smesh/src/StdMeshers/StdMeshers_RadialQuadrangle_1D2D.cxx
2022-05-05 16:51:14 +03:00

1283 lines
45 KiB
C++

// Copyright (C) 2007-2022 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_RadialQuadrangle_1D2D.cxx
// Module: SMESH
#include "StdMeshers_RadialQuadrangle_1D2D.hxx"
#include "StdMeshers_NumberOfLayers.hxx"
#include "StdMeshers_LayerDistribution.hxx"
#include "StdMeshers_Regular_1D.hxx"
#include "StdMeshers_NumberOfSegments.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESHDS_SubMesh.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "SMESH_Block.hxx"
#include "utilities.h"
#include <BRepAdaptor_CompCurve.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Line.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <ShapeFix_Edge.hxx>
#include <TColgp_SequenceOfPnt.hxx>
#include <TColgp_SequenceOfPnt2d.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopoDS.hxx>
using namespace std;
#define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; }
#define gpXYZ(n) gp_XYZ(n->X(),n->Y(),n->Z())
//=======================================================================
//function : StdMeshers_RadialQuadrangle_1D2D
//purpose :
//=======================================================================
StdMeshers_RadialQuadrangle_1D2D::StdMeshers_RadialQuadrangle_1D2D(int hypId,
SMESH_Gen* gen)
:StdMeshers_Quadrangle_2D( hypId, gen )
{
_name = "RadialQuadrangle_1D2D";
_shapeType = (1 << TopAbs_FACE); // 1 bit per shape type
_compatibleHypothesis.push_back("LayerDistribution2D");
_compatibleHypothesis.push_back("NumberOfLayers2D");
_requireDiscreteBoundary = false;
_supportSubmeshes = true;
_neededLowerHyps[ 1 ] = true; // suppress warning on hiding a global 1D algo
myNbLayerHypo = 0;
myDistributionHypo = 0;
}
//================================================================================
/*!
* \brief Destructor
*/
//================================================================================
StdMeshers_RadialQuadrangle_1D2D::~StdMeshers_RadialQuadrangle_1D2D()
{}
//=======================================================================
//function : CheckHypothesis
//purpose :
//=======================================================================
bool StdMeshers_RadialQuadrangle_1D2D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
// check aShape
myNbLayerHypo = 0;
myDistributionHypo = 0;
list <const SMESHDS_Hypothesis * >::const_iterator itl;
const list <const SMESHDS_Hypothesis * >&hyps = GetUsedHypothesis(aMesh, aShape);
if ( hyps.size() == 0 ) {
aStatus = SMESH_Hypothesis::HYP_OK;
return true; // can work with no hypothesis
}
if ( hyps.size() > 1 ) {
aStatus = SMESH_Hypothesis::HYP_ALREADY_EXIST;
return false;
}
const SMESHDS_Hypothesis *theHyp = hyps.front();
string hypName = theHyp->GetName();
if (hypName == "NumberOfLayers2D") {
myNbLayerHypo = static_cast<const StdMeshers_NumberOfLayers *>(theHyp);
aStatus = SMESH_Hypothesis::HYP_OK;
return true;
}
if (hypName == "LayerDistribution2D") {
myDistributionHypo = static_cast<const StdMeshers_LayerDistribution *>(theHyp);
aStatus = SMESH_Hypothesis::HYP_OK;
return true;
}
aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE;
return true;
}
namespace
{
// ------------------------------------------------------------------------------
/*!
* \brief Listener used to mark edges meshed by StdMeshers_RadialQuadrangle_1D2D
*/
class TEdgeMarker : public SMESH_subMeshEventListener
{
TEdgeMarker(): SMESH_subMeshEventListener(/*isDeletable=*/false,
"StdMeshers_RadialQuadrangle_1D2D::TEdgeMarker") {}
public:
//!< Return static listener
static SMESH_subMeshEventListener* getListener()
{
static TEdgeMarker theEdgeMarker;
return &theEdgeMarker;
}
//! Clear edge sumbesh if something happens on face
void ProcessEvent(const int /*event*/,
const int eventType,
SMESH_subMesh* /*faceSubMesh*/,
EventListenerData* edgesHolder,
const SMESH_Hypothesis* /*hyp*/)
{
if ( edgesHolder && eventType == SMESH_subMesh::ALGO_EVENT)
{
std::list<SMESH_subMesh*>::iterator smIt = edgesHolder->mySubMeshes.begin();
for ( ; smIt != edgesHolder->mySubMeshes.end(); ++smIt )
{
SMESH_subMesh* edgeSM = *smIt;
edgeSM->ComputeStateEngine( SMESH_subMesh::CLEAN );
}
}
}
//! Store edge SMESH_subMesh'es computed by the algo
static void markEdge( const TopoDS_Edge& edge, SMESH_subMesh* faceSM )
{
if ( SMESH_subMesh* edgeSM = faceSM->GetFather()->GetSubMeshContaining( edge ))
{
EventListenerData* edgesHolder = faceSM->GetEventListenerData( getListener() );
if ( edgesHolder )
{
std::list<SMESH_subMesh*>::iterator smIt = std::find( edgesHolder->mySubMeshes.begin(),
edgesHolder->mySubMeshes.end(),
edgeSM );
if ( smIt == edgesHolder->mySubMeshes.end() )
edgesHolder->mySubMeshes.push_back( edgeSM );
}
else
{
edgesHolder = SMESH_subMeshEventListenerData::MakeData( edgeSM );
faceSM->SetEventListener( TEdgeMarker::getListener(), edgesHolder, faceSM );
}
}
}
};
//================================================================================
/*!
* \brief Return sides of the face connected in the order: aCircEdge, aLinEdge1, aLinEdge2
* \retval int - nb of sides
*/
//================================================================================
int analyseFace(const TopoDS_Shape& aShape,
SMESH_Mesh* aMesh,
StdMeshers_FaceSidePtr& aCircSide,
StdMeshers_FaceSidePtr& aLinSide1,
StdMeshers_FaceSidePtr& aLinSide2,
SMESH_MesherHelper* helper)
{
const TopoDS_Face& face = TopoDS::Face( aShape );
aCircSide.reset(); aLinSide1.reset(); aLinSide2.reset();
list< TopoDS_Edge > edges;
list< int > nbEdgesInWire;
int nbWire = SMESH_Block::GetOrderedEdges ( face, edges, nbEdgesInWire );
if ( nbWire > 2 || nbEdgesInWire.front() < 1 ) return 0;
// remove degenerated EDGEs
TopTools_MapOfShape degenVV;
list<TopoDS_Edge>::iterator edge = edges.begin();
while ( edge != edges.end() )
if ( SMESH_Algo::isDegenerated( *edge ))
{
degenVV.Add( SMESH_MesherHelper::IthVertex( 0, *edge ));
degenVV.Add( SMESH_MesherHelper::IthVertex( 1, *edge ));
edge = edges.erase( edge );
}
else
{
++edge;
}
int nbEdges = edges.size();
// find VERTEXes between continues EDGEs
TopTools_MapOfShape contVV;
if ( nbEdges > 1 )
{
TopoDS_Edge ePrev = edges.back();
for ( edge = edges.begin(); edge != edges.end(); ++edge )
{
if ( SMESH_Algo::IsContinuous( ePrev, *edge ))
contVV.Add( SMESH_MesherHelper::IthVertex( 0, *edge ));
ePrev = *edge;
}
}
// make edges start from a non-continues VERTEX
if ( 1 < contVV.Extent() && contVV.Extent() < nbEdges )
{
while ( contVV.Contains( SMESH_MesherHelper::IthVertex( 0, edges.front() )))
edges.splice( edges.end(), edges, edges.begin() );
}
// make face sides
TSideVector sides;
while ( !edges.empty() )
{
list< TopoDS_Edge > sideEdges;
sideEdges.splice( sideEdges.end(), edges, edges.begin() );
while ( !edges.empty() &&
contVV.Contains( SMESH_MesherHelper::IthVertex( 0, edges.front() )))
sideEdges.splice( sideEdges.end(), edges, edges.begin() );
StdMeshers_FaceSidePtr side;
if ( aMesh )
side = StdMeshers_FaceSide::New( face, sideEdges, aMesh,
/*isFwd=*/true, /*skipMedium=*/ true, helper );
sides.push_back( side );
}
if ( !aMesh ) // call from IsApplicable()
return sides.size();
if ( sides.size() > 3 )
return sides.size();
if ( nbWire == 2 && (( sides.size() != 2 ) ||
( sides[0]->IsClosed() && sides[1]->IsClosed() ) ||
( !sides[0]->IsClosed() && !sides[1]->IsClosed() )))
return -1;
// detect an elliptic side
if ( sides.size() == 1 )
{
aCircSide = sides[0];
return sides.size();
}
// sort sides by deviation from a straight line
multimap< double, int > deviation2sideInd;
const double nbSamples = 7;
for ( size_t iS = 0; iS < sides.size(); ++iS )
{
gp_Pnt pf = BRep_Tool::Pnt( sides[iS]->FirstVertex() );
gp_Pnt pl = BRep_Tool::Pnt( sides[iS]->LastVertex() );
gp_Vec v1( pf, pl );
double v1Len = v1.Magnitude();
if ( v1Len < std::numeric_limits< double >::min() )
{
deviation2sideInd.insert( make_pair( sides[iS]->Length(), iS )); // the side seems closed
continue;
}
double devia = 0;
for ( int i = 0; i < nbSamples; ++i )
{
gp_Pnt pi( sides[iS]->Value3d(( i + 1 ) / nbSamples ));
gp_Vec vi( pf, pi );
double h = 0.5 * v1.Crossed( vi ).Magnitude() / v1Len;
devia = Max( devia, h );
}
deviation2sideInd.insert( make_pair( devia, iS ));
}
double maxDevi = deviation2sideInd.rbegin()->first;
if ( maxDevi < 1e-7 && sides.size() == 3 )
{
// a triangle FACE; use a side with the most outstanding length as an elliptic one
deviation2sideInd.clear();
multimap< double, int > len2sideInd;
for ( size_t iS = 0; iS < sides.size(); ++iS )
len2sideInd.insert( make_pair( sides[iS]->Length(), iS ));
multimap< double, int >::iterator l2i = len2sideInd.begin();
double len0 = l2i->first;
double len1 = (++l2i)->first;
double len2 = (++l2i)->first;
if ( len1 - len0 > len2 - len1 )
deviation2sideInd.insert( std::make_pair( 0., len2sideInd.begin()->second ));
else
deviation2sideInd.insert( std::make_pair( 0., len2sideInd.rbegin()->second ));
}
double minDevi = deviation2sideInd.begin()->first;
int iMinCurv = deviation2sideInd.begin()->second;
if ( sides.size() == 3 && degenVV.Size() == 1 &&
minDevi / sides[ iMinCurv ]->Length() > 1e-3 )
{
// a triangle with curved sides and a degenerated EDGE (IPAL54585);
// use a side opposite to the degenerated EDGE as an elliptic one
for ( size_t iS = 0; iS < sides.size(); ++iS )
if ( degenVV.Contains( sides[ iS ]->FirstVertex() ))
{
deviation2sideInd.clear();
deviation2sideInd.insert( std::make_pair( 0.,( iS + 1 ) % sides.size() ));
break;
}
}
int iCirc = deviation2sideInd.rbegin()->second;
aCircSide = sides[ iCirc ];
aLinSide1 = sides[( iCirc + 1 ) % sides.size() ];
if ( sides.size() > 2 )
{
aLinSide2 = sides[( iCirc + 2 ) % sides.size() ];
aLinSide2->Reverse(); // to be "parallel" to aLinSide1
}
if (( nbWire == 2 && aLinSide1 ) &&
( aLinSide1->Edge(0).Orientation() == TopAbs_INTERNAL ) &&
( aCircSide->IsClosed() ))
{
// assure that aCircSide starts at aLinSide1
TopoDS_Vertex v0 = aLinSide1->FirstVertex();
TopoDS_Vertex v1 = aLinSide1->LastVertex();
if ( ! aCircSide->FirstVertex().IsSame( v0 ) &&
! aCircSide->FirstVertex().IsSame( v1 ))
{
int iE = 0;
for ( ; iE < aCircSide->NbEdges(); ++iE )
if ( aCircSide->FirstVertex(iE).IsSame( v0 ) ||
aCircSide->FirstVertex(iE).IsSame( v1 ))
break;
if ( iE == aCircSide->NbEdges() )
return -2;
edges.clear();
for ( int i = 0; i < aCircSide->NbEdges(); ++i, ++iE )
edges.push_back( aCircSide->Edge( iE % aCircSide->NbEdges() ));
aCircSide = StdMeshers_FaceSide::New( face, edges, aMesh,
/*isFwd=*/true, /*skipMedium=*/ true, helper );
}
}
return sides.size();
}
//================================================================================
/*!
* \brief Checks if the common vertex between LinSide's lies inside the circle
* and not outside
* \return bool - false if there are 3 EDGEs and the corner is outside
*/
//================================================================================
bool isCornerInsideCircle(const StdMeshers_FaceSidePtr& /*CircSide*/,
const StdMeshers_FaceSidePtr& /*LinSide1*/,
const StdMeshers_FaceSidePtr& /*LinSide2*/)
{
// if ( CircSide && LinSide1 && LinSide2 )
// {
// Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircSide ));
// TopoDS_Vertex aCommonV;
// if ( !aCirc.IsNull() &&
// TopExp::CommonVertex( LinSide1, LinSide2, aCommonV ))
// {
// gp_Pnt aCommonP = BRep_Tool::Pnt( aCommonV );
// gp_Pnt aCenter = aCirc->Location();
// double dist = aCenter.Distance( aCommonP );
// return dist < 0.1 * aCirc->Radius();
// }
// }
return true;
}
//================================================================================
/*!
* \brief Create an EDGE connecting the ellipse center with the most distant point
* of the ellipse.
* \param [in] circSide - the elliptic side
* \param [in] face - the FACE
* \param [out] circNode - a node on circSide most distant from the center
* \return TopoDS_Edge - the create EDGE
*/
//================================================================================
TopoDS_Edge makeEdgeToCenter( StdMeshers_FaceSidePtr& circSide,
const TopoDS_Face& face,
const SMDS_MeshNode*& circNode)
{
// find the center and a point most distant from it
double maxDist = 0, normPar = 0;
gp_XY uv1, uv2;
for ( int i = 0; i < 32; ++i )
{
double u = 0.5 * i / 32.;
gp_Pnt2d p1 = circSide->Value2d( u );
gp_Pnt2d p2 = circSide->Value2d( u + 0.5 );
double dist = p1.SquareDistance( p2 );
if ( dist > maxDist )
{
maxDist = dist;
uv1 = p1.XY();
uv2 = p2.XY();
normPar = u;
}
}
gp_XY center = 0.5 * ( uv1 + uv2 );
double len = 0.5 * Sqrt( maxDist );
bool isCirc = ( Abs( len - circSide->Value2d( 0 ).Distance( center )) < 1e-3 * len );
// find a node closest to the most distant point
size_t iDist = 0;
const UVPtStructVec& circNodes = circSide->GetUVPtStruct();
if ( !isCirc )
{
double minDist = 1e100;
for ( size_t i = 0; i <= circNodes.size(); ++i )
{
double dist = Abs( circNodes[i].normParam - normPar );
if ( dist < minDist )
{
iDist = i;
minDist = dist;
}
}
}
circNode = circNodes[iDist].node;
uv1 = circNodes[iDist].UV();
len = ( uv1 - center ).Modulus();
// make the EDGE between the most distant point and the center
Handle(Geom2d_Line) line = new Geom2d_Line( uv1, gp_Dir2d( center - uv1 ) );
Handle(Geom2d_Curve) pcu = new Geom2d_TrimmedCurve( line, 0, len );
Handle(Geom_Surface) surface = BRep_Tool::Surface( face );
TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( pcu, surface, 0, len );
BRep_Builder().UpdateEdge( edge, pcu, face, 1e-7 );
ShapeFix_Edge().FixAddCurve3d( edge );
// assure that circSide starts at circNode
if ( iDist != 0 && iDist != circNodes.size()-1 )
{
// create a new circSide
UVPtStructVec nodesNew;
nodesNew.reserve( circNodes.size() );
nodesNew.insert( nodesNew.end(), circNodes.begin() + iDist, circNodes.end() );
nodesNew.insert( nodesNew.end(), circNodes.begin() + 1, circNodes.begin() + iDist + 1 );
circSide = StdMeshers_FaceSide::New( nodesNew );
}
return edge;
}
//================================================================================
/*!
* \brief Set nodes existing on a linSide to UVPtStructVec and create missing nodes
* corresponding to layerPositions
*/
//================================================================================
void makeMissingMesh( StdMeshers_FaceSidePtr& linSide,
UVPtStructVec& nodes,
const vector< double >& layerPositions,
SMESH_MesherHelper* helper )
{
// tolerance to compare normParam
double tol = 1e100;
for ( size_t i = 1; i < layerPositions.size(); ++i )
tol = Min( tol, layerPositions[i] - layerPositions[i-1] );
tol *= 0.05;
// merge existing nodes with layerPositions into UVPtStructVec
// ------------------------------------------------------------
const UVPtStructVec& exiNodes = linSide->GetUVPtStruct();
nodes.clear();
nodes.reserve( layerPositions.size() + exiNodes.size() );
vector< double >::const_iterator pos = layerPositions.begin(), posEnd = layerPositions.end();
for ( size_t i = 0; i < exiNodes.size(); ++i )
{
switch ( exiNodes[i].node->GetPosition()->GetTypeOfPosition() )
{
case SMDS_TOP_VERTEX:
{
// allocate UVPtStruct's for non-existing nodes
while ( pos != posEnd && *pos < exiNodes[i].normParam - tol )
{
UVPtStruct uvPS;
uvPS.normParam = *pos++;
nodes.push_back( uvPS );
}
// save existing node on a VERTEX
nodes.push_back( exiNodes[i] );
break;
}
case SMDS_TOP_EDGE:
{
// save existing nodes on an EDGE
while ( i < exiNodes.size() && exiNodes[i].node->GetPosition()->GetDim() == 1 )
{
nodes.push_back( exiNodes[i++] );
}
// save existing node on a VERTEX
if ( i < exiNodes.size() && exiNodes[i].node->GetPosition()->GetDim() == 0 )
{
nodes.push_back( exiNodes[i] );
}
break;
}
default:;
}
// skip layer positions covered by saved nodes
while ( pos != posEnd && *pos < nodes.back().normParam + tol )
{
++pos;
}
}
// allocate UVPtStruct's for the rest non-existing nodes
while ( pos != posEnd )
{
UVPtStruct uvPS;
uvPS.normParam = *pos++;
nodes.push_back( uvPS );
}
// create missing nodes
// ---------------------
SMESHDS_Mesh * meshDS = helper->GetMeshDS();
const TopoDS_Face& F = TopoDS::Face( helper->GetSubShape() );
Handle(ShapeAnalysis_Surface) surface = helper->GetSurface( F );
helper->SetElementsOnShape( false ); // we create nodes on EDGEs, not on the FACE
for ( size_t i = 0; i < nodes.size(); ++i )
{
if ( nodes[ i ].node ) continue;
gp_Pnt2d uv = linSide->Value2d( nodes[i].normParam );
gp_Pnt xyz = surface->Value( uv.X(), uv.Y() );
nodes[ i ].SetUV( uv.XY() );
nodes[ i ].node = helper->AddNode( xyz.X(), xyz.Y(), xyz.Z() );
}
// set nodes on VERTEXes
for ( int iE = 0; iE < linSide->NbEdges(); ++iE )
{
TopoDS_Vertex v = linSide->LastVertex( iE );
if ( SMESH_Algo::VertexNode( v, meshDS ))
continue;
double normPar = linSide->LastParameter( iE );
size_t i = 0;
while ( nodes[ i ].normParam < normPar )
++i;
if (( nodes[ i ].normParam - normPar ) > ( normPar - nodes[ i-1 ].normParam ))
--i;
meshDS->SetNodeOnVertex( nodes[ i ].node, v );
}
// set nodes on EDGEs
int edgeID;
for ( size_t i = 0; i < nodes.size(); ++i )
{
if ( nodes[ i ].node->getshapeId() > 0 ) continue;
double u = linSide->Parameter( nodes[i].normParam, edgeID );
meshDS->SetNodeOnEdge( nodes[ i ].node, edgeID, u );
}
// create segments
for ( size_t i = 1; i < nodes.size(); ++i )
{
if ( meshDS->FindEdge( nodes[i].node, nodes[i-1].node )) continue;
const SMDS_MeshElement* seg = helper->AddEdge( nodes[i].node, nodes[i-1].node );
double normParam = 0.5 * ( nodes[i].normParam + nodes[i-1].normParam );
edgeID = linSide->EdgeID( linSide->EdgeIndex( normParam ));
meshDS->SetMeshElementOnShape( seg, edgeID );
}
helper->SetElementsOnShape( true );
} // end makeMissingMesh()
//================================================================================
//================================================================================
/*!
* \brief Class computing layers distribution using data of
* StdMeshers_LayerDistribution hypothesis
*/
//================================================================================
//================================================================================
class TNodeDistributor: public StdMeshers_Regular_1D
{
list <const SMESHDS_Hypothesis *> myUsedHyps;
public:
// -----------------------------------------------------------------------------
static TNodeDistributor* GetDistributor(SMESH_Mesh& aMesh)
{
const int myID = -1001;
TNodeDistributor* myHyp = dynamic_cast<TNodeDistributor*>( aMesh.GetHypothesis( myID ));
if ( !myHyp )
myHyp = new TNodeDistributor( myID, aMesh.GetGen() );
return myHyp;
}
// -----------------------------------------------------------------------------
//! Computes distribution of nodes on a straight line ending at pIn and pOut
bool Compute( vector< double > & positions,
const TopoDS_Edge& edge,
Adaptor3d_Curve& curve,
double f,
double l,
SMESH_Mesh& mesh,
const SMESH_Hypothesis* hyp1d)
{
if ( !hyp1d ) return error( "Invalid LayerDistribution hypothesis");
myUsedHyps.clear();
myUsedHyps.push_back( hyp1d );
SMESH_Hypothesis::Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( mesh, edge, aStatus ))
return error( "StdMeshers_Regular_1D::CheckHypothesis() failed "
"with LayerDistribution hypothesis");
double len = GCPnts_AbscissaPoint::Length( curve, f, l );
list< double > params;
if ( !StdMeshers_Regular_1D::computeInternalParameters( mesh, curve, len, f, l, params, false ))
return error("StdMeshers_Regular_1D failed to compute layers distribution");
params.push_front( f );
params.push_back ( l );
positions.clear();
positions.reserve( params.size() );
for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++)
positions.push_back(( *itU - f ) / ( l - f ));
return true;
}
// -----------------------------------------------------------------------------
//! Make mesh on an edge using assigned 1d hyp or default nb of segments
bool ComputeCircularEdge( SMESH_Mesh& aMesh,
const StdMeshers_FaceSidePtr& aSide )
{
bool ok = true;
for ( int i = 0; i < aSide->NbEdges(); ++i )
{
const TopoDS_Edge& edge = aSide->Edge( i );
_gen->Compute( aMesh, edge );
SMESH_subMesh *sm = aMesh.GetSubMesh( edge );
if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK)
{
// find any 1d hyp assigned (there can be a hyp w/o algo)
myUsedHyps = SMESH_Algo::GetUsedHypothesis( aMesh, edge, /*ignoreAux=*/true );
Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, edge, aStatus ))
{
// no valid 1d hyp assigned, use default nb of segments
_hypType = NB_SEGMENTS;
_ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular;
_ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments();
}
ok &= StdMeshers_Regular_1D::Compute( aMesh, edge );
}
}
return ok;
}
// -----------------------------------------------------------------------------
//! Make mesh on an edge using assigned 1d hyp or default nb of segments
bool EvaluateCircularEdge(SMESH_Mesh& aMesh,
const StdMeshers_FaceSidePtr aSide,
MapShapeNbElems& aResMap)
{
bool ok = true;
for ( int i = 0; i < aSide->NbEdges(); ++i )
{
const TopoDS_Edge& anEdge = aSide->Edge( i );
_gen->Evaluate( aMesh, anEdge, aResMap );
if ( aResMap.count( aMesh.GetSubMesh( anEdge )))
continue;
// find any 1d hyp assigned
myUsedHyps = SMESH_Algo::GetUsedHypothesis(aMesh, anEdge, /*ignoreAux=*/true);
Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, anEdge, aStatus ))
{
// no valid 1d hyp assigned, use default nb of segments
_hypType = NB_SEGMENTS;
_ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular;
_ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments();
}
ok &= StdMeshers_Regular_1D::Evaluate( aMesh, anEdge, aResMap );
}
return ok;
}
protected:
// -----------------------------------------------------------------------------
TNodeDistributor( int hypId, SMESH_Gen* gen)
: StdMeshers_Regular_1D( hypId, gen)
{
}
// -----------------------------------------------------------------------------
virtual const list <const SMESHDS_Hypothesis *> &
GetUsedHypothesis(SMESH_Mesh &, const TopoDS_Shape &, const bool)
{
return myUsedHyps;
}
// -----------------------------------------------------------------------------
};
}
//=======================================================================
/*!
* \brief Allow algo to do something after persistent restoration
* \param subMesh - restored submesh
*
* call TEdgeMarker::markEdge()
*/
//=======================================================================
void StdMeshers_RadialQuadrangle_1D2D::SubmeshRestored(SMESH_subMesh* faceSubMesh)
{
if ( !faceSubMesh->IsEmpty() )
SetEventListener( faceSubMesh );
}
//=======================================================================
/*!
* \brief Sets event listener to a submesh
* \param subMesh - submesh where algo is set
*
* This method is called when a submesh gets HYP_OK algo_state.
*/
//=======================================================================
void StdMeshers_RadialQuadrangle_1D2D::SetEventListener(SMESH_subMesh* faceSubMesh)
{
for ( TopExp_Explorer e( faceSubMesh->GetSubShape(), TopAbs_EDGE ); e.More(); e.Next() )
{
TEdgeMarker::markEdge( TopoDS::Edge( e.Current() ), faceSubMesh );
}
}
//=======================================================================
//function : Compute
//purpose :
//=======================================================================
bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape)
{
SMESH_MesherHelper helper( aMesh );
StdMeshers_Quadrangle_2D::myHelper = & helper;
StdMeshers_Quadrangle_2D::myNeedSmooth = false;
StdMeshers_Quadrangle_2D::myCheckOri = false;
StdMeshers_Quadrangle_2D::myQuadList.clear();
myHelper->SetSubShape( aShape );
myHelper->SetElementsOnShape( true );
StdMeshers_FaceSidePtr circSide, linSide1, linSide2;
int nbSides = analyseFace( aShape, &aMesh, circSide, linSide1, linSide2, myHelper );
if( nbSides > 3 || nbSides < 1 )
return error("The face must be a full ellipse or a part of ellipse (i.e. the number "
"of edges is less or equal to 3 and one of them is an ellipse curve)");
// get not yet computed EDGEs
list< TopoDS_Edge > emptyEdges;
for ( TopExp_Explorer e( aShape, TopAbs_EDGE ); e.More(); e.Next() )
{
if ( aMesh.GetSubMesh( e.Current() )->IsEmpty() )
emptyEdges.push_back( TopoDS::Edge( e.Current() ));
}
TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh);
if ( !algo1d->ComputeCircularEdge( aMesh, circSide ))
return error( algo1d->GetComputeError() );
TopoDS_Face F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
myHelper->IsQuadraticSubMesh( aShape );
vector< double > layerPositions; // [0,1]
const SMDS_MeshNode* centerNode = 0;
gp_Pnt2d centerUV(0,0);
// ------------------------------------------------------------------------------------------
if ( nbSides == 1 ) // full ellipse
{
const SMDS_MeshNode* circNode;
TopoDS_Edge linEdge = makeEdgeToCenter( circSide, F, circNode );
StdMeshers_FaceSidePtr tmpSide =
StdMeshers_FaceSide::New( F, linEdge, &aMesh, /*isFrw=*/true, /*skipMedium=*/true, myHelper );
if ( !computeLayerPositions( tmpSide, layerPositions ))
return false;
UVPtStructVec nodes( layerPositions.size() );
nodes[0].node = circNode;
for ( size_t i = 0; i < layerPositions.size(); ++i )
{
gp_Pnt2d uv = tmpSide->Value2d( layerPositions[i] );
gp_Pnt xyz = S->Value( uv.X(), uv.Y() );
nodes[ i ].SetUV( uv.XY() );
nodes[ i ].normParam = layerPositions[i];
if ( i )
nodes[ i ].node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, uv.X(), uv.Y() );
}
linSide1 = StdMeshers_FaceSide::New( nodes );
linSide2 = StdMeshers_FaceSide::New( nodes );
centerNode = nodes.back().node;
centerUV = nodes.back().UV();
}
// ------------------------------------------------------------------------------------------
else if ( nbSides == 2 && linSide1->Edge(0).Orientation() == TopAbs_INTERNAL )
{
// full ellipse with an internal radial side
// eliminate INTERNAL orientation
list< TopoDS_Edge > edges;
for ( int iE = 0; iE < linSide1->NbEdges(); ++iE )
{
edges.push_back( linSide1->Edge( iE ));
edges.back().Orientation( TopAbs_FORWARD );
}
// orient the internal side
bool isVIn0Shared = false;
TopoDS_Vertex vIn0 = myHelper->IthVertex( 0, edges.front() );
for ( int iE = 0; iE < circSide->NbEdges() && !isVIn0Shared; ++iE )
isVIn0Shared = vIn0.IsSame( circSide->FirstVertex( iE ));
linSide1 = StdMeshers_FaceSide::New( F, edges, &aMesh,
/*isFrw=*/isVIn0Shared, /*skipMedium=*/true, myHelper );
int nbMeshedEdges;
if ( !computeLayerPositions( linSide1, layerPositions, &nbMeshedEdges ))
return false;
// merge existing nodes with new nodes at layerPositions into a UVPtStructVec
UVPtStructVec nodes;
if ( nbMeshedEdges != linSide1->NbEdges() )
makeMissingMesh( linSide1, nodes, layerPositions, myHelper );
else
nodes = linSide1->GetUVPtStruct();
linSide1 = StdMeshers_FaceSide::New( nodes );
linSide2 = StdMeshers_FaceSide::New( nodes );
centerNode = nodes.back().node;
centerUV = nodes.back().UV();
}
// ------------------------------------------------------------------------------------------
else if ( nbSides == 2 )
{
// find positions of layers for the first half of linSide1
int nbMeshedEdges;
if ( !computeLayerPositions( linSide1, layerPositions, &nbMeshedEdges, /*useHalf=*/true ))
return false;
// make positions for the whole linSide1
for ( size_t i = 0; i < layerPositions.size(); ++i )
{
layerPositions[i] *= 0.5;
}
layerPositions.reserve( layerPositions.size() * 2 );
for ( int nb = layerPositions.size()-1; nb > 0; --nb )
layerPositions.push_back( layerPositions.back() + layerPositions[nb] - layerPositions[nb-1] );
// merge existing nodes with new nodes at layerPositions into a UVPtStructVec
UVPtStructVec nodes;
if ( nbMeshedEdges != linSide1->NbEdges() )
makeMissingMesh( linSide1, nodes, layerPositions, myHelper );
else
nodes = linSide1->GetUVPtStruct();
// find a central node
size_t i = 0;
while ( nodes[ i ].normParam < 0.5 ) ++i;
if (( nodes[ i ].normParam - 0.5 ) > ( 0.5 - nodes[ i-1 ].normParam )) --i;
// distribute nodes between two linear sides
UVPtStructVec nodes2( nodes.rbegin(), nodes.rbegin() + nodes.size() - i );
nodes.resize( i + 1 );
linSide1 = StdMeshers_FaceSide::New( nodes );
linSide2 = StdMeshers_FaceSide::New( nodes2 );
centerNode = nodes.back().node;
centerUV = nodes.back().UV();
}
// ------------------------------------------------------------------------------------------
else // nbSides == 3
{
// one curve must be a part of ellipse and 2 other curves must be segments of line
int nbMeshedEdges1, nbMeshedEdges2;
vector< double > layerPositions2;
bool ok1 = computeLayerPositions( linSide1, layerPositions, &nbMeshedEdges1 );
bool ok2 = computeLayerPositions( linSide2, layerPositions2, &nbMeshedEdges2 );
if ( !ok1 && !ok2 )
return false;
bool linSide1Computed = ( nbMeshedEdges1 == linSide1->NbEdges() );
bool linSide2Computed = ( nbMeshedEdges2 == linSide2->NbEdges() );
UVPtStructVec nodes;
if ( linSide1Computed && !linSide2Computed )
{
// use layer positions of linSide1 to mesh linSide2
makeMissingMesh( linSide2, nodes, layerPositions, myHelper );
linSide2 = StdMeshers_FaceSide::New( nodes );
}
else if ( linSide2Computed && !linSide1Computed )
{
// use layer positions of linSide2 to mesh linSide1
makeMissingMesh( linSide1, nodes, layerPositions2, myHelper );
linSide1 = StdMeshers_FaceSide::New( nodes );
}
else if ( !linSide2Computed && !linSide1Computed )
{
// use layer positions of a longer side to mesh the shorter side
vector< double >& lp =
( linSide1->Length() > linSide2->Length() ) ? layerPositions : layerPositions2;
makeMissingMesh( linSide1, nodes, lp, myHelper );
linSide1 = StdMeshers_FaceSide::New( nodes );
makeMissingMesh( linSide2, nodes, lp, myHelper );
linSide2 = StdMeshers_FaceSide::New( nodes );
}
const UVPtStructVec& nodes2 = linSide2->GetUVPtStruct();
centerNode = nodes2.back().node;
centerUV = nodes2.back().UV();
}
list< TopoDS_Edge >::iterator ee = emptyEdges.begin();
for ( ; ee != emptyEdges.end(); ++ee )
TEdgeMarker::markEdge( *ee, aMesh.GetSubMesh( F ));
circSide->GetUVPtStruct(); // let sides take into account just computed nodes
linSide1->GetUVPtStruct();
linSide2->GetUVPtStruct();
FaceQuadStruct::Ptr quad( new FaceQuadStruct );
quad->side.resize( 4 );
quad->side[0] = circSide;
quad->side[1] = linSide1;
quad->side[2] = StdMeshers_FaceSide::New( circSide.get(), centerNode, &centerUV );
quad->side[3] = linSide2;
quad->face = F;
myQuadList.push_back( quad );
// create quadrangles
bool ok;
if ( linSide1->NbPoints() == linSide2->NbPoints() )
ok = StdMeshers_Quadrangle_2D::computeQuadDominant( aMesh, F, quad );
else
ok = StdMeshers_Quadrangle_2D::computeTriangles( aMesh, F, quad );
if ( helper.HasDegeneratedEdges() )
{
StdMeshers_Quadrangle_2D::myNeedSmooth = true;
StdMeshers_Quadrangle_2D::smooth( quad );
}
StdMeshers_Quadrangle_2D::myHelper = 0;
return ok;
}
//================================================================================
/*!
* \brief Compute nodes on the radial edge
* \retval int - nb of segments on the linSide
*/
//================================================================================
int StdMeshers_RadialQuadrangle_1D2D::computeLayerPositions(StdMeshers_FaceSidePtr linSide,
vector< double > & positions,
int* nbMeshedEdges,
bool useHalf)
{
// First, try to compute positions of layers
positions.clear();
SMESH_Mesh * mesh = myHelper->GetMesh();
const SMESH_Hypothesis* hyp1D = myDistributionHypo ? myDistributionHypo->GetLayerDistribution() : 0;
int nbLayers = myNbLayerHypo ? myNbLayerHypo->GetNumberOfLayers() : 0;
if ( !hyp1D && !nbLayers )
{
// No own algo hypotheses assigned, so first try to find any 1D hypothesis.
// find a hyp usable by TNodeDistributor
TopoDS_Shape edge = linSide->Edge(0);
const SMESH_HypoFilter* hypKind =
TNodeDistributor::GetDistributor(*mesh)->GetCompatibleHypoFilter(/*ignoreAux=*/true);
hyp1D = mesh->GetHypothesis( edge, *hypKind, /*fromAncestors=*/true);
}
if ( hyp1D ) // try to compute with hyp1D
{
BRepAdaptor_CompCurve* curve = linSide->GetCurve3d();
SMESHUtils::Deleter< BRepAdaptor_CompCurve > delCurve( curve );
double f = curve->FirstParameter();
double l = curve->LastParameter();
if ( useHalf )
l = 0.5 * ( f + l ); // first part of linSide is used
if ( !TNodeDistributor::GetDistributor(*mesh)->Compute( positions, linSide->Edge(0),
*curve, f, l, *mesh, hyp1D ))
{
if ( myDistributionHypo ) { // bad hyp assigned
return error( TNodeDistributor::GetDistributor(*mesh)->GetComputeError() );
}
else {
// bad hyp found, its Ok, lets try with default nb of segments
}
}
}
if ( positions.empty() ) // try to use nb of layers
{
if ( !nbLayers )
nbLayers = _gen->GetDefaultNbSegments();
if ( nbLayers )
{
positions.resize( nbLayers + 1 );
for ( int z = 0; z < nbLayers; ++z )
positions[ z ] = double( z )/ double( nbLayers );
positions.back() = 1;
}
}
// Second, check presence of a mesh built by other algo on linSide
int nbEdgesComputed = 0;
for ( int i = 0; i < linSide->NbEdges(); ++i )
{
nbEdgesComputed += ( !mesh->GetSubMesh( linSide->Edge(i))->IsEmpty() );
}
if ( nbEdgesComputed == linSide->NbEdges() )
{
const UVPtStructVec& points = linSide->GetUVPtStruct();
if ( points.size() >= 2 )
{
positions.resize( points.size() );
for ( size_t i = 0; i < points.size(); ++i )
positions[ i ] = points[i].normParam;
}
}
if ( nbMeshedEdges ) *nbMeshedEdges = nbEdgesComputed;
return positions.size();
}
//=======================================================================
//function : Evaluate
//purpose :
//=======================================================================
bool StdMeshers_RadialQuadrangle_1D2D::Evaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
MapShapeNbElems& aResMap)
{
if( aShape.ShapeType() != TopAbs_FACE ) {
return false;
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
if( aResMap.count(sm) )
return false;
vector<smIdType>& aResVec =
aResMap.insert( make_pair(sm, vector<smIdType>(SMDSEntity_Last,0))).first->second;
myHelper = new SMESH_MesherHelper( aMesh );
myHelper->SetSubShape( aShape );
SMESHUtils::Deleter<SMESH_MesherHelper> helperDeleter( myHelper );
TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh);
StdMeshers_FaceSidePtr circSide, linSide1, linSide2;
int nbSides = analyseFace( aShape, &aMesh, circSide, linSide1, linSide2, myHelper );
if( nbSides > 3 || nbSides < 1 )
return false;
if ( algo1d->EvaluateCircularEdge( aMesh, circSide, aResMap ))
return false;
vector< double > layerPositions; // [0,1]
// ------------------------------------------------------------------------------------------
if ( nbSides == 1 )
{
const TopoDS_Face& F = TopoDS::Face( aShape );
const SMDS_MeshNode* circNode;
TopoDS_Edge linEdge = makeEdgeToCenter( circSide, F, circNode );
StdMeshers_FaceSidePtr tmpSide =
StdMeshers_FaceSide::New( F, linEdge, &aMesh, /*isFrw=*/true, /*skipMedium=*/true, myHelper );
if ( !computeLayerPositions( tmpSide, layerPositions ))
return false;
}
// ------------------------------------------------------------------------------------------
else if ( nbSides == 2 && linSide1->Edge(0).Orientation() == TopAbs_INTERNAL )
{
if ( !computeLayerPositions( linSide1, layerPositions ))
return false;
}
// ------------------------------------------------------------------------------------------
else if ( nbSides == 2 )
{
// find positions of layers for the first half of linSide1
if ( !computeLayerPositions( linSide1, layerPositions, 0, /*useHalf=*/true ))
return false;
}
// ------------------------------------------------------------------------------------------
else // nbSides == 3
{
if ( !computeLayerPositions(( linSide1->Length() > linSide2->Length() ) ? linSide1 : linSide2,
layerPositions ))
return false;
}
bool isQuadratic = false;
for ( TopExp_Explorer edge( aShape, TopAbs_EDGE ); edge.More() && !isQuadratic ; edge.Next() )
{
sm = aMesh.GetSubMesh( edge.Current() );
vector<smIdType>& nbElems = aResMap[ sm ];
if ( SMDSEntity_Quad_Edge < (int) nbElems.size() )
isQuadratic = nbElems[ SMDSEntity_Quad_Edge ];
}
smIdType nbCircSegments = 0;
for ( int iE = 0; iE < circSide->NbEdges(); ++iE )
{
sm = aMesh.GetSubMesh( circSide->Edge( iE ));
vector<smIdType>& nbElems = aResMap[ sm ];
if ( SMDSEntity_Quad_Edge < (int) nbElems.size() )
nbCircSegments += ( nbElems[ SMDSEntity_Edge ] + nbElems[ SMDSEntity_Quad_Edge ]);
}
smIdType nbQuads = nbCircSegments * ( layerPositions.size() - 1 );
smIdType nbTria = nbCircSegments;
smIdType nbNodes = ( nbCircSegments - 1 ) * ( layerPositions.size() - 2 );
if ( isQuadratic )
{
nbNodes += (( nbCircSegments - 1 ) * ( layerPositions.size() - 1 ) + // radial
( nbCircSegments ) * ( layerPositions.size() - 2 )); // circular
aResVec[SMDSEntity_Quad_Triangle ] = nbTria;
aResVec[SMDSEntity_Quad_Quadrangle] = nbQuads;
}
else
{
aResVec[SMDSEntity_Triangle ] = nbTria;
aResVec[SMDSEntity_Quadrangle] = nbQuads;
}
aResVec[SMDSEntity_Node] = nbNodes;
if ( linSide1 )
{
// evaluation for linSides
vector<smIdType> aResVec(SMDSEntity_Last, 0);
if ( isQuadratic ) {
aResVec[SMDSEntity_Node ] = 2 * ( layerPositions.size() - 1 ) + 1;
aResVec[SMDSEntity_Quad_Edge] = layerPositions.size() - 1;
}
else {
aResVec[SMDSEntity_Node] = layerPositions.size() - 2;
aResVec[SMDSEntity_Edge] = layerPositions.size() - 1;
}
sm = aMesh.GetSubMesh( linSide1->Edge(0) );
aResMap[sm] = aResVec;
if ( linSide2 )
{
sm = aMesh.GetSubMesh( linSide2->Edge(0) );
aResMap[sm] = aResVec;
}
}
return true;
}
//================================================================================
/*!
* \brief Return true if the algorithm can compute mesh on this shape
*/
//================================================================================
bool StdMeshers_RadialQuadrangle_1D2D::IsApplicable( const TopoDS_Shape & aShape, bool toCheckAll )
{
int nbFoundFaces = 0;
for (TopExp_Explorer exp( aShape, TopAbs_FACE ); exp.More(); exp.Next(), ++nbFoundFaces )
{
StdMeshers_FaceSidePtr circSide, linSide1, linSide2;
int nbSides = analyseFace( exp.Current(), NULL, circSide, linSide1, linSide2, NULL );
bool ok = ( 0 < nbSides && nbSides <= 3 &&
isCornerInsideCircle( circSide, linSide1, linSide2 ));
if( toCheckAll && !ok ) return false;
if( !toCheckAll && ok ) return true;
}
if( toCheckAll && nbFoundFaces != 0 ) return true;
return false;
}