smesh/src/StdMeshers/StdMeshers_CartesianParameters3D.cxx
cconopoima 9a170f0e1e [bos #38052][EDF](2023-T3) Option to replace polyhedrons by hexahedrons in the body frontier based in a predefined volume relation.
Including quanta option to hypothesis with persistence. Working version w/o support to add faces on the boundary elements.

Intermedial commit.

Intermedial commit.

Adding documentation and test.

Final adjust for conformity with NRT.
2024-01-23 17:25:57 +00:00

962 lines
31 KiB
C++

// Copyright (C) 2007-2024 CEA, EDF, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_CartesianParameters3D.cxx
// Author : Edward AGAPOV
// Module : SMESH
//
#include "StdMeshers_CartesianParameters3D.hxx"
#include "StdMeshers_NumberOfSegments.hxx"
#include "StdMeshers_Distribution.hxx"
#include "SMESH_Gen.hxx"
#include "utilities.h"
#include <map>
#include <limits>
#include <BRepGProp.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_Box.hxx>
#include <GProp_GProps.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <Geom_Surface.hxx>
#include <Precision.hxx>
#include <TopExp_Explorer.hxx>
#include <TopLoc_Location.hxx>
#include <TopTools_MapIteratorOfMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Face.hxx>
#include <gp_Dir.hxx>
#include <gp_Mat.hxx>
#include <gp_Pln.hxx>
#include <gp_Vec.hxx>
using namespace std;
//=======================================================================
//function : StdMeshers_CartesianParameters3D
//purpose : Constructor
//=======================================================================
StdMeshers_CartesianParameters3D::StdMeshers_CartesianParameters3D(int hypId,
SMESH_Gen * gen)
: SMESH_Hypothesis(hypId, gen),
_sizeThreshold( 4.0 ), // default according to the customer specification
_toAddEdges( false ),
_toConsiderInternalFaces( false ),
_toUseThresholdForInternalFaces( false ),
_toCreateFaces( false ),
_toUseQuanta(false),
_quanta(0.01)
{
_name = "CartesianParameters3D"; // used by "Cartesian_3D"
_param_algo_dim = 3; // 3D
_axisDirs[0] = 1.;
_axisDirs[1] = 0.;
_axisDirs[2] = 0.;
_axisDirs[3] = 0.;
_axisDirs[4] = 1.;
_axisDirs[5] = 0.;
_axisDirs[6] = 0.;
_axisDirs[7] = 0.;
_axisDirs[8] = 1.;
_fixedPoint[0] = 0.;
_fixedPoint[1] = 0.;
_fixedPoint[2] = 0.;
SetFixedPoint( _fixedPoint, /*toUnset=*/true );
}
namespace
{
const char* axisName[3] = { "X", "Y", "Z" };
typedef std::pair< double, std::pair< double, double > > TCooTriple;
#define gpXYZ( cTriple ) gp_XYZ( (cTriple).first, (cTriple).second.first, (cTriple).second.second )
//================================================================================
/*!
* \brief Compare two normals
*/
//================================================================================
bool sameDir( const TCooTriple& n1, const TCooTriple& n2 )
{
gp_XYZ xyz1 = gpXYZ( n1 ), xyz2 = gpXYZ( n2 );
return ( xyz1 - xyz2 ).Modulus() < 0.01;
}
//================================================================================
/*!
* \brief Checks validity of an axis index, throws in case of invalidity
*/
//================================================================================
void checkAxis(const int axis)
{
if ( axis < 0 || axis > 2 )
throw SALOME_Exception(SMESH_Comment("Invalid axis index ") << axis <<
". Valid axis indices are 0, 1 and 2");
}
//================================================================================
/*!
* \brief Checks validity of spacing data, throws in case of invalidity
*/
//================================================================================
void checkGridSpacing(std::vector<std::string>& spaceFunctions,
std::vector<double>& internalPoints,
const std::string& axis)
{
if ( spaceFunctions.empty() )
throw SALOME_Exception(SMESH_Comment("Empty space function for ") << axis );
for ( size_t i = 1; i < internalPoints.size(); ++i )
if ( internalPoints[i] - internalPoints[i-1] < 0 )
throw SALOME_Exception(SMESH_Comment("Wrong order of internal points along ") << axis);
else if ( internalPoints[i] - internalPoints[i-1] < 1e-3 )
throw SALOME_Exception(SMESH_Comment("Too close internal points along ") << axis );
const double tol = Precision::Confusion();
if ( !internalPoints.empty() &&
( internalPoints.front() < -tol || internalPoints.back() > 1 + tol ))
throw SALOME_Exception(SMESH_Comment("Invalid internal points along ") << axis);
if ( internalPoints.empty() || internalPoints.front() > tol )
internalPoints.insert( internalPoints.begin(), 0. );
if ( internalPoints.size() < 2 || internalPoints.back() < 1 - tol )
internalPoints.push_back( 1. );
if ( internalPoints.size() != spaceFunctions.size() + 1 )
throw SALOME_Exception
(SMESH_Comment("Numbre of internal points mismatch number of functions for ") << axis);
for ( size_t i = 0; i < spaceFunctions.size(); ++i )
spaceFunctions[i] =
StdMeshers_NumberOfSegments::CheckExpressionFunction( spaceFunctions[i], -1 );
}
}
//=======================================================================
//function : SetGrid
//purpose : Sets coordinates of node positions along an axes
//=======================================================================
void StdMeshers_CartesianParameters3D::SetGrid(std::vector<double>& coords, int axis)
{
checkAxis( axis );
if ( coords.size() < 2 )
throw SALOME_Exception(LOCALIZED("Wrong number of grid coordinates"));
std::sort( coords.begin(), coords.end() );
bool changed = ( _coords[axis] != coords );
if ( changed )
{
_coords[axis] = coords;
NotifySubMeshesHypothesisModification();
}
_spaceFunctions[axis].clear();
_internalPoints[axis].clear();
}
//=======================================================================
//function : SetGridSpacing
//purpose : Set grid spacing along the three axes
//=======================================================================
void StdMeshers_CartesianParameters3D::SetGridSpacing(std::vector<string>& xSpaceFuns,
std::vector<double>& xInternalPoints,
const int axis)
{
checkAxis( axis );
checkGridSpacing( xSpaceFuns, xInternalPoints, axisName[axis] );
bool changed = ( xSpaceFuns != _spaceFunctions[axis] ||
xInternalPoints != _internalPoints[axis] );
_spaceFunctions[axis] = xSpaceFuns;
_internalPoints[axis] = xInternalPoints;
_coords[axis].clear();
if ( changed )
NotifySubMeshesHypothesisModification();
}
//=======================================================================
//function : SetFixedPoint
//purpose : * Set/unset a fixed point, at which a node will be created provided that grid
// * is defined by spacing in all directions
//=======================================================================
void StdMeshers_CartesianParameters3D::SetFixedPoint(const double p[3], bool toUnset)
{
if ( toUnset != Precision::IsInfinite( _fixedPoint[0] ))
NotifySubMeshesHypothesisModification();
if ( toUnset )
_fixedPoint[0] = Precision::Infinite();
else
std::copy( &p[0], &p[0]+3, &_fixedPoint[0] );
}
//=======================================================================
//function : GetFixedPoint
//purpose : Returns either false or (true + point coordinates)
//=======================================================================
bool StdMeshers_CartesianParameters3D::GetFixedPoint(double p[3]) const
{
if ( Precision::IsInfinite( _fixedPoint[0] ))
return false;
std::copy( &_fixedPoint[0], &_fixedPoint[0]+3, &p[0] );
return true;
}
//=======================================================================
//function : SetSizeThreshold
//purpose : Set size threshold
//=======================================================================
void StdMeshers_CartesianParameters3D::SetSizeThreshold(const double threshold)
{
if ( threshold <= 1.0 )
throw SALOME_Exception(LOCALIZED("threshold must be > 1.0"));
bool changed = fabs( _sizeThreshold - threshold ) > 1e-6;
_sizeThreshold = threshold;
if ( changed )
NotifySubMeshesHypothesisModification();
}
//=======================================================================
//function : GetGridSpacing
//purpose : return spacing
//=======================================================================
void StdMeshers_CartesianParameters3D::GetGridSpacing(std::vector<std::string>& spaceFunctions,
std::vector<double>& internalPoints,
const int axis) const
{
if ( !IsGridBySpacing(axis) )
throw SALOME_Exception(LOCALIZED("The grid is defined by coordinates and not by spacing"));
spaceFunctions = _spaceFunctions[axis];
internalPoints = _internalPoints[axis];
}
//=======================================================================
//function : IsGridBySpacing
//=======================================================================
bool StdMeshers_CartesianParameters3D::IsGridBySpacing(const int axis) const
{
checkAxis(axis);
return !_spaceFunctions[axis].empty();
}
//=======================================================================
//function : ComputeCoordinates
//purpose : Computes node coordinates by spacing functions
//=======================================================================
void StdMeshers_CartesianParameters3D::ComputeCoordinates(const double x0,
const double x1,
vector<string>& theSpaceFuns,
vector<double>& thePoints,
vector<double>& coords,
const string& axis,
const double* xForced )
{
checkGridSpacing( theSpaceFuns, thePoints, axis );
vector<string> spaceFuns = theSpaceFuns;
vector<double> points = thePoints;
bool forced = false;
if (( forced = ( xForced && ( x0 < *xForced ) && ( *xForced < x1 ))))
{
// divide a range at xForced
// find a range to insert xForced
double pos = ( *xForced - x0 ) / ( x1 - x0 );
int iR = 1;
while ( pos > points[ iR ] ) ++iR;
// insert xForced
vector<double>::iterator pntIt = points.begin() + iR;
points.insert( pntIt, pos );
vector<string>::iterator funIt = spaceFuns.begin() + iR;
spaceFuns.insert( funIt, spaceFuns[ iR-1 ]);
}
coords.clear();
for ( size_t i = 0; i < spaceFuns.size(); ++i )
{
StdMeshers::FunctionExpr fun( spaceFuns[i].c_str(), /*convMode=*/-1 );
const double p0 = x0 * ( 1. - points[i]) + x1 * points[i];
const double p1 = x0 * ( 1. - points[i+1]) + x1 * points[i+1];
const double length = p1 - p0;
const int nbSections = 1000;
const double sectionLen = ( p1 - p0 ) / nbSections;
vector< double > nbSegments( nbSections + 1 );
nbSegments[ 0 ] = 0.;
double t, spacing = 0;
for ( int i = 1; i <= nbSections; ++i )
{
t = double( i ) / nbSections;
if ( !fun.value( t, spacing ) || spacing < std::numeric_limits<double>::min() )
throw SALOME_Exception(LOCALIZED("Invalid spacing function"));
nbSegments[ i ] = nbSegments[ i-1 ] + std::min( 1., sectionLen / spacing );
}
const int nbCells = max (1, int(floor(nbSegments.back()+0.5)));
const double corr = nbCells / nbSegments.back();
if ( coords.empty() ) coords.push_back( p0 );
for ( int iCell = 1, j = 1; j <= nbSections; ++j )
{
if ( nbSegments[j]*corr >= iCell )
{
t = (j - ( nbSegments[j] - iCell/corr )/( nbSegments[j] - nbSegments[j-1] )) / nbSections;
coords.push_back( p0 + t * length );
++iCell;
}
}
const double lastCellLen = coords.back() - coords[ coords.size() - 2 ];
if ( fabs( coords.back() - p1 ) > 0.5 * lastCellLen )
coords.push_back ( p1 );
}
// correct coords if a forced point is too close to a neighbor node
if ( forced )
{
size_t iF = 0;
double minLen = ( x1 - x0 );
for ( size_t i = 1; i < coords.size(); ++i )
{
if ( !iF && Abs( coords[i] - *xForced ) < 1e-20 )
iF = i++; // xForced found
else
minLen = Min( minLen, coords[i] - coords[i-1] );
}
const double tol = minLen * 1e-3;
int iRem = -1;
if (( iF > 1 ) && ( coords[iF] - coords[iF-1] < tol ))
iRem = (int) iF-1;
else if (( iF < coords.size()-2 ) && ( coords[iF+1] - coords[iF] < tol ))
iRem = (int) iF+1;
if ( iRem > 0 )
coords.erase( coords.begin() + iRem );
}
}
//=======================================================================
//function : GetCoordinates
//purpose : Return coordinates of node positions along the three axes.
// If the grid is defined by spacing functions, the coordinates are computed
//=======================================================================
void StdMeshers_CartesianParameters3D::GetCoordinates(std::vector<double>& xNodes,
std::vector<double>& yNodes,
std::vector<double>& zNodes,
const Bnd_Box& bndBox) const
{
double x0,y0,z0, x1,y1,z1;
if ( IsGridBySpacing(0) || IsGridBySpacing(1) || IsGridBySpacing(2))
{
if ( bndBox.IsVoid() ||
bndBox.IsXThin( Precision::Confusion() ) ||
bndBox.IsYThin( Precision::Confusion() ) ||
bndBox.IsZThin( Precision::Confusion() ) )
throw SALOME_Exception(LOCALIZED("Invalid bounding box"));
bndBox.Get(x0,y0,z0, x1,y1,z1);
}
double fp[3], *pfp[3] = { NULL, NULL, NULL };
if ( GetFixedPoint( fp ))
{
// convert fp into a basis defined by _axisDirs
gp_XYZ axis[3] = { gp_XYZ( _axisDirs[0], _axisDirs[1], _axisDirs[2] ),
gp_XYZ( _axisDirs[3], _axisDirs[4], _axisDirs[5] ),
gp_XYZ( _axisDirs[6], _axisDirs[7], _axisDirs[8] ) };
axis[0].Normalize();
axis[1].Normalize();
axis[2].Normalize();
gp_Mat basis( axis[0], axis[1], axis[2] );
gp_Mat bi = basis.Inverted();
gp_XYZ p( fp[0], fp[1], fp[2] );
p *= bi;
p.Coord( fp[0], fp[1], fp[2] );
pfp[0] = & fp[0];
pfp[1] = & fp[1];
pfp[2] = & fp[2];
}
StdMeshers_CartesianParameters3D* me = const_cast<StdMeshers_CartesianParameters3D*>(this);
if ( IsGridBySpacing(0) )
ComputeCoordinates
( x0, x1, me->_spaceFunctions[0], me->_internalPoints[0], xNodes, "X", pfp[0] );
else
xNodes = _coords[0];
if ( IsGridBySpacing(1) )
ComputeCoordinates
( y0, y1, me->_spaceFunctions[1], me->_internalPoints[1], yNodes, "Y", pfp[1] );
else
yNodes = _coords[1];
if ( IsGridBySpacing(2) )
ComputeCoordinates
( z0, z1, me->_spaceFunctions[2], me->_internalPoints[2], zNodes, "Z", pfp[2] );
else
zNodes = _coords[2];
}
//=======================================================================
//function : ComputeOptimalAxesDirs
//purpose : Returns axes at which number of hexahedra is maximal
//=======================================================================
void StdMeshers_CartesianParameters3D::
ComputeOptimalAxesDirs(const TopoDS_Shape& shape,
const bool isOrthogonal,
double dirCoords[9])
{
for ( int i = 0; i < 9; ++i ) dirCoords[i] = 0.;
dirCoords[0] = dirCoords[4] = dirCoords[8] = 1.;
if ( shape.IsNull() ) return;
TopLoc_Location loc;
TopExp_Explorer exp;
// get external FACEs of the shape
TopTools_MapOfShape faceMap;
for ( exp.Init( shape, TopAbs_FACE ); exp.More(); exp.Next() )
if ( !faceMap.Add( exp.Current() ))
faceMap.Remove( exp.Current() );
// sort areas of planar faces by normal direction
std::multimap< TCooTriple, double > areasByNormal;
TopTools_MapIteratorOfMapOfShape fIt ( faceMap );
for ( ; fIt.More(); fIt.Next() )
{
const TopoDS_Face& face = TopoDS::Face( fIt.Key() );
Handle(Geom_Surface) surf = BRep_Tool::Surface( face, loc );
if ( surf.IsNull() ) continue;
GeomLib_IsPlanarSurface check( surf, 1e-5 );
if ( !check.IsPlanar() ) continue;
GProp_GProps SProps;
BRepGProp::SurfaceProperties( face, SProps );
double area = SProps.Mass();
gp_Pln pln = check.Plan();
gp_Dir norm = pln.Axis().Direction().Transformed( loc );
if ( norm.X() < -1e-3 ) { // negative X
norm.Reverse();
} else if ( norm.X() < 1e-3 ) { // zero X
if ( norm.Y() < -1e-3 ) { // negative Y
norm.Reverse();
} else if ( norm.Y() < 1e-3 ) { // zero X && zero Y
if ( norm.Y() < -1e-3 ) // negative Z
norm.Reverse();
}
}
TCooTriple coo3( norm.X(), make_pair( norm.Y(), norm.Z() ));
areasByNormal.insert( make_pair( coo3, area ));
}
// group coplanar normals and sort groups by sum area
std::multimap< double, vector< const TCooTriple* > > normsByArea;
std::multimap< TCooTriple, double >::iterator norm2a = areasByNormal.begin();
const TCooTriple* norm1 = 0;
double sumArea = 0;
vector< const TCooTriple* > norms;
for ( size_t iF = 1; norm2a != areasByNormal.end(); ++norm2a, ++iF )
{
if ( !norm1 || !sameDir( *norm1, norm2a->first ))
{
if ( !norms.empty() )
{
normsByArea.insert( make_pair( sumArea, norms ));
norms.clear();
}
norm1 = & norm2a->first;
sumArea = norm2a->second;
norms.push_back( norm1 );
}
else
{
sumArea += norm2a->second;
norms.push_back( & norm2a->first );
}
if ( iF == areasByNormal.size() )
normsByArea.insert( make_pair( sumArea, norms ));
}
// try to set dirs by planar faces
gp_XYZ normDirs[3]; // normals to largest planes
if ( !normsByArea.empty() )
{
norm1 = normsByArea.rbegin()->second[0];
normDirs[0] = gpXYZ( *norm1 );
if ( normsByArea.size() == 1 )
{
normDirs[1] = normDirs[0];
if ( Abs( normDirs[0].Y() ) < 1e-100 &&
Abs( normDirs[0].Z() ) < 1e-100 ) // normDirs[0] || OX
normDirs[1].SetY( normDirs[0].Y() + 1. );
else
normDirs[1].SetX( normDirs[0].X() + 1. );
}
else
{
// look for 2 other directions
gp_XYZ testDir = normDirs[0], minDir, maxDir;
for ( int is2nd = 0; is2nd < 2; ++is2nd )
{
double maxMetric = 0, minMetric = 1e100;
std::multimap< double, vector< const TCooTriple* > >::iterator a2n;
for ( a2n = normsByArea.begin(); a2n != normsByArea.end(); ++a2n )
{
gp_XYZ n = gpXYZ( *( a2n->second[0]) );
double dot = Abs( n * testDir );
double metric = ( 1. - dot ) * ( isOrthogonal ? 1 : a2n->first );
if ( metric > maxMetric )
{
maxDir = n;
maxMetric = metric;
}
if ( metric < minMetric )
{
minDir = n;
minMetric = metric;
}
}
if ( is2nd )
{
normDirs[2] = minDir;
}
else
{
normDirs[1] = maxDir;
normDirs[2] = normDirs[0] ^ normDirs[1];
if ( isOrthogonal || normsByArea.size() < 3 )
break;
testDir = normDirs[2];
}
}
}
if ( isOrthogonal || normsByArea.size() == 1 )
{
normDirs[2] = normDirs[0] ^ normDirs[1];
normDirs[1] = normDirs[2] ^ normDirs[0];
}
}
else
{
return;
}
gp_XYZ dirs[3];
dirs[0] = normDirs[0] ^ normDirs[1];
dirs[1] = normDirs[1] ^ normDirs[2];
dirs[2] = normDirs[2] ^ normDirs[0];
dirs[0].Normalize();
dirs[1].Normalize();
dirs[2].Normalize();
// Select dirs for X, Y and Z axes
int iX = ( Abs( dirs[0].X() ) > Abs( dirs[1].X() )) ? 0 : 1;
if ( Abs( dirs[iX].X() ) < Abs( dirs[2].X() ))
iX = 2;
int iY = ( iX == 0 ) ? 1 : (( Abs( dirs[0].Y() ) > Abs( dirs[1].Y() )) ? 0 : 1 );
if ( Abs( dirs[iY].Y() ) < Abs( dirs[2].Y() ) && iX != 2 )
iY = 2;
int iZ = 3 - iX - iY;
if ( dirs[iX].X() < 0 ) dirs[iX].Reverse();
if ( dirs[iY].Y() < 0 ) dirs[iY].Reverse();
gp_XYZ zDir = dirs[iX] ^ dirs[iY];
if ( dirs[iZ] * zDir < 0 )
dirs[iZ].Reverse();
dirCoords[0] = dirs[iX].X();
dirCoords[1] = dirs[iX].Y();
dirCoords[2] = dirs[iX].Z();
dirCoords[3] = dirs[iY].X();
dirCoords[4] = dirs[iY].Y();
dirCoords[5] = dirs[iY].Z();
dirCoords[6] = dirs[iZ].X();
dirCoords[7] = dirs[iZ].Y();
dirCoords[8] = dirs[iZ].Z();
}
//=======================================================================
//function : SetAxisDirs
//purpose : Sets custom direction of axes
//=======================================================================
void StdMeshers_CartesianParameters3D::SetAxisDirs(const double* the9DirComps)
{
gp_Vec x( the9DirComps[0],
the9DirComps[1],
the9DirComps[2] );
gp_Vec y( the9DirComps[3],
the9DirComps[4],
the9DirComps[5] );
gp_Vec z( the9DirComps[6],
the9DirComps[7],
the9DirComps[8] );
if ( x.Magnitude() < RealSmall() ||
y.Magnitude() < RealSmall() ||
z.Magnitude() < RealSmall() )
throw SALOME_Exception("Zero magnitude of axis direction");
if ( x.IsParallel( y, M_PI / 180. ) ||
x.IsParallel( z, M_PI / 180. ) ||
y.IsParallel( z, M_PI / 180. ))
throw SALOME_Exception("Parallel axis directions");
gp_Vec normXY = x ^ y, normYZ = y ^ z;
if ( normXY.IsParallel( normYZ, M_PI / 180. ))
throw SALOME_Exception("Axes lie in one plane");
bool isChanged = false;
for ( int i = 0; i < 9; ++i )
{
if ( Abs( _axisDirs[i] - the9DirComps[i] ) > 1e-7 )
isChanged = true;
_axisDirs[i] = the9DirComps[i];
}
if ( isChanged )
NotifySubMeshesHypothesisModification();
}
//=======================================================================
//function : GetGrid
//purpose : Return coordinates of node positions along the three axes
//=======================================================================
void StdMeshers_CartesianParameters3D::GetGrid(std::vector<double>& coords, int axis) const
{
if ( IsGridBySpacing(axis) )
throw SALOME_Exception(LOCALIZED("The grid is defined by spacing and not by coordinates"));
coords = _coords[axis];
}
//=======================================================================
//function : GetSizeThreshold
//purpose : Return size threshold
//=======================================================================
double StdMeshers_CartesianParameters3D::GetSizeThreshold() const
{
return _sizeThreshold;
}
//=======================================================================
//function : SetToAddEdges
//purpose : Enables implementation of geometrical edges into the mesh. If this feature
// is disabled, sharp edges of the shape are lost ("smoothed") in the mesh if
// they don't coincide with the grid lines
//=======================================================================
void StdMeshers_CartesianParameters3D::SetToAddEdges(bool toAdd)
{
if ( _toAddEdges != toAdd )
{
_toAddEdges = toAdd;
NotifySubMeshesHypothesisModification();
}
}
//=======================================================================
//function : GetToAddEdges
//purpose : Returns true if implementation of geometrical edges into the
// mesh is enabled
//=======================================================================
bool StdMeshers_CartesianParameters3D::GetToAddEdges() const
{
return _toAddEdges;
}
//=======================================================================
//function : SetToConsiderInternalFaces
//purpose : Enables treatment of geom faces either shared by solids or internal
//=======================================================================
void StdMeshers_CartesianParameters3D::SetToConsiderInternalFaces(bool toTreat)
{
if ( _toConsiderInternalFaces != toTreat )
{
_toConsiderInternalFaces = toTreat;
NotifySubMeshesHypothesisModification();
}
}
//=======================================================================
//function : SetToUseThresholdForInternalFaces
//purpose : Enables applying size threshold to grid cells cut by internal geom faces.
//=======================================================================
void StdMeshers_CartesianParameters3D::SetToUseThresholdForInternalFaces(bool toUse)
{
if ( _toUseThresholdForInternalFaces != toUse )
{
_toUseThresholdForInternalFaces = toUse;
NotifySubMeshesHypothesisModification();
}
}
//=======================================================================
//function : SetToCreateFaces
//purpose : Enables creation of mesh faces.
//=======================================================================
void StdMeshers_CartesianParameters3D::SetToCreateFaces(bool toCreate)
{
if ( _toCreateFaces != toCreate )
{
_toCreateFaces = toCreate;
NotifySubMeshesHypothesisModification();
}
}
//=======================================================================
//function : SetToUseQuanta
//purpose : Enables use of quanta
//=======================================================================
void StdMeshers_CartesianParameters3D::SetToUseQuanta(bool toUseQuanta)
{
if ( _toUseQuanta != toUseQuanta )
{
_toUseQuanta = toUseQuanta;
NotifySubMeshesHypothesisModification();
}
}
//=======================================================================
//function : SetQuanta
//purpose : Set size quanta value
//=======================================================================
void StdMeshers_CartesianParameters3D::SetQuanta(const double quanta)
{
if ( quanta < 1e-6 || quanta > 1.0 )
throw SALOME_Exception(LOCALIZED("Quanta must be in the range [0.01,1] "));
bool changed = (_quanta != quanta);
_quanta = quanta;
if ( changed )
NotifySubMeshesHypothesisModification();
}
//=======================================================================
//function : IsDefined
//purpose : Return true if parameters are well defined
//=======================================================================
bool StdMeshers_CartesianParameters3D::IsDefined() const
{
for ( int i = 0; i < 3; ++i )
if (_coords[i].empty() && (_spaceFunctions[i].empty() || _internalPoints[i].empty()))
return false;
return ( _sizeThreshold > 1.0 );
}
//=======================================================================
//function : SaveTo
//purpose : store my parameters into a stream
//=======================================================================
std::ostream & StdMeshers_CartesianParameters3D::SaveTo(std::ostream & save)
{
save << _sizeThreshold << " ";
for ( int i = 0; i < 3; ++i )
{
save << _coords[i].size() << " ";
for ( size_t j = 0; j < _coords[i].size(); ++j )
save << _coords[i][j] << " ";
save << _internalPoints[i].size() << " ";
for ( size_t j = 0; j < _internalPoints[i].size(); ++j )
save << _internalPoints[i][j] << " ";
save << _spaceFunctions[i].size() << " ";
for ( size_t j = 0; j < _spaceFunctions[i].size(); ++j )
save << _spaceFunctions[i][j] << " ";
}
save << _toAddEdges << " ";
save.setf( save.scientific );
save.precision( 12 );
for ( int i = 0; i < 9; ++i )
save << _axisDirs[i] << " ";
for ( int i = 0; i < 3; ++i )
save << _fixedPoint[i] << " ";
save << " " << _toConsiderInternalFaces
<< " " << _toUseThresholdForInternalFaces
<< " " << _toCreateFaces
<< " " << _toUseQuanta
<< " " << _quanta;
return save;
}
//=======================================================================
//function : LoadFrom
//purpose : restore my parameters from a stream
//=======================================================================
std::istream & StdMeshers_CartesianParameters3D::LoadFrom(std::istream & load)
{
bool ok;
ok = static_cast<bool>( load >> _sizeThreshold );
for ( int ax = 0; ax < 3; ++ax )
{
if (ok)
{
size_t i = 0;
ok = static_cast<bool>(load >> i );
if ( i > 0 && ok )
{
_coords[ax].resize( i );
for ( i = 0; i < _coords[ax].size() && ok; ++i )
ok = static_cast<bool>(load >> _coords[ax][i] );
}
}
if (ok)
{
size_t i = 0;
ok = static_cast<bool>(load >> i );
if ( i > 0 && ok )
{
_internalPoints[ax].resize( i );
for ( i = 0; i < _internalPoints[ax].size() && ok; ++i )
ok = static_cast<bool>(load >> _internalPoints[ax][i] );
}
}
if (ok)
{
size_t i = 0;
ok = static_cast<bool>(load >> i );
if ( i > 0 && ok )
{
_spaceFunctions[ax].resize( i );
for ( i = 0; i < _spaceFunctions[ax].size() && ok; ++i )
ok = static_cast<bool>(load >> _spaceFunctions[ax][i] );
}
}
}
ok = static_cast<bool>( load >> _toAddEdges );
for ( int i = 0; i < 9 && ok; ++i )
ok = static_cast<bool>( load >> _axisDirs[i]);
for ( int i = 0; i < 3 && ok ; ++i )
ok = static_cast<bool>( load >> _fixedPoint[i]);
if ( load >> _toConsiderInternalFaces )
{
load >> _toUseThresholdForInternalFaces;
load >> _toCreateFaces;
}
if ( load >> _toUseQuanta )
load >> _quanta;
return load;
}
//=======================================================================
//function : SetParametersByMesh
//=======================================================================
bool StdMeshers_CartesianParameters3D::SetParametersByMesh(const SMESH_Mesh* ,
const TopoDS_Shape& )
{
return false;
}
//=======================================================================
//function : SetParametersByDefaults
//=======================================================================
bool StdMeshers_CartesianParameters3D::SetParametersByDefaults(const TDefaults& dflts,
const SMESH_Mesh* /*theMesh*/)
{
if ( dflts._elemLength > 1e-100 )
{
vector<string> spacing( 1, SMESH_Comment(dflts._elemLength));
vector<double> intPnts;
SetGridSpacing( spacing, intPnts, 0 );
SetGridSpacing( spacing, intPnts, 1 );
SetGridSpacing( spacing, intPnts, 2 );
return true;
}
return false;
}