smesh/src/StdMeshers/StdMeshers_Cartesian_3D.cxx
Konstantin Leontev 36b825e934 [bos #42217][EDF 28921] Horseshoe with bodyfitting.
Nodes linked to a null nodes without any possible splits now being cleared befor splits initialization.
2024-07-30 17:36:57 +01:00

7453 lines
269 KiB
C++

// Copyright (C) 2007-2024 CEA, EDF, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_Cartesian_3D.cxx
// Module : SMESH
//
#include "StdMeshers_Cartesian_3D.hxx"
#include "StdMeshers_CartesianParameters3D.hxx"
#include "StdMeshers_Cartesian_VL.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "StdMeshers_ViscousLayers.hxx"
#include <ObjectPool.hxx>
#include <SMDS_LinearEdge.hxx>
#include <SMDS_MeshNode.hxx>
#include <SMDS_VolumeOfNodes.hxx>
#include <SMDS_VolumeTool.hxx>
#include <SMESHDS_Mesh.hxx>
#include <SMESH_Block.hxx>
#include <SMESH_Comment.hxx>
#include <SMESH_ControlsDef.hxx>
#include <SMESH_Mesh.hxx>
#include <SMESH_MeshAlgos.hxx>
#include <SMESH_MeshEditor.hxx>
#include <SMESH_MesherHelper.hxx>
#include <SMESH_subMesh.hxx>
#include <SMESH_subMeshEventListener.hxx>
#include <utilities.h>
#include <Utils_ExceptHandlers.hxx>
#include <GEOMUtils.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <BRepBndLib.hxx>
#include <BRepBuilderAPI_Copy.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>
#include <BRepTools.hxx>
#include <BRepTopAdaptor_FClass2d.hxx>
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_B3d.hxx>
#include <Bnd_Box.hxx>
#include <ElSLib.hxx>
#include <GCPnts_UniformDeflection.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <GeomLib.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <IntAna_IntConicQuad.hxx>
#include <IntAna_IntLinTorus.hxx>
#include <IntAna_Quadric.hxx>
#include <IntCurveSurface_TransitionOnCurve.hxx>
#include <IntCurvesFace_Intersector.hxx>
#include <Poly_Triangulation.hxx>
#include <Precision.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopLoc_Location.hxx>
#include <TopTools_DataMapOfShapeInteger.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Compound.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_TShape.hxx>
#include <gp_Cone.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Lin.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Sphere.hxx>
#include <gp_Torus.hxx>
//STD
#include <limits>
#include <mutex>
#include <thread>
#include <boost/container/flat_map.hpp>
#ifdef _DEBUG_
// #define _MY_DEBUG_
// #undef WITH_TBB
#endif
#ifdef WITH_TBB
#ifdef WIN32
// See https://docs.microsoft.com/en-gb/cpp/porting/modifying-winver-and-win32-winnt?view=vs-2019
// Windows 10 = 0x0A00
#define WINVER 0x0A00
#define _WIN32_WINNT 0x0A00
#endif
#include <algorithm>
#include <tbb/parallel_for.h>
#endif
using namespace std;
using namespace SMESH;
std::mutex _eMutex;
std::mutex _bMutex;
//=============================================================================
/*!
* Constructor
*/
//=============================================================================
StdMeshers_Cartesian_3D::StdMeshers_Cartesian_3D(int hypId, SMESH_Gen * gen)
:SMESH_3D_Algo(hypId, gen)
{
_name = "Cartesian_3D";
_shapeType = (1 << TopAbs_SOLID); // 1 bit /shape type
_compatibleHypothesis.push_back( "CartesianParameters3D" );
_compatibleHypothesis.push_back( StdMeshers_ViscousLayers::GetHypType() );
_onlyUnaryInput = false; // to mesh all SOLIDs at once
_requireDiscreteBoundary = false; // 2D mesh not needed
_supportSubmeshes = false; // do not use any existing mesh
}
//=============================================================================
/*!
* Check presence of a hypothesis
*/
//=============================================================================
bool StdMeshers_Cartesian_3D::CheckHypothesis (SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
Hypothesis_Status& aStatus)
{
aStatus = SMESH_Hypothesis::HYP_MISSING;
const list<const SMESHDS_Hypothesis*>& hyps = GetUsedHypothesis(aMesh, aShape, /*skipAux=*/false);
list <const SMESHDS_Hypothesis* >::const_iterator h = hyps.begin();
if ( h == hyps.end())
{
return false;
}
_hyp = nullptr;
_hypViscousLayers = nullptr;
_isComputeOffset = false;
for ( ; h != hyps.end(); ++h )
{
if ( !_hyp && ( _hyp = dynamic_cast<const StdMeshers_CartesianParameters3D*>( *h )))
{
aStatus = _hyp->IsDefined() ? HYP_OK : HYP_BAD_PARAMETER;
}
else
{
_hypViscousLayers = dynamic_cast<const StdMeshers_ViscousLayers*>( *h );
}
}
return aStatus == HYP_OK;
}
namespace
{
/*!
* \brief Temporary mesh to hold
*/
struct TmpMesh: public SMESH_Mesh
{
TmpMesh() {
_isShapeToMesh = (_id = 0);
_meshDS = new SMESHDS_Mesh( _id, true );
}
};
typedef int TGeomID; // IDs of sub-shapes
typedef TopTools_ShapeMapHasher TShapeHasher; // non-oriented shape hasher
typedef std::array< int, 3 > TIJK;
const TGeomID theUndefID = 1e+9;
const std::string debugSepLine = "\n===========================================\n";
//=============================================================================
// Definitions of internal utils
// --------------------------------------------------------------------------
enum Transition {
Trans_TANGENT = IntCurveSurface_Tangent,
Trans_IN = IntCurveSurface_In,
Trans_OUT = IntCurveSurface_Out,
Trans_APEX,
Trans_INTERNAL // for INTERNAL FACE
};
// --------------------------------------------------------------------------
/*!
* \brief Sub-entities of a FACE neighboring its concave VERTEX.
* Help to avoid linking nodes on EDGEs that seem connected
* by the concave FACE but the link actually lies outside the FACE
*/
struct ConcaveFace
{
TGeomID _concaveFace;
TGeomID _edge1, _edge2;
TGeomID _v1, _v2;
ConcaveFace( int f=0, int e1=0, int e2=0, int v1=0, int v2=0 )
: _concaveFace(f), _edge1(e1), _edge2(e2), _v1(v1), _v2(v2) {}
bool HasEdge( TGeomID edge ) const { return edge == _edge1 || edge == _edge2; }
bool HasVertex( TGeomID v ) const { return v == _v1 || v == _v2; }
void SetEdge( TGeomID edge ) { ( _edge1 ? _edge2 : _edge1 ) = edge; }
void SetVertex( TGeomID v ) { ( _v1 ? _v2 : _v1 ) = v; }
};
typedef NCollection_DataMap< TGeomID, ConcaveFace > TConcaveVertex2Face;
// --------------------------------------------------------------------------
/*!
* \brief Container of IDs of SOLID sub-shapes
*/
class Solid // sole SOLID contains all sub-shapes
{
TGeomID _id; // SOLID id
bool _hasInternalFaces;
TConcaveVertex2Face _concaveVertex; // concave VERTEX -> ConcaveFace
public:
virtual ~Solid() {}
virtual bool Contains( TGeomID /*subID*/ ) const { return true; }
virtual bool ContainsAny( const vector< TGeomID>& /*subIDs*/ ) const { return true; }
virtual TopAbs_Orientation Orientation( const TopoDS_Shape& s ) const { return s.Orientation(); }
virtual bool IsOutsideOriented( TGeomID /*faceID*/ ) const { return true; }
void SetID( TGeomID id ) { _id = id; }
TGeomID ID() const { return _id; }
void SetHasInternalFaces( bool has ) { _hasInternalFaces = has; }
bool HasInternalFaces() const { return _hasInternalFaces; }
void SetConcave( TGeomID V, TGeomID F, TGeomID E1, TGeomID E2, TGeomID V1, TGeomID V2 )
{ _concaveVertex.Bind( V, ConcaveFace{ F, E1, E2, V1, V2 }); }
bool HasConcaveVertex() const { return !_concaveVertex.IsEmpty(); }
const ConcaveFace* GetConcave( TGeomID V ) const { return _concaveVertex.Seek( V ); }
};
// --------------------------------------------------------------------------
class OneOfSolids : public Solid
{
TColStd_MapOfInteger _subIDs;
TopTools_MapOfShape _faces; // keep FACE orientation
TColStd_MapOfInteger _outFaceIDs; // FACEs of shape_to_mesh oriented outside the SOLID
public:
void Init( const TopoDS_Shape& solid,
TopAbs_ShapeEnum subType,
const SMESHDS_Mesh* mesh );
virtual bool Contains( TGeomID i ) const { return i == ID() || _subIDs.Contains( i ); }
virtual bool ContainsAny( const vector< TGeomID>& subIDs ) const
{
for ( size_t i = 0; i < subIDs.size(); ++i ) if ( Contains( subIDs[ i ])) return true;
return false;
}
virtual TopAbs_Orientation Orientation( const TopoDS_Shape& face ) const
{
const TopoDS_Shape& sInMap = const_cast< OneOfSolids* >(this)->_faces.Added( face );
return sInMap.Orientation();
}
virtual bool IsOutsideOriented( TGeomID faceID ) const
{
return faceID == 0 || _outFaceIDs.Contains( faceID );
}
};
// --------------------------------------------------------------------------
/*!
* \brief Hold a vector of TGeomID and clear it at destruction
*/
class GeomIDVecHelder
{
typedef std::vector< TGeomID > TVector;
const TVector& myVec;
bool myOwn;
public:
GeomIDVecHelder( const TVector& idVec, bool isOwner ): myVec( idVec ), myOwn( isOwner ) {}
GeomIDVecHelder( const GeomIDVecHelder& holder ): myVec( holder.myVec ), myOwn( holder.myOwn )
{
const_cast< bool& >( holder.myOwn ) = false;
}
~GeomIDVecHelder() { if ( myOwn ) const_cast<TVector&>( myVec ).clear(); }
size_t size() const { return myVec.size(); }
TGeomID operator[]( size_t i ) const { return i < size() ? myVec[i] : theUndefID; }
bool operator==( const GeomIDVecHelder& other ) const { return myVec == other.myVec; }
bool contain( const TGeomID& id ) const {
return std::find( myVec.begin(), myVec.end(), id ) != myVec.end();
}
TGeomID otherThan( const TGeomID& id ) const {
for ( const TGeomID& id2 : myVec )
if ( id != id2 )
return id2;
return theUndefID;
}
TGeomID oneCommon( const GeomIDVecHelder& other ) const {
TGeomID common = theUndefID;
for ( const TGeomID& id : myVec )
if ( other.contain( id ))
{
if ( common != theUndefID )
return theUndefID;
common = id;
}
return common;
}
};
// --------------------------------------------------------------------------
/*!
* \brief Geom data
*/
struct Geometry
{
TopoDS_Shape _mainShape;
vector< vector< TGeomID > > _solidIDsByShapeID;// V/E/F ID -> SOLID IDs
Solid _soleSolid;
map< TGeomID, OneOfSolids > _solidByID;
TColStd_MapOfInteger _boundaryFaces; // FACEs on boundary of mesh->ShapeToMesh()
TColStd_MapOfInteger _strangeEdges; // EDGEs shared by strange FACEs
TGeomID _extIntFaceID; // pseudo FACE - extension of INTERNAL FACE
TopTools_DataMapOfShapeInteger _shape2NbNodes; // nb of pre-existing nodes on shapes
Controls::ElementsOnShape _edgeClassifier;
Controls::ElementsOnShape _vertexClassifier;
bool IsOneSolid() const { return _solidByID.size() < 2; }
GeomIDVecHelder GetSolidIDsByShapeID( const vector< TGeomID >& shapeIDs ) const;
};
// --------------------------------------------------------------------------
/*!
* \brief Common data of any intersection between a Grid and a shape
*/
struct B_IntersectPoint
{
mutable const SMDS_MeshNode* _node;
mutable vector< TGeomID > _faceIDs;
B_IntersectPoint(): _node(NULL) {}
bool Add( const vector< TGeomID >& fIDs, const SMDS_MeshNode* n=NULL ) const;
TGeomID HasCommonFace( const B_IntersectPoint * other, TGeomID avoidFace=-1 ) const;
size_t GetCommonFaces( const B_IntersectPoint * other, TGeomID * commonFaces ) const;
bool IsOnFace( TGeomID faceID ) const;
virtual ~B_IntersectPoint() {}
};
// --------------------------------------------------------------------------
/*!
* \brief Data of intersection between a GridLine and a TopoDS_Face
*/
struct F_IntersectPoint : public B_IntersectPoint
{
double _paramOnLine;
double _u, _v;
mutable Transition _transition;
mutable size_t _indexOnLine;
bool operator< ( const F_IntersectPoint& o ) const { return _paramOnLine < o._paramOnLine; }
};
// --------------------------------------------------------------------------
/*!
* \brief Data of intersection between GridPlanes and a TopoDS_EDGE
*/
struct E_IntersectPoint : public B_IntersectPoint
{
gp_Pnt _point;
double _uvw[3];
TGeomID _shapeID; // ID of EDGE or VERTEX
};
// --------------------------------------------------------------------------
/*!
* \brief A line of the grid and its intersections with 2D geometry
*/
struct GridLine
{
gp_Lin _line;
double _length; // line length
multiset< F_IntersectPoint > _intPoints;
void RemoveExcessIntPoints( const double tol );
TGeomID GetSolidIDBefore( multiset< F_IntersectPoint >::iterator ip,
const TGeomID prevID,
const Geometry& geom);
};
// --------------------------------------------------------------------------
/*!
* \brief Planes of the grid used to find intersections of an EDGE with a hexahedron
*/
struct GridPlanes
{
gp_XYZ _zNorm;
vector< gp_XYZ > _origins; // origin points of all planes in one direction
vector< double > _zProjs; // projections of origins to _zNorm
};
// --------------------------------------------------------------------------
/*!
* \brief Iterator on the parallel grid lines of one direction
*/
struct LineIndexer
{
size_t _size [3];
size_t _curInd[3];
size_t _iVar1, _iVar2, _iConst;
string _name1, _name2, _nameConst;
LineIndexer() {}
LineIndexer( size_t sz1, size_t sz2, size_t sz3,
size_t iv1, size_t iv2, size_t iConst,
const string& nv1, const string& nv2, const string& nConst )
{
_size[0] = sz1; _size[1] = sz2; _size[2] = sz3;
_curInd[0] = _curInd[1] = _curInd[2] = 0;
_iVar1 = iv1; _iVar2 = iv2; _iConst = iConst;
_name1 = nv1; _name2 = nv2; _nameConst = nConst;
}
size_t I() const { return _curInd[0]; }
size_t J() const { return _curInd[1]; }
size_t K() const { return _curInd[2]; }
void SetIJK( size_t i, size_t j, size_t k )
{
_curInd[0] = i; _curInd[1] = j; _curInd[2] = k;
}
void SetLineIndex(size_t i)
{
_curInd[_iVar2] = i / _size[_iVar1];
_curInd[_iVar1] = i % _size[_iVar1];
}
void operator++()
{
if ( ++_curInd[_iVar1] == _size[_iVar1] )
_curInd[_iVar1] = 0, ++_curInd[_iVar2];
}
bool More() const { return _curInd[_iVar2] < _size[_iVar2]; }
size_t LineIndex () const { return _curInd[_iVar1] + _curInd[_iVar2]* _size[_iVar1]; }
size_t LineIndex10 () const { return (_curInd[_iVar1] + 1 ) + _curInd[_iVar2]* _size[_iVar1]; }
size_t LineIndex01 () const { return _curInd[_iVar1] + (_curInd[_iVar2] + 1 )* _size[_iVar1]; }
size_t LineIndex11 () const { return (_curInd[_iVar1] + 1 ) + (_curInd[_iVar2] + 1 )* _size[_iVar1]; }
void SetIndexOnLine (size_t i) { _curInd[ _iConst ] = i; }
bool IsValidIndexOnLine (size_t i) const { return i < _size[ _iConst ]; }
size_t NbLines() const { return _size[_iVar1] * _size[_iVar2]; }
};
struct FaceGridIntersector;
// --------------------------------------------------------------------------
/*!
* \brief Container of GridLine's
*/
struct Grid
{
vector< double > _coords[3]; // coordinates of grid nodes
gp_XYZ _axes [3]; // axis directions
vector< GridLine > _lines [3]; // in 3 directions
double _tol, _minCellSize;
gp_XYZ _origin;
gp_Mat _invB; // inverted basis of _axes
// index shift within _nodes of nodes of a cell from the 1st node
int _nodeShift[8];
vector< const SMDS_MeshNode* > _nodes; // mesh nodes at grid nodes
vector< const SMDS_MeshNode* > _allBorderNodes; // mesh nodes between the bounding box and the geometry boundary
vector< const F_IntersectPoint* > _gridIntP; // grid node intersection with geometry
ObjectPool< E_IntersectPoint > _edgeIntPool; // intersections with EDGEs
ObjectPool< F_IntersectPoint > _extIntPool; // intersections with extended INTERNAL FACEs
//list< E_IntersectPoint > _edgeIntP; // intersections with EDGEs
Geometry _geometry;
bool _toAddEdges;
bool _toCreateFaces;
bool _toConsiderInternalFaces;
bool _toUseThresholdForInternalFaces;
double _sizeThreshold;
bool _toUseQuanta;
double _quanta;
SMESH_MesherHelper* _helper;
size_t CellIndex( size_t i, size_t j, size_t k ) const
{
return i + j*(_coords[0].size()-1) + k*(_coords[0].size()-1)*(_coords[1].size()-1);
}
size_t NodeIndex( size_t i, size_t j, size_t k ) const
{
return i + j*_coords[0].size() + k*_coords[0].size()*_coords[1].size();
}
size_t NodeIndex( const TIJK& ijk ) const
{
return NodeIndex( ijk[0], ijk[1], ijk[2] );
}
size_t NodeIndexDX() const { return 1; }
size_t NodeIndexDY() const { return _coords[0].size(); }
size_t NodeIndexDZ() const { return _coords[0].size() * _coords[1].size(); }
LineIndexer GetLineIndexer(size_t iDir) const;
size_t GetLineDir( const GridLine* line, size_t & index ) const;
E_IntersectPoint* Add( const E_IntersectPoint& ip )
{
E_IntersectPoint* eip = _edgeIntPool.getNew();
*eip = ip;
return eip;
}
void Remove( E_IntersectPoint* eip ) { _edgeIntPool.destroy( eip ); }
TGeomID ShapeID( const TopoDS_Shape& s ) const;
const TopoDS_Shape& Shape( TGeomID id ) const;
TopAbs_ShapeEnum ShapeType( TGeomID id ) const { return Shape(id).ShapeType(); }
void InitGeometry( const TopoDS_Shape& theShape );
void InitClassifier( const TopoDS_Shape& mainShape,
TopAbs_ShapeEnum shapeType,
Controls::ElementsOnShape& classifier );
void GetEdgesToImplement( map< TGeomID, vector< TGeomID > > & edge2faceMap,
const TopoDS_Shape& shape,
const vector< TopoDS_Shape >& faces );
void SetSolidFather( const TopoDS_Shape& s, const TopoDS_Shape& theShapeToMesh );
bool IsShared( TGeomID faceID ) const;
bool IsAnyShared( const std::vector< TGeomID >& faceIDs ) const;
bool IsInternal( TGeomID faceID ) const {
return ( faceID == PseudoIntExtFaceID() ||
Shape( faceID ).Orientation() == TopAbs_INTERNAL ); }
bool IsSolid( TGeomID shapeID ) const {
if ( _geometry.IsOneSolid() ) return _geometry._soleSolid.ID() == shapeID;
else return _geometry._solidByID.count( shapeID ); }
bool IsStrangeEdge( TGeomID id ) const { return _geometry._strangeEdges.Contains( id ); }
TGeomID PseudoIntExtFaceID() const { return _geometry._extIntFaceID; }
Solid* GetSolid( TGeomID solidID = 0 );
Solid* GetOneOfSolids( TGeomID solidID );
const vector< TGeomID > & GetSolidIDs( TGeomID subShapeID ) const;
bool IsCorrectTransition( TGeomID faceID, const Solid* solid );
bool IsBoundaryFace( TGeomID face ) const { return _geometry._boundaryFaces.Contains( face ); }
void SetOnShape( const SMDS_MeshNode* n, const F_IntersectPoint& ip,
TopoDS_Vertex* vertex = nullptr, bool unset = false );
void UpdateFacesOfVertex( const B_IntersectPoint& ip, const TopoDS_Vertex& vertex );
bool IsToCheckNodePos() const { return !_toAddEdges && _toCreateFaces; }
bool IsToRemoveExcessEntities() const { return !_toAddEdges; }
void SetCoordinates(const vector<double>& xCoords,
const vector<double>& yCoords,
const vector<double>& zCoords,
const double* axesDirs,
const Bnd_Box& bndBox );
void ComputeUVW(const gp_XYZ& p, double uvw[3]);
void ComputeNodes(SMESH_MesherHelper& helper);
};
// --------------------------------------------------------------------------
/*!
* \brief Return cells sharing a link
*/
struct CellsAroundLink
{
int _iDir;
int _dInd[4][3];
size_t _nbCells[3];
int _i,_j,_k;
Grid* _grid;
CellsAroundLink( Grid* grid, int iDir ):
_iDir( iDir ),
_dInd{ {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0} },
_nbCells{ grid->_coords[0].size() - 1,
grid->_coords[1].size() - 1,
grid->_coords[2].size() - 1 },
_grid( grid )
{
const int iDirOther[3][2] = {{ 1,2 },{ 0,2 },{ 0,1 }};
_dInd[1][ iDirOther[iDir][0] ] = -1;
_dInd[2][ iDirOther[iDir][1] ] = -1;
_dInd[3][ iDirOther[iDir][0] ] = -1; _dInd[3][ iDirOther[iDir][1] ] = -1;
}
void Init( int i, int j, int k, int link12 = 0 )
{
int iL = link12 % 4;
_i = i - _dInd[iL][0];
_j = j - _dInd[iL][1];
_k = k - _dInd[iL][2];
}
bool GetCell( int iL, int& i, int& j, int& k, int& cellIndex, int& linkIndex )
{
i = _i + _dInd[iL][0];
j = _j + _dInd[iL][1];
k = _k + _dInd[iL][2];
if ( i < 0 || i >= (int)_nbCells[0] ||
j < 0 || j >= (int)_nbCells[1] ||
k < 0 || k >= (int)_nbCells[2] )
return false;
cellIndex = _grid->CellIndex( i,j,k );
linkIndex = iL + _iDir * 4;
return true;
}
};
// --------------------------------------------------------------------------
/*!
* \brief Intersector of TopoDS_Face with all GridLine's
*/
struct FaceGridIntersector
{
TopoDS_Face _face;
TGeomID _faceID;
Grid* _grid;
Bnd_Box _bndBox;
IntCurvesFace_Intersector* _surfaceInt;
vector< std::pair< GridLine*, F_IntersectPoint > > _intersections;
FaceGridIntersector(): _grid(0), _surfaceInt(0) {}
void Intersect();
void StoreIntersections()
{
for ( size_t i = 0; i < _intersections.size(); ++i )
{
multiset< F_IntersectPoint >::iterator ip =
_intersections[i].first->_intPoints.insert( _intersections[i].second );
ip->_faceIDs.reserve( 1 );
ip->_faceIDs.push_back( _faceID );
}
}
const Bnd_Box& GetFaceBndBox()
{
GetCurveFaceIntersector();
return _bndBox;
}
IntCurvesFace_Intersector* GetCurveFaceIntersector()
{
if ( !_surfaceInt )
{
_surfaceInt = new IntCurvesFace_Intersector( _face, Precision::PConfusion() );
_bndBox = _surfaceInt->Bounding();
if ( _bndBox.IsVoid() )
BRepBndLib::Add (_face, _bndBox);
}
return _surfaceInt;
}
bool IsThreadSafe(set< const Standard_Transient* >& noSafeTShapes) const;
};
// --------------------------------------------------------------------------
/*!
* \brief Intersector of a surface with a GridLine
*/
struct FaceLineIntersector
{
double _tol;
double _u, _v, _w; // params on the face and the line
Transition _transition; // transition at intersection (see IntCurveSurface.cdl)
Transition _transIn, _transOut; // IN and OUT transitions depending of face orientation
gp_Pln _plane;
gp_Cylinder _cylinder;
gp_Cone _cone;
gp_Sphere _sphere;
gp_Torus _torus;
IntCurvesFace_Intersector* _surfaceInt;
vector< F_IntersectPoint > _intPoints;
void IntersectWithPlane (const GridLine& gridLine);
void IntersectWithCylinder(const GridLine& gridLine);
void IntersectWithCone (const GridLine& gridLine);
void IntersectWithSphere (const GridLine& gridLine);
void IntersectWithTorus (const GridLine& gridLine);
void IntersectWithSurface (const GridLine& gridLine);
bool UVIsOnFace() const;
void addIntPoint(const bool toClassify=true);
bool isParamOnLineOK( const double linLength )
{
return -_tol < _w && _w < linLength + _tol;
}
FaceLineIntersector():_surfaceInt(0) {}
~FaceLineIntersector() { if (_surfaceInt ) delete _surfaceInt; _surfaceInt = 0; }
};
// --------------------------------------------------------------------------
/*!
* \brief Class representing topology of the hexahedron and creating a mesh
* volume basing on analysis of hexahedron intersection with geometry
*/
class Hexahedron
{
// --------------------------------------------------------------------------------
struct _Face;
struct _Link;
enum IsInternalFlag { IS_NOT_INTERNAL, IS_INTERNAL, IS_CUT_BY_INTERNAL_FACE };
// --------------------------------------------------------------------------------
struct _Node //!< node either at a hexahedron corner or at intersection
{
const SMDS_MeshNode* _node; // mesh node at hexahedron corner
const SMDS_MeshNode* _boundaryCornerNode; // missing mesh node due to hex truncation on the boundary
const B_IntersectPoint* _intPoint;
const _Face* _usedInFace;
char _isInternalFlags;
_Node(const SMDS_MeshNode* n=0, const B_IntersectPoint* ip=0)
:_node(n), _intPoint(ip), _usedInFace(0), _isInternalFlags(0) {}
const SMDS_MeshNode* Node() const
{ return ( _intPoint && _intPoint->_node ) ? _intPoint->_node : _node; }
const SMDS_MeshNode* BoundaryNode() const
{ return _node ? _node : _boundaryCornerNode; }
const E_IntersectPoint* EdgeIntPnt() const
{ return static_cast< const E_IntersectPoint* >( _intPoint ); }
const F_IntersectPoint* FaceIntPnt() const
{ return static_cast< const F_IntersectPoint* >( _intPoint ); }
const vector< TGeomID >& faces() const { return _intPoint->_faceIDs; }
TGeomID face(size_t i) const { return _intPoint->_faceIDs[ i ]; }
void SetInternal( IsInternalFlag intFlag ) { _isInternalFlags |= intFlag; }
bool IsCutByInternal() const { return _isInternalFlags & IS_CUT_BY_INTERNAL_FACE; }
bool IsUsedInFace( const _Face* polygon = 0 )
{
return polygon ? ( _usedInFace == polygon ) : bool( _usedInFace );
}
TGeomID IsLinked( const B_IntersectPoint* other,
TGeomID avoidFace=-1 ) const // returns id of a common face
{
return _intPoint ? _intPoint->HasCommonFace( other, avoidFace ) : 0;
}
bool IsOnFace( TGeomID faceID ) const // returns true if faceID is found
{
return _intPoint ? _intPoint->IsOnFace( faceID ) : false;
}
size_t GetCommonFaces( const B_IntersectPoint * other, TGeomID* common ) const
{
return _intPoint && other ? _intPoint->GetCommonFaces( other, common ) : 0;
}
gp_Pnt Point() const
{
if ( const SMDS_MeshNode* n = Node() )
return SMESH_NodeXYZ( n );
if ( const E_IntersectPoint* eip =
dynamic_cast< const E_IntersectPoint* >( _intPoint ))
return eip->_point;
return gp_Pnt( 1e100, 0, 0 );
}
TGeomID ShapeID() const
{
if ( const E_IntersectPoint* eip = dynamic_cast< const E_IntersectPoint* >( _intPoint ))
return eip->_shapeID;
return 0;
}
void Add( const E_IntersectPoint* ip )
{
const std::lock_guard<std::mutex> lock(_eMutex);
// Possible cases before Add(ip):
/// 1) _node != 0 --> _Node at hex corner ( _intPoint == 0 || _intPoint._node == 0 )
/// 2) _node == 0 && _intPoint._node != 0 --> link intersected by FACE
/// 3) _node == 0 && _intPoint._node == 0 --> _Node at EDGE intersection
//
// If ip is added in cases 1) and 2) _node position must be changed to ip._shapeID
// at creation of elements
// To recognize this case, set _intPoint._node = Node()
const SMDS_MeshNode* node = Node();
if ( !_intPoint ) {
_intPoint = ip;
}
else {
ip->Add( _intPoint->_faceIDs );
_intPoint = ip;
}
if ( node )
_node = _intPoint->_node = node;
}
void clear()
{
_node = nullptr;
_boundaryCornerNode = nullptr;
_intPoint = nullptr;
_usedInFace = nullptr;
_isInternalFlags = IS_NOT_INTERNAL;
}
friend std::ostream& operator<<(std::ostream& os, const _Node& node)
{
if (node._node)
node._node->Print(os); // mesh node at hexahedron corner
else if (node._intPoint && node._intPoint->_node)
node._intPoint->_node->Print(os); // intersection point
else
os << "mesh node is null" << '\n';
return os;
}
};
// --------------------------------------------------------------------------------
struct _Link // link connecting two _Node's
{
static const std::size_t arrSize = 2;
_Node* _nodes[arrSize];
_Face* _faces[arrSize]; // polygons sharing a link
vector< const F_IntersectPoint* > _fIntPoints; // GridLine intersections with FACEs
vector< _Node* > _fIntNodes; // _Node's at _fIntPoints
vector< _Link > _splits;
_Link(): _faces{ 0, 0 } {}
void clear()
{
for (std::size_t i = 0; i < arrSize; ++i)
{
if (_nodes[i])
_nodes[i]->clear();
}
_fIntPoints.clear();
_fIntNodes.clear();
_splits.clear();
}
friend std::ostream& operator<<(std::ostream& os, const _Link& link)
{
os << "Link:\n";
for (std::size_t i = 0; i < arrSize; ++i)
{
if (link._nodes[i])
os << *link._nodes[i];
else
os << "link node with index " << i << " is null" << '\n';
}
os << "_fIntPoints: " << link._fIntPoints.size() << '\n';
os << "_fIntNodes: " << link._fIntNodes.size() << '\n';
os << "_splits: " << link._splits.size() << '\n';
return os;
}
};
// --------------------------------------------------------------------------------
struct _OrientedLink
{
_Link* _link;
bool _reverse;
_OrientedLink( _Link* link=0, bool reverse=false ): _link(link), _reverse(reverse) {}
void Reverse() { _reverse = !_reverse; }
size_t NbResultLinks() const { return _link->_splits.size(); }
_OrientedLink ResultLink(int i) const
{
return _OrientedLink(&_link->_splits[_reverse ? NbResultLinks()-i-1 : i],_reverse);
}
_Node* FirstNode() const { return _link->_nodes[ _reverse ]; }
_Node* LastNode() const { return _link->_nodes[ !_reverse ]; }
operator bool() const { return _link; }
vector< TGeomID > GetNotUsedFace(const set<TGeomID>& usedIDs ) const // returns supporting FACEs
{
vector< TGeomID > faces;
const B_IntersectPoint *ip0, *ip1;
if (( ip0 = _link->_nodes[0]->_intPoint ) &&
( ip1 = _link->_nodes[1]->_intPoint ))
{
for ( size_t i = 0; i < ip0->_faceIDs.size(); ++i )
if ( ip1->IsOnFace ( ip0->_faceIDs[i] ) &&
!usedIDs.count( ip0->_faceIDs[i] ) )
faces.push_back( ip0->_faceIDs[i] );
}
return faces;
}
bool HasEdgeNodes() const
{
return ( dynamic_cast< const E_IntersectPoint* >( _link->_nodes[0]->_intPoint ) ||
dynamic_cast< const E_IntersectPoint* >( _link->_nodes[1]->_intPoint ));
}
int NbFaces() const
{
return !_link->_faces[0] ? 0 : 1 + bool( _link->_faces[1] );
}
void AddFace( _Face* f )
{
if ( _link->_faces[0] )
{
_link->_faces[1] = f;
}
else
{
_link->_faces[0] = f;
_link->_faces[1] = 0;
}
}
void RemoveFace( _Face* f )
{
if ( !_link->_faces[0] ) return;
if ( _link->_faces[1] == f )
{
_link->_faces[1] = 0;
}
else if ( _link->_faces[0] == f )
{
_link->_faces[0] = 0;
if ( _link->_faces[1] )
{
_link->_faces[0] = _link->_faces[1];
_link->_faces[1] = 0;
}
}
}
friend std::ostream& operator<<(std::ostream& os, const _OrientedLink& link)
{
if (link._link)
os << "Oriented " << *link._link;
else
os << "Oriented link is null" << '\n';
return os;
}
};
// --------------------------------------------------------------------------------
struct _SplitIterator //! set to _hexLinks splits on one side of INTERNAL FACEs
{
struct _Split // data of a link split
{
int _linkID; // hex link ID
_Node* _nodes[2];
int _iCheckIteration; // iteration where split is tried as Hexahedron split
_Link* _checkedSplit; // split set to hex links
bool _isUsed; // used in a volume
_Split( _Link & split, int iLink ):
_linkID( iLink ), _nodes{ split._nodes[0], split._nodes[1] },
_iCheckIteration( 0 ), _isUsed( false )
{}
bool IsCheckedOrUsed( bool used ) const { return used ? _isUsed : _iCheckIteration > 0; }
};
_Link* _hexLinks;
std::vector< _Split > _splits;
int _iterationNb;
size_t _nbChecked;
size_t _nbUsed;
std::vector< _Node* > _freeNodes; // nodes reached while composing a split set
_SplitIterator( _Link* hexLinks ):
_hexLinks( hexLinks ), _iterationNb(0), _nbChecked(0), _nbUsed(0)
{
_freeNodes.reserve( 12 );
_splits.reserve( 24 );
for ( int iL = 0; iL < 12; ++iL )
for ( size_t iS = 0; iS < _hexLinks[ iL ]._splits.size(); ++iS )
_splits.emplace_back( _hexLinks[ iL ]._splits[ iS ], iL );
Next();
}
bool More() const { return _nbUsed < _splits.size(); }
bool Next();
};
// --------------------------------------------------------------------------------
struct _Face
{
SMESH_Block::TShapeID _name;
vector< _OrientedLink > _links; // links on GridLine's
vector< _Link > _polyLinks; // links added to close a polygonal face
vector< _Node* > _eIntNodes; // nodes at intersection with EDGEs
_Face():_name( SMESH_Block::ID_NONE )
{}
bool IsPolyLink( const _OrientedLink& ol )
{
return _polyLinks.empty() ? false :
( &_polyLinks[0] <= ol._link && ol._link <= &_polyLinks.back() );
}
void AddPolyLink(_Node* n0, _Node* n1, _Face* faceToFindEqual=0)
{
if ( faceToFindEqual && faceToFindEqual != this ) {
for ( size_t iL = 0; iL < faceToFindEqual->_polyLinks.size(); ++iL )
if ( faceToFindEqual->_polyLinks[iL]._nodes[0] == n1 &&
faceToFindEqual->_polyLinks[iL]._nodes[1] == n0 )
{
_links.push_back
( _OrientedLink( & faceToFindEqual->_polyLinks[iL], /*reverse=*/true ));
return;
}
}
_Link l;
l._nodes[0] = n0;
l._nodes[1] = n1;
_polyLinks.push_back( l );
_links.push_back( _OrientedLink( &_polyLinks.back() ));
}
friend std::ostream& operator<<(std::ostream& os, const _Face& face)
{
os << "Face " << face._name << '\n';
os << "Links on GridLines: \n";
for (const auto& link : face._links)
{
os << link;
}
os << "Links added to close a polygonal face: \n";
for (const auto& link : face._polyLinks)
{
os << link;
}
os << "Nodes at intersection with EDGEs: \n";
for (const auto node : face._eIntNodes)
{
if (node)
{
os << *node;
}
}
return os;
}
};
// --------------------------------------------------------------------------------
struct _volumeDef // holder of nodes of a volume mesh element
{
typedef void* _ptr;
struct _nodeDef
{
const SMDS_MeshNode* _node; // mesh node at hexahedron corner
const B_IntersectPoint* _intPoint;
_nodeDef(): _node(0), _intPoint(0) {}
_nodeDef( _Node* n ): _node( n->_node), _intPoint( n->_intPoint ) {}
const SMDS_MeshNode* Node() const
{ return ( _intPoint && _intPoint->_node ) ? _intPoint->_node : _node; }
const E_IntersectPoint* EdgeIntPnt() const
{ return static_cast< const E_IntersectPoint* >( _intPoint ); }
_ptr Ptr() const { return Node() ? (_ptr) Node() : (_ptr) EdgeIntPnt(); }
bool operator==(const _nodeDef& other ) const { return Ptr() == other.Ptr(); }
};
vector< _nodeDef > _nodes;
vector< int > _quantities;
_volumeDef* _next; // to store several _volumeDefs in a chain
TGeomID _solidID;
double _size;
const SMDS_MeshElement* _volume; // new volume
std::vector<const SMDS_MeshElement*> _brotherVolume; // produced due to poly split
vector< SMESH_Block::TShapeID > _names; // name of side a polygon originates from
_volumeDef(): _next(0), _solidID(0), _size(0), _volume(0) {}
~_volumeDef() { delete _next; }
_volumeDef( _volumeDef& other ):
_next(0), _solidID( other._solidID ), _size( other._size ), _volume( other._volume )
{ _nodes.swap( other._nodes ); _quantities.swap( other._quantities ); other._volume = 0;
_names.swap( other._names ); }
size_t size() const { return 1 + ( _next ? _next->size() : 0 ); } // nb _volumeDef in a chain
_volumeDef* at(int index)
{ return index == 0 ? this : ( _next ? _next->at(index-1) : _next ); }
void Set( _Node** nodes, int nb )
{ _nodes.assign( nodes, nodes + nb ); }
void SetNext( _volumeDef* vd )
{ if ( _next ) { _next->SetNext( vd ); } else { _next = vd; }}
bool IsEmpty() const { return (( _nodes.empty() ) &&
( !_next || _next->IsEmpty() )); }
bool IsPolyhedron() const { return ( !_quantities.empty() ||
( _next && !_next->_quantities.empty() )); }
struct _linkDef: public std::pair<_ptr,_ptr> // to join polygons in removeExcessSideDivision()
{
_nodeDef _node1;//, _node2;
mutable /*const */_linkDef *_prev, *_next;
size_t _loopIndex;
_linkDef():_prev(0), _next(0) {}
void init( const _nodeDef& n1, const _nodeDef& n2, size_t iLoop )
{
_node1 = n1; //_node2 = n2;
_loopIndex = iLoop;
first = n1.Ptr();
second = n2.Ptr();
if ( first > second ) std::swap( first, second );
}
void setNext( _linkDef* next )
{
_next = next;
next->_prev = this;
}
};
};
// topology of a hexahedron
static const std::size_t HEX_NODES_NUM = 8;
static const std::size_t HEX_LINKS_NUM = 12;
static const std::size_t HEX_QUADS_NUM = 6;
_Node _hexNodes [HEX_NODES_NUM];
_Link _hexLinks [HEX_LINKS_NUM];
_Face _hexQuads [HEX_QUADS_NUM];
// faces resulted from hexahedron intersection
vector< _Face > _polygons;
// intresections with EDGEs
vector< const E_IntersectPoint* > _eIntPoints;
// additional nodes created at intersection points
vector< _Node > _intNodes;
// nodes inside the hexahedron (at VERTEXes) refer to _intNodes
vector< _Node* > _vIntNodes;
// computed volume elements
_volumeDef _volumeDefs;
Grid* _grid;
double _sideLength[3];
int _nbCornerNodes, _nbFaceIntNodes, _nbBndNodes;
int _origNodeInd; // index of _hexNodes[0] node within the _grid
size_t _i,_j,_k;
bool _hasTooSmall;
int _cellID;
public:
Hexahedron(Grid* grid);
int MakeElements(SMESH_MesherHelper& helper,
const map< TGeomID, vector< TGeomID > >& edge2faceIDsMap);
void computeElements( const Solid* solid = 0, int solidIndex = -1 );
private:
Hexahedron(const Hexahedron& other, size_t i, size_t j, size_t k, int cellID );
void init( size_t i, size_t j, size_t k, const Solid* solid=0 );
void init( size_t i );
void clearNodesLinkedToNull(const Solid* solid, SMESH_MesherHelper& helper);
bool isSplittedLink(const Solid* solid, SMESH_MesherHelper& helper, const Hexahedron::_Link& linkIn) const;
void setIJK( size_t i );
bool compute( const Solid* solid, const IsInternalFlag intFlag );
size_t getSolids( TGeomID ids[] );
bool isCutByInternalFace( IsInternalFlag & maxFlag );
void addEdges(SMESH_MesherHelper& helper,
vector< Hexahedron* >& intersectedHex,
const map< TGeomID, vector< TGeomID > >& edge2faceIDsMap);
gp_Pnt findIntPoint( double u1, double proj1, double u2, double proj2,
double proj, BRepAdaptor_Curve& curve,
const gp_XYZ& axis, const gp_XYZ& origin );
int getEntity( const E_IntersectPoint* ip, int* facets, int& sub );
bool addIntersection( const E_IntersectPoint* ip,
vector< Hexahedron* >& hexes,
int ijk[], int dIJK[] );
bool isQuadOnFace( const size_t iQuad );
bool findChain( _Node* n1, _Node* n2, _Face& quad, vector<_Node*>& chainNodes );
bool closePolygon( _Face* polygon, vector<_Node*>& chainNodes ) const;
bool findChainOnEdge( const vector< _OrientedLink >& splits,
const _OrientedLink& prevSplit,
const _OrientedLink& avoidSplit,
const std::set< TGeomID > & concaveFaces,
size_t & iS,
_Face& quad,
vector<_Node*>& chn);
int addVolumes(SMESH_MesherHelper& helper );
void addFaces( SMESH_MesherHelper& helper,
const vector< const SMDS_MeshElement* > & boundaryVolumes );
void addSegments( SMESH_MesherHelper& helper,
const map< TGeomID, vector< TGeomID > >& edge2faceIDsMap );
void getVolumes( vector< const SMDS_MeshElement* > & volumes );
void getBoundaryElems( vector< const SMDS_MeshElement* > & boundaryVolumes );
void removeExcessSideDivision(const vector< Hexahedron* >& allHexa);
void removeExcessNodes(vector< Hexahedron* >& allHexa);
void preventVolumesOverlapping();
TGeomID getAnyFace() const;
void cutByExtendedInternal( std::vector< Hexahedron* >& hexes,
const TColStd_MapOfInteger& intEdgeIDs );
gp_Pnt mostDistantInternalPnt( int hexIndex, const gp_Pnt& p1, const gp_Pnt& p2 );
bool isOutPoint( _Link& link, int iP, SMESH_MesherHelper& helper, const Solid* solid ) const;
void sortVertexNodes(vector<_Node*>& nodes, _Node* curNode, TGeomID face);
bool isInHole() const;
bool hasStrangeEdge() const;
bool checkPolyhedronSize( bool isCutByInternalFace, double & volSize ) const;
int checkPolyhedronValidity( _volumeDef* volDef, std::vector<std::vector<int>>& splitQuantities,
std::vector<std::vector<const SMDS_MeshNode*>>& splitNodes );
const SMDS_MeshElement* addPolyhedronToMesh( _volumeDef* volDef, SMESH_MesherHelper& helper, const std::vector<const SMDS_MeshNode*>& nodes,
const std::vector<int>& quantities );
bool addHexa ();
bool addTetra();
bool addPenta();
bool addPyra ();
bool debugDumpLink( _Link* link );
_Node* findEqualNode( vector< _Node* >& nodes,
const E_IntersectPoint* ip,
const double tol2 )
{
for ( size_t i = 0; i < nodes.size(); ++i )
if ( nodes[i]->EdgeIntPnt() == ip ||
nodes[i]->Point().SquareDistance( ip->_point ) <= tol2 )
return nodes[i];
return 0;
}
bool isCorner( const _Node* node ) const { return ( node >= &_hexNodes[0] &&
node - &_hexNodes[0] < 8 ); }
bool hasEdgesAround( const ConcaveFace* cf ) const;
bool isImplementEdges() const { return _grid->_edgeIntPool.nbElements(); }
bool isOutParam(const double uvw[3]) const;
typedef boost::container::flat_map< TGeomID, size_t > TID2Nb;
static void insertAndIncrement( TGeomID id, TID2Nb& id2nbMap )
{
TID2Nb::value_type s0( id, 0 );
TID2Nb::iterator id2nb = id2nbMap.insert( s0 ).first;
id2nb->second++;
}
// Called by compute()
//================================================================================
_Face* createPolygon(const SMESH_Block::TShapeID& name);
void closePolygon(
_Face* polygon, _Node* n2, _Node* nFirst, _Face& quad, vector<_Node*>& chainNodes, size_t& nbUsedEdgeNodes, _Face* prevPolyg);
void connectPolygonLinks(
const Solid* solid, _Face* polygon, _Face& quad, vector<_Node*>& chainNodes, std::vector<_OrientedLink>& splits, const bool toCheckSideDivision);
bool collectSplits(std::vector<_OrientedLink>& splits, const _Face& quad, _Face* polygon, int quadIndex);
std::set<TGeomID> getConcaveFaces(const Solid* solid);
std::vector<_Node*> getChainNodes(const Solid* solid, const IsInternalFlag intFlag);
void clearHexUsedInFace();
void clearIntUsedInFace();
void addPolygonsToLinks();
std::vector<_OrientedLink*> getFreeLinks();
int notUsedIntersectionNodesToVInt();
bool createPolygons(const bool hasEdgeIntersections, const IsInternalFlag intFlag);
void setNamesForNoNamePolygons();
bool createVolume(const Solid* solid);
//================================================================================
}; // class Hexahedron
#ifdef WITH_TBB
// --------------------------------------------------------------------------
/*!
* \brief Hexahedron computing volumes in one thread
*/
struct ParallelHexahedron
{
vector< Hexahedron* >& _hexVec;
ParallelHexahedron( vector< Hexahedron* >& hv ): _hexVec(hv) {}
void operator() ( const tbb::blocked_range<size_t>& r ) const
{
for ( size_t i = r.begin(); i != r.end(); ++i )
if ( Hexahedron* hex = _hexVec[ i ] )
hex->computeElements();
}
};
// --------------------------------------------------------------------------
/*!
* \brief Structure intersecting certain nb of faces with GridLine's in one thread
*/
struct ParallelIntersector
{
vector< FaceGridIntersector >& _faceVec;
ParallelIntersector( vector< FaceGridIntersector >& faceVec): _faceVec(faceVec){}
void operator() ( const tbb::blocked_range<size_t>& r ) const
{
for ( size_t i = r.begin(); i != r.end(); ++i )
_faceVec[i].Intersect();
}
};
#endif
//=============================================================================
// Implementation of internal utils
//=============================================================================
/*!
* \brief adjust \a i to have \a val between values[i] and values[i+1]
*/
inline void locateValue( int & i, double val, const vector<double>& values,
int& di, double tol )
{
//val += values[0]; // input \a val is measured from 0.
if ( i > (int) values.size()-2 )
i = values.size()-2;
else
while ( i+2 < (int) values.size() && val > values[ i+1 ])
++i;
while ( i > 0 && val < values[ i ])
--i;
if ( i > 0 && val - values[ i ] < tol )
di = -1;
else if ( i+2 < (int) values.size() && values[ i+1 ] - val < tol )
di = 1;
else
di = 0;
}
//=============================================================================
/*
* Return a vector of SOLIDS sharing given shapes
*/
GeomIDVecHelder Geometry::GetSolidIDsByShapeID( const vector< TGeomID >& theShapeIDs ) const
{
if ( theShapeIDs.size() == 1 )
return GeomIDVecHelder( _solidIDsByShapeID[ theShapeIDs[ 0 ]], /*owner=*/false );
// look for an empty slot in _solidIDsByShapeID
vector< TGeomID > * resultIDs = 0;
for ( const vector< TGeomID >& vec : _solidIDsByShapeID )
if ( vec.empty() )
{
resultIDs = const_cast< vector< TGeomID > * >( & vec );
break;
}
// fill in resultIDs
for ( const TGeomID& id : theShapeIDs )
for ( const TGeomID& solid : _solidIDsByShapeID[ id ])
{
if ( std::find( resultIDs->begin(), resultIDs->end(), solid ) == resultIDs->end() )
resultIDs->push_back( solid );
}
return GeomIDVecHelder( *resultIDs, /*owner=*/true );
}
//=============================================================================
/*
* Remove coincident intersection points
*/
void GridLine::RemoveExcessIntPoints( const double tol )
{
if ( _intPoints.size() < 2 ) return;
set< Transition > tranSet;
multiset< F_IntersectPoint >::iterator ip1, ip2 = _intPoints.begin();
while ( ip2 != _intPoints.end() )
{
tranSet.clear();
ip1 = ip2++;
while ( ip2 != _intPoints.end() && ip2->_paramOnLine - ip1->_paramOnLine <= tol )
{
tranSet.insert( ip1->_transition );
tranSet.insert( ip2->_transition );
ip2->Add( ip1->_faceIDs );
_intPoints.erase( ip1 );
ip1 = ip2++;
}
if ( tranSet.size() > 1 ) // points with different transition coincide
{
bool isIN = tranSet.count( Trans_IN );
bool isOUT = tranSet.count( Trans_OUT );
if ( isIN && isOUT )
(*ip1)._transition = Trans_TANGENT;
else
(*ip1)._transition = isIN ? Trans_IN : Trans_OUT;
}
}
}
//================================================================================
/*
* Return ID of SOLID for nodes before the given intersection point
*/
TGeomID GridLine::GetSolidIDBefore( multiset< F_IntersectPoint >::iterator ip,
const TGeomID prevID,
const Geometry& geom )
{
if ( ip == _intPoints.begin() )
return 0;
if ( geom.IsOneSolid() )
{
bool isOut = true;
switch ( ip->_transition ) {
case Trans_IN: isOut = true; break;
case Trans_OUT: isOut = false; break;
case Trans_TANGENT: isOut = ( prevID != 0 ); break;
case Trans_APEX:
{
// singularity point (apex of a cone)
multiset< F_IntersectPoint >::iterator ipBef = ip, ipAft = ++ip;
if ( ipAft == _intPoints.end() )
isOut = false;
else
{
--ipBef;
if ( ipBef->_transition != ipAft->_transition )
isOut = ( ipBef->_transition == Trans_OUT );
else
isOut = ( ipBef->_transition != Trans_OUT );
}
break;
}
case Trans_INTERNAL: isOut = false;
default:;
}
return isOut ? 0 : geom._soleSolid.ID();
}
GeomIDVecHelder solids = geom.GetSolidIDsByShapeID( ip->_faceIDs );
--ip;
if ( ip->_transition == Trans_INTERNAL )
return prevID;
GeomIDVecHelder solidsBef = geom.GetSolidIDsByShapeID( ip->_faceIDs );
if ( ip->_transition == Trans_IN ||
ip->_transition == Trans_OUT )
{
if ( solidsBef.size() == 1 )
{
if ( solidsBef[0] == prevID )
return ip->_transition == Trans_OUT ? 0 : solidsBef[0];
else
return solidsBef[0];
}
if ( solids.size() == 2 )
{
if ( solids == solidsBef )
return solids.contain( prevID ) ? solids.otherThan( prevID ) : theUndefID; // bos #29212
}
return solids.oneCommon( solidsBef );
}
if ( solidsBef.size() == 1 )
return solidsBef[0];
return solids.oneCommon( solidsBef );
}
//================================================================================
/*
* Adds face IDs
*/
bool B_IntersectPoint::Add( const vector< TGeomID >& fIDs,
const SMDS_MeshNode* n) const
{
const std::lock_guard<std::mutex> lock(_bMutex);
size_t prevNbF = _faceIDs.size();
if ( _faceIDs.empty() )
_faceIDs = fIDs;
else
for ( size_t i = 0; i < fIDs.size(); ++i )
{
vector< TGeomID >::iterator it =
std::find( _faceIDs.begin(), _faceIDs.end(), fIDs[i] );
if ( it == _faceIDs.end() )
_faceIDs.push_back( fIDs[i] );
}
if ( !_node && n != NULL )
_node = n;
return prevNbF < _faceIDs.size();
}
//================================================================================
/*
* Return ID of a common face if any, else zero
*/
TGeomID B_IntersectPoint::HasCommonFace( const B_IntersectPoint * other, TGeomID avoidFace ) const
{
if ( other )
for ( size_t i = 0; i < other->_faceIDs.size(); ++i )
if ( avoidFace != other->_faceIDs[i] &&
IsOnFace ( other->_faceIDs[i] ))
return other->_faceIDs[i];
return 0;
}
//================================================================================
/*
* Return faces common with other point
*/
size_t B_IntersectPoint::GetCommonFaces( const B_IntersectPoint * other, TGeomID* common ) const
{
size_t nbComm = 0;
if ( !other )
return nbComm;
if ( _faceIDs.size() > other->_faceIDs.size() )
return other->GetCommonFaces( this, common );
for ( const TGeomID& face : _faceIDs )
if ( other->IsOnFace( face ))
common[ nbComm++ ] = face;
return nbComm;
}
//================================================================================
/*
* Return \c true if \a faceID in in this->_faceIDs
*/
bool B_IntersectPoint::IsOnFace( TGeomID faceID ) const // returns true if faceID is found
{
vector< TGeomID >::const_iterator it =
std::find( _faceIDs.begin(), _faceIDs.end(), faceID );
return ( it != _faceIDs.end() );
}
//================================================================================
/*
* OneOfSolids initialization
*/
void OneOfSolids::Init( const TopoDS_Shape& solid,
TopAbs_ShapeEnum subType,
const SMESHDS_Mesh* mesh )
{
SetID( mesh->ShapeToIndex( solid ));
if ( subType == TopAbs_FACE )
SetHasInternalFaces( false );
for ( TopExp_Explorer sub( solid, subType ); sub.More(); sub.Next() )
{
_subIDs.Add( mesh->ShapeToIndex( sub.Current() ));
if ( subType == TopAbs_FACE )
{
_faces.Add( sub.Current() );
if ( sub.Current().Orientation() == TopAbs_INTERNAL )
SetHasInternalFaces( true );
TGeomID faceID = mesh->ShapeToIndex( sub.Current() );
if ( sub.Current().Orientation() == TopAbs_INTERNAL ||
sub.Current().Orientation() == mesh->IndexToShape( faceID ).Orientation() )
_outFaceIDs.Add( faceID );
}
}
}
//================================================================================
/*
* Return an iterator on GridLine's in a given direction
*/
LineIndexer Grid::GetLineIndexer(size_t iDir) const
{
const size_t indices[] = { 1,2,0, 0,2,1, 0,1,2 };
const string s [] = { "X", "Y", "Z" };
LineIndexer li( _coords[0].size(), _coords[1].size(), _coords[2].size(),
indices[iDir*3], indices[iDir*3+1], indices[iDir*3+2],
s[indices[iDir*3]], s[indices[iDir*3+1]], s[indices[iDir*3+2]]);
return li;
}
//================================================================================
/*
* Return direction [0,1,2] of a GridLine
*/
size_t Grid::GetLineDir( const GridLine* line, size_t & index ) const
{
for ( size_t iDir = 0; iDir < 3; ++iDir )
if ( &_lines[ iDir ][0] <= line && line <= &_lines[ iDir ].back() )
{
index = line - &_lines[ iDir ][0];
return iDir;
}
return -1;
}
//=============================================================================
/*
* Creates GridLine's of the grid
*/
void Grid::SetCoordinates(const vector<double>& xCoords,
const vector<double>& yCoords,
const vector<double>& zCoords,
const double* axesDirs,
const Bnd_Box& shapeBox)
{
_coords[0] = xCoords;
_coords[1] = yCoords;
_coords[2] = zCoords;
_axes[0].SetCoord( axesDirs[0],
axesDirs[1],
axesDirs[2]);
_axes[1].SetCoord( axesDirs[3],
axesDirs[4],
axesDirs[5]);
_axes[2].SetCoord( axesDirs[6],
axesDirs[7],
axesDirs[8]);
_axes[0].Normalize();
_axes[1].Normalize();
_axes[2].Normalize();
_invB.SetCols( _axes[0], _axes[1], _axes[2] );
_invB.Invert();
// compute tolerance
_minCellSize = Precision::Infinite();
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
for ( size_t i = 1; i < _coords[ iDir ].size(); ++i )
{
double cellLen = _coords[ iDir ][ i ] - _coords[ iDir ][ i-1 ];
if ( cellLen < _minCellSize )
_minCellSize = cellLen;
}
}
if ( _minCellSize < Precision::Confusion() )
throw SMESH_ComputeError (COMPERR_ALGO_FAILED,
SMESH_Comment("Too small cell size: ") << _minCellSize );
_tol = _minCellSize / 1000.;
// attune grid extremities to shape bounding box
double sP[6]; // aXmin, aYmin, aZmin, aXmax, aYmax, aZmax
shapeBox.Get(sP[0],sP[1],sP[2],sP[3],sP[4],sP[5]);
double* cP[6] = { &_coords[0].front(), &_coords[1].front(), &_coords[2].front(),
&_coords[0].back(), &_coords[1].back(), &_coords[2].back() };
for ( int i = 0; i < 6; ++i )
if ( fabs( sP[i] - *cP[i] ) < _tol )
*cP[i] = sP[i];// + _tol/1000. * ( i < 3 ? +1 : -1 );
for ( int iDir = 0; iDir < 3; ++iDir )
{
if ( _coords[iDir][0] - sP[iDir] > _tol )
{
_minCellSize = Min( _minCellSize, _coords[iDir][0] - sP[iDir] );
_coords[iDir].insert( _coords[iDir].begin(), sP[iDir] + _tol/1000.);
}
if ( sP[iDir+3] - _coords[iDir].back() > _tol )
{
_minCellSize = Min( _minCellSize, sP[iDir+3] - _coords[iDir].back() );
_coords[iDir].push_back( sP[iDir+3] - _tol/1000.);
}
}
_tol = _minCellSize / 1000.;
_origin = ( _coords[0][0] * _axes[0] +
_coords[1][0] * _axes[1] +
_coords[2][0] * _axes[2] );
// create lines
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
LineIndexer li = GetLineIndexer( iDir );
_lines[iDir].resize( li.NbLines() );
double len = _coords[ iDir ].back() - _coords[iDir].front();
for ( ; li.More(); ++li )
{
GridLine& gl = _lines[iDir][ li.LineIndex() ];
gl._line.SetLocation( _coords[0][li.I()] * _axes[0] +
_coords[1][li.J()] * _axes[1] +
_coords[2][li.K()] * _axes[2] );
gl._line.SetDirection( _axes[ iDir ]);
gl._length = len;
}
}
}
//================================================================================
/*
* Return local ID of shape
*/
TGeomID Grid::ShapeID( const TopoDS_Shape& s ) const
{
return _helper->GetMeshDS()->ShapeToIndex( s );
}
//================================================================================
/*
* Return a shape by its local ID
*/
const TopoDS_Shape& Grid::Shape( TGeomID id ) const
{
return _helper->GetMeshDS()->IndexToShape( id );
}
//================================================================================
/*
* Initialize _geometry
*/
void Grid::InitGeometry( const TopoDS_Shape& theShapeToMesh )
{
SMESH_Mesh* mesh = _helper->GetMesh();
_geometry._mainShape = theShapeToMesh;
_geometry._extIntFaceID = mesh->GetMeshDS()->MaxShapeIndex() * 100;
_geometry._soleSolid.SetID( 0 );
_geometry._soleSolid.SetHasInternalFaces( false );
InitClassifier( theShapeToMesh, TopAbs_VERTEX, _geometry._vertexClassifier );
InitClassifier( theShapeToMesh, TopAbs_EDGE , _geometry._edgeClassifier );
TopExp_Explorer solidExp( theShapeToMesh, TopAbs_SOLID );
bool isSeveralSolids = false;
if ( _toConsiderInternalFaces ) // check nb SOLIDs
{
solidExp.Next();
isSeveralSolids = solidExp.More();
_toConsiderInternalFaces = isSeveralSolids;
solidExp.ReInit();
if ( !isSeveralSolids ) // look for an internal FACE
{
TopExp_Explorer fExp( theShapeToMesh, TopAbs_FACE );
for ( ; fExp.More() && !_toConsiderInternalFaces; fExp.Next() )
_toConsiderInternalFaces = ( fExp.Current().Orientation() == TopAbs_INTERNAL );
_geometry._soleSolid.SetHasInternalFaces( _toConsiderInternalFaces );
_geometry._soleSolid.SetID( ShapeID( solidExp.Current() ));
}
else // fill Geometry::_solidByID
{
for ( ; solidExp.More(); solidExp.Next() )
{
OneOfSolids & solid = _geometry._solidByID[ ShapeID( solidExp.Current() )];
solid.Init( solidExp.Current(), TopAbs_FACE, mesh->GetMeshDS() );
solid.Init( solidExp.Current(), TopAbs_EDGE, mesh->GetMeshDS() );
solid.Init( solidExp.Current(), TopAbs_VERTEX, mesh->GetMeshDS() );
}
}
}
else
{
_geometry._soleSolid.SetID( ShapeID( solidExp.Current() ));
}
if ( !_toCreateFaces )
{
int nbSolidsGlobal = _helper->Count( mesh->GetShapeToMesh(), TopAbs_SOLID, false );
int nbSolidsLocal = _helper->Count( theShapeToMesh, TopAbs_SOLID, false );
_toCreateFaces = ( nbSolidsLocal < nbSolidsGlobal );
}
TopTools_IndexedMapOfShape faces;
TopExp::MapShapes( theShapeToMesh, TopAbs_FACE, faces );
// find boundary FACEs on boundary of mesh->ShapeToMesh()
if ( _toCreateFaces )
for ( int i = 1; i <= faces.Size(); ++i )
if ( faces(i).Orientation() != TopAbs_INTERNAL &&
_helper->NbAncestors( faces(i), *mesh, TopAbs_SOLID ) == 1 )
{
_geometry._boundaryFaces.Add( ShapeID( faces(i) ));
}
if ( isSeveralSolids )
for ( int i = 1; i <= faces.Size(); ++i )
{
SetSolidFather( faces(i), theShapeToMesh );
for ( TopExp_Explorer eExp( faces(i), TopAbs_EDGE ); eExp.More(); eExp.Next() )
{
const TopoDS_Edge& edge = TopoDS::Edge( eExp.Current() );
SetSolidFather( edge, theShapeToMesh );
SetSolidFather( _helper->IthVertex( 0, edge ), theShapeToMesh );
SetSolidFather( _helper->IthVertex( 1, edge ), theShapeToMesh );
}
}
// fill in _geometry._shape2NbNodes == find already meshed sub-shapes
_geometry._shape2NbNodes.Clear();
if ( mesh->NbNodes() > 0 )
{
for ( TopAbs_ShapeEnum type : { TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX })
for ( TopExp_Explorer exp( theShapeToMesh, type ); exp.More(); exp.Next() )
{
if ( _geometry._shape2NbNodes.IsBound( exp.Current() ))
continue;
if ( SMESHDS_SubMesh* sm = mesh->GetMeshDS()->MeshElements( exp.Current() ))
if ( sm->NbNodes() > 0 )
_geometry._shape2NbNodes.Bind( exp.Current(), sm->NbNodes() );
}
}
// fill in Solid::_concaveVertex
vector< TGeomID > soleSolidID( 1, _geometry._soleSolid.ID() );
for ( int i = 1; i <= faces.Size(); ++i )
{
const TopoDS_Face& F = TopoDS::Face( faces( i ));
TError error;
TSideVector wires = StdMeshers_FaceSide::GetFaceWires( F, *mesh, 0, error,
nullptr, nullptr, false );
for ( StdMeshers_FaceSidePtr& wire : wires )
{
const int nbEdges = wire->NbEdges();
if ( nbEdges < 2 && SMESH_Algo::isDegenerated( wire->Edge(0)))
continue;
for ( int iE1 = 0; iE1 < nbEdges; ++iE1 )
{
if ( SMESH_Algo::isDegenerated( wire->Edge( iE1 ))) continue;
int iE2 = ( iE1 + 1 ) % nbEdges;
while ( SMESH_Algo::isDegenerated( wire->Edge( iE2 )))
iE2 = ( iE2 + 1 ) % nbEdges;
TopoDS_Vertex V = wire->FirstVertex( iE2 );
double angle = _helper->GetAngle( wire->Edge( iE1 ),
wire->Edge( iE2 ), F, V );
if ( angle < -5. * M_PI / 180. )
{
TGeomID faceID = ShapeID( F );
const vector< TGeomID > & solids =
_geometry.IsOneSolid() ? soleSolidID : GetSolidIDs( faceID );
for ( const TGeomID & solidID : solids )
{
Solid* solid = GetSolid( solidID );
TGeomID V1 = ShapeID( wire->FirstVertex( iE1 ));
TGeomID V2 = ShapeID( wire->LastVertex ( iE2 ));
solid->SetConcave( ShapeID( V ), faceID,
wire->EdgeID( iE1 ), wire->EdgeID( iE2 ), V1, V2 );
}
}
}
}
}
return;
}
//================================================================================
/*
* Store ID of SOLID as father of its child shape ID
*/
void Grid::SetSolidFather( const TopoDS_Shape& s, const TopoDS_Shape& theShapeToMesh )
{
if ( _geometry._solidIDsByShapeID.empty() )
_geometry._solidIDsByShapeID.resize( _helper->GetMeshDS()->MaxShapeIndex() + 1 );
vector< TGeomID > & solidIDs = _geometry._solidIDsByShapeID[ ShapeID( s )];
if ( !solidIDs.empty() )
return;
solidIDs.reserve(2);
PShapeIteratorPtr solidIt = _helper->GetAncestors( s,
*_helper->GetMesh(),
TopAbs_SOLID,
& theShapeToMesh );
while ( const TopoDS_Shape* solid = solidIt->next() )
solidIDs.push_back( ShapeID( *solid ));
}
//================================================================================
/*
* Return IDs of solids given sub-shape belongs to
*/
const vector< TGeomID > & Grid::GetSolidIDs( TGeomID subShapeID ) const
{
return _geometry._solidIDsByShapeID[ subShapeID ];
}
//================================================================================
/*
* Check if a sub-shape belongs to several SOLIDs
*/
bool Grid::IsShared( TGeomID shapeID ) const
{
return !_geometry.IsOneSolid() && ( _geometry._solidIDsByShapeID[ shapeID ].size() > 1 );
}
//================================================================================
/*
* Check if any of FACEs belongs to several SOLIDs
*/
bool Grid::IsAnyShared( const std::vector< TGeomID >& faceIDs ) const
{
for ( size_t i = 0; i < faceIDs.size(); ++i )
if ( IsShared( faceIDs[ i ]))
return true;
return false;
}
//================================================================================
/*
* Return Solid by ID
*/
Solid* Grid::GetSolid( TGeomID solidID )
{
if ( !solidID || _geometry.IsOneSolid() || _geometry._solidByID.empty() )
return & _geometry._soleSolid;
return & _geometry._solidByID[ solidID ];
}
//================================================================================
/*
* Return OneOfSolids by ID
*/
Solid* Grid::GetOneOfSolids( TGeomID solidID )
{
map< TGeomID, OneOfSolids >::iterator is2s = _geometry._solidByID.find( solidID );
if ( is2s != _geometry._solidByID.end() )
return & is2s->second;
return & _geometry._soleSolid;
}
//================================================================================
/*
* Check if transition on given FACE is correct for a given SOLID
*/
bool Grid::IsCorrectTransition( TGeomID faceID, const Solid* solid )
{
if ( _geometry.IsOneSolid() )
return true;
const vector< TGeomID >& solidIDs = _geometry._solidIDsByShapeID[ faceID ];
return solidIDs[0] == solid->ID();
}
//================================================================================
/*
* Assign to geometry a node at FACE intersection
* Return a found supporting VERTEX
*/
void Grid::SetOnShape( const SMDS_MeshNode* n, const F_IntersectPoint& ip,
TopoDS_Vertex* vertex, bool unset )
{
TopoDS_Shape s;
SMESHDS_Mesh* mesh = _helper->GetMeshDS();
if ( ip._faceIDs.size() == 1 )
{
mesh->SetNodeOnFace( n, ip._faceIDs[0], ip._u, ip._v );
}
else if ( _geometry._vertexClassifier.IsSatisfy( n, &s ))
{
if ( unset ) mesh->UnSetNodeOnShape( n );
mesh->SetNodeOnVertex( n, TopoDS::Vertex( s ));
if ( vertex )
*vertex = TopoDS::Vertex( s );
}
else if ( _geometry._edgeClassifier.IsSatisfy( n, &s ))
{
if ( unset ) mesh->UnSetNodeOnShape( n );
mesh->SetNodeOnEdge( n, TopoDS::Edge( s ));
}
else if ( ip._faceIDs.size() > 0 )
{
mesh->SetNodeOnFace( n, ip._faceIDs[0], ip._u, ip._v );
}
else if ( !unset && _geometry.IsOneSolid() )
{
mesh->SetNodeInVolume( n, _geometry._soleSolid.ID() );
}
}
//================================================================================
/*
* Fill in B_IntersectPoint::_faceIDs with all FACEs sharing a VERTEX
*/
void Grid::UpdateFacesOfVertex( const B_IntersectPoint& ip, const TopoDS_Vertex& vertex )
{
if ( vertex.IsNull() )
return;
std::vector< int > faceID(1);
PShapeIteratorPtr fIt = _helper->GetAncestors( vertex, *_helper->GetMesh(),
TopAbs_FACE, & _geometry._mainShape );
while ( const TopoDS_Shape* face = fIt->next() )
{
faceID[ 0 ] = ShapeID( *face );
ip.Add( faceID );
}
}
//================================================================================
/*
* Initialize a classifier
*/
void Grid::InitClassifier( const TopoDS_Shape& mainShape,
TopAbs_ShapeEnum shapeType,
Controls::ElementsOnShape& classifier )
{
TopTools_IndexedMapOfShape shapes;
TopExp::MapShapes( mainShape, shapeType, shapes );
TopoDS_Compound compound; BRep_Builder builder;
builder.MakeCompound( compound );
for ( int i = 1; i <= shapes.Size(); ++i )
builder.Add( compound, shapes(i) );
classifier.SetMesh( _helper->GetMeshDS() );
//classifier.SetTolerance( _tol ); // _tol is not initialised
classifier.SetShape( compound, SMDSAbs_Node );
}
//================================================================================
/*
* Return EDGEs with FACEs to implement into the mesh
*/
void Grid::GetEdgesToImplement( map< TGeomID, vector< TGeomID > > & edge2faceIDsMap,
const TopoDS_Shape& shape,
const vector< TopoDS_Shape >& faces )
{
// check if there are strange EDGEs
TopTools_IndexedMapOfShape faceMap;
TopExp::MapShapes( _helper->GetMesh()->GetShapeToMesh(), TopAbs_FACE, faceMap );
int nbFacesGlobal = faceMap.Size();
faceMap.Clear( false );
TopExp::MapShapes( shape, TopAbs_FACE, faceMap );
int nbFacesLocal = faceMap.Size();
bool hasStrangeEdges = ( nbFacesGlobal > nbFacesLocal );
if ( !_toAddEdges && !hasStrangeEdges )
return; // no FACEs in contact with those meshed by other algo
for ( size_t i = 0; i < faces.size(); ++i )
{
_helper->SetSubShape( faces[i] );
for ( TopExp_Explorer eExp( faces[i], TopAbs_EDGE ); eExp.More(); eExp.Next() )
{
const TopoDS_Edge& edge = TopoDS::Edge( eExp.Current() );
if ( hasStrangeEdges )
{
bool hasStrangeFace = false;
PShapeIteratorPtr faceIt = _helper->GetAncestors( edge, *_helper->GetMesh(), TopAbs_FACE);
while ( const TopoDS_Shape* face = faceIt->next() )
if (( hasStrangeFace = !faceMap.Contains( *face )))
break;
if ( !hasStrangeFace && !_toAddEdges )
continue;
_geometry._strangeEdges.Add( ShapeID( edge ));
_geometry._strangeEdges.Add( ShapeID( _helper->IthVertex( 0, edge )));
_geometry._strangeEdges.Add( ShapeID( _helper->IthVertex( 1, edge )));
}
if ( !SMESH_Algo::isDegenerated( edge ) &&
!_helper->IsRealSeam( edge ))
{
edge2faceIDsMap[ ShapeID( edge )].push_back( ShapeID( faces[i] ));
}
}
}
return;
}
//================================================================================
/*
* Computes coordinates of a point in the grid CS
*/
void Grid::ComputeUVW(const gp_XYZ& P, double UVW[3])
{
gp_XYZ p = P * _invB;
p.Coord( UVW[0], UVW[1], UVW[2] );
}
//================================================================================
/*
* Creates all nodes
*/
void Grid::ComputeNodes(SMESH_MesherHelper& helper)
{
// state of each node of the grid relative to the geometry
const size_t nbGridNodes = _coords[0].size() * _coords[1].size() * _coords[2].size();
vector< TGeomID > shapeIDVec( nbGridNodes, theUndefID );
_nodes.resize( nbGridNodes, 0 );
_allBorderNodes.resize( nbGridNodes, 0 );
_gridIntP.resize( nbGridNodes, NULL );
SMESHDS_Mesh* mesh = helper.GetMeshDS();
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
LineIndexer li = GetLineIndexer( iDir );
// find out a shift of node index while walking along a GridLine in this direction
li.SetIndexOnLine( 0 );
size_t nIndex0 = NodeIndex( li.I(), li.J(), li.K() );
li.SetIndexOnLine( 1 );
const size_t nShift = NodeIndex( li.I(), li.J(), li.K() ) - nIndex0;
const vector<double> & coords = _coords[ iDir ];
for ( ; li.More(); ++li ) // loop on lines in iDir
{
li.SetIndexOnLine( 0 );
nIndex0 = NodeIndex( li.I(), li.J(), li.K() );
GridLine& line = _lines[ iDir ][ li.LineIndex() ];
const gp_XYZ lineLoc = line._line.Location().XYZ();
const gp_XYZ lineDir = line._line.Direction().XYZ();
line.RemoveExcessIntPoints( _tol );
multiset< F_IntersectPoint >& intPnts = line._intPoints;
multiset< F_IntersectPoint >::iterator ip = intPnts.begin();
// Create mesh nodes at intersections with geometry
// and set OUT state of nodes between intersections
TGeomID solidID = 0;
const double* nodeCoord = & coords[0];
const double* coord0 = nodeCoord;
const double* coordEnd = coord0 + coords.size();
double nodeParam = 0;
for ( ; ip != intPnts.end(); ++ip )
{
solidID = line.GetSolidIDBefore( ip, solidID, _geometry );
// set OUT state or just skip IN nodes before ip
if ( nodeParam < ip->_paramOnLine - _tol )
{
while ( nodeParam < ip->_paramOnLine - _tol )
{
TGeomID & nodeShapeID = shapeIDVec[ nIndex0 + nShift * ( nodeCoord-coord0 ) ];
nodeShapeID = Min( solidID, nodeShapeID );
if ( ++nodeCoord < coordEnd )
nodeParam = *nodeCoord - *coord0;
else
break;
}
if ( nodeCoord == coordEnd ) break;
}
// create a mesh node on a GridLine at ip if it does not coincide with a grid node
if ( nodeParam > ip->_paramOnLine + _tol )
{
gp_XYZ xyz = lineLoc + ip->_paramOnLine * lineDir;
ip->_node = mesh->AddNode( xyz.X(), xyz.Y(), xyz.Z() );
ip->_indexOnLine = nodeCoord-coord0-1;
TopoDS_Vertex v;
SetOnShape( ip->_node, *ip, & v );
UpdateFacesOfVertex( *ip, v );
}
// create a mesh node at ip coincident with a grid node
else
{
int nodeIndex = nIndex0 + nShift * ( nodeCoord-coord0 );
if ( !_nodes[ nodeIndex ] )
{
gp_XYZ xyz = lineLoc + nodeParam * lineDir;
_nodes [ nodeIndex ] = mesh->AddNode( xyz.X(), xyz.Y(), xyz.Z() );
//_gridIntP[ nodeIndex ] = & * ip;
//SetOnShape( _nodes[ nodeIndex ], *ip );
}
if ( _gridIntP[ nodeIndex ] )
_gridIntP[ nodeIndex ]->Add( ip->_faceIDs );
else
_gridIntP[ nodeIndex ] = & * ip;
// ip->_node = _nodes[ nodeIndex ]; -- to differ from ip on links
ip->_indexOnLine = nodeCoord-coord0;
if ( ++nodeCoord < coordEnd )
nodeParam = *nodeCoord - *coord0;
}
}
// set OUT state to nodes after the last ip
for ( ; nodeCoord < coordEnd; ++nodeCoord )
shapeIDVec[ nIndex0 + nShift * ( nodeCoord-coord0 ) ] = 0;
}
}
// Create mesh nodes at !OUT nodes of the grid
for ( size_t z = 0; z < _coords[2].size(); ++z )
for ( size_t y = 0; y < _coords[1].size(); ++y )
for ( size_t x = 0; x < _coords[0].size(); ++x )
{
size_t nodeIndex = NodeIndex( x, y, z );
if ( !_nodes[ nodeIndex ] &&
0 < shapeIDVec[ nodeIndex ] && shapeIDVec[ nodeIndex ] < theUndefID )
{
gp_XYZ xyz = ( _coords[0][x] * _axes[0] +
_coords[1][y] * _axes[1] +
_coords[2][z] * _axes[2] );
_nodes[ nodeIndex ] = mesh->AddNode( xyz.X(), xyz.Y(), xyz.Z() );
mesh->SetNodeInVolume( _nodes[ nodeIndex ], shapeIDVec[ nodeIndex ]);
}
else if ( _nodes[ nodeIndex ] && _gridIntP[ nodeIndex ] /*&&
!_nodes[ nodeIndex]->GetShapeID()*/ )
{
TopoDS_Vertex v;
SetOnShape( _nodes[ nodeIndex ], *_gridIntP[ nodeIndex ], & v );
UpdateFacesOfVertex( *_gridIntP[ nodeIndex ], v );
}
else if ( _toUseQuanta && !_allBorderNodes[ nodeIndex ] /*add all nodes outside the body. Used to reconstruct the hexahedrals when polys are not desired!*/)
{
gp_XYZ xyz = ( _coords[0][x] * _axes[0] +
_coords[1][y] * _axes[1] +
_coords[2][z] * _axes[2] );
_allBorderNodes[ nodeIndex ] = mesh->AddNode( xyz.X(), xyz.Y(), xyz.Z() );
mesh->SetNodeInVolume( _allBorderNodes[ nodeIndex ], shapeIDVec[ nodeIndex ]);
}
}
#ifdef _MY_DEBUG_
// check validity of transitions
const char* trName[] = { "TANGENT", "IN", "OUT", "APEX" };
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
LineIndexer li = GetLineIndexer( iDir );
for ( ; li.More(); ++li )
{
multiset< F_IntersectPoint >& intPnts = _lines[ iDir ][ li.LineIndex() ]._intPoints;
if ( intPnts.empty() ) continue;
if ( intPnts.size() == 1 )
{
if ( intPnts.begin()->_transition != Trans_TANGENT &&
intPnts.begin()->_transition != Trans_APEX )
throw SMESH_ComputeError (COMPERR_ALGO_FAILED,
SMESH_Comment("Wrong SOLE transition of GridLine (")
<< li._curInd[li._iVar1] << ", " << li._curInd[li._iVar2]
<< ") along " << li._nameConst
<< ": " << trName[ intPnts.begin()->_transition] );
}
else
{
if ( intPnts.begin()->_transition == Trans_OUT )
throw SMESH_ComputeError (COMPERR_ALGO_FAILED,
SMESH_Comment("Wrong START transition of GridLine (")
<< li._curInd[li._iVar1] << ", " << li._curInd[li._iVar2]
<< ") along " << li._nameConst
<< ": " << trName[ intPnts.begin()->_transition ]);
if ( intPnts.rbegin()->_transition == Trans_IN )
throw SMESH_ComputeError (COMPERR_ALGO_FAILED,
SMESH_Comment("Wrong END transition of GridLine (")
<< li._curInd[li._iVar1] << ", " << li._curInd[li._iVar2]
<< ") along " << li._nameConst
<< ": " << trName[ intPnts.rbegin()->_transition ]);
}
}
}
#endif
return;
}
//=============================================================================
/*
* Intersects TopoDS_Face with all GridLine's
*/
void FaceGridIntersector::Intersect()
{
FaceLineIntersector intersector;
intersector._surfaceInt = GetCurveFaceIntersector();
intersector._tol = _grid->_tol;
intersector._transOut = _face.Orientation() == TopAbs_REVERSED ? Trans_IN : Trans_OUT;
intersector._transIn = _face.Orientation() == TopAbs_REVERSED ? Trans_OUT : Trans_IN;
typedef void (FaceLineIntersector::* PIntFun )(const GridLine& gridLine);
PIntFun interFunction;
bool isDirect = true;
BRepAdaptor_Surface surf( _face );
switch ( surf.GetType() ) {
case GeomAbs_Plane:
intersector._plane = surf.Plane();
interFunction = &FaceLineIntersector::IntersectWithPlane;
isDirect = intersector._plane.Direct();
break;
case GeomAbs_Cylinder:
intersector._cylinder = surf.Cylinder();
interFunction = &FaceLineIntersector::IntersectWithCylinder;
isDirect = intersector._cylinder.Direct();
break;
case GeomAbs_Cone:
intersector._cone = surf.Cone();
interFunction = &FaceLineIntersector::IntersectWithCone;
//isDirect = intersector._cone.Direct();
break;
case GeomAbs_Sphere:
intersector._sphere = surf.Sphere();
interFunction = &FaceLineIntersector::IntersectWithSphere;
isDirect = intersector._sphere.Direct();
break;
case GeomAbs_Torus:
intersector._torus = surf.Torus();
interFunction = &FaceLineIntersector::IntersectWithTorus;
//isDirect = intersector._torus.Direct();
break;
default:
interFunction = &FaceLineIntersector::IntersectWithSurface;
}
if ( !isDirect )
std::swap( intersector._transOut, intersector._transIn );
_intersections.clear();
for ( int iDir = 0; iDir < 3; ++iDir ) // loop on 3 line directions
{
if ( surf.GetType() == GeomAbs_Plane )
{
// check if all lines in this direction are parallel to a plane
if ( intersector._plane.Axis().IsNormal( _grid->_lines[iDir][0]._line.Position(),
Precision::Angular()))
continue;
// find out a transition, that is the same for all lines of a direction
gp_Dir plnNorm = intersector._plane.Axis().Direction();
gp_Dir lineDir = _grid->_lines[iDir][0]._line.Direction();
intersector._transition =
( plnNorm * lineDir < 0 ) ? intersector._transIn : intersector._transOut;
}
if ( surf.GetType() == GeomAbs_Cylinder )
{
// check if all lines in this direction are parallel to a cylinder
if ( intersector._cylinder.Axis().IsParallel( _grid->_lines[iDir][0]._line.Position(),
Precision::Angular()))
continue;
}
// intersect the grid lines with the face
for ( size_t iL = 0; iL < _grid->_lines[iDir].size(); ++iL )
{
GridLine& gridLine = _grid->_lines[iDir][iL];
if ( _bndBox.IsOut( gridLine._line )) continue;
intersector._intPoints.clear();
(intersector.*interFunction)( gridLine ); // <- intersection with gridLine
for ( size_t i = 0; i < intersector._intPoints.size(); ++i )
_intersections.push_back( make_pair( &gridLine, intersector._intPoints[i] ));
}
}
if ( _face.Orientation() == TopAbs_INTERNAL )
{
for ( size_t i = 0; i < _intersections.size(); ++i )
if ( _intersections[i].second._transition == Trans_IN ||
_intersections[i].second._transition == Trans_OUT )
{
_intersections[i].second._transition = Trans_INTERNAL;
}
}
return;
}
//================================================================================
/*
* Return true if (_u,_v) is on the face
*/
bool FaceLineIntersector::UVIsOnFace() const
{
TopAbs_State state = _surfaceInt->ClassifyUVPoint(gp_Pnt2d( _u,_v ));
return ( state == TopAbs_IN || state == TopAbs_ON );
}
//================================================================================
/*
* Store an intersection if it is IN or ON the face
*/
void FaceLineIntersector::addIntPoint(const bool toClassify)
{
if ( !toClassify || UVIsOnFace() )
{
F_IntersectPoint p;
p._paramOnLine = _w;
p._u = _u;
p._v = _v;
p._transition = _transition;
_intPoints.push_back( p );
}
}
//================================================================================
/*
* Intersect a line with a plane
*/
void FaceLineIntersector::IntersectWithPlane(const GridLine& gridLine)
{
IntAna_IntConicQuad linPlane( gridLine._line, _plane, Precision::Angular());
_w = linPlane.ParamOnConic(1);
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_plane, linPlane.Point(1) ,_u,_v);
addIntPoint();
}
}
//================================================================================
/*
* Intersect a line with a cylinder
*/
void FaceLineIntersector::IntersectWithCylinder(const GridLine& gridLine)
{
IntAna_IntConicQuad linCylinder( gridLine._line, _cylinder );
if ( linCylinder.IsDone() && linCylinder.NbPoints() > 0 )
{
_w = linCylinder.ParamOnConic(1);
if ( linCylinder.NbPoints() == 1 )
_transition = Trans_TANGENT;
else
_transition = _w < linCylinder.ParamOnConic(2) ? _transIn : _transOut;
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_cylinder, linCylinder.Point(1) ,_u,_v);
addIntPoint();
}
if ( linCylinder.NbPoints() > 1 )
{
_w = linCylinder.ParamOnConic(2);
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_cylinder, linCylinder.Point(2) ,_u,_v);
_transition = ( _transition == Trans_OUT ) ? Trans_IN : Trans_OUT;
addIntPoint();
}
}
}
}
//================================================================================
/*
* Intersect a line with a cone
*/
void FaceLineIntersector::IntersectWithCone (const GridLine& gridLine)
{
IntAna_IntConicQuad linCone(gridLine._line,_cone);
if ( !linCone.IsDone() ) return;
gp_Pnt P;
gp_Vec du, dv, norm;
for ( int i = 1; i <= linCone.NbPoints(); ++i )
{
_w = linCone.ParamOnConic( i );
if ( !isParamOnLineOK( gridLine._length )) continue;
ElSLib::Parameters(_cone, linCone.Point(i) ,_u,_v);
if ( UVIsOnFace() )
{
ElSLib::D1( _u, _v, _cone, P, du, dv );
norm = du ^ dv;
double normSize2 = norm.SquareMagnitude();
if ( normSize2 > Precision::Angular() * Precision::Angular() )
{
double cos = norm.XYZ() * gridLine._line.Direction().XYZ();
cos /= sqrt( normSize2 );
if ( cos < -Precision::Angular() )
_transition = _transIn;
else if ( cos > Precision::Angular() )
_transition = _transOut;
else
_transition = Trans_TANGENT;
}
else
{
_transition = Trans_APEX;
}
addIntPoint( /*toClassify=*/false);
}
}
}
//================================================================================
/*
* Intersect a line with a sphere
*/
void FaceLineIntersector::IntersectWithSphere (const GridLine& gridLine)
{
IntAna_IntConicQuad linSphere(gridLine._line,_sphere);
if ( linSphere.IsDone() && linSphere.NbPoints() > 0 )
{
_w = linSphere.ParamOnConic(1);
if ( linSphere.NbPoints() == 1 )
_transition = Trans_TANGENT;
else
_transition = _w < linSphere.ParamOnConic(2) ? _transIn : _transOut;
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_sphere, linSphere.Point(1) ,_u,_v);
addIntPoint();
}
if ( linSphere.NbPoints() > 1 )
{
_w = linSphere.ParamOnConic(2);
if ( isParamOnLineOK( gridLine._length ))
{
ElSLib::Parameters(_sphere, linSphere.Point(2) ,_u,_v);
_transition = ( _transition == Trans_OUT ) ? Trans_IN : Trans_OUT;
addIntPoint();
}
}
}
}
//================================================================================
/*
* Intersect a line with a torus
*/
void FaceLineIntersector::IntersectWithTorus (const GridLine& gridLine)
{
IntAna_IntLinTorus linTorus(gridLine._line,_torus);
if ( !linTorus.IsDone()) return;
gp_Pnt P;
gp_Vec du, dv, norm;
for ( int i = 1; i <= linTorus.NbPoints(); ++i )
{
_w = linTorus.ParamOnLine( i );
if ( !isParamOnLineOK( gridLine._length )) continue;
linTorus.ParamOnTorus( i, _u,_v );
if ( UVIsOnFace() )
{
ElSLib::D1( _u, _v, _torus, P, du, dv );
norm = du ^ dv;
double normSize = norm.Magnitude();
double cos = norm.XYZ() * gridLine._line.Direction().XYZ();
cos /= normSize;
if ( cos < -Precision::Angular() )
_transition = _transIn;
else if ( cos > Precision::Angular() )
_transition = _transOut;
else
_transition = Trans_TANGENT;
addIntPoint( /*toClassify=*/false);
}
}
}
//================================================================================
/*
* Intersect a line with a non-analytical surface
*/
void FaceLineIntersector::IntersectWithSurface (const GridLine& gridLine)
{
_surfaceInt->Perform( gridLine._line, 0.0, gridLine._length );
if ( !_surfaceInt->IsDone() ) return;
for ( int i = 1; i <= _surfaceInt->NbPnt(); ++i )
{
_transition = Transition( _surfaceInt->Transition( i ) );
_w = _surfaceInt->WParameter( i );
addIntPoint(/*toClassify=*/false);
}
}
//================================================================================
/*
* check if its face can be safely intersected in a thread
*/
bool FaceGridIntersector::IsThreadSafe(set< const Standard_Transient* >& noSafeTShapes) const
{
bool isSafe = true;
// check surface
TopLoc_Location loc;
Handle(Geom_Surface) surf = BRep_Tool::Surface( _face, loc );
Handle(Geom_RectangularTrimmedSurface) ts =
Handle(Geom_RectangularTrimmedSurface)::DownCast( surf );
while( !ts.IsNull() ) {
surf = ts->BasisSurface();
ts = Handle(Geom_RectangularTrimmedSurface)::DownCast(surf);
}
if ( surf->IsKind( STANDARD_TYPE(Geom_BSplineSurface )) ||
surf->IsKind( STANDARD_TYPE(Geom_BezierSurface )))
if ( !noSafeTShapes.insert( _face.TShape().get() ).second )
isSafe = false;
double f, l;
TopExp_Explorer exp( _face, TopAbs_EDGE );
for ( ; exp.More(); exp.Next() )
{
bool edgeIsSafe = true;
const TopoDS_Edge& e = TopoDS::Edge( exp.Current() );
// check 3d curve
{
Handle(Geom_Curve) c = BRep_Tool::Curve( e, loc, f, l);
if ( !c.IsNull() )
{
Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(c);
while( !tc.IsNull() ) {
c = tc->BasisCurve();
tc = Handle(Geom_TrimmedCurve)::DownCast(c);
}
if ( c->IsKind( STANDARD_TYPE(Geom_BSplineCurve )) ||
c->IsKind( STANDARD_TYPE(Geom_BezierCurve )))
edgeIsSafe = false;
}
}
// check 2d curve
if ( edgeIsSafe )
{
Handle(Geom2d_Curve) c2 = BRep_Tool::CurveOnSurface( e, surf, loc, f, l);
if ( !c2.IsNull() )
{
Handle(Geom2d_TrimmedCurve) tc = Handle(Geom2d_TrimmedCurve)::DownCast(c2);
while( !tc.IsNull() ) {
c2 = tc->BasisCurve();
tc = Handle(Geom2d_TrimmedCurve)::DownCast(c2);
}
if ( c2->IsKind( STANDARD_TYPE(Geom2d_BSplineCurve )) ||
c2->IsKind( STANDARD_TYPE(Geom2d_BezierCurve )))
edgeIsSafe = false;
}
}
if ( !edgeIsSafe && !noSafeTShapes.insert( e.TShape().get() ).second )
isSafe = false;
}
return isSafe;
}
//================================================================================
/*!
* \brief Creates topology of the hexahedron
*/
Hexahedron::Hexahedron(Grid* grid)
: _grid( grid ), _nbFaceIntNodes(0), _hasTooSmall( false )
{
_polygons.reserve(100); // to avoid reallocation;
//set nodes shift within grid->_nodes from the node 000
size_t dx = _grid->NodeIndexDX();
size_t dy = _grid->NodeIndexDY();
size_t dz = _grid->NodeIndexDZ();
size_t i000 = 0;
size_t i100 = i000 + dx;
size_t i010 = i000 + dy;
size_t i110 = i010 + dx;
size_t i001 = i000 + dz;
size_t i101 = i100 + dz;
size_t i011 = i010 + dz;
size_t i111 = i110 + dz;
grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V000 )] = i000;
grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V100 )] = i100;
grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V010 )] = i010;
grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V110 )] = i110;
grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V001 )] = i001;
grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V101 )] = i101;
grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V011 )] = i011;
grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V111 )] = i111;
vector< int > idVec;
// set nodes to links
for ( int linkID = SMESH_Block::ID_Ex00; linkID <= SMESH_Block::ID_E11z; ++linkID )
{
SMESH_Block::GetEdgeVertexIDs( linkID, idVec );
_Link& link = _hexLinks[ SMESH_Block::ShapeIndex( linkID )];
link._nodes[0] = &_hexNodes[ SMESH_Block::ShapeIndex( idVec[0] )];
link._nodes[1] = &_hexNodes[ SMESH_Block::ShapeIndex( idVec[1] )];
}
// set links to faces
int interlace[4] = { 0, 3, 1, 2 }; // to walk by links around a face: { u0, 1v, u1, 0v }
for ( int faceID = SMESH_Block::ID_Fxy0; faceID <= SMESH_Block::ID_F1yz; ++faceID )
{
_Face& quad = _hexQuads[ SMESH_Block::ShapeIndex( faceID )];
quad._name = (SMESH_Block::TShapeID) faceID;
SMESH_Block::GetFaceEdgesIDs( faceID, idVec );
bool revFace = ( faceID == SMESH_Block::ID_Fxy0 ||
faceID == SMESH_Block::ID_Fx1z ||
faceID == SMESH_Block::ID_F0yz );
quad._links.resize(4);
vector<_OrientedLink>::iterator frwLinkIt = quad._links.begin();
vector<_OrientedLink>::reverse_iterator revLinkIt = quad._links.rbegin();
for ( int i = 0; i < 4; ++i )
{
bool revLink = revFace;
if ( i > 1 ) // reverse links u1 and v0
revLink = !revLink;
_OrientedLink& link = revFace ? *revLinkIt++ : *frwLinkIt++;
link = _OrientedLink( & _hexLinks[ SMESH_Block::ShapeIndex( idVec[interlace[i]] )],
revLink );
}
}
}
//================================================================================
/*!
* \brief Copy constructor
*/
Hexahedron::Hexahedron( const Hexahedron& other, size_t i, size_t j, size_t k, int cellID )
:_grid( other._grid ), _nbFaceIntNodes(0), _i( i ), _j( j ), _k( k ), _hasTooSmall( false )
{
_polygons.reserve(100); // to avoid reallocation;
// copy topology
for ( int i = 0; i < 12; ++i )
{
const _Link& srcLink = other._hexLinks[ i ];
_Link& tgtLink = this->_hexLinks[ i ];
tgtLink._nodes[0] = _hexNodes + ( srcLink._nodes[0] - other._hexNodes );
tgtLink._nodes[1] = _hexNodes + ( srcLink._nodes[1] - other._hexNodes );
}
for ( int i = 0; i < 6; ++i )
{
const _Face& srcQuad = other._hexQuads[ i ];
_Face& tgtQuad = this->_hexQuads[ i ];
tgtQuad._name = srcQuad._name;
tgtQuad._links.resize(4);
for ( int j = 0; j < 4; ++j )
{
const _OrientedLink& srcLink = srcQuad._links[ j ];
_OrientedLink& tgtLink = tgtQuad._links[ j ];
tgtLink._reverse = srcLink._reverse;
tgtLink._link = _hexLinks + ( srcLink._link - other._hexLinks );
}
}
if (SALOME::VerbosityActivated())
_cellID = cellID;
}
//================================================================================
/*!
* \brief Return IDs of SOLIDs interfering with this Hexahedron
*/
size_t Hexahedron::getSolids( TGeomID ids[] )
{
if ( _grid->_geometry.IsOneSolid() )
{
ids[0] = _grid->GetSolid()->ID();
return 1;
}
// count intersection points belonging to each SOLID
TID2Nb id2NbPoints;
id2NbPoints.reserve( 3 );
_origNodeInd = _grid->NodeIndex( _i,_j,_k );
for ( int iN = 0; iN < 8; ++iN )
{
_hexNodes[iN]._node = _grid->_nodes [ _origNodeInd + _grid->_nodeShift[iN] ];
_hexNodes[iN]._intPoint = _grid->_gridIntP[ _origNodeInd + _grid->_nodeShift[iN] ];
if ( _hexNodes[iN]._intPoint ) // intersection with a FACE
{
for ( size_t iF = 0; iF < _hexNodes[iN]._intPoint->_faceIDs.size(); ++iF )
{
const vector< TGeomID > & solidIDs =
_grid->GetSolidIDs( _hexNodes[iN]._intPoint->_faceIDs[iF] );
for ( size_t i = 0; i < solidIDs.size(); ++i )
insertAndIncrement( solidIDs[i], id2NbPoints );
}
}
else if ( _hexNodes[iN]._node ) // node inside a SOLID
{
insertAndIncrement( _hexNodes[iN]._node->GetShapeID(), id2NbPoints );
}
}
for ( int iL = 0; iL < 12; ++iL )
{
const _Link& link = _hexLinks[ iL ];
for ( size_t iP = 0; iP < link._fIntPoints.size(); ++iP )
{
for ( size_t iF = 0; iF < link._fIntPoints[iP]->_faceIDs.size(); ++iF )
{
const vector< TGeomID > & solidIDs =
_grid->GetSolidIDs( link._fIntPoints[iP]->_faceIDs[iF] );
for ( size_t i = 0; i < solidIDs.size(); ++i )
insertAndIncrement( solidIDs[i], id2NbPoints );
}
}
}
for ( size_t iP = 0; iP < _eIntPoints.size(); ++iP )
{
const vector< TGeomID > & solidIDs = _grid->GetSolidIDs( _eIntPoints[iP]->_shapeID );
for ( size_t i = 0; i < solidIDs.size(); ++i )
insertAndIncrement( solidIDs[i], id2NbPoints );
}
size_t nbSolids = 0;
for ( TID2Nb::iterator id2nb = id2NbPoints.begin(); id2nb != id2NbPoints.end(); ++id2nb )
if ( id2nb->second >= 3 )
ids[ nbSolids++ ] = id2nb->first;
return nbSolids;
}
//================================================================================
/*!
* \brief Count cuts by INTERNAL FACEs and set _Node::_isInternalFlags
*/
bool Hexahedron::isCutByInternalFace( IsInternalFlag & maxFlag )
{
TID2Nb id2NbPoints;
id2NbPoints.reserve( 3 );
for ( size_t iN = 0; iN < _intNodes.size(); ++iN )
for ( size_t iF = 0; iF < _intNodes[iN]._intPoint->_faceIDs.size(); ++iF )
{
if ( _grid->IsInternal( _intNodes[iN]._intPoint->_faceIDs[iF]))
insertAndIncrement( _intNodes[iN]._intPoint->_faceIDs[iF], id2NbPoints );
}
for ( size_t iN = 0; iN < 8; ++iN )
if ( _hexNodes[iN]._intPoint )
for ( size_t iF = 0; iF < _hexNodes[iN]._intPoint->_faceIDs.size(); ++iF )
{
if ( _grid->IsInternal( _hexNodes[iN]._intPoint->_faceIDs[iF]))
insertAndIncrement( _hexNodes[iN]._intPoint->_faceIDs[iF], id2NbPoints );
}
maxFlag = IS_NOT_INTERNAL;
for ( TID2Nb::iterator id2nb = id2NbPoints.begin(); id2nb != id2NbPoints.end(); ++id2nb )
{
TGeomID intFace = id2nb->first;
IsInternalFlag intFlag = ( id2nb->second >= 3 ? IS_CUT_BY_INTERNAL_FACE : IS_INTERNAL );
if ( intFlag > maxFlag )
maxFlag = intFlag;
for ( size_t iN = 0; iN < _intNodes.size(); ++iN )
if ( _intNodes[iN].IsOnFace( intFace ))
_intNodes[iN].SetInternal( intFlag );
for ( size_t iN = 0; iN < 8; ++iN )
if ( _hexNodes[iN].IsOnFace( intFace ))
_hexNodes[iN].SetInternal( intFlag );
}
return maxFlag;
}
//================================================================================
/*!
* \brief Return any FACE interfering with this Hexahedron
*/
TGeomID Hexahedron::getAnyFace() const
{
TID2Nb id2NbPoints;
id2NbPoints.reserve( 3 );
for ( size_t iN = 0; iN < _intNodes.size(); ++iN )
for ( size_t iF = 0; iF < _intNodes[iN]._intPoint->_faceIDs.size(); ++iF )
insertAndIncrement( _intNodes[iN]._intPoint->_faceIDs[iF], id2NbPoints );
for ( size_t iN = 0; iN < 8; ++iN )
if ( _hexNodes[iN]._intPoint )
for ( size_t iF = 0; iF < _hexNodes[iN]._intPoint->_faceIDs.size(); ++iF )
insertAndIncrement( _hexNodes[iN]._intPoint->_faceIDs[iF], id2NbPoints );
for ( unsigned int minNb = 3; minNb > 0; --minNb )
for ( TID2Nb::iterator id2nb = id2NbPoints.begin(); id2nb != id2NbPoints.end(); ++id2nb )
if ( id2nb->second >= minNb )
return id2nb->first;
return 0;
}
//================================================================================
/*!
* \brief Initializes IJK by Hexahedron index
*/
void Hexahedron::setIJK( size_t iCell )
{
size_t iNbCell = _grid->_coords[0].size() - 1;
size_t jNbCell = _grid->_coords[1].size() - 1;
_i = iCell % iNbCell;
_j = ( iCell % ( iNbCell * jNbCell )) / iNbCell;
_k = iCell / iNbCell / jNbCell;
}
//================================================================================
/*!
* \brief Initializes its data by given grid cell (countered from zero)
*/
void Hexahedron::init( size_t iCell )
{
setIJK( iCell );
init( _i, _j, _k );
}
//================================================================================
/*!
* \brief Clear nodes linked to null by not splitted links
*/
void Hexahedron::clearNodesLinkedToNull(const Solid* solid, SMESH_MesherHelper& helper)
{
for (std::size_t i = 0; i < HEX_LINKS_NUM; ++i)
{
_Link& link = _hexLinks[i];
if (isSplittedLink(solid, helper, link))
continue;
// Links where both nodes are valid should have itself as a split.
// Check if we have at least one null node here for a chance if we have
// some unexpected edge case.
_Node* n1 = link._nodes[0];
_Node* n2 = link._nodes[1];
assert(!n1->_node || !n2->_node);
if (!n1->_node || !n2->_node)
{
link.clear();
}
}
}
//================================================================================
/*!
* \brief Returns true if the link will be splitted on the Hexaedron initialization
*/
bool Hexahedron::isSplittedLink(const Solid* solid, SMESH_MesherHelper& helper, const Hexahedron::_Link& linkIn) const
{
_Link split;
std::vector<_Node> intNodes;
_Link link = linkIn;
link._fIntNodes.clear();
link._fIntNodes.reserve( link._fIntPoints.size() );
for ( size_t i = 0; i < link._fIntPoints.size(); ++i )
if ( solid->ContainsAny( link._fIntPoints[i]->_faceIDs ))
{
intNodes.push_back( _Node( 0, link._fIntPoints[i] ));
link._fIntNodes.push_back( & intNodes.back() );
}
link._splits.clear();
split._nodes[ 0 ] = link._nodes[0];
bool isOut = ( ! link._nodes[0]->Node() );
bool checkTransition;
for ( size_t i = 0; i < link._fIntNodes.size(); ++i )
{
const bool isGridNode = ( ! link._fIntNodes[i]->Node() );
if ( !isGridNode ) // intersection non-coincident with a grid node
{
if ( split._nodes[ 0 ]->Node() && !isOut )
{
return true;
}
split._nodes[ 0 ] = link._fIntNodes[i];
checkTransition = true;
}
else // FACE intersection coincident with a grid node (at link ends)
{
checkTransition = ( i == 0 && link._nodes[0]->Node() );
}
if ( checkTransition )
{
const vector< TGeomID >& faceIDs = link._fIntNodes[i]->_intPoint->_faceIDs;
if ( _grid->IsInternal( faceIDs.back() ))
isOut = false;
else if ( faceIDs.size() > 1 || _eIntPoints.size() > 0 )
isOut = isOutPoint( link, i, helper, solid );
else
{
bool okTransi = _grid->IsCorrectTransition( faceIDs[0], solid );
switch ( link._fIntNodes[i]->FaceIntPnt()->_transition ) {
case Trans_OUT: isOut = okTransi; break;
case Trans_IN : isOut = !okTransi; break;
default:
isOut = isOutPoint( link, i, helper, solid );
}
}
}
}
if ( link._nodes[ 1 ]->Node() && split._nodes[ 0 ]->Node() && !isOut )
{
return true;
}
return false;
}
//================================================================================
/*!
* \brief Initializes its data by given grid cell nodes and intersections
*/
void Hexahedron::init( size_t i, size_t j, size_t k, const Solid* solid )
{
MESSAGE(debugSepLine << "START Hexahedron::init()" << debugSepLine);
_i = i; _j = j; _k = k;
bool isCompute = solid;
if ( !solid )
solid = _grid->GetSolid();
// set nodes of grid to nodes of the hexahedron and
// count nodes at hexahedron corners located IN and ON geometry
_nbCornerNodes = _nbBndNodes = 0;
_origNodeInd = _grid->NodeIndex( i,j,k );
for ( int iN = 0; iN < 8; ++iN )
{
_hexNodes[iN]._isInternalFlags = 0;
// Grid node
_hexNodes[iN]._node = _grid->_nodes [ _origNodeInd + _grid->_nodeShift[iN] ];
_hexNodes[iN]._intPoint = _grid->_gridIntP[ _origNodeInd + _grid->_nodeShift[iN] ];
if ( _grid->_allBorderNodes[ _origNodeInd + _grid->_nodeShift[iN] ] )
_hexNodes[iN]._boundaryCornerNode = _grid->_allBorderNodes [ _origNodeInd + _grid->_nodeShift[iN] ];
if ( _hexNodes[iN]._node && !solid->Contains( _hexNodes[iN]._node->GetShapeID() ))
_hexNodes[iN]._node = 0;
if ( _hexNodes[iN]._intPoint && !solid->ContainsAny( _hexNodes[iN]._intPoint->_faceIDs ))
_hexNodes[iN]._intPoint = 0;
_nbCornerNodes += bool( _hexNodes[iN]._node );
_nbBndNodes += bool( _hexNodes[iN]._intPoint );
}
_sideLength[0] = _grid->_coords[0][i+1] - _grid->_coords[0][i];
_sideLength[1] = _grid->_coords[1][j+1] - _grid->_coords[1][j];
_sideLength[2] = _grid->_coords[2][k+1] - _grid->_coords[2][k];
_intNodes.clear();
_vIntNodes.clear();
if ( !isCompute )
return;
if ( _nbFaceIntNodes + _eIntPoints.size() > 0 &&
_nbFaceIntNodes + _eIntPoints.size() + _nbCornerNodes > 3)
{
_intNodes.reserve( 3 * ( _nbBndNodes + _nbFaceIntNodes + _eIntPoints.size() ));
// this method can be called in parallel, so use own helper
SMESH_MesherHelper helper( *_grid->_helper->GetMesh() );
clearNodesLinkedToNull(solid, helper);
// Create sub-links (_Link::_splits) by splitting links with _Link::_fIntPoints
// ---------------------------------------------------------------
_Link split;
for ( int iLink = 0; iLink < 12; ++iLink )
{
_Link& link = _hexLinks[ iLink ];
link._fIntNodes.clear();
link._fIntNodes.reserve( link._fIntPoints.size() );
for ( size_t i = 0; i < link._fIntPoints.size(); ++i )
if ( solid->ContainsAny( link._fIntPoints[i]->_faceIDs ))
{
_intNodes.push_back( _Node( 0, link._fIntPoints[i] ));
link._fIntNodes.push_back( & _intNodes.back() );
}
link._splits.clear();
split._nodes[ 0 ] = link._nodes[0];
bool isOut = ( ! link._nodes[0]->Node() );
bool checkTransition;
for ( size_t i = 0; i < link._fIntNodes.size(); ++i )
{
const bool isGridNode = ( ! link._fIntNodes[i]->Node() );
if ( !isGridNode ) // intersection non-coincident with a grid node
{
if ( split._nodes[ 0 ]->Node() && !isOut )
{
split._nodes[ 1 ] = link._fIntNodes[i];
link._splits.push_back( split );
}
split._nodes[ 0 ] = link._fIntNodes[i];
checkTransition = true;
}
else // FACE intersection coincident with a grid node (at link ends)
{
checkTransition = ( i == 0 && link._nodes[0]->Node() );
}
if ( checkTransition )
{
const vector< TGeomID >& faceIDs = link._fIntNodes[i]->_intPoint->_faceIDs;
if ( _grid->IsInternal( faceIDs.back() ))
isOut = false;
else if ( faceIDs.size() > 1 || _eIntPoints.size() > 0 )
isOut = isOutPoint( link, i, helper, solid );
else
{
bool okTransi = _grid->IsCorrectTransition( faceIDs[0], solid );
switch ( link._fIntNodes[i]->FaceIntPnt()->_transition ) {
case Trans_OUT: isOut = okTransi; break;
case Trans_IN : isOut = !okTransi; break;
default:
isOut = isOutPoint( link, i, helper, solid );
}
}
}
}
if ( link._nodes[ 1 ]->Node() && split._nodes[ 0 ]->Node() && !isOut )
{
split._nodes[ 1 ] = link._nodes[1];
link._splits.push_back( split );
}
}
// Create _Node's at intersections with EDGEs.
// --------------------------------------------
// 1) add this->_eIntPoints to _Face::_eIntNodes
// 2) fill _intNodes and _vIntNodes
//
const double tol2 = _grid->_tol * _grid->_tol * 4;
int facets[3], nbFacets, subEntity;
for ( int iF = 0; iF < 6; ++iF )
_hexQuads[ iF ]._eIntNodes.clear();
for ( size_t iP = 0; iP < _eIntPoints.size(); ++iP )
{
if ( !solid->ContainsAny( _eIntPoints[iP]->_faceIDs ))
continue;
nbFacets = getEntity( _eIntPoints[iP], facets, subEntity );
_Node* equalNode = 0;
switch( nbFacets ) {
case 1: // in a _Face
{
_Face& quad = _hexQuads[ facets[0] - SMESH_Block::ID_FirstF ];
equalNode = findEqualNode( quad._eIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode ) {
equalNode->Add( _eIntPoints[ iP ] );
}
else {
_intNodes.push_back( _Node( 0, _eIntPoints[ iP ]));
quad._eIntNodes.push_back( & _intNodes.back() );
}
break;
}
case 2: // on a _Link
{
_Link& link = _hexLinks[ subEntity - SMESH_Block::ID_FirstE ];
if ( link._splits.size() > 0 )
{
equalNode = findEqualNode( link._fIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode )
equalNode->Add( _eIntPoints[ iP ] );
else if ( link._splits.size() == 1 &&
link._splits[0]._nodes[0] &&
link._splits[0]._nodes[1] )
link._splits.clear(); // hex edge is divided by _eIntPoints[iP]
}
//else
if ( !equalNode )
{
_intNodes.push_back( _Node( 0, _eIntPoints[ iP ]));
bool newNodeUsed = false;
for ( int iF = 0; iF < 2; ++iF )
{
_Face& quad = _hexQuads[ facets[iF] - SMESH_Block::ID_FirstF ];
equalNode = findEqualNode( quad._eIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode ) {
equalNode->Add( _eIntPoints[ iP ] );
}
else {
quad._eIntNodes.push_back( & _intNodes.back() );
newNodeUsed = true;
}
}
if ( !newNodeUsed )
_intNodes.pop_back();
}
break;
}
case 3: // at a corner
{
_Node& node = _hexNodes[ subEntity - SMESH_Block::ID_FirstV ];
if ( node.Node() )
{
if ( node._intPoint )
node._intPoint->Add( _eIntPoints[ iP ]->_faceIDs, _eIntPoints[ iP ]->_node );
}
else
{
_intNodes.push_back( _Node( 0, _eIntPoints[ iP ]));
for ( int iF = 0; iF < 3; ++iF )
{
_Face& quad = _hexQuads[ facets[iF] - SMESH_Block::ID_FirstF ];
equalNode = findEqualNode( quad._eIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode ) {
equalNode->Add( _eIntPoints[ iP ] );
}
else {
quad._eIntNodes.push_back( & _intNodes.back() );
}
}
}
break;
}
} // switch( nbFacets )
if ( nbFacets == 0 ||
_grid->ShapeType( _eIntPoints[ iP ]->_shapeID ) == TopAbs_VERTEX )
{
equalNode = findEqualNode( _vIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode ) {
equalNode->Add( _eIntPoints[ iP ] );
}
else if ( nbFacets == 0 ) {
if ( _intNodes.empty() || _intNodes.back().EdgeIntPnt() != _eIntPoints[ iP ])
_intNodes.push_back( _Node( 0, _eIntPoints[ iP ]));
_vIntNodes.push_back( & _intNodes.back() );
}
}
} // loop on _eIntPoints
}
else if (( 3 < _nbCornerNodes && _nbCornerNodes < 8 ) || // _nbFaceIntNodes == 0
( !_grid->_geometry.IsOneSolid() ))
{
_Link split;
// create sub-links (_splits) of whole links
for ( int iLink = 0; iLink < 12; ++iLink )
{
_Link& link = _hexLinks[ iLink ];
link._splits.clear();
if ( link._nodes[ 0 ]->Node() && link._nodes[ 1 ]->Node() )
{
split._nodes[ 0 ] = link._nodes[0];
split._nodes[ 1 ] = link._nodes[1];
link._splits.push_back( split );
}
}
}
MESSAGE(debugSepLine << "END Hexahedron::init()" << debugSepLine);
} // init( _i, _j, _k )
//================================================================================
/*!
* \brief Compute mesh volumes resulted from intersection of the Hexahedron
*/
void Hexahedron::computeElements( const Solid* solid, int solidIndex )
{
if ( !solid )
{
solid = _grid->GetSolid();
if ( !_grid->_geometry.IsOneSolid() )
{
TGeomID solidIDs[20] = { 0 };
size_t nbSolids = getSolids( solidIDs );
if ( nbSolids > 1 )
{
for ( size_t i = 0; i < nbSolids; ++i )
{
solid = _grid->GetSolid( solidIDs[i] );
computeElements( solid, i );
if ( !_volumeDefs._nodes.empty() && i < nbSolids - 1 )
_volumeDefs.SetNext( new _volumeDef( _volumeDefs ));
}
return;
}
solid = _grid->GetSolid( solidIDs[0] );
}
}
init( _i, _j, _k, solid ); // get nodes and intersections from grid nodes and split links
int nbIntersections = _nbFaceIntNodes + _eIntPoints.size();
if ( _nbCornerNodes + nbIntersections < 4 )
return;
if ( _nbBndNodes == _nbCornerNodes && nbIntersections == 0 && isInHole() )
return; // cell is in a hole
IsInternalFlag intFlag = IS_NOT_INTERNAL;
if ( solid->HasInternalFaces() && this->isCutByInternalFace( intFlag ))
{
for ( _SplitIterator it( _hexLinks ); it.More(); it.Next() )
{
if ( compute( solid, intFlag ))
_volumeDefs.SetNext( new _volumeDef( _volumeDefs ));
}
}
else
{
if ( solidIndex >= 0 )
intFlag = IS_CUT_BY_INTERNAL_FACE;
compute( solid, intFlag );
}
}
//================================================================================
/*!
* \brief Collected faces can be used to avoid connecting nodes laying on them
*/
std::set<TGeomID> Hexahedron::getConcaveFaces(const Solid* solid)
{
MESSAGE("Collect concave faces...");
if (!solid->HasConcaveVertex())
{
MESSAGE("There's no concave faces here. Return.");
return {};
}
std::set< TGeomID > concaveFaces;
for ( const E_IntersectPoint* ip : _eIntPoints )
{
if ( const ConcaveFace* cf = solid->GetConcave( ip->_shapeID ))
if ( this->hasEdgesAround( cf ))
concaveFaces.insert( cf->_concaveFace );
}
if ( concaveFaces.empty() || concaveFaces.size() * 3 < _eIntPoints.size() )
for ( const _Node& hexNode: _hexNodes )
{
if ( hexNode._node && hexNode._intPoint && hexNode._intPoint->_faceIDs.size() >= 3 )
if ( const ConcaveFace* cf = solid->GetConcave( hexNode._node->GetShapeID() ))
if ( this->hasEdgesAround( cf ))
concaveFaces.insert( cf->_concaveFace );
}
MESSAGE("Collected concave faces: " << concaveFaces.size());
return concaveFaces;
}
//================================================================================
/*!
* \brief Creates a new polygone with a given name
*/
Hexahedron::_Face* Hexahedron::createPolygon(const SMESH_Block::TShapeID& name)
{
MESSAGE("Create a polygon with a name: " << name);
_polygons.resize( _polygons.size() + 1 );
_Face* polygon = &_polygons.back();
polygon->_polyLinks.reserve( 20 );
polygon->_name = name;
return polygon;
}
//================================================================================
/*!
* \brief Collects split links on 4 sides of a quadrangle.
* Returns false if the quad on FACE is not split.
*/
bool Hexahedron::collectSplits(std::vector<_OrientedLink>& splits, const _Face& quad, _Face* polygon, int quadIndex)
{
MESSAGE(debugSepLine << "START Collect splits..." << debugSepLine);
splits.clear();
for ( int iE = 0; iE < 4; ++iE ) // loop on 4 sides of a quadrangle
for ( size_t iS = 0; iS < quad._links[ iE ].NbResultLinks(); ++iS )
{
splits.push_back( quad._links[ iE ].ResultLink( iS ));
// SCRUTE(splits.back());
}
if ( splits.size() == 4 &&
isQuadOnFace( quadIndex )) // check if a quad on FACE is not split
{
MESSAGE(debugSepLine << "END. The quad on FACE is not split. Swap splits with polygon links." << debugSepLine);
polygon->_links.swap( splits );
return false;
}
MESSAGE(debugSepLine << "Collected splits: " << splits.size() << debugSepLine);
return true;
}
void Hexahedron::closePolygon(
_Face* polygon, _Node* n2, _Node* nFirst, _Face& quad, vector<_Node*>& chainNodes, size_t& nbUsedEdgeNodes, _Face* prevPolyg)
{
MESSAGE("Try to close polygon. Number of used edge nodes: " << nbUsedEdgeNodes);
if ( nFirst == n2 )
return;
if ( !findChain( n2, nFirst, quad, chainNodes ))
{
if ( !closePolygon( polygon, chainNodes ))
if ( !isImplementEdges() )
chainNodes.push_back( nFirst );
}
for ( size_t i = 1; i < chainNodes.size(); ++i )
{
polygon->AddPolyLink( chainNodes[i-1], chainNodes[i], prevPolyg );
nbUsedEdgeNodes += bool( chainNodes[i]->IsUsedInFace( polygon ));
MESSAGE("Added link for nodes:\n" << *chainNodes[i-1] << *chainNodes[i]);
}
MESSAGE("Polygon was closed. Number of used edge nodes: " << nbUsedEdgeNodes);
}
void Hexahedron::connectPolygonLinks(
const Solid* solid, _Face* polygon, _Face& quad, vector<_Node*>& chainNodes, std::vector<_OrientedLink>& splits, const bool toCheckSideDivision)
{
MESSAGE(debugSepLine << "START connectPolygonLinks()..." << debugSepLine);
const std::set<TGeomID> concaveFaces = getConcaveFaces(solid); // to avoid connecting nodes laying on them
// add splits of links to a polygon and add _polyLinks to make
// polygon's boundary closed
int nbSplits = splits.size();
if (( nbSplits == 1 ) &&
( quad._eIntNodes.empty() ||
splits[0].FirstNode()->IsLinked( splits[0].LastNode()->_intPoint )))
//( quad._eIntNodes.empty() || _nbCornerNodes + nbIntersections > 6 ))
nbSplits = 0;
for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP )
if ( quad._eIntNodes[ iP ]->IsUsedInFace( polygon ))
quad._eIntNodes[ iP ]->_usedInFace = 0;
size_t nbUsedEdgeNodes = 0;
_Face* prevPolyg = 0; // polygon previously created from this quad
MESSAGE("Number of splits: " << nbSplits);
while ( nbSplits > 0 )
{
size_t iS = 0;
while ( !splits[ iS ] )
++iS;
if ( !polygon->_links.empty() )
{
polygon = createPolygon(quad._name);
}
polygon->_links.push_back( splits[ iS ] );
MESSAGE("Split link was added to a polygon: " << splits[iS]);
splits[ iS++ ]._link = 0;
--nbSplits;
_Node* nFirst = polygon->_links.back().FirstNode();
_Node *n1,*n2 = polygon->_links.back().LastNode();
for ( ; nFirst != n2 && iS < splits.size(); ++iS )
{
_OrientedLink& split = splits[ iS ];
MESSAGE("Current split: " << split);
if ( !split ) continue;
n1 = split.FirstNode();
MESSAGE("\n\tnFirst: " << *nFirst << "\tn1: " << *n1 << "\tn2: " << *n2);
if ( n1 == n2 &&
n1->_intPoint &&
(( n1->_intPoint->_faceIDs.size() > 1 && toCheckSideDivision ) ||
( n1->_isInternalFlags )))
{
// n1 is at intersection with EDGE
MESSAGE("n1 is at intersection with EDGE");
if ( findChainOnEdge( splits, polygon->_links.back(), split, concaveFaces,
iS, quad, chainNodes ))
{
for ( size_t i = 1; i < chainNodes.size(); ++i )
polygon->AddPolyLink( chainNodes[i-1], chainNodes[i], prevPolyg );
if ( chainNodes.back() != n1 ) // not a partial cut by INTERNAL FACE
{
prevPolyg = polygon;
n2 = chainNodes.back();
continue;
}
}
}
else if ( n1 != n2 )
{
// try to connect to intersections with EDGEs
MESSAGE("n1 != n2...");
if ( quad._eIntNodes.size() > nbUsedEdgeNodes &&
findChain( n2, n1, quad, chainNodes ))
{
MESSAGE("try to connect to intersections with EDGEs");
for ( size_t i = 1; i < chainNodes.size(); ++i )
{
polygon->AddPolyLink( chainNodes[i-1], chainNodes[i] );
nbUsedEdgeNodes += ( chainNodes[i]->IsUsedInFace( polygon ));
}
if ( chainNodes.back() != n1 )
{
n2 = chainNodes.back();
--iS;
continue;
}
}
// try to connect to a split ending on the same FACE
else
{
MESSAGE("try to connect to a split ending on the same FACE");
_OrientedLink foundSplit;
for ( size_t i = iS; i < splits.size() && !foundSplit; ++i )
if (( foundSplit = splits[ i ]) &&
( n2->IsLinked( foundSplit.FirstNode()->_intPoint )))
{
iS = i - 1;
}
else
{
foundSplit._link = 0;
}
MESSAGE("Found split: " << foundSplit);
if ( foundSplit )
{
if ( n2 != foundSplit.FirstNode() )
{
MESSAGE("Add link n2 -> foundSplit.FirstNode()");
polygon->AddPolyLink( n2, foundSplit.FirstNode() );
n2 = foundSplit.FirstNode();
}
continue;
}
else
{
if ( n2->IsLinked( nFirst->_intPoint ))
break;
polygon->AddPolyLink( n2, n1, prevPolyg );
}
}
}
else
{
MESSAGE("n1 == n2, split will be added as is");
}// if ( n1 != n2 )
polygon->_links.push_back( split );
split._link = 0;
--nbSplits;
n2 = polygon->_links.back().LastNode();
} // loop on splits
closePolygon(polygon, n2, nFirst, quad, chainNodes, nbUsedEdgeNodes, prevPolyg);
if ( polygon->_links.size() < 3 && nbSplits > 0 )
{
polygon->_polyLinks.clear();
polygon->_links.clear();
}
} // while ( nbSplits > 0 )
MESSAGE(debugSepLine << "END connectPolygonLinks(): " << *polygon << debugSepLine);
}
//================================================================================
/*!
* \brief Collects chain nodes
*/
std::vector<Hexahedron::_Node*> Hexahedron::getChainNodes(const Solid* solid, const IsInternalFlag intFlag)
{
MESSAGE(debugSepLine << "START Get chain nodes..." << debugSepLine);
std::vector< _OrientedLink > splits;
std::vector<_Node*> chainNodes;
const bool toCheckSideDivision = isImplementEdges() || intFlag & IS_CUT_BY_INTERNAL_FACE;
for ( int iF = 0; iF < 6; ++iF ) // loop on 6 sides of a hexahedron
{
_Face& quad = _hexQuads[ iF ] ;
_Face* polygon = createPolygon(quad._name);
SCRUTE(quad);
if (!collectSplits(splits, quad, polygon, iF))
continue; // goto the next quad
connectPolygonLinks(solid, polygon, quad, chainNodes, splits, toCheckSideDivision);
if ( polygon->_links.size() < 3 )
{
_polygons.pop_back();
}
} // loop on 6 hexahedron sides
MESSAGE(debugSepLine << "END Collected " << chainNodes.size() << " chain nodes" << debugSepLine);
return chainNodes;
}
//================================================================================
/*!
* \brief Reset used in faces for hex nodes
*/
void Hexahedron::clearHexUsedInFace()
{
for ( int iN = 0; iN < 8; ++iN )
_hexNodes[iN]._usedInFace = 0;
}
//================================================================================
/*!
* \brief Reset used in faces for int nodes
*/
void Hexahedron::clearIntUsedInFace()
{
for ( size_t iN = 0; iN < _intNodes.size(); ++iN )
_intNodes[ iN ]._usedInFace = 0;
}
//================================================================================
/*!
* \brief Add polygons to their links and mark used nodes
*/
void Hexahedron::addPolygonsToLinks()
{
MESSAGE(debugSepLine << "START addPolygonsToLinks()..." << debugSepLine);
for (_Face& polygon : _polygons)
{
// MESSAGE("START add polygon to its links : " << polygon << debugSepLine);
for (_OrientedLink& link : polygon._links)
{
link.AddFace( &polygon );
link.FirstNode()->_usedInFace = &polygon;
}
}
MESSAGE(debugSepLine << "END addPolygonsToLinks()" << debugSepLine);
}
//================================================================================
/*!
* \brief Finds free links in polygons
*/
std::vector<Hexahedron::_OrientedLink*> Hexahedron::getFreeLinks()
{
std::vector< _OrientedLink* > freeLinks;
freeLinks.reserve(20);
for ( size_t iP = 0; iP < _polygons.size(); ++iP )
{
_Face& polygon = _polygons[ iP ];
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
if ( polygon._links[ iL ].NbFaces() < 2 )
freeLinks.push_back( & polygon._links[ iL ]);
}
return freeLinks;
}
//================================================================================
/*!
* \brief Put not used intersection nodes to _vIntNodes
*/
int Hexahedron::notUsedIntersectionNodesToVInt()
{
int nbVertexNodes = 0;
// TEMP: the loops below can be commented out for simplified testing
// for ( size_t iN = 0; iN < _vIntNodes.size(); ++iN )
// nbVertexNodes += ( !_vIntNodes[ iN ]->IsUsedInFace() );
// const double tol = 1e-3 * Min( Min( _sideLength[0], _sideLength[1] ), _sideLength[0] );
// for ( size_t iN = _nbFaceIntNodes; iN < _intNodes.size(); ++iN )
// {
// if ( _intNodes[ iN ].IsUsedInFace() ) continue;
// if ( dynamic_cast< const F_IntersectPoint* >( _intNodes[ iN ]._intPoint )) continue;
// _Node* equalNode =
// findEqualNode( _vIntNodes, _intNodes[ iN ].EdgeIntPnt(), tol*tol );
// if ( !equalNode )
// {
// _vIntNodes.push_back( &_intNodes[ iN ]);
// ++nbVertexNodes;
// }
// }
return nbVertexNodes;
}
//================================================================================
/*!
* \brief Creates polygons from free links
*/
bool Hexahedron::createPolygons(const bool hasEdgeIntersections, const IsInternalFlag intFlag)
{
MESSAGE(debugSepLine << "START createPolygons()..." << debugSepLine);
// find free links
vector< _OrientedLink* > freeLinks = getFreeLinks();
int nbFreeLinks = freeLinks.size();
SCRUTE(nbFreeLinks);
if ( nbFreeLinks == 1 ) return false;
// put not used intersection nodes to _vIntNodes
int nbVertexNodes = notUsedIntersectionNodesToVInt();
std::set<TGeomID> usedFaceIDs;
std::vector< TGeomID > faces;
TGeomID curFace = 0;
const size_t nbQuadPolygons = _polygons.size();
SCRUTE(nbQuadPolygons);
E_IntersectPoint ipTmp;
std::map< TGeomID, std::vector< const B_IntersectPoint* > > tmpAddedFace; // face added to _intPoint
// create polygons by making closed chains of free links
size_t iPolygon = _polygons.size();
while ( nbFreeLinks > 0 )
{
SCRUTE(nbFreeLinks);
if ( iPolygon == _polygons.size() )
{
_polygons.resize( _polygons.size() + 1 );
_polygons[ iPolygon ]._polyLinks.reserve( 20 );
_polygons[ iPolygon ]._links.reserve( 20 );
}
_Face& polygon = _polygons[ iPolygon ];
SCRUTE(polygon);
_OrientedLink* curLink = 0;
_Node* curNode;
if (( !hasEdgeIntersections ) ||
( nbFreeLinks < 4 && nbVertexNodes == 0 ))
{
MESSAGE("!hasEdgeIntersections || (nbFreeLinks < 4 && nbVertexNodes == 0), get a remaining link to start from...");
// get a remaining link to start from
for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL )
if (( curLink = freeLinks[ iL ] ))
freeLinks[ iL ] = 0;
polygon._links.push_back( *curLink );
--nbFreeLinks;
do
{
// find all links connected to curLink
curNode = curLink->FirstNode();
curLink = 0;
for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL )
if ( freeLinks[ iL ] && freeLinks[ iL ]->LastNode() == curNode )
{
curLink = freeLinks[ iL ];
freeLinks[ iL ] = 0;
--nbFreeLinks;
polygon._links.push_back( *curLink );
}
} while ( curLink );
SCRUTE(polygon);
}
else // there are intersections with EDGEs
{
MESSAGE("there are intersections with EDGEs...");
// get a remaining link to start from, one lying on minimal nb of FACEs
// {
// typedef pair< TGeomID, int > TFaceOfLink;
// TFaceOfLink faceOfLink( -1, -1 );
// TFaceOfLink facesOfLink[3] = { faceOfLink, faceOfLink, faceOfLink };
// for ( size_t iL = 0; iL < freeLinks.size(); ++iL )
// if ( freeLinks[ iL ] )
// {
// faces = freeLinks[ iL ]->GetNotUsedFace( usedFaceIDs );
// if ( faces.size() == 1 )
// {
// faceOfLink = TFaceOfLink( faces[0], iL );
// if ( !freeLinks[ iL ]->HasEdgeNodes() )
// break;
// facesOfLink[0] = faceOfLink;
// }
// else if ( facesOfLink[0].first < 0 )
// {
// faceOfLink = TFaceOfLink(( faces.empty() ? -1 : faces[0]), iL );
// facesOfLink[ 1 + faces.empty() ] = faceOfLink;
// }
// }
// for ( int i = 0; faceOfLink.first < 0 && i < 3; ++i )
// faceOfLink = facesOfLink[i];
// if ( faceOfLink.first < 0 ) // all faces used
// {
// for ( size_t iL = 0; iL < freeLinks.size() && faceOfLink.first < 1; ++iL )
// if (( curLink = freeLinks[ iL ]))
// {
// faceOfLink.first =
// curLink->FirstNode()->IsLinked( curLink->LastNode()->_intPoint );
// faceOfLink.second = iL;
// }
// usedFaceIDs.clear();
// }
// curFace = faceOfLink.first;
// curLink = freeLinks[ faceOfLink.second ];
// freeLinks[ faceOfLink.second ] = 0;
// }
// usedFaceIDs.insert( curFace );
// polygon._links.push_back( *curLink );
// --nbFreeLinks;
// find all links lying on a curFace
// do
// {
// // go forward from curLink
// curNode = curLink->LastNode();
// curLink = 0;
// for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL )
// if ( freeLinks[ iL ] &&
// freeLinks[ iL ]->FirstNode() == curNode &&
// freeLinks[ iL ]->LastNode()->IsOnFace( curFace ))
// {
// curLink = freeLinks[ iL ];
// freeLinks[ iL ] = 0;
// polygon._links.push_back( *curLink );
// --nbFreeLinks;
// }
// } while ( curLink );
// std::reverse( polygon._links.begin(), polygon._links.end() );
// curLink = & polygon._links.back();
// do
// {
// // go backward from curLink
// curNode = curLink->FirstNode();
// curLink = 0;
// for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL )
// if ( freeLinks[ iL ] &&
// freeLinks[ iL ]->LastNode() == curNode &&
// freeLinks[ iL ]->FirstNode()->IsOnFace( curFace ))
// {
// curLink = freeLinks[ iL ];
// freeLinks[ iL ] = 0;
// polygon._links.push_back( *curLink );
// --nbFreeLinks;
// }
// } while ( curLink );
// curNode = polygon._links.back().FirstNode();
// if ( polygon._links[0].LastNode() != curNode )
// {
// if ( nbVertexNodes > 0 )
// {
// // add links with _vIntNodes if not already used
// chainNodes.clear();
// for ( size_t iN = 0; iN < _vIntNodes.size(); ++iN )
// if ( !_vIntNodes[ iN ]->IsUsedInFace() &&
// _vIntNodes[ iN ]->IsOnFace( curFace ))
// {
// _vIntNodes[ iN ]->_usedInFace = &polygon;
// chainNodes.push_back( _vIntNodes[ iN ] );
// }
// if ( chainNodes.size() > 1 &&
// curFace != _grid->PseudoIntExtFaceID() ) /////// TODO
// {
// sortVertexNodes( chainNodes, curNode, curFace );
// }
// for ( size_t i = 0; i < chainNodes.size(); ++i )
// {
// polygon.AddPolyLink( chainNodes[ i ], curNode );
// curNode = chainNodes[ i ];
// freeLinks.push_back( &polygon._links.back() );
// ++nbFreeLinks;
// }
// nbVertexNodes -= chainNodes.size();
// }
// // if ( polygon._links.size() > 1 )
// {
// polygon.AddPolyLink( polygon._links[0].LastNode(), curNode );
// freeLinks.push_back( &polygon._links.back() );
// ++nbFreeLinks;
// }
// }
} // if there are intersections with EDGEs
// if ( polygon._links.size() < 2 ||
// polygon._links[0].LastNode() != polygon._links.back().FirstNode() )
// {
// _polygons.clear();
// break; // closed polygon not found -> invalid polyhedron
// }
if ( polygon._links.size() == 2 )
{
MESSAGE("polygon._links.size() == 2...");
// if ( freeLinks.back() == &polygon._links.back() )
// {
// freeLinks.pop_back();
// --nbFreeLinks;
// }
// if ( polygon._links.front().NbFaces() > 0 )
// polygon._links.back().AddFace( polygon._links.front()._link->_faces[0] );
// if ( polygon._links.back().NbFaces() > 0 )
// polygon._links.front().AddFace( polygon._links.back()._link->_faces[0] );
// if ( iPolygon == _polygons.size()-1 )
// _polygons.pop_back();
}
else // polygon._links.size() >= 2
{
MESSAGE("polygon._links.size() >= 2, add polygon to its links...");
// add polygon to its links
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
{
polygon._links[ iL ].AddFace( &polygon );
polygon._links[ iL ].Reverse();
SCRUTE(polygon);
}
if ( /*hasEdgeIntersections &&*/ iPolygon == _polygons.size() - 1 )
{
// check that a polygon does not lie on a hexa side
_Face* coplanarPolyg = nullptr;
// for ( size_t iL = 0; iL < polygon._links.size() && !coplanarPolyg; ++iL )
// {
// if ( polygon._links[ iL ].NbFaces() < 2 )
// continue; // it's a just added free link
// // look for a polygon made on a hexa side and sharing
// // two or more haxa links
// size_t iL2;
// coplanarPolyg = polygon._links[ iL ]._link->_faces[0];
// for ( iL2 = iL + 1; iL2 < polygon._links.size(); ++iL2 )
// if ( polygon._links[ iL2 ]._link->_faces[0] == coplanarPolyg &&
// !coplanarPolyg->IsPolyLink( polygon._links[ iL ]) &&
// !coplanarPolyg->IsPolyLink( polygon._links[ iL2 ]) &&
// coplanarPolyg < & _polygons[ nbQuadPolygons ])
// break;
// if ( iL2 == polygon._links.size() )
// coplanarPolyg = 0;
// }
if ( coplanarPolyg ) // coplanar polygon found
{
MESSAGE("coplanar polygon found");
freeLinks.resize( freeLinks.size() - polygon._polyLinks.size() );
nbFreeLinks -= polygon._polyLinks.size();
// an E_IntersectPoint used to mark nodes of coplanarPolyg
// as lying on curFace while they are not at intersection with geometry
ipTmp._faceIDs.resize(1);
ipTmp._faceIDs[0] = curFace;
// fill freeLinks with links not shared by coplanarPolyg and polygon
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
if ( polygon._links[ iL ]._link->_faces[1] &&
polygon._links[ iL ]._link->_faces[0] != coplanarPolyg )
{
_Face* p = polygon._links[ iL ]._link->_faces[0];
for ( size_t iL2 = 0; iL2 < p->_links.size(); ++iL2 )
if ( p->_links[ iL2 ]._link == polygon._links[ iL ]._link )
{
freeLinks.push_back( & p->_links[ iL2 ] );
++nbFreeLinks;
freeLinks.back()->RemoveFace( &polygon );
break;
}
}
for ( size_t iL = 0; iL < coplanarPolyg->_links.size(); ++iL )
if ( coplanarPolyg->_links[ iL ]._link->_faces[1] &&
coplanarPolyg->_links[ iL ]._link->_faces[1] != &polygon )
{
_Face* p = coplanarPolyg->_links[ iL ]._link->_faces[0];
if ( p == coplanarPolyg )
p = coplanarPolyg->_links[ iL ]._link->_faces[1];
for ( size_t iL2 = 0; iL2 < p->_links.size(); ++iL2 )
if ( p->_links[ iL2 ]._link == coplanarPolyg->_links[ iL ]._link )
{
// set links of coplanarPolyg in place of used freeLinks
// to re-create coplanarPolyg next
size_t iL3 = 0;
for ( ; iL3 < freeLinks.size() && freeLinks[ iL3 ]; ++iL3 );
if ( iL3 < freeLinks.size() )
freeLinks[ iL3 ] = ( & p->_links[ iL2 ] );
else
freeLinks.push_back( & p->_links[ iL2 ] );
++nbFreeLinks;
freeLinks[ iL3 ]->RemoveFace( coplanarPolyg );
// mark nodes of coplanarPolyg as lying on curFace
for ( int iN = 0; iN < 2; ++iN )
{
_Node* n = freeLinks[ iL3 ]->_link->_nodes[ iN ];
bool added = false;
if ( n->_intPoint ) added = n->_intPoint->Add( ipTmp._faceIDs );
else n->_intPoint = &ipTmp;
if ( added )
tmpAddedFace[ ipTmp._faceIDs[0] ].push_back( n->_intPoint );
}
break;
}
}
// set coplanarPolyg to be re-created next
for ( size_t iP = 0; iP < _polygons.size(); ++iP )
if ( coplanarPolyg == & _polygons[ iP ] )
{
iPolygon = iP;
_polygons[ iPolygon ]._links.clear();
_polygons[ iPolygon ]._polyLinks.clear();
break;
}
_polygons.pop_back();
usedFaceIDs.erase( curFace );
continue;
} // if ( coplanarPolyg )
} // if ( hasEdgeIntersections ) - search for coplanarPolyg
iPolygon = _polygons.size();
} // end of case ( polygon._links.size() > 2 )
} // while ( nbFreeLinks > 0 )
// for ( auto & face_ip : tmpAddedFace )
// {
// curFace = face_ip.first;
// for ( const B_IntersectPoint* ip : face_ip.second )
// {
// auto it = std::find( ip->_faceIDs.begin(), ip->_faceIDs.end(), curFace );
// if ( it != ip->_faceIDs.end() )
// ip->_faceIDs.erase( it );
// }
// }
if ( _polygons.size() < 3 )
return false;
// check volume size
double volSize = 0;
_hasTooSmall = ! checkPolyhedronSize( intFlag & IS_CUT_BY_INTERNAL_FACE, volSize );
_volumeDefs._size = volSize;
for ( size_t i = 0; i < 8; ++i )
if ( _hexNodes[ i ]._intPoint == &ipTmp )
_hexNodes[ i ]._intPoint = 0;
MESSAGE(debugSepLine << "END createPolygons()" << debugSepLine);
return !_hasTooSmall; // too small volume
}
/*!
* \brief Sets names for no-name polygons
*/
void Hexahedron::setNamesForNoNamePolygons()
{
MESSAGE("Try to find out names of no-name polygons...");
// Try to find out names of no-name polygons (issue # 19887)
// TODO: why do we check only last face in vector?
if (!_grid->IsToRemoveExcessEntities() || _polygons.back()._name != SMESH_Block::ID_NONE )
return;
MESSAGE("No-name was found! It will be named after grid coordinates.");
gp_XYZ uvwCenter =
0.5 * ( _grid->_coords[0][_i] + _grid->_coords[0][_i+1] ) * _grid->_axes[0] +
0.5 * ( _grid->_coords[1][_j] + _grid->_coords[1][_j+1] ) * _grid->_axes[1] +
0.5 * ( _grid->_coords[2][_k] + _grid->_coords[2][_k+1] ) * _grid->_axes[2];
for ( size_t i = _polygons.size() - 1; _polygons[i]._name == SMESH_Block::ID_NONE; --i )
{
_Face& face = _polygons[ i ];
Bnd_Box bb;
gp_Pnt uvw;
for ( size_t iL = 0; iL < face._links.size(); ++iL )
{
_Node* n = face._links[ iL ].FirstNode();
gp_XYZ p = SMESH_NodeXYZ( n->Node() );
_grid->ComputeUVW( p, uvw.ChangeCoord().ChangeData() );
bb.Add( uvw );
}
gp_Pnt pMin = bb.CornerMin();
if ( bb.IsXThin( _grid->_tol ))
face._name = pMin.X() < uvwCenter.X() ? SMESH_Block::ID_F0yz : SMESH_Block::ID_F1yz;
else if ( bb.IsYThin( _grid->_tol ))
face._name = pMin.Y() < uvwCenter.Y() ? SMESH_Block::ID_Fx0z : SMESH_Block::ID_Fx1z;
else if ( bb.IsZThin( _grid->_tol ))
face._name = pMin.Z() < uvwCenter.Z() ? SMESH_Block::ID_Fxy0 : SMESH_Block::ID_Fxy1;
}
}
/*!
* \brief Creates a volume as a classic element (Hexa, Tetra, Penta, Pyra) or non-specific polyhedron
*/
bool Hexahedron::createVolume(const Solid* solid)
{
MESSAGE(debugSepLine << "START createVolume()" << debugSepLine);
_volumeDefs._nodes.clear();
_volumeDefs._quantities.clear();
_volumeDefs._names.clear();
// create a classic cell if possible
int nbPolygons = 0;
SCRUTE(_polygons.size());
for ( size_t iF = 0; iF < _polygons.size(); ++iF )
nbPolygons += (_polygons[ iF ]._links.size() > 2 );
SCRUTE(nbPolygons);
//const int nbNodes = _nbCornerNodes + nbIntersections;
int nbNodes = 0;
for ( size_t i = 0; i < 8; ++i )
nbNodes += _hexNodes[ i ].IsUsedInFace();
for ( size_t i = 0; i < _intNodes.size(); ++i )
nbNodes += _intNodes[ i ].IsUsedInFace();
SCRUTE(nbNodes);
bool isClassicElem = false;
if ( nbNodes == 8 && nbPolygons == 6 ) isClassicElem = addHexa();
else if ( nbNodes == 4 && nbPolygons == 4 ) isClassicElem = addTetra();
else if ( nbNodes == 6 && nbPolygons == 5 ) isClassicElem = addPenta();
else if ( nbNodes == 5 && nbPolygons == 5 ) isClassicElem = addPyra ();
if ( !isClassicElem )
{
MESSAGE("It's not a classic element. Create a volume by polygons and links...");
for ( size_t iF = 0; iF < _polygons.size(); ++iF )
{
const size_t nbLinks = _polygons[ iF ]._links.size();
if ( nbLinks < 3 ) continue;
_volumeDefs._quantities.push_back( nbLinks );
_volumeDefs._names.push_back( _polygons[ iF ]._name );
for ( size_t iL = 0; iL < nbLinks; ++iL )
_volumeDefs._nodes.push_back( _polygons[ iF ]._links[ iL ].FirstNode() );
// SCRUTE(_polygons[ iF ]);
}
}
_volumeDefs._solidID = solid->ID();
MESSAGE(debugSepLine << "END createVolume()" << debugSepLine);
return !_volumeDefs._nodes.empty();
}
/*!
* \brief Compute mesh volumes resulted from intersection of the Hexahedron
*/
bool Hexahedron::compute( const Solid* solid, const IsInternalFlag intFlag )
{
MESSAGE(debugSepLine << "START Compute solid " << solid->ID() << " ..." << debugSepLine);
// Reset polygons
_polygons.clear();
_polygons.reserve( 20 );
clearHexUsedInFace();
// Check volumes
if ( intFlag & IS_CUT_BY_INTERNAL_FACE && !_grid->_toAddEdges ) // Issue #19913
preventVolumesOverlapping();
// Create polygons from quadrangles
// --------------------------------
vector<_Node*> chainNodes = getChainNodes(solid, intFlag);
// TODO: check if we can safely move it inside createPolygons()
const bool hasEdgeIntersections = !_eIntPoints.empty();
// Create polygons closing holes in a polyhedron
// ----------------------------------------------
clearIntUsedInFace();
addPolygonsToLinks();
// Create polygons
if (!createPolygons(hasEdgeIntersections, intFlag))
return false;
// Fix polygons' names
setNamesForNoNamePolygons();
const bool isVolumeCreated = createVolume(solid);
SCRUTE(isVolumeCreated);
MESSAGE(debugSepLine << "END Compute solid " << solid->ID() << debugSepLine);
return isVolumeCreated;
}
template<typename Type>
void computeHexa(Type& hex)
{
if ( hex )
hex->computeElements();
}
// Implement parallel computation of Hexa with c++ thread implementation
template<typename Iterator, class Function>
void parallel_for(const Iterator& first, const Iterator& last, Function&& f, const unsigned int nthreads = 1)
{
MESSAGE("Start parallel computation of Hexa with c++ threads...");
assert(nthreads > 0);
const unsigned int numTasksTotal = last - first;
std::vector<std::thread> threads;
Iterator it = first;
MESSAGE("Number of elements to compute: " << numTasksTotal << "; num of threads: " << nthreads);
// Distribute tasks among threads
if (numTasksTotal <= nthreads)
{
// A simple case - just one task executed in one thread.
// TODO: check if it's faster to do it sequentially
// threads.reserve(numTasksTotal);
// for (; it < last; ++it)
// {
// threads.emplace_back(f, std::ref(*it));
// }
std::for_each(it, last, f);
}
else
{
// Calculate how to distribute elements among threads evenly
const unsigned int numTasksInThread = numTasksTotal / nthreads;
MESSAGE("Number of tasks in thread: " << numTasksInThread);
// Store the numbers of tasks per thread
std::vector<unsigned int> distTasksInThreads(nthreads, numTasksInThread);
// Distribute a remainder among saved numbers
const unsigned int remainder = numTasksTotal % nthreads;
MESSAGE("Remainder of tasks " << remainder << " will be evenly distributed among threads");
for (unsigned int i = 0; i < remainder; ++i)
{
++distTasksInThreads[i];
}
// Create threads for each number of tasks
threads.reserve(nthreads);
for (const auto i : distTasksInThreads)
{
Iterator curLast = it + i;
// Pass iterators by value and the function by reference!
auto lambda = [=,&f](){ std::for_each(it, curLast, f); };
// Create a thread
threads.emplace_back(lambda);
// Advance iterator to the next step
it = curLast;
}
}
std::for_each(threads.begin(), threads.end(), [](std::thread& x){ x.join(); });
MESSAGE("Parallel computation was finished successfully");
}
//================================================================================
/*!
* \brief Create elements in the mesh
*/
int Hexahedron::MakeElements(SMESH_MesherHelper& helper,
const map< TGeomID, vector< TGeomID > >& edge2faceIDsMap)
{
SMESHDS_Mesh* mesh = helper.GetMeshDS();
CellsAroundLink c( _grid, 0 );
const size_t nbGridCells = c._nbCells[0] * c._nbCells[1] * c._nbCells[2];
vector< Hexahedron* > allHexa( nbGridCells, 0 );
int nbIntHex = 0;
// set intersection nodes from GridLine's to links of allHexa
int i,j,k, cellIndex, iLink;
for ( int iDir = 0; iDir < 3; ++iDir )
{
// loop on GridLine's parallel to iDir
LineIndexer lineInd = _grid->GetLineIndexer( iDir );
CellsAroundLink fourCells( _grid, iDir );
for ( ; lineInd.More(); ++lineInd )
{
GridLine& line = _grid->_lines[ iDir ][ lineInd.LineIndex() ];
multiset< F_IntersectPoint >::const_iterator ip = line._intPoints.begin();
for ( ; ip != line._intPoints.end(); ++ip )
{
// if ( !ip->_node ) continue; // intersection at a grid node
lineInd.SetIndexOnLine( ip->_indexOnLine );
fourCells.Init( lineInd.I(), lineInd.J(), lineInd.K() );
for ( int iL = 0; iL < 4; ++iL ) // loop on 4 cells sharing a link
{
if ( !fourCells.GetCell( iL, i,j,k, cellIndex, iLink ))
continue;
Hexahedron *& hex = allHexa[ cellIndex ];
if ( !hex)
{
hex = new Hexahedron( *this, i, j, k, cellIndex );
++nbIntHex;
}
hex->_hexLinks[iLink]._fIntPoints.push_back( &(*ip) );
hex->_nbFaceIntNodes += bool( ip->_node );
}
}
}
}
// implement geom edges into the mesh
addEdges( helper, allHexa, edge2faceIDsMap );
// add not split hexahedra to the mesh
int nbAdded = 0;
TGeomID solidIDs[20];
vector< Hexahedron* > intHexa; intHexa.reserve( nbIntHex );
vector< const SMDS_MeshElement* > boundaryVolumes; boundaryVolumes.reserve( nbIntHex * 1.1 );
for ( size_t i = 0; i < allHexa.size(); ++i )
{
// initialize this by not cut allHexa[ i ]
Hexahedron * & hex = allHexa[ i ];
if ( hex ) // split hexahedron
{
intHexa.push_back( hex );
if ( hex->_nbFaceIntNodes > 0 ||
hex->_eIntPoints.size() > 0 ||
hex->getSolids( solidIDs ) > 1 )
continue; // treat intersected hex later in parallel
this->init( hex->_i, hex->_j, hex->_k );
}
else
{
this->init( i ); // == init(i,j,k)
}
if (( _nbCornerNodes == 8 ) &&
( _nbBndNodes < _nbCornerNodes || !isInHole() ))
{
// order of _hexNodes is defined by enum SMESH_Block::TShapeID
SMDS_MeshElement* el =
mesh->AddVolume( _hexNodes[0].Node(), _hexNodes[2].Node(),
_hexNodes[3].Node(), _hexNodes[1].Node(),
_hexNodes[4].Node(), _hexNodes[6].Node(),
_hexNodes[7].Node(), _hexNodes[5].Node() );
TGeomID solidID = 0;
if ( _nbBndNodes < _nbCornerNodes )
{
for ( int iN = 0; iN < 8 && !solidID; ++iN )
if ( !_hexNodes[iN]._intPoint ) // no intersection
solidID = _hexNodes[iN].Node()->GetShapeID();
}
else
{
getSolids( solidIDs );
solidID = solidIDs[0];
}
mesh->SetMeshElementOnShape( el, solidID );
++nbAdded;
if ( hex )
intHexa.pop_back();
if ( _grid->_toCreateFaces && _nbBndNodes >= 3 )
{
boundaryVolumes.push_back( el );
el->setIsMarked( true );
}
}
else if ( _nbCornerNodes > 3 && !hex )
{
// all intersections of hex with geometry are at grid nodes
hex = new Hexahedron( *this, _i, _j, _k, i );
intHexa.push_back( hex );
}
}
// compute definitions of volumes resulted from hexadron intersection
#ifdef WITH_TBB
auto numOfThreads = std::thread::hardware_concurrency();
numOfThreads = (numOfThreads != 0) ? numOfThreads : 1;
parallel_for(intHexa.begin(), intHexa.end(), computeHexa<Hexahedron*>, numOfThreads );
#else
for ( size_t i = 0; i < intHexa.size(); ++i )
if ( Hexahedron * hex = intHexa[ i ] )
hex->computeElements();
#endif
// simplify polyhedrons
// if ( _grid->IsToRemoveExcessEntities() )
// {
// for ( size_t i = 0; i < intHexa.size(); ++i )
// if ( Hexahedron * hex = intHexa[ i ] )
// hex->removeExcessSideDivision( allHexa );
// for ( size_t i = 0; i < intHexa.size(); ++i )
// if ( Hexahedron * hex = intHexa[ i ] )
// hex->removeExcessNodes( allHexa );
// }
// add volumes
for ( size_t i = 0; i < intHexa.size(); ++i )
if ( Hexahedron * hex = intHexa[ i ] )
nbAdded += hex->addVolumes( helper );
// fill boundaryVolumes with volumes neighboring too small skipped volumes
if ( _grid->_toCreateFaces )
{
for ( size_t i = 0; i < intHexa.size(); ++i )
if ( Hexahedron * hex = intHexa[ i ] )
hex->getBoundaryElems( boundaryVolumes );
}
// merge nodes on outer sub-shapes with pre-existing ones
TopTools_DataMapIteratorOfDataMapOfShapeInteger s2nIt( _grid->_geometry._shape2NbNodes );
for ( ; s2nIt.More(); s2nIt.Next() )
if ( s2nIt.Value() > 0 )
if ( SMESHDS_SubMesh* sm = mesh->MeshElements( s2nIt.Key() ))
{
TIDSortedNodeSet smNodes( SMDS_MeshElement::iterator( sm->GetNodes() ),
SMDS_MeshElement::iterator() );
SMESH_MeshEditor::TListOfListOfNodes equalNodes;
SMESH_MeshEditor editor( helper.GetMesh() );
editor.FindCoincidentNodes( smNodes, 10 * _grid->_tol, equalNodes,
/*SeparateCornersAndMedium =*/ false);
if ((int) equalNodes.size() <= s2nIt.Value() )
editor.MergeNodes( equalNodes );
}
// create boundary mesh faces
addFaces( helper, boundaryVolumes );
// create mesh edges
addSegments( helper, edge2faceIDsMap );
for ( size_t i = 0; i < allHexa.size(); ++i )
if ( allHexa[ i ] )
delete allHexa[ i ];
return nbAdded;
}
//================================================================================
/*!
* \brief Implements geom edges into the mesh
*/
void Hexahedron::addEdges(SMESH_MesherHelper& helper,
vector< Hexahedron* >& hexes,
const map< TGeomID, vector< TGeomID > >& edge2faceIDsMap)
{
if ( edge2faceIDsMap.empty() ) return;
// Prepare planes for intersecting with EDGEs
GridPlanes pln[3];
{
for ( int iDirZ = 0; iDirZ < 3; ++iDirZ ) // iDirZ gives normal direction to planes
{
GridPlanes& planes = pln[ iDirZ ];
int iDirX = ( iDirZ + 1 ) % 3;
int iDirY = ( iDirZ + 2 ) % 3;
planes._zNorm = ( _grid->_axes[ iDirX ] ^ _grid->_axes[ iDirY ] ).Normalized();
planes._zProjs.resize ( _grid->_coords[ iDirZ ].size() );
planes._zProjs [0] = 0;
const double zFactor = _grid->_axes[ iDirZ ] * planes._zNorm;
const vector< double > & u = _grid->_coords[ iDirZ ];
for ( size_t i = 1; i < planes._zProjs.size(); ++i )
{
planes._zProjs [i] = zFactor * ( u[i] - u[0] );
}
}
}
const double deflection = _grid->_minCellSize / 20.;
const double tol = _grid->_tol;
E_IntersectPoint ip;
TColStd_MapOfInteger intEdgeIDs; // IDs of not shared INTERNAL EDGES
// Intersect EDGEs with the planes
map< TGeomID, vector< TGeomID > >::const_iterator e2fIt = edge2faceIDsMap.begin();
for ( ; e2fIt != edge2faceIDsMap.end(); ++e2fIt )
{
const TGeomID edgeID = e2fIt->first;
const TopoDS_Edge & E = TopoDS::Edge( _grid->Shape( edgeID ));
BRepAdaptor_Curve curve( E );
TopoDS_Vertex v1 = helper.IthVertex( 0, E, false );
TopoDS_Vertex v2 = helper.IthVertex( 1, E, false );
ip._faceIDs = e2fIt->second;
ip._shapeID = edgeID;
bool isInternal = ( ip._faceIDs.size() == 1 && _grid->IsInternal( edgeID ));
if ( isInternal )
{
intEdgeIDs.Add( edgeID );
intEdgeIDs.Add( _grid->ShapeID( v1 ));
intEdgeIDs.Add( _grid->ShapeID( v2 ));
}
// discretize the EDGE
GCPnts_UniformDeflection discret( curve, deflection, true );
if ( !discret.IsDone() || discret.NbPoints() < 2 )
continue;
// perform intersection
E_IntersectPoint* eip, *vip = 0;
for ( int iDirZ = 0; iDirZ < 3; ++iDirZ )
{
GridPlanes& planes = pln[ iDirZ ];
int iDirX = ( iDirZ + 1 ) % 3;
int iDirY = ( iDirZ + 2 ) % 3;
double xLen = _grid->_coords[ iDirX ].back() - _grid->_coords[ iDirX ][0];
double yLen = _grid->_coords[ iDirY ].back() - _grid->_coords[ iDirY ][0];
double zLen = _grid->_coords[ iDirZ ].back() - _grid->_coords[ iDirZ ][0];
int dIJK[3], d000[3] = { 0,0,0 };
double o[3] = { _grid->_coords[0][0],
_grid->_coords[1][0],
_grid->_coords[2][0] };
// locate the 1st point of a segment within the grid
gp_XYZ p1 = discret.Value( 1 ).XYZ();
double u1 = discret.Parameter( 1 );
double zProj1 = planes._zNorm * ( p1 - _grid->_origin );
_grid->ComputeUVW( p1, ip._uvw );
int iX1 = int(( ip._uvw[iDirX] - o[iDirX]) / xLen * (_grid->_coords[ iDirX ].size() - 1));
int iY1 = int(( ip._uvw[iDirY] - o[iDirY]) / yLen * (_grid->_coords[ iDirY ].size() - 1));
int iZ1 = int(( ip._uvw[iDirZ] - o[iDirZ]) / zLen * (_grid->_coords[ iDirZ ].size() - 1));
locateValue( iX1, ip._uvw[iDirX], _grid->_coords[ iDirX ], dIJK[ iDirX ], tol );
locateValue( iY1, ip._uvw[iDirY], _grid->_coords[ iDirY ], dIJK[ iDirY ], tol );
locateValue( iZ1, ip._uvw[iDirZ], _grid->_coords[ iDirZ ], dIJK[ iDirZ ], tol );
int ijk[3]; // grid index where a segment intersects a plane
ijk[ iDirX ] = iX1;
ijk[ iDirY ] = iY1;
ijk[ iDirZ ] = iZ1;
// add the 1st vertex point to a hexahedron
if ( iDirZ == 0 )
{
ip._point = p1;
ip._shapeID = _grid->ShapeID( v1 );
vip = _grid->Add( ip );
_grid->UpdateFacesOfVertex( *vip, v1 );
if ( isInternal )
vip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() );
if ( !addIntersection( vip, hexes, ijk, d000 ))
_grid->Remove( vip );
ip._shapeID = edgeID;
}
for ( int iP = 2; iP <= discret.NbPoints(); ++iP )
{
// locate the 2nd point of a segment within the grid
gp_XYZ p2 = discret.Value( iP ).XYZ();
double u2 = discret.Parameter( iP );
double zProj2 = planes._zNorm * ( p2 - _grid->_origin );
int iZ2 = iZ1;
if ( Abs( zProj2 - zProj1 ) > std::numeric_limits<double>::min() )
{
locateValue( iZ2, zProj2, planes._zProjs, dIJK[ iDirZ ], tol );
// treat intersections with planes between 2 end points of a segment
int dZ = ( iZ1 <= iZ2 ) ? +1 : -1;
int iZ = iZ1 + ( iZ1 < iZ2 );
for ( int i = 0, nb = Abs( iZ1 - iZ2 ); i < nb; ++i, iZ += dZ )
{
ip._point = findIntPoint( u1, zProj1, u2, zProj2,
planes._zProjs[ iZ ],
curve, planes._zNorm, _grid->_origin );
_grid->ComputeUVW( ip._point.XYZ(), ip._uvw );
locateValue( ijk[iDirX], ip._uvw[iDirX], _grid->_coords[iDirX], dIJK[iDirX], tol );
locateValue( ijk[iDirY], ip._uvw[iDirY], _grid->_coords[iDirY], dIJK[iDirY], tol );
ijk[ iDirZ ] = iZ;
// add ip to hex "above" the plane
eip = _grid->Add( ip );
if ( isInternal )
eip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() );
dIJK[ iDirZ ] = 0;
bool added = addIntersection( eip, hexes, ijk, dIJK);
// add ip to hex "below" the plane
ijk[ iDirZ ] = iZ-1;
if ( !addIntersection( eip, hexes, ijk, dIJK ) &&
!added )
_grid->Remove( eip );
}
}
iZ1 = iZ2;
p1 = p2;
u1 = u2;
zProj1 = zProj2;
}
// add the 2nd vertex point to a hexahedron
if ( iDirZ == 0 )
{
ip._point = p1;
ip._shapeID = _grid->ShapeID( v2 );
_grid->ComputeUVW( p1, ip._uvw );
locateValue( ijk[iDirX], ip._uvw[iDirX], _grid->_coords[iDirX], dIJK[iDirX], tol );
locateValue( ijk[iDirY], ip._uvw[iDirY], _grid->_coords[iDirY], dIJK[iDirY], tol );
ijk[ iDirZ ] = iZ1;
bool sameV = ( v1.IsSame( v2 ));
if ( !sameV )
{
vip = _grid->Add( ip );
_grid->UpdateFacesOfVertex( *vip, v2 );
if ( isInternal )
vip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() );
}
if ( !addIntersection( vip, hexes, ijk, d000 ) && !sameV )
_grid->Remove( vip );
ip._shapeID = edgeID;
}
} // loop on 3 grid directions
} // loop on EDGEs
if ( intEdgeIDs.Size() > 0 )
cutByExtendedInternal( hexes, intEdgeIDs );
return;
}
//================================================================================
/*!
* \brief Fully cut hexes that are partially cut by INTERNAL FACE.
* Cut them by extended INTERNAL FACE.
*/
void Hexahedron::cutByExtendedInternal( std::vector< Hexahedron* >& hexes,
const TColStd_MapOfInteger& intEdgeIDs )
{
IntAna_IntConicQuad intersection;
SMESHDS_Mesh* meshDS = _grid->_helper->GetMeshDS();
const double tol2 = _grid->_tol * _grid->_tol;
for ( size_t iH = 0; iH < hexes.size(); ++iH )
{
Hexahedron* hex = hexes[ iH ];
if ( !hex || hex->_eIntPoints.size() < 2 )
continue;
if ( !intEdgeIDs.Contains( hex->_eIntPoints.back()->_shapeID ))
continue;
// get 3 points on INTERNAL FACE to construct a cutting plane
gp_Pnt p1 = hex->_eIntPoints[0]->_point;
gp_Pnt p2 = hex->_eIntPoints[1]->_point;
gp_Pnt p3 = hex->mostDistantInternalPnt( iH, p1, p2 );
gp_Vec norm = gp_Vec( p1, p2 ) ^ gp_Vec( p1, p3 );
gp_Pln pln;
try {
pln = gp_Pln( p1, norm );
}
catch(...)
{
continue;
}
TGeomID intFaceID = hex->_eIntPoints.back()->_faceIDs.front(); // FACE being "extended"
TGeomID solidID = _grid->GetSolid( intFaceID )->ID();
// cut links by the plane
//bool isCut = false;
for ( int iLink = 0; iLink < 12; ++iLink )
{
_Link& link = hex->_hexLinks[ iLink ];
if ( !link._fIntPoints.empty() )
{
// if ( link._fIntPoints[0]->_faceIDs.back() == _grid->PseudoIntExtFaceID() )
// isCut = true;
continue; // already cut link
}
if ( !link._nodes[0]->Node() ||
!link._nodes[1]->Node() )
continue; // outside link
if ( link._nodes[0]->IsOnFace( intFaceID ))
{
if ( link._nodes[0]->_intPoint->_faceIDs.back() != _grid->PseudoIntExtFaceID() )
if ( p1.SquareDistance( link._nodes[0]->Point() ) < tol2 ||
p2.SquareDistance( link._nodes[0]->Point() ) < tol2 )
link._nodes[0]->_intPoint->_faceIDs.push_back( _grid->PseudoIntExtFaceID() );
continue; // link is cut by FACE being "extended"
}
if ( link._nodes[1]->IsOnFace( intFaceID ))
{
if ( link._nodes[1]->_intPoint->_faceIDs.back() != _grid->PseudoIntExtFaceID() )
if ( p1.SquareDistance( link._nodes[1]->Point() ) < tol2 ||
p2.SquareDistance( link._nodes[1]->Point() ) < tol2 )
link._nodes[1]->_intPoint->_faceIDs.push_back( _grid->PseudoIntExtFaceID() );
continue; // link is cut by FACE being "extended"
}
gp_Pnt p4 = link._nodes[0]->Point();
gp_Pnt p5 = link._nodes[1]->Point();
gp_Lin line( p4, gp_Vec( p4, p5 ));
intersection.Perform( line, pln );
if ( !intersection.IsDone() ||
intersection.IsInQuadric() ||
intersection.IsParallel() ||
intersection.NbPoints() < 1 )
continue;
double u = intersection.ParamOnConic(1);
if ( u + _grid->_tol < 0 )
continue;
int iDir = iLink / 4;
int index = (&hex->_i)[iDir];
double linkLen = _grid->_coords[iDir][index+1] - _grid->_coords[iDir][index];
if ( u - _grid->_tol > linkLen )
continue;
if ( u < _grid->_tol ||
u > linkLen - _grid->_tol ) // intersection at grid node
{
int i = ! ( u < _grid->_tol ); // [0,1]
int iN = link._nodes[ i ] - hex->_hexNodes; // [0-7]
const F_IntersectPoint * & ip = _grid->_gridIntP[ hex->_origNodeInd +
_grid->_nodeShift[iN] ];
if ( !ip )
{
ip = _grid->_extIntPool.getNew();
ip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() );
//ip->_transition = Trans_INTERNAL;
}
else if ( ip->_faceIDs.back() != _grid->PseudoIntExtFaceID() )
{
ip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() );
}
hex->_nbFaceIntNodes++;
//isCut = true;
}
else
{
const gp_Pnt& p = intersection.Point( 1 );
F_IntersectPoint* ip = _grid->_extIntPool.getNew();
ip->_node = meshDS->AddNode( p.X(), p.Y(), p.Z() );
ip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() );
ip->_transition = Trans_INTERNAL;
meshDS->SetNodeInVolume( ip->_node, solidID );
CellsAroundLink fourCells( _grid, iDir );
fourCells.Init( hex->_i, hex->_j, hex->_k, iLink );
int i,j,k, cellIndex;
for ( int iC = 0; iC < 4; ++iC ) // loop on 4 cells sharing the link
{
if ( !fourCells.GetCell( iC, i,j,k, cellIndex, iLink ))
continue;
Hexahedron * h = hexes[ cellIndex ];
if ( !h )
h = hexes[ cellIndex ] = new Hexahedron( *this, i, j, k, cellIndex );
h->_hexLinks[iLink]._fIntPoints.push_back( ip );
h->_nbFaceIntNodes++;
//isCut = true;
}
}
}
// if ( isCut )
// for ( size_t i = 0; i < hex->_eIntPoints.size(); ++i )
// {
// if ( _grid->IsInternal( hex->_eIntPoints[i]->_shapeID ) &&
// ! hex->_eIntPoints[i]->IsOnFace( _grid->PseudoIntExtFaceID() ))
// hex->_eIntPoints[i]->_faceIDs.push_back( _grid->PseudoIntExtFaceID() );
// }
continue;
} // loop on all hexes
return;
}
//================================================================================
/*!
* \brief Return intersection point on INTERNAL FACE most distant from given ones
*/
gp_Pnt Hexahedron::mostDistantInternalPnt( int hexIndex, const gp_Pnt& p1, const gp_Pnt& p2 )
{
gp_Pnt resultPnt = p1;
double maxDist2 = 0;
for ( int iLink = 0; iLink < 12; ++iLink ) // check links
{
_Link& link = _hexLinks[ iLink ];
for ( size_t i = 0; i < link._fIntPoints.size(); ++i )
if ( _grid->PseudoIntExtFaceID() != link._fIntPoints[i]->_faceIDs[0] &&
_grid->IsInternal( link._fIntPoints[i]->_faceIDs[0] ) &&
link._fIntPoints[i]->_node )
{
gp_Pnt p = SMESH_NodeXYZ( link._fIntPoints[i]->_node );
double d = p1.SquareDistance( p );
if ( d > maxDist2 )
{
resultPnt = p;
maxDist2 = d;
}
else
{
d = p2.SquareDistance( p );
if ( d > maxDist2 )
{
resultPnt = p;
maxDist2 = d;
}
}
}
}
setIJK( hexIndex );
_origNodeInd = _grid->NodeIndex( _i,_j,_k );
for ( size_t iN = 0; iN < 8; ++iN ) // check corners
{
_hexNodes[iN]._node = _grid->_nodes [ _origNodeInd + _grid->_nodeShift[iN] ];
_hexNodes[iN]._intPoint = _grid->_gridIntP[ _origNodeInd + _grid->_nodeShift[iN] ];
if ( _hexNodes[iN]._intPoint )
for ( size_t iF = 0; iF < _hexNodes[iN]._intPoint->_faceIDs.size(); ++iF )
{
if ( _grid->IsInternal( _hexNodes[iN]._intPoint->_faceIDs[iF]))
{
gp_Pnt p = SMESH_NodeXYZ( _hexNodes[iN]._node );
double d = p1.SquareDistance( p );
if ( d > maxDist2 )
{
resultPnt = p;
maxDist2 = d;
}
else
{
d = p2.SquareDistance( p );
if ( d > maxDist2 )
{
resultPnt = p;
maxDist2 = d;
}
}
}
}
}
if ( maxDist2 < _grid->_tol * _grid->_tol )
return p1;
return resultPnt;
}
//================================================================================
/*!
* \brief Finds intersection of a curve with a plane
* \param [in] u1 - parameter of one curve point
* \param [in] proj1 - projection of the curve point to the plane normal
* \param [in] u2 - parameter of another curve point
* \param [in] proj2 - projection of the other curve point to the plane normal
* \param [in] proj - projection of a point where the curve intersects the plane
* \param [in] curve - the curve
* \param [in] axis - the plane normal
* \param [in] origin - the plane origin
* \return gp_Pnt - the found intersection point
*/
gp_Pnt Hexahedron::findIntPoint( double u1, double proj1,
double u2, double proj2,
double proj,
BRepAdaptor_Curve& curve,
const gp_XYZ& axis,
const gp_XYZ& origin)
{
double r = (( proj - proj1 ) / ( proj2 - proj1 ));
double u = u1 * ( 1 - r ) + u2 * r;
gp_Pnt p = curve.Value( u );
double newProj = axis * ( p.XYZ() - origin );
if ( Abs( proj - newProj ) > _grid->_tol / 10. )
{
if ( r > 0.5 )
return findIntPoint( u2, proj2, u, newProj, proj, curve, axis, origin );
else
return findIntPoint( u1, proj2, u, newProj, proj, curve, axis, origin );
}
return p;
}
//================================================================================
/*!
* \brief Returns indices of a hexahedron sub-entities holding a point
* \param [in] ip - intersection point
* \param [out] facets - 0-3 facets holding a point
* \param [out] sub - index of a vertex or an edge holding a point
* \return int - number of facets holding a point
*/
int Hexahedron::getEntity( const E_IntersectPoint* ip, int* facets, int& sub )
{
enum { X = 1, Y = 2, Z = 4 }; // == 001, 010, 100
int nbFacets = 0;
int vertex = 0, edgeMask = 0;
if ( Abs( _grid->_coords[0][ _i ] - ip->_uvw[0] ) < _grid->_tol ) {
facets[ nbFacets++ ] = SMESH_Block::ID_F0yz;
edgeMask |= X;
}
else if ( Abs( _grid->_coords[0][ _i+1 ] - ip->_uvw[0] ) < _grid->_tol ) {
facets[ nbFacets++ ] = SMESH_Block::ID_F1yz;
vertex |= X;
edgeMask |= X;
}
if ( Abs( _grid->_coords[1][ _j ] - ip->_uvw[1] ) < _grid->_tol ) {
facets[ nbFacets++ ] = SMESH_Block::ID_Fx0z;
edgeMask |= Y;
}
else if ( Abs( _grid->_coords[1][ _j+1 ] - ip->_uvw[1] ) < _grid->_tol ) {
facets[ nbFacets++ ] = SMESH_Block::ID_Fx1z;
vertex |= Y;
edgeMask |= Y;
}
if ( Abs( _grid->_coords[2][ _k ] - ip->_uvw[2] ) < _grid->_tol ) {
facets[ nbFacets++ ] = SMESH_Block::ID_Fxy0;
edgeMask |= Z;
}
else if ( Abs( _grid->_coords[2][ _k+1 ] - ip->_uvw[2] ) < _grid->_tol ) {
facets[ nbFacets++ ] = SMESH_Block::ID_Fxy1;
vertex |= Z;
edgeMask |= Z;
}
switch ( nbFacets )
{
case 0: sub = 0; break;
case 1: sub = facets[0]; break;
case 2: {
const int edge [3][8] = {
{ SMESH_Block::ID_E00z, SMESH_Block::ID_E10z,
SMESH_Block::ID_E01z, SMESH_Block::ID_E11z },
{ SMESH_Block::ID_E0y0, SMESH_Block::ID_E1y0, 0, 0,
SMESH_Block::ID_E0y1, SMESH_Block::ID_E1y1 },
{ SMESH_Block::ID_Ex00, 0, SMESH_Block::ID_Ex10, 0,
SMESH_Block::ID_Ex01, 0, SMESH_Block::ID_Ex11 }
};
switch ( edgeMask ) {
case X | Y: sub = edge[ 0 ][ vertex ]; break;
case X | Z: sub = edge[ 1 ][ vertex ]; break;
default: sub = edge[ 2 ][ vertex ];
}
break;
}
//case 3:
default:
sub = vertex + SMESH_Block::ID_FirstV;
}
return nbFacets;
}
//================================================================================
/*!
* \brief Adds intersection with an EDGE
*/
bool Hexahedron::addIntersection( const E_IntersectPoint* ip,
vector< Hexahedron* >& hexes,
int ijk[], int dIJK[] )
{
bool added = false;
size_t hexIndex[4] = {
_grid->CellIndex( ijk[0], ijk[1], ijk[2] ),
dIJK[0] ? _grid->CellIndex( ijk[0]+dIJK[0], ijk[1], ijk[2] ) : -1,
dIJK[1] ? _grid->CellIndex( ijk[0], ijk[1]+dIJK[1], ijk[2] ) : -1,
dIJK[2] ? _grid->CellIndex( ijk[0], ijk[1], ijk[2]+dIJK[2] ) : -1
};
for ( int i = 0; i < 4; ++i )
{
if ( hexIndex[i] < hexes.size() && hexes[ hexIndex[i] ] )
{
Hexahedron* h = hexes[ hexIndex[i] ];
h->_eIntPoints.reserve(2);
h->_eIntPoints.push_back( ip );
added = true;
// check if ip is really inside the hex
if (SALOME::VerbosityActivated() && h->isOutParam( ip->_uvw ))
throw SALOME_Exception("ip outside a hex");
}
}
return added;
}
//================================================================================
/*!
* \brief Check if a hexahedron facet lies on a FACE
* Also return true if the facet does not interfere with any FACE
*/
bool Hexahedron::isQuadOnFace( const size_t iQuad )
{
_Face& quad = _hexQuads[ iQuad ] ;
int nbGridNodesInt = 0; // nb FACE intersections at grid nodes
int nbNoGeomNodes = 0;
for ( int iE = 0; iE < 4; ++iE )
{
nbNoGeomNodes = ( !quad._links[ iE ].FirstNode()->_intPoint &&
quad._links[ iE ].NbResultLinks() == 1 );
nbGridNodesInt +=
( quad._links[ iE ].FirstNode()->_intPoint &&
quad._links[ iE ].NbResultLinks() == 1 &&
quad._links[ iE ].ResultLink( 0 ).FirstNode() == quad._links[ iE ].FirstNode() &&
quad._links[ iE ].ResultLink( 0 ).LastNode() == quad._links[ iE ].LastNode() );
}
if ( nbNoGeomNodes == 4 )
return true;
if ( nbGridNodesInt == 4 ) // all quad nodes are at FACE intersection
{
size_t iEmin = 0, minNbFaces = 1000;
for ( int iE = 0; iE < 4; ++iE ) // look for a node with min nb FACEs
{
size_t nbFaces = quad._links[ iE ].FirstNode()->faces().size();
if ( minNbFaces > nbFaces )
{
iEmin = iE;
minNbFaces = nbFaces;
}
}
// check if there is a FACE passing through all 4 nodes
for ( const TGeomID& faceID : quad._links[ iEmin ].FirstNode()->faces() )
{
bool allNodesAtFace = true;
for ( size_t iE = 0; iE < 4 && allNodesAtFace; ++iE )
allNodesAtFace = ( iE == iEmin ||
quad._links[ iE ].FirstNode()->IsOnFace( faceID ));
if ( allNodesAtFace ) // quad if on faceID
return true;
}
}
return false;
}
//================================================================================
/*!
* \brief Finds nodes at a path from one node to another via intersections with EDGEs
*/
bool Hexahedron::findChain( _Node* n1,
_Node* n2,
_Face& quad,
vector<_Node*>& chn )
{
chn.clear();
chn.push_back( n1 );
for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP )
if ( !quad._eIntNodes[ iP ]->IsUsedInFace( &quad ) &&
n1->IsLinked( quad._eIntNodes[ iP ]->_intPoint ) &&
n2->IsLinked( quad._eIntNodes[ iP ]->_intPoint ))
{
chn.push_back( quad._eIntNodes[ iP ]);
chn.push_back( n2 );
quad._eIntNodes[ iP ]->_usedInFace = &quad;
return true;
}
bool found;
do
{
found = false;
for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP )
if ( !quad._eIntNodes[ iP ]->IsUsedInFace( &quad ) &&
chn.back()->IsLinked( quad._eIntNodes[ iP ]->_intPoint ))
{
chn.push_back( quad._eIntNodes[ iP ]);
found = ( quad._eIntNodes[ iP ]->_usedInFace = &quad );
break;
}
} while ( found && ! chn.back()->IsLinked( n2->_intPoint ) );
if ( chn.back() != n2 && chn.back()->IsLinked( n2->_intPoint ))
chn.push_back( n2 );
return chn.size() > 1;
}
//================================================================================
/*!
* \brief Try to heal a polygon whose ends are not connected
*/
bool Hexahedron::closePolygon( _Face* polygon, vector<_Node*>& chainNodes ) const
{
int i = -1, nbLinks = polygon->_links.size();
if ( nbLinks < 3 )
return false;
vector< _OrientedLink > newLinks;
// find a node lying on the same FACE as the last one
_Node* node = polygon->_links.back().LastNode();
TGeomID avoidFace = node->IsLinked( polygon->_links.back().FirstNode()->_intPoint );
for ( i = nbLinks - 2; i >= 0; --i )
if ( node->IsLinked( polygon->_links[i].FirstNode()->_intPoint, avoidFace ))
break;
if ( i >= 0 )
{
for ( ; i < nbLinks; ++i )
newLinks.push_back( polygon->_links[i] );
}
else
{
// find a node lying on the same FACE as the first one
node = polygon->_links[0].FirstNode();
avoidFace = node->IsLinked( polygon->_links[0].LastNode()->_intPoint );
for ( i = 1; i < nbLinks; ++i )
if ( node->IsLinked( polygon->_links[i].LastNode()->_intPoint, avoidFace ))
break;
if ( i < nbLinks )
for ( nbLinks = i + 1, i = 0; i < nbLinks; ++i )
newLinks.push_back( polygon->_links[i] );
}
if ( newLinks.size() > 1 )
{
polygon->_links.swap( newLinks );
chainNodes.clear();
chainNodes.push_back( polygon->_links.back().LastNode() );
chainNodes.push_back( polygon->_links[0].FirstNode() );
return true;
}
return false;
}
//================================================================================
/*!
* \brief Finds nodes on the same EDGE as the first node of avoidSplit.
*
* This function is for
* 1) a case where an EDGE lies on a quad which lies on a FACE
* so that a part of quad in ON and another part is IN
* 2) INTERNAL FACE passes through the 1st node of avoidSplit
*/
bool Hexahedron::findChainOnEdge( const vector< _OrientedLink >& splits,
const _OrientedLink& prevSplit,
const _OrientedLink& avoidSplit,
const std::set< TGeomID > & concaveFaces,
size_t & iS,
_Face& quad,
vector<_Node*>& chn )
{
_Node* pn1 = prevSplit.FirstNode();
_Node* pn2 = prevSplit.LastNode(); // pn2 is on EDGE, if not on INTERNAL FACE
_Node* an3 = avoidSplit.LastNode();
TGeomID avoidFace = pn1->IsLinked( pn2->_intPoint ); // FACE under the quad
if ( avoidFace < 1 && pn1->_intPoint )
return false;
chn.clear();
if ( !quad._eIntNodes.empty() ) // connect pn2 with EDGE intersections
{
chn.push_back( pn2 );
bool found;
do
{
found = false;
for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP )
if (( !quad._eIntNodes[ iP ]->IsUsedInFace( &quad )) &&
( chn.back()->IsLinked( quad._eIntNodes[ iP ]->_intPoint, avoidFace )) &&
( !avoidFace || quad._eIntNodes[ iP ]->IsOnFace( avoidFace )))
{
chn.push_back( quad._eIntNodes[ iP ]);
found = ( quad._eIntNodes[ iP ]->_usedInFace = &quad );
break;
}
} while ( found );
pn2 = chn.back();
}
_Node* n = 0, *stopNode = avoidSplit.LastNode();
if ( pn2 == prevSplit.LastNode() && // pn2 is at avoidSplit.FirstNode()
!isCorner( stopNode )) // stopNode is in the middle of a _hexLinks
{
// move stopNode to a _hexNodes
for ( int iE = 0; iE < 4; ++iE ) // loop on 4 sides of a quadrangle
for ( size_t iL = 0; iL < quad._links[ iE ].NbResultLinks(); ++iL )
{
const _Link* sideSplit = & quad._links[ iE ]._link->_splits[ iL ];
if ( sideSplit == avoidSplit._link )
{
if ( quad._links[ iE ].LastNode()->Node() )
stopNode = quad._links[ iE ].LastNode();
iE = 4;
break;
}
}
}
// connect pn2 (probably new, at _eIntNodes) with a split
int i, iConn = 0;
size_t nbCommon;
TGeomID commonFaces[20];
_Node* nPrev = nullptr;
for ( i = splits.size()-1; i >= 0; --i )
{
if ( !splits[i] )
continue;
bool stop = false;
for ( int is1st = 0; is1st < 2; ++is1st )
{
_Node* nConn = is1st ? splits[i].FirstNode() : splits[i].LastNode();
if ( nConn == nPrev )
{
if ( n == nConn )
iConn = i;
continue;
}
nPrev = nConn;
if (( stop = ( nConn == stopNode )))
break;
// find a FACE connecting nConn with pn2 but not with an3
if (( nConn != pn1 ) &&
( nConn->_intPoint && !nConn->_intPoint->_faceIDs.empty() ) &&
( nbCommon = nConn->GetCommonFaces( pn2->_intPoint, commonFaces )))
{
bool a3Coonect = true;
for ( size_t iF = 0; iF < nbCommon && a3Coonect; ++iF )
a3Coonect = an3->IsOnFace( commonFaces[ iF ]) || concaveFaces.count( commonFaces[ iF ]);
if ( a3Coonect )
continue;
if ( !n )
{
n = nConn;
iConn = i + !is1st;
}
if ( nbCommon > 1 ) // nConn is linked with pn2 by an EDGE
{
n = nConn;
iConn = i + !is1st;
stop = true;
break;
}
}
}
if ( stop )
{
i = iConn;
break;
}
}
if ( n && n != stopNode )
{
if ( chn.empty() )
chn.push_back( pn2 );
chn.push_back( n );
iS = i-1;
return true;
}
else if ( !chn.empty() && chn.back()->_isInternalFlags )
{
// INTERNAL FACE partially cuts the quad
for ( int ip = chn.size() - 2; ip >= 0; --ip )
chn.push_back( chn[ ip ]);
return true;
}
return false;
}
//================================================================================
/*!
* \brief Checks transition at the ginen intersection node of a link
*/
bool Hexahedron::isOutPoint( _Link& link, int iP,
SMESH_MesherHelper& helper, const Solid* solid ) const
{
bool isOut = false;
if ( link._fIntNodes[iP]->faces().size() == 1 &&
_grid->IsInternal( link._fIntNodes[iP]->face(0) ))
return false;
const bool moreIntPoints = ( iP+1 < (int) link._fIntNodes.size() );
// get 2 _Node's
_Node* n1 = link._fIntNodes[ iP ];
if ( !n1->Node() )
n1 = link._nodes[0];
_Node* n2 = moreIntPoints ? link._fIntNodes[ iP+1 ] : 0;
if ( !n2 || !n2->Node() )
n2 = link._nodes[1];
if ( !n2->Node() )
return true;
// get all FACEs under n1 and n2
set< TGeomID > faceIDs;
if ( moreIntPoints ) faceIDs.insert( link._fIntNodes[iP+1]->faces().begin(),
link._fIntNodes[iP+1]->faces().end() );
if ( n2->_intPoint ) faceIDs.insert( n2->_intPoint->_faceIDs.begin(),
n2->_intPoint->_faceIDs.end() );
if ( faceIDs.empty() )
return false; // n2 is inside
if ( n1->_intPoint ) faceIDs.insert( n1->_intPoint->_faceIDs.begin(),
n1->_intPoint->_faceIDs.end() );
faceIDs.insert( link._fIntNodes[iP]->faces().begin(),
link._fIntNodes[iP]->faces().end() );
// get a point between 2 nodes
gp_Pnt p1 = n1->Point();
gp_Pnt p2 = n2->Point();
gp_Pnt pOnLink = 0.8 * p1.XYZ() + 0.2 * p2.XYZ();
TopLoc_Location loc;
set< TGeomID >::iterator faceID = faceIDs.begin();
for ( ; faceID != faceIDs.end(); ++faceID )
{
// project pOnLink on a FACE
if ( *faceID < 1 || !solid->Contains( *faceID )) continue;
const TopoDS_Face& face = TopoDS::Face( _grid->Shape( *faceID ));
GeomAPI_ProjectPointOnSurf& proj = helper.GetProjector( face, loc, 0.1*_grid->_tol );
gp_Pnt testPnt = pOnLink.Transformed( loc.Transformation().Inverted() );
proj.Perform( testPnt );
if ( proj.IsDone() && proj.NbPoints() > 0 )
{
Standard_Real u,v;
proj.LowerDistanceParameters( u,v );
if ( proj.LowerDistance() <= 0.1 * _grid->_tol )
{
isOut = false;
}
else
{
// find isOut by normals
gp_Dir normal;
if ( GeomLib::NormEstim( BRep_Tool::Surface( face, loc ),
gp_Pnt2d( u,v ),
0.1*_grid->_tol,
normal ) < 3 )
{
if ( solid->Orientation( face ) == TopAbs_REVERSED )
normal.Reverse();
gp_Vec v( proj.NearestPoint(), testPnt );
isOut = ( v * normal > 0 );
}
}
if ( !isOut )
{
// classify a projection
if ( !n1->IsOnFace( *faceID ) || !n2->IsOnFace( *faceID ))
{
BRepTopAdaptor_FClass2d cls( face, Precision::Confusion() );
TopAbs_State state = cls.Perform( gp_Pnt2d( u,v ));
if ( state == TopAbs_OUT )
{
isOut = true;
continue;
}
}
return false;
}
}
}
return isOut;
}
//================================================================================
/*!
* \brief Sort nodes on a FACE
*/
void Hexahedron::sortVertexNodes(vector<_Node*>& nodes, _Node* curNode, TGeomID faceID)
{
if ( nodes.size() > 20 ) return;
// get shapes under nodes
TGeomID nShapeIds[20], *nShapeIdsEnd = &nShapeIds[0] + nodes.size();
for ( size_t i = 0; i < nodes.size(); ++i )
if ( !( nShapeIds[i] = nodes[i]->ShapeID() ))
return;
// get shapes of the FACE
const TopoDS_Face& face = TopoDS::Face( _grid->Shape( faceID ));
list< TopoDS_Edge > edges;
list< int > nbEdges;
int nbW = SMESH_Block::GetOrderedEdges (face, edges, nbEdges);
if ( nbW > 1 ) {
// select a WIRE - remove EDGEs of irrelevant WIREs from edges
list< TopoDS_Edge >::iterator e = edges.begin(), eEnd = e;
list< int >::iterator nE = nbEdges.begin();
for ( ; nbW > 0; ++nE, --nbW )
{
std::advance( eEnd, *nE );
for ( ; e != eEnd; ++e )
for ( int i = 0; i < 2; ++i )
{
TGeomID id = i==0 ?
_grid->ShapeID( *e ) :
_grid->ShapeID( SMESH_MesherHelper::IthVertex( 0, *e ));
if (( id > 0 ) &&
( std::find( &nShapeIds[0], nShapeIdsEnd, id ) != nShapeIdsEnd ))
{
edges.erase( eEnd, edges.end() ); // remove rest wires
e = eEnd = edges.end();
--e;
nbW = 0;
break;
}
}
if ( nbW > 0 )
edges.erase( edges.begin(), eEnd ); // remove a current irrelevant wire
}
}
// rotate edges to have the first one at least partially out of the hexa
list< TopoDS_Edge >::iterator e = edges.begin(), eMidOut = edges.end();
for ( ; e != edges.end(); ++e )
{
if ( !_grid->ShapeID( *e ))
continue;
bool isOut = false;
gp_Pnt p;
double uvw[3], f,l;
for ( int i = 0; i < 2 && !isOut; ++i )
{
if ( i == 0 )
{
TopoDS_Vertex v = SMESH_MesherHelper::IthVertex( 0, *e );
p = BRep_Tool::Pnt( v );
}
else if ( eMidOut == edges.end() )
{
TopLoc_Location loc;
Handle(Geom_Curve) c = BRep_Tool::Curve( *e, loc, f, l);
if ( c.IsNull() ) break;
p = c->Value( 0.5 * ( f + l )).Transformed( loc );
}
else
{
continue;
}
_grid->ComputeUVW( p.XYZ(), uvw );
if ( isOutParam( uvw ))
{
if ( i == 0 )
isOut = true;
else
eMidOut = e;
}
}
if ( isOut )
break;
}
if ( e != edges.end() )
edges.splice( edges.end(), edges, edges.begin(), e );
else if ( eMidOut != edges.end() )
edges.splice( edges.end(), edges, edges.begin(), eMidOut );
// sort nodes according to the order of edges
_Node* orderNodes [20];
//TGeomID orderShapeIDs[20];
size_t nbN = 0;
TGeomID id, *pID = 0;
for ( e = edges.begin(); e != edges.end(); ++e )
{
if (( id = _grid->ShapeID( SMESH_MesherHelper::IthVertex( 0, *e ))) &&
(( pID = std::find( &nShapeIds[0], nShapeIdsEnd, id )) != nShapeIdsEnd ))
{
//orderShapeIDs[ nbN ] = id;
orderNodes [ nbN++ ] = nodes[ pID - &nShapeIds[0] ];
*pID = -1;
}
if (( id = _grid->ShapeID( *e )) &&
(( pID = std::find( &nShapeIds[0], nShapeIdsEnd, id )) != nShapeIdsEnd ))
{
//orderShapeIDs[ nbN ] = id;
orderNodes [ nbN++ ] = nodes[ pID - &nShapeIds[0] ];
*pID = -1;
}
}
if ( nbN != nodes.size() )
return;
bool reverse = ( orderNodes[0 ]->Point().SquareDistance( curNode->Point() ) >
orderNodes[nbN-1]->Point().SquareDistance( curNode->Point() ));
for ( size_t i = 0; i < nodes.size(); ++i )
nodes[ i ] = orderNodes[ reverse ? nbN-1-i : i ];
}
//================================================================================
/*!
* \brief Adds computed elements to the mesh
*/
int Hexahedron::addVolumes( SMESH_MesherHelper& helper )
{
F_IntersectPoint noIntPnt;
const bool toCheckNodePos = _grid->IsToCheckNodePos();
const bool useQuanta = _grid->_toUseQuanta;
int nbAdded = 0;
// add elements resulted from hexahedron intersection
for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next )
{
vector< const SMDS_MeshNode* > nodes( volDef->_nodes.size() );
for ( size_t iN = 0; iN < nodes.size(); ++iN )
{
if ( !( nodes[iN] = volDef->_nodes[iN].Node() ))
{
if ( const E_IntersectPoint* eip = volDef->_nodes[iN].EdgeIntPnt() )
{
nodes[iN] = volDef->_nodes[iN]._intPoint->_node =
helper.AddNode( eip->_point.X(),
eip->_point.Y(),
eip->_point.Z() );
if ( _grid->ShapeType( eip->_shapeID ) == TopAbs_VERTEX )
helper.GetMeshDS()->SetNodeOnVertex( nodes[iN], eip->_shapeID );
else
helper.GetMeshDS()->SetNodeOnEdge( nodes[iN], eip->_shapeID );
}
else
throw SALOME_Exception("Bug: no node at intersection point");
}
else if ( volDef->_nodes[iN]._intPoint &&
volDef->_nodes[iN]._intPoint->_node == volDef->_nodes[iN]._node )
{
// Update position of node at EDGE intersection;
// see comment to _Node::Add( E_IntersectPoint )
SMESHDS_Mesh* mesh = helper.GetMeshDS();
TGeomID shapeID = volDef->_nodes[iN].EdgeIntPnt()->_shapeID;
mesh->UnSetNodeOnShape( nodes[iN] );
if ( _grid->ShapeType( shapeID ) == TopAbs_VERTEX )
mesh->SetNodeOnVertex( nodes[iN], shapeID );
else
mesh->SetNodeOnEdge( nodes[iN], shapeID );
}
else if ( toCheckNodePos &&
!nodes[iN]->isMarked() &&
_grid->ShapeType( nodes[iN]->GetShapeID() ) == TopAbs_FACE )
{
_grid->SetOnShape( nodes[iN], noIntPnt, /*v=*/nullptr,/*unset=*/true );
nodes[iN]->setIsMarked( true );
}
} // loop to get nodes
const SMDS_MeshElement* v = 0;
if ( !volDef->_quantities.empty() )
{
if ( !useQuanta )
{
// split polyhedrons of with disjoint volumes
std::vector<std::vector<int>> splitQuantities;
std::vector<std::vector< const SMDS_MeshNode* > > splitNodes;
if ( checkPolyhedronValidity( volDef, splitQuantities, splitNodes ) == 1 )
v = addPolyhedronToMesh( volDef, helper, nodes, volDef->_quantities );
else
{
int counter = -1;
for (size_t id = 0; id < splitQuantities.size(); id++)
{
v = addPolyhedronToMesh( volDef, helper, splitNodes[ id ], splitQuantities[ id ] );
if ( id < splitQuantities.size()-1 )
volDef->_brotherVolume.push_back( v );
counter++;
}
nbAdded += counter;
}
}
else
{
const double quanta = _grid->_quanta;
double polyVol = volDef->_size;
double hexaVolume = _sideLength[0] * _sideLength[1] * _sideLength[2];
if ( hexaVolume > 0.0 && polyVol/hexaVolume >= quanta /*set the volume if the relation is satisfied*/)
v = helper.AddVolume( _hexNodes[0].BoundaryNode(), _hexNodes[2].BoundaryNode(),
_hexNodes[3].BoundaryNode(), _hexNodes[1].BoundaryNode(),
_hexNodes[4].BoundaryNode(), _hexNodes[6].BoundaryNode(),
_hexNodes[7].BoundaryNode(), _hexNodes[5].BoundaryNode() );
}
}
else
{
switch ( nodes.size() )
{
case 8: v = helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3],
nodes[4],nodes[5],nodes[6],nodes[7] );
break;
case 4: v = helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3] );
break;
case 6: v = helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3],nodes[4],nodes[5] );
break;
case 5: v = helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3],nodes[4] );
break;
}
}
volDef->_volume = v;
nbAdded += bool( v );
} // loop on _volumeDefs chain
// avoid creating overlapping volumes (bos #24052)
if ( nbAdded > 1 )
{
double sumSize = 0, maxSize = 0;
_volumeDef* maxSizeDef = nullptr;
for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next )
{
if ( !volDef->_volume )
continue;
sumSize += volDef->_size;
if ( volDef->_size > maxSize )
{
maxSize = volDef->_size;
maxSizeDef = volDef;
}
}
if ( sumSize > _sideLength[0] * _sideLength[1] * _sideLength[2] * 1.05 )
{
for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next )
if ( volDef != maxSizeDef && volDef->_volume )
{
helper.GetMeshDS()->RemoveFreeElement( volDef->_volume, /*sm=*/nullptr,
/*fromGroups=*/false );
volDef->_volume = nullptr;
//volDef->_nodes.clear();
--nbAdded;
}
}
}
for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next )
{
if ( volDef->_volume )
{
helper.GetMeshDS()->SetMeshElementOnShape( volDef->_volume, volDef->_solidID );
for (auto broVol : volDef->_brotherVolume )
{
helper.GetMeshDS()->SetMeshElementOnShape( broVol, volDef->_solidID );
}
}
}
return nbAdded;
}
//================================================================================
/*!
* \brief Return true if the element is in a hole
* \remark consider a cell to be in a hole if all links in any direction
* comes OUT of geometry
*/
bool Hexahedron::isInHole() const
{
if ( !_vIntNodes.empty() )
return false;
const size_t ijk[3] = { _i, _j, _k };
F_IntersectPoint curIntPnt;
// consider a cell to be in a hole if all links in any direction
// comes OUT of geometry
for ( int iDir = 0; iDir < 3; ++iDir )
{
const vector<double>& coords = _grid->_coords[ iDir ];
LineIndexer li = _grid->GetLineIndexer( iDir );
li.SetIJK( _i,_j,_k );
size_t lineIndex[4] = { li.LineIndex (),
li.LineIndex10(),
li.LineIndex01(),
li.LineIndex11() };
bool allLinksOut = true, hasLinks = false;
for ( int iL = 0; iL < 4 && allLinksOut; ++iL ) // loop on 4 links parallel to iDir
{
const _Link& link = _hexLinks[ iL + 4*iDir ];
// check transition of the first node of a link
const F_IntersectPoint* firstIntPnt = 0;
if ( link._nodes[0]->Node() ) // 1st node is a hexa corner
{
curIntPnt._paramOnLine = coords[ ijk[ iDir ]] - coords[0] + _grid->_tol;
const GridLine& line = _grid->_lines[ iDir ][ lineIndex[ iL ]];
if ( !line._intPoints.empty() )
{
multiset< F_IntersectPoint >::const_iterator ip =
line._intPoints.upper_bound( curIntPnt );
--ip;
firstIntPnt = &(*ip);
}
}
else if ( !link._fIntPoints.empty() )
{
firstIntPnt = link._fIntPoints[0];
}
if ( firstIntPnt )
{
hasLinks = true;
allLinksOut = ( firstIntPnt->_transition == Trans_OUT &&
!_grid->IsShared( firstIntPnt->_faceIDs[0] ));
}
}
if ( hasLinks && allLinksOut )
return true;
}
return false;
}
//================================================================================
/*!
* \brief Check if a polyherdon has an edge lying on EDGE shared by strange FACE
* that will be meshed by other algo
*/
bool Hexahedron::hasStrangeEdge() const
{
if ( _eIntPoints.size() < 2 )
return false;
TopTools_MapOfShape edges;
for ( size_t i = 0; i < _eIntPoints.size(); ++i )
{
if ( !_grid->IsStrangeEdge( _eIntPoints[i]->_shapeID ))
continue;
const TopoDS_Shape& s = _grid->Shape( _eIntPoints[i]->_shapeID );
if ( s.ShapeType() == TopAbs_EDGE )
{
if ( ! edges.Add( s ))
return true; // an EDGE encounters twice
}
else
{
PShapeIteratorPtr edgeIt = _grid->_helper->GetAncestors( s,
*_grid->_helper->GetMesh(),
TopAbs_EDGE );
while ( const TopoDS_Shape* edge = edgeIt->next() )
if ( ! edges.Add( *edge ))
return true; // an EDGE encounters twice
}
}
return false;
}
//================================================================================
/*!
* \brief Return true if a polyhedron passes _sizeThreshold criterion
*/
bool Hexahedron::checkPolyhedronSize( bool cutByInternalFace, double & volume) const
{
volume = 0;
if ( cutByInternalFace && !_grid->_toUseThresholdForInternalFaces )
{
// check if any polygon fully lies on shared/internal FACEs
for ( size_t iP = 0; iP < _polygons.size(); ++iP )
{
const _Face& polygon = _polygons[iP];
if ( polygon._links.empty() )
continue;
bool allNodesInternal = true;
for ( size_t iL = 0; iL < polygon._links.size() && allNodesInternal; ++iL )
{
_Node* n = polygon._links[ iL ].FirstNode();
allNodesInternal = (( n->IsCutByInternal() ) ||
( n->_intPoint && _grid->IsAnyShared( n->_intPoint->_faceIDs )));
}
if ( allNodesInternal )
return true;
}
}
for ( size_t iP = 0; iP < _polygons.size(); ++iP )
{
const _Face& polygon = _polygons[iP];
if ( polygon._links.empty() )
continue;
gp_XYZ area (0,0,0);
gp_XYZ p1 = polygon._links[ 0 ].FirstNode()->Point().XYZ();
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
{
gp_XYZ p2 = polygon._links[ iL ].LastNode()->Point().XYZ();
area += p1 ^ p2;
p1 = p2;
}
volume += p1 * area;
}
volume /= 6;
if ( this->hasStrangeEdge() && volume > 1e-13 )
return true;
double initVolume = _sideLength[0] * _sideLength[1] * _sideLength[2];
return volume > initVolume / _grid->_sizeThreshold;
}
//================================================================================
/*!
* \brief Check that all faces in polyhedron are connected so a unique volume is defined.
* We test that it is possible to go from any node to all nodes in the polyhedron.
* The set of nodes that can be visit within then defines a unique element.
* In case more than one polyhedron is detected. The function return the set of quantities and nodes defining separates elements.
* Reference to issue #bos[38521][EDF] Generate polyhedron with separate volume.
*/
int Hexahedron::checkPolyhedronValidity( _volumeDef* volDef, std::vector<std::vector<int>>& splitQuantities,
std::vector<std::vector<const SMDS_MeshNode*>>& splitNodes )
{
int mySet = 1;
std::map<int,int> numberOfSets; // define set id with the number of faces associated!
if ( !volDef->_quantities.empty() )
{
auto connectivity = volDef->_quantities;
int accum = 0;
std::vector<bool> allFaces( connectivity.size(), false );
std::set<int> elementSet;
allFaces[ 0 ] = true; // the first node below to the first face
size_t connectedFaces = 1;
// Start filling the set with the nodes of the first face
splitQuantities.push_back( { connectivity[ 0 ] } );
splitNodes.push_back( { volDef->_nodes[ 0 ].Node() } );
elementSet.insert( volDef->_nodes[ 0 ].Node()->GetID() );
for (int n = 1; n < connectivity[ 0 ]; n++)
{
elementSet.insert( volDef->_nodes[ n ].Node()->GetID() );
splitNodes.back().push_back( volDef->_nodes[ n ].Node() );
}
numberOfSets.insert( std::pair<int,int>(mySet,1) );
while ( connectedFaces != allFaces.size() )
{
for (size_t innerId = 1; innerId < connectivity.size(); innerId++)
{
if ( innerId == 1 )
accum = connectivity[ 0 ];
if ( !allFaces[ innerId ] )
{
int faceCounter = 0;
for (int n = 0; n < connectivity[ innerId ]; n++)
{
int nodeId = volDef->_nodes[ accum + n ].Node()->GetID();
if ( elementSet.count( nodeId ) != 0 )
faceCounter++;
}
if ( faceCounter >= 2 ) // found coincidences nodes
{
for (int n = 0; n < connectivity[ innerId ]; n++)
{
int nodeId = volDef->_nodes[ accum + n ].Node()->GetID();
// insert new nodes so other faces can be identified as belowing to the element
splitNodes.back().push_back( volDef->_nodes[ accum + n ].Node() );
elementSet.insert( nodeId );
}
allFaces[ innerId ] = true;
splitQuantities.back().push_back( connectivity[ innerId ] );
numberOfSets[ mySet ]++;
connectedFaces++;
innerId = 0; // to restart searching!
}
}
accum += connectivity[ innerId ];
}
if ( connectedFaces != allFaces.size() )
{
// empty the set, and fill it with nodes of a unvisited face!
elementSet.clear();
accum = connectivity[ 0 ];
for (size_t faceId = 1; faceId < connectivity.size(); faceId++)
{
if ( !allFaces[ faceId ] )
{
splitNodes.push_back( { volDef->_nodes[ accum ].Node() } );
elementSet.insert( volDef->_nodes[ accum ].Node()->GetID() );
for (int n = 1; n < connectivity[ faceId ]; n++)
{
elementSet.insert( volDef->_nodes[ accum + n ].Node()->GetID() );
splitNodes.back().push_back( volDef->_nodes[ accum + n ].Node() );
}
splitQuantities.push_back( { connectivity[ faceId ] } );
allFaces[ faceId ] = true;
connectedFaces++;
break;
}
accum += connectivity[ faceId ];
}
mySet++;
numberOfSets.insert( std::pair<int,int>(mySet,1) );
}
}
if ( numberOfSets.size() > 1 )
{
bool allMoreThan2Faces = true;
for( auto k : numberOfSets )
{
if ( k.second <= 2 )
allMoreThan2Faces &= false;
}
if ( allMoreThan2Faces )
{
// The separate objects are suspect to be closed
return numberOfSets.size();
}
else
{
// Have to index the last face nodes to the final set
// contrary case return as it were a valid polyhedron for backward compatibility
return 1;
}
}
}
return numberOfSets.size();
}
//================================================================================
/*!
* \brief add original or separated polyhedrons to the mesh
*/
const SMDS_MeshElement* Hexahedron::addPolyhedronToMesh( _volumeDef* volDef, SMESH_MesherHelper& helper, const std::vector<const SMDS_MeshNode*>& nodes,
const std::vector<int>& quantities )
{
const SMDS_MeshElement* v = helper.AddPolyhedralVolume( nodes, quantities );
volDef->_size = SMDS_VolumeTool( v ).GetSize();
if ( volDef->_size < 0 ) // invalid polyhedron
{
if ( ! SMESH_MeshEditor( helper.GetMesh() ).Reorient( v ) || // try to fix
SMDS_VolumeTool( v ).GetSize() < 0 )
{
helper.GetMeshDS()->RemoveFreeElement( v, /*sm=*/nullptr, /*fromGroups=*/false );
v = nullptr;
//_hasTooSmall = true;
if (SALOME::VerbosityActivated())
{
std::cout << "Remove INVALID polyhedron, _cellID = " << _cellID
<< " ijk = ( " << _i << " " << _j << " " << _k << " ) "
<< " solid " << volDef->_solidID << std::endl;
}
}
}
return v;
}
//================================================================================
/*!
* \brief Tries to create a hexahedron
*/
bool Hexahedron::addHexa()
{
int nbQuad = 0, iQuad = -1;
for ( size_t i = 0; i < _polygons.size(); ++i )
{
if ( _polygons[i]._links.empty() )
continue;
if ( _polygons[i]._links.size() != 4 )
return false;
++nbQuad;
if ( iQuad < 0 )
iQuad = i;
}
if ( nbQuad != 6 )
return false;
_Node* nodes[8];
int nbN = 0;
for ( int iL = 0; iL < 4; ++iL )
{
// a base node
nodes[iL] = _polygons[iQuad]._links[iL].FirstNode();
++nbN;
// find a top node above the base node
_Link* link = _polygons[iQuad]._links[iL]._link;
if ( !link->_faces[0] || !link->_faces[1] )
return debugDumpLink( link );
// a quadrangle sharing <link> with _polygons[iQuad]
_Face* quad = link->_faces[ bool( link->_faces[0] == & _polygons[iQuad] )];
for ( int i = 0; i < 4; ++i )
if ( quad->_links[i]._link == link )
{
// 1st node of a link opposite to <link> in <quad>
nodes[iL+4] = quad->_links[(i+2)%4].FirstNode();
++nbN;
break;
}
}
if ( nbN == 8 )
_volumeDefs.Set( &nodes[0], 8 );
return nbN == 8;
}
//================================================================================
/*!
* \brief Tries to create a tetrahedron
*/
bool Hexahedron::addTetra()
{
int iTria = -1;
for ( size_t i = 0; i < _polygons.size() && iTria < 0; ++i )
if ( _polygons[i]._links.size() == 3 )
iTria = i;
if ( iTria < 0 )
return false;
_Node* nodes[4];
nodes[0] = _polygons[iTria]._links[0].FirstNode();
nodes[1] = _polygons[iTria]._links[1].FirstNode();
nodes[2] = _polygons[iTria]._links[2].FirstNode();
_Link* link = _polygons[iTria]._links[0]._link;
if ( !link->_faces[0] || !link->_faces[1] )
return debugDumpLink( link );
// a triangle sharing <link> with _polygons[0]
_Face* tria = link->_faces[ bool( link->_faces[0] == & _polygons[iTria] )];
for ( int i = 0; i < 3; ++i )
if ( tria->_links[i]._link == link )
{
nodes[3] = tria->_links[(i+1)%3].LastNode();
_volumeDefs.Set( &nodes[0], 4 );
return true;
}
return false;
}
//================================================================================
/*!
* \brief Tries to create a pentahedron
*/
bool Hexahedron::addPenta()
{
// find a base triangular face
int iTri = -1;
for ( int iF = 0; iF < 5 && iTri < 0; ++iF )
if ( _polygons[ iF ]._links.size() == 3 )
iTri = iF;
if ( iTri < 0 ) return false;
// find nodes
_Node* nodes[6];
int nbN = 0;
for ( int iL = 0; iL < 3; ++iL )
{
// a base node
nodes[iL] = _polygons[ iTri ]._links[iL].FirstNode();
++nbN;
// find a top node above the base node
_Link* link = _polygons[ iTri ]._links[iL]._link;
if ( !link->_faces[0] || !link->_faces[1] )
return debugDumpLink( link );
// a quadrangle sharing <link> with a base triangle
_Face* quad = link->_faces[ bool( link->_faces[0] == & _polygons[ iTri ] )];
if ( quad->_links.size() != 4 ) return false;
for ( int i = 0; i < 4; ++i )
if ( quad->_links[i]._link == link )
{
// 1st node of a link opposite to <link> in <quad>
nodes[iL+3] = quad->_links[(i+2)%4].FirstNode();
++nbN;
break;
}
}
if ( nbN == 6 )
_volumeDefs.Set( &nodes[0], 6 );
return ( nbN == 6 );
}
//================================================================================
/*!
* \brief Tries to create a pyramid
*/
bool Hexahedron::addPyra()
{
// find a base quadrangle
int iQuad = -1;
for ( int iF = 0; iF < 5 && iQuad < 0; ++iF )
if ( _polygons[ iF ]._links.size() == 4 )
iQuad = iF;
if ( iQuad < 0 ) return false;
// find nodes
_Node* nodes[5];
nodes[0] = _polygons[iQuad]._links[0].FirstNode();
nodes[1] = _polygons[iQuad]._links[1].FirstNode();
nodes[2] = _polygons[iQuad]._links[2].FirstNode();
nodes[3] = _polygons[iQuad]._links[3].FirstNode();
_Link* link = _polygons[iQuad]._links[0]._link;
if ( !link->_faces[0] || !link->_faces[1] )
return debugDumpLink( link );
// a triangle sharing <link> with a base quadrangle
_Face* tria = link->_faces[ bool( link->_faces[0] == & _polygons[ iQuad ] )];
if ( tria->_links.size() != 3 ) return false;
for ( int i = 0; i < 3; ++i )
if ( tria->_links[i]._link == link )
{
nodes[4] = tria->_links[(i+1)%3].LastNode();
_volumeDefs.Set( &nodes[0], 5 );
return true;
}
return false;
}
//================================================================================
/*!
* \brief Return true if there are _eIntPoints at EDGEs forming a concave corner
*/
bool Hexahedron::hasEdgesAround( const ConcaveFace* cf ) const
{
int nbEdges = 0;
ConcaveFace foundGeomHolder;
for ( const E_IntersectPoint* ip : _eIntPoints )
{
if ( cf->HasEdge( ip->_shapeID ))
{
if ( ++nbEdges == 2 )
return true;
foundGeomHolder.SetEdge( ip->_shapeID );
}
else if ( ip->_faceIDs.size() >= 3 )
{
const TGeomID & vID = ip->_shapeID;
if ( cf->HasVertex( vID ) && !foundGeomHolder.HasVertex( vID ))
{
if ( ++nbEdges == 2 )
return true;
foundGeomHolder.SetVertex( vID );
}
}
}
for ( const _Node& hexNode: _hexNodes )
{
if ( !hexNode._node || !hexNode._intPoint )
continue;
const B_IntersectPoint* ip = hexNode._intPoint;
if ( ip->_faceIDs.size() == 2 ) // EDGE
{
TGeomID edgeID = hexNode._node->GetShapeID();
if ( cf->HasEdge( edgeID ) && !foundGeomHolder.HasEdge( edgeID ))
{
foundGeomHolder.SetEdge( edgeID );
if ( ++nbEdges == 2 )
return true;
}
}
else if ( ip->_faceIDs.size() >= 3 ) // VERTEX
{
TGeomID vID = hexNode._node->GetShapeID();
if ( cf->HasVertex( vID ) && !foundGeomHolder.HasVertex( vID ))
{
if ( ++nbEdges == 2 )
return true;
foundGeomHolder.SetVertex( vID );
}
}
}
return false;
}
//================================================================================
/*!
* \brief Dump a link and return \c false
*/
bool Hexahedron::debugDumpLink( Hexahedron::_Link* link )
{
if (SALOME::VerbosityActivated())
{
gp_Pnt p1 = link->_nodes[0]->Point(), p2 = link->_nodes[1]->Point();
cout << "BUG: not shared link. IKJ = ( "<< _i << " " << _j << " " << _k << " )" << endl
<< "n1 (" << p1.X() << ", "<< p1.Y() << ", "<< p1.Z() << " )" << endl
<< "n2 (" << p2.X() << ", "<< p2.Y() << ", "<< p2.Z() << " )" << endl;
}
return false;
}
//================================================================================
/*!
* \brief Classify a point by grid parameters
*/
bool Hexahedron::isOutParam(const double uvw[3]) const
{
return (( _grid->_coords[0][ _i ] - _grid->_tol > uvw[0] ) ||
( _grid->_coords[0][ _i+1 ] + _grid->_tol < uvw[0] ) ||
( _grid->_coords[1][ _j ] - _grid->_tol > uvw[1] ) ||
( _grid->_coords[1][ _j+1 ] + _grid->_tol < uvw[1] ) ||
( _grid->_coords[2][ _k ] - _grid->_tol > uvw[2] ) ||
( _grid->_coords[2][ _k+1 ] + _grid->_tol < uvw[2] ));
}
//================================================================================
/*!
* \brief Find existing triangulation of a polygon
*/
int findExistingTriangulation( const SMDS_MeshElement* polygon,
//const SMDS_Mesh* mesh,
std::vector< const SMDS_MeshNode* >& nodes )
{
int nbSplits = 0;
nodes.clear();
std::vector<const SMDS_MeshNode *> twoNodes(2);
std::vector<const SMDS_MeshElement *> foundFaces; foundFaces.reserve(10);
std::set< const SMDS_MeshElement * > avoidFaces; avoidFaces.insert( polygon );
const int nbPolyNodes = polygon->NbCornerNodes();
twoNodes[1] = polygon->GetNode( nbPolyNodes - 1 );
for ( int iN = 0; iN < nbPolyNodes; ++iN ) // loop on border links of polygon
{
twoNodes[0] = polygon->GetNode( iN );
int nbFaces = SMDS_Mesh::GetElementsByNodes( twoNodes, foundFaces, SMDSAbs_Face );
int nbOkFaces = 0;
for ( int iF = 0; iF < nbFaces; ++iF ) // keep faces lying over polygon
{
if ( avoidFaces.count( foundFaces[ iF ]))
continue;
int i, nbFaceNodes = foundFaces[ iF ]->NbCornerNodes();
for ( i = 0; i < nbFaceNodes; ++i )
{
const SMDS_MeshNode* n = foundFaces[ iF ]->GetNode( i );
bool isCommonNode = ( n == twoNodes[0] ||
n == twoNodes[1] ||
polygon->GetNodeIndex( n ) >= 0 );
if ( !isCommonNode )
break;
}
if ( i == nbFaceNodes ) // all nodes of foundFaces[iF] are shared with polygon
if ( nbOkFaces++ != iF )
foundFaces[ nbOkFaces-1 ] = foundFaces[ iF ];
}
if ( nbOkFaces > 0 )
{
int iFaceSelected = 0;
if ( nbOkFaces > 1 ) // select a face with minimal distance from polygon
{
double minDist = Precision::Infinite();
for ( int iF = 0; iF < nbOkFaces; ++iF )
{
int i, nbFaceNodes = foundFaces[ iF ]->NbCornerNodes();
gp_XYZ gc = SMESH_NodeXYZ( foundFaces[ iF ]->GetNode( 0 ));
for ( i = 1; i < nbFaceNodes; ++i )
gc += SMESH_NodeXYZ( foundFaces[ iF ]->GetNode( i ));
gc /= nbFaceNodes;
double dist = SMESH_MeshAlgos::GetDistance( polygon, gc );
if ( dist < minDist )
{
minDist = dist;
iFaceSelected = iF;
}
}
}
if ( foundFaces[ iFaceSelected ]->NbCornerNodes() != 3 )
return 0;
nodes.insert( nodes.end(),
foundFaces[ iFaceSelected ]->begin_nodes(),
foundFaces[ iFaceSelected ]->end_nodes());
if ( !SMESH_MeshAlgos::IsRightOrder( foundFaces[ iFaceSelected ],
twoNodes[0], twoNodes[1] ))
{
// reverse just added nodes
std::reverse( nodes.end() - 3, nodes.end() );
}
avoidFaces.insert( foundFaces[ iFaceSelected ]);
nbSplits++;
}
twoNodes[1] = twoNodes[0];
} // loop on polygon nodes
return nbSplits;
}
//================================================================================
/*!
* \brief Divide a polygon into triangles and modify accordingly an adjacent polyhedron
*/
void splitPolygon( const SMDS_MeshElement* polygon,
SMDS_VolumeTool & volume,
const int facetIndex,
const TGeomID faceID,
const TGeomID solidID,
SMESH_MeshEditor::ElemFeatures& face,
SMESH_MeshEditor& editor,
const bool reinitVolume)
{
SMESH_MeshAlgos::Triangulate divider(/*optimize=*/false);
bool triangulationExist = false;
int nbTrias = findExistingTriangulation( polygon, face.myNodes );
if ( nbTrias > 0 )
triangulationExist = true;
else
nbTrias = divider.GetTriangles( polygon, face.myNodes );
face.myNodes.resize( nbTrias * 3 );
SMESH_MeshEditor::ElemFeatures newVolumeDef;
newVolumeDef.Init( volume.Element() );
newVolumeDef.SetID( volume.Element()->GetID() );
newVolumeDef.myPolyhedQuantities.reserve( volume.NbFaces() + nbTrias );
newVolumeDef.myNodes.reserve( volume.NbNodes() + nbTrias * 3 );
SMESHDS_Mesh* meshDS = editor.GetMeshDS();
SMDS_MeshElement* newTriangle;
for ( int iF = 0, nF = volume.NbFaces(); iF < nF; iF++ )
{
if ( iF == facetIndex )
{
newVolumeDef.myPolyhedQuantities.push_back( 3 );
newVolumeDef.myNodes.insert( newVolumeDef.myNodes.end(),
face.myNodes.begin(),
face.myNodes.begin() + 3 );
meshDS->RemoveFreeElement( polygon, 0, false );
if ( !triangulationExist )
{
newTriangle = meshDS->AddFace( face.myNodes[0], face.myNodes[1], face.myNodes[2] );
meshDS->SetMeshElementOnShape( newTriangle, faceID );
}
}
else
{
const SMDS_MeshNode** nn = volume.GetFaceNodes( iF );
const size_t nbFaceNodes = volume.NbFaceNodes ( iF );
newVolumeDef.myPolyhedQuantities.push_back( nbFaceNodes );
newVolumeDef.myNodes.insert( newVolumeDef.myNodes.end(), nn, nn + nbFaceNodes );
}
}
for ( size_t iN = 3; iN < face.myNodes.size(); iN += 3 )
{
newVolumeDef.myPolyhedQuantities.push_back( 3 );
newVolumeDef.myNodes.insert( newVolumeDef.myNodes.end(),
face.myNodes.begin() + iN,
face.myNodes.begin() + iN + 3 );
if ( !triangulationExist )
{
newTriangle = meshDS->AddFace( face.myNodes[iN], face.myNodes[iN+1], face.myNodes[iN+2] );
meshDS->SetMeshElementOnShape( newTriangle, faceID );
}
}
meshDS->RemoveFreeElement( volume.Element(), 0, false );
SMDS_MeshElement* newVolume = editor.AddElement( newVolumeDef.myNodes, newVolumeDef );
meshDS->SetMeshElementOnShape( newVolume, solidID );
if ( reinitVolume )
{
volume.Set( 0 );
volume.Set( newVolume );
}
return;
}
//================================================================================
/*!
* \brief Look for a FACE supporting all given nodes made on EDGEs and VERTEXes
*/
TGeomID findCommonFace( const std::vector< const SMDS_MeshNode* > & nn,
const SMESH_Mesh* mesh )
{
TGeomID faceID = 0;
TGeomID shapeIDs[20];
for ( size_t iN = 0; iN < nn.size(); ++iN )
shapeIDs[ iN ] = nn[ iN ]->GetShapeID();
SMESH_subMesh* sm = mesh->GetSubMeshContaining( shapeIDs[ 0 ]);
for ( const SMESH_subMesh * smFace : sm->GetAncestors() )
{
if ( smFace->GetSubShape().ShapeType() != TopAbs_FACE )
continue;
faceID = smFace->GetId();
for ( size_t iN = 1; iN < nn.size() && faceID; ++iN )
{
if ( !smFace->DependsOn( shapeIDs[ iN ]))
faceID = 0;
}
if ( faceID > 0 )
break;
}
return faceID;
}
//================================================================================
/*!
* \brief Create mesh faces at free facets
*/
void Hexahedron::addFaces( SMESH_MesherHelper& helper,
const vector< const SMDS_MeshElement* > & boundaryVolumes )
{
if ( !_grid->_toCreateFaces )
return;
SMDS_VolumeTool vTool;
vector<int> bndFacets;
SMESH_MeshEditor editor( helper.GetMesh() );
SMESH_MeshEditor::ElemFeatures face( SMDSAbs_Face );
SMESHDS_Mesh* meshDS = helper.GetMeshDS();
bool isQuantaSet = _grid->_toUseQuanta;
// check if there are internal or shared FACEs
bool hasInternal = ( !_grid->_geometry.IsOneSolid() ||
_grid->_geometry._soleSolid.HasInternalFaces() );
for ( size_t iV = 0; iV < boundaryVolumes.size(); ++iV )
{
if ( !vTool.Set( boundaryVolumes[ iV ]))
continue;
TGeomID solidID = vTool.Element()->GetShapeID();
Solid * solid = _grid->GetOneOfSolids( solidID );
// find boundary facets
bndFacets.clear();
for ( int iF = 0, n = vTool.NbFaces(); iF < n; iF++ )
{
const SMDS_MeshElement* otherVol;
bool isBoundary = isQuantaSet ? vTool.IsFreeFaceCheckAllNodes( iF, &otherVol ) : vTool.IsFreeFace( iF, &otherVol );
if ( isBoundary )
{
bndFacets.push_back( iF );
}
else if (( hasInternal ) ||
( !_grid->IsSolid( otherVol->GetShapeID() )))
{
// check if all nodes are on internal/shared FACEs
isBoundary = true;
const SMDS_MeshNode** nn = vTool.GetFaceNodes( iF );
const size_t nbFaceNodes = vTool.NbFaceNodes ( iF );
for ( size_t iN = 0; iN < nbFaceNodes && isBoundary; ++iN )
isBoundary = ( nn[ iN ]->GetShapeID() != solidID );
if ( isBoundary )
bndFacets.push_back( -( iF+1 )); // !!! minus ==> to check the FACE
}
}
if ( bndFacets.empty() )
continue;
// create faces
if ( !vTool.IsPoly() )
vTool.SetExternalNormal();
for ( size_t i = 0; i < bndFacets.size(); ++i ) // loop on boundary facets
{
const bool isBoundary = ( bndFacets[i] >= 0 );
const int iFacet = isBoundary ? bndFacets[i] : -bndFacets[i]-1;
const SMDS_MeshNode** nn = vTool.GetFaceNodes( iFacet );
const size_t nbFaceNodes = vTool.NbFaceNodes ( iFacet );
face.myNodes.assign( nn, nn + nbFaceNodes );
TGeomID faceID = 0;
const SMDS_MeshElement* existFace = 0, *newFace = 0;
if (( existFace = meshDS->FindElement( face.myNodes, SMDSAbs_Face )))
{
if ( existFace->isMarked() )
continue; // created by this method
faceID = existFace->GetShapeID();
}
else
{
// look for a supporting FACE
for ( size_t iN = 0; iN < nbFaceNodes && !faceID; ++iN ) // look for a node on FACE
{
if ( nn[ iN ]->GetPosition()->GetDim() == 2 )
faceID = nn[ iN ]->GetShapeID();
}
if ( faceID == 0 && !isQuantaSet /*if quanta is set boundary nodes at boundary does not coincide with any geometrical face */ )
faceID = findCommonFace( face.myNodes, helper.GetMesh() );
bool toCheckFace = faceID && (( !isBoundary ) ||
( hasInternal && _grid->_toUseThresholdForInternalFaces ));
if ( toCheckFace ) // check if all nodes are on the found FACE
{
SMESH_subMesh* faceSM = helper.GetMesh()->GetSubMeshContaining( faceID );
for ( size_t iN = 0; iN < nbFaceNodes && faceID; ++iN )
{
TGeomID subID = nn[ iN ]->GetShapeID();
if ( subID != faceID && !faceSM->DependsOn( subID ))
faceID = 0;
}
// if ( !faceID && !isBoundary )
// continue;
}
if ( !faceID && !isBoundary && !isQuantaSet )
continue;
}
// orient a new face according to supporting FACE orientation in shape_to_mesh
if ( !isBoundary && !solid->IsOutsideOriented( faceID ))
{
if ( existFace )
editor.Reorient( existFace );
else
std::reverse( face.myNodes.begin(), face.myNodes.end() );
}
if ( ! ( newFace = existFace ))
{
face.SetPoly( nbFaceNodes > 4 );
newFace = editor.AddElement( face.myNodes, face );
if ( !newFace )
continue;
newFace->setIsMarked( true ); // to distinguish from face created in getBoundaryElems()
}
if ( faceID && _grid->IsBoundaryFace( faceID )) // face is not shared
{
// set newFace to the found FACE provided that it fully lies on the FACE
for ( size_t iN = 0; iN < nbFaceNodes && faceID; ++iN )
if ( nn[iN]->GetShapeID() == solidID )
{
if ( existFace )
meshDS->UnSetMeshElementOnShape( existFace, _grid->Shape( faceID ));
faceID = 0;
}
}
if ( faceID && nbFaceNodes > 4 &&
!_grid->IsInternal( faceID ) &&
!_grid->IsShared( faceID ) &&
!_grid->IsBoundaryFace( faceID ))
{
// split a polygon that will be used by other 3D algorithm
if ( !existFace )
splitPolygon( newFace, vTool, iFacet, faceID, solidID,
face, editor, i+1 < bndFacets.size() );
}
else
{
if ( faceID )
meshDS->SetMeshElementOnShape( newFace, faceID );
else
meshDS->SetMeshElementOnShape( newFace, solidID );
}
} // loop on bndFacets
} // loop on boundaryVolumes
// Orient coherently mesh faces on INTERNAL FACEs
if ( hasInternal )
{
TopExp_Explorer faceExp( _grid->_geometry._mainShape, TopAbs_FACE );
for ( ; faceExp.More(); faceExp.Next() )
{
if ( faceExp.Current().Orientation() != TopAbs_INTERNAL )
continue;
SMESHDS_SubMesh* sm = meshDS->MeshElements( faceExp.Current() );
if ( !sm ) continue;
TIDSortedElemSet facesToOrient;
for ( SMDS_ElemIteratorPtr fIt = sm->GetElements(); fIt->more(); )
facesToOrient.insert( facesToOrient.end(), fIt->next() );
if ( facesToOrient.size() < 2 )
continue;
gp_Dir direction(1,0,0);
TIDSortedElemSet refFaces;
editor.Reorient2D( facesToOrient, direction, refFaces, /*allowNonManifold=*/true );
}
}
return;
}
//================================================================================
/*!
* \brief Create mesh segments.
*/
void Hexahedron::addSegments( SMESH_MesherHelper& helper,
const map< TGeomID, vector< TGeomID > >& edge2faceIDsMap )
{
SMESHDS_Mesh* mesh = helper.GetMeshDS();
std::vector<const SMDS_MeshNode*> nodes;
std::vector<const SMDS_MeshElement *> elems;
map< TGeomID, vector< TGeomID > >::const_iterator e2ff = edge2faceIDsMap.begin();
for ( ; e2ff != edge2faceIDsMap.end(); ++e2ff )
{
const TopoDS_Edge& edge = TopoDS::Edge( _grid->Shape( e2ff->first ));
const TopoDS_Face& face = TopoDS::Face( _grid->Shape( e2ff->second[0] ));
StdMeshers_FaceSide side( face, edge, helper.GetMesh(), /*isFwd=*/true, /*skipMed=*/true );
nodes = side.GetOrderedNodes();
elems.clear();
if ( nodes.size() == 2 )
// check that there is an element connecting two nodes
if ( !mesh->GetElementsByNodes( nodes, elems ))
continue;
for ( size_t i = 1; i < nodes.size(); i++ )
{
if ( mesh->FindEdge( nodes[i-1], nodes[i] ))
continue;
SMDS_MeshElement* segment = mesh->AddEdge( nodes[i-1], nodes[i] );
mesh->SetMeshElementOnShape( segment, e2ff->first );
}
}
return;
}
//================================================================================
/*!
* \brief Return created volumes and volumes that can have free facet because of
* skipped small volume. Also create mesh faces on free facets
* of adjacent not-cut volumes if the result volume is too small.
*/
void Hexahedron::getBoundaryElems( vector< const SMDS_MeshElement* > & boundaryElems )
{
if ( _hasTooSmall /*|| _volumeDefs.IsEmpty()*/ )
{
// create faces around a missing small volume
TGeomID faceID = 0;
SMESH_MeshEditor editor( _grid->_helper->GetMesh() );
SMESH_MeshEditor::ElemFeatures polygon( SMDSAbs_Face );
SMESHDS_Mesh* meshDS = _grid->_helper->GetMeshDS();
std::vector<const SMDS_MeshElement *> adjVolumes(2);
for ( size_t iF = 0; iF < _polygons.size(); ++iF )
{
const size_t nbLinks = _polygons[ iF ]._links.size();
if ( nbLinks != 4 ) continue;
polygon.myNodes.resize( nbLinks );
polygon.myNodes.back() = 0;
for ( size_t iL = 0, iN = nbLinks - 1; iL < nbLinks; ++iL, --iN )
if ( ! ( polygon.myNodes[iN] = _polygons[ iF ]._links[ iL ].FirstNode()->Node() ))
break;
if ( !polygon.myNodes.back() )
continue;
meshDS->GetElementsByNodes( polygon.myNodes, adjVolumes, SMDSAbs_Volume );
if ( adjVolumes.size() != 1 )
continue;
if ( !adjVolumes[0]->isMarked() )
{
boundaryElems.push_back( adjVolumes[0] );
adjVolumes[0]->setIsMarked( true );
}
bool sameShape = true;
TGeomID shapeID = polygon.myNodes[0]->GetShapeID();
for ( size_t i = 1; i < polygon.myNodes.size() && sameShape; ++i )
sameShape = ( shapeID == polygon.myNodes[i]->GetShapeID() );
if ( !sameShape || !_grid->IsSolid( shapeID ))
continue; // some of shapes must be FACE
if ( !faceID )
{
faceID = getAnyFace();
if ( !faceID )
break;
if ( _grid->IsInternal( faceID ) ||
_grid->IsShared( faceID ) //||
//_grid->IsBoundaryFace( faceID ) -- commented for #19887
)
break; // create only if a new face will be used by other 3D algo
}
Solid * solid = _grid->GetOneOfSolids( adjVolumes[0]->GetShapeID() );
if ( !solid->IsOutsideOriented( faceID ))
std::reverse( polygon.myNodes.begin(), polygon.myNodes.end() );
//polygon.SetPoly( polygon.myNodes.size() > 4 );
const SMDS_MeshElement* newFace = editor.AddElement( polygon.myNodes, polygon );
meshDS->SetMeshElementOnShape( newFace, faceID );
}
}
// return created volumes
for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next )
{
if ( volDef ->_volume &&
!volDef->_volume->IsNull() &&
!volDef->_volume->isMarked() )
{
volDef->_volume->setIsMarked( true );
boundaryElems.push_back( volDef->_volume );
if ( _grid->IsToCheckNodePos() ) // un-mark nodes marked in addVolumes()
for ( size_t iN = 0; iN < volDef->_nodes.size(); ++iN )
volDef->_nodes[iN].Node()->setIsMarked( false );
}
if ( volDef->_brotherVolume.size() > 0 )
{
for (auto _bro : volDef->_brotherVolume )
{
_bro->setIsMarked( true );
boundaryElems.push_back( _bro );
}
}
}
}
//================================================================================
/*!
* \brief Remove edges and nodes dividing a hexa side in the case if an adjacent
* volume also sharing the dividing edge is missing due to its small side.
* Issue #19887.
*/
//================================================================================
void Hexahedron::removeExcessSideDivision(const vector< Hexahedron* >& allHexa)
{
if ( ! _volumeDefs.IsPolyhedron() )
return; // not a polyhedron
// look for a divided side adjacent to a small hexahedron
int di[6] = { 0, 0, 0, 0,-1, 1 };
int dj[6] = { 0, 0,-1, 1, 0, 0 };
int dk[6] = {-1, 1, 0, 0, 0, 0 };
for ( int iF = 0; iF < 6; ++iF ) // loop on 6 sides of a hexahedron
{
size_t neighborIndex = _grid->CellIndex( _i + di[iF],
_j + dj[iF],
_k + dk[iF] );
if ( neighborIndex >= allHexa.size() ||
!allHexa[ neighborIndex ] ||
!allHexa[ neighborIndex ]->_hasTooSmall )
continue;
// check if a side is divided into several polygons
for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next )
{
int nbPolygons = 0, nbNodes = 0;
for ( size_t i = 0; i < volDef->_names.size(); ++i )
if ( volDef->_names[ i ] == _hexQuads[ iF ]._name )
{
++nbPolygons;
nbNodes += volDef->_quantities[ i ];
}
if ( nbPolygons < 2 )
continue;
// construct loops from polygons
typedef _volumeDef::_linkDef TLinkDef;
std::vector< TLinkDef* > loops;
std::vector< TLinkDef > links( nbNodes );
for ( size_t i = 0, iN = 0, iLoop = 0; iLoop < volDef->_quantities.size(); ++iLoop )
{
size_t nbLinks = volDef->_quantities[ iLoop ];
if ( volDef->_names[ iLoop ] != _hexQuads[ iF ]._name )
{
iN += nbLinks;
continue;
}
loops.push_back( & links[i] );
for ( size_t n = 0; n < nbLinks-1; ++n, ++i, ++iN )
{
links[i].init( volDef->_nodes[iN], volDef->_nodes[iN+1], iLoop );
links[i].setNext( &links[i+1] );
}
links[i].init( volDef->_nodes[iN], volDef->_nodes[iN-nbLinks+1], iLoop );
links[i].setNext( &links[i-nbLinks+1] );
++i; ++iN;
}
// look for equal links in different loops and join such loops
bool loopsJoined = false;
std::set< TLinkDef > linkSet;
for ( size_t iLoop = 0; iLoop < loops.size(); ++iLoop )
{
TLinkDef* beg = 0;
for ( TLinkDef* l = loops[ iLoop ]; l != beg; l = l->_next ) // walk around the iLoop
{
std::pair< std::set< TLinkDef >::iterator, bool > it2new = linkSet.insert( *l );
if ( !it2new.second ) // equal found, join loops
{
const TLinkDef* equal = &(*it2new.first);
if ( equal->_loopIndex == l->_loopIndex )
continue; // error?
loopsJoined = true;
for ( size_t i = iLoop - 1; i < loops.size(); --i )
if ( loops[ i ] && loops[ i ]->_loopIndex == equal->_loopIndex )
loops[ i ] = 0;
// exclude l and equal and join two loops
if ( l->_prev != equal )
l->_prev->setNext( equal->_next );
if ( equal->_prev != l )
equal->_prev->setNext( l->_next );
if ( volDef->_quantities[ l->_loopIndex ] > 0 )
volDef->_quantities[ l->_loopIndex ] *= -1;
if ( volDef->_quantities[ equal->_loopIndex ] > 0 )
volDef->_quantities[ equal->_loopIndex ] *= -1;
if ( loops[ iLoop ] == l )
loops[ iLoop ] = l->_prev->_next;
}
beg = loops[ iLoop ];
}
}
// update volDef
if ( loopsJoined )
{
// set unchanged polygons
std::vector< int > newQuantities;
std::vector< _volumeDef::_nodeDef > newNodes;
vector< SMESH_Block::TShapeID > newNames;
newQuantities.reserve( volDef->_quantities.size() );
newNodes.reserve ( volDef->_nodes.size() );
newNames.reserve ( volDef->_names.size() );
for ( size_t i = 0, iLoop = 0; iLoop < volDef->_quantities.size(); ++iLoop )
{
if ( volDef->_quantities[ iLoop ] < 0 )
{
i -= volDef->_quantities[ iLoop ];
continue;
}
newQuantities.push_back( volDef->_quantities[ iLoop ]);
newNodes.insert( newNodes.end(),
volDef->_nodes.begin() + i,
volDef->_nodes.begin() + i + newQuantities.back() );
newNames.push_back( volDef->_names[ iLoop ]);
i += volDef->_quantities[ iLoop ];
}
// set joined loops
for ( size_t iLoop = 0; iLoop < loops.size(); ++iLoop )
{
if ( !loops[ iLoop ] )
continue;
newQuantities.push_back( 0 );
TLinkDef* beg = 0;
for ( TLinkDef* l = loops[ iLoop ]; l != beg; l = l->_next, ++newQuantities.back() )
{
newNodes.push_back( l->_node1 );
beg = loops[ iLoop ];
}
newNames.push_back( _hexQuads[ iF ]._name );
}
volDef->_quantities.swap( newQuantities );
volDef->_nodes.swap( newNodes );
volDef->_names.swap( newNames );
}
} // loop on volDef's
} // loop on hex sides
return;
} // removeExcessSideDivision()
//================================================================================
/*!
* \brief Remove nodes splitting Cartesian cell edges in the case if a node
* is used in every cells only by two polygons sharing the edge
* Issue #19887.
*/
//================================================================================
void Hexahedron::removeExcessNodes(vector< Hexahedron* >& allHexa)
{
if ( ! _volumeDefs.IsPolyhedron() )
return; // not a polyhedron
typedef vector< _volumeDef::_nodeDef >::iterator TNodeIt;
vector< int > nodesInPoly[ 4 ]; // node index in _volumeDefs._nodes
vector< int > volDefInd [ 4 ]; // index of a _volumeDefs
Hexahedron* hexa [ 4 ];
int i,j,k, cellIndex, iLink = 0, iCellLink;
for ( int iDir = 0; iDir < 3; ++iDir )
{
CellsAroundLink fourCells( _grid, iDir );
for ( int iL = 0; iL < 4; ++iL, ++iLink ) // 4 links in a direction
{
_Link& link = _hexLinks[ iLink ];
fourCells.Init( _i, _j, _k, iLink );
for ( size_t iP = 0; iP < link._fIntPoints.size(); ++iP ) // loop on nodes on the link
{
bool nodeRemoved = true;
_volumeDef::_nodeDef node; node._intPoint = link._fIntPoints[iP];
for ( size_t i = 0, nb = _volumeDefs.size(); i < nb && nodeRemoved; ++i )
if ( _volumeDef* vol = _volumeDefs.at( i ))
nodeRemoved =
( std::find( vol->_nodes.begin(), vol->_nodes.end(), node ) == vol->_nodes.end() );
if ( nodeRemoved )
continue; // node already removed
// check if a node encounters zero or two times in 4 cells sharing iLink
// if so, the node can be removed from the cells
bool nodeIsOnEdge = true;
int nbPolyhedraWithNode = 0;
for ( int iC = 0; iC < 4; ++iC ) // loop on 4 cells sharing a link
{
nodesInPoly[ iC ].clear();
volDefInd [ iC ].clear();
hexa [ iC ] = 0;
if ( !fourCells.GetCell( iC, i,j,k, cellIndex, iCellLink ))
continue;
hexa[ iC ] = allHexa[ cellIndex ];
if ( !hexa[ iC ])
continue;
for ( size_t i = 0, nb = hexa[ iC ]->_volumeDefs.size(); i < nb; ++i )
if ( _volumeDef* vol = hexa[ iC ]->_volumeDefs.at( i ))
{
for ( TNodeIt nIt = vol->_nodes.begin(); nIt != vol->_nodes.end(); ++nIt )
{
nIt = std::find( nIt, vol->_nodes.end(), node );
if ( nIt != vol->_nodes.end() )
{
nodesInPoly[ iC ].push_back( std::distance( vol->_nodes.begin(), nIt ));
volDefInd [ iC ].push_back( i );
}
else
break;
}
nbPolyhedraWithNode += ( !nodesInPoly[ iC ].empty() );
}
if ( nodesInPoly[ iC ].size() != 0 &&
nodesInPoly[ iC ].size() != 2 )
{
nodeIsOnEdge = false;
break;
}
} // loop on 4 cells
// remove nodes from polyhedra
if ( nbPolyhedraWithNode > 0 && nodeIsOnEdge )
{
for ( int iC = 0; iC < 4; ++iC ) // loop on 4 cells sharing the link
{
if ( nodesInPoly[ iC ].empty() )
continue;
for ( int i = volDefInd[ iC ].size() - 1; i >= 0; --i )
{
_volumeDef* vol = hexa[ iC ]->_volumeDefs.at( volDefInd[ iC ][ i ]);
int nIndex = nodesInPoly[ iC ][ i ];
// decrement _quantities
for ( size_t iQ = 0; iQ < vol->_quantities.size(); ++iQ )
if ( nIndex < vol->_quantities[ iQ ])
{
vol->_quantities[ iQ ]--;
break;
}
else
{
nIndex -= vol->_quantities[ iQ ];
}
vol->_nodes.erase( vol->_nodes.begin() + nodesInPoly[ iC ][ i ]);
if ( i == 0 &&
vol->_nodes.size() == 6 * 4 &&
vol->_quantities.size() == 6 ) // polyhedron becomes hexahedron?
{
bool allQuads = true;
for ( size_t iQ = 0; iQ < vol->_quantities.size() && allQuads; ++iQ )
allQuads = ( vol->_quantities[ iQ ] == 4 );
if ( allQuads )
{
// set side nodes as this: bottom, top, top, ...
int iTop = 0, iBot = 0; // side indices
for ( int iS = 0; iS < 6; ++iS )
{
if ( vol->_names[ iS ] == SMESH_Block::ID_Fxy0 )
iBot = iS;
if ( vol->_names[ iS ] == SMESH_Block::ID_Fxy1 )
iTop = iS;
}
if ( iBot != 0 )
{
if ( iTop == 0 )
{
std::copy( vol->_nodes.begin(),
vol->_nodes.begin() + 4,
vol->_nodes.begin() + 4 );
iTop = 1;
}
std::copy( vol->_nodes.begin() + 4 * iBot,
vol->_nodes.begin() + 4 * ( iBot + 1),
vol->_nodes.begin() );
}
if ( iTop != 1 )
std::copy( vol->_nodes.begin() + 4 * iTop,
vol->_nodes.begin() + 4 * ( iTop + 1),
vol->_nodes.begin() + 4 );
std::copy( vol->_nodes.begin() + 4,
vol->_nodes.begin() + 8,
vol->_nodes.begin() + 8 );
// set up top facet nodes by comparing their uvw with bottom nodes
E_IntersectPoint ip[8];
for ( int iN = 0; iN < 8; ++iN )
{
SMESH_NodeXYZ p = vol->_nodes[ iN ].Node();
_grid->ComputeUVW( p, ip[ iN ]._uvw );
}
const double tol2 = _grid->_tol * _grid->_tol;
for ( int iN = 0; iN < 4; ++iN )
{
gp_Pnt2d pBot( ip[ iN ]._uvw[0], ip[ iN ]._uvw[1] );
for ( int iT = 4; iT < 8; ++iT )
{
gp_Pnt2d pTop( ip[ iT ]._uvw[0], ip[ iT ]._uvw[1] );
if ( pBot.SquareDistance( pTop ) < tol2 )
{
// vol->_nodes[ iN + 4 ]._node = ip[ iT ]._node;
// vol->_nodes[ iN + 4 ]._intPoint = 0;
vol->_nodes[ iN + 4 ] = vol->_nodes[ iT + 4 ];
break;
}
}
}
vol->_nodes.resize( 8 );
vol->_quantities.clear();
//vol->_names.clear();
}
}
} // loop on _volumeDefs
} // loop on 4 cell abound a link
} // if ( nodeIsOnEdge )
} // loop on intersection points of a link
} // loop on 4 links of a direction
} // loop on 3 directions
return;
} // removeExcessNodes()
//================================================================================
/*!
* \brief [Issue #19913] Modify _hexLinks._splits to prevent creating overlapping volumes
*/
//================================================================================
void Hexahedron::preventVolumesOverlapping()
{
// Cut off a quadrangle corner if two links sharing the corner
// are shared by same two solids, in this case each of solids gets
// a triangle for it-self.
std::vector< TGeomID > soIDs[4];
for ( int iF = 0; iF < 6; ++iF ) // loop on 6 sides of a hexahedron
{
_Face& quad = _hexQuads[ iF ] ;
int iFOpposite = iF + ( iF % 2 ? -1 : 1 );
_Face& quadOpp = _hexQuads[ iFOpposite ] ;
int nbSides = 0, nbSidesOpp = 0;
for ( int iE = 0; iE < 4; ++iE ) // loop on 4 sides of a quadrangle
{
nbSides += ( quad._links [ iE ].NbResultLinks() > 0 );
nbSidesOpp += ( quadOpp._links[ iE ].NbResultLinks() > 0 );
}
if ( nbSides < 4 || nbSidesOpp != 2 )
continue;
for ( int iE = 0; iE < 4; ++iE )
{
soIDs[ iE ].clear();
_Node* n = quad._links[ iE ].FirstNode();
if ( n->_intPoint && n->_intPoint->_faceIDs.size() )
soIDs[ iE ] = _grid->GetSolidIDs( n->_intPoint->_faceIDs[0] );
}
if ((( soIDs[0].size() >= 2 ) +
( soIDs[1].size() >= 2 ) +
( soIDs[2].size() >= 2 ) +
( soIDs[3].size() >= 2 ) ) < 3 )
continue;
bool done = false;
for ( int i = 0; i < 4; ++i )
{
int i1 = _grid->_helper->WrapIndex( i + 1, 4 );
int i2 = _grid->_helper->WrapIndex( i + 2, 4 );
int i3 = _grid->_helper->WrapIndex( i + 3, 4 );
if ( soIDs[i1].size() == 2 && soIDs[i ] != soIDs[i1] &&
soIDs[i2].size() == 2 && soIDs[i1] == soIDs[i2] &&
soIDs[i3].size() == 2 && soIDs[i2] == soIDs[i3] )
{
quad._links[ i1 ]._link->_splits.clear();
quad._links[ i2 ]._link->_splits.clear();
done = true;
break;
}
}
if ( done )
break;
}
return;
} // preventVolumesOverlapping()
//================================================================================
/*!
* \brief Set to _hexLinks a next portion of splits located on one side of INTERNAL FACEs
*/
bool Hexahedron::_SplitIterator::Next()
{
if ( _iterationNb > 0 )
// count used splits
for ( size_t i = 0; i < _splits.size(); ++i )
{
if ( _splits[i]._iCheckIteration == _iterationNb )
{
_splits[i]._isUsed = _splits[i]._checkedSplit->_faces[1];
_nbUsed += _splits[i]._isUsed;
}
if ( !More() )
return false;
}
++_iterationNb;
bool toTestUsed = ( _nbChecked >= _splits.size() );
if ( toTestUsed )
{
// all splits are checked; find all not used splits
for ( size_t i = 0; i < _splits.size(); ++i )
if ( !_splits[i].IsCheckedOrUsed( toTestUsed ))
_splits[i]._iCheckIteration = _iterationNb;
_nbUsed = _splits.size(); // to stop iteration
}
else
{
// get any not used/checked split to start from
_freeNodes.clear();
for ( size_t i = 0; i < _splits.size(); ++i )
{
if ( !_splits[i].IsCheckedOrUsed( toTestUsed ))
{
_freeNodes.push_back( _splits[i]._nodes[0] );
_freeNodes.push_back( _splits[i]._nodes[1] );
_splits[i]._iCheckIteration = _iterationNb;
break;
}
}
// find splits connected to the start one via _freeNodes
for ( size_t iN = 0; iN < _freeNodes.size(); ++iN )
{
for ( size_t iS = 0; iS < _splits.size(); ++iS )
{
if ( _splits[iS].IsCheckedOrUsed( toTestUsed ))
continue;
int iN2 = -1;
if ( _freeNodes[iN] == _splits[iS]._nodes[0] )
iN2 = 1;
else if ( _freeNodes[iN] == _splits[iS]._nodes[1] )
iN2 = 0;
else
continue;
if ( _freeNodes[iN]->_isInternalFlags > 0 )
{
if ( _splits[iS]._nodes[ iN2 ]->_isInternalFlags == 0 )
continue;
if ( !_splits[iS]._nodes[ iN2 ]->IsLinked( _freeNodes[iN]->_intPoint ))
continue;
}
_splits[iS]._iCheckIteration = _iterationNb;
_freeNodes.push_back( _splits[iS]._nodes[ iN2 ]);
}
}
}
// set splits to hex links
for ( int iL = 0; iL < 12; ++iL )
_hexLinks[ iL ]._splits.clear();
_Link split;
for ( size_t i = 0; i < _splits.size(); ++i )
{
if ( _splits[i]._iCheckIteration == _iterationNb )
{
split._nodes[0] = _splits[i]._nodes[0];
split._nodes[1] = _splits[i]._nodes[1];
_Link & hexLink = _hexLinks[ _splits[i]._linkID ];
hexLink._splits.push_back( split );
_splits[i]._checkedSplit = & hexLink._splits.back();
++_nbChecked;
}
}
return More();
}
//================================================================================
/*!
* \brief computes exact bounding box with axes parallel to given ones
*/
//================================================================================
void getExactBndBox( const vector< TopoDS_Shape >& faceVec,
const double* axesDirs,
Bnd_Box& shapeBox )
{
BRep_Builder b;
TopoDS_Compound allFacesComp;
b.MakeCompound( allFacesComp );
for ( size_t iF = 0; iF < faceVec.size(); ++iF )
b.Add( allFacesComp, faceVec[ iF ] );
double sP[6]; // aXmin, aYmin, aZmin, aXmax, aYmax, aZmax
shapeBox.Get(sP[0],sP[1],sP[2],sP[3],sP[4],sP[5]);
double farDist = 0;
for ( int i = 0; i < 6; ++i )
farDist = Max( farDist, 10 * sP[i] );
gp_XYZ axis[3] = { gp_XYZ( axesDirs[0], axesDirs[1], axesDirs[2] ),
gp_XYZ( axesDirs[3], axesDirs[4], axesDirs[5] ),
gp_XYZ( axesDirs[6], axesDirs[7], axesDirs[8] ) };
axis[0].Normalize();
axis[1].Normalize();
axis[2].Normalize();
gp_Mat basis( axis[0], axis[1], axis[2] );
gp_Mat bi = basis.Inverted();
gp_Pnt pMin, pMax;
for ( int iDir = 0; iDir < 3; ++iDir )
{
gp_XYZ axis0 = axis[ iDir ];
gp_XYZ axis1 = axis[ ( iDir + 1 ) % 3 ];
gp_XYZ axis2 = axis[ ( iDir + 2 ) % 3 ];
for ( int isMax = 0; isMax < 2; ++isMax )
{
double shift = isMax ? farDist : -farDist;
gp_XYZ orig = shift * axis0;
gp_XYZ norm = axis1 ^ axis2;
gp_Pln pln( orig, norm );
norm = pln.Axis().Direction().XYZ();
BRepBuilderAPI_MakeFace plane( pln, -farDist, farDist, -farDist, farDist );
gp_Pnt& pAxis = isMax ? pMax : pMin;
gp_Pnt pPlane, pFaces;
double dist = GEOMUtils::GetMinDistance( plane, allFacesComp, pPlane, pFaces );
if ( dist < 0 )
{
Bnd_B3d bb;
gp_XYZ corner;
for ( int i = 0; i < 2; ++i ) {
corner.SetCoord( 1, sP[ i*3 ]);
for ( int j = 0; j < 2; ++j ) {
corner.SetCoord( 2, sP[ i*3 + 1 ]);
for ( int k = 0; k < 2; ++k )
{
corner.SetCoord( 3, sP[ i*3 + 2 ]);
corner *= bi;
bb.Add( corner );
}
}
}
corner = isMax ? bb.CornerMax() : bb.CornerMin();
pAxis.SetCoord( iDir+1, corner.Coord( iDir+1 ));
}
else
{
gp_XYZ pf = pFaces.XYZ() * bi;
pAxis.SetCoord( iDir+1, pf.Coord( iDir+1 ) );
}
}
} // loop on 3 axes
shapeBox.SetVoid();
shapeBox.Add( pMin );
shapeBox.Add( pMax );
return;
}
} // namespace
//=============================================================================
/*!
* \brief Generates 3D structured Cartesian mesh in the internal part of
* solid shapes and polyhedral volumes near the shape boundary.
* \param theMesh - mesh to fill in
* \param theShape - a compound of all SOLIDs to mesh
* \retval bool - true in case of success
*/
//=============================================================================
bool StdMeshers_Cartesian_3D::Compute(SMESH_Mesh & theMesh,
const TopoDS_Shape & theShape)
{
if ( _hypViscousLayers )
{
const StdMeshers_ViscousLayers* hypViscousLayers = _hypViscousLayers;
_hypViscousLayers = nullptr;
StdMeshers_Cartesian_VL::ViscousBuilder builder( hypViscousLayers, theMesh, theShape );
std::string error;
TopoDS_Shape offsetShape = builder.MakeOffsetShape( theShape, theMesh, error );
if ( offsetShape.IsNull() )
throw SALOME_Exception( error );
SMESH_Mesh* offsetMesh = new TmpMesh();
offsetMesh->ShapeToMesh( offsetShape );
offsetMesh->GetSubMesh( offsetShape )->DependsOn();
this->_isComputeOffset = true;
if ( ! this->Compute( *offsetMesh, offsetShape ))
return false;
return builder.MakeViscousLayers( *offsetMesh, theMesh, theShape );
}
// The algorithm generates the mesh in following steps:
// 1) Intersection of grid lines with the geometry boundary.
// This step allows to find out if a given node of the initial grid is
// inside or outside the geometry.
// 2) For each cell of the grid, check how many of it's nodes are outside
// of the geometry boundary. Depending on a result of this check
// - skip a cell, if all it's nodes are outside
// - skip a cell, if it is too small according to the size threshold
// - add a hexahedron in the mesh, if all nodes are inside
// - add a polyhedron in the mesh, if some nodes are inside and some outside
_computeCanceled = false;
SMESH_MesherHelper helper( theMesh );
SMESHDS_Mesh* meshDS = theMesh.GetMeshDS();
try
{
Grid grid;
grid._helper = &helper;
grid._toAddEdges = _hyp->GetToAddEdges();
grid._toCreateFaces = _hyp->GetToCreateFaces();
grid._toConsiderInternalFaces = _hyp->GetToConsiderInternalFaces();
grid._toUseThresholdForInternalFaces = _hyp->GetToUseThresholdForInternalFaces();
grid._sizeThreshold = _hyp->GetSizeThreshold();
grid._toUseQuanta = _hyp->GetToUseQuanta();
grid._quanta = _hyp->GetQuanta();
if ( _isComputeOffset )
{
grid._toAddEdges = true;
grid._toCreateFaces = true;
}
grid.InitGeometry( theShape );
vector< TopoDS_Shape > faceVec;
{
TopTools_MapOfShape faceMap;
TopExp_Explorer fExp;
for ( fExp.Init( theShape, TopAbs_FACE ); fExp.More(); fExp.Next() )
{
bool isNewFace = faceMap.Add( fExp.Current() );
if ( !grid._toConsiderInternalFaces )
if ( !isNewFace || fExp.Current().Orientation() == TopAbs_INTERNAL )
// remove an internal face
faceMap.Remove( fExp.Current() );
}
faceVec.reserve( faceMap.Extent() );
faceVec.assign( faceMap.cbegin(), faceMap.cend() );
}
vector<FaceGridIntersector> facesItersectors( faceVec.size() );
Bnd_Box shapeBox;
for ( size_t i = 0; i < faceVec.size(); ++i )
{
facesItersectors[i]._face = TopoDS::Face( faceVec[i] );
facesItersectors[i]._faceID = grid.ShapeID( faceVec[i] );
facesItersectors[i]._grid = &grid;
shapeBox.Add( facesItersectors[i].GetFaceBndBox() );
}
getExactBndBox( faceVec, _hyp->GetAxisDirs(), shapeBox );
vector<double> xCoords, yCoords, zCoords;
_hyp->GetCoordinates( xCoords, yCoords, zCoords, shapeBox );
grid.SetCoordinates( xCoords, yCoords, zCoords, _hyp->GetAxisDirs(), shapeBox );
if ( _computeCanceled ) return false;
#ifdef WITH_TBB
{ // copy partner faces and curves of not thread-safe types
set< const Standard_Transient* > tshapes;
BRepBuilderAPI_Copy copier;
for ( size_t i = 0; i < facesItersectors.size(); ++i )
{
if ( !facesItersectors[i].IsThreadSafe( tshapes ))
{
copier.Perform( facesItersectors[i]._face );
facesItersectors[i]._face = TopoDS::Face( copier );
}
}
}
// Intersection of grid lines with the geometry boundary.
tbb::parallel_for ( tbb::blocked_range<size_t>( 0, facesItersectors.size() ),
ParallelIntersector( facesItersectors ),
tbb::simple_partitioner());
#else
for ( size_t i = 0; i < facesItersectors.size(); ++i )
facesItersectors[i].Intersect();
#endif
// put intersection points onto the GridLine's; this is done after intersection
// to avoid contention of facesItersectors for writing into the same GridLine
// in case of parallel work of facesItersectors
for ( size_t i = 0; i < facesItersectors.size(); ++i )
facesItersectors[i].StoreIntersections();
if ( _computeCanceled ) return false;
// create nodes on the geometry
grid.ComputeNodes( helper );
if ( _computeCanceled ) return false;
// get EDGEs to take into account
map< TGeomID, vector< TGeomID > > edge2faceIDsMap;
grid.GetEdgesToImplement( edge2faceIDsMap, theShape, faceVec );
// create volume elements
Hexahedron hex( &grid );
int nbAdded = hex.MakeElements( helper, edge2faceIDsMap );
if ( nbAdded > 0 )
{
if ( !grid._toConsiderInternalFaces )
{
// make all SOLIDs computed
TopExp_Explorer solidExp( theShape, TopAbs_SOLID );
if ( SMESHDS_SubMesh* sm1 = meshDS->MeshElements( solidExp.Current()) )
{
SMDS_ElemIteratorPtr volIt = sm1->GetElements();
for ( ; solidExp.More() && volIt->more(); solidExp.Next() )
{
const SMDS_MeshElement* vol = volIt->next();
sm1->RemoveElement( vol );
meshDS->SetMeshElementOnShape( vol, solidExp.Current() );
}
}
}
// make other sub-shapes computed
setSubmeshesComputed( theMesh, theShape );
}
// remove free nodes
//if ( SMESHDS_SubMesh * smDS = meshDS->MeshElements( helper.GetSubShapeID() ))
{
std::vector< const SMDS_MeshNode* > nodesToRemove;
// get intersection nodes
for ( int iDir = 0; iDir < 3; ++iDir )
{
vector< GridLine >& lines = grid._lines[ iDir ];
for ( size_t i = 0; i < lines.size(); ++i )
{
multiset< F_IntersectPoint >::iterator ip = lines[i]._intPoints.begin();
for ( ; ip != lines[i]._intPoints.end(); ++ip )
if ( ip->_node &&
!ip->_node->IsNull() &&
ip->_node->NbInverseElements() == 0 &&
!ip->_node->isMarked() )
{
nodesToRemove.push_back( ip->_node );
ip->_node->setIsMarked( true );
}
}
}
// get grid nodes
for ( size_t i = 0; i < grid._nodes.size(); ++i )
if ( grid._nodes[i] &&
!grid._nodes[i]->IsNull() &&
grid._nodes[i]->NbInverseElements() == 0 &&
!grid._nodes[i]->isMarked() )
{
nodesToRemove.push_back( grid._nodes[i] );
grid._nodes[i]->setIsMarked( true );
}
for ( size_t i = 0; i < grid._allBorderNodes.size(); ++i )
if ( grid._allBorderNodes[i] &&
!grid._allBorderNodes[i]->IsNull() &&
grid._allBorderNodes[i]->NbInverseElements() == 0 )
{
nodesToRemove.push_back( grid._allBorderNodes[i] );
grid._allBorderNodes[i]->setIsMarked( true );
}
// do remove
for ( size_t i = 0; i < nodesToRemove.size(); ++i )
meshDS->RemoveFreeNode( nodesToRemove[i], /*smD=*/0, /*fromGroups=*/false );
}
return nbAdded;
}
// SMESH_ComputeError is not caught at SMESH_submesh level for an unknown reason
catch ( SMESH_ComputeError& e)
{
return error( SMESH_ComputeErrorPtr( new SMESH_ComputeError( e )));
}
return false;
}
//=============================================================================
/*!
* Evaluate
*/
//=============================================================================
bool StdMeshers_Cartesian_3D::Evaluate(SMESH_Mesh & /*theMesh*/,
const TopoDS_Shape & /*theShape*/,
MapShapeNbElems& /*theResMap*/)
{
// TODO
// std::vector<int> aResVec(SMDSEntity_Last);
// for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
// if(IsQuadratic) {
// aResVec[SMDSEntity_Quad_Cartesian] = nb2d_face0 * ( nb2d/nb1d );
// int nb1d_face0_int = ( nb2d_face0*4 - nb1d ) / 2;
// aResVec[SMDSEntity_Node] = nb0d_face0 * ( 2*nb2d/nb1d - 1 ) - nb1d_face0_int * nb2d/nb1d;
// }
// else {
// aResVec[SMDSEntity_Node] = nb0d_face0 * ( nb2d/nb1d - 1 );
// aResVec[SMDSEntity_Cartesian] = nb2d_face0 * ( nb2d/nb1d );
// }
// SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
// aResMap.insert(std::make_pair(sm,aResVec));
return true;
}
//=============================================================================
namespace
{
/*!
* \brief Event listener setting/unsetting _alwaysComputed flag to
* submeshes of inferior levels to prevent their computing
*/
struct _EventListener : public SMESH_subMeshEventListener
{
string _algoName;
_EventListener(const string& algoName):
SMESH_subMeshEventListener(/*isDeletable=*/true,"StdMeshers_Cartesian_3D::_EventListener"),
_algoName(algoName)
{}
// --------------------------------------------------------------------------------
// setting/unsetting _alwaysComputed flag to submeshes of inferior levels
//
static void setAlwaysComputed( const bool isComputed,
SMESH_subMesh* subMeshOfSolid)
{
SMESH_subMeshIteratorPtr smIt =
subMeshOfSolid->getDependsOnIterator(/*includeSelf=*/false, /*complexShapeFirst=*/false);
while ( smIt->more() )
{
SMESH_subMesh* sm = smIt->next();
sm->SetIsAlwaysComputed( isComputed );
}
subMeshOfSolid->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
// --------------------------------------------------------------------------------
// unsetting _alwaysComputed flag if "Cartesian_3D" was removed
//
virtual void ProcessEvent(const int /*event*/,
const int eventType,
SMESH_subMesh* subMeshOfSolid,
SMESH_subMeshEventListenerData* /*data*/,
const SMESH_Hypothesis* /*hyp*/ = 0)
{
if ( eventType == SMESH_subMesh::COMPUTE_EVENT )
{
setAlwaysComputed( subMeshOfSolid->GetComputeState() == SMESH_subMesh::COMPUTE_OK,
subMeshOfSolid );
}
else
{
SMESH_Algo* algo3D = subMeshOfSolid->GetAlgo();
if ( !algo3D || _algoName != algo3D->GetName() )
setAlwaysComputed( false, subMeshOfSolid );
}
}
// --------------------------------------------------------------------------------
// set the event listener
//
static void SetOn( SMESH_subMesh* subMeshOfSolid, const string& algoName )
{
subMeshOfSolid->SetEventListener( new _EventListener( algoName ),
/*data=*/0,
subMeshOfSolid );
}
}; // struct _EventListener
} // namespace
//================================================================================
/*!
* \brief Sets event listener to submeshes if necessary
* \param subMesh - submesh where algo is set
* This method is called when a submesh gets HYP_OK algo_state.
* After being set, event listener is notified on each event of a submesh.
*/
//================================================================================
void StdMeshers_Cartesian_3D::SetEventListener(SMESH_subMesh* subMesh)
{
_EventListener::SetOn( subMesh, GetName() );
}
//================================================================================
/*!
* \brief Set _alwaysComputed flag to submeshes of inferior levels to avoid their computing
*/
//================================================================================
void StdMeshers_Cartesian_3D::setSubmeshesComputed(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape)
{
for ( TopExp_Explorer soExp( theShape, TopAbs_SOLID ); soExp.More(); soExp.Next() )
_EventListener::setAlwaysComputed( true, theMesh.GetSubMesh( soExp.Current() ));
}