smesh/src/SMDS/SMDS_VtkVolume.cxx
2013-07-29 12:15:22 +00:00

726 lines
20 KiB
C++

// Copyright (C) 2010-2013 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
#include "SMDS_VtkVolume.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_Mesh.hxx"
#include "SMDS_VtkCellIterator.hxx"
#include "utilities.h"
#include <vector>
SMDS_VtkVolume::SMDS_VtkVolume()
{
}
SMDS_VtkVolume::SMDS_VtkVolume(const std::vector<vtkIdType>& nodeIds, SMDS_Mesh* mesh)
{
init(nodeIds, mesh);
}
/*!
* typed used are vtk types (@see vtkCellType.h)
* see GetEntityType() for conversion in SMDS type (@see SMDSAbs_ElementType.hxx)
*/
void SMDS_VtkVolume::init(const std::vector<vtkIdType>& nodeIds, SMDS_Mesh* mesh)
{
SMDS_MeshVolume::init();
vtkUnstructuredGrid* grid = mesh->getGrid();
myMeshId = mesh->getMeshId();
vtkIdType aType = VTK_TETRA;
switch (nodeIds.size()) // cases are in order of usage frequency
{
case 4:
aType = VTK_TETRA;
break;
case 8:
aType = VTK_HEXAHEDRON;
break;
case 5:
aType = VTK_PYRAMID;
break;
case 6:
aType = VTK_WEDGE;
break;
case 10:
aType = VTK_QUADRATIC_TETRA;
break;
case 20:
aType = VTK_QUADRATIC_HEXAHEDRON;
break;
case 13:
aType = VTK_QUADRATIC_PYRAMID;
break;
case 15:
aType = VTK_QUADRATIC_WEDGE;
break;
case 12:
aType = VTK_HEXAGONAL_PRISM;
break;
case 27:
aType = VTK_TRIQUADRATIC_HEXAHEDRON;
break;
default:
aType = VTK_HEXAHEDRON;
break;
}
myVtkID = grid->InsertNextLinkedCell(aType, nodeIds.size(), (vtkIdType *) &nodeIds[0]);
mesh->setMyModified();
//MESSAGE("SMDS_VtkVolume::init myVtkID " << myVtkID);
}
//#ifdef VTK_HAVE_POLYHEDRON
void SMDS_VtkVolume::initPoly(const std::vector<vtkIdType>& nodeIds,
const std::vector<int>& nbNodesPerFace,
SMDS_Mesh* mesh)
{
SMDS_MeshVolume::init();
//MESSAGE("SMDS_VtkVolume::initPoly");
SMDS_UnstructuredGrid* grid = mesh->getGrid();
//double center[3];
//this->gravityCenter(grid, &nodeIds[0], nodeIds.size(), &center[0]);
vector<vtkIdType> ptIds;
vtkIdType nbFaces = nbNodesPerFace.size();
int k = 0;
for (int i = 0; i < nbFaces; i++)
{
int nf = nbNodesPerFace[i];
ptIds.push_back(nf);
// EAP: a right approach is:
// - either the user should care of order of nodes or
// - the user should use a service method arranging nodes if he
// don't want or can't to do it by him-self
// The method below works OK only with planar faces and convex polyhedrones
//
// double a[3];
// double b[3];
// double c[3];
// grid->GetPoints()->GetPoint(nodeIds[k], a);
// grid->GetPoints()->GetPoint(nodeIds[k + 1], b);
// grid->GetPoints()->GetPoint(nodeIds[k + 2], c);
// bool isFaceForward = this->isForward(a, b, c, center);
//MESSAGE("isFaceForward " << i << " " << isFaceForward);
const vtkIdType *facePts = &nodeIds[k];
//if (isFaceForward)
for (int n = 0; n < nf; n++)
ptIds.push_back(facePts[n]);
// else
// for (int n = nf - 1; n >= 0; n--)
// ptIds.push_back(facePts[n]);
k += nf;
}
myVtkID = grid->InsertNextLinkedCell(VTK_POLYHEDRON, nbFaces, &ptIds[0]);
mesh->setMyModified();
}
//#endif
bool SMDS_VtkVolume::ChangeNodes(const SMDS_MeshNode* nodes[], const int nbNodes)
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType npts = 0;
vtkIdType* pts = 0;
grid->GetCellPoints(myVtkID, npts, pts);
if (nbNodes != npts)
{
MESSAGE("ChangeNodes problem: not the same number of nodes " << npts << " -> " << nbNodes);
return false;
}
for (int i = 0; i < nbNodes; i++)
{
pts[i] = nodes[i]->getVtkId();
}
SMDS_Mesh::_meshList[myMeshId]->setMyModified();
return true;
}
/*!
* Reorder in VTK order a list of nodes given in SMDS order.
* To be used before ChangeNodes: lists are given or computed in SMDS order.
*/
bool SMDS_VtkVolume::vtkOrder(const SMDS_MeshNode* nodes[], const int nbNodes)
{
if (nbNodes != this->NbNodes())
{
MESSAGE("vtkOrder, wrong number of nodes " << nbNodes << " instead of "<< this->NbNodes());
return false;
}
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
const std::vector<int>& interlace = SMDS_MeshCell::toVtkOrder( VTKCellType( aVtkType ));
if ( !interlace.empty() )
{
ASSERT( interlace.size() == nbNodes );
std::vector<const SMDS_MeshNode*> initNodes( nodes, nodes+nbNodes );
for ( size_t i = 0; i < interlace.size(); ++i )
nodes[i] = initNodes[ interlace[i] ];
}
return true;
}
SMDS_VtkVolume::~SMDS_VtkVolume()
{
}
void SMDS_VtkVolume::Print(ostream & OS) const
{
OS << "volume <" << GetID() << "> : ";
}
int SMDS_VtkVolume::NbFaces() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
int nbFaces = 4;
switch (aVtkType)
{
case VTK_TETRA:
case VTK_QUADRATIC_TETRA:
nbFaces = 4;
break;
case VTK_PYRAMID:
case VTK_WEDGE:
case VTK_QUADRATIC_PYRAMID:
case VTK_QUADRATIC_WEDGE:
nbFaces = 5;
break;
case VTK_HEXAHEDRON:
case VTK_QUADRATIC_HEXAHEDRON:
case VTK_TRIQUADRATIC_HEXAHEDRON:
nbFaces = 6;
break;
case VTK_POLYHEDRON:
{
vtkIdType nFaces = 0;
vtkIdType* ptIds = 0;
grid->GetFaceStream(this->myVtkID, nFaces, ptIds);
nbFaces = nFaces;
break;
}
case VTK_HEXAGONAL_PRISM:
nbFaces = 8;
break;
default:
MESSAGE("invalid volume type")
;
nbFaces = 0;
break;
}
return nbFaces;
}
int SMDS_VtkVolume::NbNodes() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
int nbPoints = 0;
if (aVtkType != VTK_POLYHEDRON)
{
nbPoints = grid->GetCell(myVtkID)->GetNumberOfPoints();
}
else
{
vtkIdType nFaces = 0;
vtkIdType* ptIds = 0;
grid->GetFaceStream(this->myVtkID, nFaces, ptIds);
int id = 0;
for (int i = 0; i < nFaces; i++)
{
int nodesInFace = ptIds[id];
nbPoints += nodesInFace;
id += (nodesInFace + 1);
}
}
return nbPoints;
}
int SMDS_VtkVolume::NbEdges() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
int nbEdges = 6;
switch (aVtkType)
{
case VTK_TETRA:
case VTK_QUADRATIC_TETRA:
nbEdges = 6;
break;
case VTK_PYRAMID:
case VTK_QUADRATIC_PYRAMID:
nbEdges = 8;
break;
case VTK_WEDGE:
case VTK_QUADRATIC_WEDGE:
nbEdges = 9;
break;
case VTK_HEXAHEDRON:
case VTK_QUADRATIC_HEXAHEDRON:
case VTK_TRIQUADRATIC_HEXAHEDRON:
nbEdges = 12;
break;
case VTK_POLYHEDRON:
{
vtkIdType nFaces = 0;
vtkIdType* ptIds = 0;
grid->GetFaceStream(this->myVtkID, nFaces, ptIds);
nbEdges = 0;
int id = 0;
for (int i = 0; i < nFaces; i++)
{
int edgesInFace = ptIds[id];
id += (edgesInFace + 1);
nbEdges += edgesInFace;
}
nbEdges = nbEdges / 2;
break;
}
case VTK_HEXAGONAL_PRISM:
nbEdges = 18;
break;
default:
MESSAGE("invalid volume type")
;
nbEdges = 0;
break;
}
return nbEdges;
}
/*! polyhedron only,
* 1 <= face_ind <= NbFaces()
*/
int SMDS_VtkVolume::NbFaceNodes(const int face_ind) const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
int nbNodes = 0;
if (aVtkType == VTK_POLYHEDRON)
{
vtkIdType nFaces = 0;
vtkIdType* ptIds = 0;
grid->GetFaceStream(this->myVtkID, nFaces, ptIds);
int id = 0;
for (int i = 0; i < nFaces; i++)
{
int nodesInFace = ptIds[id];
id += (nodesInFace + 1);
if (i == face_ind - 1)
{
nbNodes = nodesInFace;
break;
}
}
}
return nbNodes;
}
/*! polyhedron only,
* 1 <= face_ind <= NbFaces()
* 1 <= node_ind <= NbFaceNodes()
*/
const SMDS_MeshNode* SMDS_VtkVolume::GetFaceNode(const int face_ind, const int node_ind) const
{
SMDS_Mesh *mesh = SMDS_Mesh::_meshList[myMeshId];
vtkUnstructuredGrid* grid = mesh->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
const SMDS_MeshNode* node = 0;
if (aVtkType == VTK_POLYHEDRON)
{
vtkIdType nFaces = 0;
vtkIdType* ptIds = 0;
grid->GetFaceStream(this->myVtkID, nFaces, ptIds);
int id = 0;
for (int i = 0; i < nFaces; i++)
{
int nodesInFace = ptIds[id]; // nodeIds in ptIds[id+1 .. id+nodesInFace]
if (i == face_ind - 1) // first face is number 1
{
if ((node_ind > 0) && (node_ind <= nodesInFace))
node = mesh->FindNodeVtk(ptIds[id + node_ind]); // ptIds[id+1] : first node
break;
}
id += (nodesInFace + 1);
}
}
return node;
}
/*! polyhedron only,
* return number of nodes for each face
*/
std::vector<int> SMDS_VtkVolume::GetQuantities() const
{
vector<int> quantities;
SMDS_Mesh *mesh = SMDS_Mesh::_meshList[myMeshId];
vtkUnstructuredGrid* grid = mesh->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
if (aVtkType == VTK_POLYHEDRON)
{
vtkIdType nFaces = 0;
vtkIdType* ptIds = 0;
grid->GetFaceStream(this->myVtkID, nFaces, ptIds);
int id = 0;
for (int i = 0; i < nFaces; i++)
{
int nodesInFace = ptIds[id]; // nodeIds in ptIds[id+1 .. id+nodesInFace]
quantities.push_back(nodesInFace);
id += (nodesInFace + 1);
}
}
return quantities;
}
SMDS_ElemIteratorPtr SMDS_VtkVolume::elementsIterator(SMDSAbs_ElementType type) const
{
switch (type)
{
case SMDSAbs_Node:
{
SMDSAbs_EntityType aType = this->GetEntityType();
if (aType == SMDSEntity_Polyhedra)
return SMDS_ElemIteratorPtr(new SMDS_VtkCellIteratorPolyH(SMDS_Mesh::_meshList[myMeshId], myVtkID, aType));
else
return SMDS_ElemIteratorPtr(new SMDS_VtkCellIterator(SMDS_Mesh::_meshList[myMeshId], myVtkID, aType));
}
default:
MESSAGE("ERROR : Iterator not implemented");
return SMDS_ElemIteratorPtr((SMDS_ElemIterator*) NULL);
}
}
SMDS_NodeIteratorPtr SMDS_VtkVolume::nodesIteratorToUNV() const
{
return SMDS_NodeIteratorPtr(new SMDS_VtkCellIteratorToUNV(SMDS_Mesh::_meshList[myMeshId], myVtkID, GetEntityType()));
}
SMDS_NodeIteratorPtr SMDS_VtkVolume::interlacedNodesIterator() const
{
return SMDS_NodeIteratorPtr(new SMDS_VtkCellIteratorToUNV(SMDS_Mesh::_meshList[myMeshId], myVtkID, GetEntityType()));
}
SMDSAbs_ElementType SMDS_VtkVolume::GetType() const
{
return SMDSAbs_Volume;
}
/*!
* \brief Return node by its index
* \param ind - node index
* \retval const SMDS_MeshNode* - the node
*/
const SMDS_MeshNode* SMDS_VtkVolume::GetNode(const int ind) const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
if ( aVtkType == VTK_POLYHEDRON)
{
vtkIdType nFaces = 0;
vtkIdType* ptIds = 0;
grid->GetFaceStream(this->myVtkID, nFaces, ptIds);
int id = 0, nbPoints = 0;
for (int i = 0; i < nFaces; i++)
{
int nodesInFace = ptIds[id];
if ( ind < nbPoints + nodesInFace )
return SMDS_Mesh::_meshList[myMeshId]->FindNodeVtk( ptIds[ ind + i ]);
nbPoints += nodesInFace;
id += (nodesInFace + 1);
}
return 0;
}
vtkIdType npts, *pts;
grid->GetCellPoints( this->myVtkID, npts, pts );
const std::vector<int>& interlace = SMDS_MeshCell::fromVtkOrder( VTKCellType( aVtkType ));
return SMDS_Mesh::_meshList[myMeshId]->FindNodeVtk( pts[ interlace.empty() ? ind : interlace[ind]] );
}
/*!
* \brief Check if a node belongs to the element
* \param node - the node to check
* \retval int - node index within the element, -1 if not found
*/
int SMDS_VtkVolume::GetNodeIndex( const SMDS_MeshNode* node ) const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
const vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
if ( aVtkType == VTK_POLYHEDRON)
{
vtkIdType nFaces = 0;
vtkIdType* ptIds = 0;
grid->GetFaceStream(this->myVtkID, nFaces, ptIds);
int id = 0;
for (int iF = 0; iF < nFaces; iF++)
{
int nodesInFace = ptIds[id];
for ( vtkIdType i = 0; i < nodesInFace; ++i )
if ( ptIds[id+i+1] == node->getVtkId() )
return id+i-iF;
id += (nodesInFace + 1);
}
return -1;
}
vtkIdType npts, *pts;
grid->GetCellPoints( this->myVtkID, npts, pts );
for ( vtkIdType i = 0; i < npts; ++i )
if ( pts[i] == node->getVtkId() )
{
const std::vector<int>& interlace = SMDS_MeshCell::toVtkOrder( VTKCellType( aVtkType ));
return interlace.empty() ? i : interlace[i];
}
return -1;
}
bool SMDS_VtkVolume::IsQuadratic() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
// TODO quadratic polyhedrons ?
switch (aVtkType)
{
case VTK_QUADRATIC_TETRA:
case VTK_QUADRATIC_PYRAMID:
case VTK_QUADRATIC_WEDGE:
case VTK_QUADRATIC_HEXAHEDRON:
case VTK_TRIQUADRATIC_HEXAHEDRON:
return true;
break;
default:
return false;
}
}
bool SMDS_VtkVolume::IsPoly() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
return (aVtkType == VTK_POLYHEDRON);
}
bool SMDS_VtkVolume::IsMediumNode(const SMDS_MeshNode* node) const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
int rankFirstMedium = 0;
switch (aVtkType)
{
case VTK_QUADRATIC_TETRA:
rankFirstMedium = 4; // medium nodes are of rank 4 to 9
break;
case VTK_QUADRATIC_PYRAMID:
rankFirstMedium = 5; // medium nodes are of rank 5 to 12
break;
case VTK_QUADRATIC_WEDGE:
rankFirstMedium = 6; // medium nodes are of rank 6 to 14
break;
case VTK_QUADRATIC_HEXAHEDRON:
case VTK_TRIQUADRATIC_HEXAHEDRON:
rankFirstMedium = 8; // medium nodes are of rank 8 to 19
break;
default:
return false;
}
vtkIdType npts = 0;
vtkIdType* pts = 0;
grid->GetCellPoints(myVtkID, npts, pts);
vtkIdType nodeId = node->getVtkId();
for (int rank = 0; rank < npts; rank++)
{
if (pts[rank] == nodeId)
{
if (rank < rankFirstMedium)
return false;
else
return true;
}
}
//throw SALOME_Exception(LOCALIZED("node does not belong to this element"));
MESSAGE("======================================================");
MESSAGE("= IsMediumNode: node does not belong to this element =");
MESSAGE("======================================================");
return false;
}
int SMDS_VtkVolume::NbCornerNodes() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
int nbN = grid->GetCell(myVtkID)->GetNumberOfPoints();
vtkIdType aVtkType = grid->GetCellType(myVtkID);
switch (aVtkType)
{
case VTK_QUADRATIC_TETRA: return 4;
case VTK_QUADRATIC_PYRAMID: return 5;
case VTK_QUADRATIC_WEDGE: return 6;
case VTK_QUADRATIC_HEXAHEDRON:
case VTK_TRIQUADRATIC_HEXAHEDRON: return 8;
default:;
}
return nbN;
}
SMDSAbs_EntityType SMDS_VtkVolume::GetEntityType() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
SMDSAbs_EntityType aType = SMDSEntity_Tetra;
switch (aVtkType)
{
case VTK_TETRA:
aType = SMDSEntity_Tetra;
break;
case VTK_PYRAMID:
aType = SMDSEntity_Pyramid;
break;
case VTK_WEDGE:
aType = SMDSEntity_Penta;
break;
case VTK_HEXAHEDRON:
aType = SMDSEntity_Hexa;
break;
case VTK_QUADRATIC_TETRA:
aType = SMDSEntity_Quad_Tetra;
break;
case VTK_QUADRATIC_PYRAMID:
aType = SMDSEntity_Quad_Pyramid;
break;
case VTK_QUADRATIC_WEDGE:
aType = SMDSEntity_Quad_Penta;
break;
case VTK_QUADRATIC_HEXAHEDRON:
aType = SMDSEntity_Quad_Hexa;
break;
case VTK_TRIQUADRATIC_HEXAHEDRON:
aType = SMDSEntity_TriQuad_Hexa;
break;
case VTK_HEXAGONAL_PRISM:
aType = SMDSEntity_Hexagonal_Prism;
break;
//#ifdef VTK_HAVE_POLYHEDRON
case VTK_POLYHEDRON:
aType = SMDSEntity_Polyhedra;
break;
//#endif
default:
aType = SMDSEntity_Polyhedra;
break;
}
return aType;
}
SMDSAbs_GeometryType SMDS_VtkVolume::GetGeomType() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aVtkType = grid->GetCellType(this->myVtkID);
SMDSAbs_GeometryType aType = SMDSGeom_NONE;
switch (aVtkType)
{
case VTK_TETRA:
case VTK_QUADRATIC_TETRA:
aType = SMDSGeom_TETRA;
break;
case VTK_PYRAMID:
case VTK_QUADRATIC_PYRAMID:
aType = SMDSGeom_PYRAMID;
break;
case VTK_WEDGE:
case VTK_QUADRATIC_WEDGE:
aType = SMDSGeom_PENTA;
break;
case VTK_HEXAHEDRON:
case VTK_QUADRATIC_HEXAHEDRON:
case VTK_TRIQUADRATIC_HEXAHEDRON:
aType = SMDSGeom_HEXA;
break;
case VTK_HEXAGONAL_PRISM:
aType = SMDSGeom_HEXAGONAL_PRISM;
break;
//#ifdef VTK_HAVE_POLYHEDRON
case VTK_POLYHEDRON:
aType = SMDSGeom_POLYHEDRA;
break;
//#endif
default:
aType = SMDSGeom_POLYHEDRA;
break;
}
return aType;
}
vtkIdType SMDS_VtkVolume::GetVtkType() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
vtkIdType aType = grid->GetCellType(myVtkID);
return aType;
}
void SMDS_VtkVolume::gravityCenter(SMDS_UnstructuredGrid* grid,
const vtkIdType * nodeIds,
int nbNodes,
double* result)
{
for (int j = 0; j < 3; j++)
result[j] = 0;
if (nbNodes <= 0)
return;
for (int i = 0; i < nbNodes; i++)
{
double *coords = grid->GetPoint(nodeIds[i]);
for (int j = 0; j < 3; j++)
result[j] += coords[j];
}
for (int j = 0; j < 3; j++)
result[j] = result[j] / nbNodes;
//MESSAGE("center " << result[0] << " " << result[1] << " " << result[2]);
return;
}
bool SMDS_VtkVolume::isForward(double* a, double* b, double* c, double* d)
{
double u[3], v[3], w[3];
for (int j = 0; j < 3; j++)
{
//MESSAGE("a,b,c,d " << a[j] << " " << b[j] << " " << c[j] << " " << d[j]);
u[j] = b[j] - a[j];
v[j] = c[j] - a[j];
w[j] = d[j] - a[j];
//MESSAGE("u,v,w " << u[j] << " " << v[j] << " " << w[j]);
}
double prodmixte = (u[1]*v[2] - u[2]*v[1]) * w[0]
+ (u[2]*v[0] - u[0]*v[2]) * w[1]
+ (u[0]*v[1] - u[1]*v[0]) * w[2];
return (prodmixte < 0);
}
/*! For polyhedron only
* @return actual number of nodes (not the sum of nodes of all faces)
*/
int SMDS_VtkVolume::NbUniqueNodes() const
{
vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myMeshId]->getGrid();
return grid->GetCell(myVtkID)->GetNumberOfPoints();
}
/*! For polyhedron use only
* @return iterator on actual nodes (not through the faces)
*/
SMDS_ElemIteratorPtr SMDS_VtkVolume::uniqueNodesIterator() const
{
MESSAGE("uniqueNodesIterator");
return SMDS_ElemIteratorPtr(new SMDS_VtkCellIterator(SMDS_Mesh::_meshList[myMeshId], myVtkID, GetEntityType()));
}