mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-09 16:20:34 +05:00
183 lines
5.6 KiB
Python
183 lines
5.6 KiB
Python
# -*- coding: iso-8859-1 -*-
|
|
# Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
#
|
|
# Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
|
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
|
#
|
|
# This library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License.
|
|
#
|
|
# This library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with this library; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
#
|
|
|
|
# Tetrahedrization of the geometry generated by the Python script GEOM_Partition1.py
|
|
# Hypothesis and algorithms for the mesh generation are global
|
|
# -- Rayon de la bariere
|
|
#
|
|
import salome
|
|
import geompy
|
|
import smesh
|
|
from math import sqrt
|
|
|
|
|
|
#---------------------------------------------------------------
|
|
|
|
barier_height = 7.0
|
|
barier_radius = 5.6 / 2 # Rayon de la bariere
|
|
colis_radius = 1.0 / 2 # Rayon du colis
|
|
colis_step = 2.0 # Distance s‰parant deux colis
|
|
cc_width = 0.11 # Epaisseur du complement de colisage
|
|
|
|
# --
|
|
|
|
cc_radius = colis_radius + cc_width
|
|
colis_center = sqrt(2.0)*colis_step/2
|
|
|
|
# --
|
|
|
|
boolean_common = 1
|
|
boolean_cut = 2
|
|
boolean_fuse = 3
|
|
boolean_section = 4
|
|
|
|
# --
|
|
|
|
p0 = geompy.MakeVertex(0.,0.,0.)
|
|
vz = geompy.MakeVectorDXDYDZ(0.,0.,1.)
|
|
|
|
# --
|
|
|
|
barier = geompy.MakeCylinder(p0, vz, barier_radius, barier_height)
|
|
|
|
# --
|
|
|
|
colis = geompy.MakeCylinder(p0, vz, colis_radius, barier_height)
|
|
cc = geompy.MakeCylinder(p0, vz, cc_radius, barier_height)
|
|
|
|
colis_cc = geompy.MakeCompound([colis, cc])
|
|
colis_cc = geompy.MakeTranslation(colis_cc, colis_center, 0.0, 0.0)
|
|
|
|
colis_cc_multi = geompy.MultiRotate1D(colis_cc, vz, 4)
|
|
|
|
# --
|
|
|
|
Compound1 = geompy.MakeCompound([colis_cc_multi, barier])
|
|
SubShape_theShape = geompy.SubShapeAll(Compound1,geompy.ShapeType["SOLID"])
|
|
alveole = geompy.MakePartition(SubShape_theShape)
|
|
|
|
print "Analysis of the geometry to mesh (right after the Partition) :"
|
|
|
|
subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"])
|
|
subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"])
|
|
subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"])
|
|
|
|
print "number of Shells in alveole : ", len(subShellList)
|
|
print "number of Faces in alveole : ", len(subFaceList)
|
|
print "number of Edges in alveole : ", len(subEdgeList)
|
|
|
|
subshapes = geompy.SubShapeAll(alveole, geompy.ShapeType["SHAPE"])
|
|
|
|
## there are 9 subshapes
|
|
|
|
comp1 = geompy.MakeCompound( [ subshapes[0], subshapes[1] ] )
|
|
comp2 = geompy.MakeCompound( [ subshapes[2], subshapes[3] ] )
|
|
comp3 = geompy.MakeCompound( [ subshapes[4], subshapes[5] ] )
|
|
comp4 = geompy.MakeCompound( [ subshapes[6], subshapes[7] ] )
|
|
|
|
compGOs = []
|
|
compGOs.append( comp1 )
|
|
compGOs.append( comp2 )
|
|
compGOs.append( comp3 )
|
|
compGOs.append( comp4 )
|
|
comp = geompy.MakeCompound( compGOs )
|
|
|
|
alveole = geompy.MakeCompound( [ comp, subshapes[8] ])
|
|
|
|
idalveole = geompy.addToStudy(alveole, "alveole")
|
|
|
|
print "Analysis of the geometry to mesh (right after the MakeCompound) :"
|
|
|
|
subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"])
|
|
subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"])
|
|
subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"])
|
|
|
|
print "number of Shells in alveole : ", len(subShellList)
|
|
print "number of Faces in alveole : ", len(subFaceList)
|
|
print "number of Edges in alveole : ", len(subEdgeList)
|
|
|
|
status = geompy.CheckShape(alveole)
|
|
print " check status ", status
|
|
|
|
# ---- launch SMESH
|
|
smesh.SetCurrentStudy(salome.myStudy)
|
|
|
|
# ---- init a Mesh with the alveole
|
|
shape_mesh = salome.IDToObject( idalveole )
|
|
|
|
mesh = smesh.Mesh(shape_mesh, "MeshAlveole")
|
|
|
|
print "-------------------------- create Hypothesis (In this case global hypothesis are used)"
|
|
|
|
print "-------------------------- NumberOfSegments"
|
|
|
|
numberOfSegments = 10
|
|
|
|
regular1D = mesh.Segment()
|
|
hypNbSeg = regular1D.NumberOfSegments(numberOfSegments)
|
|
print hypNbSeg.GetName()
|
|
print hypNbSeg.GetId()
|
|
print hypNbSeg.GetNumberOfSegments()
|
|
smesh.SetName(hypNbSeg, "NumberOfSegments_" + str(numberOfSegments))
|
|
|
|
print "-------------------------- MaxElementArea"
|
|
|
|
maxElementArea = 0.1
|
|
|
|
mefisto2D = mesh.Triangle()
|
|
hypArea = mefisto2D.MaxElementArea(maxElementArea)
|
|
print hypArea.GetName()
|
|
print hypArea.GetId()
|
|
print hypArea.GetMaxElementArea()
|
|
smesh.SetName(hypArea, "MaxElementArea_" + str(maxElementArea))
|
|
|
|
print "-------------------------- MaxElementVolume"
|
|
|
|
maxElementVolume = 0.5
|
|
|
|
netgen3D = mesh.Tetrahedron(smesh.NETGEN)
|
|
hypVolume = netgen3D.MaxElementVolume(maxElementVolume)
|
|
print hypVolume.GetName()
|
|
print hypVolume.GetId()
|
|
print hypVolume.GetMaxElementVolume()
|
|
smesh.SetName(hypVolume, "MaxElementVolume_" + str(maxElementVolume))
|
|
|
|
print "-------------------------- compute the mesh of alveole "
|
|
ret = mesh.Compute()
|
|
|
|
if ret != 0:
|
|
log=mesh.GetLog(0) # no erase trace
|
|
for linelog in log:
|
|
print linelog
|
|
print "Information about the Mesh_mechanic:"
|
|
print "Number of nodes : ", mesh.NbNodes()
|
|
print "Number of edges : ", mesh.NbEdges()
|
|
print "Number of faces : ", mesh.NbFaces()
|
|
print "Number of triangles : ", mesh.NbTriangles()
|
|
print "Number of volumes : ", mesh.NbVolumes()
|
|
print "Number of tetrahedrons: ", mesh.NbTetras()
|
|
else:
|
|
print "problem when computing the mesh"
|
|
|
|
salome.sg.updateObjBrowser(1)
|