mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-09 16:20:34 +05:00
1eedac41d2
1) 1st version of "body fitting parameters" - to be improved 2) + def BodyFitted(self, geom=0): + return Mesh_Cartesian_3D(self, geom)
6910 lines
307 KiB
Python
6910 lines
307 KiB
Python
# Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
#
|
|
# This library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License.
|
|
#
|
|
# This library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with this library; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
#
|
|
# File : smesh.py
|
|
# Author : Francis KLOSS, OCC
|
|
# Module : SMESH
|
|
|
|
"""
|
|
\namespace smesh
|
|
\brief Module smesh
|
|
"""
|
|
|
|
## @defgroup l1_auxiliary Auxiliary methods and structures
|
|
## @defgroup l1_creating Creating meshes
|
|
## @{
|
|
## @defgroup l2_impexp Importing and exporting meshes
|
|
## @defgroup l2_construct Constructing meshes
|
|
## @defgroup l2_algorithms Defining Algorithms
|
|
## @{
|
|
## @defgroup l3_algos_basic Basic meshing algorithms
|
|
## @defgroup l3_algos_proj Projection Algorithms
|
|
## @defgroup l3_algos_radialp Radial Prism
|
|
## @defgroup l3_algos_segmarv Segments around Vertex
|
|
## @defgroup l3_algos_3dextr 3D extrusion meshing algorithm
|
|
|
|
## @}
|
|
## @defgroup l2_hypotheses Defining hypotheses
|
|
## @{
|
|
## @defgroup l3_hypos_1dhyps 1D Meshing Hypotheses
|
|
## @defgroup l3_hypos_2dhyps 2D Meshing Hypotheses
|
|
## @defgroup l3_hypos_maxvol Max Element Volume hypothesis
|
|
## @defgroup l3_hypos_netgen Netgen 2D and 3D hypotheses
|
|
## @defgroup l3_hypos_ghs3dh GHS3D Parameters hypothesis
|
|
## @defgroup l3_hypos_blsurf BLSURF Parameters hypothesis
|
|
## @defgroup l3_hypos_hexotic Hexotic Parameters hypothesis
|
|
## @defgroup l3_hypos_quad Quadrangle Parameters hypothesis
|
|
## @defgroup l3_hypos_additi Additional Hypotheses
|
|
|
|
## @}
|
|
## @defgroup l2_submeshes Constructing submeshes
|
|
## @defgroup l2_compounds Building Compounds
|
|
## @defgroup l2_editing Editing Meshes
|
|
|
|
## @}
|
|
## @defgroup l1_meshinfo Mesh Information
|
|
## @defgroup l1_controls Quality controls and Filtering
|
|
## @defgroup l1_grouping Grouping elements
|
|
## @{
|
|
## @defgroup l2_grps_create Creating groups
|
|
## @defgroup l2_grps_edit Editing groups
|
|
## @defgroup l2_grps_operon Using operations on groups
|
|
## @defgroup l2_grps_delete Deleting Groups
|
|
|
|
## @}
|
|
## @defgroup l1_modifying Modifying meshes
|
|
## @{
|
|
## @defgroup l2_modif_add Adding nodes and elements
|
|
## @defgroup l2_modif_del Removing nodes and elements
|
|
## @defgroup l2_modif_edit Modifying nodes and elements
|
|
## @defgroup l2_modif_renumber Renumbering nodes and elements
|
|
## @defgroup l2_modif_trsf Transforming meshes (Translation, Rotation, Symmetry, Sewing, Merging)
|
|
## @defgroup l2_modif_movenode Moving nodes
|
|
## @defgroup l2_modif_throughp Mesh through point
|
|
## @defgroup l2_modif_invdiag Diagonal inversion of elements
|
|
## @defgroup l2_modif_unitetri Uniting triangles
|
|
## @defgroup l2_modif_changori Changing orientation of elements
|
|
## @defgroup l2_modif_cutquadr Cutting quadrangles
|
|
## @defgroup l2_modif_smooth Smoothing
|
|
## @defgroup l2_modif_extrurev Extrusion and Revolution
|
|
## @defgroup l2_modif_patterns Pattern mapping
|
|
## @defgroup l2_modif_tofromqu Convert to/from Quadratic Mesh
|
|
|
|
## @}
|
|
## @defgroup l1_measurements Measurements
|
|
|
|
import salome
|
|
import geompyDC
|
|
|
|
import SMESH # This is necessary for back compatibility
|
|
from SMESH import *
|
|
|
|
import StdMeshers
|
|
|
|
import SALOME
|
|
import SALOMEDS
|
|
|
|
# import NETGENPlugin module if possible
|
|
noNETGENPlugin = 0
|
|
try:
|
|
import NETGENPlugin
|
|
except ImportError:
|
|
noNETGENPlugin = 1
|
|
pass
|
|
|
|
# import GHS3DPlugin module if possible
|
|
noGHS3DPlugin = 0
|
|
try:
|
|
import GHS3DPlugin
|
|
except ImportError:
|
|
noGHS3DPlugin = 1
|
|
pass
|
|
|
|
# import GHS3DPRLPlugin module if possible
|
|
noGHS3DPRLPlugin = 0
|
|
try:
|
|
import GHS3DPRLPlugin
|
|
except ImportError:
|
|
noGHS3DPRLPlugin = 1
|
|
pass
|
|
|
|
# import HexoticPlugin module if possible
|
|
noHexoticPlugin = 0
|
|
try:
|
|
import HexoticPlugin
|
|
except ImportError:
|
|
noHexoticPlugin = 1
|
|
pass
|
|
|
|
# import BLSURFPlugin module if possible
|
|
noBLSURFPlugin = 0
|
|
try:
|
|
import BLSURFPlugin
|
|
except ImportError:
|
|
noBLSURFPlugin = 1
|
|
pass
|
|
|
|
## @addtogroup l1_auxiliary
|
|
## @{
|
|
|
|
# Types of algorithms
|
|
REGULAR = 1
|
|
PYTHON = 2
|
|
COMPOSITE = 3
|
|
SOLE = 0
|
|
SIMPLE = 1
|
|
|
|
MEFISTO = 3
|
|
NETGEN = 4
|
|
GHS3D = 5
|
|
FULL_NETGEN = 6
|
|
NETGEN_2D = 7
|
|
NETGEN_1D2D = NETGEN
|
|
NETGEN_1D2D3D = FULL_NETGEN
|
|
NETGEN_FULL = FULL_NETGEN
|
|
Hexa = 8
|
|
Hexotic = 9
|
|
BLSURF = 10
|
|
GHS3DPRL = 11
|
|
QUADRANGLE = 0
|
|
RADIAL_QUAD = 1
|
|
|
|
# MirrorType enumeration
|
|
POINT = SMESH_MeshEditor.POINT
|
|
AXIS = SMESH_MeshEditor.AXIS
|
|
PLANE = SMESH_MeshEditor.PLANE
|
|
|
|
# Smooth_Method enumeration
|
|
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
|
|
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
|
|
|
|
# Fineness enumeration (for NETGEN)
|
|
VeryCoarse = 0
|
|
Coarse = 1
|
|
Moderate = 2
|
|
Fine = 3
|
|
VeryFine = 4
|
|
Custom = 5
|
|
|
|
# Optimization level of GHS3D
|
|
# V3.1
|
|
None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization = 0,1,2,3
|
|
# V4.1 (partialy redefines V3.1). Issue 0020574
|
|
None_Optimization, Light_Optimization, Standard_Optimization, StandardPlus_Optimization, Strong_Optimization = 0,1,2,3,4
|
|
|
|
# Topology treatment way of BLSURF
|
|
FromCAD, PreProcess, PreProcessPlus, PreCAD = 0,1,2,3
|
|
|
|
# Element size flag of BLSURF
|
|
DefaultSize, DefaultGeom, BLSURF_Custom, SizeMap = 0,0,1,2
|
|
|
|
PrecisionConfusion = 1e-07
|
|
|
|
# TopAbs_State enumeration
|
|
[TopAbs_IN, TopAbs_OUT, TopAbs_ON, TopAbs_UNKNOWN] = range(4)
|
|
|
|
# Methods of splitting a hexahedron into tetrahedra
|
|
Hex_5Tet, Hex_6Tet, Hex_24Tet = 1, 2, 3
|
|
|
|
# import items of enum QuadType
|
|
for e in StdMeshers.QuadType._items: exec('%s = StdMeshers.%s'%(e,e))
|
|
|
|
## Converts an angle from degrees to radians
|
|
def DegreesToRadians(AngleInDegrees):
|
|
from math import pi
|
|
return AngleInDegrees * pi / 180.0
|
|
|
|
# Salome notebook variable separator
|
|
var_separator = ":"
|
|
|
|
# Parametrized substitute for PointStruct
|
|
class PointStructStr:
|
|
|
|
x = 0
|
|
y = 0
|
|
z = 0
|
|
xStr = ""
|
|
yStr = ""
|
|
zStr = ""
|
|
|
|
def __init__(self, xStr, yStr, zStr):
|
|
self.xStr = xStr
|
|
self.yStr = yStr
|
|
self.zStr = zStr
|
|
if isinstance(xStr, str) and notebook.isVariable(xStr):
|
|
self.x = notebook.get(xStr)
|
|
else:
|
|
self.x = xStr
|
|
if isinstance(yStr, str) and notebook.isVariable(yStr):
|
|
self.y = notebook.get(yStr)
|
|
else:
|
|
self.y = yStr
|
|
if isinstance(zStr, str) and notebook.isVariable(zStr):
|
|
self.z = notebook.get(zStr)
|
|
else:
|
|
self.z = zStr
|
|
|
|
# Parametrized substitute for PointStruct (with 6 parameters)
|
|
class PointStructStr6:
|
|
|
|
x1 = 0
|
|
y1 = 0
|
|
z1 = 0
|
|
x2 = 0
|
|
y2 = 0
|
|
z2 = 0
|
|
xStr1 = ""
|
|
yStr1 = ""
|
|
zStr1 = ""
|
|
xStr2 = ""
|
|
yStr2 = ""
|
|
zStr2 = ""
|
|
|
|
def __init__(self, x1Str, x2Str, y1Str, y2Str, z1Str, z2Str):
|
|
self.x1Str = x1Str
|
|
self.x2Str = x2Str
|
|
self.y1Str = y1Str
|
|
self.y2Str = y2Str
|
|
self.z1Str = z1Str
|
|
self.z2Str = z2Str
|
|
if isinstance(x1Str, str) and notebook.isVariable(x1Str):
|
|
self.x1 = notebook.get(x1Str)
|
|
else:
|
|
self.x1 = x1Str
|
|
if isinstance(x2Str, str) and notebook.isVariable(x2Str):
|
|
self.x2 = notebook.get(x2Str)
|
|
else:
|
|
self.x2 = x2Str
|
|
if isinstance(y1Str, str) and notebook.isVariable(y1Str):
|
|
self.y1 = notebook.get(y1Str)
|
|
else:
|
|
self.y1 = y1Str
|
|
if isinstance(y2Str, str) and notebook.isVariable(y2Str):
|
|
self.y2 = notebook.get(y2Str)
|
|
else:
|
|
self.y2 = y2Str
|
|
if isinstance(z1Str, str) and notebook.isVariable(z1Str):
|
|
self.z1 = notebook.get(z1Str)
|
|
else:
|
|
self.z1 = z1Str
|
|
if isinstance(z2Str, str) and notebook.isVariable(z2Str):
|
|
self.z2 = notebook.get(z2Str)
|
|
else:
|
|
self.z2 = z2Str
|
|
|
|
# Parametrized substitute for AxisStruct
|
|
class AxisStructStr:
|
|
|
|
x = 0
|
|
y = 0
|
|
z = 0
|
|
dx = 0
|
|
dy = 0
|
|
dz = 0
|
|
xStr = ""
|
|
yStr = ""
|
|
zStr = ""
|
|
dxStr = ""
|
|
dyStr = ""
|
|
dzStr = ""
|
|
|
|
def __init__(self, xStr, yStr, zStr, dxStr, dyStr, dzStr):
|
|
self.xStr = xStr
|
|
self.yStr = yStr
|
|
self.zStr = zStr
|
|
self.dxStr = dxStr
|
|
self.dyStr = dyStr
|
|
self.dzStr = dzStr
|
|
if isinstance(xStr, str) and notebook.isVariable(xStr):
|
|
self.x = notebook.get(xStr)
|
|
else:
|
|
self.x = xStr
|
|
if isinstance(yStr, str) and notebook.isVariable(yStr):
|
|
self.y = notebook.get(yStr)
|
|
else:
|
|
self.y = yStr
|
|
if isinstance(zStr, str) and notebook.isVariable(zStr):
|
|
self.z = notebook.get(zStr)
|
|
else:
|
|
self.z = zStr
|
|
if isinstance(dxStr, str) and notebook.isVariable(dxStr):
|
|
self.dx = notebook.get(dxStr)
|
|
else:
|
|
self.dx = dxStr
|
|
if isinstance(dyStr, str) and notebook.isVariable(dyStr):
|
|
self.dy = notebook.get(dyStr)
|
|
else:
|
|
self.dy = dyStr
|
|
if isinstance(dzStr, str) and notebook.isVariable(dzStr):
|
|
self.dz = notebook.get(dzStr)
|
|
else:
|
|
self.dz = dzStr
|
|
|
|
# Parametrized substitute for DirStruct
|
|
class DirStructStr:
|
|
|
|
def __init__(self, pointStruct):
|
|
self.pointStruct = pointStruct
|
|
|
|
# Returns list of variable values from salome notebook
|
|
def ParsePointStruct(Point):
|
|
Parameters = 2*var_separator
|
|
if isinstance(Point, PointStructStr):
|
|
Parameters = str(Point.xStr) + var_separator + str(Point.yStr) + var_separator + str(Point.zStr)
|
|
Point = PointStruct(Point.x, Point.y, Point.z)
|
|
return Point, Parameters
|
|
|
|
# Returns list of variable values from salome notebook
|
|
def ParseDirStruct(Dir):
|
|
Parameters = 2*var_separator
|
|
if isinstance(Dir, DirStructStr):
|
|
pntStr = Dir.pointStruct
|
|
if isinstance(pntStr, PointStructStr6):
|
|
Parameters = str(pntStr.x1Str) + var_separator + str(pntStr.x2Str) + var_separator
|
|
Parameters += str(pntStr.y1Str) + var_separator + str(pntStr.y2Str) + var_separator
|
|
Parameters += str(pntStr.z1Str) + var_separator + str(pntStr.z2Str)
|
|
Point = PointStruct(pntStr.x2 - pntStr.x1, pntStr.y2 - pntStr.y1, pntStr.z2 - pntStr.z1)
|
|
else:
|
|
Parameters = str(pntStr.xStr) + var_separator + str(pntStr.yStr) + var_separator + str(pntStr.zStr)
|
|
Point = PointStruct(pntStr.x, pntStr.y, pntStr.z)
|
|
Dir = DirStruct(Point)
|
|
return Dir, Parameters
|
|
|
|
# Returns list of variable values from salome notebook
|
|
def ParseAxisStruct(Axis):
|
|
Parameters = 5*var_separator
|
|
if isinstance(Axis, AxisStructStr):
|
|
Parameters = str(Axis.xStr) + var_separator + str(Axis.yStr) + var_separator + str(Axis.zStr) + var_separator
|
|
Parameters += str(Axis.dxStr) + var_separator + str(Axis.dyStr) + var_separator + str(Axis.dzStr)
|
|
Axis = AxisStruct(Axis.x, Axis.y, Axis.z, Axis.dx, Axis.dy, Axis.dz)
|
|
return Axis, Parameters
|
|
|
|
## Return list of variable values from salome notebook
|
|
def ParseAngles(list):
|
|
Result = []
|
|
Parameters = ""
|
|
for parameter in list:
|
|
if isinstance(parameter,str) and notebook.isVariable(parameter):
|
|
Result.append(DegreesToRadians(notebook.get(parameter)))
|
|
pass
|
|
else:
|
|
Result.append(parameter)
|
|
pass
|
|
|
|
Parameters = Parameters + str(parameter)
|
|
Parameters = Parameters + var_separator
|
|
pass
|
|
Parameters = Parameters[:len(Parameters)-1]
|
|
return Result, Parameters
|
|
|
|
def IsEqual(val1, val2, tol=PrecisionConfusion):
|
|
if abs(val1 - val2) < tol:
|
|
return True
|
|
return False
|
|
|
|
NO_NAME = "NoName"
|
|
|
|
## Gets object name
|
|
def GetName(obj):
|
|
if obj:
|
|
# object not null
|
|
if isinstance(obj, SALOMEDS._objref_SObject):
|
|
# study object
|
|
return obj.GetName()
|
|
ior = salome.orb.object_to_string(obj)
|
|
if ior:
|
|
# CORBA object
|
|
studies = salome.myStudyManager.GetOpenStudies()
|
|
for sname in studies:
|
|
s = salome.myStudyManager.GetStudyByName(sname)
|
|
if not s: continue
|
|
sobj = s.FindObjectIOR(ior)
|
|
if not sobj: continue
|
|
return sobj.GetName()
|
|
if hasattr(obj, "GetName"):
|
|
# unknown CORBA object, having GetName() method
|
|
return obj.GetName()
|
|
else:
|
|
# unknown CORBA object, no GetName() method
|
|
return NO_NAME
|
|
pass
|
|
if hasattr(obj, "GetName"):
|
|
# unknown non-CORBA object, having GetName() method
|
|
return obj.GetName()
|
|
pass
|
|
raise RuntimeError, "Null or invalid object"
|
|
|
|
## Prints error message if a hypothesis was not assigned.
|
|
def TreatHypoStatus(status, hypName, geomName, isAlgo):
|
|
if isAlgo:
|
|
hypType = "algorithm"
|
|
else:
|
|
hypType = "hypothesis"
|
|
pass
|
|
if status == HYP_UNKNOWN_FATAL :
|
|
reason = "for unknown reason"
|
|
elif status == HYP_INCOMPATIBLE :
|
|
reason = "this hypothesis mismatches the algorithm"
|
|
elif status == HYP_NOTCONFORM :
|
|
reason = "a non-conform mesh would be built"
|
|
elif status == HYP_ALREADY_EXIST :
|
|
if isAlgo: return # it does not influence anything
|
|
reason = hypType + " of the same dimension is already assigned to this shape"
|
|
elif status == HYP_BAD_DIM :
|
|
reason = hypType + " mismatches the shape"
|
|
elif status == HYP_CONCURENT :
|
|
reason = "there are concurrent hypotheses on sub-shapes"
|
|
elif status == HYP_BAD_SUBSHAPE :
|
|
reason = "the shape is neither the main one, nor its subshape, nor a valid group"
|
|
elif status == HYP_BAD_GEOMETRY:
|
|
reason = "geometry mismatches the expectation of the algorithm"
|
|
elif status == HYP_HIDDEN_ALGO:
|
|
reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions"
|
|
elif status == HYP_HIDING_ALGO:
|
|
reason = "it hides algorithms of lower dimensions by generating elements of all dimensions"
|
|
elif status == HYP_NEED_SHAPE:
|
|
reason = "Algorithm can't work without shape"
|
|
else:
|
|
return
|
|
hypName = '"' + hypName + '"'
|
|
geomName= '"' + geomName+ '"'
|
|
if status < HYP_UNKNOWN_FATAL and not geomName =='""':
|
|
print hypName, "was assigned to", geomName,"but", reason
|
|
elif not geomName == '""':
|
|
print hypName, "was not assigned to",geomName,":", reason
|
|
else:
|
|
print hypName, "was not assigned:", reason
|
|
pass
|
|
|
|
## Check meshing plugin availability
|
|
def CheckPlugin(plugin):
|
|
if plugin == NETGEN and noNETGENPlugin:
|
|
print "Warning: NETGENPlugin module unavailable"
|
|
return False
|
|
elif plugin == GHS3D and noGHS3DPlugin:
|
|
print "Warning: GHS3DPlugin module unavailable"
|
|
return False
|
|
elif plugin == GHS3DPRL and noGHS3DPRLPlugin:
|
|
print "Warning: GHS3DPRLPlugin module unavailable"
|
|
return False
|
|
elif plugin == Hexotic and noHexoticPlugin:
|
|
print "Warning: HexoticPlugin module unavailable"
|
|
return False
|
|
elif plugin == BLSURF and noBLSURFPlugin:
|
|
print "Warning: BLSURFPlugin module unavailable"
|
|
return False
|
|
return True
|
|
|
|
## Private method. Add geom (sub-shape of the main shape) into the study if not yet there
|
|
def AssureGeomPublished(mesh, geom, name=''):
|
|
if not isinstance( geom, geompyDC.GEOM._objref_GEOM_Object ):
|
|
return
|
|
if not geom.IsSame( mesh.geom ) and not geom.GetStudyEntry():
|
|
## set the study
|
|
studyID = mesh.smeshpyD.GetCurrentStudy()._get_StudyId()
|
|
if studyID != mesh.geompyD.myStudyId:
|
|
mesh.geompyD.init_geom( mesh.smeshpyD.GetCurrentStudy())
|
|
## get a name
|
|
if not name and geom.GetShapeType() != geompyDC.GEOM.COMPOUND:
|
|
# for all groups SubShapeName() returns "Compound_-1"
|
|
name = mesh.geompyD.SubShapeName(geom, mesh.geom)
|
|
if not name:
|
|
name = "%s_%s"%(geom.GetShapeType(), id(geom)%10000)
|
|
## publish
|
|
mesh.geompyD.addToStudyInFather( mesh.geom, geom, name )
|
|
return
|
|
|
|
## Return the first vertex of a geomertical edge by ignoring orienation
|
|
def FirstVertexOnCurve(edge):
|
|
from geompy import SubShapeAll, ShapeType, KindOfShape, PointCoordinates
|
|
vv = SubShapeAll( edge, ShapeType["VERTEX"])
|
|
if not vv:
|
|
raise TypeError, "Given object has no vertices"
|
|
if len( vv ) == 1: return vv[0]
|
|
info = KindOfShape(edge)
|
|
xyz = info[1:4] # coords of the first vertex
|
|
xyz1 = PointCoordinates( vv[0] )
|
|
xyz2 = PointCoordinates( vv[1] )
|
|
dist1, dist2 = 0,0
|
|
for i in range(3):
|
|
dist1 += abs( xyz[i] - xyz1[i] )
|
|
dist2 += abs( xyz[i] - xyz2[i] )
|
|
if dist1 < dist2:
|
|
return vv[0]
|
|
else:
|
|
return vv[1]
|
|
|
|
# end of l1_auxiliary
|
|
## @}
|
|
|
|
# All methods of this class are accessible directly from the smesh.py package.
|
|
class smeshDC(SMESH._objref_SMESH_Gen):
|
|
|
|
## Dump component to the Python script
|
|
# This method overrides IDL function to allow default values for the parameters.
|
|
def DumpPython(self, theStudy, theIsPublished=True, theIsMultiFile=True):
|
|
return SMESH._objref_SMESH_Gen.DumpPython(self, theStudy, theIsPublished, theIsMultiFile)
|
|
|
|
## Sets the current study and Geometry component
|
|
# @ingroup l1_auxiliary
|
|
def init_smesh(self,theStudy,geompyD):
|
|
self.SetCurrentStudy(theStudy,geompyD)
|
|
|
|
## Creates an empty Mesh. This mesh can have an underlying geometry.
|
|
# @param obj the Geometrical object on which the mesh is built. If not defined,
|
|
# the mesh will have no underlying geometry.
|
|
# @param name the name for the new mesh.
|
|
# @return an instance of Mesh class.
|
|
# @ingroup l2_construct
|
|
def Mesh(self, obj=0, name=0):
|
|
if isinstance(obj,str):
|
|
obj,name = name,obj
|
|
return Mesh(self,self.geompyD,obj,name)
|
|
|
|
## Returns a long value from enumeration
|
|
# Should be used for SMESH.FunctorType enumeration
|
|
# @ingroup l1_controls
|
|
def EnumToLong(self,theItem):
|
|
return theItem._v
|
|
|
|
## Returns a string representation of the color.
|
|
# To be used with filters.
|
|
# @param c color value (SALOMEDS.Color)
|
|
# @ingroup l1_controls
|
|
def ColorToString(self,c):
|
|
val = ""
|
|
if isinstance(c, SALOMEDS.Color):
|
|
val = "%s;%s;%s" % (c.R, c.G, c.B)
|
|
elif isinstance(c, str):
|
|
val = c
|
|
else:
|
|
raise ValueError, "Color value should be of string or SALOMEDS.Color type"
|
|
return val
|
|
|
|
## Gets PointStruct from vertex
|
|
# @param theVertex a GEOM object(vertex)
|
|
# @return SMESH.PointStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetPointStruct(self,theVertex):
|
|
[x, y, z] = self.geompyD.PointCoordinates(theVertex)
|
|
return PointStruct(x,y,z)
|
|
|
|
## Gets DirStruct from vector
|
|
# @param theVector a GEOM object(vector)
|
|
# @return SMESH.DirStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetDirStruct(self,theVector):
|
|
vertices = self.geompyD.SubShapeAll( theVector, geompyDC.ShapeType["VERTEX"] )
|
|
if(len(vertices) != 2):
|
|
print "Error: vector object is incorrect."
|
|
return None
|
|
p1 = self.geompyD.PointCoordinates(vertices[0])
|
|
p2 = self.geompyD.PointCoordinates(vertices[1])
|
|
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
dirst = DirStruct(pnt)
|
|
return dirst
|
|
|
|
## Makes DirStruct from a triplet
|
|
# @param x,y,z vector components
|
|
# @return SMESH.DirStruct
|
|
# @ingroup l1_auxiliary
|
|
def MakeDirStruct(self,x,y,z):
|
|
pnt = PointStruct(x,y,z)
|
|
return DirStruct(pnt)
|
|
|
|
## Get AxisStruct from object
|
|
# @param theObj a GEOM object (line or plane)
|
|
# @return SMESH.AxisStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetAxisStruct(self,theObj):
|
|
edges = self.geompyD.SubShapeAll( theObj, geompyDC.ShapeType["EDGE"] )
|
|
if len(edges) > 1:
|
|
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
|
|
vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geompyDC.ShapeType["VERTEX"] )
|
|
vertex1 = self.geompyD.PointCoordinates(vertex1)
|
|
vertex2 = self.geompyD.PointCoordinates(vertex2)
|
|
vertex3 = self.geompyD.PointCoordinates(vertex3)
|
|
vertex4 = self.geompyD.PointCoordinates(vertex4)
|
|
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
|
|
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
|
|
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
|
|
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
|
|
return axis
|
|
elif len(edges) == 1:
|
|
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
|
|
p1 = self.geompyD.PointCoordinates( vertex1 )
|
|
p2 = self.geompyD.PointCoordinates( vertex2 )
|
|
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
return axis
|
|
return None
|
|
|
|
# From SMESH_Gen interface:
|
|
# ------------------------
|
|
|
|
## Sets the given name to the object
|
|
# @param obj the object to rename
|
|
# @param name a new object name
|
|
# @ingroup l1_auxiliary
|
|
def SetName(self, obj, name):
|
|
if isinstance( obj, Mesh ):
|
|
obj = obj.GetMesh()
|
|
elif isinstance( obj, Mesh_Algorithm ):
|
|
obj = obj.GetAlgorithm()
|
|
ior = salome.orb.object_to_string(obj)
|
|
SMESH._objref_SMESH_Gen.SetName(self, ior, name)
|
|
|
|
## Sets the current mode
|
|
# @ingroup l1_auxiliary
|
|
def SetEmbeddedMode( self,theMode ):
|
|
#self.SetEmbeddedMode(theMode)
|
|
SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
|
|
|
|
## Gets the current mode
|
|
# @ingroup l1_auxiliary
|
|
def IsEmbeddedMode(self):
|
|
#return self.IsEmbeddedMode()
|
|
return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
|
|
|
|
## Sets the current study
|
|
# @ingroup l1_auxiliary
|
|
def SetCurrentStudy( self, theStudy, geompyD = None ):
|
|
#self.SetCurrentStudy(theStudy)
|
|
if not geompyD:
|
|
import geompy
|
|
geompyD = geompy.geom
|
|
pass
|
|
self.geompyD=geompyD
|
|
self.SetGeomEngine(geompyD)
|
|
SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy)
|
|
|
|
## Gets the current study
|
|
# @ingroup l1_auxiliary
|
|
def GetCurrentStudy(self):
|
|
#return self.GetCurrentStudy()
|
|
return SMESH._objref_SMESH_Gen.GetCurrentStudy(self)
|
|
|
|
## Creates a Mesh object importing data from the given UNV file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromUNV( self,theFileName ):
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Creates a Mesh object(s) importing data from the given MED file
|
|
# @return a list of Mesh class instances
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromMED( self,theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
|
|
aMeshes = []
|
|
for iMesh in range(len(aSmeshMeshes)) :
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
|
|
aMeshes.append(aMesh)
|
|
return aMeshes, aStatus
|
|
|
|
## Creates a Mesh object(s) importing data from the given SAUV file
|
|
# @return a list of Mesh class instances
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromSAUV( self,theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromSAUV(self,theFileName)
|
|
aMeshes = []
|
|
for iMesh in range(len(aSmeshMeshes)) :
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
|
|
aMeshes.append(aMesh)
|
|
return aMeshes, aStatus
|
|
|
|
## Creates a Mesh object importing data from the given STL file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromSTL( self, theFileName ):
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Creates Mesh objects importing data from the given CGNS file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromCGNS( self, theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromCGNS(self,theFileName)
|
|
aMeshes = []
|
|
for iMesh in range(len(aSmeshMeshes)) :
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
|
|
aMeshes.append(aMesh)
|
|
return aMeshes, aStatus
|
|
|
|
## Concatenate the given meshes into one mesh.
|
|
# @return an instance of Mesh class
|
|
# @param meshes the meshes to combine into one mesh
|
|
# @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed
|
|
# @param mergeNodesAndElements if true, equal nodes and elements aremerged
|
|
# @param mergeTolerance tolerance for merging nodes
|
|
# @param allGroups forces creation of groups of all elements
|
|
def Concatenate( self, meshes, uniteIdenticalGroups,
|
|
mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False):
|
|
mergeTolerance,Parameters = geompyDC.ParseParameters(mergeTolerance)
|
|
for i,m in enumerate(meshes):
|
|
if isinstance(m, Mesh):
|
|
meshes[i] = m.GetMesh()
|
|
if allGroups:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
else:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
aSmeshMesh.SetParameters(Parameters)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Create a mesh by copying a part of another mesh.
|
|
# @param meshPart a part of mesh to copy, either a Mesh, a sub-mesh or a group;
|
|
# to copy nodes or elements not contained in any mesh object,
|
|
# pass result of Mesh.GetIDSource( list_of_ids, type ) as meshPart
|
|
# @param meshName a name of the new mesh
|
|
# @param toCopyGroups to create in the new mesh groups the copied elements belongs to
|
|
# @param toKeepIDs to preserve IDs of the copied elements or not
|
|
# @return an instance of Mesh class
|
|
def CopyMesh( self, meshPart, meshName, toCopyGroups=False, toKeepIDs=False):
|
|
if (isinstance( meshPart, Mesh )):
|
|
meshPart = meshPart.GetMesh()
|
|
mesh = SMESH._objref_SMESH_Gen.CopyMesh( self,meshPart,meshName,toCopyGroups,toKeepIDs )
|
|
return Mesh(self, self.geompyD, mesh)
|
|
|
|
## From SMESH_Gen interface
|
|
# @return the list of integer values
|
|
# @ingroup l1_auxiliary
|
|
def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
|
|
return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
|
|
|
|
## From SMESH_Gen interface. Creates a pattern
|
|
# @return an instance of SMESH_Pattern
|
|
#
|
|
# <a href="../tui_modifying_meshes_page.html#tui_pattern_mapping">Example of Patterns usage</a>
|
|
# @ingroup l2_modif_patterns
|
|
def GetPattern(self):
|
|
return SMESH._objref_SMESH_Gen.GetPattern(self)
|
|
|
|
## Sets number of segments per diagonal of boundary box of geometry by which
|
|
# default segment length of appropriate 1D hypotheses is defined.
|
|
# Default value is 10
|
|
# @ingroup l1_auxiliary
|
|
def SetBoundaryBoxSegmentation(self, nbSegments):
|
|
SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
|
|
|
|
# Filtering. Auxiliary functions:
|
|
# ------------------------------
|
|
|
|
## Creates an empty criterion
|
|
# @return SMESH.Filter.Criterion
|
|
# @ingroup l1_controls
|
|
def GetEmptyCriterion(self):
|
|
Type = self.EnumToLong(FT_Undefined)
|
|
Compare = self.EnumToLong(FT_Undefined)
|
|
Threshold = 0
|
|
ThresholdStr = ""
|
|
ThresholdID = ""
|
|
UnaryOp = self.EnumToLong(FT_Undefined)
|
|
BinaryOp = self.EnumToLong(FT_Undefined)
|
|
Tolerance = 1e-07
|
|
TypeOfElement = ALL
|
|
Precision = -1 ##@1e-07
|
|
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
|
|
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
|
|
|
|
## Creates a criterion by the given parameters
|
|
# \n Criterion structures allow to define complex filters by combining them with logical operations (AND / OR) (see example below)
|
|
# @param elementType the type of elements(NODE, EDGE, FACE, VOLUME)
|
|
# @param CritType the type of criterion (FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc.)
|
|
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Treshold the threshold value (range of ids as string, shape, numeric)
|
|
# @param UnaryOp FT_LogicalNOT or FT_Undefined
|
|
# @param BinaryOp a binary logical operation FT_LogicalAND, FT_LogicalOR or
|
|
# FT_Undefined (must be for the last criterion of all criteria)
|
|
# @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
|
|
# FT_LyingOnGeom, FT_CoplanarFaces criteria
|
|
# @return SMESH.Filter.Criterion
|
|
#
|
|
# <a href="../tui_filters_page.html#combining_filters">Example of Criteria usage</a>
|
|
# @ingroup l1_controls
|
|
def GetCriterion(self,elementType,
|
|
CritType,
|
|
Compare = FT_EqualTo,
|
|
Treshold="",
|
|
UnaryOp=FT_Undefined,
|
|
BinaryOp=FT_Undefined,
|
|
Tolerance=1e-07):
|
|
if not CritType in SMESH.FunctorType._items:
|
|
raise TypeError, "CritType should be of SMESH.FunctorType"
|
|
aCriterion = self.GetEmptyCriterion()
|
|
aCriterion.TypeOfElement = elementType
|
|
aCriterion.Type = self.EnumToLong(CritType)
|
|
aCriterion.Tolerance = Tolerance
|
|
|
|
aTreshold = Treshold
|
|
|
|
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
|
|
aCriterion.Compare = self.EnumToLong(Compare)
|
|
elif Compare == "=" or Compare == "==":
|
|
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
|
|
elif Compare == "<":
|
|
aCriterion.Compare = self.EnumToLong(FT_LessThan)
|
|
elif Compare == ">":
|
|
aCriterion.Compare = self.EnumToLong(FT_MoreThan)
|
|
elif Compare != FT_Undefined:
|
|
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
|
|
aTreshold = Compare
|
|
|
|
if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
|
|
FT_BelongToCylinder, FT_LyingOnGeom]:
|
|
# Checks the treshold
|
|
if isinstance(aTreshold, geompyDC.GEOM._objref_GEOM_Object):
|
|
aCriterion.ThresholdStr = GetName(aTreshold)
|
|
aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
|
|
else:
|
|
print "Error: The treshold should be a shape."
|
|
return None
|
|
if isinstance(UnaryOp,float):
|
|
aCriterion.Tolerance = UnaryOp
|
|
UnaryOp = FT_Undefined
|
|
pass
|
|
elif CritType == FT_RangeOfIds:
|
|
# Checks the treshold
|
|
if isinstance(aTreshold, str):
|
|
aCriterion.ThresholdStr = aTreshold
|
|
else:
|
|
print "Error: The treshold should be a string."
|
|
return None
|
|
elif CritType == FT_CoplanarFaces:
|
|
# Checks the treshold
|
|
if isinstance(aTreshold, int):
|
|
aCriterion.ThresholdID = "%s"%aTreshold
|
|
elif isinstance(aTreshold, str):
|
|
ID = int(aTreshold)
|
|
if ID < 1:
|
|
raise ValueError, "Invalid ID of mesh face: '%s'"%aTreshold
|
|
aCriterion.ThresholdID = aTreshold
|
|
else:
|
|
raise ValueError,\
|
|
"The treshold should be an ID of mesh face and not '%s'"%aTreshold
|
|
elif CritType == FT_ElemGeomType:
|
|
# Checks the treshold
|
|
try:
|
|
aCriterion.Threshold = self.EnumToLong(aTreshold)
|
|
assert( aTreshold in SMESH.GeometryType._items )
|
|
except:
|
|
if isinstance(aTreshold, int):
|
|
aCriterion.Threshold = aTreshold
|
|
else:
|
|
print "Error: The treshold should be an integer or SMESH.GeometryType."
|
|
return None
|
|
pass
|
|
pass
|
|
elif CritType == FT_GroupColor:
|
|
# Checks the treshold
|
|
try:
|
|
aCriterion.ThresholdStr = self.ColorToString(aTreshold)
|
|
except:
|
|
print "Error: The threshold value should be of SALOMEDS.Color type"
|
|
return None
|
|
pass
|
|
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume, FT_FreeNodes,
|
|
FT_FreeFaces, FT_LinearOrQuadratic,
|
|
FT_BareBorderFace, FT_BareBorderVolume,
|
|
FT_OverConstrainedFace, FT_OverConstrainedVolume]:
|
|
# At this point the treshold is unnecessary
|
|
if aTreshold == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
|
|
elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = aTreshold
|
|
else:
|
|
# Check treshold
|
|
try:
|
|
aTreshold = float(aTreshold)
|
|
aCriterion.Threshold = aTreshold
|
|
except:
|
|
print "Error: The treshold should be a number."
|
|
return None
|
|
|
|
if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
|
|
|
|
if Treshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(Treshold)
|
|
|
|
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(UnaryOp)
|
|
|
|
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(BinaryOp)
|
|
|
|
return aCriterion
|
|
|
|
## Creates a filter with the given parameters
|
|
# @param elementType the type of elements in the group
|
|
# @param CritType the type of criterion ( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
|
|
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Treshold the threshold value (range of id ids as string, shape, numeric)
|
|
# @param UnaryOp FT_LogicalNOT or FT_Undefined
|
|
# @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
|
|
# FT_LyingOnGeom, FT_CoplanarFaces criteria
|
|
# @return SMESH_Filter
|
|
#
|
|
# <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
|
|
# @ingroup l1_controls
|
|
def GetFilter(self,elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Treshold="",
|
|
UnaryOp=FT_Undefined,
|
|
Tolerance=1e-07):
|
|
aCriterion = self.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined,Tolerance)
|
|
aFilterMgr = self.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aCriteria = []
|
|
aCriteria.append(aCriterion)
|
|
aFilter.SetCriteria(aCriteria)
|
|
aFilterMgr.UnRegister()
|
|
return aFilter
|
|
|
|
## Creates a filter from criteria
|
|
# @param criteria a list of criteria
|
|
# @return SMESH_Filter
|
|
#
|
|
# <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
|
|
# @ingroup l1_controls
|
|
def GetFilterFromCriteria(self,criteria):
|
|
aFilterMgr = self.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aFilter.SetCriteria(criteria)
|
|
aFilterMgr.UnRegister()
|
|
return aFilter
|
|
|
|
## Creates a numerical functor by its type
|
|
# @param theCriterion FT_...; functor type
|
|
# @return SMESH_NumericalFunctor
|
|
# @ingroup l1_controls
|
|
def GetFunctor(self,theCriterion):
|
|
aFilterMgr = self.CreateFilterManager()
|
|
if theCriterion == FT_AspectRatio:
|
|
return aFilterMgr.CreateAspectRatio()
|
|
elif theCriterion == FT_AspectRatio3D:
|
|
return aFilterMgr.CreateAspectRatio3D()
|
|
elif theCriterion == FT_Warping:
|
|
return aFilterMgr.CreateWarping()
|
|
elif theCriterion == FT_MinimumAngle:
|
|
return aFilterMgr.CreateMinimumAngle()
|
|
elif theCriterion == FT_Taper:
|
|
return aFilterMgr.CreateTaper()
|
|
elif theCriterion == FT_Skew:
|
|
return aFilterMgr.CreateSkew()
|
|
elif theCriterion == FT_Area:
|
|
return aFilterMgr.CreateArea()
|
|
elif theCriterion == FT_Volume3D:
|
|
return aFilterMgr.CreateVolume3D()
|
|
elif theCriterion == FT_MaxElementLength2D:
|
|
return aFilterMgr.CreateMaxElementLength2D()
|
|
elif theCriterion == FT_MaxElementLength3D:
|
|
return aFilterMgr.CreateMaxElementLength3D()
|
|
elif theCriterion == FT_MultiConnection:
|
|
return aFilterMgr.CreateMultiConnection()
|
|
elif theCriterion == FT_MultiConnection2D:
|
|
return aFilterMgr.CreateMultiConnection2D()
|
|
elif theCriterion == FT_Length:
|
|
return aFilterMgr.CreateLength()
|
|
elif theCriterion == FT_Length2D:
|
|
return aFilterMgr.CreateLength2D()
|
|
else:
|
|
print "Error: given parameter is not numerucal functor type."
|
|
|
|
## Creates hypothesis
|
|
# @param theHType mesh hypothesis type (string)
|
|
# @param theLibName mesh plug-in library name
|
|
# @return created hypothesis instance
|
|
def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"):
|
|
return SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName )
|
|
|
|
## Gets the mesh statistic
|
|
# @return dictionary "element type" - "count of elements"
|
|
# @ingroup l1_meshinfo
|
|
def GetMeshInfo(self, obj):
|
|
if isinstance( obj, Mesh ):
|
|
obj = obj.GetMesh()
|
|
d = {}
|
|
if hasattr(obj, "GetMeshInfo"):
|
|
values = obj.GetMeshInfo()
|
|
for i in range(SMESH.Entity_Last._v):
|
|
if i < len(values): d[SMESH.EntityType._item(i)]=values[i]
|
|
pass
|
|
return d
|
|
|
|
## Get minimum distance between two objects
|
|
#
|
|
# If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
|
|
# If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
|
|
#
|
|
# @param src1 first source object
|
|
# @param src2 second source object
|
|
# @param id1 node/element id from the first source
|
|
# @param id2 node/element id from the second (or first) source
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return minimum distance value
|
|
# @sa GetMinDistance()
|
|
# @ingroup l1_measurements
|
|
def MinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
|
|
result = self.GetMinDistance(src1, src2, id1, id2, isElem1, isElem2)
|
|
if result is None:
|
|
result = 0.0
|
|
else:
|
|
result = result.value
|
|
return result
|
|
|
|
## Get measure structure specifying minimum distance data between two objects
|
|
#
|
|
# If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
|
|
# If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
|
|
#
|
|
# @param src1 first source object
|
|
# @param src2 second source object
|
|
# @param id1 node/element id from the first source
|
|
# @param id2 node/element id from the second (or first) source
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return Measure structure or None if input data is invalid
|
|
# @sa MinDistance()
|
|
# @ingroup l1_measurements
|
|
def GetMinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
|
|
if isinstance(src1, Mesh): src1 = src1.mesh
|
|
if isinstance(src2, Mesh): src2 = src2.mesh
|
|
if src2 is None and id2 != 0: src2 = src1
|
|
if not hasattr(src1, "_narrow"): return None
|
|
src1 = src1._narrow(SMESH.SMESH_IDSource)
|
|
if not src1: return None
|
|
if id1 != 0:
|
|
m = src1.GetMesh()
|
|
e = m.GetMeshEditor()
|
|
if isElem1:
|
|
src1 = e.MakeIDSource([id1], SMESH.FACE)
|
|
else:
|
|
src1 = e.MakeIDSource([id1], SMESH.NODE)
|
|
pass
|
|
if hasattr(src2, "_narrow"):
|
|
src2 = src2._narrow(SMESH.SMESH_IDSource)
|
|
if src2 and id2 != 0:
|
|
m = src2.GetMesh()
|
|
e = m.GetMeshEditor()
|
|
if isElem2:
|
|
src2 = e.MakeIDSource([id2], SMESH.FACE)
|
|
else:
|
|
src2 = e.MakeIDSource([id2], SMESH.NODE)
|
|
pass
|
|
pass
|
|
aMeasurements = self.CreateMeasurements()
|
|
result = aMeasurements.MinDistance(src1, src2)
|
|
aMeasurements.UnRegister()
|
|
return result
|
|
|
|
## Get bounding box of the specified object(s)
|
|
# @param objects single source object or list of source objects
|
|
# @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
|
|
# @sa GetBoundingBox()
|
|
# @ingroup l1_measurements
|
|
def BoundingBox(self, objects):
|
|
result = self.GetBoundingBox(objects)
|
|
if result is None:
|
|
result = (0.0,)*6
|
|
else:
|
|
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
|
|
return result
|
|
|
|
## Get measure structure specifying bounding box data of the specified object(s)
|
|
# @param objects single source object or list of source objects
|
|
# @return Measure structure
|
|
# @sa BoundingBox()
|
|
# @ingroup l1_measurements
|
|
def GetBoundingBox(self, objects):
|
|
if isinstance(objects, tuple):
|
|
objects = list(objects)
|
|
if not isinstance(objects, list):
|
|
objects = [objects]
|
|
srclist = []
|
|
for o in objects:
|
|
if isinstance(o, Mesh):
|
|
srclist.append(o.mesh)
|
|
elif hasattr(o, "_narrow"):
|
|
src = o._narrow(SMESH.SMESH_IDSource)
|
|
if src: srclist.append(src)
|
|
pass
|
|
pass
|
|
aMeasurements = self.CreateMeasurements()
|
|
result = aMeasurements.BoundingBox(srclist)
|
|
aMeasurements.UnRegister()
|
|
return result
|
|
|
|
import omniORB
|
|
#Registering the new proxy for SMESH_Gen
|
|
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
|
|
|
|
|
|
# Public class: Mesh
|
|
# ==================
|
|
|
|
## This class allows defining and managing a mesh.
|
|
# It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes.
|
|
# It also has methods to define groups of mesh elements, to modify a mesh (by addition of
|
|
# new nodes and elements and by changing the existing entities), to get information
|
|
# about a mesh and to export a mesh into different formats.
|
|
class Mesh:
|
|
|
|
geom = 0
|
|
mesh = 0
|
|
editor = 0
|
|
|
|
## Constructor
|
|
#
|
|
# Creates a mesh on the shape \a obj (or an empty mesh if \a obj is equal to 0) and
|
|
# sets the GUI name of this mesh to \a name.
|
|
# @param smeshpyD an instance of smeshDC class
|
|
# @param geompyD an instance of geompyDC class
|
|
# @param obj Shape to be meshed or SMESH_Mesh object
|
|
# @param name Study name of the mesh
|
|
# @ingroup l2_construct
|
|
def __init__(self, smeshpyD, geompyD, obj=0, name=0):
|
|
self.smeshpyD=smeshpyD
|
|
self.geompyD=geompyD
|
|
if obj is None:
|
|
obj = 0
|
|
if obj != 0:
|
|
if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
|
|
self.geom = obj
|
|
# publish geom of mesh (issue 0021122)
|
|
if not self.geom.GetStudyEntry():
|
|
studyID = smeshpyD.GetCurrentStudy()._get_StudyId()
|
|
if studyID != geompyD.myStudyId:
|
|
geompyD.init_geom( smeshpyD.GetCurrentStudy())
|
|
pass
|
|
geo_name = "%s_%s"%(self.geom.GetShapeType(), id(self.geom)%100)
|
|
geompyD.addToStudy( self.geom, geo_name )
|
|
self.mesh = self.smeshpyD.CreateMesh(self.geom)
|
|
|
|
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
|
|
self.SetMesh(obj)
|
|
else:
|
|
self.mesh = self.smeshpyD.CreateEmptyMesh()
|
|
if name != 0:
|
|
self.smeshpyD.SetName(self.mesh, name)
|
|
elif obj != 0:
|
|
self.smeshpyD.SetName(self.mesh, GetName(obj))
|
|
|
|
if not self.geom:
|
|
self.geom = self.mesh.GetShapeToMesh()
|
|
|
|
self.editor = self.mesh.GetMeshEditor()
|
|
|
|
## Initializes the Mesh object from an instance of SMESH_Mesh interface
|
|
# @param theMesh a SMESH_Mesh object
|
|
# @ingroup l2_construct
|
|
def SetMesh(self, theMesh):
|
|
self.mesh = theMesh
|
|
self.geom = self.mesh.GetShapeToMesh()
|
|
|
|
## Returns the mesh, that is an instance of SMESH_Mesh interface
|
|
# @return a SMESH_Mesh object
|
|
# @ingroup l2_construct
|
|
def GetMesh(self):
|
|
return self.mesh
|
|
|
|
## Gets the name of the mesh
|
|
# @return the name of the mesh as a string
|
|
# @ingroup l2_construct
|
|
def GetName(self):
|
|
name = GetName(self.GetMesh())
|
|
return name
|
|
|
|
## Sets a name to the mesh
|
|
# @param name a new name of the mesh
|
|
# @ingroup l2_construct
|
|
def SetName(self, name):
|
|
self.smeshpyD.SetName(self.GetMesh(), name)
|
|
|
|
## Gets the subMesh object associated to a \a theSubObject geometrical object.
|
|
# The subMesh object gives access to the IDs of nodes and elements.
|
|
# @param geom a geometrical object (shape)
|
|
# @param name a name for the submesh
|
|
# @return an object of type SMESH_SubMesh, representing a part of mesh, which lies on the given shape
|
|
# @ingroup l2_submeshes
|
|
def GetSubMesh(self, geom, name):
|
|
AssureGeomPublished( self, geom, name )
|
|
submesh = self.mesh.GetSubMesh( geom, name )
|
|
return submesh
|
|
|
|
## Returns the shape associated to the mesh
|
|
# @return a GEOM_Object
|
|
# @ingroup l2_construct
|
|
def GetShape(self):
|
|
return self.geom
|
|
|
|
## Associates the given shape to the mesh (entails the recreation of the mesh)
|
|
# @param geom the shape to be meshed (GEOM_Object)
|
|
# @ingroup l2_construct
|
|
def SetShape(self, geom):
|
|
self.mesh = self.smeshpyD.CreateMesh(geom)
|
|
|
|
## Returns true if the hypotheses are defined well
|
|
# @param theSubObject a subshape of a mesh shape
|
|
# @return True or False
|
|
# @ingroup l2_construct
|
|
def IsReadyToCompute(self, theSubObject):
|
|
return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
|
|
|
|
## Returns errors of hypotheses definition.
|
|
# The list of errors is empty if everything is OK.
|
|
# @param theSubObject a subshape of a mesh shape
|
|
# @return a list of errors
|
|
# @ingroup l2_construct
|
|
def GetAlgoState(self, theSubObject):
|
|
return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
|
|
|
|
## Returns a geometrical object on which the given element was built.
|
|
# The returned geometrical object, if not nil, is either found in the
|
|
# study or published by this method with the given name
|
|
# @param theElementID the id of the mesh element
|
|
# @param theGeomName the user-defined name of the geometrical object
|
|
# @return GEOM::GEOM_Object instance
|
|
# @ingroup l2_construct
|
|
def GetGeometryByMeshElement(self, theElementID, theGeomName):
|
|
return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
|
|
|
|
## Returns the mesh dimension depending on the dimension of the underlying shape
|
|
# @return mesh dimension as an integer value [0,3]
|
|
# @ingroup l1_auxiliary
|
|
def MeshDimension(self):
|
|
shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] )
|
|
if len( shells ) > 0 :
|
|
return 3
|
|
elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
|
|
return 2
|
|
elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
|
|
return 1
|
|
else:
|
|
return 0;
|
|
pass
|
|
|
|
## Creates a segment discretization 1D algorithm.
|
|
# If the optional \a algo parameter is not set, this algorithm is REGULAR.
|
|
# \n If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param algo the type of the required algorithm. Possible values are:
|
|
# - smesh.REGULAR,
|
|
# - smesh.PYTHON for discretization via a python function,
|
|
# - smesh.COMPOSITE for meshing a set of edges on one face side as a whole.
|
|
# @param geom If defined is the subshape to be meshed
|
|
# @return an instance of Mesh_Segment or Mesh_Segment_Python, or Mesh_CompositeSegment class
|
|
# @ingroup l3_algos_basic
|
|
def Segment(self, algo=REGULAR, geom=0):
|
|
## if Segment(geom) is called by mistake
|
|
if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object):
|
|
algo, geom = geom, algo
|
|
if not algo: algo = REGULAR
|
|
pass
|
|
if algo == REGULAR:
|
|
return Mesh_Segment(self, geom)
|
|
elif algo == PYTHON:
|
|
return Mesh_Segment_Python(self, geom)
|
|
elif algo == COMPOSITE:
|
|
return Mesh_CompositeSegment(self, geom)
|
|
else:
|
|
return Mesh_Segment(self, geom)
|
|
|
|
## Creates 1D algorithm importing segments conatined in groups of other mesh.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined the subshape is to be meshed
|
|
# @return an instance of Mesh_UseExistingElements class
|
|
# @ingroup l3_algos_basic
|
|
def UseExisting1DElements(self, geom=0):
|
|
return Mesh_UseExistingElements(1,self, geom)
|
|
|
|
## Creates 2D algorithm importing faces conatined in groups of other mesh.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined the subshape is to be meshed
|
|
# @return an instance of Mesh_UseExistingElements class
|
|
# @ingroup l3_algos_basic
|
|
def UseExisting2DElements(self, geom=0):
|
|
return Mesh_UseExistingElements(2,self, geom)
|
|
|
|
## Enables creation of nodes and segments usable by 2D algoritms.
|
|
# The added nodes and segments must be bound to edges and vertices by
|
|
# SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape()
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom the subshape to be manually meshed
|
|
# @return StdMeshers_UseExisting_1D algorithm that generates nothing
|
|
# @ingroup l3_algos_basic
|
|
def UseExistingSegments(self, geom=0):
|
|
algo = Mesh_UseExisting(1,self,geom)
|
|
return algo.GetAlgorithm()
|
|
|
|
## Enables creation of nodes and faces usable by 3D algoritms.
|
|
# The added nodes and faces must be bound to geom faces by SetNodeOnFace()
|
|
# and SetMeshElementOnShape()
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom the subshape to be manually meshed
|
|
# @return StdMeshers_UseExisting_2D algorithm that generates nothing
|
|
# @ingroup l3_algos_basic
|
|
def UseExistingFaces(self, geom=0):
|
|
algo = Mesh_UseExisting(2,self,geom)
|
|
return algo.GetAlgorithm()
|
|
|
|
## Creates a triangle 2D algorithm for faces.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D || smesh.BLSURF
|
|
# @param geom If defined, the subshape to be meshed (GEOM_Object)
|
|
# @return an instance of Mesh_Triangle algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Triangle(self, algo=MEFISTO, geom=0):
|
|
## if Triangle(geom) is called by mistake
|
|
if (isinstance(algo, geompyDC.GEOM._objref_GEOM_Object)):
|
|
geom = algo
|
|
algo = MEFISTO
|
|
return Mesh_Triangle(self, algo, geom)
|
|
|
|
## Creates a quadrangle 2D algorithm for faces.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed (GEOM_Object)
|
|
# @param algo values are: smesh.QUADRANGLE || smesh.RADIAL_QUAD
|
|
# @return an instance of Mesh_Quadrangle algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Quadrangle(self, geom=0, algo=QUADRANGLE):
|
|
if algo==RADIAL_QUAD:
|
|
return Mesh_RadialQuadrangle1D2D(self,geom)
|
|
else:
|
|
return Mesh_Quadrangle(self, geom)
|
|
|
|
## Creates a tetrahedron 3D algorithm for solids.
|
|
# The parameter \a algo permits to choose the algorithm: NETGEN or GHS3D
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.GHS3DPRL, smesh.FULL_NETGEN
|
|
# @param geom If defined, the subshape to be meshed (GEOM_Object)
|
|
# @return an instance of Mesh_Tetrahedron algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Tetrahedron(self, algo=NETGEN, geom=0):
|
|
## if Tetrahedron(geom) is called by mistake
|
|
if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
|
|
algo, geom = geom, algo
|
|
if not algo: algo = NETGEN
|
|
pass
|
|
return Mesh_Tetrahedron(self, algo, geom)
|
|
|
|
## Creates a hexahedron 3D algorithm for solids.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param algo possible values are: smesh.Hexa, smesh.Hexotic
|
|
# @param geom If defined, the subshape to be meshed (GEOM_Object)
|
|
# @return an instance of Mesh_Hexahedron algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Hexahedron(self, algo=Hexa, geom=0):
|
|
## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
|
|
if ( isinstance(algo, geompyDC.GEOM._objref_GEOM_Object) ):
|
|
if geom in [Hexa, Hexotic]: algo, geom = geom, algo
|
|
elif geom == 0: algo, geom = Hexa, algo
|
|
return Mesh_Hexahedron(self, algo, geom)
|
|
|
|
## Deprecated, used only for compatibility!
|
|
# @return an instance of Mesh_Netgen algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Netgen(self, is3D, geom=0):
|
|
return Mesh_Netgen(self, is3D, geom)
|
|
|
|
## Creates a projection 1D algorithm for edges.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Projection1D algorithm
|
|
# @ingroup l3_algos_proj
|
|
def Projection1D(self, geom=0):
|
|
return Mesh_Projection1D(self, geom)
|
|
|
|
## Creates a projection 1D-2D algorithm for faces.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Projection2D algorithm
|
|
# @ingroup l3_algos_proj
|
|
def Projection1D2D(self, geom=0):
|
|
return Mesh_Projection2D(self, geom, "Projection_1D2D")
|
|
|
|
## Creates a projection 2D algorithm for faces.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Projection2D algorithm
|
|
# @ingroup l3_algos_proj
|
|
def Projection2D(self, geom=0):
|
|
return Mesh_Projection2D(self, geom, "Projection_2D")
|
|
|
|
## Creates a projection 3D algorithm for solids.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Projection3D algorithm
|
|
# @ingroup l3_algos_proj
|
|
def Projection3D(self, geom=0):
|
|
return Mesh_Projection3D(self, geom)
|
|
|
|
## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Prism3D or Mesh_RadialPrism3D algorithm
|
|
# @ingroup l3_algos_radialp l3_algos_3dextr
|
|
def Prism(self, geom=0):
|
|
shape = geom
|
|
if shape==0:
|
|
shape = self.geom
|
|
nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] ))
|
|
nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] ))
|
|
if nbSolids == 0 or nbSolids == nbShells:
|
|
return Mesh_Prism3D(self, geom)
|
|
return Mesh_RadialPrism3D(self, geom)
|
|
|
|
## Creates a "Body Fitted" 3D algorithm for solids, which generates
|
|
# 3D structured Cartesian mesh in the internal part of a solid shape
|
|
# and polyhedral volumes near the shape boundary.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# The algorithm does not support submeshes.
|
|
# Generally usage of this algorithm as a local one is useless since
|
|
# it does not discretize 1D and 2D subshapes in a usual way acceptable
|
|
# for other algorithms.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Cartesian_3D algorithm
|
|
# @ingroup l3_algos_basic
|
|
def BodyFitted(self, geom=0):
|
|
return Mesh_Cartesian_3D(self, geom)
|
|
|
|
## Evaluates size of prospective mesh on a shape
|
|
# @return a list where i-th element is a number of elements of i-th SMESH.EntityType
|
|
# To know predicted number of e.g. edges, inquire it this way
|
|
# Evaluate()[ EnumToLong( Entity_Edge )]
|
|
def Evaluate(self, geom=0):
|
|
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
|
|
if self.geom == 0:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
else:
|
|
geom = self.geom
|
|
return self.smeshpyD.Evaluate(self.mesh, geom)
|
|
|
|
|
|
## Computes the mesh and returns the status of the computation
|
|
# @param geom geomtrical shape on which mesh data should be computed
|
|
# @param discardModifs if True and the mesh has been edited since
|
|
# a last total re-compute and that may prevent successful partial re-compute,
|
|
# then the mesh is cleaned before Compute()
|
|
# @return True or False
|
|
# @ingroup l2_construct
|
|
def Compute(self, geom=0, discardModifs=False):
|
|
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
|
|
if self.geom == 0:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
else:
|
|
geom = self.geom
|
|
ok = False
|
|
try:
|
|
if discardModifs and self.mesh.HasModificationsToDiscard(): # issue 0020693
|
|
self.mesh.Clear()
|
|
ok = self.smeshpyD.Compute(self.mesh, geom)
|
|
except SALOME.SALOME_Exception, ex:
|
|
print "Mesh computation failed, exception caught:"
|
|
print " ", ex.details.text
|
|
except:
|
|
import traceback
|
|
print "Mesh computation failed, exception caught:"
|
|
traceback.print_exc()
|
|
if True:#not ok:
|
|
allReasons = ""
|
|
|
|
# Treat compute errors
|
|
computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, geom )
|
|
for err in computeErrors:
|
|
shapeText = ""
|
|
if self.mesh.HasShapeToMesh():
|
|
try:
|
|
mainIOR = salome.orb.object_to_string(geom)
|
|
for sname in salome.myStudyManager.GetOpenStudies():
|
|
s = salome.myStudyManager.GetStudyByName(sname)
|
|
if not s: continue
|
|
mainSO = s.FindObjectIOR(mainIOR)
|
|
if not mainSO: continue
|
|
if err.subShapeID == 1:
|
|
shapeText = ' on "%s"' % mainSO.GetName()
|
|
subIt = s.NewChildIterator(mainSO)
|
|
while subIt.More():
|
|
subSO = subIt.Value()
|
|
subIt.Next()
|
|
obj = subSO.GetObject()
|
|
if not obj: continue
|
|
go = obj._narrow( geompyDC.GEOM._objref_GEOM_Object )
|
|
if not go: continue
|
|
ids = go.GetSubShapeIndices()
|
|
if len(ids) == 1 and ids[0] == err.subShapeID:
|
|
shapeText = ' on "%s"' % subSO.GetName()
|
|
break
|
|
if not shapeText:
|
|
shape = self.geompyD.GetSubShape( geom, [err.subShapeID])
|
|
if shape:
|
|
shapeText = " on %s #%s" % (shape.GetShapeType(), err.subShapeID)
|
|
else:
|
|
shapeText = " on subshape #%s" % (err.subShapeID)
|
|
except:
|
|
shapeText = " on subshape #%s" % (err.subShapeID)
|
|
errText = ""
|
|
stdErrors = ["OK", #COMPERR_OK
|
|
"Invalid input mesh", #COMPERR_BAD_INPUT_MESH
|
|
"std::exception", #COMPERR_STD_EXCEPTION
|
|
"OCC exception", #COMPERR_OCC_EXCEPTION
|
|
"SALOME exception", #COMPERR_SLM_EXCEPTION
|
|
"Unknown exception", #COMPERR_EXCEPTION
|
|
"Memory allocation problem", #COMPERR_MEMORY_PB
|
|
"Algorithm failed", #COMPERR_ALGO_FAILED
|
|
"Unexpected geometry"]#COMPERR_BAD_SHAPE
|
|
if err.code > 0:
|
|
if err.code < len(stdErrors): errText = stdErrors[err.code]
|
|
else:
|
|
errText = "code %s" % -err.code
|
|
if errText: errText += ". "
|
|
errText += err.comment
|
|
if allReasons != "":allReasons += "\n"
|
|
allReasons += '"%s" failed%s. Error: %s' %(err.algoName, shapeText, errText)
|
|
pass
|
|
|
|
# Treat hyp errors
|
|
errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
|
|
for err in errors:
|
|
if err.isGlobalAlgo:
|
|
glob = "global"
|
|
else:
|
|
glob = "local"
|
|
pass
|
|
dim = err.algoDim
|
|
name = err.algoName
|
|
if len(name) == 0:
|
|
reason = '%s %sD algorithm is missing' % (glob, dim)
|
|
elif err.state == HYP_MISSING:
|
|
reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
|
|
% (glob, dim, name, dim))
|
|
elif err.state == HYP_NOTCONFORM:
|
|
reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
|
|
elif err.state == HYP_BAD_PARAMETER:
|
|
reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
|
|
% ( glob, dim, name ))
|
|
elif err.state == HYP_BAD_GEOMETRY:
|
|
reason = ('%s %sD algorithm "%s" is assigned to mismatching'
|
|
'geometry' % ( glob, dim, name ))
|
|
else:
|
|
reason = "For unknown reason."+\
|
|
" Revise Mesh.Compute() implementation in smeshDC.py!"
|
|
pass
|
|
if allReasons != "":allReasons += "\n"
|
|
allReasons += reason
|
|
pass
|
|
if allReasons != "":
|
|
print '"' + GetName(self.mesh) + '"',"has not been computed:"
|
|
print allReasons
|
|
ok = False
|
|
elif not ok:
|
|
print '"' + GetName(self.mesh) + '"',"has not been computed."
|
|
pass
|
|
pass
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
|
|
salome.sg.updateObjBrowser(1)
|
|
pass
|
|
return ok
|
|
|
|
## Return submesh objects list in meshing order
|
|
# @return list of list of submesh objects
|
|
# @ingroup l2_construct
|
|
def GetMeshOrder(self):
|
|
return self.mesh.GetMeshOrder()
|
|
|
|
## Return submesh objects list in meshing order
|
|
# @return list of list of submesh objects
|
|
# @ingroup l2_construct
|
|
def SetMeshOrder(self, submeshes):
|
|
return self.mesh.SetMeshOrder(submeshes)
|
|
|
|
## Removes all nodes and elements
|
|
# @ingroup l2_construct
|
|
def Clear(self):
|
|
self.mesh.Clear()
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
|
|
salome.sg.updateObjBrowser(1)
|
|
|
|
## Removes all nodes and elements of indicated shape
|
|
# @ingroup l2_construct
|
|
def ClearSubMesh(self, geomId):
|
|
self.mesh.ClearSubMesh(geomId)
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
|
|
salome.sg.updateObjBrowser(1)
|
|
|
|
## Computes a tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
|
|
# @param fineness [0.0,1.0] defines mesh fineness
|
|
# @return True or False
|
|
# @ingroup l3_algos_basic
|
|
def AutomaticTetrahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Triangle().LengthFromEdges()
|
|
pass
|
|
if dim > 2 :
|
|
self.Tetrahedron(NETGEN)
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Computes an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
|
|
# @param fineness [0.0, 1.0] defines mesh fineness
|
|
# @return True or False
|
|
# @ingroup l3_algos_basic
|
|
def AutomaticHexahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign the hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Quadrangle()
|
|
pass
|
|
if dim > 2 :
|
|
self.Hexahedron()
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Assigns a hypothesis
|
|
# @param hyp a hypothesis to assign
|
|
# @param geom a subhape of mesh geometry
|
|
# @return SMESH.Hypothesis_Status
|
|
# @ingroup l2_hypotheses
|
|
def AddHypothesis(self, hyp, geom=0):
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
if not geom:
|
|
geom = self.geom
|
|
if not geom:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
pass
|
|
status = self.mesh.AddHypothesis(geom, hyp)
|
|
isAlgo = hyp._narrow( SMESH_Algo )
|
|
hyp_name = GetName( hyp )
|
|
geom_name = ""
|
|
if geom:
|
|
geom_name = GetName( geom )
|
|
TreatHypoStatus( status, hyp_name, geom_name, isAlgo )
|
|
return status
|
|
|
|
## Unassigns a hypothesis
|
|
# @param hyp a hypothesis to unassign
|
|
# @param geom a subshape of mesh geometry
|
|
# @return SMESH.Hypothesis_Status
|
|
# @ingroup l2_hypotheses
|
|
def RemoveHypothesis(self, hyp, geom=0):
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
if not geom:
|
|
geom = self.geom
|
|
pass
|
|
status = self.mesh.RemoveHypothesis(geom, hyp)
|
|
return status
|
|
|
|
## Gets the list of hypotheses added on a geometry
|
|
# @param geom a subshape of mesh geometry
|
|
# @return the sequence of SMESH_Hypothesis
|
|
# @ingroup l2_hypotheses
|
|
def GetHypothesisList(self, geom):
|
|
return self.mesh.GetHypothesisList( geom )
|
|
|
|
## Removes all global hypotheses
|
|
# @ingroup l2_hypotheses
|
|
def RemoveGlobalHypotheses(self):
|
|
current_hyps = self.mesh.GetHypothesisList( self.geom )
|
|
for hyp in current_hyps:
|
|
self.mesh.RemoveHypothesis( self.geom, hyp )
|
|
pass
|
|
pass
|
|
|
|
## Deprecated, used only for compatibility! Please, use ExportToMEDX() method instead.
|
|
# Exports the mesh in a file in MED format and chooses the \a version of MED format
|
|
## allowing to overwrite the file if it exists or add the exported data to its contents
|
|
# @param f the file name
|
|
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
|
|
# @param opt boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ...
|
|
# @param overwrite boolean parameter for overwriting/not overwriting the file
|
|
# @ingroup l2_impexp
|
|
def ExportToMED(self, f, version, opt=0, overwrite=1):
|
|
self.mesh.ExportToMEDX(f, opt, version, overwrite)
|
|
|
|
## Exports the mesh in a file in MED format and chooses the \a version of MED format
|
|
## allowing to overwrite the file if it exists or add the exported data to its contents
|
|
# @param f is the file name
|
|
# @param auto_groups boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
|
|
# the typical use is auto_groups=false.
|
|
# @param version MED format version(MED_V2_1 or MED_V2_2)
|
|
# @param overwrite boolean parameter for overwriting/not overwriting the file
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportMED(self, f, auto_groups=0, version=MED_V2_2, overwrite=1, meshPart=None):
|
|
if meshPart:
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
self.mesh.ExportPartToMED( meshPart, f, auto_groups, version, overwrite )
|
|
else:
|
|
self.mesh.ExportToMEDX(f, auto_groups, version, overwrite)
|
|
|
|
## Exports the mesh in a file in SAUV format
|
|
# @param f is the file name
|
|
# @param auto_groups boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
|
|
# the typical use is auto_groups=false.
|
|
# @ingroup l2_impexp
|
|
def ExportSAUV(self, f, auto_groups=0):
|
|
self.mesh.ExportSAUV(f, auto_groups)
|
|
|
|
## Exports the mesh in a file in DAT format
|
|
# @param f the file name
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportDAT(self, f, meshPart=None):
|
|
if meshPart:
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
self.mesh.ExportPartToDAT( meshPart, f )
|
|
else:
|
|
self.mesh.ExportDAT(f)
|
|
|
|
## Exports the mesh in a file in UNV format
|
|
# @param f the file name
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportUNV(self, f, meshPart=None):
|
|
if meshPart:
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
self.mesh.ExportPartToUNV( meshPart, f )
|
|
else:
|
|
self.mesh.ExportUNV(f)
|
|
|
|
## Export the mesh in a file in STL format
|
|
# @param f the file name
|
|
# @param ascii defines the file encoding
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportSTL(self, f, ascii=1, meshPart=None):
|
|
if meshPart:
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
self.mesh.ExportPartToSTL( meshPart, f, ascii )
|
|
else:
|
|
self.mesh.ExportSTL(f, ascii)
|
|
|
|
## Exports the mesh in a file in CGNS format
|
|
# @param f is the file name
|
|
# @param overwrite boolean parameter for overwriting/not overwriting the file
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportCGNS(self, f, overwrite=1, meshPart=None):
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
if isinstance( meshPart, Mesh ):
|
|
meshPart = meshPart.mesh
|
|
elif not meshPart:
|
|
meshPart = self.mesh
|
|
self.mesh.ExportCGNS(meshPart, f, overwrite)
|
|
|
|
# Operations with groups:
|
|
# ----------------------
|
|
|
|
## Creates an empty mesh group
|
|
# @param elementType the type of elements in the group
|
|
# @param name the name of the mesh group
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def CreateEmptyGroup(self, elementType, name):
|
|
return self.mesh.CreateGroup(elementType, name)
|
|
|
|
## Creates a mesh group based on the geometric object \a grp
|
|
# and gives a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometric group name \n
|
|
# Note: Works like GroupOnGeom().
|
|
# @param grp a geometric group, a vertex, an edge, a face or a solid
|
|
# @param name the name of the mesh group
|
|
# @return SMESH_GroupOnGeom
|
|
# @ingroup l2_grps_create
|
|
def Group(self, grp, name=""):
|
|
return self.GroupOnGeom(grp, name)
|
|
|
|
## Creates a mesh group based on the geometrical object \a grp
|
|
# and gives a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometrical group name
|
|
# @param grp a geometrical group, a vertex, an edge, a face or a solid
|
|
# @param name the name of the mesh group
|
|
# @param typ the type of elements in the group. If not set, it is
|
|
# automatically detected by the type of the geometry
|
|
# @return SMESH_GroupOnGeom
|
|
# @ingroup l2_grps_create
|
|
def GroupOnGeom(self, grp, name="", typ=None):
|
|
AssureGeomPublished( self, grp, name )
|
|
if name == "":
|
|
name = grp.GetName()
|
|
if not typ:
|
|
typ = self._groupTypeFromShape( grp )
|
|
return self.mesh.CreateGroupFromGEOM(typ, name, grp)
|
|
|
|
## Pivate method to get a type of group on geometry
|
|
def _groupTypeFromShape( self, shape ):
|
|
tgeo = str(shape.GetShapeType())
|
|
if tgeo == "VERTEX":
|
|
typ = NODE
|
|
elif tgeo == "EDGE":
|
|
typ = EDGE
|
|
elif tgeo == "FACE" or tgeo == "SHELL":
|
|
typ = FACE
|
|
elif tgeo == "SOLID" or tgeo == "COMPSOLID":
|
|
typ = VOLUME
|
|
elif tgeo == "COMPOUND":
|
|
sub = self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHAPE"])
|
|
if not sub:
|
|
raise ValueError,"_groupTypeFromShape(): empty geometric group or compound '%s'" % GetName(shape)
|
|
return self._groupTypeFromShape( sub[0] )
|
|
else:
|
|
raise ValueError, \
|
|
"_groupTypeFromShape(): invalid geometry '%s'" % GetName(shape)
|
|
return typ
|
|
|
|
## Creates a mesh group with given \a name based on the \a filter which
|
|
## is a special type of group dynamically updating it's contents during
|
|
## mesh modification
|
|
# @param typ the type of elements in the group
|
|
# @param name the name of the mesh group
|
|
# @param filter the filter defining group contents
|
|
# @return SMESH_GroupOnFilter
|
|
# @ingroup l2_grps_create
|
|
def GroupOnFilter(self, typ, name, filter):
|
|
return self.mesh.CreateGroupFromFilter(typ, name, filter)
|
|
|
|
## Creates a mesh group by the given ids of elements
|
|
# @param groupName the name of the mesh group
|
|
# @param elementType the type of elements in the group
|
|
# @param elemIDs the list of ids
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByIds(self, groupName, elementType, elemIDs):
|
|
group = self.mesh.CreateGroup(elementType, groupName)
|
|
group.Add(elemIDs)
|
|
return group
|
|
|
|
## Creates a mesh group by the given conditions
|
|
# @param groupName the name of the mesh group
|
|
# @param elementType the type of elements in the group
|
|
# @param CritType the type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
|
|
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Treshold the threshold value (range of id ids as string, shape, numeric)
|
|
# @param UnaryOp FT_LogicalNOT or FT_Undefined
|
|
# @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
|
|
# FT_LyingOnGeom, FT_CoplanarFaces criteria
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroup(self,
|
|
groupName,
|
|
elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Treshold="",
|
|
UnaryOp=FT_Undefined,
|
|
Tolerance=1e-07):
|
|
aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined,Tolerance)
|
|
group = self.MakeGroupByCriterion(groupName, aCriterion)
|
|
return group
|
|
|
|
## Creates a mesh group by the given criterion
|
|
# @param groupName the name of the mesh group
|
|
# @param Criterion the instance of Criterion class
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByCriterion(self, groupName, Criterion):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aCriteria = []
|
|
aCriteria.append(Criterion)
|
|
aFilter.SetCriteria(aCriteria)
|
|
group = self.MakeGroupByFilter(groupName, aFilter)
|
|
aFilterMgr.UnRegister()
|
|
return group
|
|
|
|
## Creates a mesh group by the given criteria (list of criteria)
|
|
# @param groupName the name of the mesh group
|
|
# @param theCriteria the list of criteria
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByCriteria(self, groupName, theCriteria):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aFilter.SetCriteria(theCriteria)
|
|
group = self.MakeGroupByFilter(groupName, aFilter)
|
|
aFilterMgr.UnRegister()
|
|
return group
|
|
|
|
## Creates a mesh group by the given filter
|
|
# @param groupName the name of the mesh group
|
|
# @param theFilter the instance of Filter class
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByFilter(self, groupName, theFilter):
|
|
group = self.CreateEmptyGroup(theFilter.GetElementType(), groupName)
|
|
theFilter.SetMesh( self.mesh )
|
|
group.AddFrom( theFilter )
|
|
return group
|
|
|
|
## Passes mesh elements through the given filter and return IDs of fitting elements
|
|
# @param theFilter SMESH_Filter
|
|
# @return a list of ids
|
|
# @ingroup l1_controls
|
|
def GetIdsFromFilter(self, theFilter):
|
|
theFilter.SetMesh( self.mesh )
|
|
return theFilter.GetIDs()
|
|
|
|
## Verifies whether a 2D mesh element has free edges (edges connected to one face only)\n
|
|
# Returns a list of special structures (borders).
|
|
# @return a list of SMESH.FreeEdges.Border structure: edge id and ids of two its nodes.
|
|
# @ingroup l1_controls
|
|
def GetFreeBorders(self):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aPredicate = aFilterMgr.CreateFreeEdges()
|
|
aPredicate.SetMesh(self.mesh)
|
|
aBorders = aPredicate.GetBorders()
|
|
aFilterMgr.UnRegister()
|
|
return aBorders
|
|
|
|
## Removes a group
|
|
# @ingroup l2_grps_delete
|
|
def RemoveGroup(self, group):
|
|
self.mesh.RemoveGroup(group)
|
|
|
|
## Removes a group with its contents
|
|
# @ingroup l2_grps_delete
|
|
def RemoveGroupWithContents(self, group):
|
|
self.mesh.RemoveGroupWithContents(group)
|
|
|
|
## Gets the list of groups existing in the mesh
|
|
# @return a sequence of SMESH_GroupBase
|
|
# @ingroup l2_grps_create
|
|
def GetGroups(self):
|
|
return self.mesh.GetGroups()
|
|
|
|
## Gets the number of groups existing in the mesh
|
|
# @return the quantity of groups as an integer value
|
|
# @ingroup l2_grps_create
|
|
def NbGroups(self):
|
|
return self.mesh.NbGroups()
|
|
|
|
## Gets the list of names of groups existing in the mesh
|
|
# @return list of strings
|
|
# @ingroup l2_grps_create
|
|
def GetGroupNames(self):
|
|
groups = self.GetGroups()
|
|
names = []
|
|
for group in groups:
|
|
names.append(group.GetName())
|
|
return names
|
|
|
|
## Produces a union of two groups
|
|
# A new group is created. All mesh elements that are
|
|
# present in the initial groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def UnionGroups(self, group1, group2, name):
|
|
return self.mesh.UnionGroups(group1, group2, name)
|
|
|
|
## Produces a union list of groups
|
|
# New group is created. All mesh elements that are present in
|
|
# initial groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def UnionListOfGroups(self, groups, name):
|
|
return self.mesh.UnionListOfGroups(groups, name)
|
|
|
|
## Prodices an intersection of two groups
|
|
# A new group is created. All mesh elements that are common
|
|
# for the two initial groups are added to the new one.
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def IntersectGroups(self, group1, group2, name):
|
|
return self.mesh.IntersectGroups(group1, group2, name)
|
|
|
|
## Produces an intersection of groups
|
|
# New group is created. All mesh elements that are present in all
|
|
# initial groups simultaneously are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def IntersectListOfGroups(self, groups, name):
|
|
return self.mesh.IntersectListOfGroups(groups, name)
|
|
|
|
## Produces a cut of two groups
|
|
# A new group is created. All mesh elements that are present in
|
|
# the main group but are not present in the tool group are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CutGroups(self, main_group, tool_group, name):
|
|
return self.mesh.CutGroups(main_group, tool_group, name)
|
|
|
|
## Produces a cut of groups
|
|
# A new group is created. All mesh elements that are present in main groups
|
|
# but do not present in tool groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CutListOfGroups(self, main_groups, tool_groups, name):
|
|
return self.mesh.CutListOfGroups(main_groups, tool_groups, name)
|
|
|
|
## Produces a group of elements of specified type using list of existing groups
|
|
# A new group is created. System
|
|
# 1) extracts all nodes on which groups elements are built
|
|
# 2) combines all elements of specified dimension laying on these nodes
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CreateDimGroup(self, groups, elem_type, name):
|
|
return self.mesh.CreateDimGroup(groups, elem_type, name)
|
|
|
|
|
|
## Convert group on geom into standalone group
|
|
# @ingroup l2_grps_delete
|
|
def ConvertToStandalone(self, group):
|
|
return self.mesh.ConvertToStandalone(group)
|
|
|
|
# Get some info about mesh:
|
|
# ------------------------
|
|
|
|
## Returns the log of nodes and elements added or removed
|
|
# since the previous clear of the log.
|
|
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
|
|
# @return list of log_block structures:
|
|
# commandType
|
|
# number
|
|
# coords
|
|
# indexes
|
|
# @ingroup l1_auxiliary
|
|
def GetLog(self, clearAfterGet):
|
|
return self.mesh.GetLog(clearAfterGet)
|
|
|
|
## Clears the log of nodes and elements added or removed since the previous
|
|
# clear. Must be used immediately after GetLog if clearAfterGet is false.
|
|
# @ingroup l1_auxiliary
|
|
def ClearLog(self):
|
|
self.mesh.ClearLog()
|
|
|
|
## Toggles auto color mode on the object.
|
|
# @param theAutoColor the flag which toggles auto color mode.
|
|
# @ingroup l1_auxiliary
|
|
def SetAutoColor(self, theAutoColor):
|
|
self.mesh.SetAutoColor(theAutoColor)
|
|
|
|
## Gets flag of object auto color mode.
|
|
# @return True or False
|
|
# @ingroup l1_auxiliary
|
|
def GetAutoColor(self):
|
|
return self.mesh.GetAutoColor()
|
|
|
|
## Gets the internal ID
|
|
# @return integer value, which is the internal Id of the mesh
|
|
# @ingroup l1_auxiliary
|
|
def GetId(self):
|
|
return self.mesh.GetId()
|
|
|
|
## Get the study Id
|
|
# @return integer value, which is the study Id of the mesh
|
|
# @ingroup l1_auxiliary
|
|
def GetStudyId(self):
|
|
return self.mesh.GetStudyId()
|
|
|
|
## Checks the group names for duplications.
|
|
# Consider the maximum group name length stored in MED file.
|
|
# @return True or False
|
|
# @ingroup l1_auxiliary
|
|
def HasDuplicatedGroupNamesMED(self):
|
|
return self.mesh.HasDuplicatedGroupNamesMED()
|
|
|
|
## Obtains the mesh editor tool
|
|
# @return an instance of SMESH_MeshEditor
|
|
# @ingroup l1_modifying
|
|
def GetMeshEditor(self):
|
|
return self.mesh.GetMeshEditor()
|
|
|
|
## Wrap a list of IDs of elements or nodes into SMESH_IDSource which
|
|
# can be passed as argument to accepting mesh, group or sub-mesh
|
|
# @return an instance of SMESH_IDSource
|
|
# @ingroup l1_auxiliary
|
|
def GetIDSource(self, ids, elemType):
|
|
return self.GetMeshEditor().MakeIDSource(ids, elemType)
|
|
|
|
## Gets MED Mesh
|
|
# @return an instance of SALOME_MED::MESH
|
|
# @ingroup l1_auxiliary
|
|
def GetMEDMesh(self):
|
|
return self.mesh.GetMEDMesh()
|
|
|
|
|
|
# Get informations about mesh contents:
|
|
# ------------------------------------
|
|
|
|
## Gets the mesh stattistic
|
|
# @return dictionary type element - count of elements
|
|
# @ingroup l1_meshinfo
|
|
def GetMeshInfo(self, obj = None):
|
|
if not obj: obj = self.mesh
|
|
return self.smeshpyD.GetMeshInfo(obj)
|
|
|
|
## Returns the number of nodes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbNodes(self):
|
|
return self.mesh.NbNodes()
|
|
|
|
## Returns the number of elements in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbElements(self):
|
|
return self.mesh.NbElements()
|
|
|
|
## Returns the number of 0d elements in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def Nb0DElements(self):
|
|
return self.mesh.Nb0DElements()
|
|
|
|
## Returns the number of edges in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbEdges(self):
|
|
return self.mesh.NbEdges()
|
|
|
|
## Returns the number of edges with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbEdgesOfOrder(self, elementOrder):
|
|
return self.mesh.NbEdgesOfOrder(elementOrder)
|
|
|
|
## Returns the number of faces in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbFaces(self):
|
|
return self.mesh.NbFaces()
|
|
|
|
## Returns the number of faces with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbFacesOfOrder(self, elementOrder):
|
|
return self.mesh.NbFacesOfOrder(elementOrder)
|
|
|
|
## Returns the number of triangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTriangles(self):
|
|
return self.mesh.NbTriangles()
|
|
|
|
## Returns the number of triangles with the given order in the mesh
|
|
# @param elementOrder is the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTrianglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbTrianglesOfOrder(elementOrder)
|
|
|
|
## Returns the number of quadrangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbQuadrangles(self):
|
|
return self.mesh.NbQuadrangles()
|
|
|
|
## Returns the number of quadrangles with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbQuadranglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbQuadranglesOfOrder(elementOrder)
|
|
|
|
## Returns the number of polygons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPolygons(self):
|
|
return self.mesh.NbPolygons()
|
|
|
|
## Returns the number of volumes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbVolumes(self):
|
|
return self.mesh.NbVolumes()
|
|
|
|
## Returns the number of volumes with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbVolumesOfOrder(self, elementOrder):
|
|
return self.mesh.NbVolumesOfOrder(elementOrder)
|
|
|
|
## Returns the number of tetrahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTetras(self):
|
|
return self.mesh.NbTetras()
|
|
|
|
## Returns the number of tetrahedrons with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTetrasOfOrder(self, elementOrder):
|
|
return self.mesh.NbTetrasOfOrder(elementOrder)
|
|
|
|
## Returns the number of hexahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexas(self):
|
|
return self.mesh.NbHexas()
|
|
|
|
## Returns the number of hexahedrons with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexasOfOrder(self, elementOrder):
|
|
return self.mesh.NbHexasOfOrder(elementOrder)
|
|
|
|
## Returns the number of pyramids in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPyramids(self):
|
|
return self.mesh.NbPyramids()
|
|
|
|
## Returns the number of pyramids with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPyramidsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPyramidsOfOrder(elementOrder)
|
|
|
|
## Returns the number of prisms in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPrisms(self):
|
|
return self.mesh.NbPrisms()
|
|
|
|
## Returns the number of prisms with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPrismsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPrismsOfOrder(elementOrder)
|
|
|
|
## Returns the number of polyhedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPolyhedrons(self):
|
|
return self.mesh.NbPolyhedrons()
|
|
|
|
## Returns the number of submeshes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbSubMesh(self):
|
|
return self.mesh.NbSubMesh()
|
|
|
|
## Returns the list of mesh elements IDs
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElementsId(self):
|
|
return self.mesh.GetElementsId()
|
|
|
|
## Returns the list of IDs of mesh elements with the given type
|
|
# @param elementType the required type of elements (SMESH.NODE, SMESH.EDGE, SMESH.FACE or SMESH.VOLUME)
|
|
# @return list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElementsByType(self, elementType):
|
|
return self.mesh.GetElementsByType(elementType)
|
|
|
|
## Returns the list of mesh nodes IDs
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodesId(self):
|
|
return self.mesh.GetNodesId()
|
|
|
|
# Get the information about mesh elements:
|
|
# ------------------------------------
|
|
|
|
## Returns the type of mesh element
|
|
# @return the value from SMESH::ElementType enumeration
|
|
# @ingroup l1_meshinfo
|
|
def GetElementType(self, id, iselem):
|
|
return self.mesh.GetElementType(id, iselem)
|
|
|
|
## Returns the geometric type of mesh element
|
|
# @return the value from SMESH::EntityType enumeration
|
|
# @ingroup l1_meshinfo
|
|
def GetElementGeomType(self, id):
|
|
return self.mesh.GetElementGeomType(id)
|
|
|
|
## Returns the list of submesh elements IDs
|
|
# @param Shape a geom object(subshape) IOR
|
|
# Shape must be the subshape of a ShapeToMesh()
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshElementsId(self, Shape):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshElementsId(ShapeID)
|
|
|
|
## Returns the list of submesh nodes IDs
|
|
# @param Shape a geom object(subshape) IOR
|
|
# Shape must be the subshape of a ShapeToMesh()
|
|
# @param all If true, gives all nodes of submesh elements, otherwise gives only submesh nodes
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshNodesId(self, Shape, all):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshNodesId(ShapeID, all)
|
|
|
|
## Returns type of elements on given shape
|
|
# @param Shape a geom object(subshape) IOR
|
|
# Shape must be a subshape of a ShapeToMesh()
|
|
# @return element type
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshElementType(self, Shape):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshElementType(ShapeID)
|
|
|
|
## Gets the mesh description
|
|
# @return string value
|
|
# @ingroup l1_meshinfo
|
|
def Dump(self):
|
|
return self.mesh.Dump()
|
|
|
|
|
|
# Get the information about nodes and elements of a mesh by its IDs:
|
|
# -----------------------------------------------------------
|
|
|
|
## Gets XYZ coordinates of a node
|
|
# \n If there is no nodes for the given ID - returns an empty list
|
|
# @return a list of double precision values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodeXYZ(self, id):
|
|
return self.mesh.GetNodeXYZ(id)
|
|
|
|
## Returns list of IDs of inverse elements for the given node
|
|
# \n If there is no node for the given ID - returns an empty list
|
|
# @return a list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodeInverseElements(self, id):
|
|
return self.mesh.GetNodeInverseElements(id)
|
|
|
|
## @brief Returns the position of a node on the shape
|
|
# @return SMESH::NodePosition
|
|
# @ingroup l1_meshinfo
|
|
def GetNodePosition(self,NodeID):
|
|
return self.mesh.GetNodePosition(NodeID)
|
|
|
|
## If the given element is a node, returns the ID of shape
|
|
# \n If there is no node for the given ID - returns -1
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetShapeID(self, id):
|
|
return self.mesh.GetShapeID(id)
|
|
|
|
## Returns the ID of the result shape after
|
|
# FindShape() from SMESH_MeshEditor for the given element
|
|
# \n If there is no element for the given ID - returns -1
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetShapeIDForElem(self,id):
|
|
return self.mesh.GetShapeIDForElem(id)
|
|
|
|
## Returns the number of nodes for the given element
|
|
# \n If there is no element for the given ID - returns -1
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNbNodes(self, id):
|
|
return self.mesh.GetElemNbNodes(id)
|
|
|
|
## Returns the node ID the given index for the given element
|
|
# \n If there is no element for the given ID - returns -1
|
|
# \n If there is no node for the given index - returns -2
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNode(self, id, index):
|
|
return self.mesh.GetElemNode(id, index)
|
|
|
|
## Returns the IDs of nodes of the given element
|
|
# @return a list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNodes(self, id):
|
|
return self.mesh.GetElemNodes(id)
|
|
|
|
## Returns true if the given node is the medium node in the given quadratic element
|
|
# @ingroup l1_meshinfo
|
|
def IsMediumNode(self, elementID, nodeID):
|
|
return self.mesh.IsMediumNode(elementID, nodeID)
|
|
|
|
## Returns true if the given node is the medium node in one of quadratic elements
|
|
# @ingroup l1_meshinfo
|
|
def IsMediumNodeOfAnyElem(self, nodeID, elementType):
|
|
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
|
|
|
|
## Returns the number of edges for the given element
|
|
# @ingroup l1_meshinfo
|
|
def ElemNbEdges(self, id):
|
|
return self.mesh.ElemNbEdges(id)
|
|
|
|
## Returns the number of faces for the given element
|
|
# @ingroup l1_meshinfo
|
|
def ElemNbFaces(self, id):
|
|
return self.mesh.ElemNbFaces(id)
|
|
|
|
## Returns nodes of given face (counted from zero) for given volumic element.
|
|
# @ingroup l1_meshinfo
|
|
def GetElemFaceNodes(self,elemId, faceIndex):
|
|
return self.mesh.GetElemFaceNodes(elemId, faceIndex)
|
|
|
|
## Returns an element based on all given nodes.
|
|
# @ingroup l1_meshinfo
|
|
def FindElementByNodes(self,nodes):
|
|
return self.mesh.FindElementByNodes(nodes)
|
|
|
|
## Returns true if the given element is a polygon
|
|
# @ingroup l1_meshinfo
|
|
def IsPoly(self, id):
|
|
return self.mesh.IsPoly(id)
|
|
|
|
## Returns true if the given element is quadratic
|
|
# @ingroup l1_meshinfo
|
|
def IsQuadratic(self, id):
|
|
return self.mesh.IsQuadratic(id)
|
|
|
|
## Returns XYZ coordinates of the barycenter of the given element
|
|
# \n If there is no element for the given ID - returns an empty list
|
|
# @return a list of three double values
|
|
# @ingroup l1_meshinfo
|
|
def BaryCenter(self, id):
|
|
return self.mesh.BaryCenter(id)
|
|
|
|
|
|
# Get mesh measurements information:
|
|
# ------------------------------------
|
|
|
|
## Get minimum distance between two nodes, elements or distance to the origin
|
|
# @param id1 first node/element id
|
|
# @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return minimum distance value
|
|
# @sa GetMinDistance()
|
|
def MinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
|
|
aMeasure = self.GetMinDistance(id1, id2, isElem1, isElem2)
|
|
return aMeasure.value
|
|
|
|
## Get measure structure specifying minimum distance data between two objects
|
|
# @param id1 first node/element id
|
|
# @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return Measure structure
|
|
# @sa MinDistance()
|
|
def GetMinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
|
|
if isElem1:
|
|
id1 = self.editor.MakeIDSource([id1], SMESH.FACE)
|
|
else:
|
|
id1 = self.editor.MakeIDSource([id1], SMESH.NODE)
|
|
if id2 != 0:
|
|
if isElem2:
|
|
id2 = self.editor.MakeIDSource([id2], SMESH.FACE)
|
|
else:
|
|
id2 = self.editor.MakeIDSource([id2], SMESH.NODE)
|
|
pass
|
|
else:
|
|
id2 = None
|
|
|
|
aMeasurements = self.smeshpyD.CreateMeasurements()
|
|
aMeasure = aMeasurements.MinDistance(id1, id2)
|
|
aMeasurements.UnRegister()
|
|
return aMeasure
|
|
|
|
## Get bounding box of the specified object(s)
|
|
# @param objects single source object or list of source objects or list of nodes/elements IDs
|
|
# @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
|
|
# @c False specifies that @a objects are nodes
|
|
# @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
|
|
# @sa GetBoundingBox()
|
|
def BoundingBox(self, objects=None, isElem=False):
|
|
result = self.GetBoundingBox(objects, isElem)
|
|
if result is None:
|
|
result = (0.0,)*6
|
|
else:
|
|
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
|
|
return result
|
|
|
|
## Get measure structure specifying bounding box data of the specified object(s)
|
|
# @param IDs single source object or list of source objects or list of nodes/elements IDs
|
|
# @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
|
|
# @c False specifies that @a objects are nodes
|
|
# @return Measure structure
|
|
# @sa BoundingBox()
|
|
def GetBoundingBox(self, IDs=None, isElem=False):
|
|
if IDs is None:
|
|
IDs = [self.mesh]
|
|
elif isinstance(IDs, tuple):
|
|
IDs = list(IDs)
|
|
if not isinstance(IDs, list):
|
|
IDs = [IDs]
|
|
if len(IDs) > 0 and isinstance(IDs[0], int):
|
|
IDs = [IDs]
|
|
srclist = []
|
|
for o in IDs:
|
|
if isinstance(o, Mesh):
|
|
srclist.append(o.mesh)
|
|
elif hasattr(o, "_narrow"):
|
|
src = o._narrow(SMESH.SMESH_IDSource)
|
|
if src: srclist.append(src)
|
|
pass
|
|
elif isinstance(o, list):
|
|
if isElem:
|
|
srclist.append(self.editor.MakeIDSource(o, SMESH.FACE))
|
|
else:
|
|
srclist.append(self.editor.MakeIDSource(o, SMESH.NODE))
|
|
pass
|
|
pass
|
|
aMeasurements = self.smeshpyD.CreateMeasurements()
|
|
aMeasure = aMeasurements.BoundingBox(srclist)
|
|
aMeasurements.UnRegister()
|
|
return aMeasure
|
|
|
|
# Mesh edition (SMESH_MeshEditor functionality):
|
|
# ---------------------------------------------
|
|
|
|
## Removes the elements from the mesh by ids
|
|
# @param IDsOfElements is a list of ids of elements to remove
|
|
# @return True or False
|
|
# @ingroup l2_modif_del
|
|
def RemoveElements(self, IDsOfElements):
|
|
return self.editor.RemoveElements(IDsOfElements)
|
|
|
|
## Removes nodes from mesh by ids
|
|
# @param IDsOfNodes is a list of ids of nodes to remove
|
|
# @return True or False
|
|
# @ingroup l2_modif_del
|
|
def RemoveNodes(self, IDsOfNodes):
|
|
return self.editor.RemoveNodes(IDsOfNodes)
|
|
|
|
## Removes all orphan (free) nodes from mesh
|
|
# @return number of the removed nodes
|
|
# @ingroup l2_modif_del
|
|
def RemoveOrphanNodes(self):
|
|
return self.editor.RemoveOrphanNodes()
|
|
|
|
## Add a node to the mesh by coordinates
|
|
# @return Id of the new node
|
|
# @ingroup l2_modif_add
|
|
def AddNode(self, x, y, z):
|
|
x,y,z,Parameters = geompyDC.ParseParameters(x,y,z)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.AddNode( x, y, z)
|
|
|
|
## Creates a 0D element on a node with given number.
|
|
# @param IDOfNode the ID of node for creation of the element.
|
|
# @return the Id of the new 0D element
|
|
# @ingroup l2_modif_add
|
|
def Add0DElement(self, IDOfNode):
|
|
return self.editor.Add0DElement(IDOfNode)
|
|
|
|
## Creates a linear or quadratic edge (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new edge
|
|
# @ingroup l2_modif_add
|
|
def AddEdge(self, IDsOfNodes):
|
|
return self.editor.AddEdge(IDsOfNodes)
|
|
|
|
## Creates a linear or quadratic face (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new face
|
|
# @ingroup l2_modif_add
|
|
def AddFace(self, IDsOfNodes):
|
|
return self.editor.AddFace(IDsOfNodes)
|
|
|
|
## Adds a polygonal face to the mesh by the list of node IDs
|
|
# @param IdsOfNodes the list of node IDs for creation of the element.
|
|
# @return the Id of the new face
|
|
# @ingroup l2_modif_add
|
|
def AddPolygonalFace(self, IdsOfNodes):
|
|
return self.editor.AddPolygonalFace(IdsOfNodes)
|
|
|
|
## Creates both simple and quadratic volume (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddVolume(self, IDsOfNodes):
|
|
return self.editor.AddVolume(IDsOfNodes)
|
|
|
|
## Creates a volume of many faces, giving nodes for each face.
|
|
# @param IdsOfNodes the list of node IDs for volume creation face by face.
|
|
# @param Quantities the list of integer values, Quantities[i]
|
|
# gives the quantity of nodes in face number i.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
|
|
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
|
|
|
|
## Creates a volume of many faces, giving the IDs of the existing faces.
|
|
# @param IdsOfFaces the list of face IDs for volume creation.
|
|
#
|
|
# Note: The created volume will refer only to the nodes
|
|
# of the given faces, not to the faces themselves.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
|
|
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
|
|
|
|
|
|
## @brief Binds a node to a vertex
|
|
# @param NodeID a node ID
|
|
# @param Vertex a vertex or vertex ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnVertex(self, NodeID, Vertex):
|
|
if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)):
|
|
VertexID = Vertex.GetSubShapeIndices()[0]
|
|
else:
|
|
VertexID = Vertex
|
|
try:
|
|
self.editor.SetNodeOnVertex(NodeID, VertexID)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
|
|
## @brief Stores the node position on an edge
|
|
# @param NodeID a node ID
|
|
# @param Edge an edge or edge ID
|
|
# @param paramOnEdge a parameter on the edge where the node is located
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
|
|
if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)):
|
|
EdgeID = Edge.GetSubShapeIndices()[0]
|
|
else:
|
|
EdgeID = Edge
|
|
try:
|
|
self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
## @brief Stores node position on a face
|
|
# @param NodeID a node ID
|
|
# @param Face a face or face ID
|
|
# @param u U parameter on the face where the node is located
|
|
# @param v V parameter on the face where the node is located
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnFace(self, NodeID, Face, u, v):
|
|
if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)):
|
|
FaceID = Face.GetSubShapeIndices()[0]
|
|
else:
|
|
FaceID = Face
|
|
try:
|
|
self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
## @brief Binds a node to a solid
|
|
# @param NodeID a node ID
|
|
# @param Solid a solid or solid ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeInVolume(self, NodeID, Solid):
|
|
if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)):
|
|
SolidID = Solid.GetSubShapeIndices()[0]
|
|
else:
|
|
SolidID = Solid
|
|
try:
|
|
self.editor.SetNodeInVolume(NodeID, SolidID)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
## @brief Bind an element to a shape
|
|
# @param ElementID an element ID
|
|
# @param Shape a shape or shape ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetMeshElementOnShape(self, ElementID, Shape):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
try:
|
|
self.editor.SetMeshElementOnShape(ElementID, ShapeID)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
|
|
## Moves the node with the given id
|
|
# @param NodeID the id of the node
|
|
# @param x a new X coordinate
|
|
# @param y a new Y coordinate
|
|
# @param z a new Z coordinate
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_movenode
|
|
def MoveNode(self, NodeID, x, y, z):
|
|
x,y,z,Parameters = geompyDC.ParseParameters(x,y,z)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.MoveNode(NodeID, x, y, z)
|
|
|
|
## Finds the node closest to a point and moves it to a point location
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @param NodeID if specified (>0), the node with this ID is moved,
|
|
# otherwise, the node closest to point (@a x,@a y,@a z) is moved
|
|
# @return the ID of a node
|
|
# @ingroup l2_modif_throughp
|
|
def MoveClosestNodeToPoint(self, x, y, z, NodeID):
|
|
x,y,z,Parameters = geompyDC.ParseParameters(x,y,z)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.MoveClosestNodeToPoint(x, y, z, NodeID)
|
|
|
|
## Finds the node closest to a point
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @return the ID of a node
|
|
# @ingroup l2_modif_throughp
|
|
def FindNodeClosestTo(self, x, y, z):
|
|
#preview = self.mesh.GetMeshEditPreviewer()
|
|
#return preview.MoveClosestNodeToPoint(x, y, z, -1)
|
|
return self.editor.FindNodeClosestTo(x, y, z)
|
|
|
|
## Finds the elements where a point lays IN or ON
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @param elementType type of elements to find (SMESH.ALL type
|
|
# means elements of any type excluding nodes and 0D elements)
|
|
# @param meshPart a part of mesh (group, sub-mesh) to search within
|
|
# @return list of IDs of found elements
|
|
# @ingroup l2_modif_throughp
|
|
def FindElementsByPoint(self, x, y, z, elementType = SMESH.ALL, meshPart=None):
|
|
if meshPart:
|
|
return self.editor.FindAmongElementsByPoint( meshPart, x, y, z, elementType );
|
|
else:
|
|
return self.editor.FindElementsByPoint(x, y, z, elementType)
|
|
|
|
# Return point state in a closed 2D mesh in terms of TopAbs_State enumeration.
|
|
# TopAbs_UNKNOWN state means that either mesh is wrong or the analysis fails.
|
|
|
|
def GetPointState(self, x, y, z):
|
|
return self.editor.GetPointState(x, y, z)
|
|
|
|
## Finds the node closest to a point and moves it to a point location
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @return the ID of a moved node
|
|
# @ingroup l2_modif_throughp
|
|
def MeshToPassThroughAPoint(self, x, y, z):
|
|
return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
|
|
|
|
## Replaces two neighbour triangles sharing Node1-Node2 link
|
|
# with the triangles built on the same 4 nodes but having other common link.
|
|
# @param NodeID1 the ID of the first node
|
|
# @param NodeID2 the ID of the second node
|
|
# @return false if proper faces were not found
|
|
# @ingroup l2_modif_invdiag
|
|
def InverseDiag(self, NodeID1, NodeID2):
|
|
return self.editor.InverseDiag(NodeID1, NodeID2)
|
|
|
|
## Replaces two neighbour triangles sharing Node1-Node2 link
|
|
# with a quadrangle built on the same 4 nodes.
|
|
# @param NodeID1 the ID of the first node
|
|
# @param NodeID2 the ID of the second node
|
|
# @return false if proper faces were not found
|
|
# @ingroup l2_modif_unitetri
|
|
def DeleteDiag(self, NodeID1, NodeID2):
|
|
return self.editor.DeleteDiag(NodeID1, NodeID2)
|
|
|
|
## Reorients elements by ids
|
|
# @param IDsOfElements if undefined reorients all mesh elements
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_changori
|
|
def Reorient(self, IDsOfElements=None):
|
|
if IDsOfElements == None:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.Reorient(IDsOfElements)
|
|
|
|
## Reorients all elements of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_changori
|
|
def ReorientObject(self, theObject):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.ReorientObject(theObject)
|
|
|
|
## Fuses the neighbouring triangles into quadrangles.
|
|
# @param IDsOfElements The triangles to be fused,
|
|
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
|
|
# @param MaxAngle is the maximum angle between element normals at which the fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# Also it could be a name of variable which defines angle in degrees.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_unitetri
|
|
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
|
|
flag = False
|
|
if isinstance(MaxAngle,str):
|
|
flag = True
|
|
MaxAngle,Parameters = geompyDC.ParseParameters(MaxAngle)
|
|
if flag:
|
|
MaxAngle = DegreesToRadians(MaxAngle)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
self.mesh.SetParameters(Parameters)
|
|
Functor = 0
|
|
if ( isinstance( theCriterion, SMESH._objref_NumericalFunctor ) ):
|
|
Functor = theCriterion
|
|
else:
|
|
Functor = self.smeshpyD.GetFunctor(theCriterion)
|
|
return self.editor.TriToQuad(IDsOfElements, Functor, MaxAngle)
|
|
|
|
## Fuses the neighbouring triangles of the object into quadrangles
|
|
# @param theObject is mesh, submesh or group
|
|
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
|
|
# @param MaxAngle a max angle between element normals at which the fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_unitetri
|
|
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param IDsOfElements the faces to be splitted.
|
|
# @param theCriterion FT_...; used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def QuadToTri (self, IDsOfElements, theCriterion):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
|
|
# @param theCriterion FT_...; used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def QuadToTriObject (self, theObject, theCriterion):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param IDsOfElements the faces to be splitted
|
|
# @param Diag13 is used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitQuad (self, IDsOfElements, Diag13):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.SplitQuad(IDsOfElements, Diag13)
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
|
|
# @param Diag13 is used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitQuadObject (self, theObject, Diag13):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SplitQuadObject(theObject, Diag13)
|
|
|
|
## Finds a better splitting of the given quadrangle.
|
|
# @param IDOfQuad the ID of the quadrangle to be splitted.
|
|
# @param theCriterion FT_...; a criterion to choose a diagonal for splitting.
|
|
# @return 1 if 1-3 diagonal is better, 2 if 2-4
|
|
# diagonal is better, 0 if error occurs.
|
|
# @ingroup l2_modif_cutquadr
|
|
def BestSplit (self, IDOfQuad, theCriterion):
|
|
return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Splits volumic elements into tetrahedrons
|
|
# @param elemIDs either list of elements or mesh or group or submesh
|
|
# @param method flags passing splitting method: Hex_5Tet, Hex_6Tet, Hex_24Tet
|
|
# Hex_5Tet - split the hexahedron into 5 tetrahedrons, etc
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitVolumesIntoTetra(self, elemIDs, method=Hex_5Tet ):
|
|
if isinstance( elemIDs, Mesh ):
|
|
elemIDs = elemIDs.GetMesh()
|
|
if ( isinstance( elemIDs, list )):
|
|
elemIDs = self.editor.MakeIDSource(elemIDs, SMESH.VOLUME)
|
|
self.editor.SplitVolumesIntoTetra(elemIDs, method)
|
|
|
|
## Splits quadrangle faces near triangular facets of volumes
|
|
#
|
|
# @ingroup l1_auxiliary
|
|
def SplitQuadsNearTriangularFacets(self):
|
|
faces_array = self.GetElementsByType(SMESH.FACE)
|
|
for face_id in faces_array:
|
|
if self.GetElemNbNodes(face_id) == 4: # quadrangle
|
|
quad_nodes = self.mesh.GetElemNodes(face_id)
|
|
node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
|
|
isVolumeFound = False
|
|
for node1_elem in node1_elems:
|
|
if not isVolumeFound:
|
|
if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
|
|
nb_nodes = self.GetElemNbNodes(node1_elem)
|
|
if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
|
|
volume_elem = node1_elem
|
|
volume_nodes = self.mesh.GetElemNodes(volume_elem)
|
|
if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
|
|
if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
|
|
isVolumeFound = True
|
|
if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
|
|
self.SplitQuad([face_id], False) # diagonal 2-4
|
|
elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
|
|
isVolumeFound = True
|
|
self.SplitQuad([face_id], True) # diagonal 1-3
|
|
elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
|
|
if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
|
|
isVolumeFound = True
|
|
self.SplitQuad([face_id], True) # diagonal 1-3
|
|
|
|
## @brief Splits hexahedrons into tetrahedrons.
|
|
#
|
|
# This operation uses pattern mapping functionality for splitting.
|
|
# @param theObject the object from which the list of hexahedrons is taken; this is mesh, submesh or group.
|
|
# @param theNode000,theNode001 within the range [0,7]; gives the orientation of the
|
|
# pattern relatively each hexahedron: the (0,0,0) key-point of the pattern
|
|
# will be mapped into <VAR>theNode000</VAR>-th node of each volume, the (0,0,1)
|
|
# key-point will be mapped into <VAR>theNode001</VAR>-th node of each volume.
|
|
# The (0,0,0) key-point of the used pattern corresponds to a non-split corner.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l1_auxiliary
|
|
def SplitHexaToTetras (self, theObject, theNode000, theNode001):
|
|
# Pattern: 5.---------.6
|
|
# /|#* /|
|
|
# / | #* / |
|
|
# / | # * / |
|
|
# / | # /* |
|
|
# (0,0,1) 4.---------.7 * |
|
|
# |#* |1 | # *|
|
|
# | # *.----|---#.2
|
|
# | #/ * | /
|
|
# | /# * | /
|
|
# | / # * | /
|
|
# |/ #*|/
|
|
# (0,0,0) 0.---------.3
|
|
pattern_tetra = "!!! Nb of points: \n 8 \n\
|
|
!!! Points: \n\
|
|
0 0 0 !- 0 \n\
|
|
0 1 0 !- 1 \n\
|
|
1 1 0 !- 2 \n\
|
|
1 0 0 !- 3 \n\
|
|
0 0 1 !- 4 \n\
|
|
0 1 1 !- 5 \n\
|
|
1 1 1 !- 6 \n\
|
|
1 0 1 !- 7 \n\
|
|
!!! Indices of points of 6 tetras: \n\
|
|
0 3 4 1 \n\
|
|
7 4 3 1 \n\
|
|
4 7 5 1 \n\
|
|
6 2 5 7 \n\
|
|
1 5 2 7 \n\
|
|
2 3 1 7 \n"
|
|
|
|
pattern = self.smeshpyD.GetPattern()
|
|
isDone = pattern.LoadFromFile(pattern_tetra)
|
|
if not isDone:
|
|
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
|
|
return isDone
|
|
|
|
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
|
|
isDone = pattern.MakeMesh(self.mesh, False, False)
|
|
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
|
|
|
|
# split quafrangle faces near triangular facets of volumes
|
|
self.SplitQuadsNearTriangularFacets()
|
|
|
|
return isDone
|
|
|
|
## @brief Split hexahedrons into prisms.
|
|
#
|
|
# Uses the pattern mapping functionality for splitting.
|
|
# @param theObject the object (mesh, submesh or group) from where the list of hexahedrons is taken;
|
|
# @param theNode000,theNode001 (within the range [0,7]) gives the orientation of the
|
|
# pattern relatively each hexahedron: keypoint (0,0,0) of the pattern
|
|
# will be mapped into the <VAR>theNode000</VAR>-th node of each volume, keypoint (0,0,1)
|
|
# will be mapped into the <VAR>theNode001</VAR>-th node of each volume.
|
|
# Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l1_auxiliary
|
|
def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
|
|
# Pattern: 5.---------.6
|
|
# /|# /|
|
|
# / | # / |
|
|
# / | # / |
|
|
# / | # / |
|
|
# (0,0,1) 4.---------.7 |
|
|
# | | | |
|
|
# | 1.----|----.2
|
|
# | / * | /
|
|
# | / * | /
|
|
# | / * | /
|
|
# |/ *|/
|
|
# (0,0,0) 0.---------.3
|
|
pattern_prism = "!!! Nb of points: \n 8 \n\
|
|
!!! Points: \n\
|
|
0 0 0 !- 0 \n\
|
|
0 1 0 !- 1 \n\
|
|
1 1 0 !- 2 \n\
|
|
1 0 0 !- 3 \n\
|
|
0 0 1 !- 4 \n\
|
|
0 1 1 !- 5 \n\
|
|
1 1 1 !- 6 \n\
|
|
1 0 1 !- 7 \n\
|
|
!!! Indices of points of 2 prisms: \n\
|
|
0 1 3 4 5 7 \n\
|
|
2 3 1 6 7 5 \n"
|
|
|
|
pattern = self.smeshpyD.GetPattern()
|
|
isDone = pattern.LoadFromFile(pattern_prism)
|
|
if not isDone:
|
|
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
|
|
return isDone
|
|
|
|
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
|
|
isDone = pattern.MakeMesh(self.mesh, False, False)
|
|
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
|
|
|
|
# Splits quafrangle faces near triangular facets of volumes
|
|
self.SplitQuadsNearTriangularFacets()
|
|
|
|
return isDone
|
|
|
|
## Smoothes elements
|
|
# @param IDsOfElements the list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
MaxNbOfIterations,MaxAspectRatio,Parameters = geompyDC.ParseParameters(MaxNbOfIterations,MaxAspectRatio)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Smoothes elements which belong to the given object
|
|
# @param theObject the object to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Parametrically smoothes the given elements
|
|
# @param IDsOfElements the list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
MaxNbOfIterations,MaxAspectRatio,Parameters = geompyDC.ParseParameters(MaxNbOfIterations,MaxAspectRatio)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Parametrically smoothes the elements which belong to the given object
|
|
# @param theObject the object to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Converts the mesh to quadratic, deletes old elements, replacing
|
|
# them with quadratic with the same id.
|
|
# @param theForce3d new node creation method:
|
|
# 0 - the medium node lies at the geometrical entity from which the mesh element is built
|
|
# 1 - the medium node lies at the middle of the line segments connecting start and end node of a mesh element
|
|
# @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
|
|
# @ingroup l2_modif_tofromqu
|
|
def ConvertToQuadratic(self, theForce3d, theSubMesh=None):
|
|
if theSubMesh:
|
|
self.editor.ConvertToQuadraticObject(theForce3d,theSubMesh)
|
|
else:
|
|
self.editor.ConvertToQuadratic(theForce3d)
|
|
|
|
## Converts the mesh from quadratic to ordinary,
|
|
# deletes old quadratic elements, \n replacing
|
|
# them with ordinary mesh elements with the same id.
|
|
# @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
|
|
# @ingroup l2_modif_tofromqu
|
|
def ConvertFromQuadratic(self, theSubMesh=None):
|
|
if theSubMesh:
|
|
self.editor.ConvertFromQuadraticObject(theSubMesh)
|
|
else:
|
|
return self.editor.ConvertFromQuadratic()
|
|
|
|
## Creates 2D mesh as skin on boundary faces of a 3D mesh
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def Make2DMeshFrom3D(self):
|
|
return self.editor. Make2DMeshFrom3D()
|
|
|
|
## Creates missing boundary elements
|
|
# @param elements - elements whose boundary is to be checked:
|
|
# mesh, group, sub-mesh or list of elements
|
|
# if elements is mesh, it must be the mesh whose MakeBoundaryMesh() is called
|
|
# @param dimension - defines type of boundary elements to create:
|
|
# SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D
|
|
# SMESH.BND_1DFROM3D creates mesh edges on all borders of free facets of 3D cells
|
|
# @param groupName - a name of group to store created boundary elements in,
|
|
# "" means not to create the group
|
|
# @param meshName - a name of new mesh to store created boundary elements in,
|
|
# "" means not to create the new mesh
|
|
# @param toCopyElements - if true, the checked elements will be copied into
|
|
# the new mesh else only boundary elements will be copied into the new mesh
|
|
# @param toCopyExistingBondary - if true, not only new but also pre-existing
|
|
# boundary elements will be copied into the new mesh
|
|
# @return tuple (mesh, group) where bondary elements were added to
|
|
# @ingroup l2_modif_edit
|
|
def MakeBoundaryMesh(self, elements, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
|
|
toCopyElements=False, toCopyExistingBondary=False):
|
|
if isinstance( elements, Mesh ):
|
|
elements = elements.GetMesh()
|
|
if ( isinstance( elements, list )):
|
|
elemType = SMESH.ALL
|
|
if elements: elemType = self.GetElementType( elements[0], iselem=True)
|
|
elements = self.editor.MakeIDSource(elements, elemType)
|
|
mesh, group = self.editor.MakeBoundaryMesh(elements,dimension,groupName,meshName,
|
|
toCopyElements,toCopyExistingBondary)
|
|
if mesh: mesh = self.smeshpyD.Mesh(mesh)
|
|
return mesh, group
|
|
|
|
##
|
|
# @brief Creates missing boundary elements around either the whole mesh or
|
|
# groups of 2D elements
|
|
# @param dimension - defines type of boundary elements to create
|
|
# @param groupName - a name of group to store all boundary elements in,
|
|
# "" means not to create the group
|
|
# @param meshName - a name of a new mesh, which is a copy of the initial
|
|
# mesh + created boundary elements; "" means not to create the new mesh
|
|
# @param toCopyAll - if true, the whole initial mesh will be copied into
|
|
# the new mesh else only boundary elements will be copied into the new mesh
|
|
# @param groups - groups of 2D elements to make boundary around
|
|
# @retval tuple( long, mesh, groups )
|
|
# long - number of added boundary elements
|
|
# mesh - the mesh where elements were added to
|
|
# group - the group of boundary elements or None
|
|
#
|
|
def MakeBoundaryElements(self, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
|
|
toCopyAll=False, groups=[]):
|
|
nb, mesh, group = self.editor.MakeBoundaryElements(dimension,groupName,meshName,
|
|
toCopyAll,groups)
|
|
if mesh: mesh = self.smeshpyD.Mesh(mesh)
|
|
return nb, mesh, group
|
|
|
|
## Renumber mesh nodes
|
|
# @ingroup l2_modif_renumber
|
|
def RenumberNodes(self):
|
|
self.editor.RenumberNodes()
|
|
|
|
## Renumber mesh elements
|
|
# @ingroup l2_modif_renumber
|
|
def RenumberElements(self):
|
|
self.editor.RenumberElements()
|
|
|
|
## Generates new elements by rotation of the elements around the axis
|
|
# @param IDsOfElements the list of ids of elements to sweep
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param NbOfSteps the number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepMakeGroups(IDsOfElements, Axis,
|
|
AngleInRadians, NbOfSteps, Tolerance)
|
|
self.editor.RotationSweep(IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepObjectMakeGroups(theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance)
|
|
self.editor.RotationSweepObject(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject1D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepObject1DMakeGroups(theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance)
|
|
self.editor.RotationSweepObject1D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject2D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepObject2DMakeGroups(theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance)
|
|
self.editor.RotationSweepObject2D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements the list of elements ids for extrusion
|
|
# @param StepVector vector or DirStruct, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
|
|
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
|
|
Parameters = StepVectorParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements is ids of elements
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
# @param ExtrFlags sets flags for extrusion
|
|
# @param SewTolerance uses for comparing locations of nodes if flag
|
|
# EXTRUSION_FLAG_SEW is set
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance, MakeGroups=False):
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
if MakeGroups:
|
|
return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance)
|
|
self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# @param theObject the object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param StepVector vector, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
|
|
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
|
|
Parameters = StepVectorParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# @param theObject object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param StepVector vector, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups to generate new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
|
|
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
|
|
Parameters = StepVectorParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# @param theObject object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param StepVector vector, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
|
|
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
|
|
Parameters = StepVectorParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
|
|
|
|
## Generates new elements by extrusion of the given elements
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param Base mesh or group, or submesh, or list of ids of elements for extrusion
|
|
# @param Path - 1D mesh or 1D sub-mesh, along which proceeds the extrusion
|
|
# @param NodeStart the start node from Path. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles in radians
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param ElemType type of elements for extrusion (if param Base is a mesh)
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathX(self, Base, Path, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups, ElemType):
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
pass
|
|
Parameters = AnglesParameters + var_separator + RefPointParameters
|
|
self.mesh.SetParameters(Parameters)
|
|
|
|
if (isinstance(Path, Mesh)): Path = Path.GetMesh()
|
|
|
|
if isinstance(Base, list):
|
|
IDsOfElements = []
|
|
if Base == []: IDsOfElements = self.GetElementsId()
|
|
else: IDsOfElements = Base
|
|
return self.editor.ExtrusionAlongPathX(IDsOfElements, Path, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups, ElemType)
|
|
else:
|
|
if isinstance(Base, Mesh): Base = Base.GetMesh()
|
|
if isinstance(Base, SMESH._objref_SMESH_Mesh) or isinstance(Base, SMESH._objref_SMESH_Group) or isinstance(Base, SMESH._objref_SMESH_subMesh):
|
|
return self.editor.ExtrusionAlongPathObjX(Base, Path, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups, ElemType)
|
|
else:
|
|
raise RuntimeError, "Invalid Base for ExtrusionAlongPathX"
|
|
|
|
|
|
## Generates new elements by extrusion of the given elements
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param IDsOfElements ids of elements
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles in radians
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
pass
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
Parameters = AnglesParameters + var_separator + RefPointParameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint, RefPoint)
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
Parameters = AnglesParameters + var_separator + RefPointParameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject(theObject, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint,
|
|
RefPoint)
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject1D(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
Parameters = AnglesParameters + var_separator + RefPointParameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathObject1DMakeGroups(theObject, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject1D(theObject, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint,
|
|
RefPoint)
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject2D(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
Parameters = AnglesParameters + var_separator + RefPointParameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathObject2DMakeGroups(theObject, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject2D(theObject, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint,
|
|
RefPoint)
|
|
|
|
## Creates a symmetrical copy of mesh elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Mirror is AxisStruct or geom object(point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param Copy allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0)
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
Mirror,Parameters = ParseAxisStruct(Mirror)
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
|
|
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh by a symmetrical copy of mesh elements
|
|
# @param IDsOfElements the list of elements ids
|
|
# @param Mirror is AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param MakeGroups to generate new groups from existing ones
|
|
# @param NewMeshName a name of the new mesh to create
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
Mirror,Parameters = ParseAxisStruct(Mirror)
|
|
mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
|
|
MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh(self.smeshpyD,self.geompyD,mesh)
|
|
|
|
## Creates a symmetrical copy of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @param Mirror AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param Copy allows copying the element (Copy is 1) or replacing it with its mirror (Copy is 0)
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
Mirror,Parameters = ParseAxisStruct(Mirror)
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
|
|
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh by a symmetrical copy of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @param Mirror AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the new mesh to create
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
Mirror,Parameters = ParseAxisStruct(Mirror)
|
|
mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
|
|
MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD,self.geompyD,mesh )
|
|
|
|
## Translates the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Vector the direction of translation (DirStruct or vector)
|
|
# @param Copy allows copying the translated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
Vector,Parameters = ParseDirStruct(Vector)
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
|
|
self.editor.Translate(IDsOfElements, Vector, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh of translated elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Vector the direction of translation (DirStruct or vector)
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
Vector,Parameters = ParseDirStruct(Vector)
|
|
mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh ( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Translates the object
|
|
# @param theObject the object to translate (mesh, submesh, or group)
|
|
# @param Vector direction of translation (DirStruct or geom vector)
|
|
# @param Copy allows copying the translated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
Vector,Parameters = ParseDirStruct(Vector)
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.TranslateObjectMakeGroups(theObject, Vector)
|
|
self.editor.TranslateObject(theObject, Vector, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh from the translated object
|
|
# @param theObject the object to translate (mesh, submesh, or group)
|
|
# @param Vector the direction of translation (DirStruct or geom vector)
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
Vector,Parameters = ParseDirStruct(Vector)
|
|
mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
|
|
|
|
## Scales the object
|
|
# @param theObject - the object to translate (mesh, submesh, or group)
|
|
# @param thePoint - base point for scale
|
|
# @param theScaleFact - list of 1-3 scale factors for axises
|
|
# @param Copy - allows copying the translated elements
|
|
# @param MakeGroups - forces the generation of new groups from existing
|
|
# ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True,
|
|
# empty list otherwise
|
|
def Scale(self, theObject, thePoint, theScaleFact, Copy, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( theObject, list )):
|
|
theObject = self.GetIDSource(theObject, SMESH.ALL)
|
|
|
|
thePoint, Parameters = ParsePointStruct(thePoint)
|
|
self.mesh.SetParameters(Parameters)
|
|
|
|
if Copy and MakeGroups:
|
|
return self.editor.ScaleMakeGroups(theObject, thePoint, theScaleFact)
|
|
self.editor.Scale(theObject, thePoint, theScaleFact, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh from the translated object
|
|
# @param theObject - the object to translate (mesh, submesh, or group)
|
|
# @param thePoint - base point for scale
|
|
# @param theScaleFact - list of 1-3 scale factors for axises
|
|
# @param MakeGroups - forces the generation of new groups from existing ones
|
|
# @param NewMeshName - the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
def ScaleMakeMesh(self, theObject, thePoint, theScaleFact, MakeGroups=False, NewMeshName=""):
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( theObject, list )):
|
|
theObject = self.GetIDSource(theObject,SMESH.ALL)
|
|
|
|
mesh = self.editor.ScaleMakeMesh(theObject, thePoint, theScaleFact,
|
|
MakeGroups, NewMeshName)
|
|
#mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
|
|
|
|
## Rotates the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param Copy allows copying the rotated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
Parameters = AxisParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
|
|
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh of rotated elements
|
|
# @param IDsOfElements list of element ids
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
Parameters = AxisParameters + var_separator + Parameters
|
|
mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
|
|
MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Rotates the object
|
|
# @param theObject the object to rotate( mesh, submesh, or group)
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param Copy allows copying the rotated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
Parameters = AxisParameters + ":" + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
|
|
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh from the rotated object
|
|
# @param theObject the object to rotate (mesh, submesh, or group)
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if (isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
Parameters = AxisParameters + ":" + Parameters
|
|
mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
|
|
MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Finds groups of ajacent nodes within Tolerance.
|
|
# @param Tolerance the value of tolerance
|
|
# @return the list of groups of nodes
|
|
# @ingroup l2_modif_trsf
|
|
def FindCoincidentNodes (self, Tolerance):
|
|
return self.editor.FindCoincidentNodes(Tolerance)
|
|
|
|
## Finds groups of ajacent nodes within Tolerance.
|
|
# @param Tolerance the value of tolerance
|
|
# @param SubMeshOrGroup SubMesh or Group
|
|
# @param exceptNodes list of either SubMeshes, Groups or node IDs to exclude from search
|
|
# @return the list of groups of nodes
|
|
# @ingroup l2_modif_trsf
|
|
def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance, exceptNodes=[]):
|
|
if (isinstance( SubMeshOrGroup, Mesh )):
|
|
SubMeshOrGroup = SubMeshOrGroup.GetMesh()
|
|
if not isinstance( exceptNodes, list):
|
|
exceptNodes = [ exceptNodes ]
|
|
if exceptNodes and isinstance( exceptNodes[0], int):
|
|
exceptNodes = [ self.GetIDSource( exceptNodes, SMESH.NODE)]
|
|
return self.editor.FindCoincidentNodesOnPartBut(SubMeshOrGroup, Tolerance,exceptNodes)
|
|
|
|
## Merges nodes
|
|
# @param GroupsOfNodes the list of groups of nodes
|
|
# @ingroup l2_modif_trsf
|
|
def MergeNodes (self, GroupsOfNodes):
|
|
self.editor.MergeNodes(GroupsOfNodes)
|
|
|
|
## Finds the elements built on the same nodes.
|
|
# @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
|
|
# @return a list of groups of equal elements
|
|
# @ingroup l2_modif_trsf
|
|
def FindEqualElements (self, MeshOrSubMeshOrGroup):
|
|
if ( isinstance( MeshOrSubMeshOrGroup, Mesh )):
|
|
MeshOrSubMeshOrGroup = MeshOrSubMeshOrGroup.GetMesh()
|
|
return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
|
|
|
|
## Merges elements in each given group.
|
|
# @param GroupsOfElementsID groups of elements for merging
|
|
# @ingroup l2_modif_trsf
|
|
def MergeElements(self, GroupsOfElementsID):
|
|
self.editor.MergeElements(GroupsOfElementsID)
|
|
|
|
## Leaves one element and removes all other elements built on the same nodes.
|
|
# @ingroup l2_modif_trsf
|
|
def MergeEqualElements(self):
|
|
self.editor.MergeEqualElements()
|
|
|
|
## Sews free borders
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sews conform free borders
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2):
|
|
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2)
|
|
|
|
## Sews border to side
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sews two sides of a mesh. The nodes belonging to Side1 are
|
|
# merged with the nodes of elements of Side2.
|
|
# The number of elements in theSide1 and in theSide2 must be
|
|
# equal and they should have similar nodal connectivity.
|
|
# The nodes to merge should belong to side borders and
|
|
# the first node should be linked to the second.
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
|
|
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
|
|
|
|
## Sets new nodes for the given element.
|
|
# @param ide the element id
|
|
# @param newIDs nodes ids
|
|
# @return If the number of nodes does not correspond to the type of element - returns false
|
|
# @ingroup l2_modif_edit
|
|
def ChangeElemNodes(self, ide, newIDs):
|
|
return self.editor.ChangeElemNodes(ide, newIDs)
|
|
|
|
## If during the last operation of MeshEditor some nodes were
|
|
# created, this method returns the list of their IDs, \n
|
|
# if new nodes were not created - returns empty list
|
|
# @return the list of integer values (can be empty)
|
|
# @ingroup l1_auxiliary
|
|
def GetLastCreatedNodes(self):
|
|
return self.editor.GetLastCreatedNodes()
|
|
|
|
## If during the last operation of MeshEditor some elements were
|
|
# created this method returns the list of their IDs, \n
|
|
# if new elements were not created - returns empty list
|
|
# @return the list of integer values (can be empty)
|
|
# @ingroup l1_auxiliary
|
|
def GetLastCreatedElems(self):
|
|
return self.editor.GetLastCreatedElems()
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theNodes identifiers of nodes to be doubled
|
|
# @param theModifiedElems identifiers of elements to be updated by the new (doubled)
|
|
# nodes. If list of element identifiers is empty then nodes are doubled but
|
|
# they not assigned to elements
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodes(self, theNodes, theModifiedElems):
|
|
return self.editor.DoubleNodes(theNodes, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodeId identifiers of node to be doubled
|
|
# @param theModifiedElems identifiers of elements to be updated
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNode(self, theNodeId, theModifiedElems):
|
|
return self.editor.DoubleNode(theNodeId, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodes group of nodes to be doubled
|
|
# @param theModifiedElems group of elements to be updated.
|
|
# @param theMakeGroup forces the generation of a group containing new nodes.
|
|
# @return TRUE or a created group if operation has been completed successfully,
|
|
# FALSE or None otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeGroup(self, theNodes, theModifiedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeGroupNew(theNodes, theModifiedElems)
|
|
return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodes list of groups of nodes to be doubled
|
|
# @param theModifiedElems list of groups of elements to be updated.
|
|
# @param theMakeGroup forces the generation of a group containing new nodes.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeGroups(self, theNodes, theModifiedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeGroupsNew(theNodes, theModifiedElems)
|
|
return self.editor.DoubleNodeGroups(theNodes, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theElems - the list of elements (edges or faces) to be replicated
|
|
# The nodes for duplication could be found from these elements
|
|
# @param theNodesNot - list of nodes to NOT replicate
|
|
# @param theAffectedElems - the list of elements (cells and edges) to which the
|
|
# replicated nodes should be associated to.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElem(self, theElems, theNodesNot, theAffectedElems):
|
|
return self.editor.DoubleNodeElem(theElems, theNodesNot, theAffectedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theElems - the list of elements (edges or faces) to be replicated
|
|
# The nodes for duplication could be found from these elements
|
|
# @param theNodesNot - list of nodes to NOT replicate
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.DoubleNodeElemInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - group of of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - group of nodes not to replicated
|
|
# @param theAffectedElems - group of elements to which the replicated nodes
|
|
# should be associated to.
|
|
# @param theMakeGroup forces the generation of a group containing new elements.
|
|
# @return TRUE or a created group if operation has been completed successfully,
|
|
# FALSE or None otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeElemGroupNew(theElems, theNodesNot, theAffectedElems)
|
|
return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - group of of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - group of nodes not to replicated
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemGroupInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.DoubleNodeElemGroupInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - list of groups of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - list of groups of nodes not to replicated
|
|
# @param theAffectedElems - group of elements to which the replicated nodes
|
|
# should be associated to.
|
|
# @param theMakeGroup forces the generation of a group containing new elements.
|
|
# @return TRUE or a created group if operation has been completed successfully,
|
|
# FALSE or None otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeElemGroupsNew(theElems, theNodesNot, theAffectedElems)
|
|
return self.editor.DoubleNodeElemGroups(theElems, theNodesNot, theAffectedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - list of groups of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - list of groups of nodes not to replicated
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Double nodes on shared faces between groups of volumes and create flat elements on demand.
|
|
# The list of groups must describe a partition of the mesh volumes.
|
|
# The nodes of the internal faces at the boundaries of the groups are doubled.
|
|
# In option, the internal faces are replaced by flat elements.
|
|
# Triangles are transformed in prisms, and quadrangles in hexahedrons.
|
|
# @param theDomains - list of groups of volumes
|
|
# @param createJointElems - if TRUE, create the elements
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
def DoubleNodesOnGroupBoundaries(self, theDomains, createJointElems ):
|
|
return self.editor.DoubleNodesOnGroupBoundaries( theDomains, createJointElems )
|
|
|
|
## Double nodes on some external faces and create flat elements.
|
|
# Flat elements are mainly used by some types of mechanic calculations.
|
|
#
|
|
# Each group of the list must be constituted of faces.
|
|
# Triangles are transformed in prisms, and quadrangles in hexahedrons.
|
|
# @param theGroupsOfFaces - list of groups of faces
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
def CreateFlatElementsOnFacesGroups(self, theGroupsOfFaces ):
|
|
return self.editor.CreateFlatElementsOnFacesGroups( theGroupsOfFaces )
|
|
|
|
def _valueFromFunctor(self, funcType, elemId):
|
|
fn = self.smeshpyD.GetFunctor(funcType)
|
|
fn.SetMesh(self.mesh)
|
|
if fn.GetElementType() == self.GetElementType(elemId, True):
|
|
val = fn.GetValue(elemId)
|
|
else:
|
|
val = 0
|
|
return val
|
|
|
|
## Get length of 1D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's length value
|
|
# @ingroup l1_measurements
|
|
def GetLength(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Length, elemId)
|
|
|
|
## Get area of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's area value
|
|
# @ingroup l1_measurements
|
|
def GetArea(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Area, elemId)
|
|
|
|
## Get volume of 3D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's volume value
|
|
# @ingroup l1_measurements
|
|
def GetVolume(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Volume3D, elemId)
|
|
|
|
## Get maximum element length.
|
|
# @param elemId mesh element ID
|
|
# @return element's maximum length value
|
|
# @ingroup l1_measurements
|
|
def GetMaxElementLength(self, elemId):
|
|
if self.GetElementType(elemId, True) == SMESH.VOLUME:
|
|
ftype = SMESH.FT_MaxElementLength3D
|
|
else:
|
|
ftype = SMESH.FT_MaxElementLength2D
|
|
return self._valueFromFunctor(ftype, elemId)
|
|
|
|
## Get aspect ratio of 2D or 3D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's aspect ratio value
|
|
# @ingroup l1_measurements
|
|
def GetAspectRatio(self, elemId):
|
|
if self.GetElementType(elemId, True) == SMESH.VOLUME:
|
|
ftype = SMESH.FT_AspectRatio3D
|
|
else:
|
|
ftype = SMESH.FT_AspectRatio
|
|
return self._valueFromFunctor(ftype, elemId)
|
|
|
|
## Get warping angle of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's warping angle value
|
|
# @ingroup l1_measurements
|
|
def GetWarping(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Warping, elemId)
|
|
|
|
## Get minimum angle of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's minimum angle value
|
|
# @ingroup l1_measurements
|
|
def GetMinimumAngle(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_MinimumAngle, elemId)
|
|
|
|
## Get taper of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's taper value
|
|
# @ingroup l1_measurements
|
|
def GetTaper(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Taper, elemId)
|
|
|
|
## Get skew of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's skew value
|
|
# @ingroup l1_measurements
|
|
def GetSkew(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Skew, elemId)
|
|
|
|
## The mother class to define algorithm, it is not recommended to use it directly.
|
|
#
|
|
# More details.
|
|
# @ingroup l2_algorithms
|
|
class Mesh_Algorithm:
|
|
# @class Mesh_Algorithm
|
|
# @brief Class Mesh_Algorithm
|
|
|
|
#def __init__(self,smesh):
|
|
# self.smesh=smesh
|
|
def __init__(self):
|
|
self.mesh = None
|
|
self.geom = None
|
|
self.subm = None
|
|
self.algo = None
|
|
|
|
## Finds a hypothesis in the study by its type name and parameters.
|
|
# Finds only the hypotheses created in smeshpyD engine.
|
|
# @return SMESH.SMESH_Hypothesis
|
|
def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD):
|
|
study = smeshpyD.GetCurrentStudy()
|
|
#to do: find component by smeshpyD object, not by its data type
|
|
scomp = study.FindComponent(smeshpyD.ComponentDataType())
|
|
if scomp is not None:
|
|
res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot)
|
|
# Check if the root label of the hypotheses exists
|
|
if res and hypRoot is not None:
|
|
iter = study.NewChildIterator(hypRoot)
|
|
# Check all published hypotheses
|
|
while iter.More():
|
|
hypo_so_i = iter.Value()
|
|
attr = hypo_so_i.FindAttribute("AttributeIOR")[1]
|
|
if attr is not None:
|
|
anIOR = attr.Value()
|
|
hypo_o_i = salome.orb.string_to_object(anIOR)
|
|
if hypo_o_i is not None:
|
|
# Check if this is a hypothesis
|
|
hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis)
|
|
if hypo_i is not None:
|
|
# Check if the hypothesis belongs to current engine
|
|
if smeshpyD.GetObjectId(hypo_i) > 0:
|
|
# Check if this is the required hypothesis
|
|
if hypo_i.GetName() == hypname:
|
|
# Check arguments
|
|
if CompareMethod(hypo_i, args):
|
|
# found!!!
|
|
return hypo_i
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
iter.Next()
|
|
pass
|
|
pass
|
|
pass
|
|
return None
|
|
|
|
## Finds the algorithm in the study by its type name.
|
|
# Finds only the algorithms, which have been created in smeshpyD engine.
|
|
# @return SMESH.SMESH_Algo
|
|
def FindAlgorithm (self, algoname, smeshpyD):
|
|
study = smeshpyD.GetCurrentStudy()
|
|
#to do: find component by smeshpyD object, not by its data type
|
|
scomp = study.FindComponent(smeshpyD.ComponentDataType())
|
|
if scomp is not None:
|
|
res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot)
|
|
# Check if the root label of the algorithms exists
|
|
if res and hypRoot is not None:
|
|
iter = study.NewChildIterator(hypRoot)
|
|
# Check all published algorithms
|
|
while iter.More():
|
|
algo_so_i = iter.Value()
|
|
attr = algo_so_i.FindAttribute("AttributeIOR")[1]
|
|
if attr is not None:
|
|
anIOR = attr.Value()
|
|
algo_o_i = salome.orb.string_to_object(anIOR)
|
|
if algo_o_i is not None:
|
|
# Check if this is an algorithm
|
|
algo_i = algo_o_i._narrow(SMESH.SMESH_Algo)
|
|
if algo_i is not None:
|
|
# Checks if the algorithm belongs to the current engine
|
|
if smeshpyD.GetObjectId(algo_i) > 0:
|
|
# Check if this is the required algorithm
|
|
if algo_i.GetName() == algoname:
|
|
# found!!!
|
|
return algo_i
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
iter.Next()
|
|
pass
|
|
pass
|
|
pass
|
|
return None
|
|
|
|
## If the algorithm is global, returns 0; \n
|
|
# else returns the submesh associated to this algorithm.
|
|
def GetSubMesh(self):
|
|
return self.subm
|
|
|
|
## Returns the wrapped mesher.
|
|
def GetAlgorithm(self):
|
|
return self.algo
|
|
|
|
## Gets the list of hypothesis that can be used with this algorithm
|
|
def GetCompatibleHypothesis(self):
|
|
mylist = []
|
|
if self.algo:
|
|
mylist = self.algo.GetCompatibleHypothesis()
|
|
return mylist
|
|
|
|
## Gets the name of the algorithm
|
|
def GetName(self):
|
|
GetName(self.algo)
|
|
|
|
## Sets the name to the algorithm
|
|
def SetName(self, name):
|
|
self.mesh.smeshpyD.SetName(self.algo, name)
|
|
|
|
## Gets the id of the algorithm
|
|
def GetId(self):
|
|
return self.algo.GetId()
|
|
|
|
## Private method.
|
|
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
|
|
if geom is None:
|
|
raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
|
|
algo = self.FindAlgorithm(hypo, mesh.smeshpyD)
|
|
if algo is None:
|
|
algo = mesh.smeshpyD.CreateHypothesis(hypo, so)
|
|
pass
|
|
self.Assign(algo, mesh, geom)
|
|
return self.algo
|
|
|
|
## Private method
|
|
def Assign(self, algo, mesh, geom):
|
|
if geom is None:
|
|
raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape"
|
|
self.mesh = mesh
|
|
name = ""
|
|
if not geom:
|
|
self.geom = mesh.geom
|
|
else:
|
|
self.geom = geom
|
|
AssureGeomPublished( mesh, geom )
|
|
try:
|
|
name = GetName(geom)
|
|
pass
|
|
except:
|
|
pass
|
|
self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
|
|
self.algo = algo
|
|
status = mesh.mesh.AddHypothesis(self.geom, self.algo)
|
|
TreatHypoStatus( status, algo.GetName(), name, True )
|
|
return
|
|
|
|
def CompareHyp (self, hyp, args):
|
|
print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName()
|
|
return False
|
|
|
|
def CompareEqualHyp (self, hyp, args):
|
|
return True
|
|
|
|
## Private method
|
|
def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so",
|
|
UseExisting=0, CompareMethod=""):
|
|
hypo = None
|
|
if UseExisting:
|
|
if CompareMethod == "": CompareMethod = self.CompareHyp
|
|
hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD)
|
|
pass
|
|
if hypo is None:
|
|
hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so)
|
|
a = ""
|
|
s = "="
|
|
for arg in args:
|
|
argStr = str(arg)
|
|
if isinstance( arg, geompyDC.GEOM._objref_GEOM_Object ):
|
|
argStr = arg.GetStudyEntry()
|
|
if not argStr: argStr = "GEOM_Obj_%s", arg.GetEntry()
|
|
a = a + s + argStr
|
|
s = ","
|
|
pass
|
|
self.mesh.smeshpyD.SetName(hypo, hyp + a)
|
|
pass
|
|
geomName=""
|
|
if self.geom:
|
|
geomName = GetName(self.geom)
|
|
status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
|
|
TreatHypoStatus( status, GetName(hypo), geomName, 0 )
|
|
return hypo
|
|
|
|
## Returns entry of the shape to mesh in the study
|
|
def MainShapeEntry(self):
|
|
entry = ""
|
|
if not self.mesh or not self.mesh.GetMesh(): return entry
|
|
if not self.mesh.GetMesh().HasShapeToMesh(): return entry
|
|
study = self.mesh.smeshpyD.GetCurrentStudy()
|
|
ior = salome.orb.object_to_string( self.mesh.GetShape() )
|
|
sobj = study.FindObjectIOR(ior)
|
|
if sobj: entry = sobj.GetID()
|
|
if not entry: return ""
|
|
return entry
|
|
|
|
## Defines "ViscousLayers" hypothesis to give parameters of layers of prisms to build
|
|
# near mesh boundary. This hypothesis can be used by several 3D algorithms:
|
|
# NETGEN 3D, GHS3D, Hexahedron(i,j,k)
|
|
# @param thickness total thickness of layers of prisms
|
|
# @param numberOfLayers number of layers of prisms
|
|
# @param stretchFactor factor (>1.0) of growth of layer thickness towards inside of mesh
|
|
# @param ignoreFaces list of geometrical faces (or their ids) not to generate layers on
|
|
# @ingroup l3_hypos_additi
|
|
def ViscousLayers(self, thickness, numberOfLayers, stretchFactor, ignoreFaces=[]):
|
|
if not isinstance(self.algo, SMESH._objref_SMESH_3D_Algo):
|
|
raise TypeError, "ViscousLayers are supported by 3D algorithms only"
|
|
if not "ViscousLayers" in self.GetCompatibleHypothesis():
|
|
raise TypeError, "ViscousLayers are not supported by %s"%self.algo.GetName()
|
|
if ignoreFaces and isinstance( ignoreFaces[0], geompyDC.GEOM._objref_GEOM_Object ):
|
|
ignoreFaces = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, f) for f in ignoreFaces ]
|
|
hyp = self.Hypothesis("ViscousLayers",
|
|
[thickness, numberOfLayers, stretchFactor, ignoreFaces])
|
|
hyp.SetTotalThickness(thickness)
|
|
hyp.SetNumberLayers(numberOfLayers)
|
|
hyp.SetStretchFactor(stretchFactor)
|
|
hyp.SetIgnoreFaces(ignoreFaces)
|
|
return hyp
|
|
|
|
## Transform a list of ether edges or tuples (edge 1st_vertex_of_edge)
|
|
# into a list acceptable to SetReversedEdges() of some 1D hypotheses
|
|
# @ingroupl3_hypos_1dhyps
|
|
def ReversedEdgeIndices(self, reverseList):
|
|
resList = []
|
|
geompy = self.mesh.geompyD
|
|
for i in reverseList:
|
|
if isinstance( i, int ):
|
|
s = geompy.SubShapes(self.mesh.geom, [i])[0]
|
|
if s.GetShapeType() != geompyDC.GEOM.EDGE:
|
|
raise TypeError, "Not EDGE index given"
|
|
resList.append( i )
|
|
elif isinstance( i, geompyDC.GEOM._objref_GEOM_Object ):
|
|
if i.GetShapeType() != geompyDC.GEOM.EDGE:
|
|
raise TypeError, "Not an EDGE given"
|
|
resList.append( geompy.GetSubShapeID(self.mesh.geom, i ))
|
|
elif len( i ) > 1:
|
|
e = i[0]
|
|
v = i[1]
|
|
if not isinstance( e, geompyDC.GEOM._objref_GEOM_Object ) or \
|
|
not isinstance( v, geompyDC.GEOM._objref_GEOM_Object ):
|
|
raise TypeError, "A list item must be a tuple (edge 1st_vertex_of_edge)"
|
|
if v.GetShapeType() == geompyDC.GEOM.EDGE and \
|
|
e.GetShapeType() == geompyDC.GEOM.VERTEX:
|
|
v,e = e,v
|
|
if e.GetShapeType() != geompyDC.GEOM.EDGE or \
|
|
v.GetShapeType() != geompyDC.GEOM.VERTEX:
|
|
raise TypeError, "A list item must be a tuple (edge 1st_vertex_of_edge)"
|
|
vFirst = FirstVertexOnCurve( e )
|
|
tol = geompy.Tolerance( vFirst )[-1]
|
|
if geompy.MinDistance( v, vFirst ) > 1.5*tol:
|
|
resList.append( geompy.GetSubShapeID(self.mesh.geom, e ))
|
|
else:
|
|
raise TypeError, "Item must be either an edge or tuple (edge 1st_vertex_of_edge)"
|
|
return resList
|
|
|
|
# Public class: Mesh_Segment
|
|
# --------------------------
|
|
|
|
## Class to define a segment 1D algorithm for discretization
|
|
#
|
|
# More details.
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Segment(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Regular_1D")
|
|
|
|
## Defines "LocalLength" hypothesis to cut an edge in several segments with the same length
|
|
# @param l for the length of segments that cut an edge
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @param p precision, used for calculation of the number of segments.
|
|
# The precision should be a positive, meaningful value within the range [0,1].
|
|
# In general, the number of segments is calculated with the formula:
|
|
# nb = ceil((edge_length / l) - p)
|
|
# Function ceil rounds its argument to the higher integer.
|
|
# So, p=0 means rounding of (edge_length / l) to the higher integer,
|
|
# p=0.5 means rounding of (edge_length / l) to the nearest integer,
|
|
# p=1 means rounding of (edge_length / l) to the lower integer.
|
|
# Default value is 1e-07.
|
|
# @return an instance of StdMeshers_LocalLength hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def LocalLength(self, l, UseExisting=0, p=1e-07):
|
|
hyp = self.Hypothesis("LocalLength", [l,p], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareLocalLength)
|
|
hyp.SetLength(l)
|
|
hyp.SetPrecision(p)
|
|
return hyp
|
|
|
|
## Private method
|
|
## Checks if the given "LocalLength" hypothesis has the same parameters as the given arguments
|
|
def CompareLocalLength(self, hyp, args):
|
|
if IsEqual(hyp.GetLength(), args[0]):
|
|
return IsEqual(hyp.GetPrecision(), args[1])
|
|
return False
|
|
|
|
## Defines "MaxSize" hypothesis to cut an edge into segments not longer than given value
|
|
# @param length is optional maximal allowed length of segment, if it is omitted
|
|
# the preestimated length is used that depends on geometry size
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - create a new one
|
|
# @return an instance of StdMeshers_MaxLength hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def MaxSize(self, length=0.0, UseExisting=0):
|
|
hyp = self.Hypothesis("MaxLength", [length], UseExisting=UseExisting)
|
|
if length > 0.0:
|
|
# set given length
|
|
hyp.SetLength(length)
|
|
if not UseExisting:
|
|
# set preestimated length
|
|
gen = self.mesh.smeshpyD
|
|
initHyp = gen.GetHypothesisParameterValues("MaxLength", "libStdMeshersEngine.so",
|
|
self.mesh.GetMesh(), self.mesh.GetShape(),
|
|
False) # <- byMesh
|
|
preHyp = initHyp._narrow(StdMeshers.StdMeshers_MaxLength)
|
|
if preHyp:
|
|
hyp.SetPreestimatedLength( preHyp.GetPreestimatedLength() )
|
|
pass
|
|
pass
|
|
hyp.SetUsePreestimatedLength( length == 0.0 )
|
|
return hyp
|
|
|
|
## Defines "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments
|
|
# @param n for the number of segments that cut an edge
|
|
# @param s for the scale factor (optional)
|
|
# @param reversedEdges is a list of edges to mesh using reversed orientation.
|
|
# A list item can also be a tuple (edge 1st_vertex_of_edge)
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - create a new one
|
|
# @return an instance of StdMeshers_NumberOfSegments hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def NumberOfSegments(self, n, s=[], reversedEdges=[], UseExisting=0):
|
|
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
|
|
reversedEdges, UseExisting = [], reversedEdges
|
|
entry = self.MainShapeEntry()
|
|
reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges)
|
|
if s == []:
|
|
hyp = self.Hypothesis("NumberOfSegments", [n, reversedEdgeInd, entry],
|
|
UseExisting=UseExisting,
|
|
CompareMethod=self.CompareNumberOfSegments)
|
|
else:
|
|
hyp = self.Hypothesis("NumberOfSegments", [n,s, reversedEdgeInd, entry],
|
|
UseExisting=UseExisting,
|
|
CompareMethod=self.CompareNumberOfSegments)
|
|
hyp.SetDistrType( 1 )
|
|
hyp.SetScaleFactor(s)
|
|
hyp.SetNumberOfSegments(n)
|
|
hyp.SetReversedEdges( reversedEdgeInd )
|
|
hyp.SetObjectEntry( entry )
|
|
return hyp
|
|
|
|
## Private method
|
|
## Checks if the given "NumberOfSegments" hypothesis has the same parameters as the given arguments
|
|
def CompareNumberOfSegments(self, hyp, args):
|
|
if hyp.GetNumberOfSegments() == args[0]:
|
|
if len(args) == 3:
|
|
if hyp.GetReversedEdges() == args[1]:
|
|
if not args[1] or hyp.GetObjectEntry() == args[2]:
|
|
return True
|
|
else:
|
|
if hyp.GetReversedEdges() == args[2]:
|
|
if not args[2] or hyp.GetObjectEntry() == args[3]:
|
|
if hyp.GetDistrType() == 1:
|
|
if IsEqual(hyp.GetScaleFactor(), args[1]):
|
|
return True
|
|
return False
|
|
|
|
## Defines "Arithmetic1D" hypothesis to cut an edge in several segments with increasing arithmetic length
|
|
# @param start defines the length of the first segment
|
|
# @param end defines the length of the last segment
|
|
# @param reversedEdges is a list of edges to mesh using reversed orientation.
|
|
# A list item can also be a tuple (edge 1st_vertex_of_edge)
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @return an instance of StdMeshers_Arithmetic1D hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def Arithmetic1D(self, start, end, reversedEdges=[], UseExisting=0):
|
|
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
|
|
reversedEdges, UseExisting = [], reversedEdges
|
|
reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges)
|
|
entry = self.MainShapeEntry()
|
|
hyp = self.Hypothesis("Arithmetic1D", [start, end, reversedEdgeInd, entry],
|
|
UseExisting=UseExisting,
|
|
CompareMethod=self.CompareArithmetic1D)
|
|
hyp.SetStartLength(start)
|
|
hyp.SetEndLength(end)
|
|
hyp.SetReversedEdges( reversedEdgeInd )
|
|
hyp.SetObjectEntry( entry )
|
|
return hyp
|
|
|
|
## Private method
|
|
## Check if the given "Arithmetic1D" hypothesis has the same parameters as the given arguments
|
|
def CompareArithmetic1D(self, hyp, args):
|
|
if IsEqual(hyp.GetLength(1), args[0]):
|
|
if IsEqual(hyp.GetLength(0), args[1]):
|
|
if hyp.GetReversedEdges() == args[2]:
|
|
if not args[2] or hyp.GetObjectEntry() == args[3]:
|
|
return True
|
|
return False
|
|
|
|
|
|
## Defines "FixedPoints1D" hypothesis to cut an edge using parameter
|
|
# on curve from 0 to 1 (additionally it is neecessary to check
|
|
# orientation of edges and create list of reversed edges if it is
|
|
# needed) and sets numbers of segments between given points (default
|
|
# values are equals 1
|
|
# @param points defines the list of parameters on curve
|
|
# @param nbSegs defines the list of numbers of segments
|
|
# @param reversedEdges is a list of edges to mesh using reversed orientation.
|
|
# A list item can also be a tuple (edge 1st_vertex_of_edge)
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @return an instance of StdMeshers_Arithmetic1D hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def FixedPoints1D(self, points, nbSegs=[1], reversedEdges=[], UseExisting=0):
|
|
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
|
|
reversedEdges, UseExisting = [], reversedEdges
|
|
reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges)
|
|
entry = self.MainShapeEntry()
|
|
hyp = self.Hypothesis("FixedPoints1D", [points, nbSegs, reversedEdgeInd, entry],
|
|
UseExisting=UseExisting,
|
|
CompareMethod=self.CompareFixedPoints1D)
|
|
hyp.SetPoints(points)
|
|
hyp.SetNbSegments(nbSegs)
|
|
hyp.SetReversedEdges(reversedEdgeInd)
|
|
hyp.SetObjectEntry(entry)
|
|
return hyp
|
|
|
|
## Private method
|
|
## Check if the given "FixedPoints1D" hypothesis has the same parameters
|
|
## as the given arguments
|
|
def CompareFixedPoints1D(self, hyp, args):
|
|
if hyp.GetPoints() == args[0]:
|
|
if hyp.GetNbSegments() == args[1]:
|
|
if hyp.GetReversedEdges() == args[2]:
|
|
if not args[2] or hyp.GetObjectEntry() == args[3]:
|
|
return True
|
|
return False
|
|
|
|
|
|
|
|
## Defines "StartEndLength" hypothesis to cut an edge in several segments with increasing geometric length
|
|
# @param start defines the length of the first segment
|
|
# @param end defines the length of the last segment
|
|
# @param reversedEdges is a list of edges to mesh using reversed orientation.
|
|
# A list item can also be a tuple (edge 1st_vertex_of_edge)
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @return an instance of StdMeshers_StartEndLength hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def StartEndLength(self, start, end, reversedEdges=[], UseExisting=0):
|
|
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
|
|
reversedEdges, UseExisting = [], reversedEdges
|
|
reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges)
|
|
entry = self.MainShapeEntry()
|
|
hyp = self.Hypothesis("StartEndLength", [start, end, reversedEdgeInd, entry],
|
|
UseExisting=UseExisting,
|
|
CompareMethod=self.CompareStartEndLength)
|
|
hyp.SetStartLength(start)
|
|
hyp.SetEndLength(end)
|
|
hyp.SetReversedEdges( reversedEdgeInd )
|
|
hyp.SetObjectEntry( entry )
|
|
return hyp
|
|
|
|
## Check if the given "StartEndLength" hypothesis has the same parameters as the given arguments
|
|
def CompareStartEndLength(self, hyp, args):
|
|
if IsEqual(hyp.GetLength(1), args[0]):
|
|
if IsEqual(hyp.GetLength(0), args[1]):
|
|
if hyp.GetReversedEdges() == args[2]:
|
|
if not args[2] or hyp.GetObjectEntry() == args[3]:
|
|
return True
|
|
return False
|
|
|
|
## Defines "Deflection1D" hypothesis
|
|
# @param d for the deflection
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - create a new one
|
|
# @ingroup l3_hypos_1dhyps
|
|
def Deflection1D(self, d, UseExisting=0):
|
|
hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareDeflection1D)
|
|
hyp.SetDeflection(d)
|
|
return hyp
|
|
|
|
## Check if the given "Deflection1D" hypothesis has the same parameters as the given arguments
|
|
def CompareDeflection1D(self, hyp, args):
|
|
return IsEqual(hyp.GetDeflection(), args[0])
|
|
|
|
## Defines "Propagation" hypothesis that propagates all other hypotheses on all other edges that are at
|
|
# the opposite side in case of quadrangular faces
|
|
# @ingroup l3_hypos_additi
|
|
def Propagation(self):
|
|
return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp)
|
|
|
|
## Defines "AutomaticLength" hypothesis
|
|
# @param fineness for the fineness [0-1]
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with the
|
|
# same parameters, else (default) - create a new one
|
|
# @ingroup l3_hypos_1dhyps
|
|
def AutomaticLength(self, fineness=0, UseExisting=0):
|
|
hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting,
|
|
CompareMethod=self.CompareAutomaticLength)
|
|
hyp.SetFineness( fineness )
|
|
return hyp
|
|
|
|
## Checks if the given "AutomaticLength" hypothesis has the same parameters as the given arguments
|
|
def CompareAutomaticLength(self, hyp, args):
|
|
return IsEqual(hyp.GetFineness(), args[0])
|
|
|
|
## Defines "SegmentLengthAroundVertex" hypothesis
|
|
# @param length for the segment length
|
|
# @param vertex for the length localization: the vertex index [0,1] | vertex object.
|
|
# Any other integer value means that the hypothesis will be set on the
|
|
# whole 1D shape, where Mesh_Segment algorithm is assigned.
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_algos_segmarv
|
|
def LengthNearVertex(self, length, vertex=0, UseExisting=0):
|
|
import types
|
|
store_geom = self.geom
|
|
if type(vertex) is types.IntType:
|
|
if vertex == 0 or vertex == 1:
|
|
vertex = self.mesh.geompyD.ExtractShapes(self.geom, geompyDC.ShapeType["VERTEX"],True)[vertex]
|
|
self.geom = vertex
|
|
pass
|
|
pass
|
|
else:
|
|
self.geom = vertex
|
|
pass
|
|
### 0D algorithm
|
|
if self.geom is None:
|
|
raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape"
|
|
AssureGeomPublished( self.mesh, self.geom )
|
|
name = GetName(self.geom)
|
|
|
|
algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD)
|
|
if algo is None:
|
|
algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so")
|
|
pass
|
|
status = self.mesh.mesh.AddHypothesis(self.geom, algo)
|
|
TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True)
|
|
###
|
|
hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareLengthNearVertex)
|
|
self.geom = store_geom
|
|
hyp.SetLength( length )
|
|
return hyp
|
|
|
|
## Checks if the given "LengthNearVertex" hypothesis has the same parameters as the given arguments
|
|
# @ingroup l3_algos_segmarv
|
|
def CompareLengthNearVertex(self, hyp, args):
|
|
return IsEqual(hyp.GetLength(), args[0])
|
|
|
|
## Defines "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
|
|
# If the 2D mesher sees that all boundary edges are quadratic,
|
|
# it generates quadratic faces, else it generates linear faces using
|
|
# medium nodes as if they are vertices.
|
|
# The 3D mesher generates quadratic volumes only if all boundary faces
|
|
# are quadratic, else it fails.
|
|
#
|
|
# @ingroup l3_hypos_additi
|
|
def QuadraticMesh(self):
|
|
hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp)
|
|
return hyp
|
|
|
|
# Public class: Mesh_CompositeSegment
|
|
# --------------------------
|
|
|
|
## Defines a segment 1D algorithm for discretization
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_CompositeSegment(Mesh_Segment):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "CompositeSegment_1D")
|
|
|
|
|
|
# Public class: Mesh_Segment_Python
|
|
# ---------------------------------
|
|
|
|
## Defines a segment 1D algorithm for discretization with python function
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Segment_Python(Mesh_Segment):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
import Python1dPlugin
|
|
self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
|
|
|
|
## Defines "PythonSplit1D" hypothesis
|
|
# @param n for the number of segments that cut an edge
|
|
# @param func for the python function that calculates the length of all segments
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_hypos_1dhyps
|
|
def PythonSplit1D(self, n, func, UseExisting=0):
|
|
hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so",
|
|
UseExisting=UseExisting, CompareMethod=self.ComparePythonSplit1D)
|
|
hyp.SetNumberOfSegments(n)
|
|
hyp.SetPythonLog10RatioFunction(func)
|
|
return hyp
|
|
|
|
## Checks if the given "PythonSplit1D" hypothesis has the same parameters as the given arguments
|
|
def ComparePythonSplit1D(self, hyp, args):
|
|
#if hyp.GetNumberOfSegments() == args[0]:
|
|
# if hyp.GetPythonLog10RatioFunction() == args[1]:
|
|
# return True
|
|
return False
|
|
|
|
# Public class: Mesh_Triangle
|
|
# ---------------------------
|
|
|
|
## Defines a triangle 2D algorithm
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Triangle(Mesh_Algorithm):
|
|
|
|
# default values
|
|
algoType = 0
|
|
params = 0
|
|
|
|
_angleMeshS = 8
|
|
_gradation = 1.1
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, algoType, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
|
|
if algoType == MEFISTO:
|
|
self.Create(mesh, geom, "MEFISTO_2D")
|
|
pass
|
|
elif algoType == BLSURF:
|
|
CheckPlugin(BLSURF)
|
|
self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
|
|
#self.SetPhysicalMesh() - PAL19680
|
|
elif algoType == NETGEN:
|
|
CheckPlugin(NETGEN)
|
|
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
|
|
pass
|
|
elif algoType == NETGEN_2D:
|
|
CheckPlugin(NETGEN)
|
|
self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so")
|
|
pass
|
|
|
|
self.algoType = algoType
|
|
|
|
## Defines "MaxElementArea" hypothesis basing on the definition of the maximum area of each triangle
|
|
# @param area for the maximum area of each triangle
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with the
|
|
# same parameters, else (default) - creates a new one
|
|
#
|
|
# Only for algoType == MEFISTO || NETGEN_2D
|
|
# @ingroup l3_hypos_2dhyps
|
|
def MaxElementArea(self, area, UseExisting=0):
|
|
if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
|
|
hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareMaxElementArea)
|
|
elif self.algoType == NETGEN:
|
|
hyp = self.Parameters(SIMPLE)
|
|
hyp.SetMaxElementArea(area)
|
|
return hyp
|
|
|
|
## Checks if the given "MaxElementArea" hypothesis has the same parameters as the given arguments
|
|
def CompareMaxElementArea(self, hyp, args):
|
|
return IsEqual(hyp.GetMaxElementArea(), args[0])
|
|
|
|
## Defines "LengthFromEdges" hypothesis to build triangles
|
|
# based on the length of the edges taken from the wire
|
|
#
|
|
# Only for algoType == MEFISTO || NETGEN_2D
|
|
# @ingroup l3_hypos_2dhyps
|
|
def LengthFromEdges(self):
|
|
if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
|
|
hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp)
|
|
return hyp
|
|
elif self.algoType == NETGEN:
|
|
hyp = self.Parameters(SIMPLE)
|
|
hyp.LengthFromEdges()
|
|
return hyp
|
|
|
|
## Sets a way to define size of mesh elements to generate.
|
|
# @param thePhysicalMesh is: DefaultSize, BLSURF_Custom or SizeMap.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPhysicalMesh(self, thePhysicalMesh=DefaultSize):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetPhysicalMesh(thePhysicalMesh)
|
|
|
|
## Sets size of mesh elements to generate.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPhySize(self, theVal):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetPhySize(theVal)
|
|
|
|
## Sets lower boundary of mesh element size (PhySize).
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPhyMin(self, theVal=-1):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetPhyMin(theVal)
|
|
|
|
## Sets upper boundary of mesh element size (PhySize).
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPhyMax(self, theVal=-1):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetPhyMax(theVal)
|
|
|
|
## Sets a way to define maximum angular deflection of mesh from CAD model.
|
|
# @param theGeometricMesh is: 0 (None) or 1 (Custom)
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetGeometricMesh(self, theGeometricMesh=0):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1
|
|
self.params.SetGeometricMesh(theGeometricMesh)
|
|
|
|
## Sets angular deflection (in degrees) of a mesh face from CAD surface.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetAngleMeshS(self, theVal=_angleMeshS):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
|
|
self.params.SetAngleMeshS(theVal)
|
|
|
|
## Sets angular deflection (in degrees) of a mesh edge from CAD curve.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetAngleMeshC(self, theVal=_angleMeshS):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
|
|
self.params.SetAngleMeshC(theVal)
|
|
|
|
## Sets lower boundary of mesh element size computed to respect angular deflection.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetGeoMin(self, theVal=-1):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetGeoMin(theVal)
|
|
|
|
## Sets upper boundary of mesh element size computed to respect angular deflection.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetGeoMax(self, theVal=-1):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetGeoMax(theVal)
|
|
|
|
## Sets maximal allowed ratio between the lengths of two adjacent edges.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetGradation(self, theVal=_gradation):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
if self.params.GetGeometricMesh() == 0: theVal = self._gradation
|
|
self.params.SetGradation(theVal)
|
|
|
|
## Sets topology usage way.
|
|
# @param way defines how mesh conformity is assured <ul>
|
|
# <li>FromCAD - mesh conformity is assured by conformity of a shape</li>
|
|
# <li>PreProcess or PreProcessPlus - by pre-processing a CAD model</li></ul>
|
|
# <li>PreCAD - by pre-processing with PreCAD a CAD model</li></ul>
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetTopology(self, way):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetTopology(way)
|
|
|
|
## To respect geometrical edges or not.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetDecimesh(self, toIgnoreEdges=False):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetDecimesh(toIgnoreEdges)
|
|
|
|
## Sets verbosity level in the range 0 to 100.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetVerbosity(self, level):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetVerbosity(level)
|
|
|
|
## To optimize merges edges.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPreCADMergeEdges(self, toMergeEdges=False):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetPreCADMergeEdges(toMergeEdges)
|
|
|
|
## To remove nano edges.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPreCADRemoveNanoEdges(self, toRemoveNanoEdges=False):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetPreCADRemoveNanoEdges(toRemoveNanoEdges)
|
|
|
|
## To compute topology from scratch
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPreCADDiscardInput(self, toDiscardInput=False):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetPreCADDiscardInput(toDiscardInput)
|
|
|
|
## Sets the length below which an edge is considered as nano
|
|
# for the topology processing.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPreCADEpsNano(self, epsNano):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetPreCADEpsNano(epsNano)
|
|
|
|
## Sets advanced option value.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetOptionValue(self, optionName, level):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetOptionValue(optionName,level)
|
|
|
|
## Sets advanced PreCAD option value.
|
|
# Keyword arguments:
|
|
# optionName: name of the option
|
|
# optionValue: value of the option
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPreCADOptionValue(self, optionName, optionValue):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetPreCADOptionValue(optionName,optionValue)
|
|
|
|
## Sets GMF file for export at computation
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetGMFFile(self, fileName):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
self.params.SetGMFFile(fileName)
|
|
|
|
## Enforced vertices (BLSURF)
|
|
|
|
## To get all the enforced vertices
|
|
# @ingroup l3_hypos_blsurf
|
|
def GetAllEnforcedVertices(self):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
return self.params.GetAllEnforcedVertices()
|
|
|
|
## To get all the enforced vertices sorted by face (or group, compound)
|
|
# @ingroup l3_hypos_blsurf
|
|
def GetAllEnforcedVerticesByFace(self):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
return self.params.GetAllEnforcedVerticesByFace()
|
|
|
|
## To get all the enforced vertices sorted by coords of input vertices
|
|
# @ingroup l3_hypos_blsurf
|
|
def GetAllEnforcedVerticesByCoords(self):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
return self.params.GetAllEnforcedVerticesByCoords()
|
|
|
|
## To get all the coords of input vertices sorted by face (or group, compound)
|
|
# @ingroup l3_hypos_blsurf
|
|
def GetAllCoordsByFace(self):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
return self.params.GetAllCoordsByFace()
|
|
|
|
## To get all the enforced vertices on a face (or group, compound)
|
|
# @param theFace : GEOM face (or group, compound) on which to define an enforced vertex
|
|
# @ingroup l3_hypos_blsurf
|
|
def GetEnforcedVertices(self, theFace):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theFace )
|
|
return self.params.GetEnforcedVertices(theFace)
|
|
|
|
## To clear all the enforced vertices
|
|
# @ingroup l3_hypos_blsurf
|
|
def ClearAllEnforcedVertices(self):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
return self.params.ClearAllEnforcedVertices()
|
|
|
|
## To set an enforced vertex on a face (or group, compound) given the coordinates of a point. If the point is not on the face, it will projected on it. If there is no projection, no enforced vertex is created.
|
|
# @param theFace : GEOM face (or group, compound) on which to define an enforced vertex
|
|
# @param x : x coordinate
|
|
# @param y : y coordinate
|
|
# @param z : z coordinate
|
|
# @param vertexName : name of the enforced vertex
|
|
# @param groupName : name of the group
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetEnforcedVertex(self, theFace, x, y, z, vertexName = "", groupName = ""):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theFace )
|
|
if vertexName == "":
|
|
if groupName == "":
|
|
return self.params.SetEnforcedVertex(theFace, x, y, z)
|
|
else:
|
|
return self.params.SetEnforcedVertexWithGroup(theFace, x, y, z, groupName)
|
|
else:
|
|
if groupName == "":
|
|
return self.params.SetEnforcedVertexNamed(theFace, x, y, z, vertexName)
|
|
else:
|
|
return self.params.SetEnforcedVertexNamedWithGroup(theFace, x, y, z, vertexName, groupName)
|
|
|
|
## To set an enforced vertex on a face (or group, compound) given a GEOM vertex, group or compound.
|
|
# @param theFace : GEOM face (or group, compound) on which to define an enforced vertex
|
|
# @param theVertex : GEOM vertex (or group, compound) to be projected on theFace.
|
|
# @param groupName : name of the group
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetEnforcedVertexGeom(self, theFace, theVertex, groupName = ""):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theFace )
|
|
AssureGeomPublished( self.mesh, theVertex )
|
|
if groupName == "":
|
|
return self.params.SetEnforcedVertexGeom(theFace, theVertex)
|
|
else:
|
|
return self.params.SetEnforcedVertexGeomWithGroup(theFace, theVertex,groupName)
|
|
|
|
## To remove an enforced vertex on a given GEOM face (or group, compound) given the coordinates.
|
|
# @param theFace : GEOM face (or group, compound) on which to remove the enforced vertex
|
|
# @param x : x coordinate
|
|
# @param y : y coordinate
|
|
# @param z : z coordinate
|
|
# @ingroup l3_hypos_blsurf
|
|
def UnsetEnforcedVertex(self, theFace, x, y, z):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theFace )
|
|
return self.params.UnsetEnforcedVertex(theFace, x, y, z)
|
|
|
|
## To remove an enforced vertex on a given GEOM face (or group, compound) given a GEOM vertex, group or compound.
|
|
# @param theFace : GEOM face (or group, compound) on which to remove the enforced vertex
|
|
# @param theVertex : GEOM vertex (or group, compound) to remove.
|
|
# @ingroup l3_hypos_blsurf
|
|
def UnsetEnforcedVertexGeom(self, theFace, theVertex):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theFace )
|
|
AssureGeomPublished( self.mesh, theVertex )
|
|
return self.params.UnsetEnforcedVertexGeom(theFace, theVertex)
|
|
|
|
## To remove all enforced vertices on a given face.
|
|
# @param theFace : face (or group/compound of faces) on which to remove all enforced vertices
|
|
# @ingroup l3_hypos_blsurf
|
|
def UnsetEnforcedVertices(self, theFace):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theFace )
|
|
return self.params.UnsetEnforcedVertices(theFace)
|
|
|
|
## Attractors (BLSURF)
|
|
|
|
## Sets an attractor on the chosen face. The mesh size will decrease exponentially with the distance from theAttractor, following the rule h(d) = theEndSize - (theEndSize - theStartSize) * exp [ - ( d / theInfluenceDistance ) ^ 2 ]
|
|
# @param theFace : face on which the attractor will be defined
|
|
# @param theAttractor : geometrical object from which the mesh size "h" decreases exponentially
|
|
# @param theStartSize : mesh size on theAttractor
|
|
# @param theEndSize : maximum size that will be reached on theFace
|
|
# @param theInfluenceDistance : influence of the attractor ( the size grow slower on theFace if it's high)
|
|
# @param theConstantSizeDistance : distance until which the mesh size will be kept constant on theFace
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetAttractorGeom(self, theFace, theAttractor, theStartSize, theEndSize, theInfluenceDistance, theConstantSizeDistance):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theFace )
|
|
AssureGeomPublished( self.mesh, theAttractor )
|
|
self.params.SetAttractorGeom(theFace, theAttractor, theStartSize, theEndSize, theInfluenceDistance, theConstantSizeDistance)
|
|
|
|
## Unsets an attractor on the chosen face.
|
|
# @param theFace : face on which the attractor has to be removed
|
|
# @ingroup l3_hypos_blsurf
|
|
def UnsetAttractorGeom(self, theFace):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theFace )
|
|
self.params.SetAttractorGeom(theFace)
|
|
|
|
## Size maps (BLSURF)
|
|
|
|
## To set a size map on a face, edge or vertex (or group, compound) given Python function.
|
|
# If theObject is a face, the function can be: def f(u,v): return u+v
|
|
# If theObject is an edge, the function can be: def f(t): return t/2
|
|
# If theObject is a vertex, the function can be: def f(): return 10
|
|
# @param theObject : GEOM face, edge or vertex (or group, compound) on which to define a size map
|
|
# @param theSizeMap : Size map defined as a string
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetSizeMap(self, theObject, theSizeMap):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theObject )
|
|
return self.params.SetSizeMap(theObject, theSizeMap)
|
|
|
|
## To remove a size map defined on a face, edge or vertex (or group, compound)
|
|
# @param theObject : GEOM face, edge or vertex (or group, compound) on which to define a size map
|
|
# @ingroup l3_hypos_blsurf
|
|
def UnsetSizeMap(self, theObject):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
AssureGeomPublished( self.mesh, theObject )
|
|
return self.params.UnsetSizeMap(theObject)
|
|
|
|
## To remove all the size maps
|
|
# @ingroup l3_hypos_blsurf
|
|
def ClearSizeMaps(self):
|
|
if self.Parameters():
|
|
# Parameter of BLSURF algo
|
|
return self.params.ClearSizeMaps()
|
|
|
|
|
|
## Sets QuadAllowed flag.
|
|
# Only for algoType == NETGEN(NETGEN_1D2D) || NETGEN_2D || BLSURF
|
|
# @ingroup l3_hypos_netgen l3_hypos_blsurf
|
|
def SetQuadAllowed(self, toAllow=True):
|
|
if self.algoType == NETGEN_2D:
|
|
if not self.params:
|
|
# use simple hyps
|
|
hasSimpleHyps = False
|
|
simpleHyps = ["QuadranglePreference","LengthFromEdges","MaxElementArea"]
|
|
for hyp in self.mesh.GetHypothesisList( self.geom ):
|
|
if hyp.GetName() in simpleHyps:
|
|
hasSimpleHyps = True
|
|
if hyp.GetName() == "QuadranglePreference":
|
|
if not toAllow: # remove QuadranglePreference
|
|
self.mesh.RemoveHypothesis( self.geom, hyp )
|
|
pass
|
|
return
|
|
pass
|
|
pass
|
|
if hasSimpleHyps:
|
|
if toAllow: # add QuadranglePreference
|
|
self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
|
|
pass
|
|
return
|
|
pass
|
|
pass
|
|
if self.Parameters():
|
|
self.params.SetQuadAllowed(toAllow)
|
|
return
|
|
|
|
## Defines hypothesis having several parameters
|
|
#
|
|
# @ingroup l3_hypos_netgen
|
|
def Parameters(self, which=SOLE):
|
|
if not self.params:
|
|
if self.algoType == NETGEN:
|
|
if which == SIMPLE:
|
|
self.params = self.Hypothesis("NETGEN_SimpleParameters_2D", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
else:
|
|
self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
elif self.algoType == MEFISTO:
|
|
print "Mefisto algo support no multi-parameter hypothesis"
|
|
elif self.algoType == NETGEN_2D:
|
|
self.params = self.Hypothesis("NETGEN_Parameters_2D_ONLY", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
elif self.algoType == BLSURF:
|
|
self.params = self.Hypothesis("BLSURF_Parameters", [],
|
|
"libBLSURFEngine.so", UseExisting=0)
|
|
else:
|
|
print "Mesh_Triangle with algo type %s does not have such a parameter, check algo type"%self.algoType
|
|
return self.params
|
|
|
|
## Sets MaxSize
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetMaxSize(self, theSize):
|
|
if self.Parameters():
|
|
self.params.SetMaxSize(theSize)
|
|
|
|
## Sets SecondOrder flag
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetSecondOrder(self, theVal):
|
|
if self.Parameters():
|
|
self.params.SetSecondOrder(theVal)
|
|
|
|
## Sets Optimize flag
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetOptimize(self, theVal):
|
|
if self.Parameters():
|
|
self.params.SetOptimize(theVal)
|
|
|
|
## Sets Fineness
|
|
# @param theFineness is:
|
|
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetFineness(self, theFineness):
|
|
if self.Parameters():
|
|
self.params.SetFineness(theFineness)
|
|
|
|
## Sets GrowthRate
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetGrowthRate(self, theRate):
|
|
if self.Parameters():
|
|
self.params.SetGrowthRate(theRate)
|
|
|
|
## Sets NbSegPerEdge
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNbSegPerEdge(self, theVal):
|
|
if self.Parameters():
|
|
self.params.SetNbSegPerEdge(theVal)
|
|
|
|
## Sets NbSegPerRadius
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNbSegPerRadius(self, theVal):
|
|
if self.Parameters():
|
|
self.params.SetNbSegPerRadius(theVal)
|
|
|
|
## Sets number of segments overriding value set by SetLocalLength()
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNumberOfSegments(self, theVal):
|
|
self.Parameters(SIMPLE).SetNumberOfSegments(theVal)
|
|
|
|
## Sets number of segments overriding value set by SetNumberOfSegments()
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetLocalLength(self, theVal):
|
|
self.Parameters(SIMPLE).SetLocalLength(theVal)
|
|
|
|
pass
|
|
|
|
|
|
# Public class: Mesh_Quadrangle
|
|
# -----------------------------
|
|
|
|
## Defines a quadrangle 2D algorithm
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Quadrangle(Mesh_Algorithm):
|
|
|
|
params=0
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Quadrangle_2D")
|
|
return
|
|
|
|
## Defines "QuadrangleParameters" hypothesis
|
|
# @param quadType defines the algorithm of transition between differently descretized
|
|
# sides of a geometrical face:
|
|
# - QUAD_STANDARD - both triangles and quadrangles are possible in the transition
|
|
# area along the finer meshed sides.
|
|
# - QUAD_TRIANGLE_PREF - only triangles are built in the transition area along the
|
|
# finer meshed sides.
|
|
# - QUAD_QUADRANGLE_PREF - only quadrangles are built in the transition area along
|
|
# the finer meshed sides, iff the total quantity of segments on
|
|
# all four sides of the face is even (divisible by 2).
|
|
# - QUAD_QUADRANGLE_PREF_REVERSED - same as QUAD_QUADRANGLE_PREF but the transition
|
|
# area is located along the coarser meshed sides.
|
|
# - QUAD_REDUCED - only quadrangles are built and the transition between the sides
|
|
# is made gradually, layer by layer. This type has a limitation on
|
|
# the number of segments: one pair of opposite sides must have the
|
|
# same number of segments, the other pair must have an even difference
|
|
# between the numbers of segments on the sides.
|
|
# @param triangleVertex: vertex of a trilateral geometrical face, around which triangles
|
|
# will be created while other elements will be quadrangles.
|
|
# Vertex can be either a GEOM_Object or a vertex ID within the
|
|
# shape to mesh
|
|
# @param UseExisting: if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_hypos_quad
|
|
def QuadrangleParameters(self, quadType=StdMeshers.QUAD_STANDARD, triangleVertex=0, UseExisting=0):
|
|
vertexID = triangleVertex
|
|
if isinstance( triangleVertex, geompyDC.GEOM._objref_GEOM_Object ):
|
|
vertexID = self.mesh.geompyD.GetSubShapeID( self.mesh.geom, triangleVertex )
|
|
if not self.params:
|
|
compFun = lambda hyp,args: \
|
|
hyp.GetQuadType() == args[0] and \
|
|
( hyp.GetTriaVertex()==args[1] or ( hyp.GetTriaVertex()<1 and args[1]<1))
|
|
self.params = self.Hypothesis("QuadrangleParams", [quadType,vertexID],
|
|
UseExisting = UseExisting, CompareMethod=compFun)
|
|
pass
|
|
if self.params.GetQuadType() != quadType:
|
|
self.params.SetQuadType(quadType)
|
|
if vertexID > 0:
|
|
self.params.SetTriaVertex( vertexID )
|
|
return self.params
|
|
|
|
## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
|
|
# quadrangles are built in the transition area along the finer meshed sides,
|
|
# iff the total quantity of segments on all four sides of the face is even.
|
|
# @param reversed if True, transition area is located along the coarser meshed sides.
|
|
# @param UseExisting: if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_hypos_quad
|
|
def QuadranglePreference(self, reversed=False, UseExisting=0):
|
|
if reversed:
|
|
return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF_REVERSED,UseExisting=UseExisting)
|
|
return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF,UseExisting=UseExisting)
|
|
|
|
## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
|
|
# triangles are built in the transition area along the finer meshed sides.
|
|
# @param UseExisting: if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_hypos_quad
|
|
def TrianglePreference(self, UseExisting=0):
|
|
return self.QuadrangleParameters(QUAD_TRIANGLE_PREF,UseExisting=UseExisting)
|
|
|
|
## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
|
|
# quadrangles are built and the transition between the sides is made gradually,
|
|
# layer by layer. This type has a limitation on the number of segments: one pair
|
|
# of opposite sides must have the same number of segments, the other pair must
|
|
# have an even difference between the numbers of segments on the sides.
|
|
# @param UseExisting: if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_hypos_quad
|
|
def Reduced(self, UseExisting=0):
|
|
return self.QuadrangleParameters(QUAD_REDUCED,UseExisting=UseExisting)
|
|
|
|
## Defines "QuadrangleParams" hypothesis with QUAD_STANDARD type of quadrangulation
|
|
# @param vertex: vertex of a trilateral geometrical face, around which triangles
|
|
# will be created while other elements will be quadrangles.
|
|
# Vertex can be either a GEOM_Object or a vertex ID within the
|
|
# shape to mesh
|
|
# @param UseExisting: if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_hypos_quad
|
|
def TriangleVertex(self, vertex, UseExisting=0):
|
|
return self.QuadrangleParameters(QUAD_STANDARD,vertex,UseExisting)
|
|
|
|
|
|
# Public class: Mesh_Tetrahedron
|
|
# ------------------------------
|
|
|
|
## Defines a tetrahedron 3D algorithm
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Tetrahedron(Mesh_Algorithm):
|
|
|
|
params = 0
|
|
algoType = 0
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, algoType, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
|
|
if algoType == NETGEN:
|
|
CheckPlugin(NETGEN)
|
|
self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
|
|
pass
|
|
|
|
elif algoType == FULL_NETGEN:
|
|
CheckPlugin(NETGEN)
|
|
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
|
|
pass
|
|
|
|
elif algoType == GHS3D:
|
|
CheckPlugin(GHS3D)
|
|
self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
|
|
pass
|
|
|
|
elif algoType == GHS3DPRL:
|
|
CheckPlugin(GHS3DPRL)
|
|
self.Create(mesh, geom, "GHS3DPRL_3D" , "libGHS3DPRLEngine.so")
|
|
pass
|
|
|
|
self.algoType = algoType
|
|
|
|
## Defines "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedron
|
|
# @param vol for the maximum volume of each tetrahedron
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_hypos_maxvol
|
|
def MaxElementVolume(self, vol, UseExisting=0):
|
|
if self.algoType == NETGEN:
|
|
hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareMaxElementVolume)
|
|
hyp.SetMaxElementVolume(vol)
|
|
return hyp
|
|
elif self.algoType == FULL_NETGEN:
|
|
self.Parameters(SIMPLE).SetMaxElementVolume(vol)
|
|
return None
|
|
|
|
## Checks if the given "MaxElementVolume" hypothesis has the same parameters as the given arguments
|
|
def CompareMaxElementVolume(self, hyp, args):
|
|
return IsEqual(hyp.GetMaxElementVolume(), args[0])
|
|
|
|
## Defines hypothesis having several parameters
|
|
#
|
|
# @ingroup l3_hypos_netgen
|
|
def Parameters(self, which=SOLE):
|
|
if not self.params:
|
|
|
|
if self.algoType == FULL_NETGEN:
|
|
if which == SIMPLE:
|
|
self.params = self.Hypothesis("NETGEN_SimpleParameters_3D", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
else:
|
|
self.params = self.Hypothesis("NETGEN_Parameters", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
|
|
elif self.algoType == NETGEN:
|
|
self.params = self.Hypothesis("NETGEN_Parameters_3D", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
|
|
elif self.algoType == GHS3D:
|
|
self.params = self.Hypothesis("GHS3D_Parameters", [],
|
|
"libGHS3DEngine.so", UseExisting=0)
|
|
|
|
elif self.algoType == GHS3DPRL:
|
|
self.params = self.Hypothesis("GHS3DPRL_Parameters", [],
|
|
"libGHS3DPRLEngine.so", UseExisting=0)
|
|
else:
|
|
print "Warning: %s supports no multi-parameter hypothesis"%self.algo.GetName()
|
|
|
|
return self.params
|
|
|
|
## Sets MaxSize
|
|
# Parameter of FULL_NETGEN and NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetMaxSize(self, theSize):
|
|
self.Parameters().SetMaxSize(theSize)
|
|
|
|
## Sets SecondOrder flag
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetSecondOrder(self, theVal):
|
|
self.Parameters().SetSecondOrder(theVal)
|
|
|
|
## Sets Optimize flag
|
|
# Parameter of FULL_NETGEN and NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetOptimize(self, theVal):
|
|
self.Parameters().SetOptimize(theVal)
|
|
|
|
## Sets Fineness
|
|
# @param theFineness is:
|
|
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetFineness(self, theFineness):
|
|
self.Parameters().SetFineness(theFineness)
|
|
|
|
## Sets GrowthRate
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetGrowthRate(self, theRate):
|
|
self.Parameters().SetGrowthRate(theRate)
|
|
|
|
## Sets NbSegPerEdge
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNbSegPerEdge(self, theVal):
|
|
self.Parameters().SetNbSegPerEdge(theVal)
|
|
|
|
## Sets NbSegPerRadius
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNbSegPerRadius(self, theVal):
|
|
self.Parameters().SetNbSegPerRadius(theVal)
|
|
|
|
## Sets number of segments overriding value set by SetLocalLength()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNumberOfSegments(self, theVal):
|
|
self.Parameters(SIMPLE).SetNumberOfSegments(theVal)
|
|
|
|
## Sets number of segments overriding value set by SetNumberOfSegments()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def SetLocalLength(self, theVal):
|
|
self.Parameters(SIMPLE).SetLocalLength(theVal)
|
|
|
|
## Defines "MaxElementArea" parameter of NETGEN_SimpleParameters_3D hypothesis.
|
|
# Overrides value set by LengthFromEdges()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def MaxElementArea(self, area):
|
|
self.Parameters(SIMPLE).SetMaxElementArea(area)
|
|
|
|
## Defines "LengthFromEdges" parameter of NETGEN_SimpleParameters_3D hypothesis
|
|
# Overrides value set by MaxElementArea()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def LengthFromEdges(self):
|
|
self.Parameters(SIMPLE).LengthFromEdges()
|
|
|
|
## Defines "LengthFromFaces" parameter of NETGEN_SimpleParameters_3D hypothesis
|
|
# Overrides value set by MaxElementVolume()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def LengthFromFaces(self):
|
|
self.Parameters(SIMPLE).LengthFromFaces()
|
|
|
|
## To mesh "holes" in a solid or not. Default is to mesh.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetToMeshHoles(self, toMesh):
|
|
# Parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetToMeshHoles(toMesh)
|
|
|
|
## Set Optimization level:
|
|
# None_Optimization, Light_Optimization, Standard_Optimization, StandardPlus_Optimization,
|
|
# Strong_Optimization.
|
|
# Default is Standard_Optimization
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetOptimizationLevel(self, level):
|
|
# Parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetOptimizationLevel(level)
|
|
|
|
## Maximal size of memory to be used by the algorithm (in Megabytes).
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetMaximumMemory(self, MB):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetMaximumMemory(MB)
|
|
|
|
## Initial size of memory to be used by the algorithm (in Megabytes) in
|
|
# automatic memory adjustment mode.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetInitialMemory(self, MB):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetInitialMemory(MB)
|
|
|
|
## Path to working directory.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetWorkingDirectory(self, path):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetWorkingDirectory(path)
|
|
|
|
## To keep working files or remove them. Log file remains in case of errors anyway.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetKeepFiles(self, toKeep):
|
|
# Advanced parameter of GHS3D and GHS3DPRL
|
|
if self.Parameters():
|
|
self.params.SetKeepFiles(toKeep)
|
|
|
|
## To set verbose level [0-10]. <ul>
|
|
#<li> 0 - no standard output,
|
|
#<li> 2 - prints the data, quality statistics of the skin and final meshes and
|
|
# indicates when the final mesh is being saved. In addition the software
|
|
# gives indication regarding the CPU time.
|
|
#<li>10 - same as 2 plus the main steps in the computation, quality statistics
|
|
# histogram of the skin mesh, quality statistics histogram together with
|
|
# the characteristics of the final mesh.</ul>
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetVerboseLevel(self, level):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetVerboseLevel(level)
|
|
|
|
## To create new nodes.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetToCreateNewNodes(self, toCreate):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetToCreateNewNodes(toCreate)
|
|
|
|
## To use boundary recovery version which tries to create mesh on a very poor
|
|
# quality surface mesh.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetToUseBoundaryRecoveryVersion(self, toUse):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetToUseBoundaryRecoveryVersion(toUse)
|
|
|
|
## Applies finite-element correction by replacing overconstrained elements where
|
|
# it is possible. The process is cutting first the overconstrained edges and
|
|
# second the overconstrained facets. This insure that no edges have two boundary
|
|
# vertices and that no facets have three boundary vertices.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetFEMCorrection(self, toUseFem):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetFEMCorrection(toUseFem)
|
|
|
|
## To removes initial central point.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetToRemoveCentralPoint(self, toRemove):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetToRemoveCentralPoint(toRemove)
|
|
|
|
## To set an enforced vertex.
|
|
# @param x : x coordinate
|
|
# @param y : y coordinate
|
|
# @param z : z coordinate
|
|
# @param size : size of 1D element around enforced vertex
|
|
# @param vertexName : name of the enforced vertex
|
|
# @param groupName : name of the group
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetEnforcedVertex(self, x, y, z, size, vertexName = "", groupName = ""):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
if vertexName == "":
|
|
if groupName == "":
|
|
return self.params.SetEnforcedVertex(x, y, z, size)
|
|
else:
|
|
return self.params.SetEnforcedVertexWithGroup(x, y, z, size, groupName)
|
|
else:
|
|
if groupName == "":
|
|
return self.params.SetEnforcedVertexNamed(x, y, z, size, vertexName)
|
|
else:
|
|
return self.params.SetEnforcedVertexNamedWithGroup(x, y, z, size, vertexName, groupName)
|
|
|
|
## To set an enforced vertex given a GEOM vertex, group or compound.
|
|
# @param theVertex : GEOM vertex (or group, compound) to be projected on theFace.
|
|
# @param size : size of 1D element around enforced vertex
|
|
# @param groupName : name of the group
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetEnforcedVertexGeom(self, theVertex, size, groupName = ""):
|
|
AssureGeomPublished( self.mesh, theVertex )
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
if groupName == "":
|
|
return self.params.SetEnforcedVertexGeom(theVertex, size)
|
|
else:
|
|
return self.params.SetEnforcedVertexGeomWithGroup(theVertex, size, groupName)
|
|
|
|
## To remove an enforced vertex.
|
|
# @param x : x coordinate
|
|
# @param y : y coordinate
|
|
# @param z : z coordinate
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def RemoveEnforcedVertex(self, x, y, z):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
return self.params.RemoveEnforcedVertex(x, y, z)
|
|
|
|
## To remove an enforced vertex given a GEOM vertex, group or compound.
|
|
# @param theVertex : GEOM vertex (or group, compound) to be projected on theFace.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def RemoveEnforcedVertexGeom(self, theVertex):
|
|
AssureGeomPublished( self.mesh, theVertex )
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
return self.params.RemoveEnforcedVertexGeom(theVertex)
|
|
|
|
## To set an enforced mesh with given size and add the enforced elements in the group "groupName".
|
|
# @param theSource : source mesh which provides constraint elements/nodes
|
|
# @param elementType : SMESH.ElementType (NODE, EDGE or FACE)
|
|
# @param size : size of elements around enforced elements. Unused if -1.
|
|
# @param groupName : group in which enforced elements will be added. Unused if "".
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetEnforcedMesh(self, theSource, elementType, size = -1, groupName = ""):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
if size >= 0:
|
|
if groupName != "":
|
|
return self.params.SetEnforcedMesh(theSource, elementType)
|
|
else:
|
|
return self.params.SetEnforcedMeshWithGroup(theSource, elementType, groupName)
|
|
else:
|
|
if groupName != "":
|
|
return self.params.SetEnforcedMeshSize(theSource, elementType, size)
|
|
else:
|
|
return self.params.SetEnforcedMeshSizeWithGroup(theSource, elementType, size, groupName)
|
|
|
|
## Sets command line option as text.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetTextOption(self, option):
|
|
# Advanced parameter of GHS3D
|
|
if self.Parameters():
|
|
self.params.SetTextOption(option)
|
|
|
|
## Sets MED files name and path.
|
|
def SetMEDName(self, value):
|
|
if self.Parameters():
|
|
self.params.SetMEDName(value)
|
|
|
|
## Sets the number of partition of the initial mesh
|
|
def SetNbPart(self, value):
|
|
if self.Parameters():
|
|
self.params.SetNbPart(value)
|
|
|
|
## When big mesh, start tepal in background
|
|
def SetBackground(self, value):
|
|
if self.Parameters():
|
|
self.params.SetBackground(value)
|
|
|
|
# Public class: Mesh_Hexahedron
|
|
# ------------------------------
|
|
|
|
## Defines a hexahedron 3D algorithm
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Hexahedron(Mesh_Algorithm):
|
|
|
|
params = 0
|
|
algoType = 0
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, algoType=Hexa, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
|
|
self.algoType = algoType
|
|
|
|
if algoType == Hexa:
|
|
self.Create(mesh, geom, "Hexa_3D")
|
|
pass
|
|
|
|
elif algoType == Hexotic:
|
|
CheckPlugin(Hexotic)
|
|
self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so")
|
|
pass
|
|
|
|
## Defines "MinMaxQuad" hypothesis to give three hexotic parameters
|
|
# @ingroup l3_hypos_hexotic
|
|
def MinMaxQuad(self, min=3, max=8, quad=True):
|
|
self.params = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so",
|
|
UseExisting=0)
|
|
self.params.SetHexesMinLevel(min)
|
|
self.params.SetHexesMaxLevel(max)
|
|
self.params.SetHexoticQuadrangles(quad)
|
|
return self.params
|
|
|
|
# Deprecated, only for compatibility!
|
|
# Public class: Mesh_Netgen
|
|
# ------------------------------
|
|
|
|
## Defines a NETGEN-based 2D or 3D algorithm
|
|
# that needs no discrete boundary (i.e. independent)
|
|
#
|
|
# This class is deprecated, only for compatibility!
|
|
#
|
|
# More details.
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Netgen(Mesh_Algorithm):
|
|
|
|
is3D = 0
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, is3D, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
|
|
CheckPlugin(NETGEN)
|
|
|
|
self.is3D = is3D
|
|
if is3D:
|
|
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
|
|
pass
|
|
|
|
else:
|
|
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
|
|
pass
|
|
|
|
## Defines the hypothesis containing parameters of the algorithm
|
|
def Parameters(self):
|
|
if self.is3D:
|
|
hyp = self.Hypothesis("NETGEN_Parameters", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
else:
|
|
hyp = self.Hypothesis("NETGEN_Parameters_2D", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
return hyp
|
|
|
|
# Public class: Mesh_Projection1D
|
|
# ------------------------------
|
|
|
|
## Defines a projection 1D algorithm
|
|
# @ingroup l3_algos_proj
|
|
#
|
|
class Mesh_Projection1D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Projection_1D")
|
|
|
|
## Defines "Source Edge" hypothesis, specifying a meshed edge, from where
|
|
# a mesh pattern is taken, and, optionally, the association of vertices
|
|
# between the source edge and a target edge (to which a hypothesis is assigned)
|
|
# @param edge from which nodes distribution is taken
|
|
# @param mesh from which nodes distribution is taken (optional)
|
|
# @param srcV a vertex of \a edge to associate with \a tgtV (optional)
|
|
# @param tgtV a vertex of \a the edge to which the algorithm is assigned,
|
|
# to associate with \a srcV (optional)
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0):
|
|
AssureGeomPublished( self.mesh, edge )
|
|
AssureGeomPublished( self.mesh, srcV )
|
|
AssureGeomPublished( self.mesh, tgtV )
|
|
hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV],
|
|
UseExisting=0)
|
|
#UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge)
|
|
hyp.SetSourceEdge( edge )
|
|
if not mesh is None and isinstance(mesh, Mesh):
|
|
mesh = mesh.GetMesh()
|
|
hyp.SetSourceMesh( mesh )
|
|
hyp.SetVertexAssociation( srcV, tgtV )
|
|
return hyp
|
|
|
|
## Checks if the given "SourceEdge" hypothesis has the same parameters as the given arguments
|
|
#def CompareSourceEdge(self, hyp, args):
|
|
# # it does not seem to be useful to reuse the existing "SourceEdge" hypothesis
|
|
# return False
|
|
|
|
|
|
# Public class: Mesh_Projection2D
|
|
# ------------------------------
|
|
|
|
## Defines a projection 2D algorithm
|
|
# @ingroup l3_algos_proj
|
|
#
|
|
class Mesh_Projection2D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0, algoName="Projection_2D"):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, algoName)
|
|
|
|
## Defines "Source Face" hypothesis, specifying a meshed face, from where
|
|
# a mesh pattern is taken, and, optionally, the association of vertices
|
|
# between the source face and the target face (to which a hypothesis is assigned)
|
|
# @param face from which the mesh pattern is taken
|
|
# @param mesh from which the mesh pattern is taken (optional)
|
|
# @param srcV1 a vertex of \a face to associate with \a tgtV1 (optional)
|
|
# @param tgtV1 a vertex of \a the face to which the algorithm is assigned,
|
|
# to associate with \a srcV1 (optional)
|
|
# @param srcV2 a vertex of \a face to associate with \a tgtV1 (optional)
|
|
# @param tgtV2 a vertex of \a the face to which the algorithm is assigned,
|
|
# to associate with \a srcV2 (optional)
|
|
# @param UseExisting if ==true - forces the search for the existing hypothesis created with
|
|
# the same parameters, else (default) - forces the creation a new one
|
|
#
|
|
# Note: all association vertices must belong to one edge of a face
|
|
def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None,
|
|
srcV2=None, tgtV2=None, UseExisting=0):
|
|
for geom in [ face, srcV1, tgtV1, srcV2, tgtV2 ]:
|
|
AssureGeomPublished( self.mesh, geom )
|
|
hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2],
|
|
UseExisting=0)
|
|
#UseExisting=UseExisting, CompareMethod=self.CompareSourceFace)
|
|
hyp.SetSourceFace( face )
|
|
if isinstance(mesh, Mesh):
|
|
mesh = mesh.GetMesh()
|
|
hyp.SetSourceMesh( mesh )
|
|
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
|
|
return hyp
|
|
|
|
## Checks if the given "SourceFace" hypothesis has the same parameters as the given arguments
|
|
#def CompareSourceFace(self, hyp, args):
|
|
# # it does not seem to be useful to reuse the existing "SourceFace" hypothesis
|
|
# return False
|
|
|
|
# Public class: Mesh_Projection3D
|
|
# ------------------------------
|
|
|
|
## Defines a projection 3D algorithm
|
|
# @ingroup l3_algos_proj
|
|
#
|
|
class Mesh_Projection3D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Projection_3D")
|
|
|
|
## Defines the "Source Shape 3D" hypothesis, specifying a meshed solid, from where
|
|
# the mesh pattern is taken, and, optionally, the association of vertices
|
|
# between the source and the target solid (to which a hipothesis is assigned)
|
|
# @param solid from where the mesh pattern is taken
|
|
# @param mesh from where the mesh pattern is taken (optional)
|
|
# @param srcV1 a vertex of \a solid to associate with \a tgtV1 (optional)
|
|
# @param tgtV1 a vertex of \a the solid where the algorithm is assigned,
|
|
# to associate with \a srcV1 (optional)
|
|
# @param srcV2 a vertex of \a solid to associate with \a tgtV1 (optional)
|
|
# @param tgtV2 a vertex of \a the solid to which the algorithm is assigned,
|
|
# to associate with \a srcV2 (optional)
|
|
# @param UseExisting - if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
#
|
|
# Note: association vertices must belong to one edge of a solid
|
|
def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0,
|
|
srcV2=0, tgtV2=0, UseExisting=0):
|
|
for geom in [ solid, srcV1, tgtV1, srcV2, tgtV2 ]:
|
|
AssureGeomPublished( self.mesh, geom )
|
|
hyp = self.Hypothesis("ProjectionSource3D",
|
|
[solid,mesh,srcV1,tgtV1,srcV2,tgtV2],
|
|
UseExisting=0)
|
|
#UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D)
|
|
hyp.SetSource3DShape( solid )
|
|
if not mesh is None and isinstance(mesh, Mesh):
|
|
mesh = mesh.GetMesh()
|
|
hyp.SetSourceMesh( mesh )
|
|
if srcV1 and srcV2 and tgtV1 and tgtV2:
|
|
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
|
|
#elif srcV1 or srcV2 or tgtV1 or tgtV2:
|
|
return hyp
|
|
|
|
## Checks if the given "SourceShape3D" hypothesis has the same parameters as given arguments
|
|
#def CompareSourceShape3D(self, hyp, args):
|
|
# # seems to be not really useful to reuse existing "SourceShape3D" hypothesis
|
|
# return False
|
|
|
|
|
|
# Public class: Mesh_Prism
|
|
# ------------------------
|
|
|
|
## Defines a 3D extrusion algorithm
|
|
# @ingroup l3_algos_3dextr
|
|
#
|
|
class Mesh_Prism3D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Prism_3D")
|
|
|
|
# Public class: Mesh_RadialPrism
|
|
# -------------------------------
|
|
|
|
## Defines a Radial Prism 3D algorithm
|
|
# @ingroup l3_algos_radialp
|
|
#
|
|
class Mesh_RadialPrism3D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "RadialPrism_3D")
|
|
|
|
self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0)
|
|
self.nbLayers = None
|
|
|
|
## Return 3D hypothesis holding the 1D one
|
|
def Get3DHypothesis(self):
|
|
return self.distribHyp
|
|
|
|
## Private method creating a 1D hypothesis and storing it in the LayerDistribution
|
|
# hypothesis. Returns the created hypothesis
|
|
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
|
|
#print "OwnHypothesis",hypType
|
|
if not self.nbLayers is None:
|
|
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
|
|
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
|
|
study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
|
|
self.mesh.smeshpyD.SetCurrentStudy( None )
|
|
hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
|
|
self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
|
|
self.distribHyp.SetLayerDistribution( hyp )
|
|
return hyp
|
|
|
|
## Defines "NumberOfLayers" hypothesis, specifying the number of layers of
|
|
# prisms to build between the inner and outer shells
|
|
# @param n number of layers
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
def NumberOfLayers(self, n, UseExisting=0):
|
|
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
|
|
self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareNumberOfLayers)
|
|
self.nbLayers.SetNumberOfLayers( n )
|
|
return self.nbLayers
|
|
|
|
## Checks if the given "NumberOfLayers" hypothesis has the same parameters as the given arguments
|
|
def CompareNumberOfLayers(self, hyp, args):
|
|
return IsEqual(hyp.GetNumberOfLayers(), args[0])
|
|
|
|
## Defines "LocalLength" hypothesis, specifying the segment length
|
|
# to build between the inner and the outer shells
|
|
# @param l the length of segments
|
|
# @param p the precision of rounding
|
|
def LocalLength(self, l, p=1e-07):
|
|
hyp = self.OwnHypothesis("LocalLength", [l,p])
|
|
hyp.SetLength(l)
|
|
hyp.SetPrecision(p)
|
|
return hyp
|
|
|
|
## Defines "NumberOfSegments" hypothesis, specifying the number of layers of
|
|
# prisms to build between the inner and the outer shells.
|
|
# @param n the number of layers
|
|
# @param s the scale factor (optional)
|
|
def NumberOfSegments(self, n, s=[]):
|
|
if s == []:
|
|
hyp = self.OwnHypothesis("NumberOfSegments", [n])
|
|
else:
|
|
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
|
|
hyp.SetDistrType( 1 )
|
|
hyp.SetScaleFactor(s)
|
|
hyp.SetNumberOfSegments(n)
|
|
return hyp
|
|
|
|
## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments
|
|
# to build between the inner and the outer shells with a length that changes in arithmetic progression
|
|
# @param start the length of the first segment
|
|
# @param end the length of the last segment
|
|
def Arithmetic1D(self, start, end ):
|
|
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Defines "StartEndLength" hypothesis, specifying distribution of segments
|
|
# to build between the inner and the outer shells as geometric length increasing
|
|
# @param start for the length of the first segment
|
|
# @param end for the length of the last segment
|
|
def StartEndLength(self, start, end):
|
|
hyp = self.OwnHypothesis("StartEndLength", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Defines "AutomaticLength" hypothesis, specifying the number of segments
|
|
# to build between the inner and outer shells
|
|
# @param fineness defines the quality of the mesh within the range [0-1]
|
|
def AutomaticLength(self, fineness=0):
|
|
hyp = self.OwnHypothesis("AutomaticLength")
|
|
hyp.SetFineness( fineness )
|
|
return hyp
|
|
|
|
# Public class: Mesh_RadialQuadrangle1D2D
|
|
# -------------------------------
|
|
|
|
## Defines a Radial Quadrangle 1D2D algorithm
|
|
# @ingroup l2_algos_radialq
|
|
#
|
|
class Mesh_RadialQuadrangle1D2D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "RadialQuadrangle_1D2D")
|
|
|
|
self.distribHyp = None #self.Hypothesis("LayerDistribution2D", UseExisting=0)
|
|
self.nbLayers = None
|
|
|
|
## Return 2D hypothesis holding the 1D one
|
|
def Get2DHypothesis(self):
|
|
return self.distribHyp
|
|
|
|
## Private method creating a 1D hypothesis and storing it in the LayerDistribution
|
|
# hypothesis. Returns the created hypothesis
|
|
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
|
|
#print "OwnHypothesis",hypType
|
|
if self.nbLayers:
|
|
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
|
|
if self.distribHyp is None:
|
|
self.distribHyp = self.Hypothesis("LayerDistribution2D", UseExisting=0)
|
|
else:
|
|
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
|
|
study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
|
|
self.mesh.smeshpyD.SetCurrentStudy( None )
|
|
hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
|
|
self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
|
|
self.distribHyp.SetLayerDistribution( hyp )
|
|
return hyp
|
|
|
|
## Defines "NumberOfLayers" hypothesis, specifying the number of layers
|
|
# @param n number of layers
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
def NumberOfLayers(self, n, UseExisting=0):
|
|
if self.distribHyp:
|
|
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
|
|
self.nbLayers = self.Hypothesis("NumberOfLayers2D", [n], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareNumberOfLayers)
|
|
self.nbLayers.SetNumberOfLayers( n )
|
|
return self.nbLayers
|
|
|
|
## Checks if the given "NumberOfLayers" hypothesis has the same parameters as the given arguments
|
|
def CompareNumberOfLayers(self, hyp, args):
|
|
return IsEqual(hyp.GetNumberOfLayers(), args[0])
|
|
|
|
## Defines "LocalLength" hypothesis, specifying the segment length
|
|
# @param l the length of segments
|
|
# @param p the precision of rounding
|
|
def LocalLength(self, l, p=1e-07):
|
|
hyp = self.OwnHypothesis("LocalLength", [l,p])
|
|
hyp.SetLength(l)
|
|
hyp.SetPrecision(p)
|
|
return hyp
|
|
|
|
## Defines "NumberOfSegments" hypothesis, specifying the number of layers
|
|
# @param n the number of layers
|
|
# @param s the scale factor (optional)
|
|
def NumberOfSegments(self, n, s=[]):
|
|
if s == []:
|
|
hyp = self.OwnHypothesis("NumberOfSegments", [n])
|
|
else:
|
|
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
|
|
hyp.SetDistrType( 1 )
|
|
hyp.SetScaleFactor(s)
|
|
hyp.SetNumberOfSegments(n)
|
|
return hyp
|
|
|
|
## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments
|
|
# with a length that changes in arithmetic progression
|
|
# @param start the length of the first segment
|
|
# @param end the length of the last segment
|
|
def Arithmetic1D(self, start, end ):
|
|
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Defines "StartEndLength" hypothesis, specifying distribution of segments
|
|
# as geometric length increasing
|
|
# @param start for the length of the first segment
|
|
# @param end for the length of the last segment
|
|
def StartEndLength(self, start, end):
|
|
hyp = self.OwnHypothesis("StartEndLength", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Defines "AutomaticLength" hypothesis, specifying the number of segments
|
|
# @param fineness defines the quality of the mesh within the range [0-1]
|
|
def AutomaticLength(self, fineness=0):
|
|
hyp = self.OwnHypothesis("AutomaticLength")
|
|
hyp.SetFineness( fineness )
|
|
return hyp
|
|
|
|
|
|
# Public class: Mesh_UseExistingElements
|
|
# --------------------------------------
|
|
## Defines a Radial Quadrangle 1D2D algorithm
|
|
# @ingroup l3_algos_basic
|
|
#
|
|
class Mesh_UseExistingElements(Mesh_Algorithm):
|
|
|
|
def __init__(self, dim, mesh, geom=0):
|
|
if dim == 1:
|
|
self.Create(mesh, geom, "Import_1D")
|
|
else:
|
|
self.Create(mesh, geom, "Import_1D2D")
|
|
return
|
|
|
|
## Defines "Source edges" hypothesis, specifying groups of edges to import
|
|
# @param groups list of groups of edges
|
|
# @param toCopyMesh if True, the whole mesh \a groups belong to is imported
|
|
# @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
def SourceEdges(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False):
|
|
if self.algo.GetName() != "Import_1D":
|
|
raise ValueError, "algoritm dimension mismatch"
|
|
for group in groups:
|
|
AssureGeomPublished( self.mesh, group )
|
|
hyp = self.Hypothesis("ImportSource1D", [groups, toCopyMesh, toCopyGroups],
|
|
UseExisting=UseExisting, CompareMethod=self._compareHyp)
|
|
hyp.SetSourceEdges(groups)
|
|
hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups)
|
|
return hyp
|
|
|
|
## Defines "Source faces" hypothesis, specifying groups of faces to import
|
|
# @param groups list of groups of faces
|
|
# @param toCopyMesh if True, the whole mesh \a groups belong to is imported
|
|
# @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
def SourceFaces(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False):
|
|
if self.algo.GetName() == "Import_1D":
|
|
raise ValueError, "algoritm dimension mismatch"
|
|
for group in groups:
|
|
AssureGeomPublished( self.mesh, group )
|
|
hyp = self.Hypothesis("ImportSource2D", [groups, toCopyMesh, toCopyGroups],
|
|
UseExisting=UseExisting, CompareMethod=self._compareHyp)
|
|
hyp.SetSourceFaces(groups)
|
|
hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups)
|
|
return hyp
|
|
|
|
def _compareHyp(self,hyp,args):
|
|
if hasattr( hyp, "GetSourceEdges"):
|
|
entries = hyp.GetSourceEdges()
|
|
else:
|
|
entries = hyp.GetSourceFaces()
|
|
groups = args[0]
|
|
toCopyMesh,toCopyGroups = hyp.GetCopySourceMesh()
|
|
if len(entries)==len(groups) and toCopyMesh==args[1] and toCopyGroups==args[2]:
|
|
entries2 = []
|
|
study = self.mesh.smeshpyD.GetCurrentStudy()
|
|
if study:
|
|
for g in groups:
|
|
ior = salome.orb.object_to_string(g)
|
|
sobj = study.FindObjectIOR(ior)
|
|
if sobj: entries2.append( sobj.GetID() )
|
|
pass
|
|
pass
|
|
entries.sort()
|
|
entries2.sort()
|
|
return entries == entries2
|
|
return False
|
|
|
|
# Public class: Mesh_Cartesian_3D
|
|
# --------------------------------------
|
|
## Defines a Body Fitting 3D algorithm
|
|
# @ingroup l3_algos_basic
|
|
#
|
|
class Mesh_Cartesian_3D(Mesh_Algorithm):
|
|
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "Cartesian_3D")
|
|
return
|
|
|
|
## Defines "Body Fitting parameters" hypothesis
|
|
# @param xCoords coordinates of grid nodes along the X asix
|
|
# @param yCoords coordinates of grid nodes along the Y asix
|
|
# @param zCoords coordinates of grid nodes along the Z asix
|
|
# @param sizeThreshold size (> 1.0) defines a minimal size of a polyhedron so that
|
|
# a polyhedron of size less than hexSize/sizeThreshold is not created
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
def SetGrid(self, xCoords, yCoords, zCoords, sizeThreshold, UseExisting=False):
|
|
hyp = self.Hypothesis("CartesianParameters3D", [xCoords, yCoords, zCoords, sizeThreshold],
|
|
UseExisting=UseExisting, CompareMethod=self._compareHyp)
|
|
hyp.SetGrid(xCoords, 0 )
|
|
hyp.SetGrid(yCoords, 1 )
|
|
hyp.SetGrid(zCoords, 2 )
|
|
hyp.SetSizeThreshold( sizeThreshold )
|
|
return hyp
|
|
|
|
## Defines "Body Fitting parameters" hypothesis
|
|
# @param xSpaceFuns functions f(t) defining spacing value at given point on X axis.
|
|
# Parameter t of \axSpaceFuns is a position [0.,1.] withing bounding box of
|
|
# the shape to mesh or withing an interval defined by internal points
|
|
# @param ySpaceFuns functions f(t) defining spacing value at given point on Y axis.
|
|
# @param zSpaceFuns functions f(t) defining spacing value at given point on Z axis.
|
|
# @param xInternalPoints points (0.,1.) dividing a grid into parts along X direction.
|
|
# Number of \axInternalPoints must be one less than number of \axSpaceFuns
|
|
# @param yInternalPoints points (0.,1.) dividing a grid into parts along Y direction.
|
|
# @param zInternalPoints points (0.,1.) dividing a grid into parts along Z direction.
|
|
# @param sizeThreshold size (> 1.0) defines a minimal size of a polyhedron so that
|
|
# a polyhedron of size less than hexSize/sizeThreshold is not created
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
def SetSpacing(self,
|
|
xSpaceFuns, ySpaceFuns, zSpaceFuns,
|
|
xInternalPoints, yInternalPoints, zInternalPoints,
|
|
sizeThreshold, UseExisting=False):
|
|
hyp = self.Hypothesis("CartesianParameters3D",
|
|
[xSpaceFuns, ySpaceFuns, zSpaceFuns, \
|
|
xInternalPoints, yInternalPoints, zInternalPoints],
|
|
UseExisting=UseExisting, CompareMethod=self._compareHyp)
|
|
hyp.SetGridSpacing(xSpaceFuns, xInternalPoints, 0)
|
|
hyp.SetGridSpacing(ySpaceFuns, yInternalPoints, 1)
|
|
hyp.SetGridSpacing(zSpaceFuns, zInternalPoints, 2)
|
|
hyp.SetSizeThreshold( sizeThreshold )
|
|
return hyp
|
|
|
|
def _compareHyp(self,hyp,args):
|
|
# not implemented yet
|
|
return False
|
|
|
|
# Public class: Mesh_UseExisting
|
|
# -------------------------------
|
|
class Mesh_UseExisting(Mesh_Algorithm):
|
|
|
|
def __init__(self, dim, mesh, geom=0):
|
|
if dim == 1:
|
|
self.Create(mesh, geom, "UseExisting_1D")
|
|
else:
|
|
self.Create(mesh, geom, "UseExisting_2D")
|
|
|
|
|
|
import salome_notebook
|
|
notebook = salome_notebook.notebook
|
|
|
|
##Return values of the notebook variables
|
|
def ParseParameters(last, nbParams,nbParam, value):
|
|
result = None
|
|
strResult = ""
|
|
counter = 0
|
|
listSize = len(last)
|
|
for n in range(0,nbParams):
|
|
if n+1 != nbParam:
|
|
if counter < listSize:
|
|
strResult = strResult + last[counter]
|
|
else:
|
|
strResult = strResult + ""
|
|
else:
|
|
if isinstance(value, str):
|
|
if notebook.isVariable(value):
|
|
result = notebook.get(value)
|
|
strResult=strResult+value
|
|
else:
|
|
raise RuntimeError, "Variable with name '" + value + "' doesn't exist!!!"
|
|
else:
|
|
strResult=strResult+str(value)
|
|
result = value
|
|
if nbParams - 1 != counter:
|
|
strResult=strResult+var_separator #":"
|
|
counter = counter+1
|
|
return result, strResult
|
|
|
|
#Wrapper class for StdMeshers_LocalLength hypothesis
|
|
class LocalLength(StdMeshers._objref_StdMeshers_LocalLength):
|
|
|
|
## Set Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
def SetLength(self, length):
|
|
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_LocalLength.GetLastParameters(self),2,1,length)
|
|
StdMeshers._objref_StdMeshers_LocalLength.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_LocalLength.SetLength(self,length)
|
|
|
|
## Set Precision parameter value
|
|
# @param precision numerical value or name of variable from notebook
|
|
def SetPrecision(self, precision):
|
|
precision,parameters = ParseParameters(StdMeshers._objref_StdMeshers_LocalLength.GetLastParameters(self),2,2,precision)
|
|
StdMeshers._objref_StdMeshers_LocalLength.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_LocalLength.SetPrecision(self, precision)
|
|
|
|
#Registering the new proxy for LocalLength
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_LocalLength._NP_RepositoryId, LocalLength)
|
|
|
|
|
|
#Wrapper class for StdMeshers_LayerDistribution hypothesis
|
|
class LayerDistribution(StdMeshers._objref_StdMeshers_LayerDistribution):
|
|
|
|
def SetLayerDistribution(self, hypo):
|
|
StdMeshers._objref_StdMeshers_LayerDistribution.SetParameters(self,hypo.GetParameters())
|
|
hypo.ClearParameters();
|
|
StdMeshers._objref_StdMeshers_LayerDistribution.SetLayerDistribution(self,hypo)
|
|
|
|
#Registering the new proxy for LayerDistribution
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_LayerDistribution._NP_RepositoryId, LayerDistribution)
|
|
|
|
#Wrapper class for StdMeshers_SegmentLengthAroundVertex hypothesis
|
|
class SegmentLengthAroundVertex(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex):
|
|
|
|
## Set Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
def SetLength(self, length):
|
|
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.GetLastParameters(self),1,1,length)
|
|
StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.SetLength(self,length)
|
|
|
|
#Registering the new proxy for SegmentLengthAroundVertex
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex._NP_RepositoryId, SegmentLengthAroundVertex)
|
|
|
|
|
|
#Wrapper class for StdMeshers_Arithmetic1D hypothesis
|
|
class Arithmetic1D(StdMeshers._objref_StdMeshers_Arithmetic1D):
|
|
|
|
## Set Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
# @param isStart true is length is Start Length, otherwise false
|
|
def SetLength(self, length, isStart):
|
|
nb = 2
|
|
if isStart:
|
|
nb = 1
|
|
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_Arithmetic1D.GetLastParameters(self),2,nb,length)
|
|
StdMeshers._objref_StdMeshers_Arithmetic1D.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_Arithmetic1D.SetLength(self,length,isStart)
|
|
|
|
#Registering the new proxy for Arithmetic1D
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_Arithmetic1D._NP_RepositoryId, Arithmetic1D)
|
|
|
|
#Wrapper class for StdMeshers_Deflection1D hypothesis
|
|
class Deflection1D(StdMeshers._objref_StdMeshers_Deflection1D):
|
|
|
|
## Set Deflection parameter value
|
|
# @param deflection numerical value or name of variable from notebook
|
|
def SetDeflection(self, deflection):
|
|
deflection,parameters = ParseParameters(StdMeshers._objref_StdMeshers_Deflection1D.GetLastParameters(self),1,1,deflection)
|
|
StdMeshers._objref_StdMeshers_Deflection1D.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_Deflection1D.SetDeflection(self,deflection)
|
|
|
|
#Registering the new proxy for Deflection1D
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_Deflection1D._NP_RepositoryId, Deflection1D)
|
|
|
|
#Wrapper class for StdMeshers_StartEndLength hypothesis
|
|
class StartEndLength(StdMeshers._objref_StdMeshers_StartEndLength):
|
|
|
|
## Set Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
# @param isStart true is length is Start Length, otherwise false
|
|
def SetLength(self, length, isStart):
|
|
nb = 2
|
|
if isStart:
|
|
nb = 1
|
|
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_StartEndLength.GetLastParameters(self),2,nb,length)
|
|
StdMeshers._objref_StdMeshers_StartEndLength.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_StartEndLength.SetLength(self,length,isStart)
|
|
|
|
#Registering the new proxy for StartEndLength
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_StartEndLength._NP_RepositoryId, StartEndLength)
|
|
|
|
#Wrapper class for StdMeshers_MaxElementArea hypothesis
|
|
class MaxElementArea(StdMeshers._objref_StdMeshers_MaxElementArea):
|
|
|
|
## Set Max Element Area parameter value
|
|
# @param area numerical value or name of variable from notebook
|
|
def SetMaxElementArea(self, area):
|
|
area ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_MaxElementArea.GetLastParameters(self),1,1,area)
|
|
StdMeshers._objref_StdMeshers_MaxElementArea.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_MaxElementArea.SetMaxElementArea(self,area)
|
|
|
|
#Registering the new proxy for MaxElementArea
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_MaxElementArea._NP_RepositoryId, MaxElementArea)
|
|
|
|
|
|
#Wrapper class for StdMeshers_MaxElementVolume hypothesis
|
|
class MaxElementVolume(StdMeshers._objref_StdMeshers_MaxElementVolume):
|
|
|
|
## Set Max Element Volume parameter value
|
|
# @param volume numerical value or name of variable from notebook
|
|
def SetMaxElementVolume(self, volume):
|
|
volume ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_MaxElementVolume.GetLastParameters(self),1,1,volume)
|
|
StdMeshers._objref_StdMeshers_MaxElementVolume.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_MaxElementVolume.SetMaxElementVolume(self,volume)
|
|
|
|
#Registering the new proxy for MaxElementVolume
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_MaxElementVolume._NP_RepositoryId, MaxElementVolume)
|
|
|
|
|
|
#Wrapper class for StdMeshers_NumberOfLayers hypothesis
|
|
class NumberOfLayers(StdMeshers._objref_StdMeshers_NumberOfLayers):
|
|
|
|
## Set Number Of Layers parameter value
|
|
# @param nbLayers numerical value or name of variable from notebook
|
|
def SetNumberOfLayers(self, nbLayers):
|
|
nbLayers ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_NumberOfLayers.GetLastParameters(self),1,1,nbLayers)
|
|
StdMeshers._objref_StdMeshers_NumberOfLayers.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_NumberOfLayers.SetNumberOfLayers(self,nbLayers)
|
|
|
|
#Registering the new proxy for NumberOfLayers
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_NumberOfLayers._NP_RepositoryId, NumberOfLayers)
|
|
|
|
#Wrapper class for StdMeshers_NumberOfSegments hypothesis
|
|
class NumberOfSegments(StdMeshers._objref_StdMeshers_NumberOfSegments):
|
|
|
|
## Set Number Of Segments parameter value
|
|
# @param nbSeg numerical value or name of variable from notebook
|
|
def SetNumberOfSegments(self, nbSeg):
|
|
lastParameters = StdMeshers._objref_StdMeshers_NumberOfSegments.GetLastParameters(self)
|
|
nbSeg , parameters = ParseParameters(lastParameters,1,1,nbSeg)
|
|
StdMeshers._objref_StdMeshers_NumberOfSegments.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_NumberOfSegments.SetNumberOfSegments(self,nbSeg)
|
|
|
|
## Set Scale Factor parameter value
|
|
# @param factor numerical value or name of variable from notebook
|
|
def SetScaleFactor(self, factor):
|
|
factor, parameters = ParseParameters(StdMeshers._objref_StdMeshers_NumberOfSegments.GetLastParameters(self),2,2,factor)
|
|
StdMeshers._objref_StdMeshers_NumberOfSegments.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_NumberOfSegments.SetScaleFactor(self,factor)
|
|
|
|
#Registering the new proxy for NumberOfSegments
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_NumberOfSegments._NP_RepositoryId, NumberOfSegments)
|
|
|
|
if not noNETGENPlugin:
|
|
#Wrapper class for NETGENPlugin_Hypothesis hypothesis
|
|
class NETGENPlugin_Hypothesis(NETGENPlugin._objref_NETGENPlugin_Hypothesis):
|
|
|
|
## Set Max Size parameter value
|
|
# @param maxsize numerical value or name of variable from notebook
|
|
def SetMaxSize(self, maxsize):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
|
|
maxsize, parameters = ParseParameters(lastParameters,4,1,maxsize)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetMaxSize(self,maxsize)
|
|
|
|
## Set Growth Rate parameter value
|
|
# @param value numerical value or name of variable from notebook
|
|
def SetGrowthRate(self, value):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
|
|
value, parameters = ParseParameters(lastParameters,4,2,value)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetGrowthRate(self,value)
|
|
|
|
## Set Number of Segments per Edge parameter value
|
|
# @param value numerical value or name of variable from notebook
|
|
def SetNbSegPerEdge(self, value):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
|
|
value, parameters = ParseParameters(lastParameters,4,3,value)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerEdge(self,value)
|
|
|
|
## Set Number of Segments per Radius parameter value
|
|
# @param value numerical value or name of variable from notebook
|
|
def SetNbSegPerRadius(self, value):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
|
|
value, parameters = ParseParameters(lastParameters,4,4,value)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerRadius(self,value)
|
|
|
|
#Registering the new proxy for NETGENPlugin_Hypothesis
|
|
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis._NP_RepositoryId, NETGENPlugin_Hypothesis)
|
|
|
|
|
|
#Wrapper class for NETGENPlugin_Hypothesis_2D hypothesis
|
|
class NETGENPlugin_Hypothesis_2D(NETGENPlugin_Hypothesis,NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D):
|
|
pass
|
|
|
|
#Registering the new proxy for NETGENPlugin_Hypothesis_2D
|
|
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D._NP_RepositoryId, NETGENPlugin_Hypothesis_2D)
|
|
|
|
#Wrapper class for NETGENPlugin_SimpleHypothesis_2D hypothesis
|
|
class NETGEN_SimpleParameters_2D(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D):
|
|
|
|
## Set Number of Segments parameter value
|
|
# @param nbSeg numerical value or name of variable from notebook
|
|
def SetNumberOfSegments(self, nbSeg):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
|
|
nbSeg, parameters = ParseParameters(lastParameters,2,1,nbSeg)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetNumberOfSegments(self, nbSeg)
|
|
|
|
## Set Local Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
def SetLocalLength(self, length):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
|
|
length, parameters = ParseParameters(lastParameters,2,1,length)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetLocalLength(self, length)
|
|
|
|
## Set Max Element Area parameter value
|
|
# @param area numerical value or name of variable from notebook
|
|
def SetMaxElementArea(self, area):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
|
|
area, parameters = ParseParameters(lastParameters,2,2,area)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetMaxElementArea(self, area)
|
|
|
|
def LengthFromEdges(self):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
|
|
value = 0;
|
|
value, parameters = ParseParameters(lastParameters,2,2,value)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.LengthFromEdges(self)
|
|
|
|
#Registering the new proxy for NETGEN_SimpleParameters_2D
|
|
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D._NP_RepositoryId, NETGEN_SimpleParameters_2D)
|
|
|
|
|
|
#Wrapper class for NETGENPlugin_SimpleHypothesis_3D hypothesis
|
|
class NETGEN_SimpleParameters_3D(NETGEN_SimpleParameters_2D,NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D):
|
|
## Set Max Element Volume parameter value
|
|
# @param volume numerical value or name of variable from notebook
|
|
def SetMaxElementVolume(self, volume):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
|
|
volume, parameters = ParseParameters(lastParameters,3,3,volume)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetMaxElementVolume(self, volume)
|
|
|
|
def LengthFromFaces(self):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
|
|
value = 0;
|
|
value, parameters = ParseParameters(lastParameters,3,3,value)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.LengthFromFaces(self)
|
|
|
|
#Registering the new proxy for NETGEN_SimpleParameters_3D
|
|
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D._NP_RepositoryId, NETGEN_SimpleParameters_3D)
|
|
|
|
pass # if not noNETGENPlugin:
|
|
|
|
class Pattern(SMESH._objref_SMESH_Pattern):
|
|
|
|
def ApplyToMeshFaces(self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse):
|
|
flag = False
|
|
if isinstance(theNodeIndexOnKeyPoint1,str):
|
|
flag = True
|
|
theNodeIndexOnKeyPoint1,Parameters = geompyDC.ParseParameters(theNodeIndexOnKeyPoint1)
|
|
if flag:
|
|
theNodeIndexOnKeyPoint1 -= 1
|
|
theMesh.SetParameters(Parameters)
|
|
return SMESH._objref_SMESH_Pattern.ApplyToMeshFaces( self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse )
|
|
|
|
def ApplyToHexahedrons(self, theMesh, theVolumesIDs, theNode000Index, theNode001Index):
|
|
flag0 = False
|
|
flag1 = False
|
|
if isinstance(theNode000Index,str):
|
|
flag0 = True
|
|
if isinstance(theNode001Index,str):
|
|
flag1 = True
|
|
theNode000Index,theNode001Index,Parameters = geompyDC.ParseParameters(theNode000Index,theNode001Index)
|
|
if flag0:
|
|
theNode000Index -= 1
|
|
if flag1:
|
|
theNode001Index -= 1
|
|
theMesh.SetParameters(Parameters)
|
|
return SMESH._objref_SMESH_Pattern.ApplyToHexahedrons( self, theMesh, theVolumesIDs, theNode000Index, theNode001Index )
|
|
|
|
#Registering the new proxy for Pattern
|
|
omniORB.registerObjref(SMESH._objref_SMESH_Pattern._NP_RepositoryId, Pattern)
|