smesh/doc/salome/gui/SMESH/input/tui_defining_hypotheses.doc

589 lines
15 KiB
Plaintext

/*!
\page tui_defining_hypotheses_page Defining Hypotheses and Algorithms
<h2>Defining 1D Hypotheses</h2>
<br>
\anchor tui_1d_arithmetic
<h3>1D Arithmetic</h3>
\code
import geompy
import smesh
# create a box
box = geompy.MakeBoxDXDYDZ(10., 10., 10.)
geompy.addToStudy(box, "Box")
# create a hexahedral mesh on the box
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
# create a Regular 1D algorithm for edges
algo1D = hexa.Segment()
# optionally reverse node distribution on certain edges
allEdges = geompy.SubShapeAllSortedIDs( box, geompy.ShapeType["EDGE"])
reversedEdges = [ allEdges[0], allEdges[4] ]
# define "Arithmetic1D" hypothesis to cut all edges in several segments with increasing arithmetic length
algo1D.Arithmetic1D(1, 4, reversedEdges)
# create a quadrangle 2D algorithm for faces
hexa.Quadrangle()
# create a hexahedron 3D algorithm for solids
hexa.Hexahedron()
# compute the mesh
hexa.Compute()
\endcode
<br>
\anchor tui_deflection_1d
<h3>Deflection 1D and Number of Segments</h3>
\code
import geompy
import smesh
# create a face from arc and straight segment
px = geompy.MakeVertex(100., 0. , 0. )
py = geompy.MakeVertex(0. , 100., 0. )
pz = geompy.MakeVertex(0. , 0. , 100.)
exy = geompy.MakeEdge(px, py)
arc = geompy.MakeArc(py, pz, px)
wire = geompy.MakeWire([exy, arc])
isPlanarFace = 1
face1 = geompy.MakeFace(wire, isPlanarFace)
geompy.addToStudy(face1,"Face1")
# get edges from the face
e_straight,e_arc = geompy.SubShapeAll(face1, geompy.ShapeType["EDGE"])
geompy.addToStudyInFather(face1, e_arc, "Arc Edge")
# create hexahedral mesh
hexa = smesh.Mesh(face1, "Face : triangle mesh")
# define "NumberOfSegments" hypothesis to cut a straight edge in a fixed number of segments
algo1D = hexa.Segment()
algo1D.NumberOfSegments(6)
# define "MaxElementArea" hypothesis
algo2D = hexa.Triangle()
algo2D.MaxElementArea(70.0)
# define a local "Deflection1D" hypothesis on the arc
algo_local = hexa.Segment(e_arc)
algo_local.Deflection1D(1.0)
# compute the mesh
hexa.Compute()
\endcode
<br>
\anchor tui_start_and_end_length
<h3>Start and End Length</h3>
\code
from geompy import *
import smesh
# create a box
box = MakeBoxDXDYDZ(10., 10., 10.)
addToStudy(box, "Box")
# get one edge of the box to put local hypothesis on
p5 = MakeVertex(5., 0., 0.)
EdgeX = GetEdgeNearPoint(box, p5)
addToStudyInFather(box, EdgeX, "Edge [0,0,0 - 10,0,0]")
# create a hexahedral mesh on the box
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
# set algorithms
algo1D = hexa.Segment()
hexa.Quadrangle()
hexa.Hexahedron()
# define "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments
algo1D.NumberOfSegments(4)
# create a local hypothesis
algo_local = hexa.Segment(EdgeX)
# define "StartEndLength" hypothesis to cut an edge in several segments with increasing geometric length
algo_local.StartEndLength(1, 6)
# define "Propagation" hypothesis that propagates all other hypothesis
# on all edges on the opposite side in case of quadrangular faces
algo_local.Propagation()
# compute the mesh
hexa.Compute()
\endcode
<br>
\anchor tui_average_length
<h3>Average Length</h3>
\code
from geompy import *
import smesh
# create a box
box = MakeBoxDXDYDZ(10., 10., 10.)
addToStudy(box, "Box")
# get one edge of the box to put local hypothesis on
p5 = MakeVertex(5., 0., 0.)
EdgeX = GetEdgeNearPoint(box, p5)
addToStudyInFather(box, EdgeX, "Edge [0,0,0 - 10,0,0]")
# create a hexahedral mesh on the box
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
# set algorithms
algo1D = hexa.Segment()
hexa.Quadrangle()
hexa.Hexahedron()
# define "NumberOfSegments" hypothesis to cut all edges in a fixed number of segments
algo1D.NumberOfSegments(4)
# create a sub-mesh
algo_local = hexa.Segment(EdgeX)
# define "LocalLength" hypothesis to cut an edge in several segments with the same length
algo_local.LocalLength(2.)
# define "Propagation" hypothesis that propagates all other hypothesis
# on all edges on the opposite side in case of quadrangular faces
algo_local.Propagation()
# compute the mesh
hexa.Compute()
\endcode
<br><h2>Defining 2D and 3D hypotheses</h2>
<br>
\anchor tui_max_element_area
<h3>Maximum Element Area</h3>
\code
import geompy
import smesh
import salome
# create a face
px = geompy.MakeVertex(100., 0. , 0. )
py = geompy.MakeVertex(0. , 100., 0. )
pz = geompy.MakeVertex(0. , 0. , 100.)
vxy = geompy.MakeVector(px, py)
arc = geompy.MakeArc(py, pz, px)
wire = geompy.MakeWire([vxy, arc])
isPlanarFace = 1
face = geompy.MakeFace(wire, isPlanarFace)
# add the face in the study
id_face = geompy.addToStudy(face, "Face to be meshed")
# create a mesh
tria_mesh = smesh.Mesh(face, "Face : triangulation")
# define 1D meshing:
algo = tria_mesh.Segment()
algo.NumberOfSegments(20)
# define 2D meshing:
# assign triangulation algorithm
algo = tria_mesh.Triangle()
# apply "Max Element Area" hypothesis to each triangle
algo.MaxElementArea(100)
# compute the mesh
tria_mesh.Compute()
\endcode
<br>
\anchor tui_max_element_volume
<h3>Maximum Element Volume</h3>
\code
import geompy
import smesh
# create a cylinder
cyl = geompy.MakeCylinderRH(30., 50.)
geompy.addToStudy(cyl, "cyl")
# create a mesh on the cylinder
tetra = smesh.Mesh(cyl, "Cylinder : tetrahedrical mesh")
# assign algorithms
algo1D = tetra.Segment()
algo2D = tetra.Triangle()
algo3D = tetra.Tetrahedron(smesh.NETGEN)
# assign 1D and 2D hypotheses
algo1D.NumberOfSegments(7)
algo2D.MaxElementArea(150.)
# assign Max Element Volume hypothesis
algo3D.MaxElementVolume(200.)
# compute the mesh
ret = tetra.Compute()
if ret == 0:
print "probleme when computing the mesh"
else:
print "Computation succeded"
\endcode
<br>
\anchor tui_length_from_edges
<h3>Length from Edges</h3>
\code
import geompy
import smesh
# create sketchers
sketcher1 = geompy.MakeSketcher("Sketcher:F 0 0:TT 70 0:TT 70 70:TT 0 70:WW")
sketcher2 = geompy.MakeSketcher("Sketcher:F 20 20:TT 50 20:TT 50 50:TT 20 50:WW")
# create a face from two wires
isPlanarFace = 1
face1 = geompy.MakeFaces([sketcher1, sketcher2], isPlanarFace)
geompy.addToStudy(face1, "Face1")
# create a mesh
tria = smesh.Mesh(face1, "Face : triangle 2D mesh")
# Define 1D meshing
algo1D = tria.Segment()
algo1D.NumberOfSegments(2)
# create and assign the algorithm for 2D meshing with triangles
algo2D = tria.Triangle()
# create and assign "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire
algo2D.LengthFromEdges()
# compute the mesh
tria.Compute()
\endcode
<br><h2>Defining Additional Hypotheses</h2>
<br>
\anchor tui_propagation
<h3>Propagation</h3>
\code
from geompy import *
import smesh
# create a box
box = MakeBoxDXDYDZ(10., 10., 10.)
addToStudy(box, "Box")
# get one edge of the box to put local hypothesis on
p5 = MakeVertex(5., 0., 0.)
EdgeX = GetEdgeNearPoint(box, p5)
addToStudyInFather(box, EdgeX, "Edge [0,0,0 - 10,0,0]")
# create a hexahedral mesh on the box
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
# set global algorithms and hypotheses
algo1D = hexa.Segment()
hexa.Quadrangle()
hexa.Hexahedron()
algo1D.NumberOfSegments(4)
# create a sub-mesh with local 1D hypothesis and propagation
algo_local = hexa.Segment(EdgeX)
# define "Arithmetic1D" hypothesis to cut an edge in several segments with increasing length
algo_local.Arithmetic1D(1, 4)
# define "Propagation" hypothesis that propagates all other 1D hypotheses
# from all edges on the opposite side of a face in case of quadrangular faces
algo_local.Propagation()
# compute the mesh
hexa.Compute()
\endcode
<br>
\anchor tui_defining_meshing_algos
<h2>Defining Meshing Algorithms</h2>
\code
import geompy
import smesh
# create a box
box = geompy.MakeBoxDXDYDZ(10., 10., 10.)
geompy.addToStudy(box, "Box")
# 1. Create a hexahedral mesh on the box
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
# create a Regular 1D algorithm for edges
algo1D = hexa.Segment()
# create a quadrangle 2D algorithm for faces
algo2D = hexa.Quadrangle()
# create a hexahedron 3D algorithm for solids
algo3D = hexa.Hexahedron()
# define hypotheses
algo1D.Arithmetic1D(1, 4)
# compute the mesh
hexa.Compute()
# 2. Create a tetrahedral mesh on the box
tetra = smesh.Mesh(box, "Box : tetrahedrical mesh")
# create a Regular 1D algorithm for edges
algo1D = tetra.Segment()
# create a Mefisto 2D algorithm for faces
algo2D = tetra.Triangle()
# create a Netgen 3D algorithm for solids
algo3D = tetra.Tetrahedron(smesh.NETGEN)
# define hypotheses
algo1D.Arithmetic1D(1, 4)
algo2D.LengthFromEdges()
# compute the mesh
tetra.Compute()
# 3. Create a tetrahedral mesh on the box with NETGEN_2D3D algorithm
tetraN = smesh.Mesh(box, "Box : tetrahedrical mesh by NETGEN_2D3D")
# create a Netgen_2D3D algorithm for solids
algo3D = tetraN.Tetrahedron(smesh.FULL_NETGEN)
# define hypotheses
n23_params = algo3D.Parameters()
# compute the mesh
tetraN.Compute()
\endcode
<br>
\anchor tui_projection
<h3>Projection Algorithms</h3>
\code
# Project prisms from one meshed box to another mesh on the same box
from smesh import *
# Prepare geometry
# Create a parallelepiped
box = geompy.MakeBoxDXDYDZ(200, 100, 70)
geompy.addToStudy( box, "box" )
# Get geom faces to mesh with triangles in the 1ts and 2nd meshes
faces = geompy.SubShapeAll(box, geompy.ShapeType["FACE"])
# 2 adjacent faces of the box
f1 = faces[2]
f2 = faces[0]
# face opposite to f2
f2opp = faces[1]
# Get vertices used to specify how to associate sides of faces at projection
[v1F1, v2F1] = geompy.SubShapeAll(f1, geompy.ShapeType["VERTEX"])[:2]
[v1F2, v2F2] = geompy.SubShapeAll(f2, geompy.ShapeType["VERTEX"])[:2]
geompy.addToStudyInFather( box, v1F1, "v1F1" )
geompy.addToStudyInFather( box, v2F1, "v2F1" )
geompy.addToStudyInFather( box, v1F2, "v1F2" )
geompy.addToStudyInFather( box, v2F2, "v2F2" )
# Make group of 3 edges of f1 and f2
edgesF1 = geompy.CreateGroup(f1, geompy.ShapeType["EDGE"])
geompy.UnionList( edgesF1, geompy.SubShapeAll(f1, geompy.ShapeType["EDGE"])[:3])
edgesF2 = geompy.CreateGroup(f2, geompy.ShapeType["EDGE"])
geompy.UnionList( edgesF2, geompy.SubShapeAll(f2, geompy.ShapeType["EDGE"])[:3])
geompy.addToStudyInFather( box, edgesF1, "edgesF1" )
geompy.addToStudyInFather( box, edgesF2, "edgesF2" )
# Make the source mesh with prisms
src_mesh = Mesh(box, "Source mesh")
src_mesh.Segment().NumberOfSegments(9,10)
src_mesh.Quadrangle()
src_mesh.Hexahedron()
src_mesh.Triangle(f1) # triangular sumbesh
src_mesh.Compute()
# Mesh the box using projection algoritms
# Define the same global 1D and 2D hypotheses
tgt_mesh = Mesh(box, "Target mesh")
tgt_mesh.Segment().NumberOfSegments(9,10,UseExisting=True)
tgt_mesh.Quadrangle()
# Define Projection 1D algorithm to project 1d mesh elements from group edgesF2 to edgesF1
# It is actually not needed, just a demonstration
proj1D = tgt_mesh.Projection1D( edgesF1 )
# each vertex must be at the end of a connected group of edges (or a sole edge)
proj1D.SourceEdge( edgesF2, src_mesh, v2F1, v2F2 )
# Define 2D hypotheses to project triangles from f1 face of the source mesh to
# f2 face in the target mesh. Vertices specify how to associate sides of faces
proj2D = tgt_mesh.Projection2D( f2 )
proj2D.SourceFace( f1, src_mesh, v1F1, v1F2, v2F1, v2F2 )
# 2D hypotheses to project triangles from f2 of target mesh to the face opposite to f2.
# Association of face sides is default
proj2D = tgt_mesh.Projection2D( f2opp )
proj2D.SourceFace( f2 )
# 3D hypotheses to project prisms from the source to the target mesh
proj3D = tgt_mesh.Projection3D()
proj3D.SourceShape3D( box, src_mesh, v1F1, v1F2, v2F1, v2F2 )
tgt_mesh.Compute()
# Move the source mesh to visualy compare the two meshes
src_mesh.TranslateObject( src_mesh, MakeDirStruct( 210, 0, 0 ), Copy=False)
\endcode
<br>
\anchor tui_fixed_points
<h2>1D Mesh with Fixed Points example</h2>
\code
import salome
import geompy
import smesh
import StdMeshers
# Create face and explode it on edges
face = geompy.MakeFaceHW(100, 100, 1)
edges = geompy.SubShapeAllSorted(face, geompy.ShapeType["EDGE"])
geompy.addToStudy( face, "Face" )
# get the first edge from exploded result
edge1 = geompy.GetSubShapeID(face, edges[0])
# Define Mesh on previously created face
Mesh_1 = smesh.Mesh(face)
# Create Fixed Point 1D hypothesis and define parameters.
# Note: values greater than 1.0 and less than 0.0 are not taken into account;
# duplicated values are removed. Also, if not specified explicitly, values 0.0 and 1.0
# add added automatically.
# The number of segments should correspond to the number of points (NbSeg = NbPnt-1);
# extra values of segments splitting parameter are not taken into account,
# while missing values are considered to be equal to 1.
Fixed_points_1D_1 = smesh.CreateHypothesis('FixedPoints1D')
Fixed_points_1D_1.SetPoints( [ 1.1, 0.9, 0.5, 0.0, 0.5, -0.3 ] )
Fixed_points_1D_1.SetNbSegments( [ 3, 1, 2 ] )
Fixed_points_1D_1.SetReversedEdges( [edge1] )
# Add hypothesis to mesh and define 2D parameters
Mesh_1.AddHypothesis(Fixed_points_1D_1)
Regular_1D = Mesh_1.Segment()
Quadrangle_2D = Mesh_1.Quadrangle()
# Compute mesh
Mesh_1.Compute()
\endcode
\anchor tui_radial_quadrangle
<h2> Radial Quadrangle 1D2D example </h2>
\code
from smesh import *
SetCurrentStudy(salome.myStudy)
# Create face from the wire and add to study
Face = geompy.MakeSketcher("Sketcher:F 0 0:TT 20 0:R 90:C 20 90:WF", [0, 0, 0, 1, 0, 0, 0, 0, 1])
geompy.addToStudy(Face,"Face")
edges = geompy.SubShapeAllSorted(Face, geompy.ShapeType["EDGE"])
circle, radius1, radius2 = edges
geompy.addToStudyInFather(Face, radius1,"radius1")
geompy.addToStudyInFather(Face, radius2,"radius2")
geompy.addToStudyInFather(Face, circle,"circle")
# Define geometry for mesh, and Radial Quadrange algorithm
mesh = smesh.Mesh(Face)
radial_Quad_algo = mesh.Quadrangle(algo=RADIAL_QUAD)
# The Radial Quadrange algorithm can work without any hypothesis
# In this case it uses "Default Nb of Segments" preferences parameter to discretize edges
mesh.Compute()
# The Radial Quadrange uses global or local 1d hypotheses if it does
# not have its own hypotheses.
# Define global hypotheses to discretize radial edges and a local one for circular edge
global_Nb_Segments = mesh.Segment().NumberOfSegments(5)
local_Nb_Segments = mesh.Segment(circle).NumberOfSegments(10)
mesh.Compute()
# Define own parameters of Radial Quadrange algorithm
radial_Quad_algo.NumberOfLayers( 4 )
mesh.Compute()
\endcode
\anchor tui_quadrangle_parameters
<h2>Quadrangle Parameters example </h2>
\code
import geompy
import smesh
import StdMeshers
# Get 1/4 part from the disk face.
Box_1 = geompy.MakeBoxDXDYDZ(100, 100, 100)
Disk_1 = geompy.MakeDiskR(100, 1)
Common_1 = geompy.MakeCommon(Disk_1, Box_1)
geompy.addToStudy( Disk_1, "Disk_1" )
geompy.addToStudy( Box_1, "Box_1" )
geompy.addToStudy( Common_1, "Common_1" )
# Set the Geometry for meshing
Mesh_1 = smesh.Mesh(Common_1)
# Create Quadrangle parameters and define the Base Vertex.
Quadrangle_Parameters_1 = smesh.CreateHypothesis('QuadrangleParams')
Quadrangle_Parameters_1.SetTriaVertex( 8 )
# Define 1D hypothesis and cmpute the mesh
Regular_1D = Mesh_1.Segment()
Nb_Segments_1 = Regular_1D.NumberOfSegments(10)
Nb_Segments_1.SetDistrType( 0 )
status = Mesh_1.AddHypothesis(Quadrangle_Parameters_1)
Quadrangle_2D = Mesh_1.Quadrangle()
Mesh_1.Compute()
\endcode
\n Other meshing algorithms:
<ul>
<li>\subpage tui_defining_blsurf_hypotheses_page</li>
<li>\subpage tui_defining_ghs3d_hypotheses_page</li>
</ul>
*/