smesh/src/StdMeshers/StdMeshers_Hexa_3D.cxx

1216 lines
43 KiB
C++
Raw Blame History

// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementaion of SMESH idl descriptions
// File : StdMeshers_Hexa_3D.cxx
// Moved here from SMESH_Hexa_3D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
//
#include "StdMeshers_Hexa_3D.hxx"
#include "StdMeshers_CompositeHexa_3D.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "StdMeshers_Penta_3D.hxx"
#include "StdMeshers_Prism_3D.hxx"
#include "StdMeshers_Quadrangle_2D.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_Comment.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_VolumeTool.hxx"
#include "SMDS_VolumeOfNodes.hxx"
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_SequenceOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <gp_Pnt2d.hxx>
#include "utilities.h"
#include "Utils_ExceptHandlers.hxx"
typedef SMESH_Comment TComm;
using namespace std;
static SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh &,
const TopoDS_Shape &);
static bool EvaluatePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &,
MapShapeNbElems &);
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Hexa_3D::StdMeshers_Hexa_3D(int hypId, int studyId, SMESH_Gen * gen)
:SMESH_3D_Algo(hypId, studyId, gen)
{
MESSAGE("StdMeshers_Hexa_3D::StdMeshers_Hexa_3D");
_name = "Hexa_3D";
_shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type
}
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D()
{
MESSAGE("StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D");
}
//================================================================================
/*!
* \brief Clear fields and return the argument
* \param res - the value to return
* \retval bool - the argument value
*/
//================================================================================
bool StdMeshers_Hexa_3D::ClearAndReturn(FaceQuadStruct* theQuads[6], const bool res)
{
for (int i = 0; i < 6; i++) {
delete theQuads[i];
theQuads[i] = NULL;
}
return res;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Hexa_3D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
// check nb of faces in the shape
/* PAL16229
aStatus = SMESH_Hypothesis::HYP_BAD_GEOMETRY;
int nbFaces = 0;
for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next())
if ( ++nbFaces > 6 )
break;
if ( nbFaces != 6 )
return false;
*/
aStatus = SMESH_Hypothesis::HYP_OK;
return true;
}
//=======================================================================
//function : isCloser
//purpose :
//=======================================================================
inline bool isCloser(const int i, const int j, const int nbhoriz,
const FaceQuadStruct* quad, const gp_Pnt2d uv,
double & minDist)
{
int ij = j * nbhoriz + i;
gp_Pnt2d uv2( quad->uv_grid[ij].u, quad->uv_grid[ij].v );
double dist = uv.SquareDistance( uv2 );
if ( dist < minDist ) {
minDist = dist;
return true;
}
return false;
}
//=======================================================================
//function : findIJ
//purpose : return i,j of the node
//=======================================================================
static bool findIJ (const SMDS_MeshNode* node, const FaceQuadStruct * quad, int& I, int& J)
{
const SMDS_FacePosition* fpos =
static_cast<const SMDS_FacePosition*>(node->GetPosition().get());
if ( ! fpos ) return false;
gp_Pnt2d uv( fpos->GetUParameter(), fpos->GetVParameter() );
double minDist = DBL_MAX;
const int nbhoriz = quad->side[0]->NbPoints();
const int nbvertic = quad->side[1]->NbPoints();
I = nbhoriz/2; J = nbvertic/2;
int oldI, oldJ;
do {
oldI = I; oldJ = J;
while ( I + 2 < nbhoriz && isCloser( I + 1, J, nbhoriz, quad, uv, minDist ))
I += 1;
if ( I == oldI )
while ( I - 1 > 0 && isCloser( I - 1, J, nbhoriz, quad, uv, minDist ))
I -= 1;
if ( minDist < DBL_MIN )
break;
while ( J + 2 < nbvertic && isCloser( I, J + 1, nbhoriz, quad, uv, minDist ))
J += 1;
if ( J == oldJ )
while ( J - 1 > 0 && isCloser( I, J - 1, nbhoriz, quad, uv, minDist ))
J -= 1;
if ( minDist < DBL_MIN )
break;
} while ( I != oldI || J != oldJ );
if ( minDist > DBL_MIN ) {
for (int i = 1; i < nbhoriz - 1; i++)
for (int j = 1; j < nbvertic - 1; j++)
if ( isCloser( i, j, nbhoriz, quad, uv, minDist ))
I = i, J = j;
}
return true;
}
//=============================================================================
/*!
* Hexahedron mesh on hexaedron like form
* -0. - shape and face mesh verification
* -1. - identify faces and vertices of the "cube"
* -2. - Algorithm from:
* "Application de l'interpolation transfinie <20> la cr<63>ation de maillages
* C0 ou G1 continus sur des triangles, quadrangles, tetraedres, pentaedres
* et hexaedres d<>form<72>s."
* Alain PERONNET - 8 janvier 1999
*/
//=============================================================================
bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape)// throw(SALOME_Exception)
{
// PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside
//Unexpect aCatch(SalomeException);
MESSAGE("StdMeshers_Hexa_3D::Compute");
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
// 0. - shape and face mesh verification
// 0.1 - shape must be a solid (or a shell) with 6 faces
vector < SMESH_subMesh * >meshFaces;
for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) {
SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
ASSERT(aSubMesh);
meshFaces.push_back(aSubMesh);
}
if (meshFaces.size() != 6) {
//return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block");
static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen());
if ( !compositeHexa.Compute( aMesh, aShape ))
return error( compositeHexa.GetComputeError() );
return true;
}
// 0.2 - is each face meshed with Quadrangle_2D? (so, with a wire of 4 edges)
// tool for working with quadratic elements
SMESH_MesherHelper aTool (aMesh);
_quadraticMesh = aTool.IsQuadraticSubMesh(aShape);
// cube structure
typedef struct cubeStruct
{
TopoDS_Vertex V000;
TopoDS_Vertex V001;
TopoDS_Vertex V010;
TopoDS_Vertex V011;
TopoDS_Vertex V100;
TopoDS_Vertex V101;
TopoDS_Vertex V110;
TopoDS_Vertex V111;
faceQuadStruct* quad_X0;
faceQuadStruct* quad_X1;
faceQuadStruct* quad_Y0;
faceQuadStruct* quad_Y1;
faceQuadStruct* quad_Z0;
faceQuadStruct* quad_Z1;
Point3DStruct* np; // normalised 3D coordinates
} CubeStruct;
CubeStruct aCube;
// bounding faces
FaceQuadStruct* aQuads[6];
for (int i = 0; i < 6; i++)
aQuads[i] = 0;
for (int i = 0; i < 6; i++)
{
TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
string algoName = algo->GetName();
bool isAllQuad = false;
if (algoName == "Quadrangle_2D") {
SMESHDS_SubMesh * sm = meshDS->MeshElements( aFace );
if ( sm ) {
isAllQuad = true;
SMDS_ElemIteratorPtr eIt = sm->GetElements();
while ( isAllQuad && eIt->more() ) {
const SMDS_MeshElement* elem = eIt->next();
isAllQuad = ( elem->NbNodes()==4 ||(_quadraticMesh && elem->NbNodes()==8) );
}
}
}
if ( ! isAllQuad ) {
SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
return ClearAndReturn( aQuads, error(err));
}
StdMeshers_Quadrangle_2D *quadAlgo =
dynamic_cast < StdMeshers_Quadrangle_2D * >(algo);
ASSERT(quadAlgo);
try {
aQuads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aFace, _quadraticMesh);
if(!aQuads[i]) {
return error( quadAlgo->GetComputeError());
}
}
catch(SALOME_Exception & S_ex) {
return ClearAndReturn( aQuads, error(COMPERR_SLM_EXCEPTION,TComm(S_ex.what()) <<
" Raised by StdMeshers_Quadrangle_2D "
" on face #" << meshDS->ShapeToIndex( aFace )));
}
// 0.2.1 - number of points on the opposite edges must be the same
if (aQuads[i]->side[0]->NbPoints() != aQuads[i]->side[2]->NbPoints() ||
aQuads[i]->side[1]->NbPoints() != aQuads[i]->side[3]->NbPoints()
/*aQuads[i]->side[0]->NbEdges() != 1 ||
aQuads[i]->side[1]->NbEdges() != 1 ||
aQuads[i]->side[2]->NbEdges() != 1 ||
aQuads[i]->side[3]->NbEdges() != 1*/) {
MESSAGE("different number of points on the opposite edges of face " << i);
// Try to go into penta algorithm 'cause it has been improved.
SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
return ClearAndReturn( aQuads, error(err));
}
}
// 1. - identify faces and vertices of the "cube"
// 1.1 - ancestor maps vertex->edges in the cube
// TopTools_IndexedDataMapOfShapeListOfShape MS;
// TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, MS);
// 1.2 - first face is choosen as face Y=0 of the unit cube
const TopoDS_Shape & aFace = meshFaces[0]->GetSubShape();
//const TopoDS_Face & F = TopoDS::Face(aFace);
// 1.3 - identify the 4 vertices of the face Y=0: V000, V100, V101, V001
aCube.V000 = aQuads[0]->side[0]->FirstVertex(); // will be (0,0,0) on the unit cube
aCube.V100 = aQuads[0]->side[0]->LastVertex(); // will be (1,0,0) on the unit cube
aCube.V001 = aQuads[0]->side[2]->FirstVertex(); // will be (0,0,1) on the unit cube
aCube.V101 = aQuads[0]->side[2]->LastVertex(); // will be (1,0,1) on the unit cube
TopTools_IndexedMapOfShape MV0;
TopExp::MapShapes(aFace, TopAbs_VERTEX, MV0);
aCube.V010 = OppositeVertex( aCube.V000, MV0, aQuads);
aCube.V110 = OppositeVertex( aCube.V100, MV0, aQuads);
aCube.V011 = OppositeVertex( aCube.V001, MV0, aQuads);
aCube.V111 = OppositeVertex( aCube.V101, MV0, aQuads);
// 1.6 - find remaining faces given 4 vertices
int _indY0 = 0;
int _indY1 = GetFaceIndex(aMesh, aShape, meshFaces,
aCube.V010, aCube.V011, aCube.V110, aCube.V111);
int _indZ0 = GetFaceIndex(aMesh, aShape, meshFaces,
aCube.V000, aCube.V010, aCube.V100, aCube.V110);
int _indZ1 = GetFaceIndex(aMesh, aShape, meshFaces,
aCube.V001, aCube.V011, aCube.V101, aCube.V111);
int _indX0 = GetFaceIndex(aMesh, aShape, meshFaces,
aCube.V000, aCube.V001, aCube.V010, aCube.V011);
int _indX1 = GetFaceIndex(aMesh, aShape, meshFaces,
aCube.V100, aCube.V101, aCube.V110, aCube.V111);
// IPAL21120: SIGSEGV on Meshing attached Compound with Automatic Hexadralization
if ( _indY1 < 1 || _indZ0 < 1 || _indZ1 < 1 || _indX0 < 1 || _indX1 < 1 )
return error(COMPERR_BAD_SHAPE);
aCube.quad_Y0 = aQuads[_indY0];
aCube.quad_Y1 = aQuads[_indY1];
aCube.quad_Z0 = aQuads[_indZ0];
aCube.quad_Z1 = aQuads[_indZ1];
aCube.quad_X0 = aQuads[_indX0];
aCube.quad_X1 = aQuads[_indX1];
// 1.7 - get convertion coefs from face 2D normalized to 3D normalized
Conv2DStruct cx0; // for face X=0
Conv2DStruct cx1; // for face X=1
Conv2DStruct cy0;
Conv2DStruct cy1;
Conv2DStruct cz0;
Conv2DStruct cz1;
GetConv2DCoefs(*aCube.quad_X0, meshFaces[_indX0]->GetSubShape(),
aCube.V000, aCube.V010, aCube.V011, aCube.V001, cx0);
GetConv2DCoefs(*aCube.quad_X1, meshFaces[_indX1]->GetSubShape(),
aCube.V100, aCube.V110, aCube.V111, aCube.V101, cx1);
GetConv2DCoefs(*aCube.quad_Y0, meshFaces[_indY0]->GetSubShape(),
aCube.V000, aCube.V100, aCube.V101, aCube.V001, cy0);
GetConv2DCoefs(*aCube.quad_Y1, meshFaces[_indY1]->GetSubShape(),
aCube.V010, aCube.V110, aCube.V111, aCube.V011, cy1);
GetConv2DCoefs(*aCube.quad_Z0, meshFaces[_indZ0]->GetSubShape(),
aCube.V000, aCube.V100, aCube.V110, aCube.V010, cz0);
GetConv2DCoefs(*aCube.quad_Z1, meshFaces[_indZ1]->GetSubShape(),
aCube.V001, aCube.V101, aCube.V111, aCube.V011, cz1);
// 1.8 - create a 3D structure for normalized values
int nbx = aCube.quad_Z0->side[0]->NbPoints();
if (cz0.a1 == 0.) nbx = aCube.quad_Z0->side[1]->NbPoints();
int nby = aCube.quad_X0->side[0]->NbPoints();
if (cx0.a1 == 0.) nby = aCube.quad_X0->side[1]->NbPoints();
int nbz = aCube.quad_Y0->side[0]->NbPoints();
if (cy0.a1 != 0.) nbz = aCube.quad_Y0->side[1]->NbPoints();
int i1, j1, nbxyz = nbx * nby * nbz;
Point3DStruct *np = new Point3DStruct[nbxyz];
// 1.9 - store node indexes of faces
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX0]->GetSubShape());
faceQuadStruct *quad = aCube.quad_X0;
int i = 0; // j = x/face , k = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
while(itf->more()) {
const SMDS_MeshNode * node = itf->next();
if(aTool.IsMedium(node))
continue;
if ( !findIJ( node, quad, i1, j1 ))
return ClearAndReturn( aQuads, false );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic; // j = x/face
int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX1]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_X1;
int i = nbx - 1; // j = x/face , k = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
while(itf->more()) {
const SMDS_MeshNode * node = itf->next();
if(aTool.IsMedium(node))
continue;
if ( !findIJ( node, quad, i1, j1 ))
return ClearAndReturn( aQuads, false );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic; // j = x/face
int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY0]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_Y0;
int j = 0; // i = x/face , k = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
while(itf->more()) {
const SMDS_MeshNode * node = itf->next();
if(aTool.IsMedium(node))
continue;
if ( !findIJ( node, quad, i1, j1 ))
return ClearAndReturn( aQuads, false );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic; // i = x/face
int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY1]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_Y1;
int j = nby - 1; // i = x/face , k = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
while(itf->more()) {
const SMDS_MeshNode * node = itf->next();
if(aTool.IsMedium(node))
continue;
if ( !findIJ( node, quad, i1, j1 ))
return ClearAndReturn( aQuads, false );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic; // i = x/face
int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ0]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_Z0;
int k = 0; // i = x/face , j = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
while(itf->more()) {
const SMDS_MeshNode * node = itf->next();
if(aTool.IsMedium(node))
continue;
if ( !findIJ( node, quad, i1, j1 ))
return ClearAndReturn( aQuads, false );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic; // i = x/face
int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc; // j = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ1]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_Z1;
int k = nbz - 1; // i = x/face , j = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
while(itf->more()) {
const SMDS_MeshNode * node = itf->next();
if(aTool.IsMedium(node))
continue;
if ( !findIJ( node, quad, i1, j1 ))
return ClearAndReturn( aQuads, false );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic; // i = x/face
int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc; // j = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
// 2.0 - for each node of the cube:
// - get the 8 points 3D = 8 vertices of the cube
// - get the 12 points 3D on the 12 edges of the cube
// - get the 6 points 3D on the 6 faces with their ID
// - compute the point 3D
// - store the point 3D in SMESHDS, store its ID in 3D structure
int shapeID = meshDS->ShapeToIndex( aShape );
Pt3 p000, p001, p010, p011, p100, p101, p110, p111;
Pt3 px00, px01, px10, px11;
Pt3 p0y0, p0y1, p1y0, p1y1;
Pt3 p00z, p01z, p10z, p11z;
Pt3 pxy0, pxy1, px0z, px1z, p0yz, p1yz;
GetPoint(p000, 0, 0, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p001, 0, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p010, 0, nby - 1, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p011, 0, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p100, nbx - 1, 0, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p101, nbx - 1, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p110, nbx - 1, nby - 1, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p111, nbx - 1, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
for (int i = 1; i < nbx - 1; i++) {
for (int j = 1; j < nby - 1; j++) {
for (int k = 1; k < nbz - 1; k++) {
// *** seulement maillage regulier
// 12 points on edges
GetPoint(px00, i, 0, 0, nbx, nby, nbz, np, meshDS);
GetPoint(px01, i, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(px10, i, nby - 1, 0, nbx, nby, nbz, np, meshDS);
GetPoint(px11, i, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p0y0, 0, j, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p0y1, 0, j, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p1y0, nbx - 1, j, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p1y1, nbx - 1, j, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p00z, 0, 0, k, nbx, nby, nbz, np, meshDS);
GetPoint(p01z, 0, nby - 1, k, nbx, nby, nbz, np, meshDS);
GetPoint(p10z, nbx - 1, 0, k, nbx, nby, nbz, np, meshDS);
GetPoint(p11z, nbx - 1, nby - 1, k, nbx, nby, nbz, np, meshDS);
// 12 points on faces
GetPoint(pxy0, i, j, 0, nbx, nby, nbz, np, meshDS);
GetPoint(pxy1, i, j, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(px0z, i, 0, k, nbx, nby, nbz, np, meshDS);
GetPoint(px1z, i, nby - 1, k, nbx, nby, nbz, np, meshDS);
GetPoint(p0yz, 0, j, k, nbx, nby, nbz, np, meshDS);
GetPoint(p1yz, nbx - 1, j, k, nbx, nby, nbz, np, meshDS);
int ijk = k * nbx * nby + j * nbx + i;
double x = double (i) / double (nbx - 1); // *** seulement
double y = double (j) / double (nby - 1); // *** maillage
double z = double (k) / double (nbz - 1); // *** regulier
Pt3 X;
for (int i = 0; i < 3; i++) {
X[i] = (1 - x) * p0yz[i] + x * p1yz[i]
+ (1 - y) * px0z[i] + y * px1z[i]
+ (1 - z) * pxy0[i] + z * pxy1[i]
- (1 - x) * ((1 - y) * p00z[i] + y * p01z[i])
- x * ((1 - y) * p10z[i] + y * p11z[i])
- (1 - y) * ((1 - z) * px00[i] + z * px01[i])
- y * ((1 - z) * px10[i] + z * px11[i])
- (1 - z) * ((1 - x) * p0y0[i] + x * p1y0[i])
- z * ((1 - x) * p0y1[i] + x * p1y1[i])
+ (1 - x) * ((1 - y) * ((1 - z) * p000[i] + z * p001[i])
+ y * ((1 - z) * p010[i] + z * p011[i]))
+ x * ((1 - y) * ((1 - z) * p100[i] + z * p101[i])
+ y * ((1 - z) * p110[i] + z * p111[i]));
}
SMDS_MeshNode * node = meshDS->AddNode(X[0], X[1], X[2]);
np[ijk].node = node;
meshDS->SetNodeInVolume(node, shapeID);
}
}
}
// find orientation of furute volumes according to MED convention
vector< bool > forward( nbx * nby );
SMDS_VolumeTool vTool;
for (int i = 0; i < nbx - 1; i++) {
for (int j = 0; j < nby - 1; j++) {
int n1 = j * nbx + i;
int n2 = j * nbx + i + 1;
int n3 = (j + 1) * nbx + i + 1;
int n4 = (j + 1) * nbx + i;
int n5 = nbx * nby + j * nbx + i;
int n6 = nbx * nby + j * nbx + i + 1;
int n7 = nbx * nby + (j + 1) * nbx + i + 1;
int n8 = nbx * nby + (j + 1) * nbx + i;
SMDS_VolumeOfNodes tmpVol (np[n1].node,np[n2].node,np[n3].node,np[n4].node,
np[n5].node,np[n6].node,np[n7].node,np[n8].node);
vTool.Set( &tmpVol );
forward[ n1 ] = vTool.IsForward();
}
}
//2.1 - for each node of the cube (less 3 *1 Faces):
// - store hexahedron in SMESHDS
MESSAGE("Storing hexahedron into the DS");
for (int i = 0; i < nbx - 1; i++) {
for (int j = 0; j < nby - 1; j++) {
bool isForw = forward.at( j * nbx + i );
for (int k = 0; k < nbz - 1; k++) {
int n1 = k * nbx * nby + j * nbx + i;
int n2 = k * nbx * nby + j * nbx + i + 1;
int n3 = k * nbx * nby + (j + 1) * nbx + i + 1;
int n4 = k * nbx * nby + (j + 1) * nbx + i;
int n5 = (k + 1) * nbx * nby + j * nbx + i;
int n6 = (k + 1) * nbx * nby + j * nbx + i + 1;
int n7 = (k + 1) * nbx * nby + (j + 1) * nbx + i + 1;
int n8 = (k + 1) * nbx * nby + (j + 1) * nbx + i;
SMDS_MeshVolume * elt;
if ( isForw ) {
elt = aTool.AddVolume(np[n1].node, np[n2].node,
np[n3].node, np[n4].node,
np[n5].node, np[n6].node,
np[n7].node, np[n8].node);
}
else {
elt = aTool.AddVolume(np[n1].node, np[n4].node,
np[n3].node, np[n2].node,
np[n5].node, np[n8].node,
np[n7].node, np[n6].node);
}
meshDS->SetMeshElementOnShape(elt, shapeID);
}
}
}
if ( np ) delete [] np;
return ClearAndReturn( aQuads, true );
}
//=============================================================================
/*!
* Evaluate
*/
//=============================================================================
bool StdMeshers_Hexa_3D::Evaluate(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap)
{
vector < SMESH_subMesh * >meshFaces;
TopTools_SequenceOfShape aFaces;
for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) {
aFaces.Append(exp.Current());
SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
ASSERT(aSubMesh);
meshFaces.push_back(aSubMesh);
}
if (meshFaces.size() != 6) {
//return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block");
static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen());
return compositeHexa.Evaluate(aMesh, aShape, aResMap);
}
int i = 0;
for(; i<6; i++) {
//TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
TopoDS_Shape aFace = aFaces.Value(i+1);
SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
if( !algo ) {
std::vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aResVec));
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
string algoName = algo->GetName();
bool isAllQuad = false;
if (algoName == "Quadrangle_2D") {
MapShapeNbElemsItr anIt = aResMap.find(meshFaces[i]);
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
if( nbtri == 0 )
isAllQuad = true;
}
if ( ! isAllQuad ) {
return EvaluatePentahedralMesh(aMesh, aShape, aResMap);
}
}
// find number of 1d elems for 1 face
int nb1d = 0;
TopTools_MapOfShape Edges1;
bool IsQuadratic = false;
bool IsFirst = true;
for (TopExp_Explorer exp(aFaces.Value(1), TopAbs_EDGE); exp.More(); exp.Next()) {
Edges1.Add(exp.Current());
SMESH_subMesh *sm = aMesh.GetSubMesh(exp.Current());
if( sm ) {
MapShapeNbElemsItr anIt = aResMap.find(sm);
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
if(IsFirst) {
IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
IsFirst = false;
}
}
}
// find face opposite to 1 face
int OppNum = 0;
for(i=2; i<=6; i++) {
bool IsOpposite = true;
for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) {
if( Edges1.Contains(exp.Current()) ) {
IsOpposite = false;
break;
}
}
if(IsOpposite) {
OppNum = i;
break;
}
}
// find number of 2d elems on side faces
int nb2d = 0;
for(i=2; i<=6; i++) {
if( i == OppNum ) continue;
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[i-1] );
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
nb2d += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
}
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[0] );
std::vector<int> aVec = (*anIt).second;
int nb2d_face0 = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
int nb0d_face0 = aVec[SMDSEntity_Node];
std::vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
if(IsQuadratic) {
aResVec[SMDSEntity_Quad_Hexa] = nb2d_face0 * ( nb2d/nb1d );
int nb1d_face0_int = ( nb2d_face0*4 - nb1d ) / 2;
aResVec[SMDSEntity_Node] = nb0d_face0 * ( 2*nb2d/nb1d - 1 ) - nb1d_face0_int * nb2d/nb1d;
}
else {
aResVec[SMDSEntity_Node] = nb0d_face0 * ( nb2d/nb1d - 1 );
aResVec[SMDSEntity_Hexa] = nb2d_face0 * ( nb2d/nb1d );
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aResVec));
return true;
}
//=============================================================================
/*!
*
*/
//=============================================================================
void StdMeshers_Hexa_3D::GetPoint(Pt3 p, int i, int j, int k, int nbx, int nby, int nbz,
Point3DStruct * np, const SMESHDS_Mesh * meshDS)
{
int ijk = k * nbx * nby + j * nbx + i;
const SMDS_MeshNode * node = np[ijk].node;
p[0] = node->X();
p[1] = node->Y();
p[2] = node->Z();
//MESSAGE(" "<<i<<" "<<j<<" "<<k<<" "<<p[0]<<" "<<p[1]<<" "<<p[2]);
}
//=============================================================================
/*!
*
*/
//=============================================================================
int StdMeshers_Hexa_3D::GetFaceIndex(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const vector < SMESH_subMesh * >&meshFaces,
const TopoDS_Vertex & V0,
const TopoDS_Vertex & V1,
const TopoDS_Vertex & V2, const TopoDS_Vertex & V3)
{
//MESSAGE("StdMeshers_Hexa_3D::GetFaceIndex");
int faceIndex = -1;
for (int i = 1; i < 6; i++)
{
const TopoDS_Shape & aFace = meshFaces[i]->GetSubShape();
//const TopoDS_Face& F = TopoDS::Face(aFace);
TopTools_IndexedMapOfShape M;
TopExp::MapShapes(aFace, TopAbs_VERTEX, M);
bool verticesInShape = false;
if (M.Contains(V0))
if (M.Contains(V1))
if (M.Contains(V2))
if (M.Contains(V3))
verticesInShape = true;
if (verticesInShape)
{
faceIndex = i;
break;
}
}
//IPAL21120 ASSERT(faceIndex > 0);
//SCRUTE(faceIndex);
return faceIndex;
}
//=============================================================================
/*!
*
*/
//=============================================================================
TopoDS_Edge
StdMeshers_Hexa_3D::EdgeNotInFace(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const TopoDS_Face & aFace,
const TopoDS_Vertex & aVertex,
const TopTools_IndexedDataMapOfShapeListOfShape & MS)
{
//MESSAGE("StdMeshers_Hexa_3D::EdgeNotInFace");
TopTools_IndexedDataMapOfShapeListOfShape MF;
TopExp::MapShapesAndAncestors(aFace, TopAbs_VERTEX, TopAbs_EDGE, MF);
const TopTools_ListOfShape & ancestorsInSolid = MS.FindFromKey(aVertex);
const TopTools_ListOfShape & ancestorsInFace = MF.FindFromKey(aVertex);
// SCRUTE(ancestorsInSolid.Extent());
// SCRUTE(ancestorsInFace.Extent());
ASSERT(ancestorsInSolid.Extent() == 6); // 6 (edges doublees)
ASSERT(ancestorsInFace.Extent() == 2);
TopoDS_Edge E;
E.Nullify();
TopTools_ListIteratorOfListOfShape its(ancestorsInSolid);
for (; its.More(); its.Next())
{
TopoDS_Shape ancestor = its.Value();
TopTools_ListIteratorOfListOfShape itf(ancestorsInFace);
bool isInFace = false;
for (; itf.More(); itf.Next())
{
TopoDS_Shape ancestorInFace = itf.Value();
if (ancestorInFace.IsSame(ancestor))
{
isInFace = true;
break;
}
}
if (!isInFace)
{
E = TopoDS::Edge(ancestor);
break;
}
}
return E;
}
//=============================================================================
/*!
*
*/
//=============================================================================
void StdMeshers_Hexa_3D::GetConv2DCoefs(const faceQuadStruct & quad,
const TopoDS_Shape & aShape,
const TopoDS_Vertex & V0,
const TopoDS_Vertex & V1,
const TopoDS_Vertex & V2, const TopoDS_Vertex & V3, Conv2DStruct & conv)
{
// MESSAGE("StdMeshers_Hexa_3D::GetConv2DCoefs");
// const TopoDS_Face & F = TopoDS::Face(aShape);
// TopoDS_Edge E = quad.edge[0];
// double f, l;
// Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
// TopoDS_Vertex VFirst, VLast;
// TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l
// bool isForward = (((l - f) * (quad.last[0] - quad.first[0])) > 0);
TopoDS_Vertex VA, VB;
// if (isForward)
// {
// VA = VFirst;
// VB = VLast;
// }
// else
// {
// VA = VLast;
// VB = VFirst;
// }
VA = quad.side[0]->FirstVertex();
VB = quad.side[0]->LastVertex();
int a1, b1, c1, a2, b2, c2;
if (VA.IsSame(V0))
if (VB.IsSame(V1))
{
a1 = 1;
b1 = 0;
c1 = 0; // x
a2 = 0;
b2 = 1;
c2 = 0; // y
}
else
{
ASSERT(VB.IsSame(V3));
a1 = 0;
b1 = 1;
c1 = 0; // y
a2 = 1;
b2 = 0;
c2 = 0; // x
}
if (VA.IsSame(V1))
if (VB.IsSame(V2))
{
a1 = 0;
b1 = -1;
c1 = 1; // 1-y
a2 = 1;
b2 = 0;
c2 = 0; // x
}
else
{
ASSERT(VB.IsSame(V0));
a1 = -1;
b1 = 0;
c1 = 1; // 1-x
a2 = 0;
b2 = 1;
c2 = 0; // y
}
if (VA.IsSame(V2))
if (VB.IsSame(V3))
{
a1 = -1;
b1 = 0;
c1 = 1; // 1-x
a2 = 0;
b2 = -1;
c2 = 1; // 1-y
}
else
{
ASSERT(VB.IsSame(V1));
a1 = 0;
b1 = -1;
c1 = 1; // 1-y
a2 = -1;
b2 = 0;
c2 = 1; // 1-x
}
if (VA.IsSame(V3))
if (VB.IsSame(V0))
{
a1 = 0;
b1 = 1;
c1 = 0; // y
a2 = -1;
b2 = 0;
c2 = 1; // 1-x
}
else
{
ASSERT(VB.IsSame(V2));
a1 = 1;
b1 = 0;
c1 = 0; // x
a2 = 0;
b2 = -1;
c2 = 1; // 1-y
}
// MESSAGE("X = " << c1 << "+ " << a1 << "*x + " << b1 << "*y");
// MESSAGE("Y = " << c2 << "+ " << a2 << "*x + " << b2 << "*y");
conv.a1 = a1;
conv.b1 = b1;
conv.c1 = c1;
conv.a2 = a2;
conv.b2 = b2;
conv.c2 = c2;
int nbdown = quad.side[0]->NbPoints();
int nbright = quad.side[1]->NbPoints();
conv.ia = int (a1);
conv.ib = int (b1);
conv.ic =
int (c1 * a1 * a1) * (nbdown - 1) + int (c1 * b1 * b1) * (nbright - 1);
conv.ja = int (a2);
conv.jb = int (b2);
conv.jc =
int (c2 * a2 * a2) * (nbdown - 1) + int (c2 * b2 * b2) * (nbright - 1);
// MESSAGE("I " << conv.ia << " " << conv.ib << " " << conv.ic);
// MESSAGE("J " << conv.ja << " " << conv.jb << " " << conv.jc);
}
//================================================================================
/*!
* \brief Find a vertex opposite to the given vertex of aQuads[0]
* \param aVertex - the vertex
* \param aFace - the face aVertex belongs to
* \param aQuads - quads
* \retval TopoDS_Vertex - found vertex
*/
//================================================================================
TopoDS_Vertex StdMeshers_Hexa_3D::OppositeVertex(const TopoDS_Vertex& aVertex,
const TopTools_IndexedMapOfShape& aQuads0Vertices,
FaceQuadStruct* aQuads[6])
{
int i, j;
for ( i = 1; i < 6; ++i )
{
TopoDS_Vertex VV[] = { aQuads[i]->side[0]->FirstVertex(),
aQuads[i]->side[0]->LastVertex() ,
aQuads[i]->side[2]->LastVertex() ,
aQuads[i]->side[2]->FirstVertex() };
for ( j = 0; j < 4; ++j )
if ( aVertex.IsSame( VV[ j ]))
break;
if ( j < 4 ) {
int jPrev = j ? j - 1 : 3;
int jNext = (j + 1) % 4;
if ( aQuads0Vertices.Contains( VV[ jPrev ] ))
return VV[ jNext ];
else
return VV[ jPrev ];
}
}
return TopoDS_Vertex();
}
//modified by NIZNHY-PKV Wed Nov 17 15:34:13 2004 f
///////////////////////////////////////////////////////////////////////////////
//ZZ
//#include <stdio.h>
//=======================================================================
//function : ComputePentahedralMesh
//purpose :
//=======================================================================
SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape)
{
//printf(" ComputePentahedralMesh HERE\n");
//
bool bOK;
SMESH_ComputeErrorPtr err = SMESH_ComputeError::New();
//int iErr;
StdMeshers_Penta_3D anAlgo;
//
bOK=anAlgo.Compute(aMesh, aShape);
//
err = anAlgo.GetComputeError();
//
if ( !bOK && anAlgo.ErrorStatus() == 5 )
{
static StdMeshers_Prism_3D * aPrism3D = 0;
if ( !aPrism3D ) {
SMESH_Gen* gen = aMesh.GetGen();
aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), 0, gen );
}
SMESH_Hypothesis::Hypothesis_Status aStatus;
if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) {
aPrism3D->InitComputeError();
bOK = aPrism3D->Compute( aMesh, aShape );
err = aPrism3D->GetComputeError();
}
}
return err;
}
//=======================================================================
//function : EvaluatePentahedralMesh
//purpose :
//=======================================================================
bool EvaluatePentahedralMesh(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap)
{
StdMeshers_Penta_3D anAlgo;
bool bOK = anAlgo.Evaluate(aMesh, aShape, aResMap);
//err = anAlgo.GetComputeError();
//if ( !bOK && anAlgo.ErrorStatus() == 5 )
if( !bOK ) {
static StdMeshers_Prism_3D * aPrism3D = 0;
if ( !aPrism3D ) {
SMESH_Gen* gen = aMesh.GetGen();
aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), 0, gen );
}
SMESH_Hypothesis::Hypothesis_Status aStatus;
if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) {
return aPrism3D->Evaluate(aMesh, aShape, aResMap);
}
}
return bOK;
}