node] = nb0d_face0 * ( 2*nb2d/nb1d - 1 ) - nb1d_face0_int * nb2d/nb1d;
// }
// else {
// aResVec[SMDSEntity_Node] = nb0d_face0 * ( nb2d/nb1d - 1 );
// aResVec[SMDSEntity_Cartesian] = nb2d_face0 * ( nb2d/nb1d );
// }
// SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
// aResMap.insert(std::make_pair(sm,aResVec));
return true;
}
//=============================================================================
namespace
{
/*!
* \brief Event listener setting/unsetting _alwaysComputed flag to
* submeshes of inferior levels to prevent their computing
*/
struct _EventListener : public SMESH_subMeshEventListener
{
string _algoName;
_EventListener(const string& algoName):
SMESH_subMeshEventListener(/*isDeletable=*/true,"StdMeshers_Cartesian_3D::_EventListener"),
_algoName(algoName)
{}
// --------------------------------------------------------------------------------
// setting/unsetting _alwaysComputed flag to submeshes of inferior levels
//
static void setAlwaysComputed( const bool isComputed,
SMESH_subMesh* subMeshOfSolid)
{
SMESH_subMeshIteratorPtr smIt =
subMeshOfSolid->getDependsOnIterator(/*includeSelf=*/false, /*complexShapeFirst=*/false);
while ( smIt->more() )
{
SMESH_subMesh* sm = smIt->next();
sm->SetIsAlwaysComputed( isComputed );
}
}
// --------------------------------------------------------------------------------
// unsetting _alwaysComputed flag if "Cartesian_3D" was removed
//
virtual void ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* subMeshOfSolid,
SMESH_subMeshEventListenerData* data,
const SMESH_Hypothesis* hyp = 0)
{
if ( eventType == SMESH_subMesh::COMPUTE_EVENT )
{
setAlwaysComputed( subMeshOfSolid->GetComputeState() == SMESH_subMesh::COMPUTE_OK,
subMeshOfSolid );
}
else
{
SMESH_Algo* algo3D = subMeshOfSolid->GetAlgo();
if ( !algo3D || _algoName != algo3D->GetName() )
setAlwaysComputed( false, subMeshOfSolid );
}
}
// --------------------------------------------------------------------------------
// set the event listener
//
static void SetOn( SMESH_subMesh* subMeshOfSolid, const string& algoName )
{
subMeshOfSolid->SetEventListener( new _EventListener( algoName ),
/*data=*/0,
subMeshOfSolid );
}
}; // struct _EventListener
} // namespace
//================================================================================
/*!
* \brief Sets event listener to submeshes if necessary
* \param subMesh - submesh where algo is set
* This method is called when a submesh gets HYP_OK algo_state.
* After being set, event listener is notified on each event of a submesh.
*/
//================================================================================
void StdMeshers_Cartesian_3D::SetEventListener(SMESH_subMesh* subMesh)
{
_EventListener::SetOn( subMesh, GetName() );
}
//================================================================================
/*!
* \brief Set _alwaysComputed flag to submeshes of inferior levels to avoid their computing
*/
//================================================================================
void StdMeshers_Cartesian_3D::setSubmeshesComputed(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape)
{
for ( TopExp_Explorer soExp( theShape, TopAbs_SOLID ); soExp.More(); soExp.Next() )
_EventListener::setAlwaysComputed( true, theMesh.GetSubMesh( soExp.Current() ));
}