mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2024-11-16 02:28:34 +05:00
1216 lines
43 KiB
C++
1216 lines
43 KiB
C++
// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE
|
||
//
|
||
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
||
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
||
//
|
||
// This library is free software; you can redistribute it and/or
|
||
// modify it under the terms of the GNU Lesser General Public
|
||
// License as published by the Free Software Foundation; either
|
||
// version 2.1 of the License.
|
||
//
|
||
// This library is distributed in the hope that it will be useful,
|
||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
// Lesser General Public License for more details.
|
||
//
|
||
// You should have received a copy of the GNU Lesser General Public
|
||
// License along with this library; if not, write to the Free Software
|
||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
//
|
||
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
||
//
|
||
// SMESH SMESH : implementaion of SMESH idl descriptions
|
||
// File : StdMeshers_Hexa_3D.cxx
|
||
// Moved here from SMESH_Hexa_3D.cxx
|
||
// Author : Paul RASCLE, EDF
|
||
// Module : SMESH
|
||
//
|
||
#include "StdMeshers_Hexa_3D.hxx"
|
||
#include "StdMeshers_CompositeHexa_3D.hxx"
|
||
#include "StdMeshers_FaceSide.hxx"
|
||
#include "StdMeshers_Penta_3D.hxx"
|
||
#include "StdMeshers_Prism_3D.hxx"
|
||
#include "StdMeshers_Quadrangle_2D.hxx"
|
||
|
||
#include "SMESH_Gen.hxx"
|
||
#include "SMESH_Mesh.hxx"
|
||
#include "SMESH_subMesh.hxx"
|
||
#include "SMESH_Comment.hxx"
|
||
|
||
#include "SMDS_MeshElement.hxx"
|
||
#include "SMDS_MeshNode.hxx"
|
||
#include "SMDS_FacePosition.hxx"
|
||
#include "SMDS_VolumeTool.hxx"
|
||
#include "SMDS_VolumeOfNodes.hxx"
|
||
|
||
#include <TopExp.hxx>
|
||
#include <TopExp_Explorer.hxx>
|
||
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
|
||
#include <TopTools_ListIteratorOfListOfShape.hxx>
|
||
#include <TopTools_ListOfShape.hxx>
|
||
#include <TopTools_SequenceOfShape.hxx>
|
||
#include <TopTools_MapOfShape.hxx>
|
||
#include <TopoDS.hxx>
|
||
#include <gp_Pnt2d.hxx>
|
||
|
||
#include "utilities.h"
|
||
#include "Utils_ExceptHandlers.hxx"
|
||
|
||
typedef SMESH_Comment TComm;
|
||
|
||
using namespace std;
|
||
|
||
static SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh &,
|
||
const TopoDS_Shape &);
|
||
|
||
static bool EvaluatePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &,
|
||
MapShapeNbElems &);
|
||
|
||
//=============================================================================
|
||
/*!
|
||
*
|
||
*/
|
||
//=============================================================================
|
||
|
||
StdMeshers_Hexa_3D::StdMeshers_Hexa_3D(int hypId, int studyId, SMESH_Gen * gen)
|
||
:SMESH_3D_Algo(hypId, studyId, gen)
|
||
{
|
||
MESSAGE("StdMeshers_Hexa_3D::StdMeshers_Hexa_3D");
|
||
_name = "Hexa_3D";
|
||
_shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type
|
||
}
|
||
|
||
//=============================================================================
|
||
/*!
|
||
*
|
||
*/
|
||
//=============================================================================
|
||
|
||
StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D()
|
||
{
|
||
MESSAGE("StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D");
|
||
}
|
||
|
||
//================================================================================
|
||
/*!
|
||
* \brief Clear fields and return the argument
|
||
* \param res - the value to return
|
||
* \retval bool - the argument value
|
||
*/
|
||
//================================================================================
|
||
|
||
bool StdMeshers_Hexa_3D::ClearAndReturn(FaceQuadStruct* theQuads[6], const bool res)
|
||
{
|
||
for (int i = 0; i < 6; i++) {
|
||
delete theQuads[i];
|
||
theQuads[i] = NULL;
|
||
}
|
||
return res;
|
||
}
|
||
|
||
|
||
//=============================================================================
|
||
/*!
|
||
*
|
||
*/
|
||
//=============================================================================
|
||
|
||
bool StdMeshers_Hexa_3D::CheckHypothesis
|
||
(SMESH_Mesh& aMesh,
|
||
const TopoDS_Shape& aShape,
|
||
SMESH_Hypothesis::Hypothesis_Status& aStatus)
|
||
{
|
||
// check nb of faces in the shape
|
||
/* PAL16229
|
||
aStatus = SMESH_Hypothesis::HYP_BAD_GEOMETRY;
|
||
int nbFaces = 0;
|
||
for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next())
|
||
if ( ++nbFaces > 6 )
|
||
break;
|
||
if ( nbFaces != 6 )
|
||
return false;
|
||
*/
|
||
aStatus = SMESH_Hypothesis::HYP_OK;
|
||
return true;
|
||
}
|
||
|
||
//=======================================================================
|
||
//function : isCloser
|
||
//purpose :
|
||
//=======================================================================
|
||
|
||
inline bool isCloser(const int i, const int j, const int nbhoriz,
|
||
const FaceQuadStruct* quad, const gp_Pnt2d uv,
|
||
double & minDist)
|
||
{
|
||
int ij = j * nbhoriz + i;
|
||
gp_Pnt2d uv2( quad->uv_grid[ij].u, quad->uv_grid[ij].v );
|
||
double dist = uv.SquareDistance( uv2 );
|
||
if ( dist < minDist ) {
|
||
minDist = dist;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
//=======================================================================
|
||
//function : findIJ
|
||
//purpose : return i,j of the node
|
||
//=======================================================================
|
||
|
||
static bool findIJ (const SMDS_MeshNode* node, const FaceQuadStruct * quad, int& I, int& J)
|
||
{
|
||
const SMDS_FacePosition* fpos =
|
||
static_cast<const SMDS_FacePosition*>(node->GetPosition().get());
|
||
if ( ! fpos ) return false;
|
||
gp_Pnt2d uv( fpos->GetUParameter(), fpos->GetVParameter() );
|
||
|
||
double minDist = DBL_MAX;
|
||
const int nbhoriz = quad->side[0]->NbPoints();
|
||
const int nbvertic = quad->side[1]->NbPoints();
|
||
I = nbhoriz/2; J = nbvertic/2;
|
||
int oldI, oldJ;
|
||
do {
|
||
oldI = I; oldJ = J;
|
||
while ( I + 2 < nbhoriz && isCloser( I + 1, J, nbhoriz, quad, uv, minDist ))
|
||
I += 1;
|
||
if ( I == oldI )
|
||
while ( I - 1 > 0 && isCloser( I - 1, J, nbhoriz, quad, uv, minDist ))
|
||
I -= 1;
|
||
if ( minDist < DBL_MIN )
|
||
break;
|
||
|
||
while ( J + 2 < nbvertic && isCloser( I, J + 1, nbhoriz, quad, uv, minDist ))
|
||
J += 1;
|
||
if ( J == oldJ )
|
||
while ( J - 1 > 0 && isCloser( I, J - 1, nbhoriz, quad, uv, minDist ))
|
||
J -= 1;
|
||
if ( minDist < DBL_MIN )
|
||
break;
|
||
|
||
} while ( I != oldI || J != oldJ );
|
||
|
||
if ( minDist > DBL_MIN ) {
|
||
for (int i = 1; i < nbhoriz - 1; i++)
|
||
for (int j = 1; j < nbvertic - 1; j++)
|
||
if ( isCloser( i, j, nbhoriz, quad, uv, minDist ))
|
||
I = i, J = j;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
|
||
//=============================================================================
|
||
/*!
|
||
* Hexahedron mesh on hexaedron like form
|
||
* -0. - shape and face mesh verification
|
||
* -1. - identify faces and vertices of the "cube"
|
||
* -2. - Algorithm from:
|
||
* "Application de l'interpolation transfinie <20> la cr<63>ation de maillages
|
||
* C0 ou G1 continus sur des triangles, quadrangles, tetraedres, pentaedres
|
||
* et hexaedres d<>form<72>s."
|
||
* Alain PERONNET - 8 janvier 1999
|
||
*/
|
||
//=============================================================================
|
||
|
||
bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh & aMesh,
|
||
const TopoDS_Shape & aShape)// throw(SALOME_Exception)
|
||
{
|
||
// PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside
|
||
//Unexpect aCatch(SalomeException);
|
||
MESSAGE("StdMeshers_Hexa_3D::Compute");
|
||
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
|
||
|
||
// 0. - shape and face mesh verification
|
||
// 0.1 - shape must be a solid (or a shell) with 6 faces
|
||
|
||
vector < SMESH_subMesh * >meshFaces;
|
||
for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) {
|
||
SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
|
||
ASSERT(aSubMesh);
|
||
meshFaces.push_back(aSubMesh);
|
||
}
|
||
if (meshFaces.size() != 6) {
|
||
//return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block");
|
||
static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen());
|
||
if ( !compositeHexa.Compute( aMesh, aShape ))
|
||
return error( compositeHexa.GetComputeError() );
|
||
return true;
|
||
}
|
||
|
||
// 0.2 - is each face meshed with Quadrangle_2D? (so, with a wire of 4 edges)
|
||
|
||
// tool for working with quadratic elements
|
||
SMESH_MesherHelper aTool (aMesh);
|
||
_quadraticMesh = aTool.IsQuadraticSubMesh(aShape);
|
||
|
||
// cube structure
|
||
typedef struct cubeStruct
|
||
{
|
||
TopoDS_Vertex V000;
|
||
TopoDS_Vertex V001;
|
||
TopoDS_Vertex V010;
|
||
TopoDS_Vertex V011;
|
||
TopoDS_Vertex V100;
|
||
TopoDS_Vertex V101;
|
||
TopoDS_Vertex V110;
|
||
TopoDS_Vertex V111;
|
||
faceQuadStruct* quad_X0;
|
||
faceQuadStruct* quad_X1;
|
||
faceQuadStruct* quad_Y0;
|
||
faceQuadStruct* quad_Y1;
|
||
faceQuadStruct* quad_Z0;
|
||
faceQuadStruct* quad_Z1;
|
||
Point3DStruct* np; // normalised 3D coordinates
|
||
} CubeStruct;
|
||
|
||
CubeStruct aCube;
|
||
|
||
// bounding faces
|
||
FaceQuadStruct* aQuads[6];
|
||
for (int i = 0; i < 6; i++)
|
||
aQuads[i] = 0;
|
||
|
||
for (int i = 0; i < 6; i++)
|
||
{
|
||
TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
|
||
SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
|
||
string algoName = algo->GetName();
|
||
bool isAllQuad = false;
|
||
if (algoName == "Quadrangle_2D") {
|
||
SMESHDS_SubMesh * sm = meshDS->MeshElements( aFace );
|
||
if ( sm ) {
|
||
isAllQuad = true;
|
||
SMDS_ElemIteratorPtr eIt = sm->GetElements();
|
||
while ( isAllQuad && eIt->more() ) {
|
||
const SMDS_MeshElement* elem = eIt->next();
|
||
isAllQuad = ( elem->NbNodes()==4 ||(_quadraticMesh && elem->NbNodes()==8) );
|
||
}
|
||
}
|
||
}
|
||
if ( ! isAllQuad ) {
|
||
SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
|
||
return ClearAndReturn( aQuads, error(err));
|
||
}
|
||
StdMeshers_Quadrangle_2D *quadAlgo =
|
||
dynamic_cast < StdMeshers_Quadrangle_2D * >(algo);
|
||
ASSERT(quadAlgo);
|
||
try {
|
||
aQuads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aFace, _quadraticMesh);
|
||
if(!aQuads[i]) {
|
||
return error( quadAlgo->GetComputeError());
|
||
}
|
||
}
|
||
catch(SALOME_Exception & S_ex) {
|
||
return ClearAndReturn( aQuads, error(COMPERR_SLM_EXCEPTION,TComm(S_ex.what()) <<
|
||
" Raised by StdMeshers_Quadrangle_2D "
|
||
" on face #" << meshDS->ShapeToIndex( aFace )));
|
||
}
|
||
|
||
// 0.2.1 - number of points on the opposite edges must be the same
|
||
if (aQuads[i]->side[0]->NbPoints() != aQuads[i]->side[2]->NbPoints() ||
|
||
aQuads[i]->side[1]->NbPoints() != aQuads[i]->side[3]->NbPoints()
|
||
/*aQuads[i]->side[0]->NbEdges() != 1 ||
|
||
aQuads[i]->side[1]->NbEdges() != 1 ||
|
||
aQuads[i]->side[2]->NbEdges() != 1 ||
|
||
aQuads[i]->side[3]->NbEdges() != 1*/) {
|
||
MESSAGE("different number of points on the opposite edges of face " << i);
|
||
// Try to go into penta algorithm 'cause it has been improved.
|
||
SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
|
||
return ClearAndReturn( aQuads, error(err));
|
||
}
|
||
}
|
||
|
||
// 1. - identify faces and vertices of the "cube"
|
||
// 1.1 - ancestor maps vertex->edges in the cube
|
||
|
||
// TopTools_IndexedDataMapOfShapeListOfShape MS;
|
||
// TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, MS);
|
||
|
||
// 1.2 - first face is choosen as face Y=0 of the unit cube
|
||
|
||
const TopoDS_Shape & aFace = meshFaces[0]->GetSubShape();
|
||
//const TopoDS_Face & F = TopoDS::Face(aFace);
|
||
|
||
// 1.3 - identify the 4 vertices of the face Y=0: V000, V100, V101, V001
|
||
|
||
aCube.V000 = aQuads[0]->side[0]->FirstVertex(); // will be (0,0,0) on the unit cube
|
||
aCube.V100 = aQuads[0]->side[0]->LastVertex(); // will be (1,0,0) on the unit cube
|
||
aCube.V001 = aQuads[0]->side[2]->FirstVertex(); // will be (0,0,1) on the unit cube
|
||
aCube.V101 = aQuads[0]->side[2]->LastVertex(); // will be (1,0,1) on the unit cube
|
||
|
||
TopTools_IndexedMapOfShape MV0;
|
||
TopExp::MapShapes(aFace, TopAbs_VERTEX, MV0);
|
||
|
||
aCube.V010 = OppositeVertex( aCube.V000, MV0, aQuads);
|
||
aCube.V110 = OppositeVertex( aCube.V100, MV0, aQuads);
|
||
aCube.V011 = OppositeVertex( aCube.V001, MV0, aQuads);
|
||
aCube.V111 = OppositeVertex( aCube.V101, MV0, aQuads);
|
||
|
||
// 1.6 - find remaining faces given 4 vertices
|
||
|
||
int _indY0 = 0;
|
||
int _indY1 = GetFaceIndex(aMesh, aShape, meshFaces,
|
||
aCube.V010, aCube.V011, aCube.V110, aCube.V111);
|
||
int _indZ0 = GetFaceIndex(aMesh, aShape, meshFaces,
|
||
aCube.V000, aCube.V010, aCube.V100, aCube.V110);
|
||
int _indZ1 = GetFaceIndex(aMesh, aShape, meshFaces,
|
||
aCube.V001, aCube.V011, aCube.V101, aCube.V111);
|
||
int _indX0 = GetFaceIndex(aMesh, aShape, meshFaces,
|
||
aCube.V000, aCube.V001, aCube.V010, aCube.V011);
|
||
int _indX1 = GetFaceIndex(aMesh, aShape, meshFaces,
|
||
aCube.V100, aCube.V101, aCube.V110, aCube.V111);
|
||
|
||
// IPAL21120: SIGSEGV on Meshing attached Compound with Automatic Hexadralization
|
||
if ( _indY1 < 1 || _indZ0 < 1 || _indZ1 < 1 || _indX0 < 1 || _indX1 < 1 )
|
||
return error(COMPERR_BAD_SHAPE);
|
||
|
||
aCube.quad_Y0 = aQuads[_indY0];
|
||
aCube.quad_Y1 = aQuads[_indY1];
|
||
aCube.quad_Z0 = aQuads[_indZ0];
|
||
aCube.quad_Z1 = aQuads[_indZ1];
|
||
aCube.quad_X0 = aQuads[_indX0];
|
||
aCube.quad_X1 = aQuads[_indX1];
|
||
|
||
// 1.7 - get convertion coefs from face 2D normalized to 3D normalized
|
||
|
||
Conv2DStruct cx0; // for face X=0
|
||
Conv2DStruct cx1; // for face X=1
|
||
Conv2DStruct cy0;
|
||
Conv2DStruct cy1;
|
||
Conv2DStruct cz0;
|
||
Conv2DStruct cz1;
|
||
|
||
GetConv2DCoefs(*aCube.quad_X0, meshFaces[_indX0]->GetSubShape(),
|
||
aCube.V000, aCube.V010, aCube.V011, aCube.V001, cx0);
|
||
GetConv2DCoefs(*aCube.quad_X1, meshFaces[_indX1]->GetSubShape(),
|
||
aCube.V100, aCube.V110, aCube.V111, aCube.V101, cx1);
|
||
GetConv2DCoefs(*aCube.quad_Y0, meshFaces[_indY0]->GetSubShape(),
|
||
aCube.V000, aCube.V100, aCube.V101, aCube.V001, cy0);
|
||
GetConv2DCoefs(*aCube.quad_Y1, meshFaces[_indY1]->GetSubShape(),
|
||
aCube.V010, aCube.V110, aCube.V111, aCube.V011, cy1);
|
||
GetConv2DCoefs(*aCube.quad_Z0, meshFaces[_indZ0]->GetSubShape(),
|
||
aCube.V000, aCube.V100, aCube.V110, aCube.V010, cz0);
|
||
GetConv2DCoefs(*aCube.quad_Z1, meshFaces[_indZ1]->GetSubShape(),
|
||
aCube.V001, aCube.V101, aCube.V111, aCube.V011, cz1);
|
||
|
||
// 1.8 - create a 3D structure for normalized values
|
||
|
||
int nbx = aCube.quad_Z0->side[0]->NbPoints();
|
||
if (cz0.a1 == 0.) nbx = aCube.quad_Z0->side[1]->NbPoints();
|
||
|
||
int nby = aCube.quad_X0->side[0]->NbPoints();
|
||
if (cx0.a1 == 0.) nby = aCube.quad_X0->side[1]->NbPoints();
|
||
|
||
int nbz = aCube.quad_Y0->side[0]->NbPoints();
|
||
if (cy0.a1 != 0.) nbz = aCube.quad_Y0->side[1]->NbPoints();
|
||
|
||
int i1, j1, nbxyz = nbx * nby * nbz;
|
||
Point3DStruct *np = new Point3DStruct[nbxyz];
|
||
|
||
// 1.9 - store node indexes of faces
|
||
|
||
{
|
||
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX0]->GetSubShape());
|
||
|
||
faceQuadStruct *quad = aCube.quad_X0;
|
||
int i = 0; // j = x/face , k = y/face
|
||
int nbdown = quad->side[0]->NbPoints();
|
||
int nbright = quad->side[1]->NbPoints();
|
||
|
||
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
|
||
|
||
while(itf->more()) {
|
||
const SMDS_MeshNode * node = itf->next();
|
||
if(aTool.IsMedium(node))
|
||
continue;
|
||
if ( !findIJ( node, quad, i1, j1 ))
|
||
return ClearAndReturn( aQuads, false );
|
||
int ij1 = j1 * nbdown + i1;
|
||
quad->uv_grid[ij1].node = node;
|
||
}
|
||
|
||
for (int i1 = 0; i1 < nbdown; i1++)
|
||
for (int j1 = 0; j1 < nbright; j1++) {
|
||
int ij1 = j1 * nbdown + i1;
|
||
int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic; // j = x/face
|
||
int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc; // k = y/face
|
||
int ijk = k * nbx * nby + j * nbx + i;
|
||
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
|
||
np[ijk].node = quad->uv_grid[ij1].node;
|
||
//SCRUTE(np[ijk].nodeId);
|
||
}
|
||
}
|
||
|
||
{
|
||
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX1]->GetSubShape());
|
||
|
||
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
|
||
|
||
faceQuadStruct *quad = aCube.quad_X1;
|
||
int i = nbx - 1; // j = x/face , k = y/face
|
||
int nbdown = quad->side[0]->NbPoints();
|
||
int nbright = quad->side[1]->NbPoints();
|
||
|
||
while(itf->more()) {
|
||
const SMDS_MeshNode * node = itf->next();
|
||
if(aTool.IsMedium(node))
|
||
continue;
|
||
if ( !findIJ( node, quad, i1, j1 ))
|
||
return ClearAndReturn( aQuads, false );
|
||
int ij1 = j1 * nbdown + i1;
|
||
quad->uv_grid[ij1].node = node;
|
||
}
|
||
|
||
for (int i1 = 0; i1 < nbdown; i1++)
|
||
for (int j1 = 0; j1 < nbright; j1++) {
|
||
int ij1 = j1 * nbdown + i1;
|
||
int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic; // j = x/face
|
||
int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc; // k = y/face
|
||
int ijk = k * nbx * nby + j * nbx + i;
|
||
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
|
||
np[ijk].node = quad->uv_grid[ij1].node;
|
||
//SCRUTE(np[ijk].nodeId);
|
||
}
|
||
}
|
||
|
||
{
|
||
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY0]->GetSubShape());
|
||
|
||
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
|
||
|
||
faceQuadStruct *quad = aCube.quad_Y0;
|
||
int j = 0; // i = x/face , k = y/face
|
||
int nbdown = quad->side[0]->NbPoints();
|
||
int nbright = quad->side[1]->NbPoints();
|
||
|
||
while(itf->more()) {
|
||
const SMDS_MeshNode * node = itf->next();
|
||
if(aTool.IsMedium(node))
|
||
continue;
|
||
if ( !findIJ( node, quad, i1, j1 ))
|
||
return ClearAndReturn( aQuads, false );
|
||
int ij1 = j1 * nbdown + i1;
|
||
quad->uv_grid[ij1].node = node;
|
||
}
|
||
|
||
for (int i1 = 0; i1 < nbdown; i1++)
|
||
for (int j1 = 0; j1 < nbright; j1++) {
|
||
int ij1 = j1 * nbdown + i1;
|
||
int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic; // i = x/face
|
||
int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc; // k = y/face
|
||
int ijk = k * nbx * nby + j * nbx + i;
|
||
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
|
||
np[ijk].node = quad->uv_grid[ij1].node;
|
||
//SCRUTE(np[ijk].nodeId);
|
||
}
|
||
}
|
||
|
||
{
|
||
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY1]->GetSubShape());
|
||
|
||
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
|
||
|
||
faceQuadStruct *quad = aCube.quad_Y1;
|
||
int j = nby - 1; // i = x/face , k = y/face
|
||
int nbdown = quad->side[0]->NbPoints();
|
||
int nbright = quad->side[1]->NbPoints();
|
||
|
||
while(itf->more()) {
|
||
const SMDS_MeshNode * node = itf->next();
|
||
if(aTool.IsMedium(node))
|
||
continue;
|
||
if ( !findIJ( node, quad, i1, j1 ))
|
||
return ClearAndReturn( aQuads, false );
|
||
int ij1 = j1 * nbdown + i1;
|
||
quad->uv_grid[ij1].node = node;
|
||
}
|
||
|
||
for (int i1 = 0; i1 < nbdown; i1++)
|
||
for (int j1 = 0; j1 < nbright; j1++) {
|
||
int ij1 = j1 * nbdown + i1;
|
||
int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic; // i = x/face
|
||
int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc; // k = y/face
|
||
int ijk = k * nbx * nby + j * nbx + i;
|
||
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
|
||
np[ijk].node = quad->uv_grid[ij1].node;
|
||
//SCRUTE(np[ijk].nodeId);
|
||
}
|
||
}
|
||
|
||
{
|
||
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ0]->GetSubShape());
|
||
|
||
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
|
||
|
||
faceQuadStruct *quad = aCube.quad_Z0;
|
||
int k = 0; // i = x/face , j = y/face
|
||
int nbdown = quad->side[0]->NbPoints();
|
||
int nbright = quad->side[1]->NbPoints();
|
||
|
||
while(itf->more()) {
|
||
const SMDS_MeshNode * node = itf->next();
|
||
if(aTool.IsMedium(node))
|
||
continue;
|
||
if ( !findIJ( node, quad, i1, j1 ))
|
||
return ClearAndReturn( aQuads, false );
|
||
int ij1 = j1 * nbdown + i1;
|
||
quad->uv_grid[ij1].node = node;
|
||
}
|
||
|
||
for (int i1 = 0; i1 < nbdown; i1++)
|
||
for (int j1 = 0; j1 < nbright; j1++) {
|
||
int ij1 = j1 * nbdown + i1;
|
||
int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic; // i = x/face
|
||
int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc; // j = y/face
|
||
int ijk = k * nbx * nby + j * nbx + i;
|
||
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
|
||
np[ijk].node = quad->uv_grid[ij1].node;
|
||
//SCRUTE(np[ijk].nodeId);
|
||
}
|
||
}
|
||
|
||
{
|
||
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ1]->GetSubShape());
|
||
|
||
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
|
||
|
||
faceQuadStruct *quad = aCube.quad_Z1;
|
||
int k = nbz - 1; // i = x/face , j = y/face
|
||
int nbdown = quad->side[0]->NbPoints();
|
||
int nbright = quad->side[1]->NbPoints();
|
||
|
||
while(itf->more()) {
|
||
const SMDS_MeshNode * node = itf->next();
|
||
if(aTool.IsMedium(node))
|
||
continue;
|
||
if ( !findIJ( node, quad, i1, j1 ))
|
||
return ClearAndReturn( aQuads, false );
|
||
int ij1 = j1 * nbdown + i1;
|
||
quad->uv_grid[ij1].node = node;
|
||
}
|
||
|
||
for (int i1 = 0; i1 < nbdown; i1++)
|
||
for (int j1 = 0; j1 < nbright; j1++) {
|
||
int ij1 = j1 * nbdown + i1;
|
||
int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic; // i = x/face
|
||
int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc; // j = y/face
|
||
int ijk = k * nbx * nby + j * nbx + i;
|
||
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
|
||
np[ijk].node = quad->uv_grid[ij1].node;
|
||
//SCRUTE(np[ijk].nodeId);
|
||
}
|
||
}
|
||
|
||
// 2.0 - for each node of the cube:
|
||
// - get the 8 points 3D = 8 vertices of the cube
|
||
// - get the 12 points 3D on the 12 edges of the cube
|
||
// - get the 6 points 3D on the 6 faces with their ID
|
||
// - compute the point 3D
|
||
// - store the point 3D in SMESHDS, store its ID in 3D structure
|
||
|
||
int shapeID = meshDS->ShapeToIndex( aShape );
|
||
|
||
Pt3 p000, p001, p010, p011, p100, p101, p110, p111;
|
||
Pt3 px00, px01, px10, px11;
|
||
Pt3 p0y0, p0y1, p1y0, p1y1;
|
||
Pt3 p00z, p01z, p10z, p11z;
|
||
Pt3 pxy0, pxy1, px0z, px1z, p0yz, p1yz;
|
||
|
||
GetPoint(p000, 0, 0, 0, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p001, 0, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p010, 0, nby - 1, 0, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p011, 0, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p100, nbx - 1, 0, 0, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p101, nbx - 1, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p110, nbx - 1, nby - 1, 0, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p111, nbx - 1, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
|
||
|
||
for (int i = 1; i < nbx - 1; i++) {
|
||
for (int j = 1; j < nby - 1; j++) {
|
||
for (int k = 1; k < nbz - 1; k++) {
|
||
// *** seulement maillage regulier
|
||
// 12 points on edges
|
||
GetPoint(px00, i, 0, 0, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(px01, i, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(px10, i, nby - 1, 0, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(px11, i, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
|
||
|
||
GetPoint(p0y0, 0, j, 0, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p0y1, 0, j, nbz - 1, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p1y0, nbx - 1, j, 0, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p1y1, nbx - 1, j, nbz - 1, nbx, nby, nbz, np, meshDS);
|
||
|
||
GetPoint(p00z, 0, 0, k, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p01z, 0, nby - 1, k, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p10z, nbx - 1, 0, k, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p11z, nbx - 1, nby - 1, k, nbx, nby, nbz, np, meshDS);
|
||
|
||
// 12 points on faces
|
||
GetPoint(pxy0, i, j, 0, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(pxy1, i, j, nbz - 1, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(px0z, i, 0, k, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(px1z, i, nby - 1, k, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p0yz, 0, j, k, nbx, nby, nbz, np, meshDS);
|
||
GetPoint(p1yz, nbx - 1, j, k, nbx, nby, nbz, np, meshDS);
|
||
|
||
int ijk = k * nbx * nby + j * nbx + i;
|
||
double x = double (i) / double (nbx - 1); // *** seulement
|
||
double y = double (j) / double (nby - 1); // *** maillage
|
||
double z = double (k) / double (nbz - 1); // *** regulier
|
||
|
||
Pt3 X;
|
||
for (int i = 0; i < 3; i++) {
|
||
X[i] = (1 - x) * p0yz[i] + x * p1yz[i]
|
||
+ (1 - y) * px0z[i] + y * px1z[i]
|
||
+ (1 - z) * pxy0[i] + z * pxy1[i]
|
||
- (1 - x) * ((1 - y) * p00z[i] + y * p01z[i])
|
||
- x * ((1 - y) * p10z[i] + y * p11z[i])
|
||
- (1 - y) * ((1 - z) * px00[i] + z * px01[i])
|
||
- y * ((1 - z) * px10[i] + z * px11[i])
|
||
- (1 - z) * ((1 - x) * p0y0[i] + x * p1y0[i])
|
||
- z * ((1 - x) * p0y1[i] + x * p1y1[i])
|
||
+ (1 - x) * ((1 - y) * ((1 - z) * p000[i] + z * p001[i])
|
||
+ y * ((1 - z) * p010[i] + z * p011[i]))
|
||
+ x * ((1 - y) * ((1 - z) * p100[i] + z * p101[i])
|
||
+ y * ((1 - z) * p110[i] + z * p111[i]));
|
||
}
|
||
|
||
SMDS_MeshNode * node = meshDS->AddNode(X[0], X[1], X[2]);
|
||
np[ijk].node = node;
|
||
meshDS->SetNodeInVolume(node, shapeID);
|
||
}
|
||
}
|
||
}
|
||
|
||
// find orientation of furute volumes according to MED convention
|
||
vector< bool > forward( nbx * nby );
|
||
SMDS_VolumeTool vTool;
|
||
for (int i = 0; i < nbx - 1; i++) {
|
||
for (int j = 0; j < nby - 1; j++) {
|
||
int n1 = j * nbx + i;
|
||
int n2 = j * nbx + i + 1;
|
||
int n3 = (j + 1) * nbx + i + 1;
|
||
int n4 = (j + 1) * nbx + i;
|
||
int n5 = nbx * nby + j * nbx + i;
|
||
int n6 = nbx * nby + j * nbx + i + 1;
|
||
int n7 = nbx * nby + (j + 1) * nbx + i + 1;
|
||
int n8 = nbx * nby + (j + 1) * nbx + i;
|
||
|
||
SMDS_VolumeOfNodes tmpVol (np[n1].node,np[n2].node,np[n3].node,np[n4].node,
|
||
np[n5].node,np[n6].node,np[n7].node,np[n8].node);
|
||
vTool.Set( &tmpVol );
|
||
forward[ n1 ] = vTool.IsForward();
|
||
}
|
||
}
|
||
|
||
//2.1 - for each node of the cube (less 3 *1 Faces):
|
||
// - store hexahedron in SMESHDS
|
||
MESSAGE("Storing hexahedron into the DS");
|
||
for (int i = 0; i < nbx - 1; i++) {
|
||
for (int j = 0; j < nby - 1; j++) {
|
||
bool isForw = forward.at( j * nbx + i );
|
||
for (int k = 0; k < nbz - 1; k++) {
|
||
int n1 = k * nbx * nby + j * nbx + i;
|
||
int n2 = k * nbx * nby + j * nbx + i + 1;
|
||
int n3 = k * nbx * nby + (j + 1) * nbx + i + 1;
|
||
int n4 = k * nbx * nby + (j + 1) * nbx + i;
|
||
int n5 = (k + 1) * nbx * nby + j * nbx + i;
|
||
int n6 = (k + 1) * nbx * nby + j * nbx + i + 1;
|
||
int n7 = (k + 1) * nbx * nby + (j + 1) * nbx + i + 1;
|
||
int n8 = (k + 1) * nbx * nby + (j + 1) * nbx + i;
|
||
|
||
SMDS_MeshVolume * elt;
|
||
if ( isForw ) {
|
||
elt = aTool.AddVolume(np[n1].node, np[n2].node,
|
||
np[n3].node, np[n4].node,
|
||
np[n5].node, np[n6].node,
|
||
np[n7].node, np[n8].node);
|
||
}
|
||
else {
|
||
elt = aTool.AddVolume(np[n1].node, np[n4].node,
|
||
np[n3].node, np[n2].node,
|
||
np[n5].node, np[n8].node,
|
||
np[n7].node, np[n6].node);
|
||
}
|
||
|
||
meshDS->SetMeshElementOnShape(elt, shapeID);
|
||
}
|
||
}
|
||
}
|
||
if ( np ) delete [] np;
|
||
return ClearAndReturn( aQuads, true );
|
||
}
|
||
|
||
|
||
//=============================================================================
|
||
/*!
|
||
* Evaluate
|
||
*/
|
||
//=============================================================================
|
||
|
||
bool StdMeshers_Hexa_3D::Evaluate(SMESH_Mesh & aMesh,
|
||
const TopoDS_Shape & aShape,
|
||
MapShapeNbElems& aResMap)
|
||
{
|
||
vector < SMESH_subMesh * >meshFaces;
|
||
TopTools_SequenceOfShape aFaces;
|
||
for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) {
|
||
aFaces.Append(exp.Current());
|
||
SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
|
||
ASSERT(aSubMesh);
|
||
meshFaces.push_back(aSubMesh);
|
||
}
|
||
if (meshFaces.size() != 6) {
|
||
//return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block");
|
||
static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen());
|
||
return compositeHexa.Evaluate(aMesh, aShape, aResMap);
|
||
}
|
||
|
||
int i = 0;
|
||
for(; i<6; i++) {
|
||
//TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
|
||
TopoDS_Shape aFace = aFaces.Value(i+1);
|
||
SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
|
||
if( !algo ) {
|
||
std::vector<int> aResVec(SMDSEntity_Last);
|
||
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
|
||
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
|
||
aResMap.insert(std::make_pair(sm,aResVec));
|
||
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
|
||
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
|
||
return false;
|
||
}
|
||
string algoName = algo->GetName();
|
||
bool isAllQuad = false;
|
||
if (algoName == "Quadrangle_2D") {
|
||
MapShapeNbElemsItr anIt = aResMap.find(meshFaces[i]);
|
||
if( anIt == aResMap.end() ) continue;
|
||
std::vector<int> aVec = (*anIt).second;
|
||
int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
|
||
if( nbtri == 0 )
|
||
isAllQuad = true;
|
||
}
|
||
if ( ! isAllQuad ) {
|
||
return EvaluatePentahedralMesh(aMesh, aShape, aResMap);
|
||
}
|
||
}
|
||
|
||
// find number of 1d elems for 1 face
|
||
int nb1d = 0;
|
||
TopTools_MapOfShape Edges1;
|
||
bool IsQuadratic = false;
|
||
bool IsFirst = true;
|
||
for (TopExp_Explorer exp(aFaces.Value(1), TopAbs_EDGE); exp.More(); exp.Next()) {
|
||
Edges1.Add(exp.Current());
|
||
SMESH_subMesh *sm = aMesh.GetSubMesh(exp.Current());
|
||
if( sm ) {
|
||
MapShapeNbElemsItr anIt = aResMap.find(sm);
|
||
if( anIt == aResMap.end() ) continue;
|
||
std::vector<int> aVec = (*anIt).second;
|
||
nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
|
||
if(IsFirst) {
|
||
IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
|
||
IsFirst = false;
|
||
}
|
||
}
|
||
}
|
||
// find face opposite to 1 face
|
||
int OppNum = 0;
|
||
for(i=2; i<=6; i++) {
|
||
bool IsOpposite = true;
|
||
for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) {
|
||
if( Edges1.Contains(exp.Current()) ) {
|
||
IsOpposite = false;
|
||
break;
|
||
}
|
||
}
|
||
if(IsOpposite) {
|
||
OppNum = i;
|
||
break;
|
||
}
|
||
}
|
||
// find number of 2d elems on side faces
|
||
int nb2d = 0;
|
||
for(i=2; i<=6; i++) {
|
||
if( i == OppNum ) continue;
|
||
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[i-1] );
|
||
if( anIt == aResMap.end() ) continue;
|
||
std::vector<int> aVec = (*anIt).second;
|
||
nb2d += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
|
||
}
|
||
|
||
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[0] );
|
||
std::vector<int> aVec = (*anIt).second;
|
||
int nb2d_face0 = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
|
||
int nb0d_face0 = aVec[SMDSEntity_Node];
|
||
|
||
std::vector<int> aResVec(SMDSEntity_Last);
|
||
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
|
||
if(IsQuadratic) {
|
||
aResVec[SMDSEntity_Quad_Hexa] = nb2d_face0 * ( nb2d/nb1d );
|
||
int nb1d_face0_int = ( nb2d_face0*4 - nb1d ) / 2;
|
||
aResVec[SMDSEntity_Node] = nb0d_face0 * ( 2*nb2d/nb1d - 1 ) - nb1d_face0_int * nb2d/nb1d;
|
||
}
|
||
else {
|
||
aResVec[SMDSEntity_Node] = nb0d_face0 * ( nb2d/nb1d - 1 );
|
||
aResVec[SMDSEntity_Hexa] = nb2d_face0 * ( nb2d/nb1d );
|
||
}
|
||
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
|
||
aResMap.insert(std::make_pair(sm,aResVec));
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
//=============================================================================
|
||
/*!
|
||
*
|
||
*/
|
||
//=============================================================================
|
||
|
||
void StdMeshers_Hexa_3D::GetPoint(Pt3 p, int i, int j, int k, int nbx, int nby, int nbz,
|
||
Point3DStruct * np, const SMESHDS_Mesh * meshDS)
|
||
{
|
||
int ijk = k * nbx * nby + j * nbx + i;
|
||
const SMDS_MeshNode * node = np[ijk].node;
|
||
p[0] = node->X();
|
||
p[1] = node->Y();
|
||
p[2] = node->Z();
|
||
//MESSAGE(" "<<i<<" "<<j<<" "<<k<<" "<<p[0]<<" "<<p[1]<<" "<<p[2]);
|
||
}
|
||
|
||
//=============================================================================
|
||
/*!
|
||
*
|
||
*/
|
||
//=============================================================================
|
||
|
||
int StdMeshers_Hexa_3D::GetFaceIndex(SMESH_Mesh & aMesh,
|
||
const TopoDS_Shape & aShape,
|
||
const vector < SMESH_subMesh * >&meshFaces,
|
||
const TopoDS_Vertex & V0,
|
||
const TopoDS_Vertex & V1,
|
||
const TopoDS_Vertex & V2, const TopoDS_Vertex & V3)
|
||
{
|
||
//MESSAGE("StdMeshers_Hexa_3D::GetFaceIndex");
|
||
int faceIndex = -1;
|
||
for (int i = 1; i < 6; i++)
|
||
{
|
||
const TopoDS_Shape & aFace = meshFaces[i]->GetSubShape();
|
||
//const TopoDS_Face& F = TopoDS::Face(aFace);
|
||
TopTools_IndexedMapOfShape M;
|
||
TopExp::MapShapes(aFace, TopAbs_VERTEX, M);
|
||
bool verticesInShape = false;
|
||
if (M.Contains(V0))
|
||
if (M.Contains(V1))
|
||
if (M.Contains(V2))
|
||
if (M.Contains(V3))
|
||
verticesInShape = true;
|
||
if (verticesInShape)
|
||
{
|
||
faceIndex = i;
|
||
break;
|
||
}
|
||
}
|
||
//IPAL21120 ASSERT(faceIndex > 0);
|
||
//SCRUTE(faceIndex);
|
||
return faceIndex;
|
||
}
|
||
|
||
//=============================================================================
|
||
/*!
|
||
*
|
||
*/
|
||
//=============================================================================
|
||
|
||
TopoDS_Edge
|
||
StdMeshers_Hexa_3D::EdgeNotInFace(SMESH_Mesh & aMesh,
|
||
const TopoDS_Shape & aShape,
|
||
const TopoDS_Face & aFace,
|
||
const TopoDS_Vertex & aVertex,
|
||
const TopTools_IndexedDataMapOfShapeListOfShape & MS)
|
||
{
|
||
//MESSAGE("StdMeshers_Hexa_3D::EdgeNotInFace");
|
||
TopTools_IndexedDataMapOfShapeListOfShape MF;
|
||
TopExp::MapShapesAndAncestors(aFace, TopAbs_VERTEX, TopAbs_EDGE, MF);
|
||
const TopTools_ListOfShape & ancestorsInSolid = MS.FindFromKey(aVertex);
|
||
const TopTools_ListOfShape & ancestorsInFace = MF.FindFromKey(aVertex);
|
||
// SCRUTE(ancestorsInSolid.Extent());
|
||
// SCRUTE(ancestorsInFace.Extent());
|
||
ASSERT(ancestorsInSolid.Extent() == 6); // 6 (edges doublees)
|
||
ASSERT(ancestorsInFace.Extent() == 2);
|
||
|
||
TopoDS_Edge E;
|
||
E.Nullify();
|
||
TopTools_ListIteratorOfListOfShape its(ancestorsInSolid);
|
||
for (; its.More(); its.Next())
|
||
{
|
||
TopoDS_Shape ancestor = its.Value();
|
||
TopTools_ListIteratorOfListOfShape itf(ancestorsInFace);
|
||
bool isInFace = false;
|
||
for (; itf.More(); itf.Next())
|
||
{
|
||
TopoDS_Shape ancestorInFace = itf.Value();
|
||
if (ancestorInFace.IsSame(ancestor))
|
||
{
|
||
isInFace = true;
|
||
break;
|
||
}
|
||
}
|
||
if (!isInFace)
|
||
{
|
||
E = TopoDS::Edge(ancestor);
|
||
break;
|
||
}
|
||
}
|
||
return E;
|
||
}
|
||
|
||
//=============================================================================
|
||
/*!
|
||
*
|
||
*/
|
||
//=============================================================================
|
||
|
||
void StdMeshers_Hexa_3D::GetConv2DCoefs(const faceQuadStruct & quad,
|
||
const TopoDS_Shape & aShape,
|
||
const TopoDS_Vertex & V0,
|
||
const TopoDS_Vertex & V1,
|
||
const TopoDS_Vertex & V2, const TopoDS_Vertex & V3, Conv2DStruct & conv)
|
||
{
|
||
// MESSAGE("StdMeshers_Hexa_3D::GetConv2DCoefs");
|
||
// const TopoDS_Face & F = TopoDS::Face(aShape);
|
||
// TopoDS_Edge E = quad.edge[0];
|
||
// double f, l;
|
||
// Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
|
||
// TopoDS_Vertex VFirst, VLast;
|
||
// TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l
|
||
// bool isForward = (((l - f) * (quad.last[0] - quad.first[0])) > 0);
|
||
TopoDS_Vertex VA, VB;
|
||
// if (isForward)
|
||
// {
|
||
// VA = VFirst;
|
||
// VB = VLast;
|
||
// }
|
||
// else
|
||
// {
|
||
// VA = VLast;
|
||
// VB = VFirst;
|
||
// }
|
||
VA = quad.side[0]->FirstVertex();
|
||
VB = quad.side[0]->LastVertex();
|
||
|
||
int a1, b1, c1, a2, b2, c2;
|
||
if (VA.IsSame(V0))
|
||
if (VB.IsSame(V1))
|
||
{
|
||
a1 = 1;
|
||
b1 = 0;
|
||
c1 = 0; // x
|
||
a2 = 0;
|
||
b2 = 1;
|
||
c2 = 0; // y
|
||
}
|
||
else
|
||
{
|
||
ASSERT(VB.IsSame(V3));
|
||
a1 = 0;
|
||
b1 = 1;
|
||
c1 = 0; // y
|
||
a2 = 1;
|
||
b2 = 0;
|
||
c2 = 0; // x
|
||
}
|
||
if (VA.IsSame(V1))
|
||
if (VB.IsSame(V2))
|
||
{
|
||
a1 = 0;
|
||
b1 = -1;
|
||
c1 = 1; // 1-y
|
||
a2 = 1;
|
||
b2 = 0;
|
||
c2 = 0; // x
|
||
}
|
||
else
|
||
{
|
||
ASSERT(VB.IsSame(V0));
|
||
a1 = -1;
|
||
b1 = 0;
|
||
c1 = 1; // 1-x
|
||
a2 = 0;
|
||
b2 = 1;
|
||
c2 = 0; // y
|
||
}
|
||
if (VA.IsSame(V2))
|
||
if (VB.IsSame(V3))
|
||
{
|
||
a1 = -1;
|
||
b1 = 0;
|
||
c1 = 1; // 1-x
|
||
a2 = 0;
|
||
b2 = -1;
|
||
c2 = 1; // 1-y
|
||
}
|
||
else
|
||
{
|
||
ASSERT(VB.IsSame(V1));
|
||
a1 = 0;
|
||
b1 = -1;
|
||
c1 = 1; // 1-y
|
||
a2 = -1;
|
||
b2 = 0;
|
||
c2 = 1; // 1-x
|
||
}
|
||
if (VA.IsSame(V3))
|
||
if (VB.IsSame(V0))
|
||
{
|
||
a1 = 0;
|
||
b1 = 1;
|
||
c1 = 0; // y
|
||
a2 = -1;
|
||
b2 = 0;
|
||
c2 = 1; // 1-x
|
||
}
|
||
else
|
||
{
|
||
ASSERT(VB.IsSame(V2));
|
||
a1 = 1;
|
||
b1 = 0;
|
||
c1 = 0; // x
|
||
a2 = 0;
|
||
b2 = -1;
|
||
c2 = 1; // 1-y
|
||
}
|
||
// MESSAGE("X = " << c1 << "+ " << a1 << "*x + " << b1 << "*y");
|
||
// MESSAGE("Y = " << c2 << "+ " << a2 << "*x + " << b2 << "*y");
|
||
conv.a1 = a1;
|
||
conv.b1 = b1;
|
||
conv.c1 = c1;
|
||
conv.a2 = a2;
|
||
conv.b2 = b2;
|
||
conv.c2 = c2;
|
||
|
||
int nbdown = quad.side[0]->NbPoints();
|
||
int nbright = quad.side[1]->NbPoints();
|
||
conv.ia = int (a1);
|
||
conv.ib = int (b1);
|
||
conv.ic =
|
||
int (c1 * a1 * a1) * (nbdown - 1) + int (c1 * b1 * b1) * (nbright - 1);
|
||
conv.ja = int (a2);
|
||
conv.jb = int (b2);
|
||
conv.jc =
|
||
int (c2 * a2 * a2) * (nbdown - 1) + int (c2 * b2 * b2) * (nbright - 1);
|
||
// MESSAGE("I " << conv.ia << " " << conv.ib << " " << conv.ic);
|
||
// MESSAGE("J " << conv.ja << " " << conv.jb << " " << conv.jc);
|
||
}
|
||
|
||
//================================================================================
|
||
/*!
|
||
* \brief Find a vertex opposite to the given vertex of aQuads[0]
|
||
* \param aVertex - the vertex
|
||
* \param aFace - the face aVertex belongs to
|
||
* \param aQuads - quads
|
||
* \retval TopoDS_Vertex - found vertex
|
||
*/
|
||
//================================================================================
|
||
|
||
TopoDS_Vertex StdMeshers_Hexa_3D::OppositeVertex(const TopoDS_Vertex& aVertex,
|
||
const TopTools_IndexedMapOfShape& aQuads0Vertices,
|
||
FaceQuadStruct* aQuads[6])
|
||
{
|
||
int i, j;
|
||
for ( i = 1; i < 6; ++i )
|
||
{
|
||
TopoDS_Vertex VV[] = { aQuads[i]->side[0]->FirstVertex(),
|
||
aQuads[i]->side[0]->LastVertex() ,
|
||
aQuads[i]->side[2]->LastVertex() ,
|
||
aQuads[i]->side[2]->FirstVertex() };
|
||
for ( j = 0; j < 4; ++j )
|
||
if ( aVertex.IsSame( VV[ j ]))
|
||
break;
|
||
if ( j < 4 ) {
|
||
int jPrev = j ? j - 1 : 3;
|
||
int jNext = (j + 1) % 4;
|
||
if ( aQuads0Vertices.Contains( VV[ jPrev ] ))
|
||
return VV[ jNext ];
|
||
else
|
||
return VV[ jPrev ];
|
||
}
|
||
}
|
||
return TopoDS_Vertex();
|
||
}
|
||
|
||
//modified by NIZNHY-PKV Wed Nov 17 15:34:13 2004 f
|
||
///////////////////////////////////////////////////////////////////////////////
|
||
//ZZ
|
||
//#include <stdio.h>
|
||
|
||
//=======================================================================
|
||
//function : ComputePentahedralMesh
|
||
//purpose :
|
||
//=======================================================================
|
||
|
||
SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh & aMesh,
|
||
const TopoDS_Shape & aShape)
|
||
{
|
||
//printf(" ComputePentahedralMesh HERE\n");
|
||
//
|
||
bool bOK;
|
||
SMESH_ComputeErrorPtr err = SMESH_ComputeError::New();
|
||
//int iErr;
|
||
StdMeshers_Penta_3D anAlgo;
|
||
//
|
||
bOK=anAlgo.Compute(aMesh, aShape);
|
||
//
|
||
err = anAlgo.GetComputeError();
|
||
//
|
||
if ( !bOK && anAlgo.ErrorStatus() == 5 )
|
||
{
|
||
static StdMeshers_Prism_3D * aPrism3D = 0;
|
||
if ( !aPrism3D ) {
|
||
SMESH_Gen* gen = aMesh.GetGen();
|
||
aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), 0, gen );
|
||
}
|
||
SMESH_Hypothesis::Hypothesis_Status aStatus;
|
||
if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) {
|
||
aPrism3D->InitComputeError();
|
||
bOK = aPrism3D->Compute( aMesh, aShape );
|
||
err = aPrism3D->GetComputeError();
|
||
}
|
||
}
|
||
return err;
|
||
}
|
||
|
||
|
||
//=======================================================================
|
||
//function : EvaluatePentahedralMesh
|
||
//purpose :
|
||
//=======================================================================
|
||
|
||
bool EvaluatePentahedralMesh(SMESH_Mesh & aMesh,
|
||
const TopoDS_Shape & aShape,
|
||
MapShapeNbElems& aResMap)
|
||
{
|
||
StdMeshers_Penta_3D anAlgo;
|
||
bool bOK = anAlgo.Evaluate(aMesh, aShape, aResMap);
|
||
|
||
//err = anAlgo.GetComputeError();
|
||
//if ( !bOK && anAlgo.ErrorStatus() == 5 )
|
||
if( !bOK ) {
|
||
static StdMeshers_Prism_3D * aPrism3D = 0;
|
||
if ( !aPrism3D ) {
|
||
SMESH_Gen* gen = aMesh.GetGen();
|
||
aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), 0, gen );
|
||
}
|
||
SMESH_Hypothesis::Hypothesis_Status aStatus;
|
||
if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) {
|
||
return aPrism3D->Evaluate(aMesh, aShape, aResMap);
|
||
}
|
||
}
|
||
|
||
return bOK;
|
||
}
|
||
|
||
|