smesh/src/StdMeshers/StdMeshers_ViscousLayers2D.cxx
2015-02-13 12:38:36 +04:00

2776 lines
104 KiB
C++

// Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_ViscousLayers2D.cxx
// Created : 23 Jul 2012
// Author : Edward AGAPOV (eap)
#include "StdMeshers_ViscousLayers2D.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FaceOfNodes.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_SetIterator.hxx"
#include "SMESHDS_Group.hxx"
#include "SMESHDS_Hypothesis.hxx"
#include "SMESH_Algo.hxx"
#include "SMESH_ComputeError.hxx"
#include "SMESH_ControlsDef.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Group.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_ProxyMesh.hxx"
#include "SMESH_Quadtree.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "utilities.h"
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Curve2d.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_B2d.hxx>
#include <Bnd_B3d.hxx>
#include <ElCLib.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom2dInt_GInter.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <IntRes2d_IntersectionPoint.hxx>
#include <Precision.hxx>
#include <Standard_ErrorHandler.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Vertex.hxx>
#include <gp_Ax1.hxx>
#include <gp_Vec.hxx>
#include <gp_XY.hxx>
#include <list>
#include <string>
#include <cmath>
#include <limits>
#ifdef _DEBUG_
//#define __myDEBUG
#endif
using namespace std;
//================================================================================
namespace VISCOUS_2D
{
typedef int TGeomID;
//--------------------------------------------------------------------------------
/*!
* \brief Proxy Mesh of FACE with viscous layers. It's needed only to
* redefine newSubmesh().
*/
struct _ProxyMeshOfFace : public SMESH_ProxyMesh
{
//---------------------------------------------------
// Proxy sub-mesh of an EDGE. It contains nodes in _uvPtStructVec.
struct _EdgeSubMesh : public SMESH_ProxyMesh::SubMesh
{
_EdgeSubMesh(int index=0): SubMesh(index) {}
//virtual int NbElements() const { return _elements.size()+1; }
virtual int NbNodes() const { return Max( 0, _uvPtStructVec.size()-2 ); }
void SetUVPtStructVec(UVPtStructVec& vec) { _uvPtStructVec.swap( vec ); }
};
_ProxyMeshOfFace(const SMESH_Mesh& mesh): SMESH_ProxyMesh(mesh) {}
_EdgeSubMesh* GetEdgeSubMesh(int ID) { return (_EdgeSubMesh*) getProxySubMesh(ID); }
virtual SubMesh* newSubmesh(int index=0) const { return new _EdgeSubMesh(index); }
};
//--------------------------------------------------------------------------------
/*!
* \brief SMESH_subMeshEventListener used to store _ProxyMeshOfFace, computed
* by _ViscousBuilder2D, in a SMESH_subMesh of the FACE.
* This is to delete _ProxyMeshOfFace when StdMeshers_ViscousLayers2D
* hypothesis is modified
*/
struct _ProxyMeshHolder : public SMESH_subMeshEventListener
{
_ProxyMeshHolder( const TopoDS_Face& face,
SMESH_ProxyMesh::Ptr& mesh)
: SMESH_subMeshEventListener( /*deletable=*/true, Name() )
{
SMESH_subMesh* faceSM = mesh->GetMesh()->GetSubMesh( face );
faceSM->SetEventListener( this, new _Data( mesh ), faceSM );
}
// Finds a proxy mesh of face
static SMESH_ProxyMesh::Ptr FindProxyMeshOfFace( const TopoDS_Shape& face,
SMESH_Mesh& mesh )
{
SMESH_ProxyMesh::Ptr proxy;
SMESH_subMesh* faceSM = mesh.GetSubMesh( face );
if ( EventListenerData* ld = faceSM->GetEventListenerData( Name() ))
proxy = static_cast< _Data* >( ld )->_mesh;
return proxy;
}
// Treat events
void ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* subMesh,
EventListenerData* data,
const SMESH_Hypothesis* /*hyp*/)
{
if ( event == SMESH_subMesh::CLEAN && eventType == SMESH_subMesh::COMPUTE_EVENT)
((_Data*) data)->_mesh.reset();
}
private:
// holder of a proxy mesh
struct _Data : public SMESH_subMeshEventListenerData
{
SMESH_ProxyMesh::Ptr _mesh;
_Data( SMESH_ProxyMesh::Ptr& mesh )
:SMESH_subMeshEventListenerData( /*isDeletable=*/true), _mesh( mesh )
{}
};
// Returns identifier string
static const char* Name() { return "VISCOUS_2D::_ProxyMeshHolder"; }
};
struct _PolyLine;
//--------------------------------------------------------------------------------
/*!
* \brief Segment connecting inner ends of two _LayerEdge's.
*/
struct _Segment
{
const gp_XY* _uv[2]; // poiter to _LayerEdge::_uvIn
int _indexInLine; // position in _PolyLine
_Segment() {}
_Segment(const gp_XY& p1, const gp_XY& p2):_indexInLine(-1) { _uv[0] = &p1; _uv[1] = &p2; }
const gp_XY& p1() const { return *_uv[0]; }
const gp_XY& p2() const { return *_uv[1]; }
};
//--------------------------------------------------------------------------------
/*!
* \brief Tree of _Segment's used for a faster search of _Segment's.
*/
struct _SegmentTree : public SMESH_Quadtree
{
typedef boost::shared_ptr< _SegmentTree > Ptr;
_SegmentTree( const vector< _Segment >& segments );
void GetSegmentsNear( const _Segment& seg, vector< const _Segment* >& found );
void GetSegmentsNear( const gp_Ax2d& ray, vector< const _Segment* >& found );
protected:
_SegmentTree() {}
_SegmentTree* newChild() const { return new _SegmentTree; }
void buildChildrenData();
Bnd_B2d* buildRootBox();
private:
static int maxNbSegInLeaf() { return 5; }
struct _SegBox
{
const _Segment* _seg;
bool _iMin[2];
void Set( const _Segment& seg )
{
_seg = &seg;
_iMin[0] = ( seg._uv[1]->X() < seg._uv[0]->X() );
_iMin[1] = ( seg._uv[1]->Y() < seg._uv[0]->Y() );
}
bool IsOut( const _Segment& seg ) const;
bool IsOut( const gp_Ax2d& ray ) const;
};
vector< _SegBox > _segments;
};
//--------------------------------------------------------------------------------
/*!
* \brief Edge normal to FACE boundary, connecting a point on EDGE (_uvOut)
* and a point of a layer internal boundary (_uvIn)
*/
struct _LayerEdge
{
gp_XY _uvOut; // UV on the FACE boundary
gp_XY _uvIn; // UV inside the FACE
double _length2D; // distance between _uvOut and _uvIn
bool _isBlocked;// is more inflation possible or not
gp_XY _normal2D; // to curve
double _len2dTo3dRatio; // to pass 2D <--> 3D
gp_Ax2d _ray; // a ray starting at _uvOut
vector<gp_XY> _uvRefined; // divisions by layers
bool SetNewLength( const double length );
#ifdef _DEBUG_
int _ID;
#endif
};
//--------------------------------------------------------------------------------
/*!
* \brief Poly line composed of _Segment's of one EDGE.
* It's used to detect intersection of inflated layers by intersecting
* _Segment's in 2D.
*/
struct _PolyLine
{
StdMeshers_FaceSide* _wire;
int _edgeInd; // index of my EDGE in _wire
bool _advancable; // true if there is a viscous layer on my EDGE
bool _isStraight2D;// pcurve type
_PolyLine* _leftLine; // lines of neighbour EDGE's
_PolyLine* _rightLine;
int _firstPntInd; // index in vector<UVPtStruct> of _wire
int _lastPntInd;
int _index; // index in _ViscousBuilder2D::_polyLineVec
vector< _LayerEdge > _lEdges; /* _lEdges[0] is usually is not treated
as it is equal to the last one of the _leftLine */
vector< _Segment > _segments; // segments connecting _uvIn's of _lEdges
_SegmentTree::Ptr _segTree;
vector< _PolyLine* > _reachableLines; // lines able to interfere with my layer
vector< const SMDS_MeshNode* > _leftNodes; // nodes built from a left VERTEX
vector< const SMDS_MeshNode* > _rightNodes; // nodes built from a right VERTEX
typedef vector< _Segment >::iterator TSegIterator;
typedef vector< _LayerEdge >::iterator TEdgeIterator;
TIDSortedElemSet _newFaces; // faces generated from this line
bool IsCommonEdgeShared( const _PolyLine& other );
size_t FirstLEdge() const
{
return ( _leftLine->_advancable && _lEdges.size() > 2 ) ? 1 : 0;
}
bool IsAdjacent( const _Segment& seg, const _LayerEdge* LE=0 ) const
{
if ( LE /*&& seg._indexInLine < _lEdges.size()*/ )
return ( seg._uv[0] == & LE->_uvIn ||
seg._uv[1] == & LE->_uvIn );
return ( & seg == &_leftLine->_segments.back() ||
& seg == &_rightLine->_segments[0] );
}
bool IsConcave() const;
};
//--------------------------------------------------------------------------------
/*!
* \brief Intersector of _Segment's
*/
struct _SegmentIntersection
{
gp_XY _vec1, _vec2; // Vec( _seg.p1(), _seg.p2() )
gp_XY _vec21; // Vec( _seg2.p1(), _seg1.p1() )
double _D; // _vec1.Crossed( _vec2 )
double _param1, _param2; // intersection param on _seg1 and _seg2
bool Compute(const _Segment& seg1, const _Segment& seg2, bool seg2IsRay = false )
{
// !!! If seg2IsRay, returns true at any _param2 !!!
const double eps = 1e-10;
_vec1 = seg1.p2() - seg1.p1();
_vec2 = seg2.p2() - seg2.p1();
_vec21 = seg1.p1() - seg2.p1();
_D = _vec1.Crossed(_vec2);
if ( fabs(_D) < std::numeric_limits<double>::min())
return false;
_param1 = _vec2.Crossed(_vec21) / _D;
if (_param1 < -eps || _param1 > 1 + eps )
return false;
_param2 = _vec1.Crossed(_vec21) / _D;
return seg2IsRay || ( _param2 > -eps && _param2 < 1 + eps );
}
bool Compute( const _Segment& seg1, const gp_Ax2d& ray )
{
gp_XY segEnd = ray.Location().XY() + ray.Direction().XY();
_Segment seg2( ray.Location().XY(), segEnd );
return Compute( seg1, seg2, true );
}
//gp_XY GetPoint() { return _seg1.p1() + _param1 * _vec1; }
};
//--------------------------------------------------------------------------------
typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge;
typedef StdMeshers_ViscousLayers2D THypVL;
//--------------------------------------------------------------------------------
/*!
* \brief Builder of viscous layers
*/
class _ViscousBuilder2D
{
public:
_ViscousBuilder2D(SMESH_Mesh& theMesh,
const TopoDS_Face& theFace,
vector< const THypVL* > & theHyp,
vector< TopoDS_Shape > & theHypShapes);
SMESH_ComputeErrorPtr GetError() const { return _error; }
// does it's job
SMESH_ProxyMesh::Ptr Compute();
private:
friend class ::StdMeshers_ViscousLayers2D;
bool findEdgesWithLayers();
bool makePolyLines();
bool inflate();
bool fixCollisions();
bool refine();
bool shrink();
bool improve();
bool toShrinkForAdjacent( const TopoDS_Face& adjFace,
const TopoDS_Edge& E,
const TopoDS_Vertex& V);
void setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut );
void setLayerEdgeData( _LayerEdge& lEdge,
const double u,
Handle(Geom2d_Curve)& pcurve,
Handle(Geom_Curve)& curve,
const gp_Pnt pOut,
const bool reverse,
GeomAPI_ProjectPointOnSurf* faceProj);
void adjustCommonEdge( _PolyLine& LL, _PolyLine& LR );
void calcLayersHeight(const double totalThick,
vector<double>& heights,
const THypVL* hyp);
bool removeMeshFaces(const TopoDS_Shape& face);
const THypVL* getLineHypothesis(int iPL);
double getLineThickness (int iPL);
bool error( const string& text );
SMESHDS_Mesh* getMeshDS() { return _mesh->GetMeshDS(); }
_ProxyMeshOfFace* getProxyMesh();
// debug
//void makeGroupOfLE();
private:
// input data
SMESH_Mesh* _mesh;
TopoDS_Face _face;
vector< const THypVL* > _hyps;
vector< TopoDS_Shape > _hypShapes;
// result data
SMESH_ProxyMesh::Ptr _proxyMesh;
SMESH_ComputeErrorPtr _error;
// working data
Handle(Geom_Surface) _surface;
SMESH_MesherHelper _helper;
TSideVector _faceSideVec; // wires (StdMeshers_FaceSide) of _face
vector<_PolyLine> _polyLineVec; // fronts to advance
vector< const THypVL* > _hypOfEdge; // a hyp per an EDGE of _faceSideVec
bool _is2DIsotropic; // is same U and V resoulution of _face
vector<TopoDS_Face> _clearedFaces; // FACEs whose mesh was removed by shrink()
//double _fPowN; // to compute thickness of layers
double _maxThickness; // max possible layers thickness
// sub-shapes of _face
set<TGeomID> _ignoreShapeIds; // ids of EDGEs w/o layers
set<TGeomID> _noShrinkVert; // ids of VERTEXes that are extremities
// of EDGEs along which _LayerEdge can't be inflated because no viscous layers
// defined on neighbour FACEs sharing an EDGE. Nonetheless _LayerEdge's
// are inflated along such EDGEs but then such _LayerEdge's are turned into
// a node on VERTEX, i.e. all nodes on a _LayerEdge are melded into one node.
int _nbLE; // for DEBUG
};
//================================================================================
/*!
* \brief Returns StdMeshers_ViscousLayers2D for the FACE
*/
bool findHyps(SMESH_Mesh& theMesh,
const TopoDS_Face& theFace,
vector< const StdMeshers_ViscousLayers2D* > & theHyps,
vector< TopoDS_Shape > & theAssignedTo)
{
theHyps.clear();
theAssignedTo.clear();
SMESH_HypoFilter hypFilter
( SMESH_HypoFilter::HasName( StdMeshers_ViscousLayers2D::GetHypType() ));
list< const SMESHDS_Hypothesis * > hypList;
list< TopoDS_Shape > hypShapes;
int nbHyps = theMesh.GetHypotheses
( theFace, hypFilter, hypList, /*ancestors=*/true, &hypShapes );
if ( nbHyps )
{
theHyps.reserve( nbHyps );
theAssignedTo.reserve( nbHyps );
list< const SMESHDS_Hypothesis * >::iterator hyp = hypList.begin();
list< TopoDS_Shape >::iterator shape = hypShapes.begin();
for ( ; hyp != hypList.end(); ++hyp, ++shape )
{
theHyps.push_back( static_cast< const StdMeshers_ViscousLayers2D* > ( *hyp ));
theAssignedTo.push_back( *shape );
}
}
return nbHyps;
}
//================================================================================
/*!
* \brief Returns ids of EDGEs not to create Viscous Layers on
* \param [in] theHyp - the hypothesis, holding edges either to ignore or not to.
* \param [in] theFace - the FACE whose EDGEs are checked.
* \param [in] theMesh - the mesh.
* \param [in,out] theEdgeIds - container returning EDGEs to ignore.
* \return int - number of found EDGEs of the FACE.
*/
//================================================================================
int getEdgesToIgnore( const StdMeshers_ViscousLayers2D* theHyp,
const TopoDS_Shape& theFace,
const SMESHDS_Mesh* theMesh,
set< int > & theEdgeIds)
{
int nbEdgesToIgnore = 0;
vector<TGeomID> ids = theHyp->GetBndShapes();
if ( theHyp->IsToIgnoreShapes() ) // EDGEs to ignore are given
{
for ( size_t i = 0; i < ids.size(); ++i )
{
const TopoDS_Shape& E = theMesh->IndexToShape( ids[i] );
if ( !E.IsNull() &&
E.ShapeType() == TopAbs_EDGE &&
SMESH_MesherHelper::IsSubShape( E, theFace ))
{
theEdgeIds.insert( ids[i] );
++nbEdgesToIgnore;
}
}
}
else // EDGEs to make the Viscous Layers on are given
{
TopExp_Explorer E( theFace, TopAbs_EDGE );
for ( ; E.More(); E.Next(), ++nbEdgesToIgnore )
theEdgeIds.insert( theMesh->ShapeToIndex( E.Current() ));
for ( size_t i = 0; i < ids.size(); ++i )
nbEdgesToIgnore -= theEdgeIds.erase( ids[i] );
}
return nbEdgesToIgnore;
}
} // namespace VISCOUS_2D
//================================================================================
// StdMeshers_ViscousLayers hypothesis
//
StdMeshers_ViscousLayers2D::StdMeshers_ViscousLayers2D(int hypId, int studyId, SMESH_Gen* gen)
:StdMeshers_ViscousLayers(hypId, studyId, gen)
{
_name = StdMeshers_ViscousLayers2D::GetHypType();
_param_algo_dim = -2; // auxiliary hyp used by 2D algos
}
// --------------------------------------------------------------------------------
bool StdMeshers_ViscousLayers2D::SetParametersByMesh(const SMESH_Mesh* theMesh,
const TopoDS_Shape& theShape)
{
// TODO ???
return false;
}
// --------------------------------------------------------------------------------
SMESH_ProxyMesh::Ptr
StdMeshers_ViscousLayers2D::Compute(SMESH_Mesh& theMesh,
const TopoDS_Face& theFace)
{
SMESH_ProxyMesh::Ptr pm;
vector< const StdMeshers_ViscousLayers2D* > hyps;
vector< TopoDS_Shape > hypShapes;
if ( VISCOUS_2D::findHyps( theMesh, theFace, hyps, hypShapes ))
{
VISCOUS_2D::_ViscousBuilder2D builder( theMesh, theFace, hyps, hypShapes );
pm = builder.Compute();
SMESH_ComputeErrorPtr error = builder.GetError();
if ( error && !error->IsOK() )
theMesh.GetSubMesh( theFace )->GetComputeError() = error;
else if ( !pm )
pm.reset( new SMESH_ProxyMesh( theMesh ));
if ( getenv("__ONLY__VL2D__"))
pm.reset();
}
else
{
pm.reset( new SMESH_ProxyMesh( theMesh ));
}
return pm;
}
// --------------------------------------------------------------------------------
SMESH_ComputeErrorPtr
StdMeshers_ViscousLayers2D::CheckHypothesis(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape,
SMESH_Hypothesis::Hypothesis_Status& theStatus)
{
SMESH_ComputeErrorPtr error = SMESH_ComputeError::New(COMPERR_OK);
theStatus = SMESH_Hypothesis::HYP_OK;
TopExp_Explorer exp( theShape, TopAbs_FACE );
for ( ; exp.More() && theStatus == SMESH_Hypothesis::HYP_OK; exp.Next() )
{
const TopoDS_Face& face = TopoDS::Face( exp.Current() );
vector< const StdMeshers_ViscousLayers2D* > hyps;
vector< TopoDS_Shape > hypShapes;
if ( VISCOUS_2D::findHyps( theMesh, face, hyps, hypShapes ))
{
VISCOUS_2D::_ViscousBuilder2D builder( theMesh, face, hyps, hypShapes );
builder._faceSideVec =
StdMeshers_FaceSide::GetFaceWires( face, theMesh, true, error,
SMESH_ProxyMesh::Ptr(),
/*theCheckVertexNodes=*/false);
if ( error->IsOK() && !builder.findEdgesWithLayers())
{
error = builder.GetError();
if ( error && !error->IsOK() )
theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS;
}
}
}
return error;
}
// --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers2D::RestoreListeners() const
{
StudyContextStruct* sc = _gen->GetStudyContext( _studyId );
std::map < int, SMESH_Mesh * >::iterator i_smesh = sc->mapMesh.begin();
for ( ; i_smesh != sc->mapMesh.end(); ++i_smesh )
{
SMESH_Mesh* smesh = i_smesh->second;
if ( !smesh ||
!smesh->HasShapeToMesh() ||
!smesh->GetMeshDS() ||
!smesh->GetMeshDS()->IsUsedHypothesis( this ))
continue;
// set event listeners to EDGE's of FACE where this hyp is used
TopoDS_Shape shape = i_smesh->second->GetShapeToMesh();
for ( TopExp_Explorer face( shape, TopAbs_FACE); face.More(); face.Next() )
if ( SMESH_Algo* algo = _gen->GetAlgo( *smesh, face.Current() ))
{
const std::list <const SMESHDS_Hypothesis *> & usedHyps =
algo->GetUsedHypothesis( *smesh, face.Current(), /*ignoreAuxiliary=*/false );
if ( std::find( usedHyps.begin(), usedHyps.end(), this ) != usedHyps.end() )
for ( TopExp_Explorer edge( face.Current(), TopAbs_EDGE); edge.More(); edge.Next() )
VISCOUS_3D::ToClearSubWithMain( smesh->GetSubMesh( edge.Current() ), face.Current() );
}
}
}
// END StdMeshers_ViscousLayers2D hypothesis
//================================================================================
using namespace VISCOUS_2D;
//================================================================================
/*!
* \brief Constructor of _ViscousBuilder2D
*/
//================================================================================
_ViscousBuilder2D::_ViscousBuilder2D(SMESH_Mesh& theMesh,
const TopoDS_Face& theFace,
vector< const THypVL* > & theHyps,
vector< TopoDS_Shape > & theAssignedTo):
_mesh( &theMesh ), _face( theFace ), _helper( theMesh )
{
_hyps.swap( theHyps );
_hypShapes.swap( theAssignedTo );
_helper.SetSubShape( _face );
_helper.SetElementsOnShape( true );
_face.Orientation( TopAbs_FORWARD ); // 2D logic works only in this case
_surface = BRep_Tool::Surface( _face );
_error = SMESH_ComputeError::New(COMPERR_OK);
_nbLE = 0;
}
//================================================================================
/*!
* \brief Stores error description and returns false
*/
//================================================================================
bool _ViscousBuilder2D::error(const string& text )
{
_error->myName = COMPERR_ALGO_FAILED;
_error->myComment = string("Viscous layers builder 2D: ") + text;
if ( SMESH_subMesh* sm = _mesh->GetSubMesh( _face ) )
{
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
if ( smError && smError->myAlgo )
_error->myAlgo = smError->myAlgo;
smError = _error;
}
#ifdef _DEBUG_
cout << "_ViscousBuilder2D::error " << text << endl;
#endif
return false;
}
//================================================================================
/*!
* \brief Does its job
*/
//================================================================================
SMESH_ProxyMesh::Ptr _ViscousBuilder2D::Compute()
{
_faceSideVec = StdMeshers_FaceSide::GetFaceWires( _face, *_mesh, true, _error);
if ( !_error->IsOK() )
return _proxyMesh;
if ( !findEdgesWithLayers() ) // analysis of a shape
return _proxyMesh;
if ( ! makePolyLines() ) // creation of fronts
return _proxyMesh;
if ( ! inflate() ) // advance fronts
return _proxyMesh;
// remove elements and nodes from _face
removeMeshFaces( _face );
if ( !shrink() ) // shrink segments on edges w/o layers
return _proxyMesh;
if ( ! refine() ) // make faces
return _proxyMesh;
//improve();
return _proxyMesh;
}
//================================================================================
/*!
* \brief Finds EDGE's to make viscous layers on.
*/
//================================================================================
bool _ViscousBuilder2D::findEdgesWithLayers()
{
// collect all EDGEs to ignore defined by _hyps
typedef std::pair< set<TGeomID>, const THypVL* > TEdgesOfHyp;
vector< TEdgesOfHyp > ignoreEdgesOfHyp( _hyps.size() );
for ( size_t i = 0; i < _hyps.size(); ++i )
{
ignoreEdgesOfHyp[i].second = _hyps[i];
getEdgesToIgnore( _hyps[i], _face, getMeshDS(), ignoreEdgesOfHyp[i].first );
}
// get all shared EDGEs
TopTools_MapOfShape sharedEdges;
TopTools_IndexedMapOfShape hypFaces; // faces with VL hyps
for ( size_t i = 0; i < _hypShapes.size(); ++i )
TopExp::MapShapes( _hypShapes[i], TopAbs_FACE, hypFaces );
TopTools_IndexedDataMapOfShapeListOfShape facesOfEdgeMap;
for ( int iF = 1; iF <= hypFaces.Extent(); ++iF )
TopExp::MapShapesAndAncestors( hypFaces(iF), TopAbs_EDGE, TopAbs_FACE, facesOfEdgeMap);
for ( int iE = 1; iE <= facesOfEdgeMap.Extent(); ++iE )
if ( facesOfEdgeMap( iE ).Extent() > 1 )
sharedEdges.Add( facesOfEdgeMap.FindKey( iE ));
// fill _hypOfEdge
if ( _hyps.size() > 1 )
{
// check if two hypotheses define different parameters for the same EDGE
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
{
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
for ( int iE = 0; iE < wire->NbEdges(); ++iE )
{
const THypVL* hyp = 0;
const TGeomID edgeID = wire->EdgeID( iE );
if ( !sharedEdges.Contains( wire->Edge( iE )))
{
for ( size_t i = 0; i < ignoreEdgesOfHyp.size(); ++i )
if ( ! ignoreEdgesOfHyp[i].first.count( edgeID ))
{
if ( hyp )
return error(SMESH_Comment("Several hypotheses define "
"Viscous Layers on the edge #") << edgeID );
hyp = ignoreEdgesOfHyp[i].second;
}
}
_hypOfEdge.push_back( hyp );
if ( !hyp )
_ignoreShapeIds.insert( edgeID );
}
// check if two hypotheses define different number of viscous layers for
// adjacent EDGEs
const THypVL *hyp, *prevHyp = _hypOfEdge.back();
size_t iH = _hypOfEdge.size() - wire->NbEdges();
for ( ; iH < _hypOfEdge.size(); ++iH )
{
hyp = _hypOfEdge[ iH ];
if ( hyp && prevHyp &&
hyp->GetNumberLayers() != prevHyp->GetNumberLayers() )
{
return error("Two hypotheses define different number of "
"viscous layers on adjacent edges");
}
prevHyp = hyp;
}
}
}
else if ( _hyps.size() == 1 )
{
_ignoreShapeIds.swap( ignoreEdgesOfHyp[0].first );
}
// check all EDGEs of the _face to fill _ignoreShapeIds and _noShrinkVert
int totalNbEdges = 0;
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
{
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
totalNbEdges += wire->NbEdges();
for ( int iE = 0; iE < wire->NbEdges(); ++iE )
{
if ( sharedEdges.Contains( wire->Edge( iE )))
{
// ignore internal EDGEs (shared by several FACEs)
const TGeomID edgeID = wire->EdgeID( iE );
_ignoreShapeIds.insert( edgeID );
// check if ends of an EDGE are to be added to _noShrinkVert
const TopTools_ListOfShape& faceList = facesOfEdgeMap.FindFromKey( wire->Edge( iE ));
TopTools_ListIteratorOfListOfShape faceIt( faceList );
for ( ; faceIt.More(); faceIt.Next() )
{
const TopoDS_Shape& neighbourFace = faceIt.Value();
if ( neighbourFace.IsSame( _face )) continue;
SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, neighbourFace );
if ( !algo ) continue;
const StdMeshers_ViscousLayers2D* viscHyp = 0;
const list <const SMESHDS_Hypothesis *> & allHyps =
algo->GetUsedHypothesis(*_mesh, neighbourFace, /*noAuxiliary=*/false);
list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin();
for ( ; hyp != allHyps.end() && !viscHyp; ++hyp )
viscHyp = dynamic_cast<const StdMeshers_ViscousLayers2D*>( *hyp );
// set<TGeomID> neighbourIgnoreEdges;
// if (viscHyp)
// getEdgesToIgnore( viscHyp, neighbourFace, getMeshDS(), neighbourIgnoreEdges );
for ( int iV = 0; iV < 2; ++iV )
{
TopoDS_Vertex vertex = iV ? wire->LastVertex(iE) : wire->FirstVertex(iE);
if ( !viscHyp )
_noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
else
{
PShapeIteratorPtr edgeIt = _helper.GetAncestors( vertex, *_mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* edge = edgeIt->next() )
if ( !edge->IsSame( wire->Edge( iE )) &&
_helper.IsSubShape( *edge, neighbourFace ))
{
const TGeomID neighbourID = getMeshDS()->ShapeToIndex( *edge );
bool hasVL = !sharedEdges.Contains( *edge );
if ( hasVL )
{
hasVL = false;
for ( hyp = allHyps.begin(); hyp != allHyps.end() && !hasVL; ++hyp )
if ( viscHyp = dynamic_cast<const THypVL*>( *hyp ))
hasVL = viscHyp->IsShapeWithLayers( neighbourID );
}
if ( !hasVL )
{
_noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
break;
}
}
}
}
}
}
}
}
int nbMyEdgesIgnored = _ignoreShapeIds.size();
// add VERTEXes w/o layers to _ignoreShapeIds (this is used by toShrinkForAdjacent())
// for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
// {
// StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
// for ( int iE = 0; iE < wire->NbEdges(); ++iE )
// {
// TGeomID edge1 = wire->EdgeID( iE );
// TGeomID edge2 = wire->EdgeID( iE+1 );
// if ( _ignoreShapeIds.count( edge1 ) && _ignoreShapeIds.count( edge2 ))
// _ignoreShapeIds.insert( getMeshDS()->ShapeToIndex( wire->LastVertex( iE )));
// }
// }
return ( nbMyEdgesIgnored < totalNbEdges );
}
//================================================================================
/*!
* \brief Create the inner front of the viscous layers and prepare data for inflation
*/
//================================================================================
bool _ViscousBuilder2D::makePolyLines()
{
// Create _PolyLines and _LayerEdge's
// count total nb of EDGEs to allocate _polyLineVec
int nbEdges = 0;
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
{
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
nbEdges += wire->NbEdges();
if ( wire->GetUVPtStruct().empty() && wire->NbPoints() > 0 )
return error("Invalid node parameters on some EDGE");
}
_polyLineVec.resize( nbEdges );
// check if 2D normal should be computed by 3D one by means of projection
GeomAPI_ProjectPointOnSurf* faceProj = 0;
TopLoc_Location loc;
{
_LayerEdge tmpLE;
const UVPtStruct& uv = _faceSideVec[0]->GetUVPtStruct()[0];
gp_Pnt p = SMESH_TNodeXYZ( uv.node );
tmpLE._uvOut.SetCoord( uv.u, uv.v );
tmpLE._normal2D.SetCoord( 1., 0. );
setLenRatio( tmpLE, p );
const double r1 = tmpLE._len2dTo3dRatio;
tmpLE._normal2D.SetCoord( 0., 1. );
setLenRatio( tmpLE, p );
const double r2 = tmpLE._len2dTo3dRatio;
// projection is needed if two _len2dTo3dRatio's differ too much
const double maxR = Max( r2, r1 );
if ( Abs( r2-r1 )/maxR > 0.2*maxR )
faceProj = & _helper.GetProjector( _face, loc );
}
_is2DIsotropic = !faceProj;
// Assign data to _PolyLine's
// ---------------------------
size_t iPoLine = 0;
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
{
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
const vector<UVPtStruct>& points = wire->GetUVPtStruct();
int iPnt = 0;
for ( int iE = 0; iE < wire->NbEdges(); ++iE )
{
_PolyLine& L = _polyLineVec[ iPoLine++ ];
L._index = iPoLine-1;
L._wire = wire.get();
L._edgeInd = iE;
L._advancable = !_ignoreShapeIds.count( wire->EdgeID( iE ));
int iRight = iPoLine - (( iE+1 < wire->NbEdges() ) ? 0 : wire->NbEdges() );
L._rightLine = &_polyLineVec[ iRight ];
_polyLineVec[ iRight ]._leftLine = &L;
L._firstPntInd = iPnt;
double lastNormPar = wire->LastParameter( iE ) - 1e-10;
while ( points[ iPnt ].normParam < lastNormPar )
++iPnt;
L._lastPntInd = iPnt;
L._lEdges.resize( Max( 3, L._lastPntInd - L._firstPntInd + 1 )); // 3 edges minimum
// TODO: add more _LayerEdge's to strongly curved EDGEs
// in order not to miss collisions
double u; gp_Pnt p;
Handle(Geom_Curve) curve = BRep_Tool::Curve( L._wire->Edge( iE ), loc, u, u );
Handle(Geom2d_Curve) pcurve = L._wire->Curve2d( L._edgeInd );
const bool reverse = (( L._wire->Edge( iE ).Orientation() == TopAbs_REVERSED ) ^
(_face.Orientation() == TopAbs_REVERSED ));
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
{
_LayerEdge& lEdge = L._lEdges[ i - L._firstPntInd ];
u = ( i == L._firstPntInd ? wire->FirstU(iE) : points[ i ].param );
p = SMESH_TNodeXYZ( points[ i ].node );
setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, faceProj );
setLenRatio( lEdge, p );
}
if ( L._lastPntInd - L._firstPntInd + 1 < 3 ) // add 3-d _LayerEdge in the middle
{
L._lEdges[2] = L._lEdges[1];
u = 0.5 * ( wire->FirstU(iE) + wire->LastU(iE) );
if ( !curve.IsNull() )
p = curve->Value( u );
else
p = 0.5 * ( SMESH_TNodeXYZ( points[ L._firstPntInd ].node ) +
SMESH_TNodeXYZ( points[ L._lastPntInd ].node ));
setLayerEdgeData( L._lEdges[1], u, pcurve, curve, p, reverse, faceProj );
setLenRatio( L._lEdges[1], p );
}
}
}
// Fill _PolyLine's with _segments
// --------------------------------
double maxLen2dTo3dRatio = 0;
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
{
_PolyLine& L = _polyLineVec[ iPoLine ];
L._segments.resize( L._lEdges.size() - 1 );
for ( size_t i = 1; i < L._lEdges.size(); ++i )
{
_Segment & S = L._segments[i-1];
S._uv[0] = & L._lEdges[i-1]._uvIn;
S._uv[1] = & L._lEdges[i ]._uvIn;
S._indexInLine = i-1;
if ( maxLen2dTo3dRatio < L._lEdges[i]._len2dTo3dRatio )
maxLen2dTo3dRatio = L._lEdges[i]._len2dTo3dRatio;
}
// // connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
// // becomes not connected to any segment
// if ( L._leftLine->_advancable )
// L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
L._segTree.reset( new _SegmentTree( L._segments ));
}
// Evaluate max possible _thickness if required layers thickness seems too high
// ----------------------------------------------------------------------------
_maxThickness = _hyps[0]->GetTotalThickness();
for ( size_t iH = 1; iH < _hyps.size(); ++iH )
_maxThickness = Max( _maxThickness, _hyps[iH]->GetTotalThickness() );
_SegmentTree::box_type faceBndBox2D;
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
faceBndBox2D.Add( *_polyLineVec[ iPoLine]._segTree->getBox() );
const double boxTol = 1e-3 * sqrt( faceBndBox2D.SquareExtent() );
if ( _maxThickness * maxLen2dTo3dRatio > sqrt( faceBndBox2D.SquareExtent() ) / 10 )
{
vector< const _Segment* > foundSegs;
double maxPossibleThick = 0;
_SegmentIntersection intersection;
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
{
_PolyLine& L1 = _polyLineVec[ iL1 ];
_SegmentTree::box_type boxL1 = * L1._segTree->getBox();
boxL1.Enlarge( boxTol );
// consider case of a circle as well!
for ( size_t iL2 = iL1; iL2 < _polyLineVec.size(); ++iL2 )
{
_PolyLine& L2 = _polyLineVec[ iL2 ];
_SegmentTree::box_type boxL2 = * L2._segTree->getBox();
boxL2.Enlarge( boxTol );
if ( boxL1.IsOut( boxL2 ))
continue;
for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
{
foundSegs.clear();
L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
for ( size_t i = 0; i < foundSegs.size(); ++i )
if ( intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
{
double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
double psblThick = distToL2 / ( 1 + L1._advancable + L2._advancable );
maxPossibleThick = Max( psblThick, maxPossibleThick );
}
}
}
}
if ( maxPossibleThick > 0. )
_maxThickness = Min( _maxThickness, maxPossibleThick );
}
// Adjust _LayerEdge's at _PolyLine's extremities
// -----------------------------------------------
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
{
_PolyLine& LL = _polyLineVec[ iPoLine ];
_PolyLine& LR = *LL._rightLine;
adjustCommonEdge( LL, LR );
}
// recreate _segments if some _LayerEdge's have been removed by adjustCommonEdge()
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
{
_PolyLine& L = _polyLineVec[ iPoLine ];
// if ( L._segments.size() == L._lEdges.size() - 1 )
// continue;
L._segments.resize( L._lEdges.size() - 1 );
for ( size_t i = 1; i < L._lEdges.size(); ++i )
{
_Segment & S = L._segments[i-1];
S._uv[0] = & L._lEdges[i-1]._uvIn;
S._uv[1] = & L._lEdges[i ]._uvIn;
S._indexInLine = i-1;
}
L._segTree.reset( new _SegmentTree( L._segments ));
}
// connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
// becomes not connected to any segment
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
{
_PolyLine& L = _polyLineVec[ iPoLine ];
if ( L._leftLine->_advancable )
L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
}
// Fill _reachableLines.
// ----------------------
// compute bnd boxes taking into account the layers total thickness
vector< _SegmentTree::box_type > lineBoxes( _polyLineVec.size() );
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
{
lineBoxes[ iPoLine ] = *_polyLineVec[ iPoLine ]._segTree->getBox();
lineBoxes[ iPoLine ].Enlarge( maxLen2dTo3dRatio * getLineThickness( iPoLine ) *
( _polyLineVec[ iPoLine ]._advancable ? 2. : 1.2 ));
}
// _reachableLines
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
{
_PolyLine& L1 = _polyLineVec[ iPoLine ];
const double thick1 = getLineThickness( iPoLine );
for ( size_t iL2 = 0; iL2 < _polyLineVec.size(); ++iL2 )
{
_PolyLine& L2 = _polyLineVec[ iL2 ];
if ( iPoLine == iL2 || lineBoxes[ iPoLine ].IsOut( lineBoxes[ iL2 ]))
continue;
if ( !L1._advancable && ( L1._leftLine == &L2 || L1._rightLine == &L2 ))
continue;
// check reachability by _LayerEdge's
int iDelta = 1; //Max( 1, L1._lEdges.size() / 100 );
for ( size_t iLE = 1; iLE < L1._lEdges.size(); iLE += iDelta )
{
_LayerEdge& LE = L1._lEdges[iLE];
if ( !lineBoxes[ iL2 ].IsOut ( LE._uvOut,
LE._uvOut + LE._normal2D * thick1 * LE._len2dTo3dRatio ))
{
L1._reachableLines.push_back( & L2 );
break;
}
}
}
// add self to _reachableLines
Geom2dAdaptor_Curve pcurve( L1._wire->Curve2d( L1._edgeInd ));
L1._isStraight2D = ( pcurve.GetType() == GeomAbs_Line );
if ( !L1._isStraight2D )
{
// TODO: check carefully
L1._reachableLines.push_back( & L1 );
}
}
return true;
}
//================================================================================
/*!
* \brief adjust common _LayerEdge of two adjacent _PolyLine's
* \param LL - left _PolyLine
* \param LR - right _PolyLine
*/
//================================================================================
void _ViscousBuilder2D::adjustCommonEdge( _PolyLine& LL, _PolyLine& LR )
{
int nbAdvancableL = LL._advancable + LR._advancable;
if ( nbAdvancableL == 0 )
return;
_LayerEdge& EL = LL._lEdges.back();
_LayerEdge& ER = LR._lEdges.front();
gp_XY normL = EL._normal2D;
gp_XY normR = ER._normal2D;
gp_XY tangL ( normL.Y(), -normL.X() );
// set common direction to a VERTEX _LayerEdge shared by two _PolyLine's
gp_XY normCommon = ( normL * int( LL._advancable ) +
normR * int( LR._advancable )).Normalized();
EL._normal2D = normCommon;
EL._ray.SetLocation ( EL._uvOut );
EL._ray.SetDirection( EL._normal2D );
if ( nbAdvancableL == 1 ) { // _normal2D is true normal (not average)
EL._isBlocked = true; // prevent intersecting with _Segments of _advancable line
EL._length2D = 0;
}
// update _LayerEdge::_len2dTo3dRatio according to a new direction
const vector<UVPtStruct>& points = LL._wire->GetUVPtStruct();
setLenRatio( EL, SMESH_TNodeXYZ( points[ LL._lastPntInd ].node ));
ER = EL;
const double dotNormTang = normR * tangL;
const bool largeAngle = Abs( dotNormTang ) > 0.2;
if ( largeAngle ) // not 180 degrees
{
// recompute _len2dTo3dRatio to take into account angle between EDGEs
gp_Vec2d oldNorm( LL._advancable ? normL : normR );
double angleFactor = 1. / Max( 0.3, Cos( oldNorm.Angle( normCommon )));
EL._len2dTo3dRatio *= angleFactor;
ER._len2dTo3dRatio = EL._len2dTo3dRatio;
gp_XY normAvg = ( normL + normR ).Normalized(); // average normal at VERTEX
if ( dotNormTang < 0. ) // ---------------------------- CONVEX ANGLE
{
// Remove _LayerEdge's intersecting the normAvg to avoid collisions
// during inflate().
//
// find max length of the VERTEX-based _LayerEdge whose direction is normAvg
double maxLen2D = _maxThickness * EL._len2dTo3dRatio;
const gp_XY& pCommOut = ER._uvOut;
gp_XY pCommIn = pCommOut + normAvg * maxLen2D;
_Segment segCommon( pCommOut, pCommIn );
_SegmentIntersection intersection;
vector< const _Segment* > foundSegs;
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
{
_PolyLine& L1 = _polyLineVec[ iL1 ];
const _SegmentTree::box_type* boxL1 = L1._segTree->getBox();
if ( boxL1->IsOut ( pCommOut, pCommIn ))
continue;
for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
{
foundSegs.clear();
L1._segTree->GetSegmentsNear( segCommon, foundSegs );
for ( size_t i = 0; i < foundSegs.size(); ++i )
if ( intersection.Compute( *foundSegs[i], segCommon ) &&
intersection._param2 > 1e-10 )
{
double len2D = intersection._param2 * maxLen2D / ( 2 + L1._advancable );
if ( len2D < maxLen2D ) {
maxLen2D = len2D;
pCommIn = pCommOut + normAvg * maxLen2D; // here length of segCommon changes
}
}
}
}
// remove _LayerEdge's intersecting segCommon
for ( int isR = 0; isR < 2; ++isR ) // loop on [ LL, LR ]
{
_PolyLine& L = isR ? LR : LL;
_PolyLine::TEdgeIterator eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2;
int dIt = isR ? +1 : -1;
if ( nbAdvancableL == 1 && L._advancable && normL * normR > -0.01 )
continue; // obtuse internal angle
// at least 3 _LayerEdge's should remain in a _PolyLine
if ( L._lEdges.size() < 4 ) continue;
size_t iLE = 1;
_SegmentIntersection lastIntersection;
for ( ; iLE < L._lEdges.size(); ++iLE, eIt += dIt )
{
gp_XY uvIn = eIt->_uvOut + eIt->_normal2D * _maxThickness * eIt->_len2dTo3dRatio;
_Segment segOfEdge( eIt->_uvOut, uvIn );
if ( !intersection.Compute( segCommon, segOfEdge ))
break;
lastIntersection._param1 = intersection._param1;
lastIntersection._param2 = intersection._param2;
}
if ( iLE >= L._lEdges.size() - 1 )
{
// all _LayerEdge's intersect the segCommon, limit inflation
// of remaining 3 _LayerEdge's
vector< _LayerEdge > newEdgeVec( Min( 3, L._lEdges.size() ));
newEdgeVec.front() = L._lEdges.front();
newEdgeVec.back() = L._lEdges.back();
if ( newEdgeVec.size() == 3 )
{
newEdgeVec[1] = L._lEdges[ isR ? (L._lEdges.size() - 2) : 1 ];
newEdgeVec[1]._len2dTo3dRatio *= lastIntersection._param2;
}
L._lEdges.swap( newEdgeVec );
if ( !isR ) std::swap( lastIntersection._param1 , lastIntersection._param2 );
L._lEdges.front()._len2dTo3dRatio *= lastIntersection._param1; // ??
L._lEdges.back ()._len2dTo3dRatio *= lastIntersection._param2;
}
else if ( iLE != 1 )
{
// eIt points to the _LayerEdge not intersecting with segCommon
if ( isR )
LR._lEdges.erase( LR._lEdges.begin()+1, eIt );
else
LL._lEdges.erase( eIt, --LL._lEdges.end() );
// eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2;
// for ( size_t i = 1; i < iLE; ++i, eIt += dIt )
// eIt->_isBlocked = true;
}
}
}
else // ------------------------------------------ CONCAVE ANGLE
{
if ( nbAdvancableL == 1 )
{
// make that the _LayerEdge at VERTEX is not shared by LL and LR:
// different normals is a sign that they are not shared
_LayerEdge& notSharedEdge = LL._advancable ? LR._lEdges[0] : LL._lEdges.back();
_LayerEdge& sharedEdge = LR._advancable ? LR._lEdges[0] : LL._lEdges.back();
notSharedEdge._normal2D.SetCoord( 0.,0. );
sharedEdge._normal2D = normAvg;
sharedEdge._isBlocked = false;
notSharedEdge._isBlocked = true;
}
}
}
}
//================================================================================
/*!
* \brief initialize data of a _LayerEdge
*/
//================================================================================
void _ViscousBuilder2D::setLayerEdgeData( _LayerEdge& lEdge,
const double u,
Handle(Geom2d_Curve)& pcurve,
Handle(Geom_Curve)& curve,
const gp_Pnt pOut,
const bool reverse,
GeomAPI_ProjectPointOnSurf* faceProj)
{
gp_Pnt2d uv;
if ( faceProj && !curve.IsNull() )
{
uv = pcurve->Value( u );
gp_Vec tangent; gp_Pnt p; gp_Vec du, dv;
curve->D1( u, p, tangent );
if ( reverse )
tangent.Reverse();
_surface->D1( uv.X(), uv.Y(), p, du, dv );
gp_Vec faceNorm = du ^ dv;
gp_Vec normal = faceNorm ^ tangent;
normal.Normalize();
p = pOut.XYZ() + normal.XYZ() * /*1e-2 * */_hyps[0]->GetTotalThickness() / _hyps[0]->GetNumberLayers();
faceProj->Perform( p );
if ( !faceProj->IsDone() || faceProj->NbPoints() < 1 )
return setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, NULL );
Quantity_Parameter U,V;
faceProj->LowerDistanceParameters(U,V);
lEdge._normal2D.SetCoord( U - uv.X(), V - uv.Y() );
lEdge._normal2D.Normalize();
}
else
{
gp_Vec2d tangent;
pcurve->D1( u, uv, tangent );
tangent.Normalize();
if ( reverse )
tangent.Reverse();
lEdge._normal2D.SetCoord( -tangent.Y(), tangent.X() );
}
lEdge._uvOut = lEdge._uvIn = uv.XY();
lEdge._ray.SetLocation ( lEdge._uvOut );
lEdge._ray.SetDirection( lEdge._normal2D );
lEdge._isBlocked = false;
lEdge._length2D = 0;
#ifdef _DEBUG_
lEdge._ID = _nbLE++;
#endif
}
//================================================================================
/*!
* \brief Compute and set _LayerEdge::_len2dTo3dRatio
*/
//================================================================================
void _ViscousBuilder2D::setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut )
{
const double probeLen2d = 1e-3;
gp_Pnt2d p2d = LE._uvOut + LE._normal2D * probeLen2d;
gp_Pnt p3d = _surface->Value( p2d.X(), p2d.Y() );
double len3d = p3d.Distance( pOut );
if ( len3d < std::numeric_limits<double>::min() )
LE._len2dTo3dRatio = std::numeric_limits<double>::min();
else
LE._len2dTo3dRatio = probeLen2d / len3d;
}
//================================================================================
/*!
* \brief Increase length of _LayerEdge's to reach the required thickness of layers
*/
//================================================================================
bool _ViscousBuilder2D::inflate()
{
// Limit size of inflation step by geometry size found by
// itersecting _LayerEdge's with _Segment's
double minSize = _maxThickness, maxSize = 0;
vector< const _Segment* > foundSegs;
_SegmentIntersection intersection;
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
{
_PolyLine& L1 = _polyLineVec[ iL1 ];
for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
{
_PolyLine& L2 = * L1._reachableLines[ iL2 ];
for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
{
foundSegs.clear();
L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
for ( size_t i = 0; i < foundSegs.size(); ++i )
if ( ! L1.IsAdjacent( *foundSegs[i], & L1._lEdges[iLE] ) &&
intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
{
double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
double size = distToL2 / ( 1 + L1._advancable + L2._advancable );
if ( 1e-10 < size && size < minSize )
minSize = size;
if ( size > maxSize )
maxSize = size;
}
}
}
}
if ( minSize > maxSize ) // no collisions possible
maxSize = _maxThickness;
#ifdef __myDEBUG
cout << "-- minSize = " << minSize << ", maxSize = " << maxSize << endl;
#endif
double curThick = 0, stepSize = minSize;
int nbSteps = 0;
if ( maxSize > _maxThickness )
maxSize = _maxThickness;
while ( curThick < maxSize )
{
curThick += stepSize * 1.25;
if ( curThick > _maxThickness )
curThick = _maxThickness;
// Elongate _LayerEdge's
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
{
_PolyLine& L = _polyLineVec[ iL ];
if ( !L._advancable ) continue;
const double lineThick = Min( curThick, getLineThickness( iL ));
bool lenChange = false;
for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE )
lenChange |= L._lEdges[iLE].SetNewLength( lineThick );
// for ( int k=0; k<L._segments.size(); ++k)
// cout << "( " << L._segments[k].p1().X() << ", " <<L._segments[k].p1().Y() << " ) "
// << "( " << L._segments[k].p2().X() << ", " <<L._segments[k].p2().Y() << " ) "
// << endl;
if ( lenChange )
L._segTree.reset( new _SegmentTree( L._segments ));
}
// Avoid intersection of _Segment's
bool allBlocked = fixCollisions();
if ( allBlocked )
{
break; // no more inflating possible
}
stepSize = Max( stepSize , _maxThickness / 10. );
nbSteps++;
}
// if (nbSteps == 0 )
// return error("failed at the very first inflation step");
// remove _LayerEdge's of one line intersecting with each other
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
{
_PolyLine& L = _polyLineVec[ iL ];
if ( !L._advancable ) continue;
// replace an inactive (1st) _LayerEdge with an active one of a neighbour _PolyLine
if ( /*!L._leftLine->_advancable &&*/ L.IsCommonEdgeShared( *L._leftLine ) ) {
L._lEdges[0] = L._leftLine->_lEdges.back();
}
if ( !L._rightLine->_advancable && L.IsCommonEdgeShared( *L._rightLine ) ) {
L._lEdges.back() = L._rightLine->_lEdges[0];
}
_SegmentIntersection intersection;
for ( int isR = 0; ( isR < 2 && L._lEdges.size() > 2 ); ++isR )
{
int nbRemove = 0, deltaIt = isR ? -1 : +1;
_PolyLine::TEdgeIterator eIt = isR ? L._lEdges.end()-1 : L._lEdges.begin();
if ( eIt->_length2D == 0 ) continue;
_Segment seg1( eIt->_uvOut, eIt->_uvIn );
for ( eIt += deltaIt; nbRemove < L._lEdges.size()-1; eIt += deltaIt )
{
_Segment seg2( eIt->_uvOut, eIt->_uvIn );
if ( !intersection.Compute( seg1, seg2 ))
break;
++nbRemove;
}
if ( nbRemove > 0 ) {
if ( nbRemove == L._lEdges.size()-1 ) // 1st and last _LayerEdge's intersect
{
--nbRemove;
_LayerEdge& L0 = L._lEdges.front();
_LayerEdge& L1 = L._lEdges.back();
L0._length2D *= intersection._param1 * 0.5;
L1._length2D *= intersection._param2 * 0.5;
L0._uvIn = L0._uvOut + L0._normal2D * L0._length2D;
L1._uvIn = L1._uvOut + L1._normal2D * L1._length2D;
if ( L.IsCommonEdgeShared( *L._leftLine ))
L._leftLine->_lEdges.back() = L0;
}
if ( isR )
L._lEdges.erase( L._lEdges.end()-nbRemove-1,
L._lEdges.end()-nbRemove );
else
L._lEdges.erase( L._lEdges.begin()+1,
L._lEdges.begin()+1+nbRemove );
}
}
}
return true;
}
//================================================================================
/*!
* \brief Remove intersection of _PolyLine's
*/
//================================================================================
bool _ViscousBuilder2D::fixCollisions()
{
// look for intersections of _Segment's by intersecting _LayerEdge's with
// _Segment's
vector< const _Segment* > foundSegs;
_SegmentIntersection intersection;
list< pair< _LayerEdge*, double > > edgeLenLimitList;
list< _LayerEdge* > blockedEdgesList;
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
{
_PolyLine& L1 = _polyLineVec[ iL1 ];
//if ( !L1._advancable ) continue;
for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
{
_PolyLine& L2 = * L1._reachableLines[ iL2 ];
for ( size_t iLE = L1.FirstLEdge(); iLE < L1._lEdges.size(); ++iLE )
{
_LayerEdge& LE1 = L1._lEdges[iLE];
if ( LE1._isBlocked ) continue;
foundSegs.clear();
L2._segTree->GetSegmentsNear( LE1._ray, foundSegs );
for ( size_t i = 0; i < foundSegs.size(); ++i )
{
if ( ! L1.IsAdjacent( *foundSegs[i], &LE1 ) &&
intersection.Compute( *foundSegs[i], LE1._ray ))
{
const double dist2DToL2 = intersection._param2;
double newLen2D = dist2DToL2 / 2;
if ( newLen2D < 1.1 * LE1._length2D ) // collision!
{
if ( newLen2D > 0 || !L1._advancable )
{
blockedEdgesList.push_back( &LE1 );
if ( L1._advancable && newLen2D > 0 )
{
edgeLenLimitList.push_back( make_pair( &LE1, newLen2D ));
blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine ]);
blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine + 1 ]);
}
else // here dist2DToL2 < 0 and LE1._length2D == 0
{
_LayerEdge* LE2[2] = { & L2._lEdges[ foundSegs[i]->_indexInLine ],
& L2._lEdges[ foundSegs[i]->_indexInLine + 1 ] };
_Segment outSeg2( LE2[0]->_uvOut, LE2[1]->_uvOut );
intersection.Compute( outSeg2, LE1._ray );
newLen2D = intersection._param2 / 2;
if ( newLen2D > 0 )
{
edgeLenLimitList.push_back( make_pair( LE2[0], newLen2D ));
edgeLenLimitList.push_back( make_pair( LE2[1], newLen2D ));
}
}
}
}
}
}
}
}
}
// limit length of _LayerEdge's that are extrema of _PolyLine's
// to avoid intersection of these _LayerEdge's
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
{
_PolyLine& L = _polyLineVec[ iL1 ];
if ( L._lEdges.size() < 4 ) // all intermediate _LayerEdge's intersect with extremum ones
{
_LayerEdge& LEL = L._leftLine->_lEdges.back();
_LayerEdge& LER = L._lEdges.back();
_Segment segL( LEL._uvOut, LEL._uvIn );
_Segment segR( LER._uvOut, LER._uvIn );
double newLen2DL, newLen2DR;
if ( intersection.Compute( segL, LER._ray ))
{
newLen2DR = intersection._param2 / 2;
newLen2DL = LEL._length2D * intersection._param1 / 2;
}
else if ( intersection.Compute( segR, LEL._ray ))
{
newLen2DL = intersection._param2 / 2;
newLen2DR = LER._length2D * intersection._param1 / 2;
}
else
{
continue;
}
if ( newLen2DL > 0 && newLen2DR > 0 )
{
if ( newLen2DL < 1.1 * LEL._length2D )
edgeLenLimitList.push_back( make_pair( &LEL, newLen2DL ));
if ( newLen2DR < 1.1 * LER._length2D )
edgeLenLimitList.push_back( make_pair( &LER, newLen2DR ));
}
}
}
// set limited length to _LayerEdge's
list< pair< _LayerEdge*, double > >::iterator edge2Len = edgeLenLimitList.begin();
for ( ; edge2Len != edgeLenLimitList.end(); ++edge2Len )
{
_LayerEdge* LE = edge2Len->first;
if ( LE->_length2D > edge2Len->second )
{
LE->_isBlocked = false;
LE->SetNewLength( edge2Len->second / LE->_len2dTo3dRatio );
}
LE->_isBlocked = true;
}
// block inflation of _LayerEdge's
list< _LayerEdge* >::iterator edge = blockedEdgesList.begin();
for ( ; edge != blockedEdgesList.end(); ++edge )
(*edge)->_isBlocked = true;
// find a not blocked _LayerEdge
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
{
_PolyLine& L = _polyLineVec[ iL ];
if ( !L._advancable ) continue;
for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE )
if ( !L._lEdges[ iLE ]._isBlocked )
return false;
}
return true;
}
//================================================================================
/*!
* \brief Create new edges and shrink edges existing on a non-advancable _PolyLine
* adjacent to an advancable one.
*/
//================================================================================
bool _ViscousBuilder2D::shrink()
{
gp_Pnt2d uv; //gp_Vec2d tangent;
_SegmentIntersection intersection;
double sign;
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
{
_PolyLine& L = _polyLineVec[ iL1 ]; // line with no layers
if ( L._advancable )
continue;
const int nbAdvancable = ( L._rightLine->_advancable + L._leftLine->_advancable );
if ( nbAdvancable == 0 )
continue;
const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd );
const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd );
const int v1ID = getMeshDS()->ShapeToIndex( V1 );
const int v2ID = getMeshDS()->ShapeToIndex( V2 );
const bool isShrinkableL = ! _noShrinkVert.count( v1ID ) && L._leftLine->_advancable;
const bool isShrinkableR = ! _noShrinkVert.count( v2ID ) && L._rightLine->_advancable;
if ( !isShrinkableL && !isShrinkableR )
continue;
const TopoDS_Edge& E = L._wire->Edge ( L._edgeInd );
const int edgeID = L._wire->EdgeID ( L._edgeInd );
const double edgeLen = L._wire->EdgeLength ( L._edgeInd );
Handle(Geom2d_Curve) pcurve = L._wire->Curve2d ( L._edgeInd );
const bool edgeReversed = ( E.Orientation() == TopAbs_REVERSED );
SMESH_MesherHelper helper( *_mesh ); // to create nodes and edges on E
helper.SetSubShape( E );
helper.SetElementsOnShape( true );
// Check a FACE adjacent to _face by E
bool existingNodesFound = false;
TopoDS_Face adjFace;
PShapeIteratorPtr faceIt = _helper.GetAncestors( E, *_mesh, TopAbs_FACE );
while ( const TopoDS_Shape* f = faceIt->next() )
if ( !_face.IsSame( *f ))
{
adjFace = TopoDS::Face( *f );
SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( adjFace, *_mesh );
if ( !pm || pm->NbProxySubMeshes() == 0 /*|| !pm->GetProxySubMesh( E )*/)
{
// There are no viscous layers on an adjacent FACE, clear it's 2D mesh
removeMeshFaces( adjFace );
// if ( removeMeshFaces( adjFace ))
// _clearedFaces.push_back( adjFace ); // to re-compute after all
}
else
{
// There are viscous layers on the adjacent FACE; shrink must be already done;
//
// copy layer nodes
//
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
int iPFrom = L._firstPntInd, iPTo = L._lastPntInd;
if ( isShrinkableL )
{
const THypVL* hyp = getLineHypothesis( L._leftLine->_index );
vector<gp_XY>& uvVec = L._lEdges.front()._uvRefined;
for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) {
const UVPtStruct& uvPt = points[ iPFrom + i + 1 ];
L._leftNodes.push_back( uvPt.node );
uvVec.push_back ( pcurve->Value( uvPt.param ).XY() );
}
iPFrom += hyp->GetNumberLayers();
}
if ( isShrinkableR )
{
const THypVL* hyp = getLineHypothesis( L._rightLine->_index );
vector<gp_XY>& uvVec = L._lEdges.back()._uvRefined;
for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) {
const UVPtStruct& uvPt = points[ iPTo - i - 1 ];
L._rightNodes.push_back( uvPt.node );
uvVec.push_back ( pcurve->Value( uvPt.param ).XY() );
}
iPTo -= hyp->GetNumberLayers();
}
// make proxy sub-mesh data of present nodes
//
UVPtStructVec nodeDataVec( & points[ iPFrom ], & points[ iPTo + 1 ]);
double normSize = nodeDataVec.back().normParam - nodeDataVec.front().normParam;
for ( int iP = nodeDataVec.size()-1; iP >= 0 ; --iP )
nodeDataVec[iP].normParam =
( nodeDataVec[iP].normParam - nodeDataVec[0].normParam ) / normSize;
const SMDS_MeshNode* n = nodeDataVec.front().node;
if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
nodeDataVec.front().param = L._wire->FirstU( L._edgeInd );
n = nodeDataVec.back().node;
if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
nodeDataVec.back().param = L._wire->LastU( L._edgeInd );
_ProxyMeshOfFace::_EdgeSubMesh* myEdgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
myEdgeSM->SetUVPtStructVec( nodeDataVec );
existingNodesFound = true;
break;
}
} // loop on FACEs sharing E
// Commented as a case with a seam EDGE (issue 0052461) is hard to support
// because SMESH_ProxyMesh can't hold different sub-meshes for two
// 2D representations of the seam. But such a case is not a real practice one.
// Check if L is an already shrinked seam
// if ( adjFace.IsNull() && _helper.IsRealSeam( edgeID ))
// {
// for ( int iL2 = iL1-1; iL2 > -1; --iL2 )
// {
// _PolyLine& L2 = _polyLineVec[ iL2 ];
// if ( edgeID == L2._wire->EdgeID( L2._edgeInd ))
// {
// // copy layer nodes
// const int seamPar = _helper.GetPeriodicIndex();
// vector<gp_XY>& uvVec = L._lEdges.front()._uvRefined;
// if ( isShrinkableL )
// {
// L._leftNodes = L2._rightNodes;
// uvVec = L2._lEdges.back()._uvRefined;
// }
// if ( isShrinkableR )
// {
// L._rightNodes = L2._leftNodes;
// uvVec = L2._lEdges.front()._uvRefined;
// }
// for ( size_t i = 0; i < uvVec.size(); ++i )
// {
// gp_XY & uv = uvVec[i];
// uv.SetCoord( seamPar, _helper.GetOtherParam( uv.Coord( seamPar )));
// }
// existingNodesFound = true;
// break;
// }
// }
// }
if ( existingNodesFound )
continue; // nothing more to do in this case
double u1 = L._wire->FirstU( L._edgeInd ), uf = u1;
double u2 = L._wire->LastU ( L._edgeInd ), ul = u2;
// a ratio to pass 2D <--> 1D
const double len1D = 1e-3;
const double len2D = pcurve->Value(uf).Distance( pcurve->Value(uf+len1D));
double len1dTo2dRatio = len1D / len2D;
// create a vector of proxy nodes
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
UVPtStructVec nodeDataVec( & points[ L._firstPntInd ],
& points[ L._lastPntInd + 1 ]);
nodeDataVec.front().param = u1; // U on vertex is correct on only one of shared edges
nodeDataVec.back ().param = u2;
nodeDataVec.front().normParam = 0;
nodeDataVec.back ().normParam = 1;
// Get length of existing segments (from an edge start to a node) and their nodes
vector< double > segLengths( nodeDataVec.size() - 1 );
BRepAdaptor_Curve curve( E );
for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP )
{
const double len = GCPnts_AbscissaPoint::Length( curve, uf, nodeDataVec[iP].param );
segLengths[ iP-1 ] = len;
}
// Move first and last parameters on EDGE (U of n1) according to layers' thickness
// and create nodes of layers on EDGE ( -x-x-x )
// Before
// n1 n2 n3 n4
// x-----x-----x-----x-----
// | e1 e2 e3 e4
// After
// n1 n2 n3
// x-x-x-x-----x-----x----
// | | | | e1 e2 e3
int isRShrinkedForAdjacent;
UVPtStructVec nodeDataForAdjacent;
for ( int isR = 0; isR < 2; ++isR )
{
_PolyLine* L2 = isR ? L._rightLine : L._leftLine; // line with layers
if ( !L2->_advancable &&
!toShrinkForAdjacent( adjFace, E, L._wire->FirstVertex( L._edgeInd + isR )))
continue;
if ( isR ? !isShrinkableR : !isShrinkableL )
continue;
double & u = isR ? u2 : u1; // param to move
double u0 = isR ? ul : uf; // init value of the param to move
int iPEnd = isR ? nodeDataVec.size() - 1 : 0;
_LayerEdge& nearLE = isR ? L._lEdges.back() : L._lEdges.front();
_LayerEdge& farLE = isR ? L._lEdges.front() : L._lEdges.back();
// try to find length of advancement along L by intersecting L with
// an adjacent _Segment of L2
double& length2D = nearLE._length2D;
double length1D = 0;
sign = ( isR ^ edgeReversed ) ? -1. : 1.;
bool isConvex = false;
if ( L2->_advancable )
{
const uvPtStruct& tang2P1 = points[ isR ? L2->_firstPntInd : L2->_lastPntInd ];
const uvPtStruct& tang2P2 = points[ isR ? L2->_firstPntInd+1 : L2->_lastPntInd-1 ];
gp_XY seg2Dir( tang2P2.u - tang2P1.u,
tang2P2.v - tang2P1.v );
int iFSeg2 = isR ? 0 : L2->_segments.size() - 1;
int iLSeg2 = isR ? 1 : L2->_segments.size() - 2;
gp_XY uvLSeg2In = L2->_lEdges[ iLSeg2 ]._uvIn;
Handle(Geom2d_Line) seg2Line = new Geom2d_Line( uvLSeg2In, seg2Dir );
Geom2dAdaptor_Curve edgeCurve( pcurve, Min( uf, ul ), Max( uf, ul ));
Geom2dAdaptor_Curve seg2Curve( seg2Line );
Geom2dInt_GInter curveInt( edgeCurve, seg2Curve, 1e-7, 1e-7 );
isConvex = ( curveInt.IsDone() && !curveInt.IsEmpty() );
if ( isConvex ) {
/* convex VERTEX */
length1D = Abs( u - curveInt.Point( 1 ).ParamOnFirst() );
double maxDist2d = 2 * L2->_lEdges[ iLSeg2 ]._length2D;
isConvex = ( length1D < maxDist2d * len1dTo2dRatio );
/* |L seg2
* | o---o---
* | / |
* |/ | L2
* x------x--- */
}
if ( !isConvex ) { /* concave VERTEX */ /* o-----o---
* \ |
* \ | L2
* x--x---
* /
* L / */
length2D = L2->_lEdges[ iFSeg2 ]._length2D;
//if ( L2->_advancable ) continue;
}
}
else // L2 is advancable but in the face adjacent by L
{
length2D = farLE._length2D;
if ( length2D == 0 ) {
_LayerEdge& neighborLE =
( isR ? L._leftLine->_lEdges.back() : L._rightLine->_lEdges.front() );
length2D = neighborLE._length2D;
if ( length2D == 0 )
length2D = _maxThickness * nearLE._len2dTo3dRatio;
}
}
// move u to the internal boundary of layers
// u --> u
// x-x-x-x-----x-----x----
double maxLen3D = Min( _maxThickness, edgeLen / ( 1 + nbAdvancable ));
double maxLen2D = maxLen3D * nearLE._len2dTo3dRatio;
if ( !length2D ) length2D = length1D / len1dTo2dRatio;
if ( Abs( length2D ) > maxLen2D )
length2D = maxLen2D;
nearLE._uvIn = nearLE._uvOut + nearLE._normal2D * length2D;
u += length2D * len1dTo2dRatio * sign;
nodeDataVec[ iPEnd ].param = u;
gp_Pnt2d newUV = pcurve->Value( u );
nodeDataVec[ iPEnd ].u = newUV.X();
nodeDataVec[ iPEnd ].v = newUV.Y();
// compute params of layers on L
vector<double> heights;
const THypVL* hyp = getLineHypothesis( L2->_index );
calcLayersHeight( u - u0, heights, hyp );
//
vector< double > params( heights.size() );
for ( size_t i = 0; i < params.size(); ++i )
params[ i ] = u0 + heights[ i ];
// create nodes of layers and edges between them
// x-x-x-x---
vector< const SMDS_MeshNode* >& layersNode = isR ? L._rightNodes : L._leftNodes;
vector<gp_XY>& nodeUV = ( isR ? L._lEdges.back() : L._lEdges[0] )._uvRefined;
nodeUV.resize ( hyp->GetNumberLayers() );
layersNode.resize( hyp->GetNumberLayers() );
const SMDS_MeshNode* vertexNode = nodeDataVec[ iPEnd ].node;
const SMDS_MeshNode * prevNode = vertexNode;
for ( size_t i = 0; i < params.size(); ++i )
{
const gp_Pnt p = curve.Value( params[i] );
layersNode[ i ] = helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, params[i] );
nodeUV [ i ] = pcurve->Value( params[i] ).XY();
helper.AddEdge( prevNode, layersNode[ i ] );
prevNode = layersNode[ i ];
}
// store data of layer nodes made for adjacent FACE
if ( !L2->_advancable )
{
isRShrinkedForAdjacent = isR;
nodeDataForAdjacent.resize( hyp->GetNumberLayers() );
size_t iFrw = 0, iRev = nodeDataForAdjacent.size()-1, *i = isR ? &iRev : &iFrw;
nodeDataForAdjacent[ *i ] = points[ isR ? L._lastPntInd : L._firstPntInd ];
nodeDataForAdjacent[ *i ].param = u0;
nodeDataForAdjacent[ *i ].normParam = isR;
for ( ++iFrw, --iRev; iFrw < layersNode.size(); ++iFrw, --iRev )
{
nodeDataForAdjacent[ *i ].node = layersNode[ iFrw - 1 ];
nodeDataForAdjacent[ *i ].u = nodeUV [ iFrw - 1 ].X();
nodeDataForAdjacent[ *i ].v = nodeUV [ iFrw - 1 ].Y();
nodeDataForAdjacent[ *i ].param = params [ iFrw - 1 ];
}
}
// replace a node on vertex by a node of last (most internal) layer
// in a segment on E
SMDS_ElemIteratorPtr segIt = vertexNode->GetInverseElementIterator( SMDSAbs_Edge );
const SMDS_MeshNode* segNodes[3];
while ( segIt->more() )
{
const SMDS_MeshElement* segment = segIt->next();
if ( segment->getshapeId() != edgeID ) continue;
const int nbNodes = segment->NbNodes();
for ( int i = 0; i < nbNodes; ++i )
{
const SMDS_MeshNode* n = segment->GetNode( i );
segNodes[ i ] = ( n == vertexNode ? layersNode.back() : n );
}
getMeshDS()->ChangeElementNodes( segment, segNodes, nbNodes );
break;
}
nodeDataVec[ iPEnd ].node = layersNode.back();
} // loop on the extremities of L
// Shrink edges to fit in between the layers at EDGE ends
double newLength = GCPnts_AbscissaPoint::Length( curve, u1, u2 );
double lenRatio = newLength / edgeLen * ( edgeReversed ? -1. : 1. );
for ( size_t iP = 1; iP < nodeDataVec.size()-1; ++iP )
{
const SMDS_MeshNode* oldNode = nodeDataVec[iP].node;
GCPnts_AbscissaPoint discret( curve, segLengths[iP-1] * lenRatio, u1 );
if ( !discret.IsDone() )
throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed"));
nodeDataVec[iP].param = discret.Parameter();
if ( oldNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_EDGE )
throw SALOME_Exception(SMESH_Comment("ViscousBuilder2D: not SMDS_TOP_EDGE node position: ")
<< oldNode->GetPosition()->GetTypeOfPosition()
<< " of node " << oldNode->GetID());
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( oldNode->GetPosition() );
pos->SetUParameter( nodeDataVec[iP].param );
gp_Pnt newP = curve.Value( nodeDataVec[iP].param );
getMeshDS()->MoveNode( oldNode, newP.X(), newP.Y(), newP.Z() );
gp_Pnt2d newUV = pcurve->Value( nodeDataVec[iP].param ).XY();
nodeDataVec[iP].u = newUV.X();
nodeDataVec[iP].v = newUV.Y();
nodeDataVec[iP].normParam = segLengths[iP-1] / edgeLen;
// nodeDataVec[iP].x = segLengths[iP-1] / edgeLen;
// nodeDataVec[iP].y = segLengths[iP-1] / edgeLen;
}
// Add nodeDataForAdjacent to nodeDataVec
if ( !nodeDataForAdjacent.empty() )
{
const double par1 = isRShrinkedForAdjacent ? u2 : uf;
const double par2 = isRShrinkedForAdjacent ? ul : u1;
const double shrinkLen = GCPnts_AbscissaPoint::Length( curve, par1, par2 );
// compute new normParam for nodeDataVec
for ( size_t iP = 0; iP < nodeDataVec.size()-1; ++iP )
nodeDataVec[iP+1].normParam = segLengths[iP] / ( edgeLen + shrinkLen );
double normDelta = 1 - nodeDataVec.back().normParam;
if ( !isRShrinkedForAdjacent )
for ( size_t iP = 0; iP < nodeDataVec.size(); ++iP )
nodeDataVec[iP].normParam += normDelta;
// compute new normParam for nodeDataForAdjacent
const double deltaR = isRShrinkedForAdjacent ? nodeDataVec.back().normParam : 0;
for ( size_t iP = !isRShrinkedForAdjacent; iP < nodeDataForAdjacent.size(); ++iP )
{
double lenFromPar1 =
GCPnts_AbscissaPoint::Length( curve, par1, nodeDataForAdjacent[iP].param );
nodeDataForAdjacent[iP].normParam = deltaR + normDelta * lenFromPar1 / shrinkLen;
}
// concatenate nodeDataVec and nodeDataForAdjacent
nodeDataVec.insert(( isRShrinkedForAdjacent ? nodeDataVec.end() : nodeDataVec.begin() ),
nodeDataForAdjacent.begin(), nodeDataForAdjacent.end() );
}
// Extend nodeDataVec by a node located at the end of not shared _LayerEdge
/* n - to add to nodeDataVec
* o-----o---
* |\ |
* | o---o---
* | |x--x--- L2
* | /
* |/ L
* x
* / */
for ( int isR = 0; isR < 2; ++isR )
{
_PolyLine& L2 = *( isR ? L._rightLine : L._leftLine ); // line with layers
if ( ! L2._advancable || L.IsCommonEdgeShared( L2 ) )
continue;
vector< const SMDS_MeshNode* >& layerNodes2 = isR ? L2._leftNodes : L2._rightNodes;
_LayerEdge& LE2 = isR ? L2._lEdges.front() : L2._lEdges.back();
if ( layerNodes2.empty() )
{
// refine the not shared _LayerEdge
vector<double> layersHeight;
calcLayersHeight( LE2._length2D, layersHeight, getLineHypothesis( L2._index ));
vector<gp_XY>& nodeUV2 = LE2._uvRefined;
nodeUV2.resize ( layersHeight.size() );
layerNodes2.resize( layersHeight.size() );
for ( size_t i = 0; i < layersHeight.size(); ++i )
{
gp_XY uv = LE2._uvOut + LE2._normal2D * layersHeight[i];
gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
nodeUV2 [ i ] = uv;
layerNodes2[ i ] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
}
}
UVPtStruct ptOfNode;
ptOfNode.u = LE2._uvRefined.back().X();
ptOfNode.v = LE2._uvRefined.back().Y();
ptOfNode.node = layerNodes2.back();
ptOfNode.param = isR ? ul : uf;
ptOfNode.normParam = isR ? 1 : 0;
nodeDataVec.insert(( isR ? nodeDataVec.end() : nodeDataVec.begin() ), ptOfNode );
// recompute normParam of nodes in nodeDataVec
newLength = GCPnts_AbscissaPoint::Length( curve,
nodeDataVec.front().param,
nodeDataVec.back().param);
for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP )
{
const double len = GCPnts_AbscissaPoint::Length( curve,
nodeDataVec.front().param,
nodeDataVec[iP].param );
nodeDataVec[iP].normParam = len / newLength;
}
}
// create a proxy sub-mesh containing the moved nodes
_ProxyMeshOfFace::_EdgeSubMesh* edgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
edgeSM->SetUVPtStructVec( nodeDataVec );
// set a sub-mesh event listener to remove just created edges when
// "ViscousLayers2D" hypothesis is modified
VISCOUS_3D::ToClearSubWithMain( _mesh->GetSubMesh( E ), _face );
} // loop on _polyLineVec
return true;
}
//================================================================================
/*!
* \brief Returns true if there will be a shrinked mesh on EDGE E of FACE adjFace
* near VERTEX V
*/
//================================================================================
bool _ViscousBuilder2D::toShrinkForAdjacent( const TopoDS_Face& adjFace,
const TopoDS_Edge& E,
const TopoDS_Vertex& V)
{
if ( _noShrinkVert.count( getMeshDS()->ShapeToIndex( V )) || adjFace.IsNull() )
return false;
vector< const StdMeshers_ViscousLayers2D* > hyps;
vector< TopoDS_Shape > hypShapes;
if ( VISCOUS_2D::findHyps( *_mesh, adjFace, hyps, hypShapes ))
{
VISCOUS_2D::_ViscousBuilder2D builder( *_mesh, adjFace, hyps, hypShapes );
builder._faceSideVec = StdMeshers_FaceSide::GetFaceWires( adjFace, *_mesh, true, _error );
builder.findEdgesWithLayers();
PShapeIteratorPtr edgeIt = _helper.GetAncestors( V, *_mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* edgeAtV = edgeIt->next() )
{
if ( !edgeAtV->IsSame( E ) &&
_helper.IsSubShape( *edgeAtV, adjFace ) &&
!builder._ignoreShapeIds.count( getMeshDS()->ShapeToIndex( *edgeAtV )))
{
return true;
}
}
}
return false;
}
//================================================================================
/*!
* \brief Make faces
*/
//================================================================================
bool _ViscousBuilder2D::refine()
{
// find out orientation of faces to create
bool isReverse =
( _helper.GetSubShapeOri( _mesh->GetShapeToMesh(), _face ) == TopAbs_REVERSED );
// store a proxyMesh in a sub-mesh
// make faces on each _PolyLine
vector< double > layersHeight;
double prevLen2D = -1;
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
{
_PolyLine& L = _polyLineVec[ iL ];
if ( !L._advancable ) continue;
// replace an inactive (1st) _LayerEdge with an active one of a neighbour _PolyLine
//size_t iLE = 0, nbLE = L._lEdges.size();
const bool leftEdgeShared = L.IsCommonEdgeShared( *L._leftLine );
const bool rightEdgeShared = L.IsCommonEdgeShared( *L._rightLine );
if ( /*!L._leftLine->_advancable &&*/ leftEdgeShared )
{
L._lEdges[0] = L._leftLine->_lEdges.back();
//iLE += int( !L._leftLine->_advancable );
}
if ( !L._rightLine->_advancable && rightEdgeShared )
{
L._lEdges.back() = L._rightLine->_lEdges[0];
//--nbLE;
}
// limit length of neighbour _LayerEdge's to avoid sharp change of layers thickness
vector< double > segLen( L._lEdges.size() );
segLen[0] = 0.0;
// check if length modification is usefull: look for _LayerEdge's
// with length limited due to collisions
bool lenLimited = false;
for ( size_t iLE = 1; ( iLE < L._lEdges.size()-1 && !lenLimited ); ++iLE )
lenLimited = L._lEdges[ iLE ]._isBlocked;
if ( lenLimited )
{
for ( size_t i = 1; i < segLen.size(); ++i )
{
// accumulate length of segments
double sLen = (L._lEdges[i-1]._uvOut - L._lEdges[i]._uvOut ).Modulus();
segLen[i] = segLen[i-1] + sLen;
}
const double totSegLen = segLen.back();
// normalize the accumulated length
for ( size_t iS = 1; iS < segLen.size(); ++iS )
segLen[iS] /= totSegLen;
for ( int isR = 0; isR < 2; ++isR )
{
size_t iF = 0, iL = L._lEdges.size()-1;
size_t *i = isR ? &iL : &iF;
_LayerEdge* prevLE = & L._lEdges[ *i ];
double weight = 0;
for ( ++iF, --iL; iF < L._lEdges.size()-1; ++iF, --iL )
{
_LayerEdge& LE = L._lEdges[*i];
if ( prevLE->_length2D > 0 )
{
gp_XY tangent ( LE._normal2D.Y(), -LE._normal2D.X() );
weight += Abs( tangent * ( prevLE->_uvIn - LE._uvIn )) / totSegLen;
// gp_XY prevTang( LE._uvOut - prevLE->_uvOut );
// gp_XY prevNorm( -prevTang.Y(), prevTang.X() );
gp_XY prevNorm = LE._normal2D;
double prevProj = prevNorm * ( prevLE->_uvIn - prevLE->_uvOut );
if ( prevProj > 0 ) {
prevProj /= prevNorm.Modulus();
if ( LE._length2D < prevProj )
weight += 0.75 * ( 1 - weight ); // length decrease is more preferable
LE._length2D = weight * LE._length2D + ( 1 - weight ) * prevProj;
LE._uvIn = LE._uvOut + LE._normal2D * LE._length2D;
}
}
prevLE = & LE;
}
}
}
// DEBUG: to see _uvRefined. cout can be redirected to hide NETGEN output
// cerr << "import smesh" << endl << "mesh = smesh.Mesh()"<< endl;
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
// analyse extremities of the _PolyLine to find existing nodes
const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd );
const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd );
const int v1ID = getMeshDS()->ShapeToIndex( V1 );
const int v2ID = getMeshDS()->ShapeToIndex( V2 );
const bool isShrinkableL = ! _noShrinkVert.count( v1ID );
const bool isShrinkableR = ! _noShrinkVert.count( v2ID );
bool hasLeftNode = ( !L._leftLine->_rightNodes.empty() && leftEdgeShared );
bool hasRightNode = ( !L._rightLine->_leftNodes.empty() && rightEdgeShared );
bool hasOwnLeftNode = ( !L._leftNodes.empty() );
bool hasOwnRightNode = ( !L._rightNodes.empty() );
bool isClosedEdge = ( points[ L._firstPntInd ].node == points[ L._lastPntInd ].node );
const size_t
nbN = L._lastPntInd - L._firstPntInd + 1,
iN0 = ( hasLeftNode || hasOwnLeftNode || isClosedEdge || !isShrinkableL ),
iNE = nbN - ( hasRightNode || hasOwnRightNode || !isShrinkableR );
// update _uvIn of end _LayerEdge's by existing nodes
const SMDS_MeshNode *nL = 0, *nR = 0;
if ( hasOwnLeftNode ) nL = L._leftNodes.back();
else if ( hasLeftNode ) nL = L._leftLine->_rightNodes.back();
if ( hasOwnRightNode ) nR = L._rightNodes.back();
else if ( hasRightNode ) nR = L._rightLine->_leftNodes.back();
if ( nL )
L._lEdges[0]._uvIn = _helper.GetNodeUV( _face, nL, points[ L._firstPntInd + 1 ].node );
if ( nR )
L._lEdges.back()._uvIn = _helper.GetNodeUV( _face, nR, points[ L._lastPntInd - 1 ].node );
// compute normalized [0;1] node parameters of nodes on a _PolyLine
vector< double > normPar( nbN );
const double
normF = L._wire->FirstParameter( L._edgeInd ),
normL = L._wire->LastParameter ( L._edgeInd ),
normDist = normL - normF;
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
normPar[ i - L._firstPntInd ] = ( points[i].normParam - normF ) / normDist;
// Calculate UV of most inner nodes
vector< gp_XY > innerUV( nbN );
// check if innerUV should be interpolated between _LayerEdge::_uvIn's
const size_t nbLE = L._lEdges.size();
bool needInterpol = ( nbN != nbLE );
if ( !needInterpol )
{
// more check: compare length of inner and outer end segments
double lenIn, lenOut;
for ( int isR = 0; isR < 2 && !needInterpol; ++isR )
{
const _Segment& segIn = isR ? L._segments.back() : L._segments[0];
const gp_XY& uvIn1 = segIn.p1();
const gp_XY& uvIn2 = segIn.p2();
const gp_XY& uvOut1 = L._lEdges[ isR ? nbLE-1 : 0 ]._uvOut;
const gp_XY& uvOut2 = L._lEdges[ isR ? nbLE-2 : 1 ]._uvOut;
if ( _is2DIsotropic )
{
lenIn = ( uvIn1 - uvIn2 ).Modulus();
lenOut = ( uvOut1 - uvOut2 ).Modulus();
}
else
{
lenIn = _surface->Value( uvIn1.X(), uvIn1.Y() )
.Distance( _surface->Value( uvIn2.X(), uvIn2.Y() ));
lenOut = _surface->Value( uvOut1.X(), uvOut1.Y() )
.Distance( _surface->Value( uvOut2.X(), uvOut2.Y() ));
}
needInterpol = ( lenIn < 0.66 * lenOut );
}
}
if ( needInterpol )
{
// compute normalized accumulated length of inner segments
size_t iS;
if ( _is2DIsotropic )
for ( iS = 1; iS < segLen.size(); ++iS )
{
double sLen = ( L._lEdges[iS-1]._uvIn - L._lEdges[iS]._uvIn ).Modulus();
segLen[iS] = segLen[iS-1] + sLen;
}
else
for ( iS = 1; iS < segLen.size(); ++iS )
{
const gp_XY& uv1 = L._lEdges[iS-1]._uvIn;
const gp_XY& uv2 = L._lEdges[iS ]._uvIn;
gp_Pnt p1 = _surface->Value( uv1.X(), uv1.Y() );
gp_Pnt p2 = _surface->Value( uv2.X(), uv2.Y() );
double sLen = p1.Distance( p2 );
segLen[iS] = segLen[iS-1] + sLen;
}
// normalize the accumulated length
for ( iS = 1; iS < segLen.size(); ++iS )
segLen[iS] /= segLen.back();
// calculate UV of most inner nodes according to the normalized node parameters
iS = 0;
for ( size_t i = 0; i < innerUV.size(); ++i )
{
while ( normPar[i] > segLen[iS+1] )
++iS;
double r = ( normPar[i] - segLen[iS] ) / ( segLen[iS+1] - segLen[iS] );
innerUV[ i ] = r * L._lEdges[iS+1]._uvIn + (1-r) * L._lEdges[iS]._uvIn;
}
}
else // ! needInterpol
{
for ( size_t i = 0; i < nbLE; ++i )
innerUV[ i ] = L._lEdges[i]._uvIn;
}
// normalized height of layers
const THypVL* hyp = getLineHypothesis( iL );
calcLayersHeight( 1., layersHeight, hyp);
// Create layers of faces
// nodes to create 1 layer of faces
vector< const SMDS_MeshNode* > outerNodes( nbN );
vector< const SMDS_MeshNode* > innerNodes( nbN );
// initialize outerNodes by nodes of the L._wire
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
outerNodes[ i-L._firstPntInd ] = points[i].node;
L._leftNodes .reserve( hyp->GetNumberLayers() );
L._rightNodes.reserve( hyp->GetNumberLayers() );
int cur = 0, prev = -1; // to take into account orientation of _face
if ( isReverse ) std::swap( cur, prev );
for ( int iF = 0; iF < hyp->GetNumberLayers(); ++iF ) // loop on layers of faces
{
// create innerNodes of a current layer
for ( size_t i = iN0; i < iNE; ++i )
{
gp_XY uvOut = points[ L._firstPntInd + i ].UV();
gp_XY& uvIn = innerUV[ i ];
gp_XY uv = layersHeight[ iF ] * uvIn + ( 1.-layersHeight[ iF ]) * uvOut;
gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
innerNodes[i] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
}
// use nodes created for adjacent _PolyLine's
if ( hasOwnLeftNode ) innerNodes.front() = L._leftNodes [ iF ];
else if ( hasLeftNode ) innerNodes.front() = L._leftLine->_rightNodes[ iF ];
if ( hasOwnRightNode ) innerNodes.back() = L._rightNodes[ iF ];
else if ( hasRightNode ) innerNodes.back() = L._rightLine->_leftNodes[ iF ];
if ( isClosedEdge ) innerNodes.front() = innerNodes.back(); // circle
if ( !isShrinkableL ) innerNodes.front() = outerNodes.front();
if ( !isShrinkableR ) innerNodes.back() = outerNodes.back();
if ( !hasOwnLeftNode ) L._leftNodes.push_back( innerNodes.front() );
if ( !hasOwnRightNode ) L._rightNodes.push_back( innerNodes.back() );
// create faces
for ( size_t i = 1; i < innerNodes.size(); ++i )
if ( SMDS_MeshElement* f = _helper.AddFace( outerNodes[ i+prev ], outerNodes[ i+cur ],
innerNodes[ i+cur ], innerNodes[ i+prev ]))
L._newFaces.insert( L._newFaces.end(), f );
outerNodes.swap( innerNodes );
}
// faces between not shared _LayerEdge's (at concave VERTEX)
for ( int isR = 0; isR < 2; ++isR )
{
if ( isR ? rightEdgeShared : leftEdgeShared )
continue;
vector< const SMDS_MeshNode* > &
lNodes = (isR ? L._rightNodes : L._leftLine->_rightNodes ),
rNodes = (isR ? L._rightLine->_leftNodes : L._leftNodes );
if ( lNodes.empty() || rNodes.empty() || lNodes.size() != rNodes.size() )
continue;
for ( size_t i = 1; i < lNodes.size(); ++i )
_helper.AddFace( lNodes[ i+prev ], rNodes[ i+prev ],
rNodes[ i+cur ], lNodes[ i+cur ]);
const UVPtStruct& ptOnVertex = points[ isR ? L._lastPntInd : L._firstPntInd ];
if ( isReverse )
_helper.AddFace( ptOnVertex.node, lNodes[ 0 ], rNodes[ 0 ]);
else
_helper.AddFace( ptOnVertex.node, rNodes[ 0 ], lNodes[ 0 ]);
}
// Fill the _ProxyMeshOfFace
UVPtStructVec nodeDataVec( outerNodes.size() ); // outerNodes swapped with innerNodes
for ( size_t i = 0; i < outerNodes.size(); ++i )
{
gp_XY uv = _helper.GetNodeUV( _face, outerNodes[i] );
nodeDataVec[i].u = uv.X();
nodeDataVec[i].v = uv.Y();
nodeDataVec[i].node = outerNodes[i];
nodeDataVec[i].param = points [i + L._firstPntInd].param;
nodeDataVec[i].normParam = normPar[i];
nodeDataVec[i].x = normPar[i];
nodeDataVec[i].y = normPar[i];
}
nodeDataVec.front().param = L._wire->FirstU( L._edgeInd );
nodeDataVec.back() .param = L._wire->LastU ( L._edgeInd );
_ProxyMeshOfFace::_EdgeSubMesh* edgeSM
= getProxyMesh()->GetEdgeSubMesh( L._wire->EdgeID( L._edgeInd ));
edgeSM->SetUVPtStructVec( nodeDataVec );
} // loop on _PolyLine's
// re-compute FACEs whose mesh was removed by shrink()
for ( size_t i = 0; i < _clearedFaces.size(); ++i )
{
SMESH_subMesh* sm = _mesh->GetSubMesh( _clearedFaces[i] );
if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE )
sm->ComputeStateEngine( SMESH_subMesh::COMPUTE );
}
return true;
}
//================================================================================
/*!
* \brief Improve quality of the created mesh elements
*/
//================================================================================
bool _ViscousBuilder2D::improve()
{
if ( !_proxyMesh )
return false;
// fixed nodes on EDGE's
std::set<const SMDS_MeshNode*> fixedNodes;
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
{
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
const vector<UVPtStruct>& points = wire->GetUVPtStruct();
for ( size_t i = 0; i < points.size(); ++i )
fixedNodes.insert( fixedNodes.end(), points[i].node );
}
// fixed proxy nodes
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
{
_PolyLine& L = _polyLineVec[ iL ];
const TopoDS_Edge& E = L._wire->Edge( L._edgeInd );
if ( const SMESH_ProxyMesh::SubMesh* sm = _proxyMesh->GetProxySubMesh( E ))
{
const UVPtStructVec& points = sm->GetUVPtStructVec();
for ( size_t i = 0; i < points.size(); ++i )
fixedNodes.insert( fixedNodes.end(), points[i].node );
}
for ( size_t i = 0; i < L._rightNodes.size(); ++i )
fixedNodes.insert( fixedNodes.end(), L._rightNodes[i] );
}
// smoothing
SMESH_MeshEditor editor( _mesh );
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
{
_PolyLine& L = _polyLineVec[ iL ];
if ( L._isStraight2D ) continue;
// SMESH_MeshEditor::SmoothMethod how =
// L._isStraight2D ? SMESH_MeshEditor::LAPLACIAN : SMESH_MeshEditor::CENTROIDAL;
//editor.Smooth( L._newFaces, fixedNodes, how, /*nbIt = */3 );
//editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::LAPLACIAN, /*nbIt = */1 );
editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::CENTROIDAL, /*nbIt = */3 );
}
return true;
}
//================================================================================
/*!
* \brief Remove elements and nodes from a face
*/
//================================================================================
bool _ViscousBuilder2D::removeMeshFaces(const TopoDS_Shape& face)
{
// we don't use SMESH_subMesh::ComputeStateEngine() because of a listener
// which clears EDGEs together with _face.
bool thereWereElems = false;
SMESH_subMesh* sm = _mesh->GetSubMesh( face );
if ( SMESHDS_SubMesh* smDS = sm->GetSubMeshDS() )
{
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
thereWereElems = eIt->more();
while ( eIt->more() ) getMeshDS()->RemoveFreeElement( eIt->next(), smDS );
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
while ( nIt->more() ) getMeshDS()->RemoveFreeNode( nIt->next(), smDS );
}
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
return thereWereElems;
}
//================================================================================
/*!
* \brief Returns a hypothesis for a _PolyLine
*/
//================================================================================
const StdMeshers_ViscousLayers2D* _ViscousBuilder2D::getLineHypothesis(int iPL)
{
return iPL < (int)_hypOfEdge.size() ? _hypOfEdge[ iPL ] : _hyps[0];
}
//================================================================================
/*!
* \brief Returns a layers thickness for a _PolyLine
*/
//================================================================================
double _ViscousBuilder2D::getLineThickness(int iPL)
{
if ( const StdMeshers_ViscousLayers2D* h = getLineHypothesis( iPL ))
return Min( _maxThickness, h->GetTotalThickness() );
return _maxThickness;
}
//================================================================================
/*!
* \brief Creates a _ProxyMeshOfFace and store it in a sub-mesh of FACE
*/
//================================================================================
_ProxyMeshOfFace* _ViscousBuilder2D::getProxyMesh()
{
if ( _proxyMesh.get() )
return (_ProxyMeshOfFace*) _proxyMesh.get();
_ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *_mesh );
_proxyMesh.reset( proxyMeshOfFace );
new _ProxyMeshHolder( _face, _proxyMesh );
return proxyMeshOfFace;
}
//================================================================================
/*!
* \brief Calculate height of layers for the given thickness. Height is measured
* from the outer boundary
*/
//================================================================================
void _ViscousBuilder2D::calcLayersHeight(const double totalThick,
vector<double>& heights,
const THypVL* hyp)
{
const double fPowN = pow( hyp->GetStretchFactor(), hyp->GetNumberLayers() );
heights.resize( hyp->GetNumberLayers() );
double h0;
if ( fPowN - 1 <= numeric_limits<double>::min() )
h0 = totalThick / hyp->GetNumberLayers();
else
h0 = totalThick * ( hyp->GetStretchFactor() - 1 )/( fPowN - 1 );
double hSum = 0, hi = h0;
for ( int i = 0; i < hyp->GetNumberLayers(); ++i )
{
hSum += hi;
heights[ i ] = hSum;
hi *= hyp->GetStretchFactor();
}
}
//================================================================================
/*!
* \brief Elongate this _LayerEdge
*/
//================================================================================
bool _LayerEdge::SetNewLength( const double length3D )
{
if ( _isBlocked ) return false;
//_uvInPrev = _uvIn;
_length2D = length3D * _len2dTo3dRatio;
_uvIn = _uvOut + _normal2D * _length2D;
return true;
}
//================================================================================
/*!
* \brief Return true if _LayerEdge at a common VERTEX between EDGEs with
* and w/o layer is common to the both _PolyLine's. If this is true, nodes
* of this _LayerEdge are inflated along a _PolyLine w/o layer, else the nodes
* are inflated along _normal2D of _LayerEdge of EDGE with layer
*/
//================================================================================
bool _PolyLine::IsCommonEdgeShared( const _PolyLine& other )
{
const double tol = 1e-30;
if ( & other == _leftLine )
return _lEdges[0]._normal2D.IsEqual( _leftLine->_lEdges.back()._normal2D, tol );
if ( & other == _rightLine )
return _lEdges.back()._normal2D.IsEqual( _rightLine->_lEdges[0]._normal2D, tol );
return false;
}
//================================================================================
/*!
* \brief Return \c true if the EDGE of this _PolyLine is concave
*/
//================================================================================
bool _PolyLine::IsConcave() const
{
if ( _lEdges.size() < 2 )
return false;
gp_Vec2d v1( _lEdges[0]._uvOut, _lEdges[1]._uvOut );
gp_Vec2d v2( _lEdges[0]._uvOut, _lEdges[2]._uvOut );
const double size2 = v2.Magnitude();
return ( v1 ^ v2 ) / size2 < -1e-3 * size2;
}
//================================================================================
/*!
* \brief Constructor of SegmentTree
*/
//================================================================================
_SegmentTree::_SegmentTree( const vector< _Segment >& segments ):
SMESH_Quadtree()
{
_segments.resize( segments.size() );
for ( size_t i = 0; i < segments.size(); ++i )
_segments[i].Set( segments[i] );
compute();
}
//================================================================================
/*!
* \brief Return the maximal bnd box
*/
//================================================================================
_SegmentTree::box_type* _SegmentTree::buildRootBox()
{
_SegmentTree::box_type* box = new _SegmentTree::box_type;
for ( size_t i = 0; i < _segments.size(); ++i )
{
box->Add( *_segments[i]._seg->_uv[0] );
box->Add( *_segments[i]._seg->_uv[1] );
}
return box;
}
//================================================================================
/*!
* \brief Redistrubute _segments among children
*/
//================================================================================
void _SegmentTree::buildChildrenData()
{
for ( int i = 0; i < _segments.size(); ++i )
for (int j = 0; j < nbChildren(); j++)
if ( !myChildren[j]->getBox()->IsOut( *_segments[i]._seg->_uv[0],
*_segments[i]._seg->_uv[1] ))
((_SegmentTree*)myChildren[j])->_segments.push_back( _segments[i]);
SMESHUtils::FreeVector( _segments ); // = _elements.clear() + free memory
for (int j = 0; j < nbChildren(); j++)
{
_SegmentTree* child = static_cast<_SegmentTree*>( myChildren[j]);
child->myIsLeaf = ( child->_segments.size() <= maxNbSegInLeaf() );
}
}
//================================================================================
/*!
* \brief Return elements which can include the point
*/
//================================================================================
void _SegmentTree::GetSegmentsNear( const _Segment& seg,
vector< const _Segment* >& found )
{
if ( getBox()->IsOut( *seg._uv[0], *seg._uv[1] ))
return;
if ( isLeaf() )
{
for ( int i = 0; i < _segments.size(); ++i )
if ( !_segments[i].IsOut( seg ))
found.push_back( _segments[i]._seg );
}
else
{
for (int i = 0; i < nbChildren(); i++)
((_SegmentTree*) myChildren[i])->GetSegmentsNear( seg, found );
}
}
//================================================================================
/*!
* \brief Return segments intersecting a ray
*/
//================================================================================
void _SegmentTree::GetSegmentsNear( const gp_Ax2d& ray,
vector< const _Segment* >& found )
{
if ( getBox()->IsOut( ray ))
return;
if ( isLeaf() )
{
for ( int i = 0; i < _segments.size(); ++i )
if ( !_segments[i].IsOut( ray ))
found.push_back( _segments[i]._seg );
}
else
{
for (int i = 0; i < nbChildren(); i++)
((_SegmentTree*) myChildren[i])->GetSegmentsNear( ray, found );
}
}
//================================================================================
/*!
* \brief Classify a _Segment
*/
//================================================================================
bool _SegmentTree::_SegBox::IsOut( const _Segment& seg ) const
{
const double eps = std::numeric_limits<double>::min();
for ( int iC = 0; iC < 2; ++iC )
{
if ( seg._uv[0]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps &&
seg._uv[1]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps )
return true;
if ( seg._uv[0]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps &&
seg._uv[1]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps )
return true;
}
return false;
}
//================================================================================
/*!
* \brief Classify a ray
*/
//================================================================================
bool _SegmentTree::_SegBox::IsOut( const gp_Ax2d& ray ) const
{
double distBoxCenter2Ray =
ray.Direction().XY() ^ ( ray.Location().XY() - 0.5 * (*_seg->_uv[0] + *_seg->_uv[1]));
double boxSectionDiam =
Abs( ray.Direction().X() ) * ( _seg->_uv[1-_iMin[1]]->Y() - _seg->_uv[_iMin[1]]->Y() ) +
Abs( ray.Direction().Y() ) * ( _seg->_uv[1-_iMin[0]]->X() - _seg->_uv[_iMin[0]]->X() );
return Abs( distBoxCenter2Ray ) > 0.5 * boxSectionDiam;
}