smesh/src/SMESH/SMESH_MesherHelper.cxx
2014-05-21 15:35:24 +04:00

4841 lines
182 KiB
C++

// Copyright (C) 2007-2014 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File: SMESH_MesherHelper.cxx
// Created: 15.02.06 15:22:41
// Author: Sergey KUUL
//
#include "SMESH_MesherHelper.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FaceOfNodes.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_IteratorOnIterators.hxx"
#include "SMDS_VolumeTool.hxx"
#include "SMESH_Block.hxx"
#include "SMESH_MeshAlgos.hxx"
#include "SMESH_ProxyMesh.hxx"
#include "SMESH_subMesh.hxx"
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <BRepTools.hxx>
#include <BRep_Tool.hxx>
#include <Geom2d_Curve.hxx>
#include <GeomAPI_ProjectPointOnCurve.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <Geom_Curve.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_Surface.hxx>
#include <ShapeAnalysis.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_MapIteratorOfMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <gp_Ax3.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Trsf.hxx>
#include <Standard_Failure.hxx>
#include <Standard_ErrorHandler.hxx>
#include <utilities.h>
#include <limits>
using namespace std;
#define RETURN_BAD_RESULT(msg) { MESSAGE(msg); return false; }
namespace {
gp_XYZ XYZ(const SMDS_MeshNode* n) { return gp_XYZ(n->X(), n->Y(), n->Z()); }
enum { U_periodic = 1, V_periodic = 2 };
}
//================================================================================
/*!
* \brief Constructor
*/
//================================================================================
SMESH_MesherHelper::SMESH_MesherHelper(SMESH_Mesh& theMesh)
: myParIndex(0),
myMesh(&theMesh),
myShapeID(0),
myCreateQuadratic(false),
myCreateBiQuadratic(false),
myFixNodeParameters(false)
{
myPar1[0] = myPar2[0] = myPar1[1] = myPar2[1] = 0;
mySetElemOnShape = ( ! myMesh->HasShapeToMesh() );
}
//=======================================================================
//function : ~SMESH_MesherHelper
//purpose :
//=======================================================================
SMESH_MesherHelper::~SMESH_MesherHelper()
{
{
TID2ProjectorOnSurf::iterator i_proj = myFace2Projector.begin();
for ( ; i_proj != myFace2Projector.end(); ++i_proj )
delete i_proj->second;
}
{
TID2ProjectorOnCurve::iterator i_proj = myEdge2Projector.begin();
for ( ; i_proj != myEdge2Projector.end(); ++i_proj )
delete i_proj->second;
}
}
//=======================================================================
//function : IsQuadraticSubMesh
//purpose : Check submesh for given shape: if all elements on this shape
// are quadratic, quadratic elements will be created.
// Also fill myTLinkNodeMap
//=======================================================================
bool SMESH_MesherHelper::IsQuadraticSubMesh(const TopoDS_Shape& aSh)
{
SMESHDS_Mesh* meshDS = GetMeshDS();
// we can create quadratic elements only if all elements
// created on sub-shapes of given shape are quadratic
// also we have to fill myTLinkNodeMap
myCreateQuadratic = true;
mySeamShapeIds.clear();
myDegenShapeIds.clear();
TopAbs_ShapeEnum subType( aSh.ShapeType()==TopAbs_FACE ? TopAbs_EDGE : TopAbs_FACE );
if ( aSh.ShapeType()==TopAbs_COMPOUND )
{
TopoDS_Iterator subIt( aSh );
if ( subIt.More() )
subType = ( subIt.Value().ShapeType()==TopAbs_FACE ) ? TopAbs_EDGE : TopAbs_FACE;
}
SMDSAbs_ElementType elemType( subType==TopAbs_FACE ? SMDSAbs_Face : SMDSAbs_Edge );
int nbOldLinks = myTLinkNodeMap.size();
if ( !myMesh->HasShapeToMesh() )
{
if (( myCreateQuadratic = myMesh->NbFaces( ORDER_QUADRATIC )))
{
SMDS_FaceIteratorPtr fIt = meshDS->facesIterator();
while ( fIt->more() )
AddTLinks( static_cast< const SMDS_MeshFace* >( fIt->next() ));
}
}
else
{
TopExp_Explorer exp( aSh, subType );
TopTools_MapOfShape checkedSubShapes;
for (; exp.More() && myCreateQuadratic; exp.Next()) {
if ( !checkedSubShapes.Add( exp.Current() ))
continue; // needed if aSh is compound of solids
if ( SMESHDS_SubMesh * subMesh = meshDS->MeshElements( exp.Current() )) {
if ( SMDS_ElemIteratorPtr it = subMesh->GetElements() ) {
while(it->more()) {
const SMDS_MeshElement* e = it->next();
if ( e->GetType() != elemType || !e->IsQuadratic() ) {
myCreateQuadratic = false;
break;
}
else {
// fill TLinkNodeMap
switch ( e->NbCornerNodes() ) {
case 2:
AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(2)); break;
case 3:
AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(3));
AddTLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(4));
AddTLinkNode(e->GetNode(2),e->GetNode(0),e->GetNode(5)); break;
case 4:
AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(4));
AddTLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(5));
AddTLinkNode(e->GetNode(2),e->GetNode(3),e->GetNode(6));
AddTLinkNode(e->GetNode(3),e->GetNode(0),e->GetNode(7));
break;
default:
myCreateQuadratic = false;
break;
}
}
}
}
}
}
}
if ( nbOldLinks == myTLinkNodeMap.size() )
myCreateQuadratic = false;
if(!myCreateQuadratic) {
myTLinkNodeMap.clear();
}
SetSubShape( aSh );
return myCreateQuadratic;
}
//=======================================================================
//function : SetSubShape
//purpose : Set geometry to make elements on
//=======================================================================
void SMESH_MesherHelper::SetSubShape(const int aShID)
{
if ( aShID == myShapeID )
return;
if ( aShID > 0 )
SetSubShape( GetMeshDS()->IndexToShape( aShID ));
else
SetSubShape( TopoDS_Shape() );
}
//=======================================================================
//function : SetSubShape
//purpose : Set geometry to create elements on
//=======================================================================
void SMESH_MesherHelper::SetSubShape(const TopoDS_Shape& aSh)
{
if ( myShape.IsSame( aSh ))
return;
myShape = aSh;
mySeamShapeIds.clear();
myDegenShapeIds.clear();
if ( myShape.IsNull() ) {
myShapeID = 0;
return;
}
SMESHDS_Mesh* meshDS = GetMeshDS();
myShapeID = meshDS->ShapeToIndex(aSh);
myParIndex = 0;
// treatment of periodic faces
for ( TopExp_Explorer eF( aSh, TopAbs_FACE ); eF.More(); eF.Next() )
{
const TopoDS_Face& face = TopoDS::Face( eF.Current() );
// if ( surface->IsUPeriodic() || surface->IsVPeriodic() ||
// surface->IsUClosed() || surface->IsVClosed() )
{
//while ( surface->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface )))
//surface = Handle(Geom_RectangularTrimmedSurface)::DownCast( surface )->BasisSurface();
for (TopExp_Explorer exp( face, TopAbs_EDGE ); exp.More(); exp.Next())
{
// look for a seam edge
TopoDS_Edge edge = TopoDS::Edge( exp.Current() );
if ( BRep_Tool::IsClosed( edge, face )) {
// initialize myPar1, myPar2 and myParIndex
gp_Pnt2d uv1, uv2;
BRep_Tool::UVPoints( edge, face, uv1, uv2 );
if ( Abs( uv1.Coord(1) - uv2.Coord(1) ) < Abs( uv1.Coord(2) - uv2.Coord(2) ))
{
double u1 = uv1.Coord(1);
edge.Reverse();
BRep_Tool::UVPoints( edge, face, uv1, uv2 );
double u2 = uv1.Coord(1);
myParIndex |= U_periodic;
myPar1[0] = Min( u1, u2 );
myPar2[0] = Max( u1, u2 );
}
else {
double v1 = uv1.Coord(2);
edge.Reverse();
BRep_Tool::UVPoints( edge, face, uv1, uv2 );
double v2 = uv1.Coord(2);
myParIndex |= V_periodic;
myPar1[1] = Min( v1, v2 );
myPar2[1] = Max( v1, v2 );
}
// store seam shape indices, negative if shape encounters twice
int edgeID = meshDS->ShapeToIndex( edge );
mySeamShapeIds.insert( IsSeamShape( edgeID ) ? -edgeID : edgeID );
for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next() ) {
int vertexID = meshDS->ShapeToIndex( v.Current() );
mySeamShapeIds.insert( IsSeamShape( vertexID ) ? -vertexID : vertexID );
}
}
// look for a degenerated edge
if ( SMESH_Algo::isDegenerated( edge )) {
myDegenShapeIds.insert( meshDS->ShapeToIndex( edge ));
for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next() )
myDegenShapeIds.insert( meshDS->ShapeToIndex( v.Current() ));
}
}
if ( !myDegenShapeIds.empty() && !myParIndex )
{
BRepAdaptor_Surface surf( face, false );
if ( surf.IsUPeriodic() || surf.IsUClosed() ) {
myParIndex |= U_periodic;
myPar1[0] = surf.FirstUParameter();
myPar2[0] = surf.LastUParameter();
}
else if ( surf.IsVPeriodic() || surf.IsVClosed() ) {
myParIndex |= V_periodic;
myPar1[1] = surf.FirstVParameter();
myPar2[1] = surf.LastVParameter();
}
}
}
}
}
//=======================================================================
//function : GetNodeUVneedInFaceNode
//purpose : Check if inFaceNode argument is necessary for call GetNodeUV(F,..)
// Return true if the face is periodic.
// If F is Null, answer about sub-shape set through IsQuadraticSubMesh() or
// * SetSubShape()
//=======================================================================
bool SMESH_MesherHelper::GetNodeUVneedInFaceNode(const TopoDS_Face& F) const
{
if ( F.IsNull() ) return !mySeamShapeIds.empty();
if ( !F.IsNull() && !myShape.IsNull() && myShape.IsSame( F ))
return !mySeamShapeIds.empty();
TopLoc_Location loc;
Handle(Geom_Surface) aSurface = BRep_Tool::Surface( F,loc );
if ( !aSurface.IsNull() )
return ( aSurface->IsUPeriodic() || aSurface->IsVPeriodic() );
return false;
}
//=======================================================================
//function : IsMedium
//purpose :
//=======================================================================
bool SMESH_MesherHelper::IsMedium(const SMDS_MeshNode* node,
const SMDSAbs_ElementType typeToCheck)
{
return SMESH_MeshEditor::IsMedium( node, typeToCheck );
}
//=======================================================================
//function : GetSubShapeByNode
//purpose : Return support shape of a node
//=======================================================================
TopoDS_Shape SMESH_MesherHelper::GetSubShapeByNode(const SMDS_MeshNode* node,
const SMESHDS_Mesh* meshDS)
{
int shapeID = node ? node->getshapeId() : 0;
if ( 0 < shapeID && shapeID <= meshDS->MaxShapeIndex() )
return meshDS->IndexToShape( shapeID );
else
return TopoDS_Shape();
}
//=======================================================================
//function : AddTLinkNode
//purpose : add a link in my data structure
//=======================================================================
void SMESH_MesherHelper::AddTLinkNode(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n12)
{
// add new record to map
SMESH_TLink link( n1, n2 );
myTLinkNodeMap.insert( make_pair(link,n12));
}
//================================================================================
/*!
* \brief Add quadratic links of edge to own data structure
*/
//================================================================================
void SMESH_MesherHelper::AddTLinks(const SMDS_MeshEdge* edge)
{
if ( edge->IsQuadratic() )
AddTLinkNode(edge->GetNode(0), edge->GetNode(1), edge->GetNode(2));
}
//================================================================================
/*!
* \brief Add quadratic links of face to own data structure
*/
//================================================================================
void SMESH_MesherHelper::AddTLinks(const SMDS_MeshFace* f)
{
if ( !f->IsPoly() )
switch ( f->NbNodes() ) {
case 7:
// myMapWithCentralNode.insert
// ( make_pair( TBiQuad( f->GetNode(0),f->GetNode(1),f->GetNode(2) ),
// f->GetNode(6)));
// break; -- add medium nodes as well
case 6:
AddTLinkNode(f->GetNode(0),f->GetNode(1),f->GetNode(3));
AddTLinkNode(f->GetNode(1),f->GetNode(2),f->GetNode(4));
AddTLinkNode(f->GetNode(2),f->GetNode(0),f->GetNode(5)); break;
case 9:
// myMapWithCentralNode.insert
// ( make_pair( TBiQuad( f->GetNode(0),f->GetNode(1),f->GetNode(2),f->GetNode(3) ),
// f->GetNode(8)));
// break; -- add medium nodes as well
case 8:
AddTLinkNode(f->GetNode(0),f->GetNode(1),f->GetNode(4));
AddTLinkNode(f->GetNode(1),f->GetNode(2),f->GetNode(5));
AddTLinkNode(f->GetNode(2),f->GetNode(3),f->GetNode(6));
AddTLinkNode(f->GetNode(3),f->GetNode(0),f->GetNode(7)); break;
default:;
}
}
//================================================================================
/*!
* \brief Add quadratic links of volume to own data structure
*/
//================================================================================
void SMESH_MesherHelper::AddTLinks(const SMDS_MeshVolume* volume)
{
if ( volume->IsQuadratic() )
{
SMDS_VolumeTool vTool( volume );
const SMDS_MeshNode** nodes = vTool.GetNodes();
set<int> addedLinks;
for ( int iF = 1; iF < vTool.NbFaces(); ++iF )
{
const int nbN = vTool.NbFaceNodes( iF );
const int* iNodes = vTool.GetFaceNodesIndices( iF );
for ( int i = 0; i < nbN; )
{
int iN1 = iNodes[i++];
int iN12 = iNodes[i++];
int iN2 = iNodes[i];
if ( iN1 > iN2 ) std::swap( iN1, iN2 );
int linkID = iN1 * vTool.NbNodes() + iN2;
pair< set<int>::iterator, bool > it_isNew = addedLinks.insert( linkID );
if ( it_isNew.second )
AddTLinkNode( nodes[iN1], nodes[iN2], nodes[iN12] );
else
addedLinks.erase( it_isNew.first ); // each link encounters only twice
}
if ( vTool.NbNodes() == 27 )
{
const SMDS_MeshNode* nFCenter = nodes[ vTool.GetCenterNodeIndex( iF )];
if ( nFCenter->GetPosition()->GetTypeOfPosition() == SMDS_TOP_3DSPACE )
myMapWithCentralNode.insert
( make_pair( TBiQuad( nodes[ iNodes[0]], nodes[ iNodes[1]],
nodes[ iNodes[2]], nodes[ iNodes[3]] ),
nFCenter ));
}
}
}
}
//================================================================================
/*!
* \brief Return true if position of nodes on the shape hasn't yet been checked or
* the positions proved to be invalid
*/
//================================================================================
bool SMESH_MesherHelper::toCheckPosOnShape(int shapeID ) const
{
map< int,bool >::const_iterator id_ok = myNodePosShapesValidity.find( shapeID );
return ( id_ok == myNodePosShapesValidity.end() || !id_ok->second );
}
//================================================================================
/*!
* \brief Set validity of positions of nodes on the shape.
* Once set, validity is not changed
*/
//================================================================================
void SMESH_MesherHelper::setPosOnShapeValidity(int shapeID, bool ok ) const
{
std::map< int,bool >::iterator sh_ok =
((SMESH_MesherHelper*)this)->myNodePosShapesValidity.insert( make_pair( shapeID, ok)).first;
if ( !ok )
sh_ok->second = ok;
}
//=======================================================================
//function : ToFixNodeParameters
//purpose : Enables fixing node parameters on EDGEs and FACEs in
// GetNodeU(...,check=true), GetNodeUV(...,check=true), CheckNodeUV() and
// CheckNodeU() in case if a node lies on a shape set via SetSubShape().
// Default is False
//=======================================================================
void SMESH_MesherHelper::ToFixNodeParameters(bool toFix)
{
myFixNodeParameters = toFix;
}
//=======================================================================
//function : GetUVOnSeam
//purpose : Select UV on either of 2 pcurves of a seam edge, closest to the given UV
//=======================================================================
gp_Pnt2d SMESH_MesherHelper::GetUVOnSeam( const gp_Pnt2d& uv1, const gp_Pnt2d& uv2 ) const
{
gp_Pnt2d result = uv1;
for ( int i = U_periodic; i <= V_periodic ; ++i )
{
if ( myParIndex & i )
{
double p1 = uv1.Coord( i );
double dp1 = Abs( p1-myPar1[i-1]), dp2 = Abs( p1-myPar2[i-1]);
if ( myParIndex == i ||
dp1 < ( myPar2[i-1] - myPar1[i-1] ) / 100. ||
dp2 < ( myPar2[i-1] - myPar1[i-1] ) / 100. )
{
double p2 = uv2.Coord( i );
double p1Alt = ( dp1 < dp2 ) ? myPar2[i-1] : myPar1[i-1];
if ( Abs( p2 - p1 ) > Abs( p2 - p1Alt ))
result.SetCoord( i, p1Alt );
}
}
}
return result;
}
//=======================================================================
//function : GetNodeUV
//purpose : Return node UV on face
//=======================================================================
gp_XY SMESH_MesherHelper::GetNodeUV(const TopoDS_Face& F,
const SMDS_MeshNode* n,
const SMDS_MeshNode* n2,
bool* check) const
{
gp_Pnt2d uv( Precision::Infinite(), Precision::Infinite() );
const SMDS_PositionPtr Pos = n->GetPosition();
bool uvOK = false;
if(Pos->GetTypeOfPosition()==SMDS_TOP_FACE)
{
// node has position on face
const SMDS_FacePosition* fpos =
static_cast<const SMDS_FacePosition*>( Pos );
uv.SetCoord(fpos->GetUParameter(),fpos->GetVParameter());
if ( check )
uvOK = CheckNodeUV( F, n, uv.ChangeCoord(), 10*MaxTolerance( F ));
}
else if(Pos->GetTypeOfPosition()==SMDS_TOP_EDGE)
{
// node has position on edge => it is needed to find
// corresponding edge from face, get pcurve for this
// edge and retrieve value from this pcurve
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>( Pos );
int edgeID = n->getshapeId();
TopoDS_Edge E = TopoDS::Edge(GetMeshDS()->IndexToShape(edgeID));
double f, l, u = epos->GetUParameter();
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
bool validU = ( f < u && u < l );
if ( validU )
uv = C2d->Value( u );
else
uv.SetCoord( Precision::Infinite(),0.);
if ( check || !validU )
uvOK = CheckNodeUV( F, n, uv.ChangeCoord(), 10*MaxTolerance( F ),/*force=*/ !validU );
// for a node on a seam edge select one of UVs on 2 pcurves
if ( n2 && IsSeamShape( edgeID ) )
{
uv = GetUVOnSeam( uv, GetNodeUV( F, n2, 0, check ));
}
else
{ // adjust uv to period
TopLoc_Location loc;
Handle(Geom_Surface) S = BRep_Tool::Surface(F,loc);
Standard_Boolean isUPeriodic = S->IsUPeriodic();
Standard_Boolean isVPeriodic = S->IsVPeriodic();
if ( isUPeriodic || isVPeriodic ) {
Standard_Real UF,UL,VF,VL;
S->Bounds(UF,UL,VF,VL);
if(isUPeriodic)
uv.SetX( uv.X() + ShapeAnalysis::AdjustToPeriod(uv.X(),UF,UL));
if(isVPeriodic)
uv.SetY( uv.Y() + ShapeAnalysis::AdjustToPeriod(uv.Y(),VF,VL));
}
}
}
else if(Pos->GetTypeOfPosition()==SMDS_TOP_VERTEX)
{
if ( int vertexID = n->getshapeId() ) {
const TopoDS_Vertex& V = TopoDS::Vertex(GetMeshDS()->IndexToShape(vertexID));
try {
uv = BRep_Tool::Parameters( V, F );
uvOK = true;
}
catch (Standard_Failure& exc) {
}
if ( !uvOK ) {
for ( TopExp_Explorer vert(F,TopAbs_VERTEX); !uvOK && vert.More(); vert.Next() )
uvOK = ( V == vert.Current() );
if ( !uvOK ) {
MESSAGE ( "SMESH_MesherHelper::GetNodeUV(); Vertex " << vertexID
<< " not in face " << GetMeshDS()->ShapeToIndex( F ) );
// get UV of a vertex closest to the node
double dist = 1e100;
gp_Pnt pn = XYZ( n );
for ( TopExp_Explorer vert(F,TopAbs_VERTEX); !uvOK && vert.More(); vert.Next() ) {
TopoDS_Vertex curV = TopoDS::Vertex( vert.Current() );
gp_Pnt p = BRep_Tool::Pnt( curV );
double curDist = p.SquareDistance( pn );
if ( curDist < dist ) {
dist = curDist;
uv = BRep_Tool::Parameters( curV, F );
uvOK = ( dist < DBL_MIN );
}
}
}
else {
uvOK = false;
TopTools_ListIteratorOfListOfShape it( myMesh->GetAncestors( V ));
for ( ; it.More(); it.Next() ) {
if ( it.Value().ShapeType() == TopAbs_EDGE ) {
const TopoDS_Edge & edge = TopoDS::Edge( it.Value() );
double f,l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(edge, F, f, l);
if ( !C2d.IsNull() ) {
double u = ( V == TopExp::FirstVertex( edge ) ) ? f : l;
uv = C2d->Value( u );
uvOK = true;
break;
}
}
}
}
}
if ( n2 && IsSeamShape( vertexID ) )
uv = GetUVOnSeam( uv, GetNodeUV( F, n2, 0 ));
}
}
else
{
uvOK = CheckNodeUV( F, n, uv.ChangeCoord(), 10*MaxTolerance( F ));
}
if ( check )
*check = uvOK;
return uv.XY();
}
//=======================================================================
//function : CheckNodeUV
//purpose : Check and fix node UV on a face
//=======================================================================
bool SMESH_MesherHelper::CheckNodeUV(const TopoDS_Face& F,
const SMDS_MeshNode* n,
gp_XY& uv,
const double tol,
const bool force,
double distXYZ[4]) const
{
int shapeID = n->getshapeId();
bool infinit = ( Precision::IsInfinite( uv.X() ) || Precision::IsInfinite( uv.Y() ));
bool zero = ( uv.X() == 0. && uv.Y() == 0. );
if ( force || toCheckPosOnShape( shapeID ) || infinit || zero )
{
// check that uv is correct
TopLoc_Location loc;
Handle(Geom_Surface) surface = BRep_Tool::Surface( F,loc );
gp_Pnt nodePnt = XYZ( n ), surfPnt(0,0,0);
double dist = 0;
if ( !loc.IsIdentity() ) nodePnt.Transform( loc.Transformation().Inverted() );
if ( infinit ||
(dist = nodePnt.Distance( surfPnt = surface->Value( uv.X(), uv.Y() ))) > tol )
{
setPosOnShapeValidity( shapeID, false );
if ( !infinit && distXYZ ) {
surfPnt.Transform( loc );
distXYZ[0] = dist;
distXYZ[1] = surfPnt.X(); distXYZ[2] = surfPnt.Y(); distXYZ[3]=surfPnt.Z();
}
// uv incorrect, project the node to surface
GeomAPI_ProjectPointOnSurf& projector = GetProjector( F, loc, tol );
projector.Perform( nodePnt );
if ( !projector.IsDone() || projector.NbPoints() < 1 )
{
MESSAGE( "SMESH_MesherHelper::CheckNodeUV() failed to project" );
return false;
}
Quantity_Parameter U,V;
projector.LowerDistanceParameters(U,V);
uv.SetCoord( U,V );
surfPnt = surface->Value( U, V );
dist = nodePnt.Distance( surfPnt );
if ( distXYZ ) {
surfPnt.Transform( loc );
distXYZ[0] = dist;
distXYZ[1] = surfPnt.X(); distXYZ[2] = surfPnt.Y(); distXYZ[3]=surfPnt.Z();
}
if ( dist > tol )
{
MESSAGE( "SMESH_MesherHelper::CheckNodeUV(), invalid projection" );
return false;
}
// store the fixed UV on the face
if ( myShape.IsSame(F) && shapeID == myShapeID && myFixNodeParameters )
const_cast<SMDS_MeshNode*>(n)->SetPosition
( SMDS_PositionPtr( new SMDS_FacePosition( U, V )));
}
else if ( uv.Modulus() > numeric_limits<double>::min() )
{
setPosOnShapeValidity( shapeID, true );
}
}
return true;
}
//=======================================================================
//function : GetProjector
//purpose : Return projector intitialized by given face without location, which is returned
//=======================================================================
GeomAPI_ProjectPointOnSurf& SMESH_MesherHelper::GetProjector(const TopoDS_Face& F,
TopLoc_Location& loc,
double tol ) const
{
Handle(Geom_Surface) surface = BRep_Tool::Surface( F,loc );
int faceID = GetMeshDS()->ShapeToIndex( F );
TID2ProjectorOnSurf& i2proj = const_cast< TID2ProjectorOnSurf&>( myFace2Projector );
TID2ProjectorOnSurf::iterator i_proj = i2proj.find( faceID );
if ( i_proj == i2proj.end() )
{
if ( tol == 0 ) tol = BRep_Tool::Tolerance( F );
double U1, U2, V1, V2;
surface->Bounds(U1, U2, V1, V2);
GeomAPI_ProjectPointOnSurf* proj = new GeomAPI_ProjectPointOnSurf();
proj->Init( surface, U1, U2, V1, V2, tol );
i_proj = i2proj.insert( make_pair( faceID, proj )).first;
}
return *( i_proj->second );
}
namespace
{
gp_XY AverageUV(const gp_XY& uv1, const gp_XY& uv2) { return ( uv1 + uv2 ) / 2.; }
gp_XY_FunPtr(Added); // define gp_XY_Added pointer to function calling gp_XY::Added(gp_XY)
gp_XY_FunPtr(Subtracted);
}
//=======================================================================
//function : applyIn2D
//purpose : Perform given operation on two 2d points in parameric space of given surface.
// It takes into account period of the surface. Use gp_XY_FunPtr macro
// to easily define pointer to function of gp_XY class.
//=======================================================================
gp_XY SMESH_MesherHelper::applyIn2D(const Handle(Geom_Surface)& surface,
const gp_XY& uv1,
const gp_XY& uv2,
xyFunPtr fun,
const bool resultInPeriod)
{
Standard_Boolean isUPeriodic = surface.IsNull() ? false : surface->IsUPeriodic();
Standard_Boolean isVPeriodic = surface.IsNull() ? false : surface->IsVPeriodic();
if ( !isUPeriodic && !isVPeriodic )
return fun(uv1,uv2);
// move uv2 not far than half-period from uv1
double u2 =
uv2.X()+(isUPeriodic ? ShapeAnalysis::AdjustByPeriod(uv2.X(),uv1.X(),surface->UPeriod()) :0);
double v2 =
uv2.Y()+(isVPeriodic ? ShapeAnalysis::AdjustByPeriod(uv2.Y(),uv1.Y(),surface->VPeriod()) :0);
// execute operation
gp_XY res = fun( uv1, gp_XY(u2,v2) );
// move result within period
if ( resultInPeriod )
{
Standard_Real UF,UL,VF,VL;
surface->Bounds(UF,UL,VF,VL);
if ( isUPeriodic )
res.SetX( res.X() + ShapeAnalysis::AdjustToPeriod(res.X(),UF,UL));
if ( isVPeriodic )
res.SetY( res.Y() + ShapeAnalysis::AdjustToPeriod(res.Y(),VF,VL));
}
return res;
}
//=======================================================================
//function : GetMiddleUV
//purpose : Return middle UV taking in account surface period
//=======================================================================
gp_XY SMESH_MesherHelper::GetMiddleUV(const Handle(Geom_Surface)& surface,
const gp_XY& p1,
const gp_XY& p2)
{
// NOTE:
// the proper place of getting basic surface seems to be in applyIn2D()
// but we put it here to decrease a risk of regressions just before releasing a version
Handle(Geom_Surface) surf = surface;
while ( !surf.IsNull() && surf->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface )))
surf = Handle(Geom_RectangularTrimmedSurface)::DownCast( surf )->BasisSurface();
return applyIn2D( surf, p1, p2, & AverageUV );
}
//=======================================================================
//function : GetCenterUV
//purpose : Return UV for the central node of a biquadratic triangle
//=======================================================================
gp_XY SMESH_MesherHelper::GetCenterUV(const gp_XY& uv1,
const gp_XY& uv2,
const gp_XY& uv3,
const gp_XY& uv12,
const gp_XY& uv23,
const gp_XY& uv31,
bool * isBadTria/*=0*/)
{
bool badTria;
gp_XY uvAvg = ( uv12 + uv23 + uv31 ) / 3.;
if (( badTria = (( uvAvg - uv1 ) * ( uvAvg - uv23 ) > 0 )))
uvAvg = ( uv1 + uv23 ) / 2.;
else if (( badTria = (( uvAvg - uv2 ) * ( uvAvg - uv31 ) > 0 )))
uvAvg = ( uv2 + uv31 ) / 2.;
else if (( badTria = (( uvAvg - uv3 ) * ( uvAvg - uv12 ) > 0 )))
uvAvg = ( uv3 + uv12 ) / 2.;
if ( isBadTria )
*isBadTria = badTria;
return uvAvg;
}
//=======================================================================
//function : GetNodeU
//purpose : Return node U on edge
//=======================================================================
double SMESH_MesherHelper::GetNodeU(const TopoDS_Edge& E,
const SMDS_MeshNode* n,
const SMDS_MeshNode* inEdgeNode,
bool* check) const
{
double param = Precision::Infinite();
const SMDS_PositionPtr pos = n->GetPosition();
if ( pos->GetTypeOfPosition()==SMDS_TOP_EDGE )
{
const SMDS_EdgePosition* epos = static_cast<const SMDS_EdgePosition*>( pos );
param = epos->GetUParameter();
}
else if( pos->GetTypeOfPosition() == SMDS_TOP_VERTEX )
{
if ( inEdgeNode && TopExp::FirstVertex( E ).IsSame( TopExp::LastVertex( E ))) // issue 0020128
{
Standard_Real f,l;
BRep_Tool::Range( E, f,l );
double uInEdge = GetNodeU( E, inEdgeNode );
param = ( fabs( uInEdge - f ) < fabs( l - uInEdge )) ? f : l;
}
else
{
SMESHDS_Mesh * meshDS = GetMeshDS();
int vertexID = n->getshapeId();
const TopoDS_Vertex& V = TopoDS::Vertex(meshDS->IndexToShape(vertexID));
param = BRep_Tool::Parameter( V, E );
}
}
if ( check )
{
double tol = BRep_Tool::Tolerance( E );
double f,l; BRep_Tool::Range( E, f,l );
bool force = ( param < f-tol || param > l+tol );
if ( !force && pos->GetTypeOfPosition()==SMDS_TOP_EDGE )
force = ( GetMeshDS()->ShapeToIndex( E ) != n->getshapeId() );
*check = CheckNodeU( E, n, param, 2*tol, force );
}
return param;
}
//=======================================================================
//function : CheckNodeU
//purpose : Check and fix node U on an edge
// Return false if U is bad and could not be fixed
//=======================================================================
bool SMESH_MesherHelper::CheckNodeU(const TopoDS_Edge& E,
const SMDS_MeshNode* n,
double& u,
const double tol,
const bool force,
double distXYZ[4]) const
{
int shapeID = n->getshapeId();
bool infinit = Precision::IsInfinite( u );
bool zero = ( u == 0. );
if ( force || toCheckPosOnShape( shapeID ) || infinit || zero )
{
TopLoc_Location loc; double f,l;
Handle(Geom_Curve) curve = BRep_Tool::Curve( E,loc,f,l );
if ( curve.IsNull() ) // degenerated edge
{
if ( u+tol < f || u-tol > l )
{
double r = Max( 0.5, 1 - tol*n->GetID()); // to get a unique u on edge
u = f*r + l*(1-r);
}
}
else
{
gp_Pnt nodePnt = SMESH_TNodeXYZ( n );
if ( !loc.IsIdentity() ) nodePnt.Transform( loc.Transformation().Inverted() );
gp_Pnt curvPnt;
double dist = u;
if ( !infinit )
{
curvPnt = curve->Value( u );
dist = nodePnt.Distance( curvPnt );
if ( distXYZ ) {
curvPnt.Transform( loc );
distXYZ[0] = dist;
distXYZ[1] = curvPnt.X(); distXYZ[2] = curvPnt.Y(); distXYZ[3]=curvPnt.Z();
}
}
if ( dist > tol )
{
setPosOnShapeValidity( shapeID, false );
// u incorrect, project the node to the curve
int edgeID = GetMeshDS()->ShapeToIndex( E );
TID2ProjectorOnCurve& i2proj = const_cast< TID2ProjectorOnCurve&>( myEdge2Projector );
TID2ProjectorOnCurve::iterator i_proj =
i2proj.insert( make_pair( edgeID, (GeomAPI_ProjectPointOnCurve*) 0 )).first;
if ( !i_proj->second )
{
i_proj->second = new GeomAPI_ProjectPointOnCurve();
i_proj->second->Init( curve, f, l );
}
GeomAPI_ProjectPointOnCurve* projector = i_proj->second;
projector->Perform( nodePnt );
if ( projector->NbPoints() < 1 )
{
MESSAGE( "SMESH_MesherHelper::CheckNodeU() failed to project" );
return false;
}
Quantity_Parameter U = projector->LowerDistanceParameter();
u = double( U );
MESSAGE(" f " << f << " l " << l << " u " << u);
curvPnt = curve->Value( u );
dist = nodePnt.Distance( curvPnt );
if ( distXYZ ) {
curvPnt.Transform( loc );
distXYZ[0] = dist;
distXYZ[1] = curvPnt.X(); distXYZ[2] = curvPnt.Y(); distXYZ[3]=curvPnt.Z();
}
if ( dist > tol )
{
MESSAGE( "SMESH_MesherHelper::CheckNodeU(), invalid projection" );
MESSAGE("distance " << dist << " " << tol );
return false;
}
// store the fixed U on the edge
if ( myShape.IsSame(E) && shapeID == myShapeID && myFixNodeParameters )
const_cast<SMDS_MeshNode*>(n)->SetPosition
( SMDS_PositionPtr( new SMDS_EdgePosition( U )));
}
else if ( fabs( u ) > numeric_limits<double>::min() )
{
setPosOnShapeValidity( shapeID, true );
}
if (( u < f-tol || u > l+tol ) && force )
{
MESSAGE("u < f-tol || u > l+tol ; u " << u << " f " << f << " l " << l);
// node is on vertex but is set on periodic but trimmed edge (issue 0020890)
try
{
// do not use IsPeriodic() as Geom_TrimmedCurve::IsPeriodic () returns false
double period = curve->Period();
u = ( u < f ) ? u + period : u - period;
}
catch (Standard_Failure& exc)
{
return false;
}
}
}
}
return true;
}
//=======================================================================
//function : GetMediumPos
//purpose : Return index and type of the shape (EDGE or FACE only) to
// set a medium node on
//param : useCurSubShape - if true, returns the shape set via SetSubShape()
// if any
//=======================================================================
std::pair<int, TopAbs_ShapeEnum>
SMESH_MesherHelper::GetMediumPos(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const bool useCurSubShape)
{
if ( useCurSubShape && !myShape.IsNull() )
return std::make_pair( myShapeID, myShape.ShapeType() );
TopAbs_ShapeEnum shapeType = TopAbs_SHAPE;
int shapeID = -1;
TopoDS_Shape shape;
if (( myShapeID == n1->getshapeId() || myShapeID == n2->getshapeId() ) && myShapeID > 0 )
{
shapeType = myShape.ShapeType();
shapeID = myShapeID;
}
else if ( n1->getshapeId() == n2->getshapeId() )
{
shapeID = n2->getshapeId();
shape = GetSubShapeByNode( n1, GetMeshDS() );
}
else
{
const SMDS_TypeOfPosition Pos1 = n1->GetPosition()->GetTypeOfPosition();
const SMDS_TypeOfPosition Pos2 = n2->GetPosition()->GetTypeOfPosition();
if ( Pos1 == SMDS_TOP_3DSPACE || Pos2 == SMDS_TOP_3DSPACE )
{
}
else if ( Pos1 == SMDS_TOP_FACE || Pos2 == SMDS_TOP_FACE )
{
if ( Pos1 != SMDS_TOP_FACE || Pos2 != SMDS_TOP_FACE )
{
if ( Pos1 != SMDS_TOP_FACE ) std::swap( n1,n2 );
TopoDS_Shape F = GetSubShapeByNode( n1, GetMeshDS() );
TopoDS_Shape S = GetSubShapeByNode( n2, GetMeshDS() );
if ( IsSubShape( S, F ))
{
shapeType = TopAbs_FACE;
shapeID = n1->getshapeId();
}
}
}
else if ( Pos1 == SMDS_TOP_EDGE && Pos2 == SMDS_TOP_EDGE )
{
TopoDS_Shape E1 = GetSubShapeByNode( n1, GetMeshDS() );
TopoDS_Shape E2 = GetSubShapeByNode( n2, GetMeshDS() );
shape = GetCommonAncestor( E1, E2, *myMesh, TopAbs_FACE );
}
else if ( Pos1 == SMDS_TOP_VERTEX && Pos2 == SMDS_TOP_VERTEX )
{
TopoDS_Shape V1 = GetSubShapeByNode( n1, GetMeshDS() );
TopoDS_Shape V2 = GetSubShapeByNode( n2, GetMeshDS() );
shape = GetCommonAncestor( V1, V2, *myMesh, TopAbs_EDGE );
if ( shape.IsNull() ) shape = GetCommonAncestor( V1, V2, *myMesh, TopAbs_FACE );
}
else // VERTEX and EDGE
{
if ( Pos1 != SMDS_TOP_VERTEX ) std::swap( n1,n2 );
TopoDS_Shape V = GetSubShapeByNode( n1, GetMeshDS() );
TopoDS_Shape E = GetSubShapeByNode( n2, GetMeshDS() );
if ( IsSubShape( V, E ))
shape = E;
else
shape = GetCommonAncestor( V, E, *myMesh, TopAbs_FACE );
}
}
if ( !shape.IsNull() )
{
if ( shapeID < 1 )
shapeID = GetMeshDS()->ShapeToIndex( shape );
shapeType = shape.ShapeType();
}
return make_pair( shapeID, shapeType );
}
//=======================================================================
//function : GetCentralNode
//purpose : Return existing or create a new central node for a quardilateral
// quadratic face given its 8 nodes.
//@param : force3d - true means node creation in between the given nodes,
// else node position is found on a geometrical face if any.
//=======================================================================
const SMDS_MeshNode* SMESH_MesherHelper::GetCentralNode(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const SMDS_MeshNode* n12,
const SMDS_MeshNode* n23,
const SMDS_MeshNode* n34,
const SMDS_MeshNode* n41,
bool force3d)
{
SMDS_MeshNode *centralNode = 0; // central node to return
// Find an existing central node
TBiQuad keyOfMap(n1,n2,n3,n4);
std::map<TBiQuad, const SMDS_MeshNode* >::iterator itMapCentralNode;
itMapCentralNode = myMapWithCentralNode.find( keyOfMap );
if ( itMapCentralNode != myMapWithCentralNode.end() )
{
return (*itMapCentralNode).second;
}
// Get type of shape for the new central node
TopAbs_ShapeEnum shapeType = TopAbs_SHAPE;
int solidID = -1;
int faceID = -1;
TopoDS_Shape shape;
TopTools_ListIteratorOfListOfShape it;
std::map< int, int > faceId2nbNodes;
std::map< int, int > ::iterator itMapWithIdFace;
SMESHDS_Mesh* meshDS = GetMeshDS();
// check if a face lies on a FACE, i.e. its all corner nodes lie either on the FACE or
// on sub-shapes of the FACE
if ( GetMesh()->HasShapeToMesh() )
{
const SMDS_MeshNode* nodes[] = { n1, n2, n3, n4 };
for(int i = 0; i < 4; i++)
{
shape = GetSubShapeByNode( nodes[i], meshDS );
if ( shape.IsNull() ) break;
if ( shape.ShapeType() == TopAbs_SOLID )
{
solidID = nodes[i]->getshapeId();
shapeType = TopAbs_SOLID;
break;
}
if ( shape.ShapeType() == TopAbs_FACE )
{
faceID = nodes[i]->getshapeId();
itMapWithIdFace = faceId2nbNodes.insert( std::make_pair( faceID, 0 ) ).first;
itMapWithIdFace->second++;
}
else
{
PShapeIteratorPtr it = GetAncestors(shape, *GetMesh(), TopAbs_FACE );
while ( const TopoDS_Shape* face = it->next() )
{
faceID = meshDS->ShapeToIndex( *face );
itMapWithIdFace = faceId2nbNodes.insert( std::make_pair( faceID, 0 ) ).first;
itMapWithIdFace->second++;
}
}
}
}
if ( solidID < 1 && !faceId2nbNodes.empty() ) // SOLID not found
{
// find ID of the FACE the four corner nodes belong to
itMapWithIdFace = faceId2nbNodes.begin();
for ( ; itMapWithIdFace != faceId2nbNodes.end(); ++itMapWithIdFace)
{
if ( itMapWithIdFace->second == 4 )
{
shapeType = TopAbs_FACE;
faceID = (*itMapWithIdFace).first;
break;
}
}
}
TopoDS_Face F;
if ( shapeType == TopAbs_FACE )
{
F = TopoDS::Face( meshDS->IndexToShape( faceID ));
}
// Create a node
gp_XY uvAvg;
gp_Pnt P;
bool toCheck = true;
if ( !F.IsNull() && !force3d )
{
uvAvg = calcTFI (0.5, 0.5,
GetNodeUV(F,n1,n3,&toCheck), GetNodeUV(F,n2,n4,&toCheck),
GetNodeUV(F,n3,n1,&toCheck), GetNodeUV(F,n4,n2,&toCheck),
GetNodeUV(F,n12,n3), GetNodeUV(F,n23,n4),
GetNodeUV(F,n34,n2), GetNodeUV(F,n41,n2));
TopLoc_Location loc;
Handle( Geom_Surface ) S = BRep_Tool::Surface( F, loc );
P = S->Value( uvAvg.X(), uvAvg.Y() ).Transformed( loc );
centralNode = meshDS->AddNode( P.X(), P.Y(), P.Z() );
// if ( mySetElemOnShape ) node is not elem!
meshDS->SetNodeOnFace( centralNode, faceID, uvAvg.X(), uvAvg.Y() );
}
else // ( force3d || F.IsNull() )
{
P = calcTFI (0.5, 0.5,
SMESH_TNodeXYZ(n1), SMESH_TNodeXYZ(n2),
SMESH_TNodeXYZ(n3), SMESH_TNodeXYZ(n4),
SMESH_TNodeXYZ(n12), SMESH_TNodeXYZ(n23),
SMESH_TNodeXYZ(n34), SMESH_TNodeXYZ(n41));
centralNode = meshDS->AddNode( P.X(), P.Y(), P.Z() );
if ( !F.IsNull() ) // force3d
{
uvAvg = (GetNodeUV(F,n1,n3,&toCheck) +
GetNodeUV(F,n2,n4,&toCheck) +
GetNodeUV(F,n3,n1,&toCheck) +
GetNodeUV(F,n4,n2,&toCheck)) / 4;
//CheckNodeUV( F, centralNode, uvAvg, 2*BRep_Tool::Tolerance( F ), /*force=*/true);
meshDS->SetNodeOnFace( centralNode, faceID, uvAvg.X(), uvAvg.Y() );
}
else if ( solidID > 0 )
{
meshDS->SetNodeInVolume( centralNode, solidID );
}
else if ( myShapeID > 0 && mySetElemOnShape )
{
meshDS->SetMeshElementOnShape( centralNode, myShapeID );
}
}
myMapWithCentralNode.insert( std::make_pair( keyOfMap, centralNode ) );
return centralNode;
}
//=======================================================================
//function : GetCentralNode
//purpose : Return existing or create a new central node for a
// quadratic triangle given its 6 nodes.
//@param : force3d - true means node creation in between the given nodes,
// else node position is found on a geometrical face if any.
//=======================================================================
const SMDS_MeshNode* SMESH_MesherHelper::GetCentralNode(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n12,
const SMDS_MeshNode* n23,
const SMDS_MeshNode* n31,
bool force3d)
{
SMDS_MeshNode *centralNode = 0; // central node to return
// Find an existing central node
TBiQuad keyOfMap(n1,n2,n3);
std::map<TBiQuad, const SMDS_MeshNode* >::iterator itMapCentralNode;
itMapCentralNode = myMapWithCentralNode.find( keyOfMap );
if ( itMapCentralNode != myMapWithCentralNode.end() )
{
return (*itMapCentralNode).second;
}
// Get type of shape for the new central node
TopAbs_ShapeEnum shapeType = TopAbs_SHAPE;
int solidID = -1;
int faceID = -1;
TopoDS_Shape shape;
TopTools_ListIteratorOfListOfShape it;
std::map< int, int > faceId2nbNodes;
std::map< int, int > ::iterator itMapWithIdFace;
SMESHDS_Mesh* meshDS = GetMeshDS();
// check if a face lies on a FACE, i.e. its all corner nodes lie either on the FACE or
// on sub-shapes of the FACE
if ( GetMesh()->HasShapeToMesh() )
{
const SMDS_MeshNode* nodes[] = { n1, n2, n3 };
for(int i = 0; i < 3; i++)
{
shape = GetSubShapeByNode( nodes[i], meshDS );
if ( shape.IsNull() ) break;
if ( shape.ShapeType() == TopAbs_SOLID )
{
solidID = nodes[i]->getshapeId();
shapeType = TopAbs_SOLID;
break;
}
if ( shape.ShapeType() == TopAbs_FACE )
{
faceID = nodes[i]->getshapeId();
itMapWithIdFace = faceId2nbNodes.insert( std::make_pair( faceID, 0 ) ).first;
itMapWithIdFace->second++;
}
else
{
PShapeIteratorPtr it = GetAncestors(shape, *GetMesh(), TopAbs_FACE );
while ( const TopoDS_Shape* face = it->next() )
{
faceID = meshDS->ShapeToIndex( *face );
itMapWithIdFace = faceId2nbNodes.insert( std::make_pair( faceID, 0 ) ).first;
itMapWithIdFace->second++;
}
}
}
}
if ( solidID < 1 && !faceId2nbNodes.empty() ) // SOLID not found
{
// find ID of the FACE the four corner nodes belong to
itMapWithIdFace = faceId2nbNodes.begin();
for ( ; itMapWithIdFace != faceId2nbNodes.end(); ++itMapWithIdFace)
{
if ( itMapWithIdFace->second == 3 )
{
shapeType = TopAbs_FACE;
faceID = (*itMapWithIdFace).first;
break;
}
}
}
TopoDS_Face F;
gp_XY uvAvg;
bool badTria=false;
if ( shapeType == TopAbs_FACE )
{
F = TopoDS::Face( meshDS->IndexToShape( faceID ));
bool check;
gp_XY uv1 = GetNodeUV( F, n1, n23, &check );
gp_XY uv2 = GetNodeUV( F, n2, n31, &check );
gp_XY uv3 = GetNodeUV( F, n3, n12, &check );
gp_XY uv12 = GetNodeUV( F, n12, n3, &check );
gp_XY uv23 = GetNodeUV( F, n23, n1, &check );
gp_XY uv31 = GetNodeUV( F, n31, n2, &check );
uvAvg = GetCenterUV( uv1,uv2,uv3, uv12,uv23,uv31, &badTria );
if ( badTria )
force3d = false;
}
// Create a central node
gp_Pnt P;
if ( !F.IsNull() && !force3d )
{
TopLoc_Location loc;
Handle( Geom_Surface ) S = BRep_Tool::Surface( F, loc );
P = S->Value( uvAvg.X(), uvAvg.Y() ).Transformed( loc );
centralNode = meshDS->AddNode( P.X(), P.Y(), P.Z() );
// if ( mySetElemOnShape ) node is not elem!
meshDS->SetNodeOnFace( centralNode, faceID, uvAvg.X(), uvAvg.Y() );
}
else // ( force3d || F.IsNull() )
{
P = ( SMESH_TNodeXYZ( n12 ) +
SMESH_TNodeXYZ( n23 ) +
SMESH_TNodeXYZ( n31 ) ) / 3;
centralNode = meshDS->AddNode( P.X(), P.Y(), P.Z() );
if ( !F.IsNull() ) // force3d
{
meshDS->SetNodeOnFace( centralNode, faceID, uvAvg.X(), uvAvg.Y() );
}
else if ( solidID > 0 )
{
meshDS->SetNodeInVolume( centralNode, solidID );
}
else if ( myShapeID > 0 && mySetElemOnShape )
{
meshDS->SetMeshElementOnShape( centralNode, myShapeID );
}
}
myMapWithCentralNode.insert( std::make_pair( keyOfMap, centralNode ) );
return centralNode;
}
//=======================================================================
//function : GetMediumNode
//purpose : Return existing or create a new medium node between given ones
//=======================================================================
const SMDS_MeshNode* SMESH_MesherHelper::GetMediumNode(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
bool force3d)
{
// Find existing node
SMESH_TLink link(n1,n2);
ItTLinkNode itLN = myTLinkNodeMap.find( link );
if ( itLN != myTLinkNodeMap.end() ) {
return (*itLN).second;
}
// Create medium node
SMDS_MeshNode* n12;
SMESHDS_Mesh* meshDS = GetMeshDS();
if ( IsSeamShape( n1->getshapeId() ))
// to get a correct UV of a node on seam, the second node must have checked UV
std::swap( n1, n2 );
// get type of shape for the new medium node
int faceID = -1, edgeID = -1;
TopoDS_Edge E; double u [2];
TopoDS_Face F; gp_XY uv[2];
bool uvOK[2] = { false, false };
pair<int, TopAbs_ShapeEnum> pos = GetMediumPos( n1, n2, mySetElemOnShape );
// calling GetMediumPos() with useCurSubShape=mySetElemOnShape is OK only for the
// case where the lower dim mesh is already constructed, else, nodes on EDGEs are
// assigned to FACE, for example.
// get positions of the given nodes on shapes
if ( pos.second == TopAbs_FACE )
{
F = TopoDS::Face(meshDS->IndexToShape( faceID = pos.first ));
uv[0] = GetNodeUV(F,n1,n2, force3d ? 0 : &uvOK[0]);
uv[1] = GetNodeUV(F,n2,n1, force3d ? 0 : &uvOK[1]);
}
else if ( pos.second == TopAbs_EDGE )
{
const SMDS_PositionPtr Pos1 = n1->GetPosition();
const SMDS_PositionPtr Pos2 = n2->GetPosition();
if ( Pos1->GetTypeOfPosition()==SMDS_TOP_EDGE &&
Pos2->GetTypeOfPosition()==SMDS_TOP_EDGE &&
n1->getshapeId() != n2->getshapeId() )
{
// issue 0021006
return getMediumNodeOnComposedWire(n1,n2,force3d);
}
E = TopoDS::Edge(meshDS->IndexToShape( edgeID = pos.first ));
try {
u[0] = GetNodeU(E,n1,n2, force3d ? 0 : &uvOK[0]);
u[1] = GetNodeU(E,n2,n1, force3d ? 0 : &uvOK[1]);
}
catch ( Standard_Failure& f )
{
// issue 22502 / a node is on VERTEX not belonging to E
// issue 22568 / both nodes are on non-connected VERTEXes
return getMediumNodeOnComposedWire(n1,n2,force3d);
}
}
if ( !force3d & uvOK[0] && uvOK[1] )
{
// we try to create medium node using UV parameters of
// nodes, else - medium between corresponding 3d points
if( ! F.IsNull() )
{
//if ( uvOK[0] && uvOK[1] )
{
if ( IsDegenShape( n1->getshapeId() )) {
if ( myParIndex & U_periodic ) uv[0].SetCoord( 1, uv[1].Coord( 1 ));
else uv[0].SetCoord( 2, uv[1].Coord( 2 ));
}
else if ( IsDegenShape( n2->getshapeId() )) {
if ( myParIndex & U_periodic ) uv[1].SetCoord( 1, uv[0].Coord( 1 ));
else uv[1].SetCoord( 2, uv[0].Coord( 2 ));
}
TopLoc_Location loc;
Handle(Geom_Surface) S = BRep_Tool::Surface(F,loc);
gp_XY UV = GetMiddleUV( S, uv[0], uv[1] );
gp_Pnt P = S->Value( UV.X(), UV.Y() ).Transformed(loc);
n12 = meshDS->AddNode(P.X(), P.Y(), P.Z());
// if ( mySetElemOnShape ) node is not elem!
meshDS->SetNodeOnFace(n12, faceID, UV.X(), UV.Y());
myTLinkNodeMap.insert(make_pair(link,n12));
return n12;
}
}
else if ( !E.IsNull() )
{
double f,l;
Handle(Geom_Curve) C = BRep_Tool::Curve(E, f, l);
if(!C.IsNull())
{
Standard_Boolean isPeriodic = C->IsPeriodic();
double U;
if(isPeriodic) {
Standard_Real Period = C->Period();
Standard_Real p = u[1]+ShapeAnalysis::AdjustByPeriod(u[1],u[0],Period);
Standard_Real pmid = (u[0]+p)/2.;
U = pmid+ShapeAnalysis::AdjustToPeriod(pmid,C->FirstParameter(),C->LastParameter());
}
else
U = (u[0]+u[1])/2.;
gp_Pnt P = C->Value( U );
n12 = meshDS->AddNode(P.X(), P.Y(), P.Z());
//if ( mySetElemOnShape ) node is not elem!
meshDS->SetNodeOnEdge(n12, edgeID, U);
myTLinkNodeMap.insert(make_pair(link,n12));
return n12;
}
}
}
// 3d variant
double x = ( n1->X() + n2->X() )/2.;
double y = ( n1->Y() + n2->Y() )/2.;
double z = ( n1->Z() + n2->Z() )/2.;
n12 = meshDS->AddNode(x,y,z);
//if ( mySetElemOnShape ) node is not elem!
{
if ( !F.IsNull() )
{
gp_XY UV = ( uv[0] + uv[1] ) / 2.;
CheckNodeUV( F, n12, UV, 2 * BRep_Tool::Tolerance( F ), /*force=*/true);
meshDS->SetNodeOnFace(n12, faceID, UV.X(), UV.Y() );
}
else if ( !E.IsNull() )
{
double U = ( u[0] + u[1] ) / 2.;
CheckNodeU( E, n12, U, 2 * BRep_Tool::Tolerance( E ), /*force=*/true);
meshDS->SetNodeOnEdge(n12, edgeID, U);
}
else if ( myShapeID > 0 && mySetElemOnShape )
{
meshDS->SetMeshElementOnShape(n12, myShapeID);
}
}
myTLinkNodeMap.insert( make_pair( link, n12 ));
return n12;
}
//================================================================================
/*!
* \brief Makes a medium node if nodes reside different edges
*/
//================================================================================
const SMDS_MeshNode* SMESH_MesherHelper::getMediumNodeOnComposedWire(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
bool force3d)
{
SMESH_TNodeXYZ p1( n1 ), p2( n2 );
gp_Pnt middle = 0.5 * p1 + 0.5 * p2;
SMDS_MeshNode* n12 = AddNode( middle.X(), middle.Y(), middle.Z() );
// To find position on edge and 3D position for n12,
// project <middle> to 2 edges and select projection most close to <middle>
TopoDS_Edge bestEdge;
double u = 0, distMiddleProj = Precision::Infinite(), distXYZ[4], f,l;
// get shapes under the nodes
TopoDS_Shape shape[2];
int nbShapes = 0;
for ( int is2nd = 0; is2nd < 2; ++is2nd )
{
const SMDS_MeshNode* n = is2nd ? n2 : n1;
TopoDS_Shape S = GetSubShapeByNode( n, GetMeshDS() );
if ( !S.IsNull() )
shape[ nbShapes++ ] = S;
}
// get EDGEs
vector< TopoDS_Shape > edges;
for ( int iS = 0; iS < nbShapes; ++iS )
{
switch ( shape[iS].ShapeType() ) {
case TopAbs_EDGE:
{
edges.push_back( shape[iS] );
break;
}
case TopAbs_VERTEX:
{
TopoDS_Shape edge;
if ( nbShapes == 2 && iS==0 && shape[1-iS].ShapeType() == TopAbs_VERTEX )
edge = GetCommonAncestor( shape[iS], shape[1-iS], *myMesh, TopAbs_EDGE );
if ( edge.IsNull() )
{
PShapeIteratorPtr eIt = GetAncestors( shape[iS], *myMesh, TopAbs_EDGE );
while( const TopoDS_Shape* e = eIt->next() )
edges.push_back( *e );
}
break;
}
case TopAbs_FACE:
{
if ( nbShapes == 1 || shape[1-iS].ShapeType() < TopAbs_EDGE )
for ( TopExp_Explorer e( shape[iS], TopAbs_EDGE ); e.More(); e.Next() )
edges.push_back( e.Current() );
break;
}
default:
continue;
}
}
// project to get U of projection and distance from middle to projection
for ( size_t iE = 0; iE < edges.size(); ++iE )
{
const TopoDS_Edge& edge = TopoDS::Edge( edges[ iE ]);
distXYZ[0] = distMiddleProj;
double testU = 0;
CheckNodeU( edge, n12, testU, 2 * BRep_Tool::Tolerance(edge), /*force=*/true, distXYZ );
if ( distXYZ[0] < distMiddleProj )
{
distMiddleProj = distXYZ[0];
u = testU;
bestEdge = edge;
}
}
// {
// // both projections failed; set n12 on the edge of n1 with U of a common vertex
// TopoDS_Vertex vCommon;
// if ( TopExp::CommonVertex( edges[0], edges[1], vCommon ))
// u = BRep_Tool::Parameter( vCommon, edges[0] );
// else
// {
// double f,l, u0 = GetNodeU( edges[0], n1 );
// BRep_Tool::Range( edges[0],f,l );
// u = ( fabs(u0-f) < fabs(u0-l) ) ? f : l;
// }
// iOkEdge = 0;
// distMiddleProj = 0;
// }
if ( !bestEdge.IsNull() )
{
// move n12 to position of a successfull projection
//double tol = BRep_Tool::Tolerance(edges[ iOkEdge ]);
if ( !force3d /*&& distMiddleProj > 2*tol*/ )
{
TopLoc_Location loc;
Handle(Geom_Curve) curve = BRep_Tool::Curve( bestEdge,loc,f,l );
gp_Pnt p = curve->Value( u ).Transformed( loc );
GetMeshDS()->MoveNode( n12, p.X(), p.Y(), p.Z() );
}
//if ( mySetElemOnShape ) node is not elem!
{
int edgeID = GetMeshDS()->ShapeToIndex( bestEdge );
if ( edgeID != n12->getshapeId() )
GetMeshDS()->UnSetNodeOnShape( n12 );
GetMeshDS()->SetNodeOnEdge(n12, edgeID, u);
}
}
myTLinkNodeMap.insert( make_pair( SMESH_TLink(n1,n2), n12 ));
return n12;
}
//=======================================================================
//function : AddNode
//purpose : Creates a node
//=======================================================================
SMDS_MeshNode* SMESH_MesherHelper::AddNode(double x, double y, double z, int ID,
double u, double v)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshNode* node = 0;
if ( ID )
node = meshDS->AddNodeWithID( x, y, z, ID );
else
node = meshDS->AddNode( x, y, z );
if ( mySetElemOnShape && myShapeID > 0 ) { // node is not elem ?
switch ( myShape.ShapeType() ) {
case TopAbs_SOLID: meshDS->SetNodeInVolume( node, myShapeID); break;
case TopAbs_SHELL: meshDS->SetNodeInVolume( node, myShapeID); break;
case TopAbs_FACE: meshDS->SetNodeOnFace( node, myShapeID, u, v); break;
case TopAbs_EDGE: meshDS->SetNodeOnEdge( node, myShapeID, u); break;
case TopAbs_VERTEX: meshDS->SetNodeOnVertex( node, myShapeID); break;
default: ;
}
}
return node;
}
//=======================================================================
//function : AddEdge
//purpose : Creates quadratic or linear edge
//=======================================================================
SMDS_MeshEdge* SMESH_MesherHelper::AddEdge(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const int id,
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshEdge* edge = 0;
if (myCreateQuadratic) {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
if(id)
edge = meshDS->AddEdgeWithID(n1, n2, n12, id);
else
edge = meshDS->AddEdge(n1, n2, n12);
}
else {
if(id)
edge = meshDS->AddEdgeWithID(n1, n2, id);
else
edge = meshDS->AddEdge(n1, n2);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( edge, myShapeID );
return edge;
}
//=======================================================================
//function : AddFace
//purpose : Creates quadratic or linear triangle
//=======================================================================
SMDS_MeshFace* SMESH_MesherHelper::AddFace(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const int id,
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshFace* elem = 0;
if( n1==n2 || n2==n3 || n3==n1 )
return elem;
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, id);
else
elem = meshDS->AddFace(n1, n2, n3);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n31 = GetMediumNode(n3,n1,force3d);
if(myCreateBiQuadratic)
{
const SMDS_MeshNode* nCenter = GetCentralNode(n1, n2, n3, n12, n23, n31, force3d);
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, n12, n23, n31, nCenter, id);
else
elem = meshDS->AddFace(n1, n2, n3, n12, n23, n31, nCenter);
}
else
{
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, n12, n23, n31, id);
else
elem = meshDS->AddFace(n1, n2, n3, n12, n23, n31);
}
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
//function : AddFace
//purpose : Creates bi-quadratic, quadratic or linear quadrangle
//=======================================================================
SMDS_MeshFace* SMESH_MesherHelper::AddFace(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const int id,
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshFace* elem = 0;
if( n1==n2 ) {
return AddFace(n1,n3,n4,id,force3d);
}
if( n1==n3 ) {
return AddFace(n1,n2,n4,id,force3d);
}
if( n1==n4 ) {
return AddFace(n1,n2,n3,id,force3d);
}
if( n2==n3 ) {
return AddFace(n1,n2,n4,id,force3d);
}
if( n2==n4 ) {
return AddFace(n1,n2,n3,id,force3d);
}
if( n3==n4 ) {
return AddFace(n1,n2,n3,id,force3d);
}
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, n4, id);
else
elem = meshDS->AddFace(n1, n2, n3, n4);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d);
const SMDS_MeshNode* n41 = GetMediumNode(n4,n1,force3d);
if(myCreateBiQuadratic)
{
const SMDS_MeshNode* nCenter = GetCentralNode(n1, n2, n3, n4, n12, n23, n34, n41, force3d);
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, n4, n12, n23, n34, n41, nCenter, id);
else
elem = meshDS->AddFace(n1, n2, n3, n4, n12, n23, n34, n41, nCenter);
}
else
{
if(id)
elem = meshDS->AddFaceWithID(n1, n2, n3, n4, n12, n23, n34, n41, id);
else
elem = meshDS->AddFace(n1, n2, n3, n4, n12, n23, n34, n41);
}
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
//function : AddPolygonalFace
//purpose : Creates polygon, with additional nodes in quadratic mesh
//=======================================================================
SMDS_MeshFace* SMESH_MesherHelper::AddPolygonalFace (const vector<const SMDS_MeshNode*>& nodes,
const int id,
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshFace* elem = 0;
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddPolygonalFaceWithID(nodes, id);
else
elem = meshDS->AddPolygonalFace(nodes);
}
else {
vector<const SMDS_MeshNode*> newNodes;
for ( int i = 0; i < nodes.size(); ++i )
{
const SMDS_MeshNode* n1 = nodes[i];
const SMDS_MeshNode* n2 = nodes[(i+1)%nodes.size()];
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
newNodes.push_back( n1 );
newNodes.push_back( n12 );
}
if(id)
elem = meshDS->AddPolygonalFaceWithID(newNodes, id);
else
elem = meshDS->AddPolygonalFace(newNodes);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
//function : AddVolume
//purpose : Creates quadratic or linear prism
//=======================================================================
SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const SMDS_MeshNode* n5,
const SMDS_MeshNode* n6,
const int id,
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshVolume* elem = 0;
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n31 = GetMediumNode(n3,n1,force3d);
const SMDS_MeshNode* n45 = GetMediumNode(n4,n5,force3d);
const SMDS_MeshNode* n56 = GetMediumNode(n5,n6,force3d);
const SMDS_MeshNode* n64 = GetMediumNode(n6,n4,force3d);
const SMDS_MeshNode* n14 = GetMediumNode(n1,n4,force3d);
const SMDS_MeshNode* n25 = GetMediumNode(n2,n5,force3d);
const SMDS_MeshNode* n36 = GetMediumNode(n3,n6,force3d);
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6,
n12, n23, n31, n45, n56, n64, n14, n25, n36, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6,
n12, n23, n31, n45, n56, n64, n14, n25, n36);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
//function : AddVolume
//purpose : Creates quadratic or linear tetrahedron
//=======================================================================
SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const int id,
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshVolume* elem = 0;
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n31 = GetMediumNode(n3,n1,force3d);
const SMDS_MeshNode* n14 = GetMediumNode(n1,n4,force3d);
const SMDS_MeshNode* n24 = GetMediumNode(n2,n4,force3d);
const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d);
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n12, n23, n31, n14, n24, n34, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n12, n23, n31, n14, n24, n34);
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
//function : AddVolume
//purpose : Creates quadratic or linear pyramid
//=======================================================================
SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const SMDS_MeshNode* n5,
const int id,
const bool force3d)
{
SMDS_MeshVolume* elem = 0;
if(!myCreateQuadratic) {
if(id)
elem = GetMeshDS()->AddVolumeWithID(n1, n2, n3, n4, n5, id);
else
elem = GetMeshDS()->AddVolume(n1, n2, n3, n4, n5);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d);
const SMDS_MeshNode* n41 = GetMediumNode(n4,n1,force3d);
const SMDS_MeshNode* n15 = GetMediumNode(n1,n5,force3d);
const SMDS_MeshNode* n25 = GetMediumNode(n2,n5,force3d);
const SMDS_MeshNode* n35 = GetMediumNode(n3,n5,force3d);
const SMDS_MeshNode* n45 = GetMediumNode(n4,n5,force3d);
if(id)
elem = GetMeshDS()->AddVolumeWithID ( n1, n2, n3, n4, n5,
n12, n23, n34, n41,
n15, n25, n35, n45,
id);
else
elem = GetMeshDS()->AddVolume( n1, n2, n3, n4, n5,
n12, n23, n34, n41,
n15, n25, n35, n45);
}
if ( mySetElemOnShape && myShapeID > 0 )
GetMeshDS()->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
//function : AddVolume
//purpose : Creates bi-quadratic, quadratic or linear hexahedron
//=======================================================================
SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const SMDS_MeshNode* n5,
const SMDS_MeshNode* n6,
const SMDS_MeshNode* n7,
const SMDS_MeshNode* n8,
const int id,
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshVolume* elem = 0;
if(!myCreateQuadratic) {
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8);
}
else {
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d);
const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d);
const SMDS_MeshNode* n41 = GetMediumNode(n4,n1,force3d);
const SMDS_MeshNode* n56 = GetMediumNode(n5,n6,force3d);
const SMDS_MeshNode* n67 = GetMediumNode(n6,n7,force3d);
const SMDS_MeshNode* n78 = GetMediumNode(n7,n8,force3d);
const SMDS_MeshNode* n85 = GetMediumNode(n8,n5,force3d);
const SMDS_MeshNode* n15 = GetMediumNode(n1,n5,force3d);
const SMDS_MeshNode* n26 = GetMediumNode(n2,n6,force3d);
const SMDS_MeshNode* n37 = GetMediumNode(n3,n7,force3d);
const SMDS_MeshNode* n48 = GetMediumNode(n4,n8,force3d);
if(myCreateBiQuadratic)
{
const SMDS_MeshNode* n1234 = GetCentralNode(n1,n2,n3,n4,n12,n23,n34,n41,force3d);
const SMDS_MeshNode* n1256 = GetCentralNode(n1,n2,n5,n6,n12,n26,n56,n15,force3d);
const SMDS_MeshNode* n2367 = GetCentralNode(n2,n3,n6,n7,n23,n37,n67,n26,force3d);
const SMDS_MeshNode* n3478 = GetCentralNode(n3,n4,n7,n8,n34,n48,n78,n37,force3d);
const SMDS_MeshNode* n1458 = GetCentralNode(n1,n4,n5,n8,n41,n48,n15,n85,force3d);
const SMDS_MeshNode* n5678 = GetCentralNode(n5,n6,n7,n8,n56,n67,n78,n85,force3d);
vector<gp_XYZ> pointsOnShapes( SMESH_Block::ID_Shell );
pointsOnShapes[ SMESH_Block::ID_V000 ] = SMESH_TNodeXYZ( n4 );
pointsOnShapes[ SMESH_Block::ID_V100 ] = SMESH_TNodeXYZ( n8 );
pointsOnShapes[ SMESH_Block::ID_V010 ] = SMESH_TNodeXYZ( n3 );
pointsOnShapes[ SMESH_Block::ID_V110 ] = SMESH_TNodeXYZ( n7 );
pointsOnShapes[ SMESH_Block::ID_V001 ] = SMESH_TNodeXYZ( n1 );
pointsOnShapes[ SMESH_Block::ID_V101 ] = SMESH_TNodeXYZ( n5 );
pointsOnShapes[ SMESH_Block::ID_V011 ] = SMESH_TNodeXYZ( n2 );
pointsOnShapes[ SMESH_Block::ID_V111 ] = SMESH_TNodeXYZ( n6 );
pointsOnShapes[ SMESH_Block::ID_Ex00 ] = SMESH_TNodeXYZ( n48 );
pointsOnShapes[ SMESH_Block::ID_Ex10 ] = SMESH_TNodeXYZ( n37 );
pointsOnShapes[ SMESH_Block::ID_E0y0 ] = SMESH_TNodeXYZ( n15 );
pointsOnShapes[ SMESH_Block::ID_E1y0 ] = SMESH_TNodeXYZ( n26 );
pointsOnShapes[ SMESH_Block::ID_Ex01 ] = SMESH_TNodeXYZ( n34 );
pointsOnShapes[ SMESH_Block::ID_Ex11 ] = SMESH_TNodeXYZ( n78 );
pointsOnShapes[ SMESH_Block::ID_E0y1 ] = SMESH_TNodeXYZ( n12 );
pointsOnShapes[ SMESH_Block::ID_E1y1 ] = SMESH_TNodeXYZ( n56 );
pointsOnShapes[ SMESH_Block::ID_E00z ] = SMESH_TNodeXYZ( n41 );
pointsOnShapes[ SMESH_Block::ID_E10z ] = SMESH_TNodeXYZ( n85 );
pointsOnShapes[ SMESH_Block::ID_E01z ] = SMESH_TNodeXYZ( n23 );
pointsOnShapes[ SMESH_Block::ID_E11z ] = SMESH_TNodeXYZ( n67 );
pointsOnShapes[ SMESH_Block::ID_Fxy0 ] = SMESH_TNodeXYZ( n3478 );
pointsOnShapes[ SMESH_Block::ID_Fxy1 ] = SMESH_TNodeXYZ( n1256 );
pointsOnShapes[ SMESH_Block::ID_Fx0z ] = SMESH_TNodeXYZ( n1458 );
pointsOnShapes[ SMESH_Block::ID_Fx1z ] = SMESH_TNodeXYZ( n2367 );
pointsOnShapes[ SMESH_Block::ID_F0yz ] = SMESH_TNodeXYZ( n1234 );
pointsOnShapes[ SMESH_Block::ID_F1yz ] = SMESH_TNodeXYZ( n5678 );
gp_XYZ centerCube(0.5, 0.5, 0.5);
gp_XYZ nCenterElem;
SMESH_Block::ShellPoint( centerCube, pointsOnShapes, nCenterElem );
const SMDS_MeshNode* nCenter =
meshDS->AddNode( nCenterElem.X(), nCenterElem.Y(), nCenterElem.Z() );
meshDS->SetNodeInVolume( nCenter, myShapeID );
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8,
n12, n23, n34, n41, n56, n67,
n78, n85, n15, n26, n37, n48,
n1234, n1256, n2367, n3478, n1458, n5678, nCenter, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8,
n12, n23, n34, n41, n56, n67,
n78, n85, n15, n26, n37, n48,
n1234, n1256, n2367, n3478, n1458, n5678, nCenter);
}
else
{
if(id)
elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8,
n12, n23, n34, n41, n56, n67,
n78, n85, n15, n26, n37, n48, id);
else
elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8,
n12, n23, n34, n41, n56, n67,
n78, n85, n15, n26, n37, n48);
}
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
//function : AddVolume
//purpose : Creates LINEAR!!!!!!!!! octahedron
//=======================================================================
SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4,
const SMDS_MeshNode* n5,
const SMDS_MeshNode* n6,
const SMDS_MeshNode* n7,
const SMDS_MeshNode* n8,
const SMDS_MeshNode* n9,
const SMDS_MeshNode* n10,
const SMDS_MeshNode* n11,
const SMDS_MeshNode* n12,
const int id,
bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshVolume* elem = 0;
if(id)
elem = meshDS->AddVolumeWithID(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,id);
else
elem = meshDS->AddVolume(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12);
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
//=======================================================================
//function : AddPolyhedralVolume
//purpose : Creates polyhedron. In quadratic mesh, adds medium nodes
//=======================================================================
SMDS_MeshVolume*
SMESH_MesherHelper::AddPolyhedralVolume (const std::vector<const SMDS_MeshNode*>& nodes,
const std::vector<int>& quantities,
const int id,
const bool force3d)
{
SMESHDS_Mesh * meshDS = GetMeshDS();
SMDS_MeshVolume* elem = 0;
if(!myCreateQuadratic)
{
if(id)
elem = meshDS->AddPolyhedralVolumeWithID(nodes, quantities, id);
else
elem = meshDS->AddPolyhedralVolume(nodes, quantities);
}
else
{
vector<const SMDS_MeshNode*> newNodes;
vector<int> newQuantities;
for ( int iFace=0, iN=0; iFace < quantities.size(); ++iFace)
{
int nbNodesInFace = quantities[iFace];
newQuantities.push_back(0);
for ( int i = 0; i < nbNodesInFace; ++i )
{
const SMDS_MeshNode* n1 = nodes[ iN + i ];
newNodes.push_back( n1 );
newQuantities.back()++;
const SMDS_MeshNode* n2 = nodes[ iN + ( i+1==nbNodesInFace ? 0 : i+1 )];
// if ( n1->GetPosition()->GetTypeOfPosition() != SMDS_TOP_3DSPACE &&
// n2->GetPosition()->GetTypeOfPosition() != SMDS_TOP_3DSPACE )
{
const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d);
newNodes.push_back( n12 );
newQuantities.back()++;
}
}
iN += nbNodesInFace;
}
if(id)
elem = meshDS->AddPolyhedralVolumeWithID( newNodes, newQuantities, id );
else
elem = meshDS->AddPolyhedralVolume( newNodes, newQuantities );
}
if ( mySetElemOnShape && myShapeID > 0 )
meshDS->SetMeshElementOnShape( elem, myShapeID );
return elem;
}
namespace
{
//================================================================================
/*!
* \brief Check if a node belongs to any face of sub-mesh
*/
//================================================================================
bool isNodeInSubMesh( const SMDS_MeshNode* n, const SMESHDS_SubMesh* sm )
{
SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator( SMDSAbs_Face );
while ( fIt->more() )
if ( sm->Contains( fIt->next() ))
return true;
return false;
}
}
//=======================================================================
//function : IsSameElemGeometry
//purpose : Returns true if all elements of a sub-mesh are of same shape
//=======================================================================
bool SMESH_MesherHelper::IsSameElemGeometry(const SMESHDS_SubMesh* smDS,
SMDSAbs_GeometryType shape,
const bool nullSubMeshRes)
{
if ( !smDS ) return nullSubMeshRes;
SMDS_ElemIteratorPtr elemIt = smDS->GetElements();
while ( elemIt->more() ) {
const SMDS_MeshElement* e = elemIt->next();
if ( e->GetGeomType() != shape )
return false;
}
return true;
}
//=======================================================================
//function : LoadNodeColumns
//purpose : Load nodes bound to face into a map of node columns
//=======================================================================
bool SMESH_MesherHelper::LoadNodeColumns(TParam2ColumnMap & theParam2ColumnMap,
const TopoDS_Face& theFace,
const TopoDS_Edge& theBaseEdge,
SMESHDS_Mesh* theMesh,
SMESH_ProxyMesh* theProxyMesh)
{
return LoadNodeColumns(theParam2ColumnMap,
theFace,
std::list<TopoDS_Edge>(1,theBaseEdge),
theMesh,
theProxyMesh);
}
//=======================================================================
//function : LoadNodeColumns
//purpose : Load nodes bound to face into a map of node columns
//=======================================================================
bool SMESH_MesherHelper::LoadNodeColumns(TParam2ColumnMap & theParam2ColumnMap,
const TopoDS_Face& theFace,
const std::list<TopoDS_Edge>& theBaseSide,
SMESHDS_Mesh* theMesh,
SMESH_ProxyMesh* theProxyMesh)
{
// get a right sub-mesh of theFace
const SMESHDS_SubMesh* faceSubMesh = 0;
if ( theProxyMesh )
{
faceSubMesh = theProxyMesh->GetSubMesh( theFace );
if ( !faceSubMesh ||
faceSubMesh->NbElements() == 0 ||
theProxyMesh->IsTemporary( faceSubMesh->GetElements()->next() ))
{
// can use a proxy sub-mesh with not temporary elements only
faceSubMesh = 0;
theProxyMesh = 0;
}
}
if ( !faceSubMesh )
faceSubMesh = theMesh->MeshElements( theFace );
if ( !faceSubMesh || faceSubMesh->NbElements() == 0 )
return false;
if ( theParam2ColumnMap.empty() )
{
// get data of edges for normalization of params
vector< double > length;
double fullLen = 0;
list<TopoDS_Edge>::const_iterator edge;
{
for ( edge = theBaseSide.begin(); edge != theBaseSide.end(); ++edge )
{
double len = std::max( 1e-10, SMESH_Algo::EdgeLength( *edge ));
fullLen += len;
length.push_back( len );
}
}
// get nodes on theBaseEdge sorted by param on edge and initialize theParam2ColumnMap with them
edge = theBaseSide.begin();
for ( int iE = 0; edge != theBaseSide.end(); ++edge, ++iE )
{
map< double, const SMDS_MeshNode*> sortedBaseNN;
SMESH_Algo::GetSortedNodesOnEdge( theMesh, *edge,/*noMedium=*/true, sortedBaseNN);
if ( sortedBaseNN.empty() ) continue;
map< double, const SMDS_MeshNode*>::iterator u_n = sortedBaseNN.begin();
if ( theProxyMesh ) // from sortedBaseNN remove nodes not shared by faces of faceSubMesh
{
const SMDS_MeshNode* n1 = (++sortedBaseNN.begin())->second;
const SMDS_MeshNode* n2 = (++sortedBaseNN.rbegin())->second;
bool allNodesAreProxy = ( n1 != theProxyMesh->GetProxyNode( n1 ) &&
n2 != theProxyMesh->GetProxyNode( n2 ));
if ( allNodesAreProxy )
for ( u_n = sortedBaseNN.begin(); u_n != sortedBaseNN.end(); u_n++ )
u_n->second = theProxyMesh->GetProxyNode( u_n->second );
if ( u_n = sortedBaseNN.begin(), !isNodeInSubMesh( u_n->second, faceSubMesh ))
{
while ( ++u_n != sortedBaseNN.end() && !isNodeInSubMesh( u_n->second, faceSubMesh ));
sortedBaseNN.erase( sortedBaseNN.begin(), u_n );
}
if ( u_n = --sortedBaseNN.end(), !isNodeInSubMesh( u_n->second, faceSubMesh ))
{
while ( u_n != sortedBaseNN.begin() && !isNodeInSubMesh( (--u_n)->second, faceSubMesh ));
sortedBaseNN.erase( ++u_n, sortedBaseNN.end() );
}
if ( sortedBaseNN.empty() ) continue;
}
double f, l;
BRep_Tool::Range( *edge, f, l );
if ( edge->Orientation() == TopAbs_REVERSED ) std::swap( f, l );
const double coeff = 1. / ( l - f ) * length[iE] / fullLen;
const double prevPar = theParam2ColumnMap.empty() ? 0 : theParam2ColumnMap.rbegin()->first;
for ( u_n = sortedBaseNN.begin(); u_n != sortedBaseNN.end(); u_n++ )
{
double par = prevPar + coeff * ( u_n->first - f );
TParam2ColumnMap::iterator u2nn =
theParam2ColumnMap.insert( theParam2ColumnMap.end(), make_pair( par, TNodeColumn()));
u2nn->second.push_back( u_n->second );
}
}
if ( theParam2ColumnMap.empty() )
return false;
}
// nb rows of nodes
int prevNbRows = theParam2ColumnMap.begin()->second.size(); // current, at least 1 here
int expectedNbRows = faceSubMesh->NbElements() / ( theParam2ColumnMap.size()-1 ); // to be added
// fill theParam2ColumnMap column by column by passing from nodes on
// theBaseEdge up via mesh faces on theFace
TParam2ColumnMap::iterator par_nVec_1, par_nVec_2;
par_nVec_2 = theParam2ColumnMap.begin();
par_nVec_1 = par_nVec_2++;
TIDSortedElemSet emptySet, avoidSet;
for ( ; par_nVec_2 != theParam2ColumnMap.end(); ++par_nVec_1, ++par_nVec_2 )
{
vector<const SMDS_MeshNode*>& nCol1 = par_nVec_1->second;
vector<const SMDS_MeshNode*>& nCol2 = par_nVec_2->second;
nCol1.resize( prevNbRows + expectedNbRows );
nCol2.resize( prevNbRows + expectedNbRows );
int i1, i2, foundNbRows = 0;
const SMDS_MeshNode *n1 = nCol1[ prevNbRows-1 ];
const SMDS_MeshNode *n2 = nCol2[ prevNbRows-1 ];
// find face sharing node n1 and n2 and belonging to faceSubMesh
while ( const SMDS_MeshElement* face =
SMESH_MeshAlgos::FindFaceInSet( n1, n2, emptySet, avoidSet, &i1, &i2))
{
if ( faceSubMesh->Contains( face ))
{
int nbNodes = face->NbCornerNodes();
if ( nbNodes != 4 )
return false;
if ( foundNbRows + 1 > expectedNbRows )
return false;
n1 = face->GetNode( (i2+2) % 4 ); // opposite corner of quadrangle face
n2 = face->GetNode( (i1+2) % 4 );
nCol1[ prevNbRows + foundNbRows] = n1;
nCol2[ prevNbRows + foundNbRows] = n2;
++foundNbRows;
}
avoidSet.insert( face );
}
if ( foundNbRows != expectedNbRows )
return false;
avoidSet.clear();
}
return ( theParam2ColumnMap.size() > 1 &&
theParam2ColumnMap.begin()->second.size() == prevNbRows + expectedNbRows );
}
namespace
{
//================================================================================
/*!
* \brief Return true if a node is at a corner of a 2D structured mesh of FACE
*/
//================================================================================
bool isCornerOfStructure( const SMDS_MeshNode* n,
const SMESHDS_SubMesh* faceSM,
SMESH_MesherHelper& faceAnalyser )
{
int nbFacesInSM = 0;
if ( n ) {
SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator( SMDSAbs_Face );
while ( fIt->more() )
nbFacesInSM += faceSM->Contains( fIt->next() );
}
if ( nbFacesInSM == 1 )
return true;
if ( nbFacesInSM == 2 && n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
{
return faceAnalyser.IsRealSeam( n->getshapeId() );
}
return false;
}
}
//=======================================================================
//function : IsStructured
//purpose : Return true if 2D mesh on FACE is structured
//=======================================================================
bool SMESH_MesherHelper::IsStructured( SMESH_subMesh* faceSM )
{
SMESHDS_SubMesh* fSM = faceSM->GetSubMeshDS();
if ( !fSM || fSM->NbElements() == 0 )
return false;
list< TopoDS_Edge > edges;
list< int > nbEdgesInWires;
int nbWires = SMESH_Block::GetOrderedEdges( TopoDS::Face( faceSM->GetSubShape() ),
edges, nbEdgesInWires );
if ( nbWires != 1 /*|| nbEdgesInWires.front() != 4*/ ) // allow composite sides
return false;
// algo: find corners of a structure and then analyze nb of faces and
// length of structure sides
SMESHDS_Mesh* meshDS = faceSM->GetFather()->GetMeshDS();
SMESH_MesherHelper faceAnalyser( *faceSM->GetFather() );
faceAnalyser.SetSubShape( faceSM->GetSubShape() );
// rotate edges to get the first node being at corner
// (in principle it's not necessary but so far none SALOME algo can make
// such a structured mesh that all corner nodes are not on VERTEXes)
bool isCorner = false;
int nbRemainEdges = nbEdgesInWires.front();
do {
TopoDS_Vertex V = IthVertex( 0, edges.front() );
isCorner = isCornerOfStructure( SMESH_Algo::VertexNode( V, meshDS ),
fSM, faceAnalyser);
if ( !isCorner ) {
edges.splice( edges.end(), edges, edges.begin() );
--nbRemainEdges;
}
}
while ( !isCorner && nbRemainEdges > 0 );
if ( !isCorner )
return false;
// get all nodes from EDGEs
list< const SMDS_MeshNode* > nodes;
list< TopoDS_Edge >::iterator edge = edges.begin();
for ( ; edge != edges.end(); ++edge )
{
map< double, const SMDS_MeshNode* > u2Nodes;
if ( !SMESH_Algo::GetSortedNodesOnEdge( meshDS, *edge,
/*skipMedium=*/true, u2Nodes ))
return false;
list< const SMDS_MeshNode* > edgeNodes;
map< double, const SMDS_MeshNode* >::iterator u2n = u2Nodes.begin();
for ( ; u2n != u2Nodes.end(); ++u2n )
edgeNodes.push_back( u2n->second );
if ( edge->Orientation() == TopAbs_REVERSED )
edgeNodes.reverse();
if ( !nodes.empty() && nodes.back() == edgeNodes.front() )
edgeNodes.pop_front();
nodes.splice( nodes.end(), edgeNodes, edgeNodes.begin(), edgeNodes.end() );
}
// get length of structured sides
vector<int> nbEdgesInSide;
int nbEdges = 0;
list< const SMDS_MeshNode* >::iterator n = ++nodes.begin();
for ( ; n != nodes.end(); ++n )
{
++nbEdges;
if ( isCornerOfStructure( *n, fSM, faceAnalyser )) {
nbEdgesInSide.push_back( nbEdges );
nbEdges = 0;
}
}
// checks
if ( nbEdgesInSide.size() != 4 )
return false;
if ( nbEdgesInSide[0] != nbEdgesInSide[2] )
return false;
if ( nbEdgesInSide[1] != nbEdgesInSide[3] )
return false;
if ( nbEdgesInSide[0] * nbEdgesInSide[1] != fSM->NbElements() )
return false;
return true;
}
//================================================================================
/*!
* \brief Find out elements orientation on a geometrical face
* \param theFace - The face correctly oriented in the shape being meshed
* \retval bool - true if the face normal and the normal of first element
* in the correspoding submesh point in different directions
*/
//================================================================================
bool SMESH_MesherHelper::IsReversedSubMesh (const TopoDS_Face& theFace)
{
if ( theFace.IsNull() )
return false;
// find out orientation of a meshed face
int faceID = GetMeshDS()->ShapeToIndex( theFace );
TopoDS_Shape aMeshedFace = GetMeshDS()->IndexToShape( faceID );
bool isReversed = ( theFace.Orientation() != aMeshedFace.Orientation() );
const SMESHDS_SubMesh * aSubMeshDSFace = GetMeshDS()->MeshElements( faceID );
if ( !aSubMeshDSFace )
return isReversed;
// find an element with a good normal
gp_Vec Ne;
bool normalOK = false;
gp_XY uv;
SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
while ( !normalOK && iteratorElem->more() ) // loop on elements on theFace
{
const SMDS_MeshElement* elem = iteratorElem->next();
if ( elem && elem->NbCornerNodes() > 2 )
{
SMESH_TNodeXYZ nPnt[3];
SMDS_ElemIteratorPtr nodesIt = elem->nodesIterator();
int iNodeOnFace = 0, iPosDim = SMDS_TOP_VERTEX;
for ( int iN = 0; nodesIt->more() && iN < 3; ++iN) // loop on nodes
{
nPnt[ iN ] = nodesIt->next();
if ( nPnt[ iN ]._node->GetPosition()->GetTypeOfPosition() > iPosDim )
{
iNodeOnFace = iN;
iPosDim = nPnt[ iN ]._node->GetPosition()->GetTypeOfPosition();
}
}
// compute normal
gp_Vec v01( nPnt[0], nPnt[1] ), v02( nPnt[0], nPnt[2] );
if ( v01.SquareMagnitude() > RealSmall() &&
v02.SquareMagnitude() > RealSmall() )
{
Ne = v01 ^ v02;
if (( normalOK = ( Ne.SquareMagnitude() > RealSmall() )))
uv = GetNodeUV( theFace, nPnt[iNodeOnFace]._node, 0, &normalOK );
}
}
}
if ( !normalOK )
return isReversed;
// face normal at node position
TopLoc_Location loc;
Handle(Geom_Surface) surf = BRep_Tool::Surface( theFace, loc );
// if ( surf.IsNull() || surf->Continuity() < GeomAbs_C1 )
// some surfaces not detected as GeomAbs_C1 are nevertheless correct for meshing
if ( surf.IsNull() || surf->Continuity() < GeomAbs_C0 )
{
if (!surf.IsNull())
MESSAGE("surf->Continuity() < GeomAbs_C1 " << (surf->Continuity() < GeomAbs_C1));
return isReversed;
}
gp_Vec d1u, d1v; gp_Pnt p;
surf->D1( uv.X(), uv.Y(), p, d1u, d1v );
gp_Vec Nf = (d1u ^ d1v).Transformed( loc );
if ( theFace.Orientation() == TopAbs_REVERSED )
Nf.Reverse();
return Ne * Nf < 0.;
}
//=======================================================================
//function : Count
//purpose : Count nb of sub-shapes
//=======================================================================
int SMESH_MesherHelper::Count(const TopoDS_Shape& shape,
const TopAbs_ShapeEnum type,
const bool ignoreSame)
{
if ( ignoreSame ) {
TopTools_IndexedMapOfShape map;
TopExp::MapShapes( shape, type, map );
return map.Extent();
}
else {
int nb = 0;
for ( TopExp_Explorer exp( shape, type ); exp.More(); exp.Next() )
++nb;
return nb;
}
}
//=======================================================================
//function : NbAncestors
//purpose : Return number of unique ancestors of the shape
//=======================================================================
int SMESH_MesherHelper::NbAncestors(const TopoDS_Shape& shape,
const SMESH_Mesh& mesh,
TopAbs_ShapeEnum ancestorType/*=TopAbs_SHAPE*/)
{
TopTools_MapOfShape ancestors;
TopTools_ListIteratorOfListOfShape ansIt( mesh.GetAncestors(shape) );
for ( ; ansIt.More(); ansIt.Next() ) {
if ( ancestorType == TopAbs_SHAPE || ansIt.Value().ShapeType() == ancestorType )
ancestors.Add( ansIt.Value() );
}
return ancestors.Extent();
}
//=======================================================================
//function : GetSubShapeOri
//purpose : Return orientation of sub-shape in the main shape
//=======================================================================
TopAbs_Orientation SMESH_MesherHelper::GetSubShapeOri(const TopoDS_Shape& shape,
const TopoDS_Shape& subShape)
{
TopAbs_Orientation ori = TopAbs_Orientation(-1);
if ( !shape.IsNull() && !subShape.IsNull() )
{
TopExp_Explorer e( shape, subShape.ShapeType() );
if ( shape.Orientation() >= TopAbs_INTERNAL ) // TopAbs_INTERNAL or TopAbs_EXTERNAL
e.Init( shape.Oriented(TopAbs_FORWARD), subShape.ShapeType() );
for ( ; e.More(); e.Next())
if ( subShape.IsSame( e.Current() ))
break;
if ( e.More() )
ori = e.Current().Orientation();
}
return ori;
}
//=======================================================================
//function : IsSubShape
//purpose :
//=======================================================================
bool SMESH_MesherHelper::IsSubShape( const TopoDS_Shape& shape,
const TopoDS_Shape& mainShape )
{
if ( !shape.IsNull() && !mainShape.IsNull() )
{
for ( TopExp_Explorer exp( mainShape, shape.ShapeType());
exp.More();
exp.Next() )
if ( shape.IsSame( exp.Current() ))
return true;
}
SCRUTE((shape.IsNull()));
SCRUTE((mainShape.IsNull()));
return false;
}
//=======================================================================
//function : IsSubShape
//purpose :
//=======================================================================
bool SMESH_MesherHelper::IsSubShape( const TopoDS_Shape& shape, SMESH_Mesh* aMesh )
{
if ( shape.IsNull() || !aMesh )
return false;
return
aMesh->GetMeshDS()->ShapeToIndex( shape ) ||
// PAL16202
(shape.ShapeType() == TopAbs_COMPOUND && aMesh->GetMeshDS()->IsGroupOfSubShapes( shape ));
}
//================================================================================
/*!
* \brief Return maximal tolerance of shape
*/
//================================================================================
double SMESH_MesherHelper::MaxTolerance( const TopoDS_Shape& shape )
{
double tol = Precision::Confusion();
TopExp_Explorer exp;
for ( exp.Init( shape, TopAbs_FACE ); exp.More(); exp.Next() )
tol = Max( tol, BRep_Tool::Tolerance( TopoDS::Face( exp.Current())));
for ( exp.Init( shape, TopAbs_EDGE ); exp.More(); exp.Next() )
tol = Max( tol, BRep_Tool::Tolerance( TopoDS::Edge( exp.Current())));
for ( exp.Init( shape, TopAbs_VERTEX ); exp.More(); exp.Next() )
tol = Max( tol, BRep_Tool::Tolerance( TopoDS::Vertex( exp.Current())));
return tol;
}
//================================================================================
/*!
* \brief Return an angle between two EDGEs sharing a common VERTEX with reference
* of the FACE normal
* \return double - the angle (between -Pi and Pi), negative if the angle is concave,
* 1e100 in case of failure
* \waring Care about order of the EDGEs and their orientation to be as they are
* within the FACE! Don't pass degenerated EDGEs neither!
*/
//================================================================================
double SMESH_MesherHelper::GetAngle( const TopoDS_Edge & theE1,
const TopoDS_Edge & theE2,
const TopoDS_Face & theFace,
gp_Vec* theFaceNormal)
{
double angle = 1e100;
try
{
TopoDS_Vertex vCommon;
if ( !TopExp::CommonVertex( theE1, theE2, vCommon ))
return angle;
double f,l;
Handle(Geom_Curve) c1 = BRep_Tool::Curve( theE1, f,l );
Handle(Geom_Curve) c2 = BRep_Tool::Curve( theE2, f,l );
Handle(Geom2d_Curve) c2d1 = BRep_Tool::CurveOnSurface( theE1, theFace, f,l );
Handle(Geom_Surface) surf = BRep_Tool::Surface( theFace );
double p1 = BRep_Tool::Parameter( vCommon, theE1 );
double p2 = BRep_Tool::Parameter( vCommon, theE2 );
if ( c1.IsNull() || c2.IsNull() )
return angle;
gp_XY uv = c2d1->Value( p1 ).XY();
gp_Vec du, dv; gp_Pnt p;
surf->D1( uv.X(), uv.Y(), p, du, dv );
gp_Vec vec1, vec2, vecRef = du ^ dv;
int nbLoops = 0;
double p1tmp = p1;
while ( vecRef.SquareMagnitude() < std::numeric_limits<double>::min() )
{
double dp = ( l - f ) / 1000.;
p1tmp += dp * (( Abs( p1 - f ) > Abs( p1 - l )) ? +1. : -1.);
uv = c2d1->Value( p1tmp ).XY();
surf->D1( uv.X(), uv.Y(), p, du, dv );
vecRef = du ^ dv;
if ( ++nbLoops > 10 )
{
#ifdef _DEBUG_
cout << "SMESH_MesherHelper::GetAngle(): Captured in a sigularity" << endl;
#endif
return angle;
}
}
if ( theFace.Orientation() == TopAbs_REVERSED )
vecRef.Reverse();
if ( theFaceNormal ) *theFaceNormal = vecRef;
c1->D1( p1, p, vec1 );
c2->D1( p2, p, vec2 );
// TopoDS_Face F = theFace;
// if ( F.Orientation() == TopAbs_INTERNAL )
// F.Orientation( TopAbs_FORWARD );
if ( theE1.Orientation() /*GetSubShapeOri( F, theE1 )*/ == TopAbs_REVERSED )
vec1.Reverse();
if ( theE2.Orientation() /*GetSubShapeOri( F, theE2 )*/ == TopAbs_REVERSED )
vec2.Reverse();
angle = vec1.AngleWithRef( vec2, vecRef );
if ( Abs ( angle ) >= 0.99 * M_PI )
{
BRep_Tool::Range( theE1, f, l );
p1 += 1e-7 * ( p1-f < l-p1 ? +1. : -1. );
c1->D1( p1, p, vec1 );
if ( theE1.Orientation() == TopAbs_REVERSED )
vec1.Reverse();
BRep_Tool::Range( theE2, f, l );
p2 += 1e-7 * ( p2-f < l-p2 ? +1. : -1. );
c2->D1( p2, p, vec2 );
if ( theE2.Orientation() == TopAbs_REVERSED )
vec2.Reverse();
angle = vec1.AngleWithRef( vec2, vecRef );
}
}
catch (...)
{
}
return angle;
}
//================================================================================
/*!
* \brief Check if the first and last vertices of an edge are the same
* \param anEdge - the edge to check
* \retval bool - true if same
*/
//================================================================================
bool SMESH_MesherHelper::IsClosedEdge( const TopoDS_Edge& anEdge )
{
if ( anEdge.Orientation() >= TopAbs_INTERNAL )
return IsClosedEdge( TopoDS::Edge( anEdge.Oriented( TopAbs_FORWARD )));
return TopExp::FirstVertex( anEdge ).IsSame( TopExp::LastVertex( anEdge ));
}
//================================================================================
/*!
* \brief Wrapper over TopExp::FirstVertex() and TopExp::LastVertex() fixing them
* in the case of INTERNAL edge
*/
//================================================================================
TopoDS_Vertex SMESH_MesherHelper::IthVertex( const bool is2nd,
TopoDS_Edge anEdge,
const bool CumOri )
{
if ( anEdge.Orientation() >= TopAbs_INTERNAL )
anEdge.Orientation( TopAbs_FORWARD );
const TopAbs_Orientation tgtOri = is2nd ? TopAbs_REVERSED : TopAbs_FORWARD;
TopoDS_Iterator vIt( anEdge, CumOri );
while ( vIt.More() && vIt.Value().Orientation() != tgtOri )
vIt.Next();
return ( vIt.More() ? TopoDS::Vertex(vIt.Value()) : TopoDS_Vertex() );
}
//================================================================================
/*!
* \brief Return type of shape contained in a group
* \param group - a shape of type TopAbs_COMPOUND
* \param avoidCompound - not to return TopAbs_COMPOUND
*/
//================================================================================
TopAbs_ShapeEnum SMESH_MesherHelper::GetGroupType(const TopoDS_Shape& group,
const bool avoidCompound)
{
if ( !group.IsNull() )
{
if ( group.ShapeType() != TopAbs_COMPOUND )
return group.ShapeType();
// iterate on a compound
TopoDS_Iterator it( group );
if ( it.More() )
return avoidCompound ? GetGroupType( it.Value() ) : it.Value().ShapeType();
}
return TopAbs_SHAPE;
}
//=======================================================================
//function : IsQuadraticMesh
//purpose : Check mesh without geometry for: if all elements on this shape are quadratic,
// quadratic elements will be created.
// Used then generated 3D mesh without geometry.
//=======================================================================
SMESH_MesherHelper:: MType SMESH_MesherHelper::IsQuadraticMesh()
{
int NbAllEdgsAndFaces=0;
int NbQuadFacesAndEdgs=0;
int NbFacesAndEdges=0;
//All faces and edges
NbAllEdgsAndFaces = myMesh->NbEdges() + myMesh->NbFaces();
if ( NbAllEdgsAndFaces == 0 )
return SMESH_MesherHelper::LINEAR;
//Quadratic faces and edges
NbQuadFacesAndEdgs = myMesh->NbEdges(ORDER_QUADRATIC) + myMesh->NbFaces(ORDER_QUADRATIC);
//Linear faces and edges
NbFacesAndEdges = myMesh->NbEdges(ORDER_LINEAR) + myMesh->NbFaces(ORDER_LINEAR);
if (NbAllEdgsAndFaces == NbQuadFacesAndEdgs) {
//Quadratic mesh
return SMESH_MesherHelper::QUADRATIC;
}
else if (NbAllEdgsAndFaces == NbFacesAndEdges) {
//Linear mesh
return SMESH_MesherHelper::LINEAR;
}
else
//Mesh with both type of elements
return SMESH_MesherHelper::COMP;
}
//=======================================================================
//function : GetOtherParam
//purpose : Return an alternative parameter for a node on seam
//=======================================================================
double SMESH_MesherHelper::GetOtherParam(const double param) const
{
int i = myParIndex & U_periodic ? 0 : 1;
return fabs(param-myPar1[i]) < fabs(param-myPar2[i]) ? myPar2[i] : myPar1[i];
}
namespace {
//=======================================================================
/*!
* \brief Iterator on ancestors of the given type
*/
//=======================================================================
struct TAncestorsIterator : public SMDS_Iterator<const TopoDS_Shape*>
{
TopTools_ListIteratorOfListOfShape _ancIter;
TopAbs_ShapeEnum _type;
TopTools_MapOfShape _encountered;
TAncestorsIterator( const TopTools_ListOfShape& ancestors, TopAbs_ShapeEnum type)
: _ancIter( ancestors ), _type( type )
{
if ( _ancIter.More() ) {
if ( _ancIter.Value().ShapeType() != _type ) next();
else _encountered.Add( _ancIter.Value() );
}
}
virtual bool more()
{
return _ancIter.More();
}
virtual const TopoDS_Shape* next()
{
const TopoDS_Shape* s = _ancIter.More() ? & _ancIter.Value() : 0;
if ( _ancIter.More() )
for ( _ancIter.Next(); _ancIter.More(); _ancIter.Next())
if ( _ancIter.Value().ShapeType() == _type && _encountered.Add( _ancIter.Value() ))
break;
return s;
}
};
} // namespace
//=======================================================================
/*!
* \brief Return iterator on ancestors of the given type
*/
//=======================================================================
PShapeIteratorPtr SMESH_MesherHelper::GetAncestors(const TopoDS_Shape& shape,
const SMESH_Mesh& mesh,
TopAbs_ShapeEnum ancestorType)
{
return PShapeIteratorPtr( new TAncestorsIterator( mesh.GetAncestors(shape), ancestorType));
}
//=======================================================================
//function : GetCommonAncestor
//purpose : Find a common ancestors of two shapes of the given type
//=======================================================================
TopoDS_Shape SMESH_MesherHelper::GetCommonAncestor(const TopoDS_Shape& shape1,
const TopoDS_Shape& shape2,
const SMESH_Mesh& mesh,
TopAbs_ShapeEnum ancestorType)
{
TopoDS_Shape commonAnc;
if ( !shape1.IsNull() && !shape2.IsNull() )
{
PShapeIteratorPtr ancIt = GetAncestors( shape1, mesh, ancestorType );
while ( const TopoDS_Shape* anc = ancIt->next() )
if ( IsSubShape( shape2, *anc ))
{
commonAnc = *anc;
break;
}
}
return commonAnc;
}
//#include <Perf_Meter.hxx>
//=======================================================================
namespace { // Structures used by FixQuadraticElements()
//=======================================================================
#define __DMP__(txt) \
// cout << txt
#define MSG(txt) __DMP__(txt<<endl)
#define MSGBEG(txt) __DMP__(txt)
//const double straightTol2 = 1e-33; // to detect straing links
bool isStraightLink(double linkLen2, double middleNodeMove2)
{
// straight if <node move> < 1/15 * <link length>
return middleNodeMove2 < 1/15./15. * linkLen2;
}
struct QFace;
// ---------------------------------------
/*!
* \brief Quadratic link knowing its faces
*/
struct QLink: public SMESH_TLink
{
const SMDS_MeshNode* _mediumNode;
mutable vector<const QFace* > _faces;
mutable gp_Vec _nodeMove;
mutable int _nbMoves;
QLink(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* nm):
SMESH_TLink( n1,n2 ), _mediumNode(nm), _nodeMove(0,0,0), _nbMoves(0) {
_faces.reserve(4);
//if ( MediumPos() != SMDS_TOP_3DSPACE )
_nodeMove = MediumPnt() - MiddlePnt();
}
void SetContinuesFaces() const;
const QFace* GetContinuesFace( const QFace* face ) const;
bool OnBoundary() const;
gp_XYZ MiddlePnt() const { return ( XYZ( node1() ) + XYZ( node2() )) / 2.; }
gp_XYZ MediumPnt() const { return XYZ( _mediumNode ); }
SMDS_TypeOfPosition MediumPos() const
{ return _mediumNode->GetPosition()->GetTypeOfPosition(); }
SMDS_TypeOfPosition EndPos(bool isSecond) const
{ return (isSecond ? node2() : node1())->GetPosition()->GetTypeOfPosition(); }
const SMDS_MeshNode* EndPosNode(SMDS_TypeOfPosition pos) const
{ return EndPos(0) == pos ? node1() : EndPos(1) == pos ? node2() : 0; }
void Move(const gp_Vec& move, bool sum=false) const
{ _nodeMove += move; _nbMoves += sum ? (_nbMoves==0) : 1; }
gp_XYZ Move() const { return _nodeMove.XYZ() / _nbMoves; }
bool IsMoved() const { return (_nbMoves > 0 /*&& !IsStraight()*/); }
bool IsStraight() const
{ return isStraightLink( (XYZ(node1())-XYZ(node2())).SquareModulus(),
_nodeMove.SquareMagnitude());
}
bool operator<(const QLink& other) const {
return (node1()->GetID() == other.node1()->GetID() ?
node2()->GetID() < other.node2()->GetID() :
node1()->GetID() < other.node1()->GetID());
}
// struct PtrComparator {
// bool operator() (const QLink* l1, const QLink* l2 ) const { return *l1 < *l2; }
// };
};
// ---------------------------------------------------------
/*!
* \brief Link in the chain of links; it connects two faces
*/
struct TChainLink
{
const QLink* _qlink;
mutable const QFace* _qfaces[2];
TChainLink(const QLink* qlink=0):_qlink(qlink) {
_qfaces[0] = _qfaces[1] = 0;
}
void SetFace(const QFace* face) const { int iF = _qfaces[0] ? 1 : 0; _qfaces[iF]=face; }
bool IsBoundary() const { return !_qfaces[1]; }
void RemoveFace( const QFace* face ) const
{ _qfaces[(face == _qfaces[1])] = 0; if (!_qfaces[0]) std::swap(_qfaces[0],_qfaces[1]); }
const QFace* NextFace( const QFace* f ) const
{ return _qfaces[0]==f ? _qfaces[1] : _qfaces[0]; }
const SMDS_MeshNode* NextNode( const SMDS_MeshNode* n ) const
{ return n == _qlink->node1() ? _qlink->node2() : _qlink->node1(); }
bool operator<(const TChainLink& other) const { return *_qlink < *other._qlink; }
operator bool() const { return (_qlink); }
const QLink* operator->() const { return _qlink; }
gp_Vec Normal() const;
bool IsStraight() const;
};
// --------------------------------------------------------------------
typedef list< TChainLink > TChain;
typedef set < TChainLink > TLinkSet;
typedef TLinkSet::const_iterator TLinkInSet;
const int theFirstStep = 5;
enum { ERR_OK, ERR_TRI, ERR_PRISM, ERR_UNKNOWN }; // errors of QFace::GetLinkChain()
// --------------------------------------------------------------------
/*!
* \brief Quadratic face shared by two volumes and bound by QLinks
*/
struct QFace: public TIDSortedNodeSet
{
mutable const SMDS_MeshElement* _volumes[2];
mutable vector< const QLink* > _sides;
mutable bool _sideIsAdded[4]; // added in chain of links
gp_Vec _normal;
#ifdef _DEBUG_
mutable const SMDS_MeshElement* _face;
#endif
QFace( const vector< const QLink*>& links, const SMDS_MeshElement* face=0 );
void SetVolume(const SMDS_MeshElement* v) const { _volumes[ _volumes[0] ? 1 : 0 ] = v; }
int NbVolumes() const { return !_volumes[0] ? 0 : !_volumes[1] ? 1 : 2; }
void AddSelfToLinks() const {
for ( int i = 0; i < _sides.size(); ++i )
_sides[i]->_faces.push_back( this );
}
int LinkIndex( const QLink* side ) const {
for (int i=0; i<_sides.size(); ++i ) if ( _sides[i] == side ) return i;
return -1;
}
bool GetLinkChain( int iSide, TChain& chain, SMDS_TypeOfPosition pos, int& err) const;
bool GetLinkChain( TChainLink& link, TChain& chain, SMDS_TypeOfPosition pos, int& err) const
{
int i = LinkIndex( link._qlink );
if ( i < 0 ) return true;
_sideIsAdded[i] = true;
link.SetFace( this );
// continue from opposite link
return GetLinkChain( (i+2)%_sides.size(), chain, pos, err );
}
bool IsBoundary() const { return !_volumes[1]; }
bool Contains( const SMDS_MeshNode* node ) const { return count(node); }
bool IsSpoiled(const QLink* bentLink ) const;
TLinkInSet GetBoundaryLink( const TLinkSet& links,
const TChainLink& avoidLink,
TLinkInSet * notBoundaryLink = 0,
const SMDS_MeshNode* nodeToContain = 0,
bool * isAdjacentUsed = 0,
int nbRecursionsLeft = -1) const;
TLinkInSet GetLinkByNode( const TLinkSet& links,
const TChainLink& avoidLink,
const SMDS_MeshNode* nodeToContain) const;
const SMDS_MeshNode* GetNodeInFace() const {
for ( int iL = 0; iL < _sides.size(); ++iL )
if ( _sides[iL]->MediumPos() == SMDS_TOP_FACE ) return _sides[iL]->_mediumNode;
return 0;
}
gp_Vec LinkNorm(const int i, SMESH_MesherHelper* theFaceHelper=0) const;
double MoveByBoundary( const TChainLink& theLink,
const gp_Vec& theRefVec,
const TLinkSet& theLinks,
SMESH_MesherHelper* theFaceHelper=0,
const double thePrevLen=0,
const int theStep=theFirstStep,
gp_Vec* theLinkNorm=0,
double theSign=1.0) const;
};
//================================================================================
/*!
* \brief Dump QLink and QFace
*/
ostream& operator << (ostream& out, const QLink& l)
{
out <<"QLink nodes: "
<< l.node1()->GetID() << " - "
<< l._mediumNode->GetID() << " - "
<< l.node2()->GetID() << endl;
return out;
}
ostream& operator << (ostream& out, const QFace& f)
{
out <<"QFace nodes: "/*<< &f << " "*/;
for ( TIDSortedNodeSet::const_iterator n = f.begin(); n != f.end(); ++n )
out << (*n)->GetID() << " ";
out << " \tvolumes: "
<< (f._volumes[0] ? f._volumes[0]->GetID() : 0) << " "
<< (f._volumes[1] ? f._volumes[1]->GetID() : 0);
out << " \tNormal: "<< f._normal.X() <<", "<<f._normal.Y() <<", "<<f._normal.Z() << endl;
return out;
}
//================================================================================
/*!
* \brief Construct QFace from QLinks
*/
//================================================================================
QFace::QFace( const vector< const QLink*>& links, const SMDS_MeshElement* face )
{
_volumes[0] = _volumes[1] = 0;
_sides = links;
_sideIsAdded[0]=_sideIsAdded[1]=_sideIsAdded[2]=_sideIsAdded[3]=false;
_normal.SetCoord(0,0,0);
for ( int i = 1; i < _sides.size(); ++i ) {
const QLink *l1 = _sides[i-1], *l2 = _sides[i];
insert( l1->node1() ); insert( l1->node2() );
// compute normal
gp_Vec v1( XYZ( l1->node2()), XYZ( l1->node1()));
gp_Vec v2( XYZ( l2->node1()), XYZ( l2->node2()));
if ( l1->node1() != l2->node1() && l1->node2() != l2->node2() )
v1.Reverse();
_normal += v1 ^ v2;
}
double normSqSize = _normal.SquareMagnitude();
if ( normSqSize > numeric_limits<double>::min() )
_normal /= sqrt( normSqSize );
else
_normal.SetCoord(1e-33,0,0);
#ifdef _DEBUG_
_face = face;
#endif
}
//================================================================================
/*!
* \brief Make up a chain of links
* \param iSide - link to add first
* \param chain - chain to fill in
* \param pos - postion of medium nodes the links should have
* \param error - out, specifies what is wrong
* \retval bool - false if valid chain can't be built; "valid" means that links
* of the chain belongs to rectangles bounding hexahedrons
*/
//================================================================================
bool QFace::GetLinkChain( int iSide, TChain& chain, SMDS_TypeOfPosition pos, int& error) const
{
if ( iSide >= _sides.size() ) // wrong argument iSide
return false;
if ( _sideIsAdded[ iSide ]) // already in chain
return true;
if ( _sides.size() != 4 ) { // triangle - visit all my continous faces
MSGBEG( *this );
TLinkSet links;
list< const QFace* > faces( 1, this );
while ( !faces.empty() ) {
const QFace* face = faces.front();
for ( int i = 0; i < face->_sides.size(); ++i ) {
if ( !face->_sideIsAdded[i] && face->_sides[i] ) {
face->_sideIsAdded[i] = true;
// find a face side in the chain
TLinkInSet chLink = links.insert( TChainLink(face->_sides[i])).first;
// TChain::iterator chLink = chain.begin();
// for ( ; chLink != chain.end(); ++chLink )
// if ( chLink->_qlink == face->_sides[i] )
// break;
// if ( chLink == chain.end() )
// chLink = chain.insert( chain.begin(), TChainLink(face->_sides[i]));
// add a face to a chained link and put a continues face in the queue
chLink->SetFace( face );
if ( face->_sides[i]->MediumPos() == pos )
if ( const QFace* contFace = face->_sides[i]->GetContinuesFace( face ))
if ( contFace->_sides.size() == 3 )
faces.push_back( contFace );
}
}
faces.pop_front();
}
if ( error < ERR_TRI )
error = ERR_TRI;
chain.insert( chain.end(), links.begin(),links.end() );
return false;
}
_sideIsAdded[iSide] = true; // not to add this link to chain again
const QLink* link = _sides[iSide];
if ( !link)
return true;
// add link into chain
TChain::iterator chLink = chain.insert( chain.begin(), TChainLink(link));
chLink->SetFace( this );
MSGBEG( *this );
// propagate from a quadrangle to neighbour faces
if ( link->MediumPos() >= pos ) {
int nbLinkFaces = link->_faces.size();
if ( nbLinkFaces == 4 || (/*nbLinkFaces < 4 && */link->OnBoundary())) {
// hexahedral mesh or boundary quadrangles - goto a continous face
if ( const QFace* f = link->GetContinuesFace( this ))
if ( f->_sides.size() == 4 )
return f->GetLinkChain( *chLink, chain, pos, error );
}
else {
TChainLink chLink(link); // side face of prismatic mesh - visit all faces of iSide
for ( int i = 0; i < nbLinkFaces; ++i )
if ( link->_faces[i] )
link->_faces[i]->GetLinkChain( chLink, chain, pos, error );
if ( error < ERR_PRISM )
error = ERR_PRISM;
return false;
}
}
return true;
}
//================================================================================
/*!
* \brief Return a boundary link of the triangle face
* \param links - set of all links
* \param avoidLink - link not to return
* \param notBoundaryLink - out, neither the returned link nor avoidLink
* \param nodeToContain - node the returned link must contain; if provided, search
* also performed on adjacent faces
* \param isAdjacentUsed - returns true if link is found in adjacent faces
* \param nbRecursionsLeft - to limit recursion
*/
//================================================================================
TLinkInSet QFace::GetBoundaryLink( const TLinkSet& links,
const TChainLink& avoidLink,
TLinkInSet * notBoundaryLink,
const SMDS_MeshNode* nodeToContain,
bool * isAdjacentUsed,
int nbRecursionsLeft) const
{
TLinkInSet linksEnd = links.end(), boundaryLink = linksEnd;
typedef list< pair< const QFace*, TLinkInSet > > TFaceLinkList;
TFaceLinkList adjacentFaces;
for ( int iL = 0; iL < _sides.size(); ++iL )
{
if ( avoidLink._qlink == _sides[iL] )
continue;
TLinkInSet link = links.find( _sides[iL] );
if ( link == linksEnd ) continue;
if ( (*link)->MediumPos() > SMDS_TOP_FACE )
continue; // We work on faces here, don't go inside a solid
// check link
if ( link->IsBoundary() ) {
if ( !nodeToContain ||
(*link)->node1() == nodeToContain ||
(*link)->node2() == nodeToContain )
{
boundaryLink = link;
if ( !notBoundaryLink ) break;
}
}
else if ( notBoundaryLink ) {
*notBoundaryLink = link;
if ( boundaryLink != linksEnd ) break;
}
if ( boundaryLink == linksEnd && nodeToContain ) // collect adjacent faces
if ( const QFace* adj = link->NextFace( this ))
if ( adj->Contains( nodeToContain ))
adjacentFaces.push_back( make_pair( adj, link ));
}
if ( isAdjacentUsed ) *isAdjacentUsed = false;
if ( boundaryLink == linksEnd && nodeToContain && nbRecursionsLeft) // check adjacent faces
{
if ( nbRecursionsLeft < 0 )
nbRecursionsLeft = nodeToContain->NbInverseElements();
TFaceLinkList::iterator adj = adjacentFaces.begin();
for ( ; boundaryLink == linksEnd && adj != adjacentFaces.end(); ++adj )
boundaryLink = adj->first->GetBoundaryLink( links, *(adj->second), 0, nodeToContain,
isAdjacentUsed, nbRecursionsLeft-1);
if ( isAdjacentUsed ) *isAdjacentUsed = true;
}
return boundaryLink;
}
//================================================================================
/*!
* \brief Return a link ending at the given node but not avoidLink
*/
//================================================================================
TLinkInSet QFace::GetLinkByNode( const TLinkSet& links,
const TChainLink& avoidLink,
const SMDS_MeshNode* nodeToContain) const
{
for ( int i = 0; i < _sides.size(); ++i )
if ( avoidLink._qlink != _sides[i] &&
(_sides[i]->node1() == nodeToContain || _sides[i]->node2() == nodeToContain ))
return links.find( _sides[ i ]);
return links.end();
}
//================================================================================
/*!
* \brief Return normal to the i-th side pointing outside the face
*/
//================================================================================
gp_Vec QFace::LinkNorm(const int i, SMESH_MesherHelper* /*uvHelper*/) const
{
gp_Vec norm = _normal ^ gp_Vec( XYZ(_sides[i]->node1()), XYZ(_sides[i]->node2()));
gp_XYZ pIn = ( _sides[ (i+1)%3 ]->MiddlePnt() +
_sides[ (i+2)%3 ]->MiddlePnt() ) / 2.;
gp_Vec vecOut = ( _sides[i]->MiddlePnt() - pIn );
if ( norm * vecOut < 0 )
norm.Reverse();
double mag2 = norm.SquareMagnitude();
if ( mag2 > numeric_limits<double>::min() )
norm /= sqrt( mag2 );
return norm;
}
//================================================================================
/*!
* \brief Move medium node of theLink according to its distance from boundary
* \param theLink - link to fix
* \param theRefVec - movement of boundary
* \param theLinks - all adjacent links of continous triangles
* \param theFaceHelper - helper is not used so far
* \param thePrevLen - distance from the boundary
* \param theStep - number of steps till movement propagation limit
* \param theLinkNorm - out normal to theLink
* \param theSign - 1 or -1 depending on movement of boundary
* \retval double - distance from boundary to propagation limit or other boundary
*/
//================================================================================
double QFace::MoveByBoundary( const TChainLink& theLink,
const gp_Vec& theRefVec,
const TLinkSet& theLinks,
SMESH_MesherHelper* theFaceHelper,
const double thePrevLen,
const int theStep,
gp_Vec* theLinkNorm,
double theSign) const
{
if ( !theStep )
return thePrevLen; // propagation limit reached
int iL; // index of theLink
for ( iL = 0; iL < _sides.size(); ++iL )
if ( theLink._qlink == _sides[ iL ])
break;
MSG(string(theStep,'.')<<" Ref( "<<theRefVec.X()<<","<<theRefVec.Y()<<","<<theRefVec.Z()<<" )"
<<" thePrevLen " << thePrevLen);
MSG(string(theStep,'.')<<" "<<*theLink._qlink);
gp_Vec linkNorm = -LinkNorm( iL/*, theFaceHelper*/ ); // normal to theLink
double refProj = theRefVec * linkNorm; // project movement vector to normal of theLink
if ( theStep == theFirstStep )
theSign = refProj < 0. ? -1. : 1.;
else if ( theSign * refProj < 0.4 * theRefVec.Magnitude())
return thePrevLen; // to propagate movement forward only, not in side dir or backward
int iL1 = (iL + 1) % 3, iL2 = (iL + 2) % 3; // indices of the two other links of triangle
TLinkInSet link1 = theLinks.find( _sides[iL1] );
TLinkInSet link2 = theLinks.find( _sides[iL2] );
const QFace *f1 = 0, *f2 = 0; // adjacent faces
bool isBndLink1 = true, isBndLink2 = true;
if ( link1 != theLinks.end() && link2 != theLinks.end() )
{
f1 = link1->NextFace( this );
f2 = link2->NextFace( this );
isBndLink1 = ( theLink->MediumPos() > (*link1)->MediumPos() );
isBndLink2 = ( theLink->MediumPos() > (*link2)->MediumPos() );
if ( theStep == theFirstStep ) // (issue 22541) quad-dominant mesh
{
if ( !isBndLink1 && !f1 )
f1 = (*link1)->GetContinuesFace( this ); // get a quadrangle face
if ( !isBndLink2 && !f2 )
f2 = (*link2)->GetContinuesFace( this );
}
}
else if ( _sides.size() < 4 )
return thePrevLen;
// propagate to adjacent faces till limit step or boundary
double len1 = thePrevLen + (theLink->MiddlePnt() - _sides[iL1]->MiddlePnt()).Modulus();
double len2 = thePrevLen + (theLink->MiddlePnt() - _sides[iL2]->MiddlePnt()).Modulus();
gp_Vec linkDir1(0,0,0); // initialize to avoid valgrind error ("Conditional jump...")
gp_Vec linkDir2(0,0,0);
try {
OCC_CATCH_SIGNALS;
if ( f1 && !isBndLink1 )
len1 = f1->MoveByBoundary
( *link1, theRefVec, theLinks, theFaceHelper, len1, theStep-1, &linkDir1, theSign);
else
linkDir1 = LinkNorm( iL1/*, theFaceHelper*/ );
} catch (...) {
MSG( " --------------- EXCEPTION");
return thePrevLen;
}
try {
OCC_CATCH_SIGNALS;
if ( f2 && !isBndLink2 )
len2 = f2->MoveByBoundary
( *link2, theRefVec, theLinks, theFaceHelper, len2, theStep-1, &linkDir2, theSign);
else
linkDir2 = LinkNorm( iL2/*, theFaceHelper*/ );
} catch (...) {
MSG( " --------------- EXCEPTION");
return thePrevLen;
}
double fullLen = 0;
if ( theStep != theFirstStep )
{
// choose chain length by direction of propagation most codirected with theRefVec
bool choose1 = ( theRefVec * linkDir1 * theSign > theRefVec * linkDir2 * theSign );
fullLen = choose1 ? len1 : len2;
double r = thePrevLen / fullLen;
gp_Vec move = linkNorm * refProj * ( 1 - r );
theLink->Move( move, true );
MSG(string(theStep,'.')<<" Move "<< theLink->_mediumNode->GetID()<<
" by " << refProj * ( 1 - r ) << " following " <<
(choose1 ? *link1->_qlink : *link2->_qlink)); // warning: link1 can be invalid
if ( theLinkNorm ) *theLinkNorm = linkNorm;
}
return fullLen;
}
//================================================================================
/*!
* \brief Checks if the face is distorted due to bentLink
*/
//================================================================================
bool QFace::IsSpoiled(const QLink* bentLink ) const
{
// code is valid for convex faces only
gp_XYZ gc(0,0,0);
for ( TIDSortedNodeSet::const_iterator n = begin(); n!=end(); ++n)
gc += XYZ( *n ) / size();
for (unsigned i = 0; i < _sides.size(); ++i )
{
if ( _sides[i] == bentLink ) continue;
gp_Vec linkNorm = _normal ^ gp_Vec( XYZ(_sides[i]->node1()), XYZ(_sides[i]->node2()));
gp_Vec vecOut( gc, _sides[i]->MiddlePnt() );
if ( linkNorm * vecOut < 0 )
linkNorm.Reverse();
double mag2 = linkNorm.SquareMagnitude();
if ( mag2 > numeric_limits<double>::min() )
linkNorm /= sqrt( mag2 );
gp_Vec vecBent ( _sides[i]->MiddlePnt(), bentLink->MediumPnt());
gp_Vec vecStraight( _sides[i]->MiddlePnt(), bentLink->MiddlePnt());
if ( vecBent * linkNorm > -0.1*vecStraight.Magnitude() )
return true;
}
return false;
}
//================================================================================
/*!
* \brief Find pairs of continues faces
*/
//================================================================================
void QLink::SetContinuesFaces() const
{
// x0 x - QLink, [-|] - QFace, v - volume
// v0 | v1
// | Between _faces of link x2 two vertical faces are continues
// x1----x2-----x3 and two horizontal faces are continues. We set vertical faces
// | to _faces[0] and _faces[1] and horizontal faces to
// v2 | v3 _faces[2] and _faces[3] (or vise versa).
// x4
if ( _faces.empty() )
return;
int iFaceCont = -1, nbBoundary = 0, iBoundary[2]={-1,-1};
if ( _faces[0]->IsBoundary() )
iBoundary[ nbBoundary++ ] = 0;
for ( int iF = 1; iFaceCont < 0 && iF < _faces.size(); ++iF )
{
// look for a face bounding none of volumes bound by _faces[0]
bool sameVol = false;
int nbVol = _faces[iF]->NbVolumes();
for ( int iV = 0; !sameVol && iV < nbVol; ++iV )
sameVol = ( _faces[iF]->_volumes[iV] == _faces[0]->_volumes[0] ||
_faces[iF]->_volumes[iV] == _faces[0]->_volumes[1]);
if ( !sameVol )
iFaceCont = iF;
if ( _faces[iF]->IsBoundary() )
iBoundary[ nbBoundary++ ] = iF;
}
// Set continues faces: arrange _faces to have
// _faces[0] continues to _faces[1]
// _faces[2] continues to _faces[3]
if ( nbBoundary == 2 ) // bnd faces are continues
{
if (( iBoundary[0] < 2 ) != ( iBoundary[1] < 2 ))
{
int iNear0 = iBoundary[0] < 2 ? 1-iBoundary[0] : 5-iBoundary[0];
std::swap( _faces[ iBoundary[1] ], _faces[iNear0] );
}
}
else if ( iFaceCont > 0 ) // continues faces found
{
if ( iFaceCont != 1 )
std::swap( _faces[1], _faces[iFaceCont] );
}
else if ( _faces.size() > 1 ) // not found, set NULL by the first face
{
_faces.insert( ++_faces.begin(), (QFace*) 0 );
}
}
//================================================================================
/*!
* \brief Return a face continues to the given one
*/
//================================================================================
const QFace* QLink::GetContinuesFace( const QFace* face ) const
{
for ( int i = 0; i < _faces.size(); ++i ) {
if ( _faces[i] == face ) {
int iF = i < 2 ? 1-i : 5-i;
return iF < _faces.size() ? _faces[iF] : 0;
}
}
return 0;
}
//================================================================================
/*!
* \brief True if link is on mesh boundary
*/
//================================================================================
bool QLink::OnBoundary() const
{
for ( int i = 0; i < _faces.size(); ++i )
if (_faces[i] && _faces[i]->IsBoundary()) return true;
return false;
}
//================================================================================
/*!
* \brief Return normal of link of the chain
*/
//================================================================================
gp_Vec TChainLink::Normal() const {
gp_Vec norm;
if (_qfaces[0]) norm = _qfaces[0]->_normal;
if (_qfaces[1]) norm += _qfaces[1]->_normal;
return norm;
}
//================================================================================
/*!
* \brief Test link curvature taking into account size of faces
*/
//================================================================================
bool TChainLink::IsStraight() const
{
bool isStraight = _qlink->IsStraight();
if ( isStraight && _qfaces[0] && !_qfaces[1] )
{
int i = _qfaces[0]->LinkIndex( _qlink );
int iOpp = ( i + 2 ) % _qfaces[0]->_sides.size();
gp_XYZ mid1 = _qlink->MiddlePnt();
gp_XYZ mid2 = _qfaces[0]->_sides[ iOpp ]->MiddlePnt();
double faceSize2 = (mid1-mid2).SquareModulus();
isStraight = _qlink->_nodeMove.SquareMagnitude() < 1/10./10. * faceSize2;
}
return isStraight;
}
//================================================================================
/*!
* \brief Move medium nodes of vertical links of pentahedrons adjacent by side faces
*/
//================================================================================
void fixPrism( TChain& allLinks )
{
// separate boundary links from internal ones
typedef set<const QLink*/*, QLink::PtrComparator*/> QLinkSet;
QLinkSet interLinks, bndLinks1, bndLink2;
bool isCurved = false;
for ( TChain::iterator lnk = allLinks.begin(); lnk != allLinks.end(); ++lnk ) {
if ( (*lnk)->OnBoundary() )
bndLinks1.insert( lnk->_qlink );
else
interLinks.insert( lnk->_qlink );
isCurved = isCurved || !lnk->IsStraight();
}
if ( !isCurved )
return; // no need to move
QLinkSet *curBndLinks = &bndLinks1, *newBndLinks = &bndLink2;
while ( !interLinks.empty() && !curBndLinks->empty() )
{
// propagate movement from boundary links to connected internal links
QLinkSet::iterator bnd = curBndLinks->begin(), bndEnd = curBndLinks->end();
for ( ; bnd != bndEnd; ++bnd )
{
const QLink* bndLink = *bnd;
for ( int i = 0; i < bndLink->_faces.size(); ++i ) // loop on faces of bndLink
{
const QFace* face = bndLink->_faces[i]; // quadrange lateral face of a prism
if ( !face ) continue;
// find and move internal link opposite to bndLink within the face
int interInd = ( face->LinkIndex( bndLink ) + 2 ) % face->_sides.size();
const QLink* interLink = face->_sides[ interInd ];
QLinkSet::iterator pInterLink = interLinks.find( interLink );
if ( pInterLink == interLinks.end() ) continue; // not internal link
interLink->Move( bndLink->_nodeMove );
// treated internal links become new boundary ones
interLinks.erase( pInterLink );
newBndLinks->insert( interLink );
}
}
curBndLinks->clear();
std::swap( curBndLinks, newBndLinks );
}
}
//================================================================================
/*!
* \brief Fix links of continues triangles near curved boundary
*/
//================================================================================
void fixTriaNearBoundary( TChain & allLinks, SMESH_MesherHelper& /*helper*/)
{
if ( allLinks.empty() ) return;
TLinkSet linkSet( allLinks.begin(), allLinks.end());
TLinkInSet linkIt = linkSet.begin(), linksEnd = linkSet.end();
for ( linkIt = linkSet.begin(); linkIt != linksEnd; ++linkIt)
{
if ( linkIt->IsBoundary() && !linkIt->IsStraight() && linkIt->_qfaces[0])
{
// move iff a boundary link is bent towards inside of a face (issue 0021084)
const QFace* face = linkIt->_qfaces[0];
gp_XYZ pIn = ( face->_sides[0]->MiddlePnt() +
face->_sides[1]->MiddlePnt() +
face->_sides[2]->MiddlePnt() ) / 3.;
gp_XYZ insideDir( pIn - (*linkIt)->MiddlePnt());
bool linkBentInside = ((*linkIt)->_nodeMove.Dot( insideDir ) > 0 );
//if ( face->IsSpoiled( linkIt->_qlink ))
if ( linkBentInside )
face->MoveByBoundary( *linkIt, (*linkIt)->_nodeMove, linkSet );
}
}
}
//================================================================================
/*!
* \brief Detect rectangular structure of links and build chains from them
*/
//================================================================================
enum TSplitTriaResult {
_OK, _NO_CORNERS, _FEW_ROWS, _MANY_ROWS, _NO_SIDELINK, _BAD_MIDQUAD, _NOT_RECT,
_NO_MIDQUAD, _NO_UPTRIA, _BAD_SET_SIZE, _BAD_CORNER, _BAD_START, _NO_BOTLINK, _TWISTED_CHAIN };
TSplitTriaResult splitTrianglesIntoChains( TChain & allLinks,
vector< TChain> & resultChains,
SMDS_TypeOfPosition pos )
{
// put links in the set and evalute number of result chains by number of boundary links
TLinkSet linkSet;
int nbBndLinks = 0;
for ( TChain::iterator lnk = allLinks.begin(); lnk != allLinks.end(); ++lnk ) {
linkSet.insert( *lnk );
nbBndLinks += lnk->IsBoundary();
}
resultChains.clear();
resultChains.reserve( nbBndLinks / 2 );
TLinkInSet linkIt, linksEnd = linkSet.end();
// find a boundary link with corner node; corner node has position pos-2
// i.e. SMDS_TOP_VERTEX for links on faces and SMDS_TOP_EDGE for
// links in volume
SMDS_TypeOfPosition cornerPos = SMDS_TypeOfPosition(pos-2);
const SMDS_MeshNode* corner = 0;
for ( linkIt = linkSet.begin(); linkIt != linksEnd; ++linkIt )
if ( linkIt->IsBoundary() && (corner = (*linkIt)->EndPosNode(cornerPos)))
break;
if ( !corner)
return _NO_CORNERS;
TLinkInSet startLink = linkIt;
const SMDS_MeshNode* startCorner = corner;
vector< TChain* > rowChains;
int iCol = 0;
while ( startLink != linksEnd) // loop on columns
{
// We suppose we have a rectangular structure like shown here. We have found a
// corner of the rectangle (startCorner) and a boundary link sharing
// |/ |/ | the startCorner (startLink). We are going to loop on rows of the
// --o---o---o structure making several chains at once. One chain (columnChain)
// |\ | /| starts at startLink and continues upward (we look at the structure
// \ | \ | / | from such point that startLink is on the bottom of the structure).
// \| \|/ | While going upward we also fill horizontal chains (rowChains) we
// --o---o---o encounter.
// /|\ |\ |
// / | \ | \ | startCorner
// | \| \|,'
// --o---o---o
// `.startLink
if ( resultChains.size() == nbBndLinks / 2 )
return _NOT_RECT;
resultChains.push_back( TChain() );
TChain& columnChain = resultChains.back();
TLinkInSet botLink = startLink; // current horizontal link to go up from
corner = startCorner; // current corner the botLink ends at
int iRow = 0;
while ( botLink != linksEnd ) // loop on rows
{
// add botLink to the columnChain
columnChain.push_back( *botLink );
const QFace* botTria = botLink->_qfaces[0]; // bottom triangle bound by botLink
if ( !botTria )
{ // the column ends
if ( botLink == startLink )
return _TWISTED_CHAIN; // issue 0020951
linkSet.erase( botLink );
if ( iRow != rowChains.size() )
return _FEW_ROWS; // different nb of rows in columns
break;
}
// find the link dividing the quadrangle (midQuadLink) and vertical boundary
// link ending at <corner> (sideLink); there are two cases:
// 1) midQuadLink does not end at <corner>, then we easily find it by botTria,
// since midQuadLink is not at boundary while sideLink is.
// 2) midQuadLink ends at <corner>
bool isCase2;
TLinkInSet midQuadLink = linksEnd;
TLinkInSet sideLink = botTria->GetBoundaryLink( linkSet, *botLink, &midQuadLink,
corner, &isCase2 );
if ( isCase2 ) { // find midQuadLink among links of botTria
midQuadLink = botTria->GetLinkByNode( linkSet, *botLink, corner );
if ( midQuadLink->IsBoundary() )
return _BAD_MIDQUAD;
}
if ( sideLink == linksEnd || midQuadLink == linksEnd || sideLink == midQuadLink )
return sideLink == linksEnd ? _NO_SIDELINK : _NO_MIDQUAD;
// fill chains
columnChain.push_back( *midQuadLink );
if ( iRow >= rowChains.size() ) {
if ( iCol > 0 )
return _MANY_ROWS; // different nb of rows in columns
if ( resultChains.size() == nbBndLinks / 2 )
return _NOT_RECT;
resultChains.push_back( TChain() );
rowChains.push_back( & resultChains.back() );
}
rowChains[iRow]->push_back( *sideLink );
rowChains[iRow]->push_back( *midQuadLink );
const QFace* upTria = midQuadLink->NextFace( botTria ); // upper tria of the rectangle
if ( !upTria)
return _NO_UPTRIA;
if ( iRow == 0 ) {
// prepare startCorner and startLink for the next column
startCorner = startLink->NextNode( startCorner );
if (isCase2)
startLink = botTria->GetBoundaryLink( linkSet, *botLink, 0, startCorner );
else
startLink = upTria->GetBoundaryLink( linkSet, *midQuadLink, 0, startCorner );
// check if no more columns remains
if ( startLink != linksEnd ) {
const SMDS_MeshNode* botNode = startLink->NextNode( startCorner );
if ( (isCase2 ? botTria : upTria)->Contains( botNode ))
startLink = linksEnd; // startLink bounds upTria or botTria
else if ( startLink == botLink || startLink == midQuadLink || startLink == sideLink )
return _BAD_START;
}
}
// find bottom link and corner for the next row
corner = sideLink->NextNode( corner );
// next bottom link ends at the new corner
linkSet.erase( botLink );
botLink = upTria->GetLinkByNode( linkSet, (isCase2 ? *sideLink : *midQuadLink), corner );
if ( botLink == linksEnd || botLink == midQuadLink || botLink == sideLink)
return _NO_BOTLINK;
if ( midQuadLink == startLink || sideLink == startLink )
return _TWISTED_CHAIN; // issue 0020951
linkSet.erase( midQuadLink );
linkSet.erase( sideLink );
// make faces neighboring the found ones be boundary
if ( startLink != linksEnd ) {
const QFace* tria = isCase2 ? botTria : upTria;
for ( int iL = 0; iL < 3; ++iL ) {
linkIt = linkSet.find( tria->_sides[iL] );
if ( linkIt != linksEnd )
linkIt->RemoveFace( tria );
}
}
if ( botLink->_qfaces[0] == upTria || botLink->_qfaces[1] == upTria )
botLink->RemoveFace( upTria ); // make next botTria first in vector
iRow++;
} // loop on rows
iCol++;
}
// In the linkSet, there must remain the last links of rowChains; add them
if ( linkSet.size() != rowChains.size() )
return _BAD_SET_SIZE;
for ( int iRow = 0; iRow < rowChains.size(); ++iRow ) {
// find the link (startLink) ending at startCorner
corner = 0;
for ( startLink = linkSet.begin(); startLink != linksEnd; ++startLink ) {
if ( (*startLink)->node1() == startCorner ) {
corner = (*startLink)->node2(); break;
}
else if ( (*startLink)->node2() == startCorner) {
corner = (*startLink)->node1(); break;
}
}
if ( startLink == linksEnd )
return _BAD_CORNER;
rowChains[ iRow ]->push_back( *startLink );
linkSet.erase( startLink );
startCorner = corner;
}
return _OK;
}
//================================================================================
/*!
* \brief Place medium nodes at the link middle for elements whose corner nodes
* are out of geometrical boundary to prevent distorting elements.
* Issue 0020982, note 0013990
*/
//================================================================================
void force3DOutOfBoundary( SMESH_MesherHelper& theHelper,
SMESH_ComputeErrorPtr& theError)
{
SMESHDS_Mesh* meshDS = theHelper.GetMeshDS();
TopoDS_Shape shape = theHelper.GetSubShape().Oriented( TopAbs_FORWARD );
if ( shape.IsNull() ) return;
if ( !theError ) theError = SMESH_ComputeError::New();
gp_XYZ faceNorm;
if ( shape.ShapeType() == TopAbs_FACE ) // 2D
{
if ( theHelper.GetMesh()->NbTriangles( ORDER_QUADRATIC ) < 1 ) return;
SMESHDS_SubMesh* faceSM = meshDS->MeshElements( shape );
if ( !faceSM ) return;
const TopoDS_Face& face = TopoDS::Face( shape );
Handle(Geom_Surface) surface = BRep_Tool::Surface( face );
TopExp_Explorer edgeIt( face, TopAbs_EDGE );
for ( ; edgeIt.More(); edgeIt.Next() ) // loop on EDGEs of a FACE
{
// check if the EDGE needs checking
const TopoDS_Edge& edge = TopoDS::Edge( edgeIt.Current() );
if ( SMESH_Algo::isDegenerated( edge ) )
continue;
if ( theHelper.IsRealSeam( edge ) &&
edge.Orientation() == TopAbs_REVERSED )
continue;
SMESHDS_SubMesh* edgeSM = meshDS->MeshElements( edge );
if ( !edgeSM ) continue;
double f,l;
Handle(Geom2d_Curve) pcurve = BRep_Tool::CurveOnSurface( edge, face, f, l );
BRepAdaptor_Curve curve3D( edge );
switch ( curve3D.GetType() ) {
case GeomAbs_Line: continue;
case GeomAbs_Circle:
case GeomAbs_Ellipse:
case GeomAbs_Hyperbola:
case GeomAbs_Parabola:
try
{
gp_Vec D1, D2, Du1, Dv1; gp_Pnt p;
curve3D.D2( 0.5 * ( f + l ), p, D1, D2 );
gp_Pnt2d uv = pcurve->Value( 0.5 * ( f + l ) );
surface->D1( uv.X(), uv.Y(), p, Du1, Dv1 );
gp_Vec fNorm = Du1 ^ Dv1;
if ( fNorm.IsParallel( D2, M_PI * 25./180. ))
continue; // face is normal to the curve3D
gp_Vec curvNorm = fNorm ^ D1;
if ( edge.Orientation() == TopAbs_REVERSED ) curvNorm.Reverse();
if ( curvNorm * D2 > 0 )
continue; // convex edge
}
catch ( Standard_Failure )
{
continue;
}
}
// get nodes shared by faces that may be distorted
SMDS_NodeIteratorPtr nodeIt;
if ( edgeSM->NbNodes() > 0 ) {
nodeIt = edgeSM->GetNodes();
}
else {
SMESHDS_SubMesh* vertexSM = meshDS->MeshElements( theHelper.IthVertex( 0, edge ));
if ( !vertexSM )
vertexSM = meshDS->MeshElements( theHelper.IthVertex( 1, edge ));
if ( !vertexSM ) continue;
nodeIt = vertexSM->GetNodes();
}
// find suspicious faces
TIDSortedElemSet checkedFaces;
vector< const SMDS_MeshNode* > nOnEdge( 2 );
const SMDS_MeshNode* nOnFace;
while ( nodeIt->more() )
{
const SMDS_MeshNode* n = nodeIt->next();
SMDS_ElemIteratorPtr faceIt = n->GetInverseElementIterator( SMDSAbs_Face );
while ( faceIt->more() )
{
const SMDS_MeshElement* f = faceIt->next();
if ( !faceSM->Contains( f ) ||
f->NbNodes() < 6 || // check quadratic triangles only
!checkedFaces.insert( f ).second )
continue;
// get nodes on EDGE and on FACE of a suspicious face
nOnEdge.clear(); nOnFace = 0;
SMDS_MeshElement::iterator triNode = f->begin_nodes();
for ( int nbN = 0; nbN < 3; ++triNode, ++nbN )
{
n = *triNode;
if ( n->GetPosition()->GetDim() == 2 )
nOnFace = n;
else
nOnEdge.push_back( n );
}
// check if nOnFace is inside the FACE
if ( nOnFace && nOnEdge.size() == 2 )
{
theHelper.AddTLinks( static_cast< const SMDS_MeshFace* > ( f ));
if ( !SMESH_MeshAlgos::FaceNormal( f, faceNorm, /*normalized=*/false ))
continue;
gp_XYZ edgeDir = SMESH_TNodeXYZ( nOnEdge[0] ) - SMESH_TNodeXYZ( nOnEdge[1] );
gp_XYZ edgeNorm = faceNorm ^ edgeDir;
n = theHelper.GetMediumNode( nOnEdge[0], nOnEdge[1], true );
gp_XYZ pN0 = SMESH_TNodeXYZ( nOnEdge[0] );
gp_XYZ pMedium = SMESH_TNodeXYZ( n ); // on-edge node location
gp_XYZ pFaceN = SMESH_TNodeXYZ( nOnFace ); // on-face node location
double hMedium = edgeNorm * gp_Vec( pN0, pMedium ).XYZ();
double hFace = edgeNorm * gp_Vec( pN0, pFaceN ).XYZ();
if ( Abs( hMedium ) > Abs( hFace * 0.6 ))
{
// nOnFace is out of FACE, move a medium on-edge node to the middle
gp_XYZ pMid3D = 0.5 * ( pN0 + SMESH_TNodeXYZ( nOnEdge[1] ));
meshDS->MoveNode( n, pMid3D.X(), pMid3D.Y(), pMid3D.Z() );
MSG( "move OUT of face " << n );
theError->myBadElements.push_back( f );
}
}
}
}
}
if ( !theError->myBadElements.empty() )
theError->myName = EDITERR_NO_MEDIUM_ON_GEOM;
return;
} // 2D ==============================================================================
if ( shape.ShapeType() == TopAbs_SOLID ) // 3D
{
if ( theHelper.GetMesh()->NbTetras ( ORDER_QUADRATIC ) < 1 &&
theHelper.GetMesh()->NbPyramids( ORDER_QUADRATIC ) < 1 ) return;
SMESHDS_SubMesh* solidSM = meshDS->MeshElements( shape );
if ( !solidSM ) return;
// check if the SOLID is bound by concave FACEs
vector< TopoDS_Face > concaveFaces;
TopExp_Explorer faceIt( shape, TopAbs_FACE );
for ( ; faceIt.More(); faceIt.Next() ) // loop on FACEs of a SOLID
{
const TopoDS_Face& face = TopoDS::Face( faceIt.Current() );
if ( !meshDS->MeshElements( face )) continue;
BRepAdaptor_Surface surface( face );
switch ( surface.GetType() ) {
case GeomAbs_Plane: continue;
case GeomAbs_Cylinder:
case GeomAbs_Cone:
case GeomAbs_Sphere:
try
{
double u = 0.5 * ( surface.FirstUParameter() + surface.LastUParameter() );
double v = 0.5 * ( surface.FirstVParameter() + surface.LastVParameter() );
gp_Vec Du1, Dv1, Du2, Dv2, Duv2; gp_Pnt p;
surface.D2( u,v, p, Du1, Dv1, Du2, Dv2, Duv2 );
gp_Vec fNorm = Du1 ^ Dv1;
if ( face.Orientation() == TopAbs_REVERSED ) fNorm.Reverse();
bool concaveU = ( fNorm * Du2 > 1e-100 );
bool concaveV = ( fNorm * Dv2 > 1e-100 );
if ( concaveU || concaveV )
concaveFaces.push_back( face );
}
catch ( Standard_Failure )
{
concaveFaces.push_back( face );
}
}
}
if ( concaveFaces.empty() )
return;
// fix 2D mesh on the SOLID
for ( faceIt.ReInit(); faceIt.More(); faceIt.Next() ) // loop on FACEs of a SOLID
{
SMESH_MesherHelper faceHelper( *theHelper.GetMesh() );
faceHelper.SetSubShape( faceIt.Current() );
force3DOutOfBoundary( faceHelper, theError );
}
// get an iterator over faces on concaveFaces
vector< SMDS_ElemIteratorPtr > faceIterVec( concaveFaces.size() );
for ( size_t i = 0; i < concaveFaces.size(); ++i )
faceIterVec[i] = meshDS->MeshElements( concaveFaces[i] )->GetElements();
typedef SMDS_IteratorOnIterators
< const SMDS_MeshElement*, vector< SMDS_ElemIteratorPtr > > TIterOnIter;
SMDS_ElemIteratorPtr faceIter( new TIterOnIter( faceIterVec ));
// a seacher to check if a volume is close to a concave face
std::auto_ptr< SMESH_ElementSearcher > faceSearcher
( SMESH_MeshAlgos::GetElementSearcher( *theHelper.GetMeshDS(), faceIter ));
// classifier
//BRepClass3d_SolidClassifier solidClassifier( shape );
TIDSortedElemSet checkedVols, movedNodes;
//for ( faceIt.ReInit(); faceIt.More(); faceIt.Next() ) // loop on FACEs of a SOLID
for ( size_t iF = 0; iF < concaveFaces.size(); ++iF ) // loop on concave FACEs
{
//const TopoDS_Shape& face = faceIt.Current();
const TopoDS_Shape& face = concaveFaces[ iF ];
SMESHDS_SubMesh* faceSM = meshDS->MeshElements( face );
if ( !faceSM ) continue;
// get nodes shared by volumes (tet and pyra) on the FACE that may be distorted
SMDS_NodeIteratorPtr nodeIt;
if ( faceSM->NbNodes() > 0 ) {
nodeIt = faceSM->GetNodes();
}
else {
TopExp_Explorer vertex( face, TopAbs_VERTEX );
SMESHDS_SubMesh* vertexSM = meshDS->MeshElements( vertex.Current() );
if ( !vertexSM ) continue;
nodeIt = vertexSM->GetNodes();
}
// get ids of sub-shapes of the FACE
set< int > subIDs;
SMESH_subMeshIteratorPtr smIt =
theHelper.GetMesh()->GetSubMesh( face )->getDependsOnIterator(/*includeSelf=*/true);
while ( smIt->more() )
subIDs.insert( smIt->next()->GetId() );
// find suspicious volumes adjacent to the FACE
vector< const SMDS_MeshNode* > nOnFace( 4 );
const SMDS_MeshNode* nInSolid;
while ( nodeIt->more() )
{
const SMDS_MeshNode* n = nodeIt->next();
SMDS_ElemIteratorPtr volIt = n->GetInverseElementIterator( SMDSAbs_Volume );
while ( volIt->more() )
{
const SMDS_MeshElement* vol = volIt->next();
int nbN = vol->NbCornerNodes();
if ( ( nbN != 4 && nbN != 5 ) ||
!solidSM->Contains( vol ) ||
!checkedVols.insert( vol ).second )
continue;
// get nodes on FACE and in SOLID of a suspicious volume
nOnFace.clear(); nInSolid = 0;
SMDS_MeshElement::iterator volNode = vol->begin_nodes();
for ( int nb = nbN; nb > 0; ++volNode, --nb )
{
n = *volNode;
if ( n->GetPosition()->GetDim() == 3 )
nInSolid = n;
else if ( subIDs.count( n->getshapeId() ))
nOnFace.push_back( n );
else
nInSolid = n;
}
if ( !nInSolid || nOnFace.size() != nbN - 1 )
continue;
// get size of the vol
SMESH_TNodeXYZ pInSolid( nInSolid ), pOnFace0( nOnFace[0] );
double volLength = pInSolid.SquareDistance( nOnFace[0] );
for ( size_t i = 1; i < nOnFace.size(); ++i )
{
volLength = Max( volLength, pOnFace0.SquareDistance( nOnFace[i] ));
}
// check if vol is close to concaveFaces
const SMDS_MeshElement* closeFace =
faceSearcher->FindClosestTo( pInSolid, SMDSAbs_Face );
if ( !closeFace ||
pInSolid.SquareDistance( closeFace->GetNode(0) ) > 4 * volLength )
continue;
// check if vol is distorted, i.e. a medium node is much closer
// to nInSolid than the link middle
bool isDistorted = false;
SMDS_FaceOfNodes onFaceTria( nOnFace[0], nOnFace[1], nOnFace[2] );
if ( !SMESH_MeshAlgos::FaceNormal( &onFaceTria, faceNorm, /*normalized=*/false ))
continue;
theHelper.AddTLinks( static_cast< const SMDS_MeshVolume* > ( vol ));
vector< pair< SMESH_TLink, const SMDS_MeshNode* > > links;
for ( size_t i = 0; i < nOnFace.size(); ++i ) // loop on links between nOnFace
for ( size_t j = i+1; j < nOnFace.size(); ++j )
{
SMESH_TLink link( nOnFace[i], nOnFace[j] );
TLinkNodeMap::const_iterator linkIt =
theHelper.GetTLinkNodeMap().find( link );
if ( linkIt != theHelper.GetTLinkNodeMap().end() )
{
links.push_back( make_pair( linkIt->first, linkIt->second ));
if ( !isDistorted ) {
// compare projections of nInSolid and nMedium to face normal
gp_Pnt pMedium = SMESH_TNodeXYZ( linkIt->second );
double hMedium = faceNorm * gp_Vec( pOnFace0, pMedium ).XYZ();
double hVol = faceNorm * gp_Vec( pOnFace0, pInSolid ).XYZ();
isDistorted = ( Abs( hMedium ) > Abs( hVol * 0.5 ));
}
}
}
// move medium nodes to link middle
if ( isDistorted )
{
for ( size_t i = 0; i < links.size(); ++i )
{
const SMDS_MeshNode* nMedium = links[i].second;
if ( movedNodes.insert( nMedium ).second )
{
gp_Pnt pMid3D = 0.5 * ( SMESH_TNodeXYZ( links[i].first.node1() ) +
SMESH_TNodeXYZ( links[i].first.node2() ));
meshDS->MoveNode( nMedium, pMid3D.X(), pMid3D.Y(), pMid3D.Z() );
MSG( "move OUT of solid " << nMedium );
}
}
theError->myBadElements.push_back( vol );
}
} // loop on volumes sharing a node on FACE
} // loop on nodes on FACE
} // loop on FACEs of a SOLID
if ( !theError->myBadElements.empty() )
theError->myName = EDITERR_NO_MEDIUM_ON_GEOM;
} // 3D case
}
} //namespace
//=======================================================================
/*!
* \brief Move medium nodes of faces and volumes to fix distorted elements
* \param error - container of fixed distorted elements
* \param volumeOnly - to fix nodes on faces or not, if the shape is solid
*
* Issue 0020307: EDF 992 SMESH : Linea/Quadratic with Medium Node on Geometry
*/
//=======================================================================
void SMESH_MesherHelper::FixQuadraticElements(SMESH_ComputeErrorPtr& compError,
bool volumeOnly)
{
// setenv NO_FixQuadraticElements to know if FixQuadraticElements() is guilty of bad conversion
if ( getenv("NO_FixQuadraticElements") )
return;
// 0. Apply algorithm to SOLIDs or FACEs
// ----------------------------------------------
if ( myShape.IsNull() ) {
if ( !myMesh->HasShapeToMesh() ) return;
SetSubShape( myMesh->GetShapeToMesh() );
#ifdef _DEBUG_
int nbSolids = 0;
TopTools_IndexedMapOfShape solids;
TopExp::MapShapes(myShape,TopAbs_SOLID,solids);
nbSolids = solids.Extent();
#endif
TopTools_MapOfShape faces; // faces not in solid or in not meshed solid
for ( TopExp_Explorer f(myShape,TopAbs_FACE,TopAbs_SOLID); f.More(); f.Next() ) {
faces.Add( f.Current() ); // not in solid
}
for ( TopExp_Explorer s(myShape,TopAbs_SOLID); s.More(); s.Next() ) {
if ( myMesh->GetSubMesh( s.Current() )->IsEmpty() ) { // get faces of solid
for ( TopExp_Explorer f( s.Current(), TopAbs_FACE); f.More(); f.Next() )
faces.Add( f.Current() ); // in not meshed solid
}
else { // fix nodes in the solid and its faces
#ifdef _DEBUG_
MSG("FIX SOLID " << nbSolids-- << " #" << GetMeshDS()->ShapeToIndex(s.Current()));
#endif
SMESH_MesherHelper h(*myMesh);
h.SetSubShape( s.Current() );
h.ToFixNodeParameters(true);
h.FixQuadraticElements( compError, false );
}
}
// fix nodes on geom faces
#ifdef _DEBUG_
int nbfaces = faces.Extent(); /*avoid "unused varianbles": */ nbfaces++, nbfaces--;
#endif
for ( TopTools_MapIteratorOfMapOfShape fIt( faces ); fIt.More(); fIt.Next() ) {
MSG("FIX FACE " << nbfaces-- << " #" << GetMeshDS()->ShapeToIndex(fIt.Key()));
SMESH_MesherHelper h(*myMesh);
h.SetSubShape( fIt.Key() );
h.ToFixNodeParameters(true);
h.FixQuadraticElements( compError, true);
}
//perf_print_all_meters(1);
if ( compError && compError->myName == EDITERR_NO_MEDIUM_ON_GEOM )
compError->myComment = "during conversion to quadratic, "
"some medium nodes were not placed on geometry to avoid distorting elements";
return;
}
// 1. Find out type of elements and get iterator on them
// ---------------------------------------------------
SMDS_ElemIteratorPtr elemIt;
SMDSAbs_ElementType elemType = SMDSAbs_All;
SMESH_subMesh* submesh = myMesh->GetSubMeshContaining( myShapeID );
if ( !submesh )
return;
if ( SMESHDS_SubMesh* smDS = submesh->GetSubMeshDS() ) {
elemIt = smDS->GetElements();
if ( elemIt->more() ) {
elemType = elemIt->next()->GetType();
elemIt = smDS->GetElements();
}
}
if ( !elemIt || !elemIt->more() || elemType < SMDSAbs_Face )
return;
// 2. Fill in auxiliary data structures
// ----------------------------------
set< QLink > links;
set< QFace > faces;
set< QLink >::iterator pLink;
set< QFace >::iterator pFace;
bool isCurved = false;
//bool hasRectFaces = false;
//set<int> nbElemNodeSet;
SMDS_VolumeTool volTool;
TIDSortedNodeSet apexOfPyramid;
const int apexIndex = 4;
// Issue 0020982
// Move medium nodes to the link middle for elements whose corner nodes
// are out of geometrical boundary to fix distorted elements.
force3DOutOfBoundary( *this, compError );
if ( elemType == SMDSAbs_Volume )
{
while ( elemIt->more() ) // loop on volumes
{
const SMDS_MeshElement* vol = elemIt->next();
if ( !vol->IsQuadratic() || !volTool.Set( vol ))
return;
double volMinSize2 = -1.;
for ( int iF = 0; iF < volTool.NbFaces(); ++iF ) // loop on faces of volume
{
int nbN = volTool.NbFaceNodes( iF );
//nbElemNodeSet.insert( nbN );
const SMDS_MeshNode** faceNodes = volTool.GetFaceNodes( iF );
vector< const QLink* > faceLinks( nbN/2 );
for ( int iN = 0; iN < nbN; iN += 2 ) // loop on links of a face
{
// store QLink
QLink link( faceNodes[iN], faceNodes[iN+2], faceNodes[iN+1] );
pLink = links.insert( link ).first;
faceLinks[ iN/2 ] = & *pLink;
if ( link.MediumPos() == SMDS_TOP_3DSPACE )
{
if ( !link.IsStraight() )
return; // already fixed
}
else if ( !isCurved )
{
if ( volMinSize2 < 0 ) volMinSize2 = volTool.MinLinearSize2();
isCurved = !isStraightLink( volMinSize2, link._nodeMove.SquareMagnitude() );
}
}
// store QFace
pFace = faces.insert( QFace( faceLinks )).first;
if ( pFace->NbVolumes() == 0 )
pFace->AddSelfToLinks();
pFace->SetVolume( vol );
// hasRectFaces = hasRectFaces ||
// ( volTool.GetVolumeType() == SMDS_VolumeTool::QUAD_HEXA ||
// volTool.GetVolumeType() == SMDS_VolumeTool::QUAD_PENTA );
#ifdef _DEBUG_
if ( nbN == 6 )
pFace->_face = GetMeshDS()->FindFace(faceNodes[0],faceNodes[2],faceNodes[4]);
else
pFace->_face = GetMeshDS()->FindFace(faceNodes[0],faceNodes[2],
faceNodes[4],faceNodes[6] );
#endif
}
// collect pyramid apexes for further correction
if ( vol->NbCornerNodes() == 5 )
apexOfPyramid.insert( vol->GetNode( apexIndex ));
}
set< QLink >::iterator pLink = links.begin();
for ( ; pLink != links.end(); ++pLink )
pLink->SetContinuesFaces();
}
else
{
while ( elemIt->more() ) // loop on faces
{
const SMDS_MeshElement* face = elemIt->next();
if ( !face->IsQuadratic() )
continue;
//nbElemNodeSet.insert( face->NbNodes() );
int nbN = face->NbNodes()/2;
vector< const QLink* > faceLinks( nbN );
for ( int iN = 0; iN < nbN; ++iN ) // loop on links of a face
{
// store QLink
QLink link( face->GetNode(iN), face->GetNode((iN+1)%nbN), face->GetNode(iN+nbN) );
pLink = links.insert( link ).first;
faceLinks[ iN ] = & *pLink;
if ( !isCurved &&
link.node1()->GetPosition()->GetTypeOfPosition() < 2 &&
link.node2()->GetPosition()->GetTypeOfPosition() < 2 )
isCurved = !link.IsStraight();
}
// store QFace
pFace = faces.insert( QFace( faceLinks )).first;
pFace->AddSelfToLinks();
//hasRectFaces = ( hasRectFaces || nbN == 4 );
}
}
if ( !isCurved )
return; // no curved edges of faces
// 3. Compute displacement of medium nodes
// ---------------------------------------
// two loops on QFaces: the first is to treat boundary links, the second is for internal ones.
TopLoc_Location loc;
bool checkUV;
// not to treat boundary of volumic sub-mesh.
int isInside = ( elemType == SMDSAbs_Volume && volumeOnly ) ? 1 : 0;
for ( ; isInside < 2; ++isInside )
{
MSG( "--------------- LOOP (inside=" << isInside << ") ------------------");
SMDS_TypeOfPosition pos = isInside ? SMDS_TOP_3DSPACE : SMDS_TOP_FACE;
SMDS_TypeOfPosition bndPos = isInside ? SMDS_TOP_FACE : SMDS_TOP_EDGE;
for ( pFace = faces.begin(); pFace != faces.end(); ++pFace ) {
if ( bool(isInside) == pFace->IsBoundary() )
continue;
for ( int dir = 0; dir < 2; ++dir ) // 2 directions of propagation from the quadrangle
{
MSG( "CHAIN");
// make chain of links connected via continues faces
int error = ERR_OK;
TChain rawChain;
if ( !pFace->GetLinkChain( dir, rawChain, pos, error) && error ==ERR_UNKNOWN ) continue;
rawChain.reverse();
if ( !pFace->GetLinkChain( dir+2, rawChain, pos, error ) && error ==ERR_UNKNOWN ) continue;
vector< TChain > chains;
if ( error == ERR_OK ) { // chain contains continues rectangles
chains.resize(1);
chains[0].splice( chains[0].begin(), rawChain );
}
else if ( error == ERR_TRI ) { // chain contains continues triangles
TSplitTriaResult res = splitTrianglesIntoChains( rawChain, chains, pos );
if ( res != _OK ) { // not quadrangles split into triangles
fixTriaNearBoundary( rawChain, *this );
break;
}
}
else if ( error == ERR_PRISM ) { // quadrangle side faces of prisms
fixPrism( rawChain );
break;
}
else {
continue;
}
for ( int iC = 0; iC < chains.size(); ++iC )
{
TChain& chain = chains[iC];
if ( chain.empty() ) continue;
if ( chain.front().IsStraight() && chain.back().IsStraight() ) {
MSG("3D straight - ignore");
continue;
}
if ( chain.front()->MediumPos() > bndPos ||
chain.back() ->MediumPos() > bndPos ) {
MSG("Internal chain - ignore");
continue;
}
// mesure chain length and compute link position along the chain
double chainLen = 0;
vector< double > linkPos;
MSGBEG( "Link medium nodes: ");
TChain::iterator link0 = chain.begin(), link1 = chain.begin(), link2;
for ( ++link1; link1 != chain.end(); ++link1, ++link0 ) {
MSGBEG( (*link0)->_mediumNode->GetID() << "-" <<(*link1)->_mediumNode->GetID()<<" ");
double len = ((*link0)->MiddlePnt() - (*link1)->MiddlePnt()).Modulus();
while ( len < numeric_limits<double>::min() ) { // remove degenerated link
link1 = chain.erase( link1 );
if ( link1 == chain.end() )
break;
len = ((*link0)->MiddlePnt() - (*link1)->MiddlePnt()).Modulus();
}
chainLen += len;
linkPos.push_back( chainLen );
}
MSG("");
if ( linkPos.size() < 2 )
continue;
gp_Vec move0 = chain.front()->_nodeMove;
gp_Vec move1 = chain.back ()->_nodeMove;
TopoDS_Face face;
if ( !isInside )
{
// compute node displacement of end links of chain in parametric space of face
TChainLink& linkOnFace = *(++chain.begin());
const SMDS_MeshNode* nodeOnFace = linkOnFace->_mediumNode;
TopoDS_Shape f = GetSubShapeByNode( nodeOnFace, GetMeshDS() );
if ( !f.IsNull() && f.ShapeType() == TopAbs_FACE )
{
face = TopoDS::Face( f );
Handle(Geom_Surface) surf = BRep_Tool::Surface(face,loc);
bool isStraight[2];
for ( int is1 = 0; is1 < 2; ++is1 ) // move0 or move1
{
TChainLink& link = is1 ? chain.back() : chain.front();
gp_XY uvm = GetNodeUV( face, link->_mediumNode, nodeOnFace, &checkUV);
gp_XY uv1 = GetNodeUV( face, link->node1(), nodeOnFace, &checkUV);
gp_XY uv2 = GetNodeUV( face, link->node2(), nodeOnFace, &checkUV);
gp_XY uv12 = GetMiddleUV( surf, uv1, uv2);
// uvMove = uvm - uv12
gp_XY uvMove = applyIn2D(surf, uvm, uv12, gp_XY_Subtracted, /*inPeriod=*/false);
( is1 ? move1 : move0 ).SetCoord( uvMove.X(), uvMove.Y(), 0 );
if ( !is1 ) // correct nodeOnFace for move1 (issue 0020919)
nodeOnFace = (*(++chain.rbegin()))->_mediumNode;
isStraight[is1] = isStraightLink( (uv2-uv1).SquareModulus(),
10 * uvMove.SquareModulus());
}
if ( isStraight[0] && isStraight[1] ) {
MSG("2D straight - ignore");
continue; // straight - no need to move nodes of internal links
}
// check if a chain is already fixed
gp_XY uvm = GetNodeUV( face, linkOnFace->_mediumNode, 0, &checkUV);
gp_XY uv1 = GetNodeUV( face, linkOnFace->node1(), nodeOnFace, &checkUV);
gp_XY uv2 = GetNodeUV( face, linkOnFace->node2(), nodeOnFace, &checkUV);
gp_XY uv12 = GetMiddleUV( surf, uv1, uv2);
if (( uvm - uv12 ).SquareModulus() > 1e-10 )
{
MSG("Already fixed - ignore");
continue;
}
}
}
gp_Trsf trsf;
if ( isInside || face.IsNull() )
{
// compute node displacement of end links in their local coord systems
{
TChainLink& ln0 = chain.front(), ln1 = *(++chain.begin());
trsf.SetTransformation( gp_Ax3( gp::Origin(), ln0.Normal(),
gp_Vec( ln0->MiddlePnt(), ln1->MiddlePnt() )));
move0.Transform(trsf);
}
{
TChainLink& ln0 = *(++chain.rbegin()), ln1 = chain.back();
trsf.SetTransformation( gp_Ax3( gp::Origin(), ln1.Normal(),
gp_Vec( ln0->MiddlePnt(), ln1->MiddlePnt() )));
move1.Transform(trsf);
}
}
// compute displacement of medium nodes
link2 = chain.begin();
link0 = link2++;
link1 = link2++;
for ( int i = 0; link2 != chain.end(); ++link0, ++link1, ++link2, ++i )
{
double r = linkPos[i] / chainLen;
// displacement in local coord system
gp_Vec move = (1. - r) * move0 + r * move1;
if ( isInside || face.IsNull()) {
// transform to global
gp_Vec x01( (*link0)->MiddlePnt(), (*link1)->MiddlePnt() );
gp_Vec x12( (*link1)->MiddlePnt(), (*link2)->MiddlePnt() );
gp_Vec x = x01.Normalized() + x12.Normalized();
trsf.SetTransformation( gp_Ax3( gp::Origin(), link1->Normal(), x), gp_Ax3() );
move.Transform(trsf);
}
else {
// compute 3D displacement by 2D one
Handle(Geom_Surface) s = BRep_Tool::Surface(face,loc);
gp_XY oldUV = GetNodeUV( face, (*link1)->_mediumNode, 0, &checkUV);
gp_XY newUV = applyIn2D( s, oldUV, gp_XY( move.X(),move.Y()), gp_XY_Added);
gp_Pnt newPnt = s->Value( newUV.X(), newUV.Y());
move = gp_Vec( XYZ((*link1)->_mediumNode), newPnt.Transformed(loc) );
if ( SMDS_FacePosition* nPos =
dynamic_cast< SMDS_FacePosition* >((*link1)->_mediumNode->GetPosition()))
nPos->SetParameters( newUV.X(), newUV.Y() );
#ifdef _DEBUG_
if ( (XYZ((*link1)->node1()) - XYZ((*link1)->node2())).SquareModulus() <
move.SquareMagnitude())
{
gp_XY uv0 = GetNodeUV( face, (*link0)->_mediumNode, 0, &checkUV);
gp_XY uv2 = GetNodeUV( face, (*link2)->_mediumNode, 0, &checkUV);
MSG( "TOO LONG MOVE \t" <<
"uv0: "<<uv0.X()<<", "<<uv0.Y()<<" \t" <<
"uv2: "<<uv2.X()<<", "<<uv2.Y()<<" \t" <<
"uvOld: "<<oldUV.X()<<", "<<oldUV.Y()<<" \t" <<
"newUV: "<<newUV.X()<<", "<<newUV.Y()<<" \t");
}
#endif
}
(*link1)->Move( move );
MSG( "Move " << (*link1)->_mediumNode->GetID() << " following "
<< chain.front()->_mediumNode->GetID() <<"-"
<< chain.back ()->_mediumNode->GetID() <<
" by " << move.Magnitude());
}
} // loop on chains of links
} // loop on 2 directions of propagation from quadrangle
} // loop on faces
} // fix faces and/or volumes
// 4. Move nodes
// -------------
TIDSortedElemSet biQuadQuas, biQuadTris, triQuadHexa;
const SMDS_MeshElement *biQuadQua, *triQuadHex;
const bool toFixCentralNodes = ( myMesh->NbBiQuadQuadrangles() +
myMesh->NbBiQuadTriangles() +
myMesh->NbTriQuadraticHexas() );
for ( pLink = links.begin(); pLink != links.end(); ++pLink ) {
if ( pLink->IsMoved() )
{
gp_Pnt p = pLink->MiddlePnt() + pLink->Move();
GetMeshDS()->MoveNode( pLink->_mediumNode, p.X(), p.Y(), p.Z());
// collect bi-quadratic elements
if ( toFixCentralNodes )
{
biQuadQua = triQuadHex = 0;
SMDS_ElemIteratorPtr eIt = pLink->_mediumNode->GetInverseElementIterator();
while ( eIt->more() )
{
const SMDS_MeshElement* e = eIt->next();
switch( e->GetEntityType() ) {
case SMDSEntity_BiQuad_Quadrangle: biQuadQuas.insert( e ); break;
case SMDSEntity_BiQuad_Triangle: biQuadTris.insert( e ); break;
case SMDSEntity_TriQuad_Hexa: triQuadHexa.insert( e ); break;
default:;
}
}
}
}
}
// Fix positions of central nodes of bi-tri-quadratic elements
// treat bi-quad quadrangles
{
vector< const SMDS_MeshNode* > nodes( 9 );
gp_XY uv[ 9 ];
TIDSortedElemSet::iterator quadIt = biQuadQuas.begin();
for ( ; quadIt != biQuadQuas.end(); ++quadIt )
{
const SMDS_MeshElement* quad = *quadIt;
// nodes
nodes.clear();
nodes.assign( quad->begin_nodes(), quad->end_nodes() );
// FACE
TopoDS_Shape S = GetSubShapeByNode( nodes.back(), GetMeshDS() );
if ( S.IsNull() || S.ShapeType() != TopAbs_FACE ) continue;
const TopoDS_Face& F = TopoDS::Face( S );
Handle( Geom_Surface ) surf = BRep_Tool::Surface( F, loc );
const double tol = BRep_Tool::Tolerance( F );
// UV
for ( int i = 0; i < 8; ++i )
{
uv[ i ] = GetNodeUV( F, nodes[i], nodes[8], &checkUV );
// as this method is used after mesh generation, UV of nodes is not
// updated according to bending links, so we update
if ( i > 3 && nodes[i]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE )
CheckNodeUV( F, nodes[i], uv[ i ], 2*tol, /*force=*/true );
}
// move the central node
gp_XY uvCent = calcTFI (0.5, 0.5, uv[0],uv[1],uv[2],uv[3],uv[4],uv[5],uv[6],uv[7] );
gp_Pnt p = surf->Value( uvCent.X(), uvCent.Y() ).Transformed( loc );
GetMeshDS()->MoveNode( nodes[8], p.X(), p.Y(), p.Z());
}
}
// treat bi-quad triangles
{
vector< const SMDS_MeshNode* > nodes;
gp_XY uv[ 6 ];
TIDSortedElemSet::iterator triIt = biQuadTris.begin();
for ( ; triIt != biQuadTris.end(); ++triIt )
{
const SMDS_MeshElement* tria = *triIt;
// FACE
const TopoDS_Shape& S = GetMeshDS()->IndexToShape( tria->getshapeId() );
if ( S.IsNull() || S.ShapeType() != TopAbs_FACE ) continue;
const TopoDS_Face& F = TopoDS::Face( S );
Handle( Geom_Surface ) surf = BRep_Tool::Surface( F, loc );
const double tol = BRep_Tool::Tolerance( F );
// nodes
nodes.assign( tria->begin_nodes(), tria->end_nodes() );
// UV
for ( int i = 0; i < 6; ++i )
{
uv[ i ] = GetNodeUV( F, nodes[i], nodes[(i+1)%3], &checkUV );
// as this method is used after mesh generation, UV of nodes is not
// updated according to bending links, so we update
if ( nodes[i]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE )
CheckNodeUV( F, nodes[i], uv[ i ], 2*tol, /*force=*/true );
}
// move the central node
gp_XY uvCent = GetCenterUV( uv[0], uv[1], uv[2], uv[3], uv[4], uv[5] );
gp_Pnt p = surf->Value( uvCent.X(), uvCent.Y() ).Transformed( loc );
GetMeshDS()->MoveNode( tria->GetNode(6), p.X(), p.Y(), p.Z() );
}
}
// treat tri-quadratic hexahedra
{
SMDS_VolumeTool volExp;
TIDSortedElemSet::iterator hexIt = triQuadHexa.begin();
for ( ; hexIt != triQuadHexa.end(); ++hexIt )
{
volExp.Set( *hexIt, /*ignoreCentralNodes=*/false );
// fix nodes central in sides
for ( int iQuad = 0; iQuad < volExp.NbFaces(); ++iQuad )
{
const SMDS_MeshNode** quadNodes = volExp.GetFaceNodes( iQuad );
if ( quadNodes[8]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_3DSPACE )
{
gp_XYZ p = calcTFI( 0.5, 0.5,
SMESH_TNodeXYZ( quadNodes[0] ), SMESH_TNodeXYZ( quadNodes[2] ),
SMESH_TNodeXYZ( quadNodes[4] ), SMESH_TNodeXYZ( quadNodes[6] ),
SMESH_TNodeXYZ( quadNodes[1] ), SMESH_TNodeXYZ( quadNodes[3] ),
SMESH_TNodeXYZ( quadNodes[5] ), SMESH_TNodeXYZ( quadNodes[7] ));
GetMeshDS()->MoveNode( quadNodes[8], p.X(), p.Y(), p.Z());
}
}
// fix the volume central node
vector<gp_XYZ> pointsOnShapes( SMESH_Block::ID_Shell );
const SMDS_MeshNode** hexNodes = volExp.GetNodes();
pointsOnShapes[ SMESH_Block::ID_V000 ] = SMESH_TNodeXYZ( hexNodes[ 0 ] );
pointsOnShapes[ SMESH_Block::ID_V100 ] = SMESH_TNodeXYZ( hexNodes[ 3 ] );
pointsOnShapes[ SMESH_Block::ID_V010 ] = SMESH_TNodeXYZ( hexNodes[ 1 ] );
pointsOnShapes[ SMESH_Block::ID_V110 ] = SMESH_TNodeXYZ( hexNodes[ 2 ] );
pointsOnShapes[ SMESH_Block::ID_V001 ] = SMESH_TNodeXYZ( hexNodes[ 4 ] );
pointsOnShapes[ SMESH_Block::ID_V101 ] = SMESH_TNodeXYZ( hexNodes[ 7 ] );
pointsOnShapes[ SMESH_Block::ID_V011 ] = SMESH_TNodeXYZ( hexNodes[ 5 ] );
pointsOnShapes[ SMESH_Block::ID_V111 ] = SMESH_TNodeXYZ( hexNodes[ 6 ] );
pointsOnShapes[ SMESH_Block::ID_Ex00 ] = SMESH_TNodeXYZ( hexNodes[ 11 ] );
pointsOnShapes[ SMESH_Block::ID_Ex10 ] = SMESH_TNodeXYZ( hexNodes[ 9 ] );
pointsOnShapes[ SMESH_Block::ID_E0y0 ] = SMESH_TNodeXYZ( hexNodes[ 8 ] );
pointsOnShapes[ SMESH_Block::ID_E1y0 ] = SMESH_TNodeXYZ( hexNodes[ 10 ] );
pointsOnShapes[ SMESH_Block::ID_Ex01 ] = SMESH_TNodeXYZ( hexNodes[ 15 ] );
pointsOnShapes[ SMESH_Block::ID_Ex11 ] = SMESH_TNodeXYZ( hexNodes[ 13 ] );
pointsOnShapes[ SMESH_Block::ID_E0y1 ] = SMESH_TNodeXYZ( hexNodes[ 12 ] );
pointsOnShapes[ SMESH_Block::ID_E1y1 ] = SMESH_TNodeXYZ( hexNodes[ 14 ] );
pointsOnShapes[ SMESH_Block::ID_E00z ] = SMESH_TNodeXYZ( hexNodes[ 16 ] );
pointsOnShapes[ SMESH_Block::ID_E10z ] = SMESH_TNodeXYZ( hexNodes[ 19 ] );
pointsOnShapes[ SMESH_Block::ID_E01z ] = SMESH_TNodeXYZ( hexNodes[ 17 ] );
pointsOnShapes[ SMESH_Block::ID_E11z ] = SMESH_TNodeXYZ( hexNodes[ 18 ] );
pointsOnShapes[ SMESH_Block::ID_Fxy0 ] = SMESH_TNodeXYZ( hexNodes[ 20 ] );
pointsOnShapes[ SMESH_Block::ID_Fxy1 ] = SMESH_TNodeXYZ( hexNodes[ 25 ] );
pointsOnShapes[ SMESH_Block::ID_Fx0z ] = SMESH_TNodeXYZ( hexNodes[ 21 ] );
pointsOnShapes[ SMESH_Block::ID_Fx1z ] = SMESH_TNodeXYZ( hexNodes[ 23 ] );
pointsOnShapes[ SMESH_Block::ID_F0yz ] = SMESH_TNodeXYZ( hexNodes[ 24 ] );
pointsOnShapes[ SMESH_Block::ID_F1yz ] = SMESH_TNodeXYZ( hexNodes[ 22 ] );
gp_XYZ nCenterParams(0.5, 0.5, 0.5), nCenterCoords;
SMESH_Block::ShellPoint( nCenterParams, pointsOnShapes, nCenterCoords );
GetMeshDS()->MoveNode( hexNodes[26],
nCenterCoords.X(), nCenterCoords.Y(), nCenterCoords.Z());
}
}
}