mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-02-06 06:54:18 +05:00
0003e6b4fc
Version 8.3.0 alpha 2
5299 lines
246 KiB
Python
5299 lines
246 KiB
Python
# Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
#
|
|
# This library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License, or (at your option) any later version.
|
|
#
|
|
# This library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with this library; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
#
|
|
# File : smeshBuilder.py
|
|
# Author : Francis KLOSS, OCC
|
|
# Module : SMESH
|
|
|
|
## @package smeshBuilder
|
|
# Python API for SALOME %Mesh module
|
|
|
|
## @defgroup l1_auxiliary Auxiliary methods and structures
|
|
## @defgroup l1_creating Creating meshes
|
|
## @{
|
|
## @defgroup l2_impexp Importing and exporting meshes
|
|
## @{
|
|
## @details
|
|
## These are methods of class \ref smeshBuilder.smeshBuilder "smeshBuilder"
|
|
## @}
|
|
## @defgroup l2_construct Constructing meshes
|
|
## @defgroup l2_algorithms Defining Algorithms
|
|
## @{
|
|
## @defgroup l3_algos_basic Basic meshing algorithms
|
|
## @defgroup l3_algos_proj Projection Algorithms
|
|
## @defgroup l3_algos_segmarv Segments around Vertex
|
|
## @defgroup l3_algos_3dextr 3D extrusion meshing algorithm
|
|
|
|
## @}
|
|
## @defgroup l2_hypotheses Defining hypotheses
|
|
## @{
|
|
## @defgroup l3_hypos_1dhyps 1D Meshing Hypotheses
|
|
## @defgroup l3_hypos_2dhyps 2D Meshing Hypotheses
|
|
## @defgroup l3_hypos_maxvol Max Element Volume hypothesis
|
|
## @defgroup l3_hypos_quad Quadrangle Parameters hypothesis
|
|
## @defgroup l3_hypos_additi Additional Hypotheses
|
|
|
|
## @}
|
|
## @defgroup l2_submeshes Constructing sub-meshes
|
|
## @defgroup l2_editing Editing Meshes
|
|
|
|
## @}
|
|
## @defgroup l1_meshinfo Mesh Information
|
|
## @defgroup l1_controls Quality controls and Filtering
|
|
## @defgroup l1_grouping Grouping elements
|
|
## @{
|
|
## @defgroup l2_grps_create Creating groups
|
|
## @defgroup l2_grps_operon Using operations on groups
|
|
## @defgroup l2_grps_delete Deleting Groups
|
|
|
|
## @}
|
|
## @defgroup l1_modifying Modifying meshes
|
|
## @{
|
|
## @defgroup l2_modif_add Adding nodes and elements
|
|
## @defgroup l2_modif_del Removing nodes and elements
|
|
## @defgroup l2_modif_edit Modifying nodes and elements
|
|
## @defgroup l2_modif_renumber Renumbering nodes and elements
|
|
## @defgroup l2_modif_trsf Transforming meshes (Translation, Rotation, Symmetry, Sewing, Merging)
|
|
## @defgroup l2_modif_unitetri Uniting triangles
|
|
## @defgroup l2_modif_cutquadr Cutting elements
|
|
## @defgroup l2_modif_changori Changing orientation of elements
|
|
## @defgroup l2_modif_smooth Smoothing
|
|
## @defgroup l2_modif_extrurev Extrusion and Revolution
|
|
## @defgroup l2_modif_tofromqu Convert to/from Quadratic Mesh
|
|
## @defgroup l2_modif_duplicat Duplication of nodes and elements (to emulate cracks)
|
|
|
|
## @}
|
|
## @defgroup l1_measurements Measurements
|
|
|
|
import salome
|
|
from salome.geom import geomBuilder
|
|
|
|
import SMESH # This is necessary for back compatibility
|
|
from SMESH import *
|
|
from salome.smesh.smesh_algorithm import Mesh_Algorithm
|
|
|
|
import SALOME
|
|
import SALOMEDS
|
|
import os
|
|
import collections
|
|
|
|
## Private class used to workaround a problem that sometimes isinstance(m, Mesh) returns False
|
|
#
|
|
class MeshMeta(type):
|
|
def __instancecheck__(cls, inst):
|
|
"""Implement isinstance(inst, cls)."""
|
|
return any(cls.__subclasscheck__(c)
|
|
for c in {type(inst), inst.__class__})
|
|
|
|
def __subclasscheck__(cls, sub):
|
|
"""Implement issubclass(sub, cls)."""
|
|
return type.__subclasscheck__(cls, sub) or (cls.__name__ == sub.__name__ and cls.__module__ == sub.__module__)
|
|
|
|
## @addtogroup l1_auxiliary
|
|
## @{
|
|
|
|
## Convert an angle from degrees to radians
|
|
def DegreesToRadians(AngleInDegrees):
|
|
from math import pi
|
|
return AngleInDegrees * pi / 180.0
|
|
|
|
import salome_notebook
|
|
notebook = salome_notebook.notebook
|
|
# Salome notebook variable separator
|
|
var_separator = ":"
|
|
|
|
## Return list of variable values from salome notebook.
|
|
# The last argument, if is callable, is used to modify values got from notebook
|
|
def ParseParameters(*args):
|
|
Result = []
|
|
Parameters = ""
|
|
hasVariables = False
|
|
varModifFun=None
|
|
if args and isinstance( args[-1], collections.Callable):
|
|
args, varModifFun = args[:-1], args[-1]
|
|
for parameter in args:
|
|
|
|
Parameters += str(parameter) + var_separator
|
|
|
|
if isinstance(parameter,str):
|
|
# check if there is an inexistent variable name
|
|
if not notebook.isVariable(parameter):
|
|
raise ValueError("Variable with name '" + parameter + "' doesn't exist!!!")
|
|
parameter = notebook.get(parameter)
|
|
hasVariables = True
|
|
if varModifFun:
|
|
parameter = varModifFun(parameter)
|
|
pass
|
|
pass
|
|
Result.append(parameter)
|
|
|
|
pass
|
|
Parameters = Parameters[:-1]
|
|
Result.append( Parameters )
|
|
Result.append( hasVariables )
|
|
return Result
|
|
|
|
## Parse parameters while converting variables to radians
|
|
def ParseAngles(*args):
|
|
return ParseParameters( *( args + (DegreesToRadians, )))
|
|
|
|
## Substitute PointStruct.__init__() to create SMESH.PointStruct using notebook variables.
|
|
# Parameters are stored in PointStruct.parameters attribute
|
|
def __initPointStruct(point,*args):
|
|
point.x, point.y, point.z, point.parameters,hasVars = ParseParameters(*args)
|
|
pass
|
|
SMESH.PointStruct.__init__ = __initPointStruct
|
|
|
|
## Substitute AxisStruct.__init__() to create SMESH.AxisStruct using notebook variables.
|
|
# Parameters are stored in AxisStruct.parameters attribute
|
|
def __initAxisStruct(ax,*args):
|
|
if len( args ) != 6:
|
|
raise RuntimeError("Bad nb args (%s) passed in SMESH.AxisStruct(x,y,z,dx,dy,dz)"%(len( args )))
|
|
ax.x, ax.y, ax.z, ax.vx, ax.vy, ax.vz, ax.parameters,hasVars = ParseParameters(*args)
|
|
pass
|
|
SMESH.AxisStruct.__init__ = __initAxisStruct
|
|
|
|
smeshPrecisionConfusion = 1.e-07
|
|
## Compare real values using smeshPrecisionConfusion as tolerance
|
|
def IsEqual(val1, val2, tol=smeshPrecisionConfusion):
|
|
if abs(val1 - val2) < tol:
|
|
return True
|
|
return False
|
|
|
|
NO_NAME = "NoName"
|
|
|
|
## Return object name
|
|
def GetName(obj):
|
|
if obj:
|
|
# object not null
|
|
if isinstance(obj, SALOMEDS._objref_SObject):
|
|
# study object
|
|
return obj.GetName()
|
|
try:
|
|
ior = salome.orb.object_to_string(obj)
|
|
except:
|
|
ior = None
|
|
if ior:
|
|
# CORBA object
|
|
studies = salome.myStudyManager.GetOpenStudies()
|
|
for sname in studies:
|
|
s = salome.myStudyManager.GetStudyByName(sname)
|
|
if not s: continue
|
|
sobj = s.FindObjectIOR(ior)
|
|
if not sobj: continue
|
|
return sobj.GetName()
|
|
if hasattr(obj, "GetName"):
|
|
# unknown CORBA object, having GetName() method
|
|
return obj.GetName()
|
|
else:
|
|
# unknown CORBA object, no GetName() method
|
|
return NO_NAME
|
|
pass
|
|
if hasattr(obj, "GetName"):
|
|
# unknown non-CORBA object, having GetName() method
|
|
return obj.GetName()
|
|
pass
|
|
raise RuntimeError("Null or invalid object")
|
|
|
|
## Print error message if a hypothesis was not assigned.
|
|
def TreatHypoStatus(status, hypName, geomName, isAlgo, mesh):
|
|
if isAlgo:
|
|
hypType = "algorithm"
|
|
else:
|
|
hypType = "hypothesis"
|
|
pass
|
|
reason = ""
|
|
if hasattr( status, "__getitem__" ):
|
|
status,reason = status[0],status[1]
|
|
if status == HYP_UNKNOWN_FATAL :
|
|
reason = "for unknown reason"
|
|
elif status == HYP_INCOMPATIBLE :
|
|
reason = "this hypothesis mismatches the algorithm"
|
|
elif status == HYP_NOTCONFORM :
|
|
reason = "a non-conform mesh would be built"
|
|
elif status == HYP_ALREADY_EXIST :
|
|
if isAlgo: return # it does not influence anything
|
|
reason = hypType + " of the same dimension is already assigned to this shape"
|
|
elif status == HYP_BAD_DIM :
|
|
reason = hypType + " mismatches the shape"
|
|
elif status == HYP_CONCURENT :
|
|
reason = "there are concurrent hypotheses on sub-shapes"
|
|
elif status == HYP_BAD_SUBSHAPE :
|
|
reason = "the shape is neither the main one, nor its sub-shape, nor a valid group"
|
|
elif status == HYP_BAD_GEOMETRY:
|
|
reason = "the algorithm is not applicable to this geometry"
|
|
elif status == HYP_HIDDEN_ALGO:
|
|
reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions"
|
|
elif status == HYP_HIDING_ALGO:
|
|
reason = "it hides algorithms of lower dimensions by generating elements of all dimensions"
|
|
elif status == HYP_NEED_SHAPE:
|
|
reason = "algorithm can't work without shape"
|
|
elif status == HYP_INCOMPAT_HYPS:
|
|
pass
|
|
else:
|
|
return
|
|
where = geomName
|
|
if where:
|
|
where = '"%s"' % geomName
|
|
if mesh:
|
|
meshName = GetName( mesh )
|
|
if meshName and meshName != NO_NAME:
|
|
where = '"%s" shape in "%s" mesh ' % ( geomName, meshName )
|
|
if status < HYP_UNKNOWN_FATAL and where:
|
|
print('"%s" was assigned to %s but %s' %( hypName, where, reason ))
|
|
elif where:
|
|
print('"%s" was not assigned to %s : %s' %( hypName, where, reason ))
|
|
else:
|
|
print('"%s" was not assigned : %s' %( hypName, reason ))
|
|
pass
|
|
|
|
## Private method. Add geom (sub-shape of the main shape) into the study if not yet there
|
|
def AssureGeomPublished(mesh, geom, name=''):
|
|
if not isinstance( geom, geomBuilder.GEOM._objref_GEOM_Object ):
|
|
return
|
|
if not geom.GetStudyEntry() and \
|
|
mesh.smeshpyD.GetCurrentStudy():
|
|
## set the study
|
|
studyID = mesh.smeshpyD.GetCurrentStudy()._get_StudyId()
|
|
if studyID != mesh.geompyD.myStudyId:
|
|
mesh.geompyD.init_geom( mesh.smeshpyD.GetCurrentStudy())
|
|
## get a name
|
|
if not name and geom.GetShapeType() != geomBuilder.GEOM.COMPOUND:
|
|
# for all groups SubShapeName() return "Compound_-1"
|
|
name = mesh.geompyD.SubShapeName(geom, mesh.geom)
|
|
if not name:
|
|
name = "%s_%s"%(geom.GetShapeType(), id(geom)%10000)
|
|
## publish
|
|
mesh.geompyD.addToStudyInFather( mesh.geom, geom, name )
|
|
return
|
|
|
|
## Return the first vertex of a geometrical edge by ignoring orientation
|
|
def FirstVertexOnCurve(mesh, edge):
|
|
vv = mesh.geompyD.SubShapeAll( edge, geomBuilder.geomBuilder.ShapeType["VERTEX"])
|
|
if not vv:
|
|
raise TypeError("Given object has no vertices")
|
|
if len( vv ) == 1: return vv[0]
|
|
v0 = mesh.geompyD.MakeVertexOnCurve(edge,0.)
|
|
xyz = mesh.geompyD.PointCoordinates( v0 ) # coords of the first vertex
|
|
xyz1 = mesh.geompyD.PointCoordinates( vv[0] )
|
|
xyz2 = mesh.geompyD.PointCoordinates( vv[1] )
|
|
dist1, dist2 = 0,0
|
|
for i in range(3):
|
|
dist1 += abs( xyz[i] - xyz1[i] )
|
|
dist2 += abs( xyz[i] - xyz2[i] )
|
|
if dist1 < dist2:
|
|
return vv[0]
|
|
else:
|
|
return vv[1]
|
|
|
|
# end of l1_auxiliary
|
|
## @}
|
|
|
|
|
|
# Warning: smeshInst is a singleton
|
|
smeshInst = None
|
|
engine = None
|
|
doLcc = False
|
|
created = False
|
|
|
|
## This class allows to create, load or manipulate meshes.
|
|
# It has a set of methods to create, load or copy meshes, to combine several meshes, etc.
|
|
# It also has methods to get infos and measure meshes.
|
|
class smeshBuilder(SMESH._objref_SMESH_Gen):
|
|
|
|
# MirrorType enumeration
|
|
POINT = SMESH_MeshEditor.POINT
|
|
AXIS = SMESH_MeshEditor.AXIS
|
|
PLANE = SMESH_MeshEditor.PLANE
|
|
|
|
# Smooth_Method enumeration
|
|
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
|
|
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
|
|
|
|
PrecisionConfusion = smeshPrecisionConfusion
|
|
|
|
# TopAbs_State enumeration
|
|
[TopAbs_IN, TopAbs_OUT, TopAbs_ON, TopAbs_UNKNOWN] = list(range(4))
|
|
|
|
# Methods of splitting a hexahedron into tetrahedra
|
|
Hex_5Tet, Hex_6Tet, Hex_24Tet, Hex_2Prisms, Hex_4Prisms = 1, 2, 3, 1, 2
|
|
|
|
def __new__(cls, *args):
|
|
global engine
|
|
global smeshInst
|
|
global doLcc
|
|
#print "==== __new__", engine, smeshInst, doLcc
|
|
|
|
if smeshInst is None:
|
|
# smesh engine is either retrieved from engine, or created
|
|
smeshInst = engine
|
|
# Following test avoids a recursive loop
|
|
if doLcc:
|
|
if smeshInst is not None:
|
|
# smesh engine not created: existing engine found
|
|
doLcc = False
|
|
if doLcc:
|
|
doLcc = False
|
|
# FindOrLoadComponent called:
|
|
# 1. CORBA resolution of server
|
|
# 2. the __new__ method is called again
|
|
#print "==== smeshInst = lcc.FindOrLoadComponent ", engine, smeshInst, doLcc
|
|
smeshInst = salome.lcc.FindOrLoadComponent( "FactoryServer", "SMESH" )
|
|
else:
|
|
# FindOrLoadComponent not called
|
|
if smeshInst is None:
|
|
# smeshBuilder instance is created from lcc.FindOrLoadComponent
|
|
#print "==== smeshInst = super(smeshBuilder,cls).__new__(cls) ", engine, smeshInst, doLcc
|
|
smeshInst = super(smeshBuilder,cls).__new__(cls)
|
|
else:
|
|
# smesh engine not created: existing engine found
|
|
#print "==== existing ", engine, smeshInst, doLcc
|
|
pass
|
|
#print "====1 ", smeshInst
|
|
return smeshInst
|
|
|
|
#print "====2 ", smeshInst
|
|
return smeshInst
|
|
|
|
def __init__(self, *args):
|
|
global created
|
|
#print "--------------- smeshbuilder __init__ ---", created
|
|
if not created:
|
|
created = True
|
|
SMESH._objref_SMESH_Gen.__init__(self, *args)
|
|
|
|
## Dump component to the Python script
|
|
# This method overrides IDL function to allow default values for the parameters.
|
|
# @ingroup l1_auxiliary
|
|
def DumpPython(self, theStudy, theIsPublished=True, theIsMultiFile=True):
|
|
return SMESH._objref_SMESH_Gen.DumpPython(self, theStudy, theIsPublished, theIsMultiFile)
|
|
|
|
## Set mode of DumpPython(), \a historical or \a snapshot.
|
|
# In the \a historical mode, the Python Dump script includes all commands
|
|
# performed by SMESH engine. In the \a snapshot mode, commands
|
|
# relating to objects removed from the Study are excluded from the script
|
|
# as well as commands not influencing the current state of meshes
|
|
# @ingroup l1_auxiliary
|
|
def SetDumpPythonHistorical(self, isHistorical):
|
|
if isHistorical: val = "true"
|
|
else: val = "false"
|
|
SMESH._objref_SMESH_Gen.SetOption(self, "historical_python_dump", val)
|
|
|
|
## Set the current study and Geometry component
|
|
# @ingroup l1_auxiliary
|
|
def init_smesh(self,theStudy,geompyD = None):
|
|
#print "init_smesh"
|
|
self.SetCurrentStudy(theStudy,geompyD)
|
|
if theStudy:
|
|
global notebook
|
|
notebook.myStudy = theStudy
|
|
|
|
## Create a mesh. This can be either an empty mesh, possibly having an underlying geometry,
|
|
# or a mesh wrapping a CORBA mesh given as a parameter.
|
|
# @param obj either (1) a CORBA mesh (SMESH._objref_SMESH_Mesh) got e.g. by calling
|
|
# salome.myStudy.FindObjectID("0:1:2:3").GetObject() or
|
|
# (2) a Geometrical object for meshing or
|
|
# (3) none.
|
|
# @param name the name for the new mesh.
|
|
# @return an instance of Mesh class.
|
|
# @ingroup l2_construct
|
|
def Mesh(self, obj=0, name=0):
|
|
if isinstance(obj,str):
|
|
obj,name = name,obj
|
|
return Mesh(self,self.geompyD,obj,name)
|
|
|
|
## Return a long value from enumeration
|
|
# @ingroup l1_auxiliary
|
|
def EnumToLong(self,theItem):
|
|
return theItem._v
|
|
|
|
## Return a string representation of the color.
|
|
# To be used with filters.
|
|
# @param c color value (SALOMEDS.Color)
|
|
# @ingroup l1_auxiliary
|
|
def ColorToString(self,c):
|
|
val = ""
|
|
if isinstance(c, SALOMEDS.Color):
|
|
val = "%s;%s;%s" % (c.R, c.G, c.B)
|
|
elif isinstance(c, str):
|
|
val = c
|
|
else:
|
|
raise ValueError("Color value should be of string or SALOMEDS.Color type")
|
|
return val
|
|
|
|
## Get PointStruct from vertex
|
|
# @param theVertex a GEOM object(vertex)
|
|
# @return SMESH.PointStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetPointStruct(self,theVertex):
|
|
[x, y, z] = self.geompyD.PointCoordinates(theVertex)
|
|
return PointStruct(x,y,z)
|
|
|
|
## Get DirStruct from vector
|
|
# @param theVector a GEOM object(vector)
|
|
# @return SMESH.DirStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetDirStruct(self,theVector):
|
|
vertices = self.geompyD.SubShapeAll( theVector, geomBuilder.geomBuilder.ShapeType["VERTEX"] )
|
|
if(len(vertices) != 2):
|
|
print("Error: vector object is incorrect.")
|
|
return None
|
|
p1 = self.geompyD.PointCoordinates(vertices[0])
|
|
p2 = self.geompyD.PointCoordinates(vertices[1])
|
|
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
dirst = DirStruct(pnt)
|
|
return dirst
|
|
|
|
## Make DirStruct from a triplet
|
|
# @param x,y,z vector components
|
|
# @return SMESH.DirStruct
|
|
# @ingroup l1_auxiliary
|
|
def MakeDirStruct(self,x,y,z):
|
|
pnt = PointStruct(x,y,z)
|
|
return DirStruct(pnt)
|
|
|
|
## Get AxisStruct from object
|
|
# @param theObj a GEOM object (line or plane)
|
|
# @return SMESH.AxisStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetAxisStruct(self,theObj):
|
|
import GEOM
|
|
edges = self.geompyD.SubShapeAll( theObj, geomBuilder.geomBuilder.ShapeType["EDGE"] )
|
|
axis = None
|
|
if len(edges) > 1:
|
|
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geomBuilder.geomBuilder.ShapeType["VERTEX"] )
|
|
vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geomBuilder.geomBuilder.ShapeType["VERTEX"] )
|
|
vertex1 = self.geompyD.PointCoordinates(vertex1)
|
|
vertex2 = self.geompyD.PointCoordinates(vertex2)
|
|
vertex3 = self.geompyD.PointCoordinates(vertex3)
|
|
vertex4 = self.geompyD.PointCoordinates(vertex4)
|
|
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
|
|
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
|
|
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
|
|
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
|
|
axis._mirrorType = SMESH.SMESH_MeshEditor.PLANE
|
|
elif len(edges) == 1:
|
|
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geomBuilder.geomBuilder.ShapeType["VERTEX"] )
|
|
p1 = self.geompyD.PointCoordinates( vertex1 )
|
|
p2 = self.geompyD.PointCoordinates( vertex2 )
|
|
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
axis._mirrorType = SMESH.SMESH_MeshEditor.AXIS
|
|
elif theObj.GetShapeType() == GEOM.VERTEX:
|
|
x,y,z = self.geompyD.PointCoordinates( theObj )
|
|
axis = AxisStruct( x,y,z, 1,0,0,)
|
|
axis._mirrorType = SMESH.SMESH_MeshEditor.POINT
|
|
return axis
|
|
|
|
# From SMESH_Gen interface:
|
|
# ------------------------
|
|
|
|
## Set the given name to the object
|
|
# @param obj the object to rename
|
|
# @param name a new object name
|
|
# @ingroup l1_auxiliary
|
|
def SetName(self, obj, name):
|
|
if isinstance( obj, Mesh ):
|
|
obj = obj.GetMesh()
|
|
elif isinstance( obj, Mesh_Algorithm ):
|
|
obj = obj.GetAlgorithm()
|
|
ior = salome.orb.object_to_string(obj)
|
|
SMESH._objref_SMESH_Gen.SetName(self, ior, name)
|
|
|
|
## Set the current mode
|
|
# @ingroup l1_auxiliary
|
|
def SetEmbeddedMode( self,theMode ):
|
|
SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
|
|
|
|
## Get the current mode
|
|
# @ingroup l1_auxiliary
|
|
def IsEmbeddedMode(self):
|
|
return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
|
|
|
|
## Set the current study. Calling SetCurrentStudy( None ) allows to
|
|
# switch OFF automatic pubilishing in the Study of mesh objects.
|
|
# @ingroup l1_auxiliary
|
|
def SetCurrentStudy( self, theStudy, geompyD = None ):
|
|
if not geompyD:
|
|
from salome.geom import geomBuilder
|
|
geompyD = geomBuilder.geom
|
|
pass
|
|
self.geompyD=geompyD
|
|
self.SetGeomEngine(geompyD)
|
|
SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy)
|
|
global notebook
|
|
if theStudy:
|
|
notebook = salome_notebook.NoteBook( theStudy )
|
|
else:
|
|
notebook = salome_notebook.NoteBook( salome_notebook.PseudoStudyForNoteBook() )
|
|
if theStudy:
|
|
sb = theStudy.NewBuilder()
|
|
sc = theStudy.FindComponent("SMESH")
|
|
if sc: sb.LoadWith(sc, self)
|
|
pass
|
|
pass
|
|
|
|
## Get the current study
|
|
# @ingroup l1_auxiliary
|
|
def GetCurrentStudy(self):
|
|
return SMESH._objref_SMESH_Gen.GetCurrentStudy(self)
|
|
|
|
## Create a Mesh object importing data from the given UNV file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromUNV( self,theFileName ):
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Create a Mesh object(s) importing data from the given MED file
|
|
# @return a tuple ( list of Mesh class instances, SMESH.DriverMED_ReadStatus )
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromMED( self,theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
|
|
aMeshes = [ Mesh(self, self.geompyD, m) for m in aSmeshMeshes ]
|
|
return aMeshes, aStatus
|
|
|
|
## Create a Mesh object(s) importing data from the given SAUV file
|
|
# @return a tuple ( list of Mesh class instances, SMESH.DriverMED_ReadStatus )
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromSAUV( self,theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromSAUV(self,theFileName)
|
|
aMeshes = [ Mesh(self, self.geompyD, m) for m in aSmeshMeshes ]
|
|
return aMeshes, aStatus
|
|
|
|
## Create a Mesh object importing data from the given STL file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromSTL( self, theFileName ):
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Create Mesh objects importing data from the given CGNS file
|
|
# @return a tuple ( list of Mesh class instances, SMESH.DriverMED_ReadStatus )
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromCGNS( self, theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromCGNS(self,theFileName)
|
|
aMeshes = [ Mesh(self, self.geompyD, m) for m in aSmeshMeshes ]
|
|
return aMeshes, aStatus
|
|
|
|
## Create a Mesh object importing data from the given GMF file.
|
|
# GMF files must have .mesh extension for the ASCII format and .meshb for
|
|
# the binary format.
|
|
# @return [ an instance of Mesh class, SMESH.ComputeError ]
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromGMF( self, theFileName ):
|
|
aSmeshMesh, error = SMESH._objref_SMESH_Gen.CreateMeshesFromGMF(self,
|
|
theFileName,
|
|
True)
|
|
if error.comment: print("*** CreateMeshesFromGMF() errors:\n", error.comment)
|
|
return Mesh(self, self.geompyD, aSmeshMesh), error
|
|
|
|
## Concatenate the given meshes into one mesh. All groups of input meshes will be
|
|
# present in the new mesh.
|
|
# @param meshes the meshes, sub-meshes and groups to combine into one mesh
|
|
# @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed
|
|
# @param mergeNodesAndElements if true, equal nodes and elements are merged
|
|
# @param mergeTolerance tolerance for merging nodes
|
|
# @param allGroups forces creation of groups corresponding to every input mesh
|
|
# @param name name of a new mesh
|
|
# @return an instance of Mesh class
|
|
# @ingroup l1_creating
|
|
def Concatenate( self, meshes, uniteIdenticalGroups,
|
|
mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False,
|
|
name = ""):
|
|
if not meshes: return None
|
|
for i,m in enumerate(meshes):
|
|
if isinstance(m, Mesh):
|
|
meshes[i] = m.GetMesh()
|
|
mergeTolerance,Parameters,hasVars = ParseParameters(mergeTolerance)
|
|
meshes[0].SetParameters(Parameters)
|
|
if allGroups:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
else:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh, name=name)
|
|
return aMesh
|
|
|
|
## Create a mesh by copying a part of another mesh.
|
|
# @param meshPart a part of mesh to copy, either a Mesh, a sub-mesh or a group;
|
|
# to copy nodes or elements not contained in any mesh object,
|
|
# pass result of Mesh.GetIDSource( list_of_ids, type ) as meshPart
|
|
# @param meshName a name of the new mesh
|
|
# @param toCopyGroups to create in the new mesh groups the copied elements belongs to
|
|
# @param toKeepIDs to preserve order of the copied elements or not
|
|
# @return an instance of Mesh class
|
|
# @ingroup l1_creating
|
|
def CopyMesh( self, meshPart, meshName, toCopyGroups=False, toKeepIDs=False):
|
|
if (isinstance( meshPart, Mesh )):
|
|
meshPart = meshPart.GetMesh()
|
|
mesh = SMESH._objref_SMESH_Gen.CopyMesh( self,meshPart,meshName,toCopyGroups,toKeepIDs )
|
|
return Mesh(self, self.geompyD, mesh)
|
|
|
|
## Return IDs of sub-shapes
|
|
# @return the list of integer values
|
|
# @ingroup l1_auxiliary
|
|
def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
|
|
return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
|
|
|
|
## Create a pattern mapper.
|
|
# @return an instance of SMESH_Pattern
|
|
#
|
|
# <a href="../tui_modifying_meshes_page.html#tui_pattern_mapping">Example of Patterns usage</a>
|
|
# @ingroup l1_modifying
|
|
def GetPattern(self):
|
|
return SMESH._objref_SMESH_Gen.GetPattern(self)
|
|
|
|
## Set number of segments per diagonal of boundary box of geometry, by which
|
|
# default segment length of appropriate 1D hypotheses is defined in GUI.
|
|
# Default value is 10.
|
|
# @ingroup l1_auxiliary
|
|
def SetBoundaryBoxSegmentation(self, nbSegments):
|
|
SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
|
|
|
|
# Filtering. Auxiliary functions:
|
|
# ------------------------------
|
|
|
|
## Create an empty criterion
|
|
# @return SMESH.Filter.Criterion
|
|
# @ingroup l1_controls
|
|
def GetEmptyCriterion(self):
|
|
Type = self.EnumToLong(FT_Undefined)
|
|
Compare = self.EnumToLong(FT_Undefined)
|
|
Threshold = 0
|
|
ThresholdStr = ""
|
|
ThresholdID = ""
|
|
UnaryOp = self.EnumToLong(FT_Undefined)
|
|
BinaryOp = self.EnumToLong(FT_Undefined)
|
|
Tolerance = 1e-07
|
|
TypeOfElement = ALL
|
|
Precision = -1 ##@1e-07
|
|
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
|
|
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
|
|
|
|
## Create a criterion by the given parameters
|
|
# \n Criterion structures allow to define complex filters by combining them with logical operations (AND / OR) (see example below)
|
|
# @param elementType the type of elements(SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME)
|
|
# @param CritType the type of criterion (SMESH.FT_Taper, SMESH.FT_Area, etc.)
|
|
# Type SMESH.FunctorType._items in the Python Console to see all values.
|
|
# Note that the items starting from FT_LessThan are not suitable for CritType.
|
|
# @param Compare belongs to {SMESH.FT_LessThan, SMESH.FT_MoreThan, SMESH.FT_EqualTo}
|
|
# @param Threshold the threshold value (range of ids as string, shape, numeric)
|
|
# @param UnaryOp SMESH.FT_LogicalNOT or SMESH.FT_Undefined
|
|
# @param BinaryOp a binary logical operation SMESH.FT_LogicalAND, SMESH.FT_LogicalOR or
|
|
# SMESH.FT_Undefined
|
|
# @param Tolerance the tolerance used by SMESH.FT_BelongToGeom, SMESH.FT_BelongToSurface,
|
|
# SMESH.FT_LyingOnGeom, SMESH.FT_CoplanarFaces criteria
|
|
# @return SMESH.Filter.Criterion
|
|
#
|
|
# <a href="../tui_filters_page.html#combining_filters">Example of Criteria usage</a>
|
|
# @ingroup l1_controls
|
|
def GetCriterion(self,elementType,
|
|
CritType,
|
|
Compare = FT_EqualTo,
|
|
Threshold="",
|
|
UnaryOp=FT_Undefined,
|
|
BinaryOp=FT_Undefined,
|
|
Tolerance=1e-07):
|
|
if not CritType in SMESH.FunctorType._items:
|
|
raise TypeError("CritType should be of SMESH.FunctorType")
|
|
aCriterion = self.GetEmptyCriterion()
|
|
aCriterion.TypeOfElement = elementType
|
|
aCriterion.Type = self.EnumToLong(CritType)
|
|
aCriterion.Tolerance = Tolerance
|
|
|
|
aThreshold = Threshold
|
|
|
|
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
|
|
aCriterion.Compare = self.EnumToLong(Compare)
|
|
elif Compare == "=" or Compare == "==":
|
|
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
|
|
elif Compare == "<":
|
|
aCriterion.Compare = self.EnumToLong(FT_LessThan)
|
|
elif Compare == ">":
|
|
aCriterion.Compare = self.EnumToLong(FT_MoreThan)
|
|
elif Compare != FT_Undefined:
|
|
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
|
|
aThreshold = Compare
|
|
|
|
if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
|
|
FT_BelongToCylinder, FT_LyingOnGeom]:
|
|
# Check that Threshold is GEOM object
|
|
if isinstance(aThreshold, geomBuilder.GEOM._objref_GEOM_Object):
|
|
aCriterion.ThresholdStr = GetName(aThreshold)
|
|
aCriterion.ThresholdID = aThreshold.GetStudyEntry()
|
|
if not aCriterion.ThresholdID:
|
|
name = aCriterion.ThresholdStr
|
|
if not name:
|
|
name = "%s_%s"%(aThreshold.GetShapeType(), id(aThreshold)%10000)
|
|
aCriterion.ThresholdID = self.geompyD.addToStudy( aThreshold, name )
|
|
# or a name of GEOM object
|
|
elif isinstance( aThreshold, str ):
|
|
aCriterion.ThresholdStr = aThreshold
|
|
else:
|
|
raise TypeError("The Threshold should be a shape.")
|
|
if isinstance(UnaryOp,float):
|
|
aCriterion.Tolerance = UnaryOp
|
|
UnaryOp = FT_Undefined
|
|
pass
|
|
elif CritType == FT_BelongToMeshGroup:
|
|
# Check that Threshold is a group
|
|
if isinstance(aThreshold, SMESH._objref_SMESH_GroupBase):
|
|
if aThreshold.GetType() != elementType:
|
|
raise ValueError("Group type mismatches Element type")
|
|
aCriterion.ThresholdStr = aThreshold.GetName()
|
|
aCriterion.ThresholdID = salome.orb.object_to_string( aThreshold )
|
|
study = self.GetCurrentStudy()
|
|
if study:
|
|
so = study.FindObjectIOR( aCriterion.ThresholdID )
|
|
if so:
|
|
entry = so.GetID()
|
|
if entry:
|
|
aCriterion.ThresholdID = entry
|
|
else:
|
|
raise TypeError("The Threshold should be a Mesh Group")
|
|
elif CritType == FT_RangeOfIds:
|
|
# Check that Threshold is string
|
|
if isinstance(aThreshold, str):
|
|
aCriterion.ThresholdStr = aThreshold
|
|
else:
|
|
raise TypeError("The Threshold should be a string.")
|
|
elif CritType == FT_CoplanarFaces:
|
|
# Check the Threshold
|
|
if isinstance(aThreshold, int):
|
|
aCriterion.ThresholdID = str(aThreshold)
|
|
elif isinstance(aThreshold, str):
|
|
ID = int(aThreshold)
|
|
if ID < 1:
|
|
raise ValueError("Invalid ID of mesh face: '%s'"%aThreshold)
|
|
aCriterion.ThresholdID = aThreshold
|
|
else:
|
|
raise TypeError("The Threshold should be an ID of mesh face and not '%s'"%aThreshold)
|
|
elif CritType == FT_ConnectedElements:
|
|
# Check the Threshold
|
|
if isinstance(aThreshold, geomBuilder.GEOM._objref_GEOM_Object): # shape
|
|
aCriterion.ThresholdID = aThreshold.GetStudyEntry()
|
|
if not aCriterion.ThresholdID:
|
|
name = aThreshold.GetName()
|
|
if not name:
|
|
name = "%s_%s"%(aThreshold.GetShapeType(), id(aThreshold)%10000)
|
|
aCriterion.ThresholdID = self.geompyD.addToStudy( aThreshold, name )
|
|
elif isinstance(aThreshold, int): # node id
|
|
aCriterion.Threshold = aThreshold
|
|
elif isinstance(aThreshold, list): # 3 point coordinates
|
|
if len( aThreshold ) < 3:
|
|
raise ValueError("too few point coordinates, must be 3")
|
|
aCriterion.ThresholdStr = " ".join( [str(c) for c in aThreshold[:3]] )
|
|
elif isinstance(aThreshold, str):
|
|
if aThreshold.isdigit():
|
|
aCriterion.Threshold = aThreshold # node id
|
|
else:
|
|
aCriterion.ThresholdStr = aThreshold # hope that it's point coordinates
|
|
else:
|
|
raise TypeError("The Threshold should either a VERTEX, or a node ID, "\
|
|
"or a list of point coordinates and not '%s'"%aThreshold)
|
|
elif CritType == FT_ElemGeomType:
|
|
# Check the Threshold
|
|
try:
|
|
aCriterion.Threshold = self.EnumToLong(aThreshold)
|
|
assert( aThreshold in SMESH.GeometryType._items )
|
|
except:
|
|
if isinstance(aThreshold, int):
|
|
aCriterion.Threshold = aThreshold
|
|
else:
|
|
raise TypeError("The Threshold should be an integer or SMESH.GeometryType.")
|
|
pass
|
|
pass
|
|
elif CritType == FT_EntityType:
|
|
# Check the Threshold
|
|
try:
|
|
aCriterion.Threshold = self.EnumToLong(aThreshold)
|
|
assert( aThreshold in SMESH.EntityType._items )
|
|
except:
|
|
if isinstance(aThreshold, int):
|
|
aCriterion.Threshold = aThreshold
|
|
else:
|
|
raise TypeError("The Threshold should be an integer or SMESH.EntityType.")
|
|
pass
|
|
pass
|
|
|
|
elif CritType == FT_GroupColor:
|
|
# Check the Threshold
|
|
try:
|
|
aCriterion.ThresholdStr = self.ColorToString(aThreshold)
|
|
except:
|
|
raise TypeError("The threshold value should be of SALOMEDS.Color type")
|
|
pass
|
|
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_FreeNodes, FT_FreeFaces,
|
|
FT_LinearOrQuadratic, FT_BadOrientedVolume,
|
|
FT_BareBorderFace, FT_BareBorderVolume,
|
|
FT_OverConstrainedFace, FT_OverConstrainedVolume,
|
|
FT_EqualNodes,FT_EqualEdges,FT_EqualFaces,FT_EqualVolumes ]:
|
|
# At this point the Threshold is unnecessary
|
|
if aThreshold == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
|
|
elif aThreshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = aThreshold
|
|
else:
|
|
# Check Threshold
|
|
try:
|
|
aThreshold = float(aThreshold)
|
|
aCriterion.Threshold = aThreshold
|
|
except:
|
|
raise TypeError("The Threshold should be a number.")
|
|
return None
|
|
|
|
if Threshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
|
|
|
|
if Threshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(Threshold)
|
|
|
|
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(UnaryOp)
|
|
|
|
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(BinaryOp)
|
|
|
|
return aCriterion
|
|
|
|
## Create a filter with the given parameters
|
|
# @param elementType the type of elements (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME)
|
|
# @param CritType the type of criterion (SMESH.FT_Taper, SMESH.FT_Area, etc.)
|
|
# Type SMESH.FunctorType._items in the Python Console to see all values.
|
|
# Note that the items starting from FT_LessThan are not suitable for CritType.
|
|
# @param Compare belongs to {SMESH.FT_LessThan, SMESH.FT_MoreThan, SMESH.FT_EqualTo}
|
|
# @param Threshold the threshold value (range of ids as string, shape, numeric)
|
|
# @param UnaryOp SMESH.FT_LogicalNOT or SMESH.FT_Undefined
|
|
# @param Tolerance the tolerance used by SMESH.FT_BelongToGeom, SMESH.FT_BelongToSurface,
|
|
# SMESH.FT_LyingOnGeom, SMESH.FT_CoplanarFaces and SMESH.FT_EqualNodes criteria
|
|
# @param mesh the mesh to initialize the filter with
|
|
# @return SMESH_Filter
|
|
#
|
|
# <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
|
|
# @ingroup l1_controls
|
|
def GetFilter(self,elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Threshold="",
|
|
UnaryOp=FT_Undefined,
|
|
Tolerance=1e-07,
|
|
mesh=None):
|
|
aCriterion = self.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance)
|
|
aFilterMgr = self.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aCriteria = []
|
|
aCriteria.append(aCriterion)
|
|
aFilter.SetCriteria(aCriteria)
|
|
if mesh:
|
|
if isinstance( mesh, Mesh ): aFilter.SetMesh( mesh.GetMesh() )
|
|
else : aFilter.SetMesh( mesh )
|
|
aFilterMgr.UnRegister()
|
|
return aFilter
|
|
|
|
## Create a filter from criteria
|
|
# @param criteria a list of criteria
|
|
# @param binOp binary operator used when binary operator of criteria is undefined
|
|
# @return SMESH_Filter
|
|
#
|
|
# <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
|
|
# @ingroup l1_controls
|
|
def GetFilterFromCriteria(self,criteria, binOp=SMESH.FT_LogicalAND):
|
|
for i in range( len( criteria ) - 1 ):
|
|
if criteria[i].BinaryOp == self.EnumToLong( SMESH.FT_Undefined ):
|
|
criteria[i].BinaryOp = self.EnumToLong( binOp )
|
|
aFilterMgr = self.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aFilter.SetCriteria(criteria)
|
|
aFilterMgr.UnRegister()
|
|
return aFilter
|
|
|
|
## Create a numerical functor by its type
|
|
# @param theCriterion functor type - an item of SMESH.FunctorType enumeration.
|
|
# Type SMESH.FunctorType._items in the Python Console to see all items.
|
|
# Note that not all items correspond to numerical functors.
|
|
# @return SMESH_NumericalFunctor
|
|
# @ingroup l1_controls
|
|
def GetFunctor(self,theCriterion):
|
|
if isinstance( theCriterion, SMESH._objref_NumericalFunctor ):
|
|
return theCriterion
|
|
aFilterMgr = self.CreateFilterManager()
|
|
functor = None
|
|
if theCriterion == FT_AspectRatio:
|
|
functor = aFilterMgr.CreateAspectRatio()
|
|
elif theCriterion == FT_AspectRatio3D:
|
|
functor = aFilterMgr.CreateAspectRatio3D()
|
|
elif theCriterion == FT_Warping:
|
|
functor = aFilterMgr.CreateWarping()
|
|
elif theCriterion == FT_MinimumAngle:
|
|
functor = aFilterMgr.CreateMinimumAngle()
|
|
elif theCriterion == FT_Taper:
|
|
functor = aFilterMgr.CreateTaper()
|
|
elif theCriterion == FT_Skew:
|
|
functor = aFilterMgr.CreateSkew()
|
|
elif theCriterion == FT_Area:
|
|
functor = aFilterMgr.CreateArea()
|
|
elif theCriterion == FT_Volume3D:
|
|
functor = aFilterMgr.CreateVolume3D()
|
|
elif theCriterion == FT_MaxElementLength2D:
|
|
functor = aFilterMgr.CreateMaxElementLength2D()
|
|
elif theCriterion == FT_MaxElementLength3D:
|
|
functor = aFilterMgr.CreateMaxElementLength3D()
|
|
elif theCriterion == FT_MultiConnection:
|
|
functor = aFilterMgr.CreateMultiConnection()
|
|
elif theCriterion == FT_MultiConnection2D:
|
|
functor = aFilterMgr.CreateMultiConnection2D()
|
|
elif theCriterion == FT_Length:
|
|
functor = aFilterMgr.CreateLength()
|
|
elif theCriterion == FT_Length2D:
|
|
functor = aFilterMgr.CreateLength2D()
|
|
elif theCriterion == FT_NodeConnectivityNumber:
|
|
functor = aFilterMgr.CreateNodeConnectivityNumber()
|
|
elif theCriterion == FT_BallDiameter:
|
|
functor = aFilterMgr.CreateBallDiameter()
|
|
else:
|
|
print("Error: given parameter is not numerical functor type.")
|
|
aFilterMgr.UnRegister()
|
|
return functor
|
|
|
|
## Create hypothesis
|
|
# @param theHType mesh hypothesis type (string)
|
|
# @param theLibName mesh plug-in library name
|
|
# @return created hypothesis instance
|
|
def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"):
|
|
hyp = SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName )
|
|
|
|
if isinstance( hyp, SMESH._objref_SMESH_Algo ):
|
|
return hyp
|
|
|
|
# wrap hypothesis methods
|
|
#print "HYPOTHESIS", theHType
|
|
for meth_name in dir( hyp.__class__ ):
|
|
if not meth_name.startswith("Get") and \
|
|
not meth_name in dir ( SMESH._objref_SMESH_Hypothesis ):
|
|
method = getattr ( hyp.__class__, meth_name )
|
|
if isinstance(method, collections.Callable):
|
|
setattr( hyp, meth_name, hypMethodWrapper( hyp, method ))
|
|
|
|
return hyp
|
|
|
|
## Get the mesh statistic
|
|
# @return dictionary "element type" - "count of elements"
|
|
# @ingroup l1_meshinfo
|
|
def GetMeshInfo(self, obj):
|
|
if isinstance( obj, Mesh ):
|
|
obj = obj.GetMesh()
|
|
d = {}
|
|
if hasattr(obj, "GetMeshInfo"):
|
|
values = obj.GetMeshInfo()
|
|
for i in range(SMESH.Entity_Last._v):
|
|
if i < len(values): d[SMESH.EntityType._item(i)]=values[i]
|
|
pass
|
|
return d
|
|
|
|
## Get minimum distance between two objects
|
|
#
|
|
# If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
|
|
# If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
|
|
#
|
|
# @param src1 first source object
|
|
# @param src2 second source object
|
|
# @param id1 node/element id from the first source
|
|
# @param id2 node/element id from the second (or first) source
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return minimum distance value
|
|
# @sa GetMinDistance()
|
|
# @ingroup l1_measurements
|
|
def MinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
|
|
result = self.GetMinDistance(src1, src2, id1, id2, isElem1, isElem2)
|
|
if result is None:
|
|
result = 0.0
|
|
else:
|
|
result = result.value
|
|
return result
|
|
|
|
## Get measure structure specifying minimum distance data between two objects
|
|
#
|
|
# If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
|
|
# If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
|
|
#
|
|
# @param src1 first source object
|
|
# @param src2 second source object
|
|
# @param id1 node/element id from the first source
|
|
# @param id2 node/element id from the second (or first) source
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return Measure structure or None if input data is invalid
|
|
# @sa MinDistance()
|
|
# @ingroup l1_measurements
|
|
def GetMinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
|
|
if isinstance(src1, Mesh): src1 = src1.mesh
|
|
if isinstance(src2, Mesh): src2 = src2.mesh
|
|
if src2 is None and id2 != 0: src2 = src1
|
|
if not hasattr(src1, "_narrow"): return None
|
|
src1 = src1._narrow(SMESH.SMESH_IDSource)
|
|
if not src1: return None
|
|
unRegister = genObjUnRegister()
|
|
if id1 != 0:
|
|
m = src1.GetMesh()
|
|
e = m.GetMeshEditor()
|
|
if isElem1:
|
|
src1 = e.MakeIDSource([id1], SMESH.FACE)
|
|
else:
|
|
src1 = e.MakeIDSource([id1], SMESH.NODE)
|
|
unRegister.set( src1 )
|
|
pass
|
|
if hasattr(src2, "_narrow"):
|
|
src2 = src2._narrow(SMESH.SMESH_IDSource)
|
|
if src2 and id2 != 0:
|
|
m = src2.GetMesh()
|
|
e = m.GetMeshEditor()
|
|
if isElem2:
|
|
src2 = e.MakeIDSource([id2], SMESH.FACE)
|
|
else:
|
|
src2 = e.MakeIDSource([id2], SMESH.NODE)
|
|
unRegister.set( src2 )
|
|
pass
|
|
pass
|
|
aMeasurements = self.CreateMeasurements()
|
|
unRegister.set( aMeasurements )
|
|
result = aMeasurements.MinDistance(src1, src2)
|
|
return result
|
|
|
|
## Get bounding box of the specified object(s)
|
|
# @param objects single source object or list of source objects
|
|
# @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
|
|
# @sa GetBoundingBox()
|
|
# @ingroup l1_measurements
|
|
def BoundingBox(self, objects):
|
|
result = self.GetBoundingBox(objects)
|
|
if result is None:
|
|
result = (0.0,)*6
|
|
else:
|
|
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
|
|
return result
|
|
|
|
## Get measure structure specifying bounding box data of the specified object(s)
|
|
# @param objects single source object or list of source objects
|
|
# @return Measure structure
|
|
# @sa BoundingBox()
|
|
# @ingroup l1_measurements
|
|
def GetBoundingBox(self, objects):
|
|
if isinstance(objects, tuple):
|
|
objects = list(objects)
|
|
if not isinstance(objects, list):
|
|
objects = [objects]
|
|
srclist = []
|
|
for o in objects:
|
|
if isinstance(o, Mesh):
|
|
srclist.append(o.mesh)
|
|
elif hasattr(o, "_narrow"):
|
|
src = o._narrow(SMESH.SMESH_IDSource)
|
|
if src: srclist.append(src)
|
|
pass
|
|
pass
|
|
aMeasurements = self.CreateMeasurements()
|
|
result = aMeasurements.BoundingBox(srclist)
|
|
aMeasurements.UnRegister()
|
|
return result
|
|
|
|
## Get sum of lengths of all 1D elements in the mesh object.
|
|
# @param obj mesh, submesh or group
|
|
# @return sum of lengths of all 1D elements
|
|
# @ingroup l1_measurements
|
|
def GetLength(self, obj):
|
|
if isinstance(obj, Mesh): obj = obj.mesh
|
|
if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh()
|
|
aMeasurements = self.CreateMeasurements()
|
|
value = aMeasurements.Length(obj)
|
|
aMeasurements.UnRegister()
|
|
return value
|
|
|
|
## Get sum of areas of all 2D elements in the mesh object.
|
|
# @param obj mesh, submesh or group
|
|
# @return sum of areas of all 2D elements
|
|
# @ingroup l1_measurements
|
|
def GetArea(self, obj):
|
|
if isinstance(obj, Mesh): obj = obj.mesh
|
|
if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh()
|
|
aMeasurements = self.CreateMeasurements()
|
|
value = aMeasurements.Area(obj)
|
|
aMeasurements.UnRegister()
|
|
return value
|
|
|
|
## Get sum of volumes of all 3D elements in the mesh object.
|
|
# @param obj mesh, submesh or group
|
|
# @return sum of volumes of all 3D elements
|
|
# @ingroup l1_measurements
|
|
def GetVolume(self, obj):
|
|
if isinstance(obj, Mesh): obj = obj.mesh
|
|
if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh()
|
|
aMeasurements = self.CreateMeasurements()
|
|
value = aMeasurements.Volume(obj)
|
|
aMeasurements.UnRegister()
|
|
return value
|
|
|
|
pass # end of class smeshBuilder
|
|
|
|
import omniORB
|
|
#Registering the new proxy for SMESH_Gen
|
|
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshBuilder)
|
|
|
|
## Create a new smeshBuilder instance.The smeshBuilder class provides the Python
|
|
# interface to create or load meshes.
|
|
#
|
|
# Typical use is:
|
|
# \code
|
|
# import salome
|
|
# salome.salome_init()
|
|
# from salome.smesh import smeshBuilder
|
|
# smesh = smeshBuilder.New(salome.myStudy)
|
|
# \endcode
|
|
# @param study SALOME study, generally obtained by salome.myStudy.
|
|
# @param instance CORBA proxy of SMESH Engine. If None, the default Engine is used.
|
|
# @return smeshBuilder instance
|
|
|
|
def New( study, instance=None):
|
|
"""
|
|
Create a new smeshBuilder instance.The smeshBuilder class provides the Python
|
|
interface to create or load meshes.
|
|
|
|
Typical use is:
|
|
import salome
|
|
salome.salome_init()
|
|
from salome.smesh import smeshBuilder
|
|
smesh = smeshBuilder.New(salome.myStudy)
|
|
|
|
Parameters:
|
|
study SALOME study, generally obtained by salome.myStudy.
|
|
instance CORBA proxy of SMESH Engine. If None, the default Engine is used.
|
|
Returns:
|
|
smeshBuilder instance
|
|
"""
|
|
global engine
|
|
global smeshInst
|
|
global doLcc
|
|
engine = instance
|
|
if engine is None:
|
|
doLcc = True
|
|
smeshInst = smeshBuilder()
|
|
assert isinstance(smeshInst,smeshBuilder), "Smesh engine class is %s but should be smeshBuilder.smeshBuilder. Import salome.smesh.smeshBuilder before creating the instance."%smeshInst.__class__
|
|
smeshInst.init_smesh(study)
|
|
return smeshInst
|
|
|
|
|
|
# Public class: Mesh
|
|
# ==================
|
|
|
|
## This class allows defining and managing a mesh.
|
|
# It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes.
|
|
# It also has methods to define groups of mesh elements, to modify a mesh (by addition of
|
|
# new nodes and elements and by changing the existing entities), to get information
|
|
# about a mesh and to export a mesh in different formats.
|
|
class Mesh(metaclass=MeshMeta):
|
|
geom = 0
|
|
mesh = 0
|
|
editor = 0
|
|
|
|
## Constructor
|
|
#
|
|
# Create a mesh on the shape \a obj (or an empty mesh if \a obj is equal to 0) and
|
|
# sets the GUI name of this mesh to \a name.
|
|
# @param smeshpyD an instance of smeshBuilder class
|
|
# @param geompyD an instance of geomBuilder class
|
|
# @param obj Shape to be meshed or SMESH_Mesh object
|
|
# @param name Study name of the mesh
|
|
# @ingroup l2_construct
|
|
def __init__(self, smeshpyD, geompyD, obj=0, name=0):
|
|
self.smeshpyD=smeshpyD
|
|
self.geompyD=geompyD
|
|
if obj is None:
|
|
obj = 0
|
|
objHasName = False
|
|
if obj != 0:
|
|
if isinstance(obj, geomBuilder.GEOM._objref_GEOM_Object):
|
|
self.geom = obj
|
|
objHasName = True
|
|
# publish geom of mesh (issue 0021122)
|
|
if not self.geom.GetStudyEntry() and smeshpyD.GetCurrentStudy():
|
|
objHasName = False
|
|
studyID = smeshpyD.GetCurrentStudy()._get_StudyId()
|
|
if studyID != geompyD.myStudyId:
|
|
geompyD.init_geom( smeshpyD.GetCurrentStudy())
|
|
pass
|
|
if name:
|
|
geo_name = name + " shape"
|
|
else:
|
|
geo_name = "%s_%s to mesh"%(self.geom.GetShapeType(), id(self.geom)%100)
|
|
geompyD.addToStudy( self.geom, geo_name )
|
|
self.SetMesh( self.smeshpyD.CreateMesh(self.geom) )
|
|
|
|
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
|
|
self.SetMesh(obj)
|
|
else:
|
|
self.SetMesh( self.smeshpyD.CreateEmptyMesh() )
|
|
if name:
|
|
self.smeshpyD.SetName(self.mesh, name)
|
|
elif objHasName:
|
|
self.smeshpyD.SetName(self.mesh, GetName(obj)) # + " mesh"
|
|
|
|
if not self.geom:
|
|
self.geom = self.mesh.GetShapeToMesh()
|
|
|
|
self.editor = self.mesh.GetMeshEditor()
|
|
self.functors = [None] * SMESH.FT_Undefined._v
|
|
|
|
# set self to algoCreator's
|
|
for attrName in dir(self):
|
|
attr = getattr( self, attrName )
|
|
if isinstance( attr, algoCreator ):
|
|
setattr( self, attrName, attr.copy( self ))
|
|
pass
|
|
pass
|
|
pass
|
|
|
|
## Destructor. Clean-up resources
|
|
def __del__(self):
|
|
if self.mesh:
|
|
#self.mesh.UnRegister()
|
|
pass
|
|
pass
|
|
|
|
## Initialize the Mesh object from an instance of SMESH_Mesh interface
|
|
# @param theMesh a SMESH_Mesh object
|
|
# @ingroup l2_construct
|
|
def SetMesh(self, theMesh):
|
|
# do not call Register() as this prevents mesh servant deletion at closing study
|
|
#if self.mesh: self.mesh.UnRegister()
|
|
self.mesh = theMesh
|
|
if self.mesh:
|
|
#self.mesh.Register()
|
|
self.geom = self.mesh.GetShapeToMesh()
|
|
pass
|
|
|
|
## Return the mesh, that is an instance of SMESH_Mesh interface
|
|
# @return a SMESH_Mesh object
|
|
# @ingroup l2_construct
|
|
def GetMesh(self):
|
|
return self.mesh
|
|
|
|
## Get the name of the mesh
|
|
# @return the name of the mesh as a string
|
|
# @ingroup l2_construct
|
|
def GetName(self):
|
|
name = GetName(self.GetMesh())
|
|
return name
|
|
|
|
## Set a name to the mesh
|
|
# @param name a new name of the mesh
|
|
# @ingroup l2_construct
|
|
def SetName(self, name):
|
|
self.smeshpyD.SetName(self.GetMesh(), name)
|
|
|
|
## Get a sub-mesh object associated to a \a geom geometrical object.
|
|
# @param geom a geometrical object (shape)
|
|
# @param name a name for the sub-mesh in the Object Browser
|
|
# @return an object of type SMESH.SMESH_subMesh, representing a part of mesh,
|
|
# which lies on the given shape
|
|
#
|
|
# The sub-mesh object gives access to the IDs of nodes and elements.
|
|
# The sub-mesh object has the following methods:
|
|
# - SMESH.SMESH_subMesh.GetNumberOfElements()
|
|
# - SMESH.SMESH_subMesh.GetNumberOfNodes( all )
|
|
# - SMESH.SMESH_subMesh.GetElementsId()
|
|
# - SMESH.SMESH_subMesh.GetElementsByType( ElementType )
|
|
# - SMESH.SMESH_subMesh.GetNodesId()
|
|
# - SMESH.SMESH_subMesh.GetSubShape()
|
|
# - SMESH.SMESH_subMesh.GetFather()
|
|
# - SMESH.SMESH_subMesh.GetId()
|
|
# @note A sub-mesh is implicitly created when a sub-shape is specified at
|
|
# creating an algorithm, for example: <code>algo1D = mesh.Segment(geom=Edge_1) </code>
|
|
# creates a sub-mesh on @c Edge_1 and assign Wire Discretization algorithm to it.
|
|
# The created sub-mesh can be retrieved from the algorithm:
|
|
# <code>submesh = algo1D.GetSubMesh()</code>
|
|
# @ingroup l2_submeshes
|
|
def GetSubMesh(self, geom, name):
|
|
AssureGeomPublished( self, geom, name )
|
|
submesh = self.mesh.GetSubMesh( geom, name )
|
|
return submesh
|
|
|
|
## Return the shape associated to the mesh
|
|
# @return a GEOM_Object
|
|
# @ingroup l2_construct
|
|
def GetShape(self):
|
|
return self.geom
|
|
|
|
## Associate the given shape to the mesh (entails the recreation of the mesh)
|
|
# @param geom the shape to be meshed (GEOM_Object)
|
|
# @ingroup l2_construct
|
|
def SetShape(self, geom):
|
|
self.mesh = self.smeshpyD.CreateMesh(geom)
|
|
|
|
## Load mesh from the study after opening the study
|
|
def Load(self):
|
|
self.mesh.Load()
|
|
|
|
## Return true if the hypotheses are defined well
|
|
# @param theSubObject a sub-shape of a mesh shape
|
|
# @return True or False
|
|
# @ingroup l2_construct
|
|
def IsReadyToCompute(self, theSubObject):
|
|
return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
|
|
|
|
## Return errors of hypotheses definition.
|
|
# The list of errors is empty if everything is OK.
|
|
# @param theSubObject a sub-shape of a mesh shape
|
|
# @return a list of errors
|
|
# @ingroup l2_construct
|
|
def GetAlgoState(self, theSubObject):
|
|
return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
|
|
|
|
## Return a geometrical object on which the given element was built.
|
|
# The returned geometrical object, if not nil, is either found in the
|
|
# study or published by this method with the given name
|
|
# @param theElementID the id of the mesh element
|
|
# @param theGeomName the user-defined name of the geometrical object
|
|
# @return GEOM::GEOM_Object instance
|
|
# @ingroup l1_meshinfo
|
|
def GetGeometryByMeshElement(self, theElementID, theGeomName):
|
|
return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
|
|
|
|
## Return the mesh dimension depending on the dimension of the underlying shape
|
|
# or, if the mesh is not based on any shape, basing on deimension of elements
|
|
# @return mesh dimension as an integer value [0,3]
|
|
# @ingroup l1_meshinfo
|
|
def MeshDimension(self):
|
|
if self.mesh.HasShapeToMesh():
|
|
shells = self.geompyD.SubShapeAllIDs( self.geom, self.geompyD.ShapeType["SOLID"] )
|
|
if len( shells ) > 0 :
|
|
return 3
|
|
elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
|
|
return 2
|
|
elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
|
|
return 1
|
|
else:
|
|
return 0;
|
|
else:
|
|
if self.NbVolumes() > 0: return 3
|
|
if self.NbFaces() > 0: return 2
|
|
if self.NbEdges() > 0: return 1
|
|
return 0
|
|
|
|
## Evaluate size of prospective mesh on a shape
|
|
# @return a list where i-th element is a number of elements of i-th SMESH.EntityType
|
|
# To know predicted number of e.g. edges, inquire it this way
|
|
# Evaluate()[ EnumToLong( Entity_Edge )]
|
|
# @ingroup l2_construct
|
|
def Evaluate(self, geom=0):
|
|
if geom == 0 or not isinstance(geom, geomBuilder.GEOM._objref_GEOM_Object):
|
|
if self.geom == 0:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
else:
|
|
geom = self.geom
|
|
return self.smeshpyD.Evaluate(self.mesh, geom)
|
|
|
|
|
|
## Compute the mesh and return the status of the computation
|
|
# @param geom geomtrical shape on which mesh data should be computed
|
|
# @param discardModifs if True and the mesh has been edited since
|
|
# a last total re-compute and that may prevent successful partial re-compute,
|
|
# then the mesh is cleaned before Compute()
|
|
# @param refresh if @c True, Object browser is automatically updated (when running in GUI)
|
|
# @return True or False
|
|
# @ingroup l2_construct
|
|
def Compute(self, geom=0, discardModifs=False, refresh=False):
|
|
if geom == 0 or not isinstance(geom, geomBuilder.GEOM._objref_GEOM_Object):
|
|
if self.geom == 0:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
else:
|
|
geom = self.geom
|
|
ok = False
|
|
try:
|
|
if discardModifs and self.mesh.HasModificationsToDiscard(): # issue 0020693
|
|
self.mesh.Clear()
|
|
ok = self.smeshpyD.Compute(self.mesh, geom)
|
|
except SALOME.SALOME_Exception as ex:
|
|
print("Mesh computation failed, exception caught:")
|
|
print(" ", ex.details.text)
|
|
except:
|
|
import traceback
|
|
print("Mesh computation failed, exception caught:")
|
|
traceback.print_exc()
|
|
if True:#not ok:
|
|
allReasons = ""
|
|
|
|
# Treat compute errors
|
|
computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, geom )
|
|
shapeText = ""
|
|
for err in computeErrors:
|
|
if self.mesh.HasShapeToMesh():
|
|
shapeText = " on %s" % self.GetSubShapeName( err.subShapeID )
|
|
errText = ""
|
|
stdErrors = ["OK", #COMPERR_OK
|
|
"Invalid input mesh", #COMPERR_BAD_INPUT_MESH
|
|
"std::exception", #COMPERR_STD_EXCEPTION
|
|
"OCC exception", #COMPERR_OCC_EXCEPTION
|
|
"..", #COMPERR_SLM_EXCEPTION
|
|
"Unknown exception", #COMPERR_EXCEPTION
|
|
"Memory allocation problem", #COMPERR_MEMORY_PB
|
|
"Algorithm failed", #COMPERR_ALGO_FAILED
|
|
"Unexpected geometry", #COMPERR_BAD_SHAPE
|
|
"Warning", #COMPERR_WARNING
|
|
"Computation cancelled",#COMPERR_CANCELED
|
|
"No mesh on sub-shape"] #COMPERR_NO_MESH_ON_SHAPE
|
|
if err.code > 0:
|
|
if err.code < len(stdErrors): errText = stdErrors[err.code]
|
|
else:
|
|
errText = "code %s" % -err.code
|
|
if errText: errText += ". "
|
|
errText += err.comment
|
|
if allReasons: allReasons += "\n"
|
|
if ok:
|
|
allReasons += '- "%s"%s - %s' %(err.algoName, shapeText, errText)
|
|
else:
|
|
allReasons += '- "%s" failed%s. Error: %s' %(err.algoName, shapeText, errText)
|
|
pass
|
|
|
|
# Treat hyp errors
|
|
errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
|
|
for err in errors:
|
|
if err.isGlobalAlgo:
|
|
glob = "global"
|
|
else:
|
|
glob = "local"
|
|
pass
|
|
dim = err.algoDim
|
|
name = err.algoName
|
|
if len(name) == 0:
|
|
reason = '%s %sD algorithm is missing' % (glob, dim)
|
|
elif err.state == HYP_MISSING:
|
|
reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
|
|
% (glob, dim, name, dim))
|
|
elif err.state == HYP_NOTCONFORM:
|
|
reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
|
|
elif err.state == HYP_BAD_PARAMETER:
|
|
reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
|
|
% ( glob, dim, name ))
|
|
elif err.state == HYP_BAD_GEOMETRY:
|
|
reason = ('%s %sD algorithm "%s" is assigned to mismatching'
|
|
'geometry' % ( glob, dim, name ))
|
|
elif err.state == HYP_HIDDEN_ALGO:
|
|
reason = ('%s %sD algorithm "%s" is ignored due to presence of a %s '
|
|
'algorithm of upper dimension generating %sD mesh'
|
|
% ( glob, dim, name, glob, dim ))
|
|
else:
|
|
reason = ("For unknown reason. "
|
|
"Developer, revise Mesh.Compute() implementation in smeshBuilder.py!")
|
|
pass
|
|
if allReasons: allReasons += "\n"
|
|
allReasons += "- " + reason
|
|
pass
|
|
if not ok or allReasons != "":
|
|
msg = '"' + GetName(self.mesh) + '"'
|
|
if ok: msg += " has been computed with warnings"
|
|
else: msg += " has not been computed"
|
|
if allReasons != "": msg += ":"
|
|
else: msg += "."
|
|
print(msg)
|
|
print(allReasons)
|
|
pass
|
|
if salome.sg.hasDesktop() and self.mesh.GetStudyId() >= 0:
|
|
if not isinstance( refresh, list): # not a call from subMesh.Compute()
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
|
|
if refresh: salome.sg.updateObjBrowser(True)
|
|
|
|
return ok
|
|
|
|
## Return a list of error messages (SMESH.ComputeError) of the last Compute()
|
|
# @ingroup l2_construct
|
|
def GetComputeErrors(self, shape=0 ):
|
|
if shape == 0:
|
|
shape = self.mesh.GetShapeToMesh()
|
|
return self.smeshpyD.GetComputeErrors( self.mesh, shape )
|
|
|
|
## Return a name of a sub-shape by its ID
|
|
# @param subShapeID a unique ID of a sub-shape
|
|
# @return a string describing the sub-shape; possible variants:
|
|
# - "Face_12" (published sub-shape)
|
|
# - FACE #3 (not published sub-shape)
|
|
# - sub-shape #3 (invalid sub-shape ID)
|
|
# - #3 (error in this function)
|
|
# @ingroup l1_auxiliary
|
|
def GetSubShapeName(self, subShapeID ):
|
|
if not self.mesh.HasShapeToMesh():
|
|
return ""
|
|
try:
|
|
shapeText = ""
|
|
mainIOR = salome.orb.object_to_string( self.GetShape() )
|
|
for sname in salome.myStudyManager.GetOpenStudies():
|
|
s = salome.myStudyManager.GetStudyByName(sname)
|
|
if not s: continue
|
|
mainSO = s.FindObjectIOR(mainIOR)
|
|
if not mainSO: continue
|
|
if subShapeID == 1:
|
|
shapeText = '"%s"' % mainSO.GetName()
|
|
subIt = s.NewChildIterator(mainSO)
|
|
while subIt.More():
|
|
subSO = subIt.Value()
|
|
subIt.Next()
|
|
obj = subSO.GetObject()
|
|
if not obj: continue
|
|
go = obj._narrow( geomBuilder.GEOM._objref_GEOM_Object )
|
|
if not go: continue
|
|
try:
|
|
ids = self.geompyD.GetSubShapeID( self.GetShape(), go )
|
|
except:
|
|
continue
|
|
if ids == subShapeID:
|
|
shapeText = '"%s"' % subSO.GetName()
|
|
break
|
|
if not shapeText:
|
|
shape = self.geompyD.GetSubShape( self.GetShape(), [subShapeID])
|
|
if shape:
|
|
shapeText = '%s #%s' % (shape.GetShapeType(), subShapeID)
|
|
else:
|
|
shapeText = 'sub-shape #%s' % (subShapeID)
|
|
except:
|
|
shapeText = "#%s" % (subShapeID)
|
|
return shapeText
|
|
|
|
## Return a list of sub-shapes meshing of which failed, grouped into GEOM groups by
|
|
# error of an algorithm
|
|
# @param publish if @c True, the returned groups will be published in the study
|
|
# @return a list of GEOM groups each named after a failed algorithm
|
|
# @ingroup l2_construct
|
|
def GetFailedShapes(self, publish=False):
|
|
|
|
algo2shapes = {}
|
|
computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, self.GetShape() )
|
|
for err in computeErrors:
|
|
shape = self.geompyD.GetSubShape( self.GetShape(), [err.subShapeID])
|
|
if not shape: continue
|
|
if err.algoName in algo2shapes:
|
|
algo2shapes[ err.algoName ].append( shape )
|
|
else:
|
|
algo2shapes[ err.algoName ] = [ shape ]
|
|
pass
|
|
|
|
groups = []
|
|
for algoName, shapes in list(algo2shapes.items()):
|
|
while shapes:
|
|
groupType = self.smeshpyD.EnumToLong( shapes[0].GetShapeType() )
|
|
otherTypeShapes = []
|
|
sameTypeShapes = []
|
|
group = self.geompyD.CreateGroup( self.geom, groupType )
|
|
for shape in shapes:
|
|
if shape.GetShapeType() == shapes[0].GetShapeType():
|
|
sameTypeShapes.append( shape )
|
|
else:
|
|
otherTypeShapes.append( shape )
|
|
self.geompyD.UnionList( group, sameTypeShapes )
|
|
if otherTypeShapes:
|
|
group.SetName( "%s %s" % ( algoName, shapes[0].GetShapeType() ))
|
|
else:
|
|
group.SetName( algoName )
|
|
groups.append( group )
|
|
shapes = otherTypeShapes
|
|
pass
|
|
if publish:
|
|
for group in groups:
|
|
self.geompyD.addToStudyInFather( self.geom, group, group.GetName() )
|
|
return groups
|
|
|
|
## Return sub-mesh objects list in meshing order
|
|
# @return list of lists of sub-meshes
|
|
# @ingroup l2_construct
|
|
def GetMeshOrder(self):
|
|
return self.mesh.GetMeshOrder()
|
|
|
|
## Set order in which concurrent sub-meshes should be meshed
|
|
# @param submeshes list of lists of sub-meshes
|
|
# @ingroup l2_construct
|
|
def SetMeshOrder(self, submeshes):
|
|
return self.mesh.SetMeshOrder(submeshes)
|
|
|
|
## Remove all nodes and elements generated on geometry. Imported elements remain.
|
|
# @param refresh if @c True, Object browser is automatically updated (when running in GUI)
|
|
# @ingroup l2_construct
|
|
def Clear(self, refresh=False):
|
|
self.mesh.Clear()
|
|
if ( salome.sg.hasDesktop() and
|
|
salome.myStudyManager.GetStudyByID( self.mesh.GetStudyId() ) ):
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
|
|
if refresh: salome.sg.updateObjBrowser(True)
|
|
|
|
## Remove all nodes and elements of indicated shape
|
|
# @param refresh if @c True, Object browser is automatically updated (when running in GUI)
|
|
# @param geomId the ID of a sub-shape to remove elements on
|
|
# @ingroup l2_submeshes
|
|
def ClearSubMesh(self, geomId, refresh=False):
|
|
self.mesh.ClearSubMesh(geomId)
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
|
|
if refresh: salome.sg.updateObjBrowser(True)
|
|
|
|
## Compute a tetrahedral mesh using AutomaticLength + MEFISTO + Tetrahedron
|
|
# @param fineness [0.0,1.0] defines mesh fineness
|
|
# @return True or False
|
|
# @ingroup l3_algos_basic
|
|
def AutomaticTetrahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Triangle().LengthFromEdges()
|
|
pass
|
|
if dim > 2 :
|
|
self.Tetrahedron()
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Compute an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
|
|
# @param fineness [0.0, 1.0] defines mesh fineness
|
|
# @return True or False
|
|
# @ingroup l3_algos_basic
|
|
def AutomaticHexahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign the hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Quadrangle()
|
|
pass
|
|
if dim > 2 :
|
|
self.Hexahedron()
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Assign a hypothesis
|
|
# @param hyp a hypothesis to assign
|
|
# @param geom a subhape of mesh geometry
|
|
# @return SMESH.Hypothesis_Status
|
|
# @ingroup l2_editing
|
|
def AddHypothesis(self, hyp, geom=0):
|
|
if isinstance( hyp, geomBuilder.GEOM._objref_GEOM_Object ):
|
|
hyp, geom = geom, hyp
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
if not geom:
|
|
geom = self.geom
|
|
if not geom:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
pass
|
|
isApplicable = True
|
|
if self.mesh.HasShapeToMesh():
|
|
hyp_type = hyp.GetName()
|
|
lib_name = hyp.GetLibName()
|
|
# checkAll = ( not geom.IsSame( self.mesh.GetShapeToMesh() ))
|
|
# if checkAll and geom:
|
|
# checkAll = geom.GetType() == 37
|
|
checkAll = False
|
|
isApplicable = self.smeshpyD.IsApplicable(hyp_type, lib_name, geom, checkAll)
|
|
if isApplicable:
|
|
AssureGeomPublished( self, geom, "shape for %s" % hyp.GetName())
|
|
status = self.mesh.AddHypothesis(geom, hyp)
|
|
else:
|
|
status = HYP_BAD_GEOMETRY,""
|
|
hyp_name = GetName( hyp )
|
|
geom_name = ""
|
|
if geom:
|
|
geom_name = geom.GetName()
|
|
isAlgo = hyp._narrow( SMESH_Algo )
|
|
TreatHypoStatus( status, hyp_name, geom_name, isAlgo, self )
|
|
return status
|
|
|
|
## Return True if an algorithm of hypothesis is assigned to a given shape
|
|
# @param hyp a hypothesis to check
|
|
# @param geom a subhape of mesh geometry
|
|
# @return True of False
|
|
# @ingroup l2_editing
|
|
def IsUsedHypothesis(self, hyp, geom):
|
|
if not hyp: # or not geom
|
|
return False
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
hyps = self.GetHypothesisList(geom)
|
|
for h in hyps:
|
|
if h.GetId() == hyp.GetId():
|
|
return True
|
|
return False
|
|
|
|
## Unassign a hypothesis
|
|
# @param hyp a hypothesis to unassign
|
|
# @param geom a sub-shape of mesh geometry
|
|
# @return SMESH.Hypothesis_Status
|
|
# @ingroup l2_editing
|
|
def RemoveHypothesis(self, hyp, geom=0):
|
|
if not hyp:
|
|
return None
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
shape = geom
|
|
if not shape:
|
|
shape = self.geom
|
|
pass
|
|
if self.IsUsedHypothesis( hyp, shape ):
|
|
return self.mesh.RemoveHypothesis( shape, hyp )
|
|
hypName = GetName( hyp )
|
|
geoName = GetName( shape )
|
|
print("WARNING: RemoveHypothesis() failed as '%s' is not assigned to '%s' shape" % ( hypName, geoName ))
|
|
return None
|
|
|
|
## Get the list of hypotheses added on a geometry
|
|
# @param geom a sub-shape of mesh geometry
|
|
# @return the sequence of SMESH_Hypothesis
|
|
# @ingroup l2_editing
|
|
def GetHypothesisList(self, geom):
|
|
return self.mesh.GetHypothesisList( geom )
|
|
|
|
## Remove all global hypotheses
|
|
# @ingroup l2_editing
|
|
def RemoveGlobalHypotheses(self):
|
|
current_hyps = self.mesh.GetHypothesisList( self.geom )
|
|
for hyp in current_hyps:
|
|
self.mesh.RemoveHypothesis( self.geom, hyp )
|
|
pass
|
|
pass
|
|
|
|
## Export the mesh in a file in MED format
|
|
## allowing to overwrite the file if it exists or add the exported data to its contents
|
|
# @param f is the file name
|
|
# @param auto_groups boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
|
|
# the typical use is auto_groups=False.
|
|
# @param version MED format version (MED_V2_1 or MED_V2_2,
|
|
# the latter meaning any current version). The parameter is
|
|
# obsolete since MED_V2_1 is no longer supported.
|
|
# @param overwrite boolean parameter for overwriting/not overwriting the file
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @param autoDimension if @c True (default), a space dimension of a MED mesh can be either
|
|
# - 1D if all mesh nodes lie on OX coordinate axis, or
|
|
# - 2D if all mesh nodes lie on XOY coordinate plane, or
|
|
# - 3D in the rest cases.<br>
|
|
# If @a autoDimension is @c False, the space dimension is always 3.
|
|
# @param fields list of GEOM fields defined on the shape to mesh.
|
|
# @param geomAssocFields each character of this string means a need to export a
|
|
# corresponding field; correspondence between fields and characters is following:
|
|
# - 'v' stands for "_vertices _" field;
|
|
# - 'e' stands for "_edges _" field;
|
|
# - 'f' stands for "_faces _" field;
|
|
# - 's' stands for "_solids _" field.
|
|
# @ingroup l2_impexp
|
|
def ExportMED(self, f, auto_groups=0, version=MED_V2_2,
|
|
overwrite=1, meshPart=None, autoDimension=True, fields=[], geomAssocFields=''):
|
|
if meshPart or fields or geomAssocFields:
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
unRegister.set( meshPart )
|
|
self.mesh.ExportPartToMED( meshPart, f, auto_groups, version, overwrite, autoDimension,
|
|
fields, geomAssocFields)
|
|
else:
|
|
self.mesh.ExportToMEDX(f, auto_groups, version, overwrite, autoDimension)
|
|
|
|
## Export the mesh in a file in SAUV format
|
|
# @param f is the file name
|
|
# @param auto_groups boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
|
|
# the typical use is auto_groups=false.
|
|
# @ingroup l2_impexp
|
|
def ExportSAUV(self, f, auto_groups=0):
|
|
self.mesh.ExportSAUV(f, auto_groups)
|
|
|
|
## Export the mesh in a file in DAT format
|
|
# @param f the file name
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportDAT(self, f, meshPart=None):
|
|
if meshPart:
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
unRegister.set( meshPart )
|
|
self.mesh.ExportPartToDAT( meshPart, f )
|
|
else:
|
|
self.mesh.ExportDAT(f)
|
|
|
|
## Export the mesh in a file in UNV format
|
|
# @param f the file name
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportUNV(self, f, meshPart=None):
|
|
if meshPart:
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
unRegister.set( meshPart )
|
|
self.mesh.ExportPartToUNV( meshPart, f )
|
|
else:
|
|
self.mesh.ExportUNV(f)
|
|
|
|
## Export the mesh in a file in STL format
|
|
# @param f the file name
|
|
# @param ascii defines the file encoding
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportSTL(self, f, ascii=1, meshPart=None):
|
|
if meshPart:
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
unRegister.set( meshPart )
|
|
self.mesh.ExportPartToSTL( meshPart, f, ascii )
|
|
else:
|
|
self.mesh.ExportSTL(f, ascii)
|
|
|
|
## Export the mesh in a file in CGNS format
|
|
# @param f is the file name
|
|
# @param overwrite boolean parameter for overwriting/not overwriting the file
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportCGNS(self, f, overwrite=1, meshPart=None):
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
unRegister.set( meshPart )
|
|
if isinstance( meshPart, Mesh ):
|
|
meshPart = meshPart.mesh
|
|
elif not meshPart:
|
|
meshPart = self.mesh
|
|
self.mesh.ExportCGNS(meshPart, f, overwrite)
|
|
|
|
## Export the mesh in a file in GMF format.
|
|
# GMF files must have .mesh extension for the ASCII format and .meshb for
|
|
# the bynary format. Other extensions are not allowed.
|
|
# @param f is the file name
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportGMF(self, f, meshPart=None):
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
unRegister.set( meshPart )
|
|
if isinstance( meshPart, Mesh ):
|
|
meshPart = meshPart.mesh
|
|
elif not meshPart:
|
|
meshPart = self.mesh
|
|
self.mesh.ExportGMF(meshPart, f, True)
|
|
|
|
## Deprecated, used only for compatibility! Please, use ExportMED() method instead.
|
|
# Export the mesh in a file in MED format
|
|
# allowing to overwrite the file if it exists or add the exported data to its contents
|
|
# @param f the file name
|
|
# @param version MED format version (MED_V2_1 or MED_V2_2,
|
|
# the latter meaning any current version). The parameter is
|
|
# obsolete since MED_V2_1 is no longer supported.
|
|
# @param opt boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ...
|
|
# @param overwrite boolean parameter for overwriting/not overwriting the file
|
|
# @param autoDimension if @c True (default), a space dimension of a MED mesh can be either
|
|
# - 1D if all mesh nodes lie on OX coordinate axis, or
|
|
# - 2D if all mesh nodes lie on XOY coordinate plane, or
|
|
# - 3D in the rest cases.<br>
|
|
# If @a autoDimension is @c False, the space dimension is always 3.
|
|
# @ingroup l2_impexp
|
|
def ExportToMED(self, f, version=MED_V2_2, opt=0, overwrite=1, autoDimension=True):
|
|
self.mesh.ExportToMEDX(f, opt, version, overwrite, autoDimension)
|
|
|
|
# Operations with groups:
|
|
# ----------------------
|
|
|
|
## Create an empty mesh group
|
|
# @param elementType the type of elements in the group; either of
|
|
# (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME)
|
|
# @param name the name of the mesh group
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def CreateEmptyGroup(self, elementType, name):
|
|
return self.mesh.CreateGroup(elementType, name)
|
|
|
|
## Create a mesh group based on the geometric object \a grp
|
|
# and gives a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometric group name \n
|
|
# Note: Works like GroupOnGeom().
|
|
# @param grp a geometric group, a vertex, an edge, a face or a solid
|
|
# @param name the name of the mesh group
|
|
# @return SMESH_GroupOnGeom
|
|
# @ingroup l2_grps_create
|
|
def Group(self, grp, name=""):
|
|
return self.GroupOnGeom(grp, name)
|
|
|
|
## Create a mesh group based on the geometrical object \a grp
|
|
# and gives a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometrical group name
|
|
# @param grp a geometrical group, a vertex, an edge, a face or a solid
|
|
# @param name the name of the mesh group
|
|
# @param typ the type of elements in the group; either of
|
|
# (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME). If not set, it is
|
|
# automatically detected by the type of the geometry
|
|
# @return SMESH_GroupOnGeom
|
|
# @ingroup l2_grps_create
|
|
def GroupOnGeom(self, grp, name="", typ=None):
|
|
AssureGeomPublished( self, grp, name )
|
|
if name == "":
|
|
name = grp.GetName()
|
|
if not typ:
|
|
typ = self._groupTypeFromShape( grp )
|
|
return self.mesh.CreateGroupFromGEOM(typ, name, grp)
|
|
|
|
## Pivate method to get a type of group on geometry
|
|
def _groupTypeFromShape( self, shape ):
|
|
tgeo = str(shape.GetShapeType())
|
|
if tgeo == "VERTEX":
|
|
typ = NODE
|
|
elif tgeo == "EDGE":
|
|
typ = EDGE
|
|
elif tgeo == "FACE" or tgeo == "SHELL":
|
|
typ = FACE
|
|
elif tgeo == "SOLID" or tgeo == "COMPSOLID":
|
|
typ = VOLUME
|
|
elif tgeo == "COMPOUND":
|
|
sub = self.geompyD.SubShapeAll( shape, self.geompyD.ShapeType["SHAPE"])
|
|
if not sub:
|
|
raise ValueError("_groupTypeFromShape(): empty geometric group or compound '%s'" % GetName(shape))
|
|
return self._groupTypeFromShape( sub[0] )
|
|
else:
|
|
raise ValueError("_groupTypeFromShape(): invalid geometry '%s'" % GetName(shape))
|
|
return typ
|
|
|
|
## Create a mesh group with given \a name based on the \a filter which
|
|
## is a special type of group dynamically updating it's contents during
|
|
## mesh modification
|
|
# @param typ the type of elements in the group; either of
|
|
# (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME).
|
|
# @param name the name of the mesh group
|
|
# @param filter the filter defining group contents
|
|
# @return SMESH_GroupOnFilter
|
|
# @ingroup l2_grps_create
|
|
def GroupOnFilter(self, typ, name, filter):
|
|
return self.mesh.CreateGroupFromFilter(typ, name, filter)
|
|
|
|
## Create a mesh group by the given ids of elements
|
|
# @param groupName the name of the mesh group
|
|
# @param elementType the type of elements in the group; either of
|
|
# (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME).
|
|
# @param elemIDs either the list of ids, group, sub-mesh, or filter
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByIds(self, groupName, elementType, elemIDs):
|
|
group = self.mesh.CreateGroup(elementType, groupName)
|
|
if hasattr( elemIDs, "GetIDs" ):
|
|
if hasattr( elemIDs, "SetMesh" ):
|
|
elemIDs.SetMesh( self.GetMesh() )
|
|
group.AddFrom( elemIDs )
|
|
else:
|
|
group.Add(elemIDs)
|
|
return group
|
|
|
|
## Create a mesh group by the given conditions
|
|
# @param groupName the name of the mesh group
|
|
# @param elementType the type of elements(SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME)
|
|
# @param CritType the type of criterion (SMESH.FT_Taper, SMESH.FT_Area, etc.)
|
|
# Type SMESH.FunctorType._items in the Python Console to see all values.
|
|
# Note that the items starting from FT_LessThan are not suitable for CritType.
|
|
# @param Compare belongs to {SMESH.FT_LessThan, SMESH.FT_MoreThan, SMESH.FT_EqualTo}
|
|
# @param Threshold the threshold value (range of ids as string, shape, numeric)
|
|
# @param UnaryOp SMESH.FT_LogicalNOT or SMESH.FT_Undefined
|
|
# @param Tolerance the tolerance used by SMESH.FT_BelongToGeom, SMESH.FT_BelongToSurface,
|
|
# SMESH.FT_LyingOnGeom, SMESH.FT_CoplanarFaces criteria
|
|
# @return SMESH_GroupOnFilter
|
|
# @ingroup l2_grps_create
|
|
def MakeGroup(self,
|
|
groupName,
|
|
elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Threshold="",
|
|
UnaryOp=FT_Undefined,
|
|
Tolerance=1e-07):
|
|
aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance)
|
|
group = self.MakeGroupByCriterion(groupName, aCriterion)
|
|
return group
|
|
|
|
## Create a mesh group by the given criterion
|
|
# @param groupName the name of the mesh group
|
|
# @param Criterion the instance of Criterion class
|
|
# @return SMESH_GroupOnFilter
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByCriterion(self, groupName, Criterion):
|
|
return self.MakeGroupByCriteria( groupName, [Criterion] )
|
|
|
|
## Create a mesh group by the given criteria (list of criteria)
|
|
# @param groupName the name of the mesh group
|
|
# @param theCriteria the list of criteria
|
|
# @param binOp binary operator used when binary operator of criteria is undefined
|
|
# @return SMESH_GroupOnFilter
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByCriteria(self, groupName, theCriteria, binOp=SMESH.FT_LogicalAND):
|
|
aFilter = self.smeshpyD.GetFilterFromCriteria( theCriteria, binOp )
|
|
group = self.MakeGroupByFilter(groupName, aFilter)
|
|
return group
|
|
|
|
## Create a mesh group by the given filter
|
|
# @param groupName the name of the mesh group
|
|
# @param theFilter the instance of Filter class
|
|
# @return SMESH_GroupOnFilter
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByFilter(self, groupName, theFilter):
|
|
#group = self.CreateEmptyGroup(theFilter.GetElementType(), groupName)
|
|
#theFilter.SetMesh( self.mesh )
|
|
#group.AddFrom( theFilter )
|
|
group = self.GroupOnFilter( theFilter.GetElementType(), groupName, theFilter )
|
|
return group
|
|
|
|
## Remove a group
|
|
# @ingroup l2_grps_delete
|
|
def RemoveGroup(self, group):
|
|
self.mesh.RemoveGroup(group)
|
|
|
|
## Remove a group with its contents
|
|
# @ingroup l2_grps_delete
|
|
def RemoveGroupWithContents(self, group):
|
|
self.mesh.RemoveGroupWithContents(group)
|
|
|
|
## Get the list of groups existing in the mesh in the order
|
|
# of creation (starting from the oldest one)
|
|
# @param elemType type of elements the groups contain; either of
|
|
# (SMESH.ALL, SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME);
|
|
# by default groups of elements of all types are returned
|
|
# @return a sequence of SMESH_GroupBase
|
|
# @ingroup l2_grps_create
|
|
def GetGroups(self, elemType = SMESH.ALL):
|
|
groups = self.mesh.GetGroups()
|
|
if elemType == SMESH.ALL:
|
|
return groups
|
|
typedGroups = []
|
|
for g in groups:
|
|
if g.GetType() == elemType:
|
|
typedGroups.append( g )
|
|
pass
|
|
pass
|
|
return typedGroups
|
|
|
|
## Get the number of groups existing in the mesh
|
|
# @return the quantity of groups as an integer value
|
|
# @ingroup l2_grps_create
|
|
def NbGroups(self):
|
|
return self.mesh.NbGroups()
|
|
|
|
## Get the list of names of groups existing in the mesh
|
|
# @return list of strings
|
|
# @ingroup l2_grps_create
|
|
def GetGroupNames(self):
|
|
groups = self.GetGroups()
|
|
names = []
|
|
for group in groups:
|
|
names.append(group.GetName())
|
|
return names
|
|
|
|
## Find groups by name and type
|
|
# @param name name of the group of interest
|
|
# @param elemType type of elements the groups contain; either of
|
|
# (SMESH.ALL, SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME);
|
|
# by default one group of any type of elements is returned
|
|
# if elemType == SMESH.ALL then all groups of any type are returned
|
|
# @return a list of SMESH_GroupBase's
|
|
# @ingroup l2_grps_create
|
|
def GetGroupByName(self, name, elemType = None):
|
|
groups = []
|
|
for group in self.GetGroups():
|
|
if group.GetName() == name:
|
|
if elemType is None:
|
|
return [group]
|
|
if ( elemType == SMESH.ALL or
|
|
group.GetType() == elemType ):
|
|
groups.append( group )
|
|
return groups
|
|
|
|
## Produce a union of two groups.
|
|
# A new group is created. All mesh elements that are
|
|
# present in the initial groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def UnionGroups(self, group1, group2, name):
|
|
return self.mesh.UnionGroups(group1, group2, name)
|
|
|
|
## Produce a union list of groups.
|
|
# New group is created. All mesh elements that are present in
|
|
# initial groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def UnionListOfGroups(self, groups, name):
|
|
return self.mesh.UnionListOfGroups(groups, name)
|
|
|
|
## Prodice an intersection of two groups.
|
|
# A new group is created. All mesh elements that are common
|
|
# for the two initial groups are added to the new one.
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def IntersectGroups(self, group1, group2, name):
|
|
return self.mesh.IntersectGroups(group1, group2, name)
|
|
|
|
## Produce an intersection of groups.
|
|
# New group is created. All mesh elements that are present in all
|
|
# initial groups simultaneously are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def IntersectListOfGroups(self, groups, name):
|
|
return self.mesh.IntersectListOfGroups(groups, name)
|
|
|
|
## Produce a cut of two groups.
|
|
# A new group is created. All mesh elements that are present in
|
|
# the main group but are not present in the tool group are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CutGroups(self, main_group, tool_group, name):
|
|
return self.mesh.CutGroups(main_group, tool_group, name)
|
|
|
|
## Produce a cut of groups.
|
|
# A new group is created. All mesh elements that are present in main groups
|
|
# but do not present in tool groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CutListOfGroups(self, main_groups, tool_groups, name):
|
|
return self.mesh.CutListOfGroups(main_groups, tool_groups, name)
|
|
|
|
##
|
|
# Create a standalone group of entities basing on nodes of other groups.
|
|
# \param groups - list of reference groups, sub-meshes or filters, of any type.
|
|
# \param elemType - a type of elements to include to the new group; either of
|
|
# (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME).
|
|
# \param name - a name of the new group.
|
|
# \param nbCommonNodes - a criterion of inclusion of an element to the new group
|
|
# basing on number of element nodes common with reference \a groups.
|
|
# Meaning of possible values are:
|
|
# - SMESH.ALL_NODES - include if all nodes are common,
|
|
# - SMESH.MAIN - include if all corner nodes are common (meaningful for a quadratic mesh),
|
|
# - SMESH.AT_LEAST_ONE - include if one or more node is common,
|
|
# - SMEHS.MAJORITY - include if half of nodes or more are common.
|
|
# \param underlyingOnly - if \c True (default), an element is included to the
|
|
# new group provided that it is based on nodes of an element of \a groups;
|
|
# in this case the reference \a groups are supposed to be of higher dimension
|
|
# than \a elemType, which can be useful for example to get all faces lying on
|
|
# volumes of the reference \a groups.
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CreateDimGroup(self, groups, elemType, name,
|
|
nbCommonNodes = SMESH.ALL_NODES, underlyingOnly = True):
|
|
if isinstance( groups, SMESH._objref_SMESH_IDSource ):
|
|
groups = [groups]
|
|
return self.mesh.CreateDimGroup(groups, elemType, name, nbCommonNodes, underlyingOnly)
|
|
|
|
|
|
## Convert group on geom into standalone group
|
|
# @ingroup l2_grps_operon
|
|
def ConvertToStandalone(self, group):
|
|
return self.mesh.ConvertToStandalone(group)
|
|
|
|
# Get some info about mesh:
|
|
# ------------------------
|
|
|
|
## Return the log of nodes and elements added or removed
|
|
# since the previous clear of the log.
|
|
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
|
|
# @return list of log_block structures:
|
|
# commandType
|
|
# number
|
|
# coords
|
|
# indexes
|
|
# @ingroup l1_auxiliary
|
|
def GetLog(self, clearAfterGet):
|
|
return self.mesh.GetLog(clearAfterGet)
|
|
|
|
## Clear the log of nodes and elements added or removed since the previous
|
|
# clear. Must be used immediately after GetLog if clearAfterGet is false.
|
|
# @ingroup l1_auxiliary
|
|
def ClearLog(self):
|
|
self.mesh.ClearLog()
|
|
|
|
## Toggle auto color mode on the object.
|
|
# @param theAutoColor the flag which toggles auto color mode.
|
|
#
|
|
# If switched on, a default color of a new group in Create Group dialog is chosen randomly.
|
|
# @ingroup l1_grouping
|
|
def SetAutoColor(self, theAutoColor):
|
|
self.mesh.SetAutoColor(theAutoColor)
|
|
|
|
## Get flag of object auto color mode.
|
|
# @return True or False
|
|
# @ingroup l1_grouping
|
|
def GetAutoColor(self):
|
|
return self.mesh.GetAutoColor()
|
|
|
|
## Get the internal ID
|
|
# @return integer value, which is the internal Id of the mesh
|
|
# @ingroup l1_auxiliary
|
|
def GetId(self):
|
|
return self.mesh.GetId()
|
|
|
|
## Get the study Id
|
|
# @return integer value, which is the study Id of the mesh
|
|
# @ingroup l1_auxiliary
|
|
def GetStudyId(self):
|
|
return self.mesh.GetStudyId()
|
|
|
|
## Check the group names for duplications.
|
|
# Consider the maximum group name length stored in MED file.
|
|
# @return True or False
|
|
# @ingroup l1_grouping
|
|
def HasDuplicatedGroupNamesMED(self):
|
|
return self.mesh.HasDuplicatedGroupNamesMED()
|
|
|
|
## Obtain the mesh editor tool
|
|
# @return an instance of SMESH_MeshEditor
|
|
# @ingroup l1_modifying
|
|
def GetMeshEditor(self):
|
|
return self.editor
|
|
|
|
## Wrap a list of IDs of elements or nodes into SMESH_IDSource which
|
|
# can be passed as argument to a method accepting mesh, group or sub-mesh
|
|
# @param ids list of IDs
|
|
# @param elemType type of elements; this parameter is used to distinguish
|
|
# IDs of nodes from IDs of elements; by default ids are treated as
|
|
# IDs of elements; use SMESH.NODE if ids are IDs of nodes.
|
|
# @return an instance of SMESH_IDSource
|
|
# @warning call UnRegister() for the returned object as soon as it is no more useful:
|
|
# idSrc = mesh.GetIDSource( [1,3,5], SMESH.NODE )
|
|
# mesh.DoSomething( idSrc )
|
|
# idSrc.UnRegister()
|
|
# @ingroup l1_auxiliary
|
|
def GetIDSource(self, ids, elemType = SMESH.ALL):
|
|
if isinstance( ids, int ):
|
|
ids = [ids]
|
|
return self.editor.MakeIDSource(ids, elemType)
|
|
|
|
|
|
# Get informations about mesh contents:
|
|
# ------------------------------------
|
|
|
|
## Get the mesh stattistic
|
|
# @return dictionary type element - count of elements
|
|
# @ingroup l1_meshinfo
|
|
def GetMeshInfo(self, obj = None):
|
|
if not obj: obj = self.mesh
|
|
return self.smeshpyD.GetMeshInfo(obj)
|
|
|
|
## Return the number of nodes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbNodes(self):
|
|
return self.mesh.NbNodes()
|
|
|
|
## Return the number of elements in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbElements(self):
|
|
return self.mesh.NbElements()
|
|
|
|
## Return the number of 0d elements in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def Nb0DElements(self):
|
|
return self.mesh.Nb0DElements()
|
|
|
|
## Return the number of ball discrete elements in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbBalls(self):
|
|
return self.mesh.NbBalls()
|
|
|
|
## Return the number of edges in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbEdges(self):
|
|
return self.mesh.NbEdges()
|
|
|
|
## Return the number of edges with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbEdgesOfOrder(self, elementOrder):
|
|
return self.mesh.NbEdgesOfOrder(elementOrder)
|
|
|
|
## Return the number of faces in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbFaces(self):
|
|
return self.mesh.NbFaces()
|
|
|
|
## Return the number of faces with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbFacesOfOrder(self, elementOrder):
|
|
return self.mesh.NbFacesOfOrder(elementOrder)
|
|
|
|
## Return the number of triangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTriangles(self):
|
|
return self.mesh.NbTriangles()
|
|
|
|
## Return the number of triangles with the given order in the mesh
|
|
# @param elementOrder is the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTrianglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbTrianglesOfOrder(elementOrder)
|
|
|
|
## Return the number of biquadratic triangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbBiQuadTriangles(self):
|
|
return self.mesh.NbBiQuadTriangles()
|
|
|
|
## Return the number of quadrangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbQuadrangles(self):
|
|
return self.mesh.NbQuadrangles()
|
|
|
|
## Return the number of quadrangles with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbQuadranglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbQuadranglesOfOrder(elementOrder)
|
|
|
|
## Return the number of biquadratic quadrangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbBiQuadQuadrangles(self):
|
|
return self.mesh.NbBiQuadQuadrangles()
|
|
|
|
## Return the number of polygons of given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPolygons(self, elementOrder = SMESH.ORDER_ANY):
|
|
return self.mesh.NbPolygonsOfOrder(elementOrder)
|
|
|
|
## Return the number of volumes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbVolumes(self):
|
|
return self.mesh.NbVolumes()
|
|
|
|
## Return the number of volumes with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbVolumesOfOrder(self, elementOrder):
|
|
return self.mesh.NbVolumesOfOrder(elementOrder)
|
|
|
|
## Return the number of tetrahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTetras(self):
|
|
return self.mesh.NbTetras()
|
|
|
|
## Return the number of tetrahedrons with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTetrasOfOrder(self, elementOrder):
|
|
return self.mesh.NbTetrasOfOrder(elementOrder)
|
|
|
|
## Return the number of hexahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexas(self):
|
|
return self.mesh.NbHexas()
|
|
|
|
## Return the number of hexahedrons with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexasOfOrder(self, elementOrder):
|
|
return self.mesh.NbHexasOfOrder(elementOrder)
|
|
|
|
## Return the number of triquadratic hexahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTriQuadraticHexas(self):
|
|
return self.mesh.NbTriQuadraticHexas()
|
|
|
|
## Return the number of pyramids in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPyramids(self):
|
|
return self.mesh.NbPyramids()
|
|
|
|
## Return the number of pyramids with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPyramidsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPyramidsOfOrder(elementOrder)
|
|
|
|
## Return the number of prisms in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPrisms(self):
|
|
return self.mesh.NbPrisms()
|
|
|
|
## Return the number of prisms with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPrismsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPrismsOfOrder(elementOrder)
|
|
|
|
## Return the number of hexagonal prisms in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexagonalPrisms(self):
|
|
return self.mesh.NbHexagonalPrisms()
|
|
|
|
## Return the number of polyhedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPolyhedrons(self):
|
|
return self.mesh.NbPolyhedrons()
|
|
|
|
## Return the number of submeshes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbSubMesh(self):
|
|
return self.mesh.NbSubMesh()
|
|
|
|
## Return the list of mesh elements IDs
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElementsId(self):
|
|
return self.mesh.GetElementsId()
|
|
|
|
## Return the list of IDs of mesh elements with the given type
|
|
# @param elementType the required type of elements, either of
|
|
# (SMESH.NODE, SMESH.EDGE, SMESH.FACE or SMESH.VOLUME)
|
|
# @return list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElementsByType(self, elementType):
|
|
return self.mesh.GetElementsByType(elementType)
|
|
|
|
## Return the list of mesh nodes IDs
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodesId(self):
|
|
return self.mesh.GetNodesId()
|
|
|
|
# Get the information about mesh elements:
|
|
# ------------------------------------
|
|
|
|
## Return the type of mesh element
|
|
# @return the value from SMESH::ElementType enumeration
|
|
# Type SMESH.ElementType._items in the Python Console to see all possible values.
|
|
# @ingroup l1_meshinfo
|
|
def GetElementType(self, id, iselem=True):
|
|
return self.mesh.GetElementType(id, iselem)
|
|
|
|
## Return the geometric type of mesh element
|
|
# @return the value from SMESH::EntityType enumeration
|
|
# Type SMESH.EntityType._items in the Python Console to see all possible values.
|
|
# @ingroup l1_meshinfo
|
|
def GetElementGeomType(self, id):
|
|
return self.mesh.GetElementGeomType(id)
|
|
|
|
## Return the shape type of mesh element
|
|
# @return the value from SMESH::GeometryType enumeration.
|
|
# Type SMESH.GeometryType._items in the Python Console to see all possible values.
|
|
# @ingroup l1_meshinfo
|
|
def GetElementShape(self, id):
|
|
return self.mesh.GetElementShape(id)
|
|
|
|
## Return the list of submesh elements IDs
|
|
# @param Shape a geom object(sub-shape)
|
|
# Shape must be the sub-shape of a ShapeToMesh()
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshElementsId(self, Shape):
|
|
if isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object):
|
|
ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape )
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshElementsId(ShapeID)
|
|
|
|
## Return the list of submesh nodes IDs
|
|
# @param Shape a geom object(sub-shape)
|
|
# Shape must be the sub-shape of a ShapeToMesh()
|
|
# @param all If true, gives all nodes of submesh elements, otherwise gives only submesh nodes
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshNodesId(self, Shape, all):
|
|
if isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object):
|
|
ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape )
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshNodesId(ShapeID, all)
|
|
|
|
## Return type of elements on given shape
|
|
# @param Shape a geom object(sub-shape)
|
|
# Shape must be a sub-shape of a ShapeToMesh()
|
|
# @return element type
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshElementType(self, Shape):
|
|
if isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object):
|
|
ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape )
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshElementType(ShapeID)
|
|
|
|
## Get the mesh description
|
|
# @return string value
|
|
# @ingroup l1_meshinfo
|
|
def Dump(self):
|
|
return self.mesh.Dump()
|
|
|
|
|
|
# Get the information about nodes and elements of a mesh by its IDs:
|
|
# -----------------------------------------------------------
|
|
|
|
## Get XYZ coordinates of a node
|
|
# \n If there is no nodes for the given ID - return an empty list
|
|
# @return a list of double precision values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodeXYZ(self, id):
|
|
return self.mesh.GetNodeXYZ(id)
|
|
|
|
## Return list of IDs of inverse elements for the given node
|
|
# \n If there is no node for the given ID - return an empty list
|
|
# @return a list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodeInverseElements(self, id):
|
|
return self.mesh.GetNodeInverseElements(id)
|
|
|
|
## Return the position of a node on the shape
|
|
# @return SMESH::NodePosition
|
|
# @ingroup l1_meshinfo
|
|
def GetNodePosition(self,NodeID):
|
|
return self.mesh.GetNodePosition(NodeID)
|
|
|
|
## Return the position of an element on the shape
|
|
# @return SMESH::ElementPosition
|
|
# @ingroup l1_meshinfo
|
|
def GetElementPosition(self,ElemID):
|
|
return self.mesh.GetElementPosition(ElemID)
|
|
|
|
## Return the ID of the shape, on which the given node was generated.
|
|
# @return an integer value > 0 or -1 if there is no node for the given
|
|
# ID or the node is not assigned to any geometry
|
|
# @ingroup l1_meshinfo
|
|
def GetShapeID(self, id):
|
|
return self.mesh.GetShapeID(id)
|
|
|
|
## Return the ID of the shape, on which the given element was generated.
|
|
# @return an integer value > 0 or -1 if there is no element for the given
|
|
# ID or the element is not assigned to any geometry
|
|
# @ingroup l1_meshinfo
|
|
def GetShapeIDForElem(self,id):
|
|
return self.mesh.GetShapeIDForElem(id)
|
|
|
|
## Return the number of nodes of the given element
|
|
# @return an integer value > 0 or -1 if there is no element for the given ID
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNbNodes(self, id):
|
|
return self.mesh.GetElemNbNodes(id)
|
|
|
|
## Return the node ID the given (zero based) index for the given element
|
|
# \n If there is no element for the given ID - return -1
|
|
# \n If there is no node for the given index - return -2
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNode(self, id, index):
|
|
return self.mesh.GetElemNode(id, index)
|
|
|
|
## Return the IDs of nodes of the given element
|
|
# @return a list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNodes(self, id):
|
|
return self.mesh.GetElemNodes(id)
|
|
|
|
## Return true if the given node is the medium node in the given quadratic element
|
|
# @ingroup l1_meshinfo
|
|
def IsMediumNode(self, elementID, nodeID):
|
|
return self.mesh.IsMediumNode(elementID, nodeID)
|
|
|
|
## Return true if the given node is the medium node in one of quadratic elements
|
|
# @param nodeID ID of the node
|
|
# @param elementType the type of elements to check a state of the node, either of
|
|
# (SMESH.ALL, SMESH.NODE, SMESH.EDGE, SMESH.FACE or SMESH.VOLUME)
|
|
# @ingroup l1_meshinfo
|
|
def IsMediumNodeOfAnyElem(self, nodeID, elementType = SMESH.ALL ):
|
|
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
|
|
|
|
## Return the number of edges for the given element
|
|
# @ingroup l1_meshinfo
|
|
def ElemNbEdges(self, id):
|
|
return self.mesh.ElemNbEdges(id)
|
|
|
|
## Return the number of faces for the given element
|
|
# @ingroup l1_meshinfo
|
|
def ElemNbFaces(self, id):
|
|
return self.mesh.ElemNbFaces(id)
|
|
|
|
## Return nodes of given face (counted from zero) for given volumic element.
|
|
# @ingroup l1_meshinfo
|
|
def GetElemFaceNodes(self,elemId, faceIndex):
|
|
return self.mesh.GetElemFaceNodes(elemId, faceIndex)
|
|
|
|
## Return three components of normal of given mesh face
|
|
# (or an empty array in KO case)
|
|
# @ingroup l1_meshinfo
|
|
def GetFaceNormal(self, faceId, normalized=False):
|
|
return self.mesh.GetFaceNormal(faceId,normalized)
|
|
|
|
## Return an element based on all given nodes.
|
|
# @ingroup l1_meshinfo
|
|
def FindElementByNodes(self,nodes):
|
|
return self.mesh.FindElementByNodes(nodes)
|
|
|
|
## Return true if the given element is a polygon
|
|
# @ingroup l1_meshinfo
|
|
def IsPoly(self, id):
|
|
return self.mesh.IsPoly(id)
|
|
|
|
## Return true if the given element is quadratic
|
|
# @ingroup l1_meshinfo
|
|
def IsQuadratic(self, id):
|
|
return self.mesh.IsQuadratic(id)
|
|
|
|
## Return diameter of a ball discrete element or zero in case of an invalid \a id
|
|
# @ingroup l1_meshinfo
|
|
def GetBallDiameter(self, id):
|
|
return self.mesh.GetBallDiameter(id)
|
|
|
|
## Return XYZ coordinates of the barycenter of the given element
|
|
# \n If there is no element for the given ID - return an empty list
|
|
# @return a list of three double values
|
|
# @ingroup l1_meshinfo
|
|
def BaryCenter(self, id):
|
|
return self.mesh.BaryCenter(id)
|
|
|
|
## Pass mesh elements through the given filter and return IDs of fitting elements
|
|
# @param theFilter SMESH_Filter
|
|
# @return a list of ids
|
|
# @ingroup l1_controls
|
|
def GetIdsFromFilter(self, theFilter):
|
|
theFilter.SetMesh( self.mesh )
|
|
return theFilter.GetIDs()
|
|
|
|
# Get mesh measurements information:
|
|
# ------------------------------------
|
|
|
|
## Verify whether a 2D mesh element has free edges (edges connected to one face only)\n
|
|
# Return a list of special structures (borders).
|
|
# @return a list of SMESH.FreeEdges.Border structure: edge id and ids of two its nodes.
|
|
# @ingroup l1_measurements
|
|
def GetFreeBorders(self):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aPredicate = aFilterMgr.CreateFreeEdges()
|
|
aPredicate.SetMesh(self.mesh)
|
|
aBorders = aPredicate.GetBorders()
|
|
aFilterMgr.UnRegister()
|
|
return aBorders
|
|
|
|
## Get minimum distance between two nodes, elements or distance to the origin
|
|
# @param id1 first node/element id
|
|
# @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return minimum distance value
|
|
# @sa GetMinDistance()
|
|
# @ingroup l1_measurements
|
|
def MinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
|
|
aMeasure = self.GetMinDistance(id1, id2, isElem1, isElem2)
|
|
return aMeasure.value
|
|
|
|
## Get measure structure specifying minimum distance data between two objects
|
|
# @param id1 first node/element id
|
|
# @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return Measure structure
|
|
# @sa MinDistance()
|
|
# @ingroup l1_measurements
|
|
def GetMinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
|
|
if isElem1:
|
|
id1 = self.editor.MakeIDSource([id1], SMESH.FACE)
|
|
else:
|
|
id1 = self.editor.MakeIDSource([id1], SMESH.NODE)
|
|
if id2 != 0:
|
|
if isElem2:
|
|
id2 = self.editor.MakeIDSource([id2], SMESH.FACE)
|
|
else:
|
|
id2 = self.editor.MakeIDSource([id2], SMESH.NODE)
|
|
pass
|
|
else:
|
|
id2 = None
|
|
|
|
aMeasurements = self.smeshpyD.CreateMeasurements()
|
|
aMeasure = aMeasurements.MinDistance(id1, id2)
|
|
genObjUnRegister([aMeasurements,id1, id2])
|
|
return aMeasure
|
|
|
|
## Get bounding box of the specified object(s)
|
|
# @param objects single source object or list of source objects or list of nodes/elements IDs
|
|
# @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
|
|
# @c False specifies that @a objects are nodes
|
|
# @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
|
|
# @sa GetBoundingBox()
|
|
# @ingroup l1_measurements
|
|
def BoundingBox(self, objects=None, isElem=False):
|
|
result = self.GetBoundingBox(objects, isElem)
|
|
if result is None:
|
|
result = (0.0,)*6
|
|
else:
|
|
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
|
|
return result
|
|
|
|
## Get measure structure specifying bounding box data of the specified object(s)
|
|
# @param IDs single source object or list of source objects or list of nodes/elements IDs
|
|
# @param isElem if @a IDs is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
|
|
# @c False specifies that @a objects are nodes
|
|
# @return Measure structure
|
|
# @sa BoundingBox()
|
|
# @ingroup l1_measurements
|
|
def GetBoundingBox(self, IDs=None, isElem=False):
|
|
if IDs is None:
|
|
IDs = [self.mesh]
|
|
elif isinstance(IDs, tuple):
|
|
IDs = list(IDs)
|
|
if not isinstance(IDs, list):
|
|
IDs = [IDs]
|
|
if len(IDs) > 0 and isinstance(IDs[0], int):
|
|
IDs = [IDs]
|
|
srclist = []
|
|
unRegister = genObjUnRegister()
|
|
for o in IDs:
|
|
if isinstance(o, Mesh):
|
|
srclist.append(o.mesh)
|
|
elif hasattr(o, "_narrow"):
|
|
src = o._narrow(SMESH.SMESH_IDSource)
|
|
if src: srclist.append(src)
|
|
pass
|
|
elif isinstance(o, list):
|
|
if isElem:
|
|
srclist.append(self.editor.MakeIDSource(o, SMESH.FACE))
|
|
else:
|
|
srclist.append(self.editor.MakeIDSource(o, SMESH.NODE))
|
|
unRegister.set( srclist[-1] )
|
|
pass
|
|
pass
|
|
aMeasurements = self.smeshpyD.CreateMeasurements()
|
|
unRegister.set( aMeasurements )
|
|
aMeasure = aMeasurements.BoundingBox(srclist)
|
|
return aMeasure
|
|
|
|
# Mesh edition (SMESH_MeshEditor functionality):
|
|
# ---------------------------------------------
|
|
|
|
## Remove the elements from the mesh by ids
|
|
# @param IDsOfElements is a list of ids of elements to remove
|
|
# @return True or False
|
|
# @ingroup l2_modif_del
|
|
def RemoveElements(self, IDsOfElements):
|
|
return self.editor.RemoveElements(IDsOfElements)
|
|
|
|
## Remove nodes from mesh by ids
|
|
# @param IDsOfNodes is a list of ids of nodes to remove
|
|
# @return True or False
|
|
# @ingroup l2_modif_del
|
|
def RemoveNodes(self, IDsOfNodes):
|
|
return self.editor.RemoveNodes(IDsOfNodes)
|
|
|
|
## Remove all orphan (free) nodes from mesh
|
|
# @return number of the removed nodes
|
|
# @ingroup l2_modif_del
|
|
def RemoveOrphanNodes(self):
|
|
return self.editor.RemoveOrphanNodes()
|
|
|
|
## Add a node to the mesh by coordinates
|
|
# @return Id of the new node
|
|
# @ingroup l2_modif_add
|
|
def AddNode(self, x, y, z):
|
|
x,y,z,Parameters,hasVars = ParseParameters(x,y,z)
|
|
if hasVars: self.mesh.SetParameters(Parameters)
|
|
return self.editor.AddNode( x, y, z)
|
|
|
|
## Create a 0D element on a node with given number.
|
|
# @param IDOfNode the ID of node for creation of the element.
|
|
# @param DuplicateElements to add one more 0D element to a node or not
|
|
# @return the Id of the new 0D element
|
|
# @ingroup l2_modif_add
|
|
def Add0DElement( self, IDOfNode, DuplicateElements=True ):
|
|
return self.editor.Add0DElement( IDOfNode, DuplicateElements )
|
|
|
|
## Create 0D elements on all nodes of the given elements except those
|
|
# nodes on which a 0D element already exists.
|
|
# @param theObject an object on whose nodes 0D elements will be created.
|
|
# It can be mesh, sub-mesh, group, list of element IDs or a holder
|
|
# of nodes IDs created by calling mesh.GetIDSource( nodes, SMESH.NODE )
|
|
# @param theGroupName optional name of a group to add 0D elements created
|
|
# and/or found on nodes of \a theObject.
|
|
# @param DuplicateElements to add one more 0D element to a node or not
|
|
# @return an object (a new group or a temporary SMESH_IDSource) holding
|
|
# IDs of new and/or found 0D elements. IDs of 0D elements
|
|
# can be retrieved from the returned object by calling GetIDs()
|
|
# @ingroup l2_modif_add
|
|
def Add0DElementsToAllNodes(self, theObject, theGroupName="", DuplicateElements=False):
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( theObject, Mesh ):
|
|
theObject = theObject.GetMesh()
|
|
elif isinstance( theObject, list ):
|
|
theObject = self.GetIDSource( theObject, SMESH.ALL )
|
|
unRegister.set( theObject )
|
|
return self.editor.Create0DElementsOnAllNodes( theObject, theGroupName, DuplicateElements )
|
|
|
|
## Create a ball element on a node with given ID.
|
|
# @param IDOfNode the ID of node for creation of the element.
|
|
# @param diameter the bal diameter.
|
|
# @return the Id of the new ball element
|
|
# @ingroup l2_modif_add
|
|
def AddBall(self, IDOfNode, diameter):
|
|
return self.editor.AddBall( IDOfNode, diameter )
|
|
|
|
## Create a linear or quadratic edge (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new edge
|
|
# @ingroup l2_modif_add
|
|
def AddEdge(self, IDsOfNodes):
|
|
return self.editor.AddEdge(IDsOfNodes)
|
|
|
|
## Create a linear or quadratic face (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new face
|
|
# @ingroup l2_modif_add
|
|
def AddFace(self, IDsOfNodes):
|
|
return self.editor.AddFace(IDsOfNodes)
|
|
|
|
## Add a polygonal face to the mesh by the list of node IDs
|
|
# @param IdsOfNodes the list of node IDs for creation of the element.
|
|
# @return the Id of the new face
|
|
# @ingroup l2_modif_add
|
|
def AddPolygonalFace(self, IdsOfNodes):
|
|
return self.editor.AddPolygonalFace(IdsOfNodes)
|
|
|
|
## Add a quadratic polygonal face to the mesh by the list of node IDs
|
|
# @param IdsOfNodes the list of node IDs for creation of the element;
|
|
# corner nodes follow first.
|
|
# @return the Id of the new face
|
|
# @ingroup l2_modif_add
|
|
def AddQuadPolygonalFace(self, IdsOfNodes):
|
|
return self.editor.AddQuadPolygonalFace(IdsOfNodes)
|
|
|
|
## Create both simple and quadratic volume (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddVolume(self, IDsOfNodes):
|
|
return self.editor.AddVolume(IDsOfNodes)
|
|
|
|
## Create a volume of many faces, giving nodes for each face.
|
|
# @param IdsOfNodes the list of node IDs for volume creation face by face.
|
|
# @param Quantities the list of integer values, Quantities[i]
|
|
# gives the quantity of nodes in face number i.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
|
|
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
|
|
|
|
## Create a volume of many faces, giving the IDs of the existing faces.
|
|
# @param IdsOfFaces the list of face IDs for volume creation.
|
|
#
|
|
# Note: The created volume will refer only to the nodes
|
|
# of the given faces, not to the faces themselves.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
|
|
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
|
|
|
|
|
|
## @brief Binds a node to a vertex
|
|
# @param NodeID a node ID
|
|
# @param Vertex a vertex or vertex ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnVertex(self, NodeID, Vertex):
|
|
if ( isinstance( Vertex, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
VertexID = self.geompyD.GetSubShapeID( self.geom, Vertex )
|
|
else:
|
|
VertexID = Vertex
|
|
try:
|
|
self.editor.SetNodeOnVertex(NodeID, VertexID)
|
|
except SALOME.SALOME_Exception as inst:
|
|
raise ValueError(inst.details.text)
|
|
return True
|
|
|
|
|
|
## @brief Stores the node position on an edge
|
|
# @param NodeID a node ID
|
|
# @param Edge an edge or edge ID
|
|
# @param paramOnEdge a parameter on the edge where the node is located
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
|
|
if ( isinstance( Edge, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
EdgeID = self.geompyD.GetSubShapeID( self.geom, Edge )
|
|
else:
|
|
EdgeID = Edge
|
|
try:
|
|
self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
|
|
except SALOME.SALOME_Exception as inst:
|
|
raise ValueError(inst.details.text)
|
|
return True
|
|
|
|
## @brief Stores node position on a face
|
|
# @param NodeID a node ID
|
|
# @param Face a face or face ID
|
|
# @param u U parameter on the face where the node is located
|
|
# @param v V parameter on the face where the node is located
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnFace(self, NodeID, Face, u, v):
|
|
if ( isinstance( Face, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
FaceID = self.geompyD.GetSubShapeID( self.geom, Face )
|
|
else:
|
|
FaceID = Face
|
|
try:
|
|
self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
|
|
except SALOME.SALOME_Exception as inst:
|
|
raise ValueError(inst.details.text)
|
|
return True
|
|
|
|
## @brief Binds a node to a solid
|
|
# @param NodeID a node ID
|
|
# @param Solid a solid or solid ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeInVolume(self, NodeID, Solid):
|
|
if ( isinstance( Solid, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
SolidID = self.geompyD.GetSubShapeID( self.geom, Solid )
|
|
else:
|
|
SolidID = Solid
|
|
try:
|
|
self.editor.SetNodeInVolume(NodeID, SolidID)
|
|
except SALOME.SALOME_Exception as inst:
|
|
raise ValueError(inst.details.text)
|
|
return True
|
|
|
|
## @brief Bind an element to a shape
|
|
# @param ElementID an element ID
|
|
# @param Shape a shape or shape ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetMeshElementOnShape(self, ElementID, Shape):
|
|
if ( isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape )
|
|
else:
|
|
ShapeID = Shape
|
|
try:
|
|
self.editor.SetMeshElementOnShape(ElementID, ShapeID)
|
|
except SALOME.SALOME_Exception as inst:
|
|
raise ValueError(inst.details.text)
|
|
return True
|
|
|
|
|
|
## Move the node with the given id
|
|
# @param NodeID the id of the node
|
|
# @param x a new X coordinate
|
|
# @param y a new Y coordinate
|
|
# @param z a new Z coordinate
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_edit
|
|
def MoveNode(self, NodeID, x, y, z):
|
|
x,y,z,Parameters,hasVars = ParseParameters(x,y,z)
|
|
if hasVars: self.mesh.SetParameters(Parameters)
|
|
return self.editor.MoveNode(NodeID, x, y, z)
|
|
|
|
## Find the node closest to a point and moves it to a point location
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @param NodeID if specified (>0), the node with this ID is moved,
|
|
# otherwise, the node closest to point (@a x,@a y,@a z) is moved
|
|
# @return the ID of a node
|
|
# @ingroup l2_modif_edit
|
|
def MoveClosestNodeToPoint(self, x, y, z, NodeID):
|
|
x,y,z,Parameters,hasVars = ParseParameters(x,y,z)
|
|
if hasVars: self.mesh.SetParameters(Parameters)
|
|
return self.editor.MoveClosestNodeToPoint(x, y, z, NodeID)
|
|
|
|
## Find the node closest to a point
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @return the ID of a node
|
|
# @ingroup l1_meshinfo
|
|
def FindNodeClosestTo(self, x, y, z):
|
|
#preview = self.mesh.GetMeshEditPreviewer()
|
|
#return preview.MoveClosestNodeToPoint(x, y, z, -1)
|
|
return self.editor.FindNodeClosestTo(x, y, z)
|
|
|
|
## Find the elements where a point lays IN or ON
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @param elementType type of elements to find; either of
|
|
# (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME); SMESH.ALL type
|
|
# means elements of any type excluding nodes, discrete and 0D elements.
|
|
# @param meshPart a part of mesh (group, sub-mesh) to search within
|
|
# @return list of IDs of found elements
|
|
# @ingroup l1_meshinfo
|
|
def FindElementsByPoint(self, x, y, z, elementType = SMESH.ALL, meshPart=None):
|
|
if meshPart:
|
|
return self.editor.FindAmongElementsByPoint( meshPart, x, y, z, elementType );
|
|
else:
|
|
return self.editor.FindElementsByPoint(x, y, z, elementType)
|
|
|
|
## Return point state in a closed 2D mesh in terms of TopAbs_State enumeration:
|
|
# 0-IN, 1-OUT, 2-ON, 3-UNKNOWN
|
|
# UNKNOWN state means that either mesh is wrong or the analysis fails.
|
|
# @ingroup l1_meshinfo
|
|
def GetPointState(self, x, y, z):
|
|
return self.editor.GetPointState(x, y, z)
|
|
|
|
## Find the node closest to a point and moves it to a point location
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @return the ID of a moved node
|
|
# @ingroup l2_modif_edit
|
|
def MeshToPassThroughAPoint(self, x, y, z):
|
|
return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
|
|
|
|
## Replace two neighbour triangles sharing Node1-Node2 link
|
|
# with the triangles built on the same 4 nodes but having other common link.
|
|
# @param NodeID1 the ID of the first node
|
|
# @param NodeID2 the ID of the second node
|
|
# @return false if proper faces were not found
|
|
# @ingroup l2_modif_cutquadr
|
|
def InverseDiag(self, NodeID1, NodeID2):
|
|
return self.editor.InverseDiag(NodeID1, NodeID2)
|
|
|
|
## Replace two neighbour triangles sharing Node1-Node2 link
|
|
# with a quadrangle built on the same 4 nodes.
|
|
# @param NodeID1 the ID of the first node
|
|
# @param NodeID2 the ID of the second node
|
|
# @return false if proper faces were not found
|
|
# @ingroup l2_modif_unitetri
|
|
def DeleteDiag(self, NodeID1, NodeID2):
|
|
return self.editor.DeleteDiag(NodeID1, NodeID2)
|
|
|
|
## Reorient elements by ids
|
|
# @param IDsOfElements if undefined reorients all mesh elements
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_changori
|
|
def Reorient(self, IDsOfElements=None):
|
|
if IDsOfElements == None:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.Reorient(IDsOfElements)
|
|
|
|
## Reorient all elements of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_changori
|
|
def ReorientObject(self, theObject):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.ReorientObject(theObject)
|
|
|
|
## Reorient faces contained in \a the2DObject.
|
|
# @param the2DObject is a mesh, sub-mesh, group or list of IDs of 2D elements
|
|
# @param theDirection is a desired direction of normal of \a theFace.
|
|
# It can be either a GEOM vector or a list of coordinates [x,y,z].
|
|
# @param theFaceOrPoint defines a face of \a the2DObject whose normal will be
|
|
# compared with theDirection. It can be either ID of face or a point
|
|
# by which the face will be found. The point can be given as either
|
|
# a GEOM vertex or a list of point coordinates.
|
|
# @return number of reoriented faces
|
|
# @ingroup l2_modif_changori
|
|
def Reorient2D(self, the2DObject, theDirection, theFaceOrPoint ):
|
|
unRegister = genObjUnRegister()
|
|
# check the2DObject
|
|
if isinstance( the2DObject, Mesh ):
|
|
the2DObject = the2DObject.GetMesh()
|
|
if isinstance( the2DObject, list ):
|
|
the2DObject = self.GetIDSource( the2DObject, SMESH.FACE )
|
|
unRegister.set( the2DObject )
|
|
# check theDirection
|
|
if isinstance( theDirection, geomBuilder.GEOM._objref_GEOM_Object):
|
|
theDirection = self.smeshpyD.GetDirStruct( theDirection )
|
|
if isinstance( theDirection, list ):
|
|
theDirection = self.smeshpyD.MakeDirStruct( *theDirection )
|
|
# prepare theFace and thePoint
|
|
theFace = theFaceOrPoint
|
|
thePoint = PointStruct(0,0,0)
|
|
if isinstance( theFaceOrPoint, geomBuilder.GEOM._objref_GEOM_Object):
|
|
thePoint = self.smeshpyD.GetPointStruct( theFaceOrPoint )
|
|
theFace = -1
|
|
if isinstance( theFaceOrPoint, list ):
|
|
thePoint = PointStruct( *theFaceOrPoint )
|
|
theFace = -1
|
|
if isinstance( theFaceOrPoint, PointStruct ):
|
|
thePoint = theFaceOrPoint
|
|
theFace = -1
|
|
return self.editor.Reorient2D( the2DObject, theDirection, theFace, thePoint )
|
|
|
|
## Reorient faces according to adjacent volumes.
|
|
# @param the2DObject is a mesh, sub-mesh, group or list of
|
|
# either IDs of faces or face groups.
|
|
# @param the3DObject is a mesh, sub-mesh, group or list of IDs of volumes.
|
|
# @param theOutsideNormal to orient faces to have their normals
|
|
# pointing either \a outside or \a inside the adjacent volumes.
|
|
# @return number of reoriented faces.
|
|
# @ingroup l2_modif_changori
|
|
def Reorient2DBy3D(self, the2DObject, the3DObject, theOutsideNormal=True ):
|
|
unRegister = genObjUnRegister()
|
|
# check the2DObject
|
|
if not isinstance( the2DObject, list ):
|
|
the2DObject = [ the2DObject ]
|
|
elif the2DObject and isinstance( the2DObject[0], int ):
|
|
the2DObject = self.GetIDSource( the2DObject, SMESH.FACE )
|
|
unRegister.set( the2DObject )
|
|
the2DObject = [ the2DObject ]
|
|
for i,obj2D in enumerate( the2DObject ):
|
|
if isinstance( obj2D, Mesh ):
|
|
the2DObject[i] = obj2D.GetMesh()
|
|
if isinstance( obj2D, list ):
|
|
the2DObject[i] = self.GetIDSource( obj2D, SMESH.FACE )
|
|
unRegister.set( the2DObject[i] )
|
|
# check the3DObject
|
|
if isinstance( the3DObject, Mesh ):
|
|
the3DObject = the3DObject.GetMesh()
|
|
if isinstance( the3DObject, list ):
|
|
the3DObject = self.GetIDSource( the3DObject, SMESH.VOLUME )
|
|
unRegister.set( the3DObject )
|
|
return self.editor.Reorient2DBy3D( the2DObject, the3DObject, theOutsideNormal )
|
|
|
|
## Fuse the neighbouring triangles into quadrangles.
|
|
# @param IDsOfElements The triangles to be fused.
|
|
# @param theCriterion a numerical functor, in terms of enum SMESH.FunctorType, used to
|
|
# applied to possible quadrangles to choose a neighbour to fuse with.
|
|
# Type SMESH.FunctorType._items in the Python Console to see all items.
|
|
# Note that not all items correspond to numerical functors.
|
|
# @param MaxAngle is the maximum angle between element normals at which the fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# Also it could be a name of variable which defines angle in degrees.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_unitetri
|
|
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
|
|
MaxAngle,Parameters,hasVars = ParseAngles(MaxAngle)
|
|
self.mesh.SetParameters(Parameters)
|
|
if not IDsOfElements:
|
|
IDsOfElements = self.GetElementsId()
|
|
Functor = self.smeshpyD.GetFunctor(theCriterion)
|
|
return self.editor.TriToQuad(IDsOfElements, Functor, MaxAngle)
|
|
|
|
## Fuse the neighbouring triangles of the object into quadrangles
|
|
# @param theObject is mesh, submesh or group
|
|
# @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType,
|
|
# applied to possible quadrangles to choose a neighbour to fuse with.
|
|
# Type SMESH.FunctorType._items in the Python Console to see all items.
|
|
# Note that not all items correspond to numerical functors.
|
|
# @param MaxAngle a max angle between element normals at which the fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_unitetri
|
|
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
|
|
MaxAngle,Parameters,hasVars = ParseAngles(MaxAngle)
|
|
self.mesh.SetParameters(Parameters)
|
|
if isinstance( theObject, Mesh ):
|
|
theObject = theObject.GetMesh()
|
|
Functor = self.smeshpyD.GetFunctor(theCriterion)
|
|
return self.editor.TriToQuadObject(theObject, Functor, MaxAngle)
|
|
|
|
## Split quadrangles into triangles.
|
|
# @param IDsOfElements the faces to be splitted.
|
|
# @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to
|
|
# choose a diagonal for splitting. If @a theCriterion is None, which is a default
|
|
# value, then quadrangles will be split by the smallest diagonal.
|
|
# Type SMESH.FunctorType._items in the Python Console to see all items.
|
|
# Note that not all items correspond to numerical functors.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def QuadToTri (self, IDsOfElements, theCriterion = None):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if theCriterion is None:
|
|
theCriterion = FT_MaxElementLength2D
|
|
Functor = self.smeshpyD.GetFunctor(theCriterion)
|
|
return self.editor.QuadToTri(IDsOfElements, Functor)
|
|
|
|
## Split quadrangles into triangles.
|
|
# @param theObject the object from which the list of elements is taken,
|
|
# this is mesh, submesh or group
|
|
# @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to
|
|
# choose a diagonal for splitting. If @a theCriterion is None, which is a default
|
|
# value, then quadrangles will be split by the smallest diagonal.
|
|
# Type SMESH.FunctorType._items in the Python Console to see all items.
|
|
# Note that not all items correspond to numerical functors.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def QuadToTriObject (self, theObject, theCriterion = None):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if theCriterion is None:
|
|
theCriterion = FT_MaxElementLength2D
|
|
Functor = self.smeshpyD.GetFunctor(theCriterion)
|
|
return self.editor.QuadToTriObject(theObject, Functor)
|
|
|
|
## Split each of given quadrangles into 4 triangles. A node is added at the center of
|
|
# a quadrangle.
|
|
# @param theElements the faces to be splitted. This can be either mesh, sub-mesh,
|
|
# group or a list of face IDs. By default all quadrangles are split
|
|
# @ingroup l2_modif_cutquadr
|
|
def QuadTo4Tri (self, theElements=[]):
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( theElements, Mesh ):
|
|
theElements = theElements.mesh
|
|
elif not theElements:
|
|
theElements = self.mesh
|
|
elif isinstance( theElements, list ):
|
|
theElements = self.GetIDSource( theElements, SMESH.FACE )
|
|
unRegister.set( theElements )
|
|
return self.editor.QuadTo4Tri( theElements )
|
|
|
|
## Split quadrangles into triangles.
|
|
# @param IDsOfElements the faces to be splitted
|
|
# @param Diag13 is used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitQuad (self, IDsOfElements, Diag13):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.SplitQuad(IDsOfElements, Diag13)
|
|
|
|
## Split quadrangles into triangles.
|
|
# @param theObject the object from which the list of elements is taken,
|
|
# this is mesh, submesh or group
|
|
# @param Diag13 is used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitQuadObject (self, theObject, Diag13):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SplitQuadObject(theObject, Diag13)
|
|
|
|
## Find a better splitting of the given quadrangle.
|
|
# @param IDOfQuad the ID of the quadrangle to be splitted.
|
|
# @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to
|
|
# choose a diagonal for splitting.
|
|
# Type SMESH.FunctorType._items in the Python Console to see all items.
|
|
# Note that not all items correspond to numerical functors.
|
|
# @return 1 if 1-3 diagonal is better, 2 if 2-4
|
|
# diagonal is better, 0 if error occurs.
|
|
# @ingroup l2_modif_cutquadr
|
|
def BestSplit (self, IDOfQuad, theCriterion):
|
|
return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Split volumic elements into tetrahedrons
|
|
# @param elems either a list of elements or a mesh or a group or a submesh or a filter
|
|
# @param method flags passing splitting method:
|
|
# smesh.Hex_5Tet, smesh.Hex_6Tet, smesh.Hex_24Tet.
|
|
# smesh.Hex_5Tet - to split the hexahedron into 5 tetrahedrons, etc.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitVolumesIntoTetra(self, elems, method=smeshBuilder.Hex_5Tet ):
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( elems, Mesh ):
|
|
elems = elems.GetMesh()
|
|
if ( isinstance( elems, list )):
|
|
elems = self.editor.MakeIDSource(elems, SMESH.VOLUME)
|
|
unRegister.set( elems )
|
|
self.editor.SplitVolumesIntoTetra(elems, method)
|
|
return
|
|
|
|
## Split bi-quadratic elements into linear ones without creation of additional nodes:
|
|
# - bi-quadratic triangle will be split into 3 linear quadrangles;
|
|
# - bi-quadratic quadrangle will be split into 4 linear quadrangles;
|
|
# - tri-quadratic hexahedron will be split into 8 linear hexahedra.
|
|
# Quadratic elements of lower dimension adjacent to the split bi-quadratic element
|
|
# will be split in order to keep the mesh conformal.
|
|
# @param elems - elements to split: sub-meshes, groups, filters or element IDs;
|
|
# if None (default), all bi-quadratic elements will be split
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitBiQuadraticIntoLinear(self, elems=None):
|
|
unRegister = genObjUnRegister()
|
|
if elems and isinstance( elems, list ) and isinstance( elems[0], int ):
|
|
elems = self.editor.MakeIDSource(elems, SMESH.ALL)
|
|
unRegister.set( elems )
|
|
if elems is None:
|
|
elems = [ self.GetMesh() ]
|
|
if isinstance( elems, Mesh ):
|
|
elems = [ elems.GetMesh() ]
|
|
if not isinstance( elems, list ):
|
|
elems = [elems]
|
|
self.editor.SplitBiQuadraticIntoLinear( elems )
|
|
|
|
## Split hexahedra into prisms
|
|
# @param elems either a list of elements or a mesh or a group or a submesh or a filter
|
|
# @param startHexPoint a point used to find a hexahedron for which @a facetNormal
|
|
# gives a normal vector defining facets to split into triangles.
|
|
# @a startHexPoint can be either a triple of coordinates or a vertex.
|
|
# @param facetNormal a normal to a facet to split into triangles of a
|
|
# hexahedron found by @a startHexPoint.
|
|
# @a facetNormal can be either a triple of coordinates or an edge.
|
|
# @param method flags passing splitting method: smesh.Hex_2Prisms, smesh.Hex_4Prisms.
|
|
# smesh.Hex_2Prisms - to split the hexahedron into 2 prisms, etc.
|
|
# @param allDomains if @c False, only hexahedra adjacent to one closest
|
|
# to @a startHexPoint are split, else @a startHexPoint
|
|
# is used to find the facet to split in all domains present in @a elems.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitHexahedraIntoPrisms(self, elems, startHexPoint, facetNormal,
|
|
method=smeshBuilder.Hex_2Prisms, allDomains=False ):
|
|
# IDSource
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( elems, Mesh ):
|
|
elems = elems.GetMesh()
|
|
if ( isinstance( elems, list )):
|
|
elems = self.editor.MakeIDSource(elems, SMESH.VOLUME)
|
|
unRegister.set( elems )
|
|
pass
|
|
# axis
|
|
if isinstance( startHexPoint, geomBuilder.GEOM._objref_GEOM_Object):
|
|
startHexPoint = self.smeshpyD.GetPointStruct( startHexPoint )
|
|
elif isinstance( startHexPoint, list ):
|
|
startHexPoint = SMESH.PointStruct( startHexPoint[0],
|
|
startHexPoint[1],
|
|
startHexPoint[2])
|
|
if isinstance( facetNormal, geomBuilder.GEOM._objref_GEOM_Object):
|
|
facetNormal = self.smeshpyD.GetDirStruct( facetNormal )
|
|
elif isinstance( facetNormal, list ):
|
|
facetNormal = self.smeshpyD.MakeDirStruct( facetNormal[0],
|
|
facetNormal[1],
|
|
facetNormal[2])
|
|
self.mesh.SetParameters( startHexPoint.parameters + facetNormal.PS.parameters )
|
|
|
|
self.editor.SplitHexahedraIntoPrisms(elems, startHexPoint, facetNormal, method, allDomains)
|
|
|
|
## Split quadrangle faces near triangular facets of volumes
|
|
#
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitQuadsNearTriangularFacets(self):
|
|
faces_array = self.GetElementsByType(SMESH.FACE)
|
|
for face_id in faces_array:
|
|
if self.GetElemNbNodes(face_id) == 4: # quadrangle
|
|
quad_nodes = self.mesh.GetElemNodes(face_id)
|
|
node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
|
|
isVolumeFound = False
|
|
for node1_elem in node1_elems:
|
|
if not isVolumeFound:
|
|
if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
|
|
nb_nodes = self.GetElemNbNodes(node1_elem)
|
|
if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
|
|
volume_elem = node1_elem
|
|
volume_nodes = self.mesh.GetElemNodes(volume_elem)
|
|
if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
|
|
if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
|
|
isVolumeFound = True
|
|
if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
|
|
self.SplitQuad([face_id], False) # diagonal 2-4
|
|
elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
|
|
isVolumeFound = True
|
|
self.SplitQuad([face_id], True) # diagonal 1-3
|
|
elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
|
|
if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
|
|
isVolumeFound = True
|
|
self.SplitQuad([face_id], True) # diagonal 1-3
|
|
|
|
## @brief Splits hexahedrons into tetrahedrons.
|
|
#
|
|
# This operation uses pattern mapping functionality for splitting.
|
|
# @param theObject the object from which the list of hexahedrons is taken; this is mesh, submesh or group.
|
|
# @param theNode000,theNode001 within the range [0,7]; gives the orientation of the
|
|
# pattern relatively each hexahedron: the (0,0,0) key-point of the pattern
|
|
# will be mapped into <VAR>theNode000</VAR>-th node of each volume, the (0,0,1)
|
|
# key-point will be mapped into <VAR>theNode001</VAR>-th node of each volume.
|
|
# The (0,0,0) key-point of the used pattern corresponds to a non-split corner.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitHexaToTetras (self, theObject, theNode000, theNode001):
|
|
# Pattern: 5.---------.6
|
|
# /|#* /|
|
|
# / | #* / |
|
|
# / | # * / |
|
|
# / | # /* |
|
|
# (0,0,1) 4.---------.7 * |
|
|
# |#* |1 | # *|
|
|
# | # *.----|---#.2
|
|
# | #/ * | /
|
|
# | /# * | /
|
|
# | / # * | /
|
|
# |/ #*|/
|
|
# (0,0,0) 0.---------.3
|
|
pattern_tetra = "!!! Nb of points: \n 8 \n\
|
|
!!! Points: \n\
|
|
0 0 0 !- 0 \n\
|
|
0 1 0 !- 1 \n\
|
|
1 1 0 !- 2 \n\
|
|
1 0 0 !- 3 \n\
|
|
0 0 1 !- 4 \n\
|
|
0 1 1 !- 5 \n\
|
|
1 1 1 !- 6 \n\
|
|
1 0 1 !- 7 \n\
|
|
!!! Indices of points of 6 tetras: \n\
|
|
0 3 4 1 \n\
|
|
7 4 3 1 \n\
|
|
4 7 5 1 \n\
|
|
6 2 5 7 \n\
|
|
1 5 2 7 \n\
|
|
2 3 1 7 \n"
|
|
|
|
pattern = self.smeshpyD.GetPattern()
|
|
isDone = pattern.LoadFromFile(pattern_tetra)
|
|
if not isDone:
|
|
print('Pattern.LoadFromFile :', pattern.GetErrorCode())
|
|
return isDone
|
|
|
|
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
|
|
isDone = pattern.MakeMesh(self.mesh, False, False)
|
|
if not isDone: print('Pattern.MakeMesh :', pattern.GetErrorCode())
|
|
|
|
# split quafrangle faces near triangular facets of volumes
|
|
self.SplitQuadsNearTriangularFacets()
|
|
|
|
return isDone
|
|
|
|
## @brief Split hexahedrons into prisms.
|
|
#
|
|
# Uses the pattern mapping functionality for splitting.
|
|
# @param theObject the object (mesh, submesh or group) from where the list of hexahedrons is taken;
|
|
# @param theNode000,theNode001 (within the range [0,7]) gives the orientation of the
|
|
# pattern relatively each hexahedron: keypoint (0,0,0) of the pattern
|
|
# will be mapped into the <VAR>theNode000</VAR>-th node of each volume, keypoint (0,0,1)
|
|
# will be mapped into the <VAR>theNode001</VAR>-th node of each volume.
|
|
# Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
|
|
# Pattern: 5.---------.6
|
|
# /|# /|
|
|
# / | # / |
|
|
# / | # / |
|
|
# / | # / |
|
|
# (0,0,1) 4.---------.7 |
|
|
# | | | |
|
|
# | 1.----|----.2
|
|
# | / * | /
|
|
# | / * | /
|
|
# | / * | /
|
|
# |/ *|/
|
|
# (0,0,0) 0.---------.3
|
|
pattern_prism = "!!! Nb of points: \n 8 \n\
|
|
!!! Points: \n\
|
|
0 0 0 !- 0 \n\
|
|
0 1 0 !- 1 \n\
|
|
1 1 0 !- 2 \n\
|
|
1 0 0 !- 3 \n\
|
|
0 0 1 !- 4 \n\
|
|
0 1 1 !- 5 \n\
|
|
1 1 1 !- 6 \n\
|
|
1 0 1 !- 7 \n\
|
|
!!! Indices of points of 2 prisms: \n\
|
|
0 1 3 4 5 7 \n\
|
|
2 3 1 6 7 5 \n"
|
|
|
|
pattern = self.smeshpyD.GetPattern()
|
|
isDone = pattern.LoadFromFile(pattern_prism)
|
|
if not isDone:
|
|
print('Pattern.LoadFromFile :', pattern.GetErrorCode())
|
|
return isDone
|
|
|
|
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
|
|
isDone = pattern.MakeMesh(self.mesh, False, False)
|
|
if not isDone: print('Pattern.MakeMesh :', pattern.GetErrorCode())
|
|
|
|
# Split quafrangle faces near triangular facets of volumes
|
|
self.SplitQuadsNearTriangularFacets()
|
|
|
|
return isDone
|
|
|
|
## Smooth elements
|
|
# @param IDsOfElements the list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is either Laplacian (smesh.LAPLACIAN_SMOOTH)
|
|
# or Centroidal (smesh.CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
MaxNbOfIterations,MaxAspectRatio,Parameters,hasVars = ParseParameters(MaxNbOfIterations,MaxAspectRatio)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Smooth elements which belong to the given object
|
|
# @param theObject the object to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is either Laplacian (smesh.LAPLACIAN_SMOOTH)
|
|
# or Centroidal (smesh.CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Parametrically smooth the given elements
|
|
# @param IDsOfElements the list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is either Laplacian (smesh.LAPLACIAN_SMOOTH)
|
|
# or Centroidal (smesh.CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
MaxNbOfIterations,MaxAspectRatio,Parameters,hasVars = ParseParameters(MaxNbOfIterations,MaxAspectRatio)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Parametrically smooth the elements which belong to the given object
|
|
# @param theObject the object to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is either Laplacian (smesh.LAPLACIAN_SMOOTH)
|
|
# or Centroidal (smesh.CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Convert the mesh to quadratic or bi-quadratic, deletes old elements, replacing
|
|
# them with quadratic with the same id.
|
|
# @param theForce3d new node creation method:
|
|
# 0 - the medium node lies at the geometrical entity from which the mesh element is built
|
|
# 1 - the medium node lies at the middle of the line segments connecting two nodes of a mesh element
|
|
# @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
|
|
# @param theToBiQuad If True, converts the mesh to bi-quadratic
|
|
# @return SMESH.ComputeError which can hold a warning
|
|
# @ingroup l2_modif_tofromqu
|
|
def ConvertToQuadratic(self, theForce3d=False, theSubMesh=None, theToBiQuad=False):
|
|
if isinstance( theSubMesh, Mesh ):
|
|
theSubMesh = theSubMesh.mesh
|
|
if theToBiQuad:
|
|
self.editor.ConvertToBiQuadratic(theForce3d,theSubMesh)
|
|
else:
|
|
if theSubMesh:
|
|
self.editor.ConvertToQuadraticObject(theForce3d,theSubMesh)
|
|
else:
|
|
self.editor.ConvertToQuadratic(theForce3d)
|
|
error = self.editor.GetLastError()
|
|
if error and error.comment:
|
|
print(error.comment)
|
|
return error
|
|
|
|
## Convert the mesh from quadratic to ordinary,
|
|
# deletes old quadratic elements, \n replacing
|
|
# them with ordinary mesh elements with the same id.
|
|
# @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
|
|
# @ingroup l2_modif_tofromqu
|
|
def ConvertFromQuadratic(self, theSubMesh=None):
|
|
if theSubMesh:
|
|
self.editor.ConvertFromQuadraticObject(theSubMesh)
|
|
else:
|
|
return self.editor.ConvertFromQuadratic()
|
|
|
|
## Create 2D mesh as skin on boundary faces of a 3D mesh
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_add
|
|
def Make2DMeshFrom3D(self):
|
|
return self.editor.Make2DMeshFrom3D()
|
|
|
|
## Create missing boundary elements
|
|
# @param elements - elements whose boundary is to be checked:
|
|
# mesh, group, sub-mesh or list of elements
|
|
# if elements is mesh, it must be the mesh whose MakeBoundaryMesh() is called
|
|
# @param dimension - defines type of boundary elements to create, either of
|
|
# { SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D }
|
|
# SMESH.BND_1DFROM3D create mesh edges on all borders of free facets of 3D cells
|
|
# @param groupName - a name of group to store created boundary elements in,
|
|
# "" means not to create the group
|
|
# @param meshName - a name of new mesh to store created boundary elements in,
|
|
# "" means not to create the new mesh
|
|
# @param toCopyElements - if true, the checked elements will be copied into
|
|
# the new mesh else only boundary elements will be copied into the new mesh
|
|
# @param toCopyExistingBondary - if true, not only new but also pre-existing
|
|
# boundary elements will be copied into the new mesh
|
|
# @return tuple (mesh, group) where boundary elements were added to
|
|
# @ingroup l2_modif_add
|
|
def MakeBoundaryMesh(self, elements, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
|
|
toCopyElements=False, toCopyExistingBondary=False):
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( elements, Mesh ):
|
|
elements = elements.GetMesh()
|
|
if ( isinstance( elements, list )):
|
|
elemType = SMESH.ALL
|
|
if elements: elemType = self.GetElementType( elements[0], iselem=True)
|
|
elements = self.editor.MakeIDSource(elements, elemType)
|
|
unRegister.set( elements )
|
|
mesh, group = self.editor.MakeBoundaryMesh(elements,dimension,groupName,meshName,
|
|
toCopyElements,toCopyExistingBondary)
|
|
if mesh: mesh = self.smeshpyD.Mesh(mesh)
|
|
return mesh, group
|
|
|
|
##
|
|
# @brief Create missing boundary elements around either the whole mesh or
|
|
# groups of elements
|
|
# @param dimension - defines type of boundary elements to create, either of
|
|
# { SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D }
|
|
# @param groupName - a name of group to store all boundary elements in,
|
|
# "" means not to create the group
|
|
# @param meshName - a name of a new mesh, which is a copy of the initial
|
|
# mesh + created boundary elements; "" means not to create the new mesh
|
|
# @param toCopyAll - if true, the whole initial mesh will be copied into
|
|
# the new mesh else only boundary elements will be copied into the new mesh
|
|
# @param groups - groups of elements to make boundary around
|
|
# @retval tuple( long, mesh, groups )
|
|
# long - number of added boundary elements
|
|
# mesh - the mesh where elements were added to
|
|
# group - the group of boundary elements or None
|
|
#
|
|
# @ingroup l2_modif_add
|
|
def MakeBoundaryElements(self, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
|
|
toCopyAll=False, groups=[]):
|
|
nb, mesh, group = self.editor.MakeBoundaryElements(dimension,groupName,meshName,
|
|
toCopyAll,groups)
|
|
if mesh: mesh = self.smeshpyD.Mesh(mesh)
|
|
return nb, mesh, group
|
|
|
|
## Renumber mesh nodes (Obsolete, does nothing)
|
|
# @ingroup l2_modif_renumber
|
|
def RenumberNodes(self):
|
|
self.editor.RenumberNodes()
|
|
|
|
## Renumber mesh elements (Obsole, does nothing)
|
|
# @ingroup l2_modif_renumber
|
|
def RenumberElements(self):
|
|
self.editor.RenumberElements()
|
|
|
|
## Private method converting \a arg into a list of SMESH_IdSource's
|
|
def _getIdSourceList(self, arg, idType, unRegister):
|
|
if arg and isinstance( arg, list ):
|
|
if isinstance( arg[0], int ):
|
|
arg = self.GetIDSource( arg, idType )
|
|
unRegister.set( arg )
|
|
elif isinstance( arg[0], Mesh ):
|
|
arg[0] = arg[0].GetMesh()
|
|
elif isinstance( arg, Mesh ):
|
|
arg = arg.GetMesh()
|
|
if arg and isinstance( arg, SMESH._objref_SMESH_IDSource ):
|
|
arg = [arg]
|
|
return arg
|
|
|
|
## Generate new elements by rotation of the given elements and nodes around the axis
|
|
# @param nodes - nodes to revolve: a list including ids, groups, sub-meshes or a mesh
|
|
# @param edges - edges to revolve: a list including ids, groups, sub-meshes or a mesh
|
|
# @param faces - faces to revolve: a list including ids, groups, sub-meshes or a mesh
|
|
# @param Axis the axis of rotation: AxisStruct, line (geom object) or [x,y,z,dx,dy,dz]
|
|
# @param AngleInRadians the angle of Rotation (in radians) or a name of variable
|
|
# which defines angle in degrees
|
|
# @param NbOfSteps the number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObjects(self, nodes, edges, faces, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
unRegister = genObjUnRegister()
|
|
nodes = self._getIdSourceList( nodes, SMESH.NODE, unRegister )
|
|
edges = self._getIdSourceList( edges, SMESH.EDGE, unRegister )
|
|
faces = self._getIdSourceList( faces, SMESH.FACE, unRegister )
|
|
|
|
if isinstance( Axis, geomBuilder.GEOM._objref_GEOM_Object):
|
|
Axis = self.smeshpyD.GetAxisStruct( Axis )
|
|
if isinstance( Axis, list ):
|
|
Axis = SMESH.AxisStruct( *Axis )
|
|
|
|
AngleInRadians,AngleParameters,hasVars = ParseAngles(AngleInRadians)
|
|
NbOfSteps,Tolerance,Parameters,hasVars = ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
return self.editor.RotationSweepObjects( nodes, edges, faces,
|
|
Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance, MakeGroups)
|
|
|
|
## Generate new elements by rotation of the elements around the axis
|
|
# @param IDsOfElements the list of ids of elements to sweep
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param NbOfSteps the number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
return self.RotationSweepObjects([], IDsOfElements, IDsOfElements, Axis,
|
|
AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups, TotalAngle)
|
|
|
|
## Generate new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
return self.RotationSweepObjects( [], theObject, theObject, Axis,
|
|
AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups, TotalAngle )
|
|
|
|
## Generate new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject1D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
return self.RotationSweepObjects([],theObject,[], Axis,
|
|
AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups, TotalAngle)
|
|
|
|
## Generate new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject2D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
return self.RotationSweepObjects([],[],theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance, MakeGroups, TotalAngle)
|
|
|
|
## Generate new elements by extrusion of the given elements and nodes
|
|
# @param nodes nodes to extrude: a list including ids, groups, sub-meshes or a mesh
|
|
# @param edges edges to extrude: a list including ids, groups, sub-meshes or a mesh
|
|
# @param faces faces to extrude: a list including ids, groups, sub-meshes or a mesh
|
|
# @param StepVector vector or DirStruct or 3 vector components, defining
|
|
# the direction and value of extrusion for one step (the total extrusion
|
|
# length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param scaleFactors optional scale factors to apply during extrusion
|
|
# @param linearVariation if @c True, scaleFactors are spread over all @a scaleFactors,
|
|
# else scaleFactors[i] is applied to nodes at the i-th extrusion step
|
|
# @param basePoint optional scaling center; if not provided, a gravity center of
|
|
# nodes and elements being extruded is used as the scaling center.
|
|
# It can be either
|
|
# - a list of tree components of the point or
|
|
# - a node ID or
|
|
# - a GEOM point
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObjects(self, nodes, edges, faces, StepVector, NbOfSteps, MakeGroups=False,
|
|
scaleFactors=[], linearVariation=False, basePoint=[] ):
|
|
unRegister = genObjUnRegister()
|
|
nodes = self._getIdSourceList( nodes, SMESH.NODE, unRegister )
|
|
edges = self._getIdSourceList( edges, SMESH.EDGE, unRegister )
|
|
faces = self._getIdSourceList( faces, SMESH.FACE, unRegister )
|
|
|
|
if isinstance( StepVector, geomBuilder.GEOM._objref_GEOM_Object):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
if isinstance( StepVector, list ):
|
|
StepVector = self.smeshpyD.MakeDirStruct(*StepVector)
|
|
|
|
if isinstance( basePoint, int):
|
|
xyz = self.GetNodeXYZ( basePoint )
|
|
if not xyz:
|
|
raise RuntimeError("Invalid node ID: %s" % basePoint)
|
|
basePoint = xyz
|
|
if isinstance( basePoint, geomBuilder.GEOM._objref_GEOM_Object ):
|
|
basePoint = self.geompyD.PointCoordinates( basePoint )
|
|
|
|
NbOfSteps,Parameters,hasVars = ParseParameters(NbOfSteps)
|
|
Parameters = StepVector.PS.parameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
|
|
return self.editor.ExtrusionSweepObjects( nodes, edges, faces,
|
|
StepVector, NbOfSteps,
|
|
scaleFactors, linearVariation, basePoint,
|
|
MakeGroups)
|
|
|
|
|
|
## Generate new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements the list of ids of elements or nodes for extrusion
|
|
# @param StepVector vector or DirStruct or 3 vector components, defining
|
|
# the direction and value of extrusion for one step (the total extrusion
|
|
# length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param IsNodes is True if elements with given ids are nodes
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False, IsNodes = False):
|
|
n,e,f = [],[],[]
|
|
if IsNodes: n = IDsOfElements
|
|
else : e,f, = IDsOfElements,IDsOfElements
|
|
return self.ExtrusionSweepObjects(n,e,f, StepVector, NbOfSteps, MakeGroups)
|
|
|
|
## Generate new elements by extrusion along the normal to a discretized surface or wire
|
|
# @param Elements elements to extrude - a list including ids, groups, sub-meshes or a mesh.
|
|
# Only faces can be extruded so far. A sub-mesh should be a sub-mesh on geom faces.
|
|
# @param StepSize length of one extrusion step (the total extrusion
|
|
# length will be \a NbOfSteps * \a StepSize ).
|
|
# @param NbOfSteps number of extrusion steps.
|
|
# @param ByAverageNormal if True each node is translated by \a StepSize
|
|
# along the average of the normal vectors to the faces sharing the node;
|
|
# else each node is translated along the same average normal till
|
|
# intersection with the plane got by translation of the face sharing
|
|
# the node along its own normal by \a StepSize.
|
|
# @param UseInputElemsOnly to use only \a Elements when computing extrusion direction
|
|
# for every node of \a Elements.
|
|
# @param MakeGroups forces generation of new groups from existing ones.
|
|
# @param Dim dimension of elements to extrude: 2 - faces or 1 - edges. Extrusion of edges
|
|
# is not yet implemented. This parameter is used if \a Elements contains
|
|
# both faces and edges, i.e. \a Elements is a Mesh.
|
|
# @return the list of created groups (SMESH_GroupBase) if \a MakeGroups=True,
|
|
# empty list otherwise.
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionByNormal(self, Elements, StepSize, NbOfSteps,
|
|
ByAverageNormal=False, UseInputElemsOnly=True, MakeGroups=False, Dim = 2):
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( Elements, Mesh ):
|
|
Elements = [ Elements.GetMesh() ]
|
|
if isinstance( Elements, list ):
|
|
if not Elements:
|
|
raise RuntimeError("Elements empty!")
|
|
if isinstance( Elements[0], int ):
|
|
Elements = self.GetIDSource( Elements, SMESH.ALL )
|
|
unRegister.set( Elements )
|
|
if not isinstance( Elements, list ):
|
|
Elements = [ Elements ]
|
|
StepSize,NbOfSteps,Parameters,hasVars = ParseParameters(StepSize,NbOfSteps)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.ExtrusionByNormal(Elements, StepSize, NbOfSteps,
|
|
ByAverageNormal, UseInputElemsOnly, MakeGroups, Dim)
|
|
|
|
## Generate new elements by extrusion of the elements or nodes which belong to the object
|
|
# @param theObject the object whose elements or nodes should be processed.
|
|
# It can be a mesh, a sub-mesh or a group.
|
|
# @param StepVector vector or DirStruct or 3 vector components, defining
|
|
# the direction and value of extrusion for one step (the total extrusion
|
|
# length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param IsNodes is True if elements to extrude are nodes
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False, IsNodes=False):
|
|
n,e,f = [],[],[]
|
|
if IsNodes: n = theObject
|
|
else : e,f, = theObject,theObject
|
|
return self.ExtrusionSweepObjects(n,e,f, StepVector, NbOfSteps, MakeGroups)
|
|
|
|
## Generate new elements by extrusion of edges which belong to the object
|
|
# @param theObject object whose 1D elements should be processed.
|
|
# It can be a mesh, a sub-mesh or a group.
|
|
# @param StepVector vector or DirStruct or 3 vector components, defining
|
|
# the direction and value of extrusion for one step (the total extrusion
|
|
# length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups to generate new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
return self.ExtrusionSweepObjects([],theObject,[], StepVector, NbOfSteps, MakeGroups)
|
|
|
|
## Generate new elements by extrusion of faces which belong to the object
|
|
# @param theObject object whose 2D elements should be processed.
|
|
# It can be a mesh, a sub-mesh or a group.
|
|
# @param StepVector vector or DirStruct or 3 vector components, defining
|
|
# the direction and value of extrusion for one step (the total extrusion
|
|
# length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
return self.ExtrusionSweepObjects([],[],theObject, StepVector, NbOfSteps, MakeGroups)
|
|
|
|
## Generate new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements is ids of elements
|
|
# @param StepVector vector or DirStruct or 3 vector components, defining
|
|
# the direction and value of extrusion for one step (the total extrusion
|
|
# length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param ExtrFlags sets flags for extrusion
|
|
# @param SewTolerance uses for comparing locations of nodes if flag
|
|
# EXTRUSION_FLAG_SEW is set
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance, MakeGroups=False):
|
|
if isinstance( StepVector, geomBuilder.GEOM._objref_GEOM_Object):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
if isinstance( StepVector, list ):
|
|
StepVector = self.smeshpyD.MakeDirStruct(*StepVector)
|
|
return self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance, MakeGroups)
|
|
|
|
## Generate new elements by extrusion of the given elements and nodes along the path.
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param Nodes nodes to extrude: a list including ids, groups, sub-meshes or a mesh
|
|
# @param Edges edges to extrude: a list including ids, groups, sub-meshes or a mesh
|
|
# @param Faces faces to extrude: a list including ids, groups, sub-meshes or a mesh
|
|
# @param PathMesh 1D mesh or 1D sub-mesh, along which proceeds the extrusion
|
|
# @param PathShape shape (edge) defines the sub-mesh of PathMesh if PathMesh
|
|
# contains not only path segments, else it can be None
|
|
# @param NodeStart the first or the last node on the path. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the
|
|
# shape by default). The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObjects(self, Nodes, Edges, Faces, PathMesh, PathShape=None,
|
|
NodeStart=1, HasAngles=False, Angles=[], LinearVariation=False,
|
|
HasRefPoint=False, RefPoint=[0,0,0], MakeGroups=False):
|
|
unRegister = genObjUnRegister()
|
|
Nodes = self._getIdSourceList( Nodes, SMESH.NODE, unRegister )
|
|
Edges = self._getIdSourceList( Edges, SMESH.EDGE, unRegister )
|
|
Faces = self._getIdSourceList( Faces, SMESH.FACE, unRegister )
|
|
|
|
if isinstance( RefPoint, geomBuilder.GEOM._objref_GEOM_Object):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if isinstance( RefPoint, list ):
|
|
if not RefPoint: RefPoint = [0,0,0]
|
|
RefPoint = SMESH.PointStruct( *RefPoint )
|
|
if isinstance( PathMesh, Mesh ):
|
|
PathMesh = PathMesh.GetMesh()
|
|
Angles,AnglesParameters,hasVars = ParseAngles(Angles)
|
|
Parameters = AnglesParameters + var_separator + RefPoint.parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.ExtrusionAlongPathObjects(Nodes, Edges, Faces,
|
|
PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups)
|
|
|
|
## Generate new elements by extrusion of the given elements
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param Base mesh or group, or sub-mesh, or list of ids of elements for extrusion
|
|
# @param Path - 1D mesh or 1D sub-mesh, along which proceeds the extrusion
|
|
# @param NodeStart the start node from Path. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles in radians
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the elements are rotated (the mass
|
|
# center of the elements by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# RefPoint can be either GEOM Vertex, [x,y,z] or SMESH.PointStruct
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param ElemType type of elements for extrusion (if param Base is a mesh)
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathX(self, Base, Path, NodeStart,
|
|
HasAngles=False, Angles=[], LinearVariation=False,
|
|
HasRefPoint=False, RefPoint=[0,0,0], MakeGroups=False,
|
|
ElemType=SMESH.FACE):
|
|
n,e,f = [],[],[]
|
|
if ElemType == SMESH.NODE: n = Base
|
|
if ElemType == SMESH.EDGE: e = Base
|
|
if ElemType == SMESH.FACE: f = Base
|
|
gr,er = self.ExtrusionAlongPathObjects(n,e,f, Path, None, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups)
|
|
if MakeGroups: return gr,er
|
|
return er
|
|
|
|
## Generate new elements by extrusion of the given elements
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param IDsOfElements ids of elements
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles in radians
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
|
|
HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[],
|
|
MakeGroups=False, LinearVariation=False):
|
|
n,e,f = [],IDsOfElements,IDsOfElements
|
|
gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles,
|
|
LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups)
|
|
if MakeGroups: return gr,er
|
|
return er
|
|
|
|
## Generate new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object whose elements should be processed.
|
|
# It can be a mesh, a sub-mesh or a group.
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[],
|
|
MakeGroups=False, LinearVariation=False):
|
|
n,e,f = [],theObject,theObject
|
|
gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups)
|
|
if MakeGroups: return gr,er
|
|
return er
|
|
|
|
## Generate new elements by extrusion of mesh segments which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object whose 1D elements should be processed.
|
|
# It can be a mesh, a sub-mesh or a group.
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject1D(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[],
|
|
MakeGroups=False, LinearVariation=False):
|
|
n,e,f = [],theObject,[]
|
|
gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups)
|
|
if MakeGroups: return gr,er
|
|
return er
|
|
|
|
## Generate new elements by extrusion of faces which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object whose 2D elements should be processed.
|
|
# It can be a mesh, a sub-mesh or a group.
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject2D(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[],
|
|
MakeGroups=False, LinearVariation=False):
|
|
n,e,f = [],[],theObject
|
|
gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups)
|
|
if MakeGroups: return gr,er
|
|
return er
|
|
|
|
## Create a symmetrical copy of mesh elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Mirror is AxisStruct or geom object(point, line, plane)
|
|
# @param theMirrorType smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param Copy allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0)
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Mirror(self, IDsOfElements, Mirror, theMirrorType=None, Copy=0, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
theMirrorType = Mirror._mirrorType
|
|
else:
|
|
self.mesh.SetParameters(Mirror.parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
|
|
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
|
|
return []
|
|
|
|
## Create a new mesh by a symmetrical copy of mesh elements
|
|
# @param IDsOfElements the list of elements ids
|
|
# @param Mirror is AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param MakeGroups to generate new groups from existing ones
|
|
# @param NewMeshName a name of the new mesh to create
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType=0, MakeGroups=0, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
theMirrorType = Mirror._mirrorType
|
|
else:
|
|
self.mesh.SetParameters(Mirror.parameters)
|
|
mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
|
|
MakeGroups, NewMeshName)
|
|
return Mesh(self.smeshpyD,self.geompyD,mesh)
|
|
|
|
## Create a symmetrical copy of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @param Mirror AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param Copy allows copying the element (Copy is 1) or replacing it with its mirror (Copy is 0)
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorObject (self, theObject, Mirror, theMirrorType=None, Copy=0, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
theMirrorType = Mirror._mirrorType
|
|
else:
|
|
self.mesh.SetParameters(Mirror.parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
|
|
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
|
|
return []
|
|
|
|
## Create a new mesh by a symmetrical copy of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @param Mirror AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the new mesh to create
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType=0,MakeGroups=0,NewMeshName=""):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
theMirrorType = Mirror._mirrorType
|
|
else:
|
|
self.mesh.SetParameters(Mirror.parameters)
|
|
mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
|
|
MakeGroups, NewMeshName)
|
|
return Mesh( self.smeshpyD,self.geompyD,mesh )
|
|
|
|
## Translate the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Vector the direction of translation (DirStruct or vector or 3 vector components)
|
|
# @param Copy allows copying the translated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
if isinstance( Vector, list ):
|
|
Vector = self.smeshpyD.MakeDirStruct(*Vector)
|
|
self.mesh.SetParameters(Vector.PS.parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
|
|
self.editor.Translate(IDsOfElements, Vector, Copy)
|
|
return []
|
|
|
|
## Create a new mesh of translated elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Vector the direction of translation (DirStruct or vector or 3 vector components)
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
if isinstance( Vector, list ):
|
|
Vector = self.smeshpyD.MakeDirStruct(*Vector)
|
|
self.mesh.SetParameters(Vector.PS.parameters)
|
|
mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
|
|
return Mesh ( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Translate the object
|
|
# @param theObject the object to translate (mesh, submesh, or group)
|
|
# @param Vector direction of translation (DirStruct or geom vector or 3 vector components)
|
|
# @param Copy allows copying the translated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
if isinstance( Vector, list ):
|
|
Vector = self.smeshpyD.MakeDirStruct(*Vector)
|
|
self.mesh.SetParameters(Vector.PS.parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.TranslateObjectMakeGroups(theObject, Vector)
|
|
self.editor.TranslateObject(theObject, Vector, Copy)
|
|
return []
|
|
|
|
## Create a new mesh from the translated object
|
|
# @param theObject the object to translate (mesh, submesh, or group)
|
|
# @param Vector the direction of translation (DirStruct or geom vector or 3 vector components)
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
|
|
if isinstance( theObject, Mesh ):
|
|
theObject = theObject.GetMesh()
|
|
if isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object ):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
if isinstance( Vector, list ):
|
|
Vector = self.smeshpyD.MakeDirStruct(*Vector)
|
|
self.mesh.SetParameters(Vector.PS.parameters)
|
|
mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
|
|
|
|
## Scale the object
|
|
# @param theObject - the object to translate (mesh, submesh, or group)
|
|
# @param thePoint - base point for scale (SMESH.PointStruct or list of 3 coordinates)
|
|
# @param theScaleFact - list of 1-3 scale factors for axises
|
|
# @param Copy - allows copying the translated elements
|
|
# @param MakeGroups - forces the generation of new groups from existing
|
|
# ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True,
|
|
# empty list otherwise
|
|
def Scale(self, theObject, thePoint, theScaleFact, Copy, MakeGroups=False):
|
|
unRegister = genObjUnRegister()
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( theObject, list )):
|
|
theObject = self.GetIDSource(theObject, SMESH.ALL)
|
|
unRegister.set( theObject )
|
|
if ( isinstance( thePoint, list )):
|
|
thePoint = PointStruct( thePoint[0], thePoint[1], thePoint[2] )
|
|
if ( isinstance( theScaleFact, float )):
|
|
theScaleFact = [theScaleFact]
|
|
if ( isinstance( theScaleFact, int )):
|
|
theScaleFact = [ float(theScaleFact)]
|
|
|
|
self.mesh.SetParameters(thePoint.parameters)
|
|
|
|
if Copy and MakeGroups:
|
|
return self.editor.ScaleMakeGroups(theObject, thePoint, theScaleFact)
|
|
self.editor.Scale(theObject, thePoint, theScaleFact, Copy)
|
|
return []
|
|
|
|
## Create a new mesh from the translated object
|
|
# @param theObject - the object to translate (mesh, submesh, or group)
|
|
# @param thePoint - base point for scale (SMESH.PointStruct or list of 3 coordinates)
|
|
# @param theScaleFact - list of 1-3 scale factors for axises
|
|
# @param MakeGroups - forces the generation of new groups from existing ones
|
|
# @param NewMeshName - the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
def ScaleMakeMesh(self, theObject, thePoint, theScaleFact, MakeGroups=False, NewMeshName=""):
|
|
unRegister = genObjUnRegister()
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( theObject, list )):
|
|
theObject = self.GetIDSource(theObject,SMESH.ALL)
|
|
unRegister.set( theObject )
|
|
if ( isinstance( thePoint, list )):
|
|
thePoint = PointStruct( thePoint[0], thePoint[1], thePoint[2] )
|
|
if ( isinstance( theScaleFact, float )):
|
|
theScaleFact = [theScaleFact]
|
|
if ( isinstance( theScaleFact, int )):
|
|
theScaleFact = [ float(theScaleFact)]
|
|
|
|
self.mesh.SetParameters(thePoint.parameters)
|
|
mesh = self.editor.ScaleMakeMesh(theObject, thePoint, theScaleFact,
|
|
MakeGroups, NewMeshName)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
|
|
|
|
## Rotate the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param Copy allows copying the rotated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
|
|
Parameters = Axis.parameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
|
|
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
|
|
return []
|
|
|
|
## Create a new mesh of rotated elements
|
|
# @param IDsOfElements list of element ids
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
|
|
Parameters = Axis.parameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
|
|
MakeGroups, NewMeshName)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Rotate the object
|
|
# @param theObject the object to rotate( mesh, submesh, or group)
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param Copy allows copying the rotated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Axis, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
|
|
Parameters = Axis.parameters + ":" + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
|
|
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
|
|
return []
|
|
|
|
## Create a new mesh from the rotated object
|
|
# @param theObject the object to rotate (mesh, submesh, or group)
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
|
|
if (isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Axis, geomBuilder.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
|
|
Parameters = Axis.parameters + ":" + Parameters
|
|
mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
|
|
MakeGroups, NewMeshName)
|
|
self.mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Find groups of adjacent nodes within Tolerance.
|
|
# @param Tolerance the value of tolerance
|
|
# @param SeparateCornerAndMediumNodes if @c True, in quadratic mesh puts
|
|
# corner and medium nodes in separate groups thus preventing
|
|
# their further merge.
|
|
# @return the list of groups of nodes IDs (e.g. [[1,12,13],[4,25]])
|
|
# @ingroup l2_modif_trsf
|
|
def FindCoincidentNodes (self, Tolerance, SeparateCornerAndMediumNodes=False):
|
|
return self.editor.FindCoincidentNodes( Tolerance, SeparateCornerAndMediumNodes )
|
|
|
|
## Find groups of ajacent nodes within Tolerance.
|
|
# @param Tolerance the value of tolerance
|
|
# @param SubMeshOrGroup SubMesh, Group or Filter
|
|
# @param exceptNodes list of either SubMeshes, Groups or node IDs to exclude from search
|
|
# @param SeparateCornerAndMediumNodes if @c True, in quadratic mesh puts
|
|
# corner and medium nodes in separate groups thus preventing
|
|
# their further merge.
|
|
# @return the list of groups of nodes IDs (e.g. [[1,12,13],[4,25]])
|
|
# @ingroup l2_modif_trsf
|
|
def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance,
|
|
exceptNodes=[], SeparateCornerAndMediumNodes=False):
|
|
unRegister = genObjUnRegister()
|
|
if (isinstance( SubMeshOrGroup, Mesh )):
|
|
SubMeshOrGroup = SubMeshOrGroup.GetMesh()
|
|
if not isinstance( exceptNodes, list ):
|
|
exceptNodes = [ exceptNodes ]
|
|
if exceptNodes and isinstance( exceptNodes[0], int ):
|
|
exceptNodes = [ self.GetIDSource( exceptNodes, SMESH.NODE )]
|
|
unRegister.set( exceptNodes )
|
|
return self.editor.FindCoincidentNodesOnPartBut(SubMeshOrGroup, Tolerance,
|
|
exceptNodes, SeparateCornerAndMediumNodes)
|
|
|
|
## Merge nodes
|
|
# @param GroupsOfNodes a list of groups of nodes IDs for merging
|
|
# (e.g. [[1,12,13],[25,4]], then nodes 12, 13 and 4 will be removed and replaced
|
|
# by nodes 1 and 25 correspondingly in all elements and groups
|
|
# @param NodesToKeep nodes to keep in the mesh: a list of groups, sub-meshes or node IDs.
|
|
# If @a NodesToKeep does not include a node to keep for some group to merge,
|
|
# then the first node in the group is kept.
|
|
# @param AvoidMakingHoles prevent merging nodes which cause removal of elements becoming
|
|
# invalid
|
|
# @ingroup l2_modif_trsf
|
|
def MergeNodes (self, GroupsOfNodes, NodesToKeep=[], AvoidMakingHoles=False):
|
|
# NodesToKeep are converted to SMESH_IDSource in meshEditor.MergeNodes()
|
|
self.editor.MergeNodes( GroupsOfNodes, NodesToKeep, AvoidMakingHoles )
|
|
|
|
## Find the elements built on the same nodes.
|
|
# @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
|
|
# @return the list of groups of equal elements IDs (e.g. [[1,12,13],[4,25]])
|
|
# @ingroup l2_modif_trsf
|
|
def FindEqualElements (self, MeshOrSubMeshOrGroup=None):
|
|
if not MeshOrSubMeshOrGroup:
|
|
MeshOrSubMeshOrGroup=self.mesh
|
|
elif isinstance( MeshOrSubMeshOrGroup, Mesh ):
|
|
MeshOrSubMeshOrGroup = MeshOrSubMeshOrGroup.GetMesh()
|
|
return self.editor.FindEqualElements( MeshOrSubMeshOrGroup )
|
|
|
|
## Merge elements in each given group.
|
|
# @param GroupsOfElementsID a list of groups of elements IDs for merging
|
|
# (e.g. [[1,12,13],[25,4]], then elements 12, 13 and 4 will be removed and
|
|
# replaced by elements 1 and 25 in all groups)
|
|
# @ingroup l2_modif_trsf
|
|
def MergeElements(self, GroupsOfElementsID):
|
|
self.editor.MergeElements(GroupsOfElementsID)
|
|
|
|
## Leave one element and remove all other elements built on the same nodes.
|
|
# @ingroup l2_modif_trsf
|
|
def MergeEqualElements(self):
|
|
self.editor.MergeEqualElements()
|
|
|
|
## Return groups of FreeBorder's coincident within the given tolerance.
|
|
# @param tolerance the tolerance. If the tolerance <= 0.0 then one tenth of an average
|
|
# size of elements adjacent to free borders being compared is used.
|
|
# @return SMESH.CoincidentFreeBorders structure
|
|
# @ingroup l2_modif_trsf
|
|
def FindCoincidentFreeBorders (self, tolerance=0.):
|
|
return self.editor.FindCoincidentFreeBorders( tolerance )
|
|
|
|
## Sew FreeBorder's of each group
|
|
# @param freeBorders either a SMESH.CoincidentFreeBorders structure or a list of lists
|
|
# where each enclosed list contains node IDs of a group of coincident free
|
|
# borders such that each consequent triple of IDs within a group describes
|
|
# a free border in a usual way: n1, n2, nLast - i.e. 1st node, 2nd node and
|
|
# last node of a border.
|
|
# For example [[1, 2, 10, 20, 21, 40], [11, 12, 15, 55, 54, 41]] describes two
|
|
# groups of coincident free borders, each group including two borders.
|
|
# @param createPolygons if @c True faces adjacent to free borders are converted to
|
|
# polygons if a node of opposite border falls on a face edge, else such
|
|
# faces are split into several ones.
|
|
# @param createPolyhedra if @c True volumes adjacent to free borders are converted to
|
|
# polyhedra if a node of opposite border falls on a volume edge, else such
|
|
# volumes, if any, remain intact and the mesh becomes non-conformal.
|
|
# @return a number of successfully sewed groups
|
|
# @ingroup l2_modif_trsf
|
|
def SewCoincidentFreeBorders (self, freeBorders, createPolygons=False, createPolyhedra=False):
|
|
if freeBorders and isinstance( freeBorders, list ):
|
|
# construct SMESH.CoincidentFreeBorders
|
|
if isinstance( freeBorders[0], int ):
|
|
freeBorders = [freeBorders]
|
|
borders = []
|
|
coincidentGroups = []
|
|
for nodeList in freeBorders:
|
|
if not nodeList or len( nodeList ) % 3:
|
|
raise ValueError("Wrong number of nodes in this group: %s" % nodeList)
|
|
group = []
|
|
while nodeList:
|
|
group.append ( SMESH.FreeBorderPart( len(borders), 0, 1, 2 ))
|
|
borders.append( SMESH.FreeBorder( nodeList[:3] ))
|
|
nodeList = nodeList[3:]
|
|
pass
|
|
coincidentGroups.append( group )
|
|
pass
|
|
freeBorders = SMESH.CoincidentFreeBorders( borders, coincidentGroups )
|
|
|
|
return self.editor.SewCoincidentFreeBorders( freeBorders, createPolygons, createPolyhedra )
|
|
|
|
## Sew free borders
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sew conform free borders
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2):
|
|
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2)
|
|
|
|
## Sew border to side
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sew two sides of a mesh. The nodes belonging to Side1 are
|
|
# merged with the nodes of elements of Side2.
|
|
# The number of elements in theSide1 and in theSide2 must be
|
|
# equal and they should have similar nodal connectivity.
|
|
# The nodes to merge should belong to side borders and
|
|
# the first node should be linked to the second.
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
|
|
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
|
|
|
|
## Set new nodes for the given element.
|
|
# @param ide the element id
|
|
# @param newIDs nodes ids
|
|
# @return If the number of nodes does not correspond to the type of element - return false
|
|
# @ingroup l2_modif_edit
|
|
def ChangeElemNodes(self, ide, newIDs):
|
|
return self.editor.ChangeElemNodes(ide, newIDs)
|
|
|
|
## If during the last operation of MeshEditor some nodes were
|
|
# created, this method return the list of their IDs, \n
|
|
# if new nodes were not created - return empty list
|
|
# @return the list of integer values (can be empty)
|
|
# @ingroup l2_modif_add
|
|
def GetLastCreatedNodes(self):
|
|
return self.editor.GetLastCreatedNodes()
|
|
|
|
## If during the last operation of MeshEditor some elements were
|
|
# created this method return the list of their IDs, \n
|
|
# if new elements were not created - return empty list
|
|
# @return the list of integer values (can be empty)
|
|
# @ingroup l2_modif_add
|
|
def GetLastCreatedElems(self):
|
|
return self.editor.GetLastCreatedElems()
|
|
|
|
## Forget what nodes and elements were created by the last mesh edition operation
|
|
# @ingroup l2_modif_add
|
|
def ClearLastCreated(self):
|
|
self.editor.ClearLastCreated()
|
|
|
|
## Create duplicates of given elements, i.e. create new elements based on the
|
|
# same nodes as the given ones.
|
|
# @param theElements - container of elements to duplicate. It can be a Mesh,
|
|
# sub-mesh, group, filter or a list of element IDs. If \a theElements is
|
|
# a Mesh, elements of highest dimension are duplicated
|
|
# @param theGroupName - a name of group to contain the generated elements.
|
|
# If a group with such a name already exists, the new elements
|
|
# are added to the existng group, else a new group is created.
|
|
# If \a theGroupName is empty, new elements are not added
|
|
# in any group.
|
|
# @return a group where the new elements are added. None if theGroupName == "".
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleElements(self, theElements, theGroupName=""):
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( theElements, Mesh ):
|
|
theElements = theElements.mesh
|
|
elif isinstance( theElements, list ):
|
|
theElements = self.GetIDSource( theElements, SMESH.ALL )
|
|
unRegister.set( theElements )
|
|
return self.editor.DoubleElements(theElements, theGroupName)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theNodes identifiers of nodes to be doubled
|
|
# @param theModifiedElems identifiers of elements to be updated by the new (doubled)
|
|
# nodes. If list of element identifiers is empty then nodes are doubled but
|
|
# they not assigned to elements
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodes(self, theNodes, theModifiedElems):
|
|
return self.editor.DoubleNodes(theNodes, theModifiedElems)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodeId identifiers of node to be doubled
|
|
# @param theModifiedElems identifiers of elements to be updated
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNode(self, theNodeId, theModifiedElems):
|
|
return self.editor.DoubleNode(theNodeId, theModifiedElems)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodes group of nodes to be doubled
|
|
# @param theModifiedElems group of elements to be updated.
|
|
# @param theMakeGroup forces the generation of a group containing new nodes.
|
|
# @return TRUE or a created group if operation has been completed successfully,
|
|
# FALSE or None otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodeGroup(self, theNodes, theModifiedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeGroupNew(theNodes, theModifiedElems)
|
|
return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodes list of groups of nodes to be doubled
|
|
# @param theModifiedElems list of groups of elements to be updated.
|
|
# @param theMakeGroup forces the generation of a group containing new nodes.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodeGroups(self, theNodes, theModifiedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeGroupsNew(theNodes, theModifiedElems)
|
|
return self.editor.DoubleNodeGroups(theNodes, theModifiedElems)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theElems - the list of elements (edges or faces) to be replicated
|
|
# The nodes for duplication could be found from these elements
|
|
# @param theNodesNot - list of nodes to NOT replicate
|
|
# @param theAffectedElems - the list of elements (cells and edges) to which the
|
|
# replicated nodes should be associated to.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodeElem(self, theElems, theNodesNot, theAffectedElems):
|
|
return self.editor.DoubleNodeElem(theElems, theNodesNot, theAffectedElems)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theElems - the list of elements (edges or faces) to be replicated
|
|
# The nodes for duplication could be found from these elements
|
|
# @param theNodesNot - list of nodes to NOT replicate
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodeElemInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.DoubleNodeElemInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - group of of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - group of nodes not to replicated
|
|
# @param theAffectedElems - group of elements to which the replicated nodes
|
|
# should be associated to.
|
|
# @param theMakeGroup forces the generation of a group containing new elements.
|
|
# @param theMakeNodeGroup forces the generation of a group containing new nodes.
|
|
# @return TRUE or created groups (one or two) if operation has been completed successfully,
|
|
# FALSE or None otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems,
|
|
theMakeGroup=False, theMakeNodeGroup=False):
|
|
if theMakeGroup or theMakeNodeGroup:
|
|
twoGroups = self.editor.DoubleNodeElemGroup2New(theElems, theNodesNot,
|
|
theAffectedElems,
|
|
theMakeGroup, theMakeNodeGroup)
|
|
if theMakeGroup and theMakeNodeGroup:
|
|
return twoGroups
|
|
else:
|
|
return twoGroups[ int(theMakeNodeGroup) ]
|
|
return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - group of of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - group of nodes not to replicated
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodeElemGroupInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.DoubleNodeElemGroupInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - list of groups of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - list of groups of nodes not to replicated
|
|
# @param theAffectedElems - group of elements to which the replicated nodes
|
|
# should be associated to.
|
|
# @param theMakeGroup forces the generation of a group containing new elements.
|
|
# @param theMakeNodeGroup forces the generation of a group containing new nodes.
|
|
# @return TRUE or created groups (one or two) if operation has been completed successfully,
|
|
# FALSE or None otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems,
|
|
theMakeGroup=False, theMakeNodeGroup=False):
|
|
if theMakeGroup or theMakeNodeGroup:
|
|
twoGroups = self.editor.DoubleNodeElemGroups2New(theElems, theNodesNot,
|
|
theAffectedElems,
|
|
theMakeGroup, theMakeNodeGroup)
|
|
if theMakeGroup and theMakeNodeGroup:
|
|
return twoGroups
|
|
else:
|
|
return twoGroups[ int(theMakeNodeGroup) ]
|
|
return self.editor.DoubleNodeElemGroups(theElems, theNodesNot, theAffectedElems)
|
|
|
|
## Create a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - list of groups of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - list of groups of nodes not to replicated
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Identify the elements that will be affected by node duplication (actual duplication is not performed.
|
|
# This method is the first step of DoubleNodeElemGroupsInRegion.
|
|
# @param theElems - list of groups of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - list of groups of nodes not to replicated
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @return groups of affected elements
|
|
# @ingroup l2_modif_duplicat
|
|
def AffectedElemGroupsInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.AffectedElemGroupsInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Double nodes on shared faces between groups of volumes and create flat elements on demand.
|
|
# The list of groups must describe a partition of the mesh volumes.
|
|
# The nodes of the internal faces at the boundaries of the groups are doubled.
|
|
# In option, the internal faces are replaced by flat elements.
|
|
# Triangles are transformed in prisms, and quadrangles in hexahedrons.
|
|
# @param theDomains - list of groups of volumes
|
|
# @param createJointElems - if TRUE, create the elements
|
|
# @param onAllBoundaries - if TRUE, the nodes and elements are also created on
|
|
# the boundary between \a theDomains and the rest mesh
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def DoubleNodesOnGroupBoundaries(self, theDomains, createJointElems, onAllBoundaries=False ):
|
|
return self.editor.DoubleNodesOnGroupBoundaries( theDomains, createJointElems, onAllBoundaries )
|
|
|
|
## Double nodes on some external faces and create flat elements.
|
|
# Flat elements are mainly used by some types of mechanic calculations.
|
|
#
|
|
# Each group of the list must be constituted of faces.
|
|
# Triangles are transformed in prisms, and quadrangles in hexahedrons.
|
|
# @param theGroupsOfFaces - list of groups of faces
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_duplicat
|
|
def CreateFlatElementsOnFacesGroups(self, theGroupsOfFaces ):
|
|
return self.editor.CreateFlatElementsOnFacesGroups( theGroupsOfFaces )
|
|
|
|
## identify all the elements around a geom shape, get the faces delimiting the hole
|
|
#
|
|
def CreateHoleSkin(self, radius, theShape, groupName, theNodesCoords):
|
|
return self.editor.CreateHoleSkin( radius, theShape, groupName, theNodesCoords )
|
|
|
|
def _getFunctor(self, funcType ):
|
|
fn = self.functors[ funcType._v ]
|
|
if not fn:
|
|
fn = self.smeshpyD.GetFunctor(funcType)
|
|
fn.SetMesh(self.mesh)
|
|
self.functors[ funcType._v ] = fn
|
|
return fn
|
|
|
|
## Return value of a functor for a given element
|
|
# @param funcType an item of SMESH.FunctorType enum
|
|
# Type "SMESH.FunctorType._items" in the Python Console to see all items.
|
|
# @param elemId element or node ID
|
|
# @param isElem @a elemId is ID of element or node
|
|
# @return the functor value or zero in case of invalid arguments
|
|
# @ingroup l1_measurements
|
|
def FunctorValue(self, funcType, elemId, isElem=True):
|
|
fn = self._getFunctor( funcType )
|
|
if fn.GetElementType() == self.GetElementType(elemId, isElem):
|
|
val = fn.GetValue(elemId)
|
|
else:
|
|
val = 0
|
|
return val
|
|
|
|
## Get length of 1D element or sum of lengths of all 1D mesh elements
|
|
# @param elemId mesh element ID (if not defined - sum of length of all 1D elements will be calculated)
|
|
# @return element's length value if \a elemId is specified or sum of all 1D mesh elements' lengths otherwise
|
|
# @ingroup l1_measurements
|
|
def GetLength(self, elemId=None):
|
|
length = 0
|
|
if elemId == None:
|
|
length = self.smeshpyD.GetLength(self)
|
|
else:
|
|
length = self.FunctorValue(SMESH.FT_Length, elemId)
|
|
return length
|
|
|
|
## Get area of 2D element or sum of areas of all 2D mesh elements
|
|
# @param elemId mesh element ID (if not defined - sum of areas of all 2D elements will be calculated)
|
|
# @return element's area value if \a elemId is specified or sum of all 2D mesh elements' areas otherwise
|
|
# @ingroup l1_measurements
|
|
def GetArea(self, elemId=None):
|
|
area = 0
|
|
if elemId == None:
|
|
area = self.smeshpyD.GetArea(self)
|
|
else:
|
|
area = self.FunctorValue(SMESH.FT_Area, elemId)
|
|
return area
|
|
|
|
## Get volume of 3D element or sum of volumes of all 3D mesh elements
|
|
# @param elemId mesh element ID (if not defined - sum of volumes of all 3D elements will be calculated)
|
|
# @return element's volume value if \a elemId is specified or sum of all 3D mesh elements' volumes otherwise
|
|
# @ingroup l1_measurements
|
|
def GetVolume(self, elemId=None):
|
|
volume = 0
|
|
if elemId == None:
|
|
volume = self.smeshpyD.GetVolume(self)
|
|
else:
|
|
volume = self.FunctorValue(SMESH.FT_Volume3D, elemId)
|
|
return volume
|
|
|
|
## Get maximum element length.
|
|
# @param elemId mesh element ID
|
|
# @return element's maximum length value
|
|
# @ingroup l1_measurements
|
|
def GetMaxElementLength(self, elemId):
|
|
if self.GetElementType(elemId, True) == SMESH.VOLUME:
|
|
ftype = SMESH.FT_MaxElementLength3D
|
|
else:
|
|
ftype = SMESH.FT_MaxElementLength2D
|
|
return self.FunctorValue(ftype, elemId)
|
|
|
|
## Get aspect ratio of 2D or 3D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's aspect ratio value
|
|
# @ingroup l1_measurements
|
|
def GetAspectRatio(self, elemId):
|
|
if self.GetElementType(elemId, True) == SMESH.VOLUME:
|
|
ftype = SMESH.FT_AspectRatio3D
|
|
else:
|
|
ftype = SMESH.FT_AspectRatio
|
|
return self.FunctorValue(ftype, elemId)
|
|
|
|
## Get warping angle of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's warping angle value
|
|
# @ingroup l1_measurements
|
|
def GetWarping(self, elemId):
|
|
return self.FunctorValue(SMESH.FT_Warping, elemId)
|
|
|
|
## Get minimum angle of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's minimum angle value
|
|
# @ingroup l1_measurements
|
|
def GetMinimumAngle(self, elemId):
|
|
return self.FunctorValue(SMESH.FT_MinimumAngle, elemId)
|
|
|
|
## Get taper of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's taper value
|
|
# @ingroup l1_measurements
|
|
def GetTaper(self, elemId):
|
|
return self.FunctorValue(SMESH.FT_Taper, elemId)
|
|
|
|
## Get skew of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's skew value
|
|
# @ingroup l1_measurements
|
|
def GetSkew(self, elemId):
|
|
return self.FunctorValue(SMESH.FT_Skew, elemId)
|
|
|
|
## Return minimal and maximal value of a given functor.
|
|
# @param funType a functor type, an item of SMESH.FunctorType enum
|
|
# (one of SMESH.FunctorType._items)
|
|
# @param meshPart a part of mesh (group, sub-mesh) to treat
|
|
# @return tuple (min,max)
|
|
# @ingroup l1_measurements
|
|
def GetMinMax(self, funType, meshPart=None):
|
|
unRegister = genObjUnRegister()
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
unRegister.set( meshPart )
|
|
if isinstance( meshPart, Mesh ):
|
|
meshPart = meshPart.mesh
|
|
fun = self._getFunctor( funType )
|
|
if fun:
|
|
if meshPart:
|
|
if hasattr( meshPart, "SetMesh" ):
|
|
meshPart.SetMesh( self.mesh ) # set mesh to filter
|
|
hist = fun.GetLocalHistogram( 1, False, meshPart )
|
|
else:
|
|
hist = fun.GetHistogram( 1, False )
|
|
if hist:
|
|
return hist[0].min, hist[0].max
|
|
return None
|
|
|
|
pass # end of Mesh class
|
|
|
|
|
|
## Private class used to compensate change of CORBA API of SMESH_Mesh for backward compatibility
|
|
# with old dump scripts which call SMESH_Mesh directly and not via smeshBuilder.Mesh
|
|
#
|
|
class meshProxy(SMESH._objref_SMESH_Mesh):
|
|
def __init__(self):
|
|
SMESH._objref_SMESH_Mesh.__init__(self)
|
|
def __deepcopy__(self, memo=None):
|
|
new = self.__class__()
|
|
return new
|
|
def CreateDimGroup(self,*args): # 2 args added: nbCommonNodes, underlyingOnly
|
|
if len( args ) == 3:
|
|
args += SMESH.ALL_NODES, True
|
|
return SMESH._objref_SMESH_Mesh.CreateDimGroup( self, *args )
|
|
pass
|
|
omniORB.registerObjref(SMESH._objref_SMESH_Mesh._NP_RepositoryId, meshProxy)
|
|
|
|
|
|
## Private class wrapping SMESH.SMESH_SubMesh in order to add Compute()
|
|
#
|
|
class submeshProxy(SMESH._objref_SMESH_subMesh):
|
|
def __init__(self):
|
|
SMESH._objref_SMESH_subMesh.__init__(self)
|
|
self.mesh = None
|
|
def __deepcopy__(self, memo=None):
|
|
new = self.__class__()
|
|
return new
|
|
|
|
## Compute the sub-mesh and return the status of the computation
|
|
# @param refresh if @c True, Object browser is automatically updated (when running in GUI)
|
|
# @return True or False
|
|
#
|
|
# This is a method of SMESH.SMESH_submesh that can be obtained via Mesh.GetSubMesh() or
|
|
# @ref smesh_algorithm.Mesh_Algorithm.GetSubMesh() "Mesh_Algorithm.GetSubMesh()".
|
|
# @ingroup l2_submeshes
|
|
def Compute(self,refresh=False):
|
|
if not self.mesh:
|
|
self.mesh = Mesh( smeshBuilder(), None, self.GetMesh())
|
|
|
|
ok = self.mesh.Compute( self.GetSubShape(),refresh=[] )
|
|
|
|
if salome.sg.hasDesktop() and self.mesh.GetStudyId() >= 0:
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self ), ok, (self.GetNumberOfElements()==0) )
|
|
if refresh: salome.sg.updateObjBrowser(True)
|
|
pass
|
|
|
|
return ok
|
|
pass
|
|
omniORB.registerObjref(SMESH._objref_SMESH_subMesh._NP_RepositoryId, submeshProxy)
|
|
|
|
|
|
## Private class used to compensate change of CORBA API of SMESH_MeshEditor for backward
|
|
# compatibility with old dump scripts which call SMESH_MeshEditor directly and not via
|
|
# smeshBuilder.Mesh
|
|
#
|
|
class meshEditor(SMESH._objref_SMESH_MeshEditor):
|
|
def __init__(self):
|
|
SMESH._objref_SMESH_MeshEditor.__init__(self)
|
|
self.mesh = None
|
|
def __getattr__(self, name ): # method called if an attribute not found
|
|
if not self.mesh: # look for name() method in Mesh class
|
|
self.mesh = Mesh( None, None, SMESH._objref_SMESH_MeshEditor.GetMesh(self))
|
|
if hasattr( self.mesh, name ):
|
|
return getattr( self.mesh, name )
|
|
if name == "ExtrusionAlongPathObjX":
|
|
return getattr( self.mesh, "ExtrusionAlongPathX" ) # other method name
|
|
print("meshEditor: attribute '%s' NOT FOUND" % name)
|
|
return None
|
|
def __deepcopy__(self, memo=None):
|
|
new = self.__class__()
|
|
return new
|
|
def FindCoincidentNodes(self,*args): # a 2nd arg added (SeparateCornerAndMediumNodes)
|
|
if len( args ) == 1: args += False,
|
|
return SMESH._objref_SMESH_MeshEditor.FindCoincidentNodes( self, *args )
|
|
def FindCoincidentNodesOnPart(self,*args): # a 3d arg added (SeparateCornerAndMediumNodes)
|
|
if len( args ) == 2: args += False,
|
|
return SMESH._objref_SMESH_MeshEditor.FindCoincidentNodesOnPart( self, *args )
|
|
def MergeNodes(self,*args): # 2 args added (NodesToKeep,AvoidMakingHoles)
|
|
if len( args ) == 1:
|
|
return SMESH._objref_SMESH_MeshEditor.MergeNodes( self, args[0], [], False )
|
|
NodesToKeep = args[1]
|
|
AvoidMakingHoles = args[2] if len( args ) == 3 else False
|
|
unRegister = genObjUnRegister()
|
|
if NodesToKeep:
|
|
if isinstance( NodesToKeep, list ) and isinstance( NodesToKeep[0], int ):
|
|
NodesToKeep = self.MakeIDSource( NodesToKeep, SMESH.NODE )
|
|
if not isinstance( NodesToKeep, list ):
|
|
NodesToKeep = [ NodesToKeep ]
|
|
return SMESH._objref_SMESH_MeshEditor.MergeNodes( self, args[0], NodesToKeep, AvoidMakingHoles )
|
|
pass
|
|
omniORB.registerObjref(SMESH._objref_SMESH_MeshEditor._NP_RepositoryId, meshEditor)
|
|
|
|
## Private class wrapping SMESH.SMESH_Pattern CORBA class in order to treat Notebook
|
|
# variables in some methods
|
|
#
|
|
class Pattern(SMESH._objref_SMESH_Pattern):
|
|
|
|
def LoadFromFile(self, patternTextOrFile ):
|
|
text = patternTextOrFile
|
|
if os.path.exists( text ):
|
|
text = open( patternTextOrFile ).read()
|
|
pass
|
|
return SMESH._objref_SMESH_Pattern.LoadFromFile( self, text )
|
|
|
|
def ApplyToMeshFaces(self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse):
|
|
decrFun = lambda i: i-1
|
|
theNodeIndexOnKeyPoint1,Parameters,hasVars = ParseParameters(theNodeIndexOnKeyPoint1, decrFun)
|
|
theMesh.SetParameters(Parameters)
|
|
return SMESH._objref_SMESH_Pattern.ApplyToMeshFaces( self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse )
|
|
|
|
def ApplyToHexahedrons(self, theMesh, theVolumesIDs, theNode000Index, theNode001Index):
|
|
decrFun = lambda i: i-1
|
|
theNode000Index,theNode001Index,Parameters,hasVars = ParseParameters(theNode000Index,theNode001Index, decrFun)
|
|
theMesh.SetParameters(Parameters)
|
|
return SMESH._objref_SMESH_Pattern.ApplyToHexahedrons( self, theMesh, theVolumesIDs, theNode000Index, theNode001Index )
|
|
|
|
def MakeMesh(self, mesh, CreatePolygons=False, CreatePolyhedra=False):
|
|
if isinstance( mesh, Mesh ):
|
|
mesh = mesh.GetMesh()
|
|
return SMESH._objref_SMESH_Pattern.MakeMesh( self, mesh, CreatePolygons, CreatePolyhedra )
|
|
|
|
# Registering the new proxy for Pattern
|
|
omniORB.registerObjref(SMESH._objref_SMESH_Pattern._NP_RepositoryId, Pattern)
|
|
|
|
## Private class used to bind methods creating algorithms to the class Mesh
|
|
#
|
|
class algoCreator:
|
|
def __init__(self):
|
|
self.mesh = None
|
|
self.defaultAlgoType = ""
|
|
self.algoTypeToClass = {}
|
|
|
|
# Store a python class of algorithm
|
|
def add(self, algoClass):
|
|
if type( algoClass ).__name__ == 'classobj' and \
|
|
hasattr( algoClass, "algoType"):
|
|
self.algoTypeToClass[ algoClass.algoType ] = algoClass
|
|
if not self.defaultAlgoType and \
|
|
hasattr( algoClass, "isDefault") and algoClass.isDefault:
|
|
self.defaultAlgoType = algoClass.algoType
|
|
#print "Add",algoClass.algoType, "dflt",self.defaultAlgoType
|
|
|
|
# Create a copy of self and assign mesh to the copy
|
|
def copy(self, mesh):
|
|
other = algoCreator()
|
|
other.defaultAlgoType = self.defaultAlgoType
|
|
other.algoTypeToClass = self.algoTypeToClass
|
|
other.mesh = mesh
|
|
return other
|
|
|
|
# Create an instance of algorithm
|
|
def __call__(self,algo="",geom=0,*args):
|
|
algoType = self.defaultAlgoType
|
|
for arg in args + (algo,geom):
|
|
if isinstance( arg, geomBuilder.GEOM._objref_GEOM_Object ):
|
|
geom = arg
|
|
if isinstance( arg, str ) and arg:
|
|
algoType = arg
|
|
if not algoType and self.algoTypeToClass:
|
|
algoType = list(self.algoTypeToClass.keys())[0]
|
|
if algoType in self.algoTypeToClass:
|
|
#print "Create algo",algoType
|
|
return self.algoTypeToClass[ algoType ]( self.mesh, geom )
|
|
raise RuntimeError("No class found for algo type %s" % algoType)
|
|
return None
|
|
|
|
## Private class used to substitute and store variable parameters of hypotheses.
|
|
#
|
|
class hypMethodWrapper:
|
|
def __init__(self, hyp, method):
|
|
self.hyp = hyp
|
|
self.method = method
|
|
#print "REBIND:", method.__name__
|
|
return
|
|
|
|
# call a method of hypothesis with calling SetVarParameter() before
|
|
def __call__(self,*args):
|
|
if not args:
|
|
return self.method( self.hyp, *args ) # hypothesis method with no args
|
|
|
|
#print "MethWrapper.__call__",self.method.__name__, args
|
|
try:
|
|
parsed = ParseParameters(*args) # replace variables with their values
|
|
self.hyp.SetVarParameter( parsed[-2], self.method.__name__ )
|
|
result = self.method( self.hyp, *parsed[:-2] ) # call hypothesis method
|
|
except omniORB.CORBA.BAD_PARAM: # raised by hypothesis method call
|
|
# maybe there is a replaced string arg which is not variable
|
|
result = self.method( self.hyp, *args )
|
|
except ValueError as detail: # raised by ParseParameters()
|
|
try:
|
|
result = self.method( self.hyp, *args )
|
|
except omniORB.CORBA.BAD_PARAM:
|
|
raise ValueError(detail) # wrong variable name
|
|
|
|
return result
|
|
pass
|
|
|
|
## A helper class that calls UnRegister() of SALOME.GenericObj'es stored in it
|
|
#
|
|
class genObjUnRegister:
|
|
|
|
def __init__(self, genObj=None):
|
|
self.genObjList = []
|
|
self.set( genObj )
|
|
return
|
|
|
|
def set(self, genObj):
|
|
"Store one or a list of of SALOME.GenericObj'es"
|
|
if isinstance( genObj, list ):
|
|
self.genObjList.extend( genObj )
|
|
else:
|
|
self.genObjList.append( genObj )
|
|
return
|
|
|
|
def __del__(self):
|
|
for genObj in self.genObjList:
|
|
if genObj and hasattr( genObj, "UnRegister" ):
|
|
genObj.UnRegister()
|
|
|
|
|
|
## Bind methods creating mesher plug-ins to the Mesh class
|
|
#
|
|
for pluginName in os.environ[ "SMESH_MeshersList" ].split( ":" ):
|
|
#
|
|
#print "pluginName: ", pluginName
|
|
pluginBuilderName = pluginName + "Builder"
|
|
try:
|
|
exec( "from salome.%s.%s import *" % (pluginName, pluginBuilderName))
|
|
except Exception as e:
|
|
from salome_utils import verbose
|
|
if verbose(): print("Exception while loading %s: %s" % ( pluginBuilderName, e ))
|
|
continue
|
|
exec( "from salome.%s import %s" % (pluginName, pluginBuilderName))
|
|
plugin = eval( pluginBuilderName )
|
|
#print " plugin:" , str(plugin)
|
|
|
|
# add methods creating algorithms to Mesh
|
|
for k in dir( plugin ):
|
|
if k[0] == '_': continue
|
|
algo = getattr( plugin, k )
|
|
#print " algo:", str(algo)
|
|
if type( algo ).__name__ == 'classobj' and hasattr( algo, "meshMethod" ):
|
|
#print " meshMethod:" , str(algo.meshMethod)
|
|
if not hasattr( Mesh, algo.meshMethod ):
|
|
setattr( Mesh, algo.meshMethod, algoCreator() )
|
|
pass
|
|
getattr( Mesh, algo.meshMethod ).add( algo )
|
|
pass
|
|
pass
|
|
pass
|
|
del pluginName
|