mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-03-25 20:47:54 +05:00
4357 lines
196 KiB
Python
4357 lines
196 KiB
Python
# Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
#
|
|
# This library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License.
|
|
#
|
|
# This library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with this library; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
#
|
|
# File : smesh.py
|
|
# Author : Francis KLOSS, OCC
|
|
# Module : SMESH
|
|
|
|
"""
|
|
\namespace smesh
|
|
\brief Module smesh
|
|
"""
|
|
|
|
## @defgroup l1_auxiliary Auxiliary methods and structures
|
|
## @defgroup l1_creating Creating meshes
|
|
## @{
|
|
## @defgroup l2_impexp Importing and exporting meshes
|
|
## @defgroup l2_construct Constructing meshes
|
|
## @defgroup l2_algorithms Defining Algorithms
|
|
## @{
|
|
## @defgroup l3_algos_basic Basic meshing algorithms
|
|
## @defgroup l3_algos_proj Projection Algorithms
|
|
## @defgroup l3_algos_radialp Radial Prism
|
|
## @defgroup l3_algos_segmarv Segments around Vertex
|
|
## @defgroup l3_algos_3dextr 3D extrusion meshing algorithm
|
|
|
|
## @}
|
|
## @defgroup l2_hypotheses Defining hypotheses
|
|
## @{
|
|
## @defgroup l3_hypos_1dhyps 1D Meshing Hypotheses
|
|
## @defgroup l3_hypos_2dhyps 2D Meshing Hypotheses
|
|
## @defgroup l3_hypos_maxvol Max Element Volume hypothesis
|
|
## @defgroup l3_hypos_netgen Netgen 2D and 3D hypotheses
|
|
## @defgroup l3_hypos_ghs3dh GHS3D Parameters hypothesis
|
|
## @defgroup l3_hypos_blsurf BLSURF Parameters hypothesis
|
|
## @defgroup l3_hypos_hexotic Hexotic Parameters hypothesis
|
|
## @defgroup l3_hypos_quad Quadrangle Parameters hypothesis
|
|
## @defgroup l3_hypos_additi Additional Hypotheses
|
|
|
|
## @}
|
|
## @defgroup l2_submeshes Constructing submeshes
|
|
## @defgroup l2_compounds Building Compounds
|
|
## @defgroup l2_editing Editing Meshes
|
|
|
|
## @}
|
|
## @defgroup l1_meshinfo Mesh Information
|
|
## @defgroup l1_controls Quality controls and Filtering
|
|
## @defgroup l1_grouping Grouping elements
|
|
## @{
|
|
## @defgroup l2_grps_create Creating groups
|
|
## @defgroup l2_grps_edit Editing groups
|
|
## @defgroup l2_grps_operon Using operations on groups
|
|
## @defgroup l2_grps_delete Deleting Groups
|
|
|
|
## @}
|
|
## @defgroup l1_modifying Modifying meshes
|
|
## @{
|
|
## @defgroup l2_modif_add Adding nodes and elements
|
|
## @defgroup l2_modif_del Removing nodes and elements
|
|
## @defgroup l2_modif_edit Modifying nodes and elements
|
|
## @defgroup l2_modif_renumber Renumbering nodes and elements
|
|
## @defgroup l2_modif_trsf Transforming meshes (Translation, Rotation, Symmetry, Sewing, Merging)
|
|
## @defgroup l2_modif_movenode Moving nodes
|
|
## @defgroup l2_modif_throughp Mesh through point
|
|
## @defgroup l2_modif_invdiag Diagonal inversion of elements
|
|
## @defgroup l2_modif_unitetri Uniting triangles
|
|
## @defgroup l2_modif_changori Changing orientation of elements
|
|
## @defgroup l2_modif_cutquadr Cutting quadrangles
|
|
## @defgroup l2_modif_smooth Smoothing
|
|
## @defgroup l2_modif_extrurev Extrusion and Revolution
|
|
## @defgroup l2_modif_patterns Pattern mapping
|
|
## @defgroup l2_modif_tofromqu Convert to/from Quadratic Mesh
|
|
|
|
## @}
|
|
## @defgroup l1_measurements Measurements
|
|
|
|
import salome
|
|
import geompyDC
|
|
|
|
import SMESH # This is necessary for back compatibility
|
|
from SMESH import *
|
|
|
|
import SALOME
|
|
import SALOMEDS
|
|
|
|
## @addtogroup l1_auxiliary
|
|
## @{
|
|
|
|
# MirrorType enumeration
|
|
POINT = SMESH_MeshEditor.POINT
|
|
AXIS = SMESH_MeshEditor.AXIS
|
|
PLANE = SMESH_MeshEditor.PLANE
|
|
|
|
# Smooth_Method enumeration
|
|
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
|
|
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
|
|
|
|
PrecisionConfusion = 1e-07
|
|
|
|
# TopAbs_State enumeration
|
|
[TopAbs_IN, TopAbs_OUT, TopAbs_ON, TopAbs_UNKNOWN] = range(4)
|
|
|
|
# Methods of splitting a hexahedron into tetrahedra
|
|
Hex_5Tet, Hex_6Tet, Hex_24Tet = 1, 2, 3
|
|
|
|
## Converts an angle from degrees to radians
|
|
def DegreesToRadians(AngleInDegrees):
|
|
from math import pi
|
|
return AngleInDegrees * pi / 180.0
|
|
|
|
import salome_notebook
|
|
notebook = salome_notebook.notebook
|
|
# Salome notebook variable separator
|
|
var_separator = ":"
|
|
|
|
## Return list of variable values from salome notebook.
|
|
# The last argument, if is callable, is used to modify values got from notebook
|
|
def ParseParameters(*args):
|
|
Result = []
|
|
Parameters = ""
|
|
varModifFun=None
|
|
if args and callable( args[-1] ):
|
|
args, varModifFun = args[:-1], args[-1]
|
|
for parameter in args:
|
|
|
|
Parameters += str(parameter) + var_separator
|
|
|
|
if isinstance(parameter,str):
|
|
# check if there is an inexistent variable name
|
|
if not notebook.isVariable(parameter):
|
|
raise ValueError, "Variable with name '" + parameter + "' doesn't exist!!!"
|
|
parameter = notebook.get(parameter)
|
|
if varModifFun:
|
|
parameter = varModifFun(parameter)
|
|
pass
|
|
pass
|
|
Result.append(parameter)
|
|
|
|
pass
|
|
Parameters = Parameters[:-1]
|
|
Result.append( Parameters )
|
|
return Result
|
|
|
|
# Parse parameters converting variables to radians
|
|
def ParseAngles(*args):
|
|
return ParseParameters( *( args + (DegreesToRadians, )))
|
|
|
|
# Substitute PointStruct.__init__() to create SMESH.PointStruct using notebook variables.
|
|
# Parameters are stored in PointStruct.parameters attribute
|
|
def __initPointStruct(point,*args):
|
|
point.x, point.y, point.z, point.parameters = ParseParameters(*args)
|
|
pass
|
|
SMESH.PointStruct.__init__ = __initPointStruct
|
|
|
|
# Substitute AxisStruct.__init__() to create SMESH.AxisStruct using notebook variables.
|
|
# Parameters are stored in AxisStruct.parameters attribute
|
|
def __initAxisStruct(ax,*args):
|
|
ax.x, ax.y, ax.z, ax.vx, ax.vy, ax.vz, ax.parameters = ParseParameters(*args)
|
|
pass
|
|
SMESH.AxisStruct.__init__ = __initAxisStruct
|
|
|
|
|
|
def IsEqual(val1, val2, tol=PrecisionConfusion):
|
|
if abs(val1 - val2) < tol:
|
|
return True
|
|
return False
|
|
|
|
NO_NAME = "NoName"
|
|
|
|
## Gets object name
|
|
def GetName(obj):
|
|
if obj:
|
|
# object not null
|
|
if isinstance(obj, SALOMEDS._objref_SObject):
|
|
# study object
|
|
return obj.GetName()
|
|
ior = salome.orb.object_to_string(obj)
|
|
if ior:
|
|
# CORBA object
|
|
studies = salome.myStudyManager.GetOpenStudies()
|
|
for sname in studies:
|
|
s = salome.myStudyManager.GetStudyByName(sname)
|
|
if not s: continue
|
|
sobj = s.FindObjectIOR(ior)
|
|
if not sobj: continue
|
|
return sobj.GetName()
|
|
if hasattr(obj, "GetName"):
|
|
# unknown CORBA object, having GetName() method
|
|
return obj.GetName()
|
|
else:
|
|
# unknown CORBA object, no GetName() method
|
|
return NO_NAME
|
|
pass
|
|
if hasattr(obj, "GetName"):
|
|
# unknown non-CORBA object, having GetName() method
|
|
return obj.GetName()
|
|
pass
|
|
raise RuntimeError, "Null or invalid object"
|
|
|
|
## Prints error message if a hypothesis was not assigned.
|
|
def TreatHypoStatus(status, hypName, geomName, isAlgo):
|
|
if isAlgo:
|
|
hypType = "algorithm"
|
|
else:
|
|
hypType = "hypothesis"
|
|
pass
|
|
if status == HYP_UNKNOWN_FATAL :
|
|
reason = "for unknown reason"
|
|
elif status == HYP_INCOMPATIBLE :
|
|
reason = "this hypothesis mismatches the algorithm"
|
|
elif status == HYP_NOTCONFORM :
|
|
reason = "a non-conform mesh would be built"
|
|
elif status == HYP_ALREADY_EXIST :
|
|
if isAlgo: return # it does not influence anything
|
|
reason = hypType + " of the same dimension is already assigned to this shape"
|
|
elif status == HYP_BAD_DIM :
|
|
reason = hypType + " mismatches the shape"
|
|
elif status == HYP_CONCURENT :
|
|
reason = "there are concurrent hypotheses on sub-shapes"
|
|
elif status == HYP_BAD_SUBSHAPE :
|
|
reason = "the shape is neither the main one, nor its sub-shape, nor a valid group"
|
|
elif status == HYP_BAD_GEOMETRY:
|
|
reason = "geometry mismatches the expectation of the algorithm"
|
|
elif status == HYP_HIDDEN_ALGO:
|
|
reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions"
|
|
elif status == HYP_HIDING_ALGO:
|
|
reason = "it hides algorithms of lower dimensions by generating elements of all dimensions"
|
|
elif status == HYP_NEED_SHAPE:
|
|
reason = "Algorithm can't work without shape"
|
|
else:
|
|
return
|
|
hypName = '"' + hypName + '"'
|
|
geomName= '"' + geomName+ '"'
|
|
if status < HYP_UNKNOWN_FATAL and not geomName =='""':
|
|
print hypName, "was assigned to", geomName,"but", reason
|
|
elif not geomName == '""':
|
|
print hypName, "was not assigned to",geomName,":", reason
|
|
else:
|
|
print hypName, "was not assigned:", reason
|
|
pass
|
|
|
|
## Private method. Add geom (sub-shape of the main shape) into the study if not yet there
|
|
def AssureGeomPublished(mesh, geom, name=''):
|
|
if not isinstance( geom, geompyDC.GEOM._objref_GEOM_Object ):
|
|
return
|
|
if not geom.IsSame( mesh.geom ) and not geom.GetStudyEntry():
|
|
## set the study
|
|
studyID = mesh.smeshpyD.GetCurrentStudy()._get_StudyId()
|
|
if studyID != mesh.geompyD.myStudyId:
|
|
mesh.geompyD.init_geom( mesh.smeshpyD.GetCurrentStudy())
|
|
## get a name
|
|
if not name and geom.GetShapeType() != geompyDC.GEOM.COMPOUND:
|
|
# for all groups SubShapeName() returns "Compound_-1"
|
|
name = mesh.geompyD.SubShapeName(geom, mesh.geom)
|
|
if not name:
|
|
name = "%s_%s"%(geom.GetShapeType(), id(geom)%10000)
|
|
## publish
|
|
mesh.geompyD.addToStudyInFather( mesh.geom, geom, name )
|
|
return
|
|
|
|
## Return the first vertex of a geomertical edge by ignoring orienation
|
|
def FirstVertexOnCurve(edge):
|
|
from geompy import SubShapeAll, ShapeType, KindOfShape, PointCoordinates
|
|
vv = SubShapeAll( edge, ShapeType["VERTEX"])
|
|
if not vv:
|
|
raise TypeError, "Given object has no vertices"
|
|
if len( vv ) == 1: return vv[0]
|
|
info = KindOfShape(edge)
|
|
xyz = info[1:4] # coords of the first vertex
|
|
xyz1 = PointCoordinates( vv[0] )
|
|
xyz2 = PointCoordinates( vv[1] )
|
|
dist1, dist2 = 0,0
|
|
for i in range(3):
|
|
dist1 += abs( xyz[i] - xyz1[i] )
|
|
dist2 += abs( xyz[i] - xyz2[i] )
|
|
if dist1 < dist2:
|
|
return vv[0]
|
|
else:
|
|
return vv[1]
|
|
|
|
# end of l1_auxiliary
|
|
## @}
|
|
|
|
# All methods of this class are accessible directly from the smesh.py package.
|
|
class smeshDC(SMESH._objref_SMESH_Gen):
|
|
|
|
## Dump component to the Python script
|
|
# This method overrides IDL function to allow default values for the parameters.
|
|
def DumpPython(self, theStudy, theIsPublished=True, theIsMultiFile=True):
|
|
return SMESH._objref_SMESH_Gen.DumpPython(self, theStudy, theIsPublished, theIsMultiFile)
|
|
|
|
## Set mode of DumpPython(), \a historical or \a snapshot.
|
|
# In the \a historical mode, the Python Dump script includes all commands
|
|
# performed by SMESH engine. In the \a snapshot mode, commands
|
|
# relating to objects removed from the Study are excluded from the script
|
|
# as well as commands not influencing the current state of meshes
|
|
def SetDumpPythonHistorical(self, isHistorical):
|
|
if isHistorical: val = "true"
|
|
else: val = "false"
|
|
SMESH._objref_SMESH_Gen.SetOption(self, "historical_python_dump", val)
|
|
|
|
## Sets the current study and Geometry component
|
|
# @ingroup l1_auxiliary
|
|
def init_smesh(self,theStudy,geompyD):
|
|
self.SetCurrentStudy(theStudy,geompyD)
|
|
|
|
## Creates an empty Mesh. This mesh can have an underlying geometry.
|
|
# @param obj the Geometrical object on which the mesh is built. If not defined,
|
|
# the mesh will have no underlying geometry.
|
|
# @param name the name for the new mesh.
|
|
# @return an instance of Mesh class.
|
|
# @ingroup l2_construct
|
|
def Mesh(self, obj=0, name=0):
|
|
if isinstance(obj,str):
|
|
obj,name = name,obj
|
|
return Mesh(self,self.geompyD,obj,name)
|
|
|
|
## Returns a long value from enumeration
|
|
# Should be used for SMESH.FunctorType enumeration
|
|
# @ingroup l1_controls
|
|
def EnumToLong(self,theItem):
|
|
return theItem._v
|
|
|
|
## Returns a string representation of the color.
|
|
# To be used with filters.
|
|
# @param c color value (SALOMEDS.Color)
|
|
# @ingroup l1_controls
|
|
def ColorToString(self,c):
|
|
val = ""
|
|
if isinstance(c, SALOMEDS.Color):
|
|
val = "%s;%s;%s" % (c.R, c.G, c.B)
|
|
elif isinstance(c, str):
|
|
val = c
|
|
else:
|
|
raise ValueError, "Color value should be of string or SALOMEDS.Color type"
|
|
return val
|
|
|
|
## Gets PointStruct from vertex
|
|
# @param theVertex a GEOM object(vertex)
|
|
# @return SMESH.PointStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetPointStruct(self,theVertex):
|
|
[x, y, z] = self.geompyD.PointCoordinates(theVertex)
|
|
return PointStruct(x,y,z)
|
|
|
|
## Gets DirStruct from vector
|
|
# @param theVector a GEOM object(vector)
|
|
# @return SMESH.DirStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetDirStruct(self,theVector):
|
|
vertices = self.geompyD.SubShapeAll( theVector, geompyDC.ShapeType["VERTEX"] )
|
|
if(len(vertices) != 2):
|
|
print "Error: vector object is incorrect."
|
|
return None
|
|
p1 = self.geompyD.PointCoordinates(vertices[0])
|
|
p2 = self.geompyD.PointCoordinates(vertices[1])
|
|
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
dirst = DirStruct(pnt)
|
|
return dirst
|
|
|
|
## Makes DirStruct from a triplet
|
|
# @param x,y,z vector components
|
|
# @return SMESH.DirStruct
|
|
# @ingroup l1_auxiliary
|
|
def MakeDirStruct(self,x,y,z):
|
|
pnt = PointStruct(x,y,z)
|
|
return DirStruct(pnt)
|
|
|
|
## Get AxisStruct from object
|
|
# @param theObj a GEOM object (line or plane)
|
|
# @return SMESH.AxisStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetAxisStruct(self,theObj):
|
|
edges = self.geompyD.SubShapeAll( theObj, geompyDC.ShapeType["EDGE"] )
|
|
if len(edges) > 1:
|
|
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
|
|
vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geompyDC.ShapeType["VERTEX"] )
|
|
vertex1 = self.geompyD.PointCoordinates(vertex1)
|
|
vertex2 = self.geompyD.PointCoordinates(vertex2)
|
|
vertex3 = self.geompyD.PointCoordinates(vertex3)
|
|
vertex4 = self.geompyD.PointCoordinates(vertex4)
|
|
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
|
|
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
|
|
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
|
|
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
|
|
return axis
|
|
elif len(edges) == 1:
|
|
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
|
|
p1 = self.geompyD.PointCoordinates( vertex1 )
|
|
p2 = self.geompyD.PointCoordinates( vertex2 )
|
|
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
return axis
|
|
return None
|
|
|
|
# From SMESH_Gen interface:
|
|
# ------------------------
|
|
|
|
## Sets the given name to the object
|
|
# @param obj the object to rename
|
|
# @param name a new object name
|
|
# @ingroup l1_auxiliary
|
|
def SetName(self, obj, name):
|
|
if isinstance( obj, Mesh ):
|
|
obj = obj.GetMesh()
|
|
elif isinstance( obj, Mesh_Algorithm ):
|
|
obj = obj.GetAlgorithm()
|
|
ior = salome.orb.object_to_string(obj)
|
|
SMESH._objref_SMESH_Gen.SetName(self, ior, name)
|
|
|
|
## Sets the current mode
|
|
# @ingroup l1_auxiliary
|
|
def SetEmbeddedMode( self,theMode ):
|
|
#self.SetEmbeddedMode(theMode)
|
|
SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
|
|
|
|
## Gets the current mode
|
|
# @ingroup l1_auxiliary
|
|
def IsEmbeddedMode(self):
|
|
#return self.IsEmbeddedMode()
|
|
return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
|
|
|
|
## Sets the current study
|
|
# @ingroup l1_auxiliary
|
|
def SetCurrentStudy( self, theStudy, geompyD = None ):
|
|
#self.SetCurrentStudy(theStudy)
|
|
if not geompyD:
|
|
import geompy
|
|
geompyD = geompy.geom
|
|
pass
|
|
self.geompyD=geompyD
|
|
self.SetGeomEngine(geompyD)
|
|
SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy)
|
|
|
|
## Gets the current study
|
|
# @ingroup l1_auxiliary
|
|
def GetCurrentStudy(self):
|
|
#return self.GetCurrentStudy()
|
|
return SMESH._objref_SMESH_Gen.GetCurrentStudy(self)
|
|
|
|
## Creates a Mesh object importing data from the given UNV file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromUNV( self,theFileName ):
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Creates a Mesh object(s) importing data from the given MED file
|
|
# @return a list of Mesh class instances
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromMED( self,theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
|
|
aMeshes = []
|
|
for iMesh in range(len(aSmeshMeshes)) :
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
|
|
aMeshes.append(aMesh)
|
|
return aMeshes, aStatus
|
|
|
|
## Creates a Mesh object(s) importing data from the given SAUV file
|
|
# @return a list of Mesh class instances
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromSAUV( self,theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromSAUV(self,theFileName)
|
|
aMeshes = []
|
|
for iMesh in range(len(aSmeshMeshes)) :
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
|
|
aMeshes.append(aMesh)
|
|
return aMeshes, aStatus
|
|
|
|
## Creates a Mesh object importing data from the given STL file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromSTL( self, theFileName ):
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Creates Mesh objects importing data from the given CGNS file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromCGNS( self, theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromCGNS(self,theFileName)
|
|
aMeshes = []
|
|
for iMesh in range(len(aSmeshMeshes)) :
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
|
|
aMeshes.append(aMesh)
|
|
return aMeshes, aStatus
|
|
|
|
## Concatenate the given meshes into one mesh.
|
|
# @return an instance of Mesh class
|
|
# @param meshes the meshes to combine into one mesh
|
|
# @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed
|
|
# @param mergeNodesAndElements if true, equal nodes and elements aremerged
|
|
# @param mergeTolerance tolerance for merging nodes
|
|
# @param allGroups forces creation of groups of all elements
|
|
def Concatenate( self, meshes, uniteIdenticalGroups,
|
|
mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False):
|
|
if not meshes: return None
|
|
for i,m in enumerate(meshes):
|
|
if isinstance(m, Mesh):
|
|
meshes[i] = m.GetMesh()
|
|
mergeTolerance,Parameters = ParseParameters(mergeTolerance)
|
|
meshes[0].SetParameters(Parameters)
|
|
if allGroups:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
else:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Create a mesh by copying a part of another mesh.
|
|
# @param meshPart a part of mesh to copy, either a Mesh, a sub-mesh or a group;
|
|
# to copy nodes or elements not contained in any mesh object,
|
|
# pass result of Mesh.GetIDSource( list_of_ids, type ) as meshPart
|
|
# @param meshName a name of the new mesh
|
|
# @param toCopyGroups to create in the new mesh groups the copied elements belongs to
|
|
# @param toKeepIDs to preserve IDs of the copied elements or not
|
|
# @return an instance of Mesh class
|
|
def CopyMesh( self, meshPart, meshName, toCopyGroups=False, toKeepIDs=False):
|
|
if (isinstance( meshPart, Mesh )):
|
|
meshPart = meshPart.GetMesh()
|
|
mesh = SMESH._objref_SMESH_Gen.CopyMesh( self,meshPart,meshName,toCopyGroups,toKeepIDs )
|
|
return Mesh(self, self.geompyD, mesh)
|
|
|
|
## From SMESH_Gen interface
|
|
# @return the list of integer values
|
|
# @ingroup l1_auxiliary
|
|
def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
|
|
return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
|
|
|
|
## From SMESH_Gen interface. Creates a pattern
|
|
# @return an instance of SMESH_Pattern
|
|
#
|
|
# <a href="../tui_modifying_meshes_page.html#tui_pattern_mapping">Example of Patterns usage</a>
|
|
# @ingroup l2_modif_patterns
|
|
def GetPattern(self):
|
|
return SMESH._objref_SMESH_Gen.GetPattern(self)
|
|
|
|
## Sets number of segments per diagonal of boundary box of geometry by which
|
|
# default segment length of appropriate 1D hypotheses is defined.
|
|
# Default value is 10
|
|
# @ingroup l1_auxiliary
|
|
def SetBoundaryBoxSegmentation(self, nbSegments):
|
|
SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
|
|
|
|
# Filtering. Auxiliary functions:
|
|
# ------------------------------
|
|
|
|
## Creates an empty criterion
|
|
# @return SMESH.Filter.Criterion
|
|
# @ingroup l1_controls
|
|
def GetEmptyCriterion(self):
|
|
Type = self.EnumToLong(FT_Undefined)
|
|
Compare = self.EnumToLong(FT_Undefined)
|
|
Threshold = 0
|
|
ThresholdStr = ""
|
|
ThresholdID = ""
|
|
UnaryOp = self.EnumToLong(FT_Undefined)
|
|
BinaryOp = self.EnumToLong(FT_Undefined)
|
|
Tolerance = 1e-07
|
|
TypeOfElement = ALL
|
|
Precision = -1 ##@1e-07
|
|
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
|
|
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
|
|
|
|
## Creates a criterion by the given parameters
|
|
# \n Criterion structures allow to define complex filters by combining them with logical operations (AND / OR) (see example below)
|
|
# @param elementType the type of elements(NODE, EDGE, FACE, VOLUME)
|
|
# @param CritType the type of criterion (FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc.)
|
|
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Threshold the threshold value (range of ids as string, shape, numeric)
|
|
# @param UnaryOp FT_LogicalNOT or FT_Undefined
|
|
# @param BinaryOp a binary logical operation FT_LogicalAND, FT_LogicalOR or
|
|
# FT_Undefined (must be for the last criterion of all criteria)
|
|
# @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
|
|
# FT_LyingOnGeom, FT_CoplanarFaces criteria
|
|
# @return SMESH.Filter.Criterion
|
|
#
|
|
# <a href="../tui_filters_page.html#combining_filters">Example of Criteria usage</a>
|
|
# @ingroup l1_controls
|
|
def GetCriterion(self,elementType,
|
|
CritType,
|
|
Compare = FT_EqualTo,
|
|
Threshold="",
|
|
UnaryOp=FT_Undefined,
|
|
BinaryOp=FT_Undefined,
|
|
Tolerance=1e-07):
|
|
if not CritType in SMESH.FunctorType._items:
|
|
raise TypeError, "CritType should be of SMESH.FunctorType"
|
|
aCriterion = self.GetEmptyCriterion()
|
|
aCriterion.TypeOfElement = elementType
|
|
aCriterion.Type = self.EnumToLong(CritType)
|
|
aCriterion.Tolerance = Tolerance
|
|
|
|
aThreshold = Threshold
|
|
|
|
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
|
|
aCriterion.Compare = self.EnumToLong(Compare)
|
|
elif Compare == "=" or Compare == "==":
|
|
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
|
|
elif Compare == "<":
|
|
aCriterion.Compare = self.EnumToLong(FT_LessThan)
|
|
elif Compare == ">":
|
|
aCriterion.Compare = self.EnumToLong(FT_MoreThan)
|
|
elif Compare != FT_Undefined:
|
|
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
|
|
aThreshold = Compare
|
|
|
|
if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
|
|
FT_BelongToCylinder, FT_LyingOnGeom]:
|
|
# Checks the Threshold
|
|
if isinstance(aThreshold, geompyDC.GEOM._objref_GEOM_Object):
|
|
aCriterion.ThresholdStr = GetName(aThreshold)
|
|
aCriterion.ThresholdID = salome.ObjectToID(aThreshold)
|
|
else:
|
|
print "Error: The Threshold should be a shape."
|
|
return None
|
|
if isinstance(UnaryOp,float):
|
|
aCriterion.Tolerance = UnaryOp
|
|
UnaryOp = FT_Undefined
|
|
pass
|
|
elif CritType == FT_RangeOfIds:
|
|
# Checks the Threshold
|
|
if isinstance(aThreshold, str):
|
|
aCriterion.ThresholdStr = aThreshold
|
|
else:
|
|
print "Error: The Threshold should be a string."
|
|
return None
|
|
elif CritType == FT_CoplanarFaces:
|
|
# Checks the Threshold
|
|
if isinstance(aThreshold, int):
|
|
aCriterion.ThresholdID = "%s"%aThreshold
|
|
elif isinstance(aThreshold, str):
|
|
ID = int(aThreshold)
|
|
if ID < 1:
|
|
raise ValueError, "Invalid ID of mesh face: '%s'"%aThreshold
|
|
aCriterion.ThresholdID = aThreshold
|
|
else:
|
|
raise ValueError,\
|
|
"The Threshold should be an ID of mesh face and not '%s'"%aThreshold
|
|
elif CritType == FT_ElemGeomType:
|
|
# Checks the Threshold
|
|
try:
|
|
aCriterion.Threshold = self.EnumToLong(aThreshold)
|
|
assert( aThreshold in SMESH.GeometryType._items )
|
|
except:
|
|
if isinstance(aThreshold, int):
|
|
aCriterion.Threshold = aThreshold
|
|
else:
|
|
print "Error: The Threshold should be an integer or SMESH.GeometryType."
|
|
return None
|
|
pass
|
|
pass
|
|
elif CritType == FT_GroupColor:
|
|
# Checks the Threshold
|
|
try:
|
|
aCriterion.ThresholdStr = self.ColorToString(aThreshold)
|
|
except:
|
|
print "Error: The threshold value should be of SALOMEDS.Color type"
|
|
return None
|
|
pass
|
|
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_FreeNodes, FT_FreeFaces,
|
|
FT_LinearOrQuadratic, FT_BadOrientedVolume,
|
|
FT_BareBorderFace, FT_BareBorderVolume,
|
|
FT_OverConstrainedFace, FT_OverConstrainedVolume,
|
|
FT_EqualNodes,FT_EqualEdges,FT_EqualFaces,FT_EqualVolumes ]:
|
|
# At this point the Threshold is unnecessary
|
|
if aThreshold == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
|
|
elif aThreshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = aThreshold
|
|
else:
|
|
# Check Threshold
|
|
try:
|
|
aThreshold = float(aThreshold)
|
|
aCriterion.Threshold = aThreshold
|
|
except:
|
|
print "Error: The Threshold should be a number."
|
|
return None
|
|
|
|
if Threshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
|
|
|
|
if Threshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(Threshold)
|
|
|
|
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(UnaryOp)
|
|
|
|
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(BinaryOp)
|
|
|
|
return aCriterion
|
|
|
|
## Creates a filter with the given parameters
|
|
# @param elementType the type of elements in the group
|
|
# @param CritType the type of criterion ( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
|
|
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Threshold the threshold value (range of id ids as string, shape, numeric)
|
|
# @param UnaryOp FT_LogicalNOT or FT_Undefined
|
|
# @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
|
|
# FT_LyingOnGeom, FT_CoplanarFaces and FT_EqualNodes criteria
|
|
# @return SMESH_Filter
|
|
#
|
|
# <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
|
|
# @ingroup l1_controls
|
|
def GetFilter(self,elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Threshold="",
|
|
UnaryOp=FT_Undefined,
|
|
Tolerance=1e-07):
|
|
aCriterion = self.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance)
|
|
aFilterMgr = self.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aCriteria = []
|
|
aCriteria.append(aCriterion)
|
|
aFilter.SetCriteria(aCriteria)
|
|
aFilterMgr.UnRegister()
|
|
return aFilter
|
|
|
|
## Creates a filter from criteria
|
|
# @param criteria a list of criteria
|
|
# @return SMESH_Filter
|
|
#
|
|
# <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
|
|
# @ingroup l1_controls
|
|
def GetFilterFromCriteria(self,criteria):
|
|
aFilterMgr = self.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aFilter.SetCriteria(criteria)
|
|
aFilterMgr.UnRegister()
|
|
return aFilter
|
|
|
|
## Creates a numerical functor by its type
|
|
# @param theCriterion FT_...; functor type
|
|
# @return SMESH_NumericalFunctor
|
|
# @ingroup l1_controls
|
|
def GetFunctor(self,theCriterion):
|
|
aFilterMgr = self.CreateFilterManager()
|
|
if theCriterion == FT_AspectRatio:
|
|
return aFilterMgr.CreateAspectRatio()
|
|
elif theCriterion == FT_AspectRatio3D:
|
|
return aFilterMgr.CreateAspectRatio3D()
|
|
elif theCriterion == FT_Warping:
|
|
return aFilterMgr.CreateWarping()
|
|
elif theCriterion == FT_MinimumAngle:
|
|
return aFilterMgr.CreateMinimumAngle()
|
|
elif theCriterion == FT_Taper:
|
|
return aFilterMgr.CreateTaper()
|
|
elif theCriterion == FT_Skew:
|
|
return aFilterMgr.CreateSkew()
|
|
elif theCriterion == FT_Area:
|
|
return aFilterMgr.CreateArea()
|
|
elif theCriterion == FT_Volume3D:
|
|
return aFilterMgr.CreateVolume3D()
|
|
elif theCriterion == FT_MaxElementLength2D:
|
|
return aFilterMgr.CreateMaxElementLength2D()
|
|
elif theCriterion == FT_MaxElementLength3D:
|
|
return aFilterMgr.CreateMaxElementLength3D()
|
|
elif theCriterion == FT_MultiConnection:
|
|
return aFilterMgr.CreateMultiConnection()
|
|
elif theCriterion == FT_MultiConnection2D:
|
|
return aFilterMgr.CreateMultiConnection2D()
|
|
elif theCriterion == FT_Length:
|
|
return aFilterMgr.CreateLength()
|
|
elif theCriterion == FT_Length2D:
|
|
return aFilterMgr.CreateLength2D()
|
|
else:
|
|
print "Error: given parameter is not numerucal functor type."
|
|
|
|
## Creates hypothesis
|
|
# @param theHType mesh hypothesis type (string)
|
|
# @param theLibName mesh plug-in library name
|
|
# @return created hypothesis instance
|
|
def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"):
|
|
hyp = SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName )
|
|
|
|
if isinstance( hyp, SMESH._objref_SMESH_Algo ):
|
|
return hyp
|
|
|
|
# wrap hypothesis methods
|
|
#print "HYPOTHESIS", theHType
|
|
for meth_name in dir( hyp.__class__ ):
|
|
if not meth_name.startswith("Get") and \
|
|
not meth_name in dir ( SMESH._objref_SMESH_Hypothesis ):
|
|
method = getattr ( hyp.__class__, meth_name )
|
|
if callable(method):
|
|
setattr( hyp, meth_name, hypMethodWrapper( hyp, method ))
|
|
|
|
return hyp
|
|
|
|
## Gets the mesh statistic
|
|
# @return dictionary "element type" - "count of elements"
|
|
# @ingroup l1_meshinfo
|
|
def GetMeshInfo(self, obj):
|
|
if isinstance( obj, Mesh ):
|
|
obj = obj.GetMesh()
|
|
d = {}
|
|
if hasattr(obj, "GetMeshInfo"):
|
|
values = obj.GetMeshInfo()
|
|
for i in range(SMESH.Entity_Last._v):
|
|
if i < len(values): d[SMESH.EntityType._item(i)]=values[i]
|
|
pass
|
|
return d
|
|
|
|
## Get minimum distance between two objects
|
|
#
|
|
# If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
|
|
# If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
|
|
#
|
|
# @param src1 first source object
|
|
# @param src2 second source object
|
|
# @param id1 node/element id from the first source
|
|
# @param id2 node/element id from the second (or first) source
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return minimum distance value
|
|
# @sa GetMinDistance()
|
|
# @ingroup l1_measurements
|
|
def MinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
|
|
result = self.GetMinDistance(src1, src2, id1, id2, isElem1, isElem2)
|
|
if result is None:
|
|
result = 0.0
|
|
else:
|
|
result = result.value
|
|
return result
|
|
|
|
## Get measure structure specifying minimum distance data between two objects
|
|
#
|
|
# If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
|
|
# If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
|
|
#
|
|
# @param src1 first source object
|
|
# @param src2 second source object
|
|
# @param id1 node/element id from the first source
|
|
# @param id2 node/element id from the second (or first) source
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return Measure structure or None if input data is invalid
|
|
# @sa MinDistance()
|
|
# @ingroup l1_measurements
|
|
def GetMinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
|
|
if isinstance(src1, Mesh): src1 = src1.mesh
|
|
if isinstance(src2, Mesh): src2 = src2.mesh
|
|
if src2 is None and id2 != 0: src2 = src1
|
|
if not hasattr(src1, "_narrow"): return None
|
|
src1 = src1._narrow(SMESH.SMESH_IDSource)
|
|
if not src1: return None
|
|
if id1 != 0:
|
|
m = src1.GetMesh()
|
|
e = m.GetMeshEditor()
|
|
if isElem1:
|
|
src1 = e.MakeIDSource([id1], SMESH.FACE)
|
|
else:
|
|
src1 = e.MakeIDSource([id1], SMESH.NODE)
|
|
pass
|
|
if hasattr(src2, "_narrow"):
|
|
src2 = src2._narrow(SMESH.SMESH_IDSource)
|
|
if src2 and id2 != 0:
|
|
m = src2.GetMesh()
|
|
e = m.GetMeshEditor()
|
|
if isElem2:
|
|
src2 = e.MakeIDSource([id2], SMESH.FACE)
|
|
else:
|
|
src2 = e.MakeIDSource([id2], SMESH.NODE)
|
|
pass
|
|
pass
|
|
aMeasurements = self.CreateMeasurements()
|
|
result = aMeasurements.MinDistance(src1, src2)
|
|
aMeasurements.UnRegister()
|
|
return result
|
|
|
|
## Get bounding box of the specified object(s)
|
|
# @param objects single source object or list of source objects
|
|
# @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
|
|
# @sa GetBoundingBox()
|
|
# @ingroup l1_measurements
|
|
def BoundingBox(self, objects):
|
|
result = self.GetBoundingBox(objects)
|
|
if result is None:
|
|
result = (0.0,)*6
|
|
else:
|
|
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
|
|
return result
|
|
|
|
## Get measure structure specifying bounding box data of the specified object(s)
|
|
# @param objects single source object or list of source objects
|
|
# @return Measure structure
|
|
# @sa BoundingBox()
|
|
# @ingroup l1_measurements
|
|
def GetBoundingBox(self, objects):
|
|
if isinstance(objects, tuple):
|
|
objects = list(objects)
|
|
if not isinstance(objects, list):
|
|
objects = [objects]
|
|
srclist = []
|
|
for o in objects:
|
|
if isinstance(o, Mesh):
|
|
srclist.append(o.mesh)
|
|
elif hasattr(o, "_narrow"):
|
|
src = o._narrow(SMESH.SMESH_IDSource)
|
|
if src: srclist.append(src)
|
|
pass
|
|
pass
|
|
aMeasurements = self.CreateMeasurements()
|
|
result = aMeasurements.BoundingBox(srclist)
|
|
aMeasurements.UnRegister()
|
|
return result
|
|
|
|
import omniORB
|
|
#Registering the new proxy for SMESH_Gen
|
|
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
|
|
|
|
|
|
# Public class: Mesh
|
|
# ==================
|
|
|
|
## This class allows defining and managing a mesh.
|
|
# It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes.
|
|
# It also has methods to define groups of mesh elements, to modify a mesh (by addition of
|
|
# new nodes and elements and by changing the existing entities), to get information
|
|
# about a mesh and to export a mesh into different formats.
|
|
class Mesh:
|
|
|
|
geom = 0
|
|
mesh = 0
|
|
editor = 0
|
|
|
|
## Constructor
|
|
#
|
|
# Creates a mesh on the shape \a obj (or an empty mesh if \a obj is equal to 0) and
|
|
# sets the GUI name of this mesh to \a name.
|
|
# @param smeshpyD an instance of smeshDC class
|
|
# @param geompyD an instance of geompyDC class
|
|
# @param obj Shape to be meshed or SMESH_Mesh object
|
|
# @param name Study name of the mesh
|
|
# @ingroup l2_construct
|
|
def __init__(self, smeshpyD, geompyD, obj=0, name=0):
|
|
self.smeshpyD=smeshpyD
|
|
self.geompyD=geompyD
|
|
if obj is None:
|
|
obj = 0
|
|
if obj != 0:
|
|
if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
|
|
self.geom = obj
|
|
# publish geom of mesh (issue 0021122)
|
|
if not self.geom.GetStudyEntry():
|
|
studyID = smeshpyD.GetCurrentStudy()._get_StudyId()
|
|
if studyID != geompyD.myStudyId:
|
|
geompyD.init_geom( smeshpyD.GetCurrentStudy())
|
|
pass
|
|
geo_name = "%s_%s"%(self.geom.GetShapeType(), id(self.geom)%100)
|
|
geompyD.addToStudy( self.geom, geo_name )
|
|
self.mesh = self.smeshpyD.CreateMesh(self.geom)
|
|
|
|
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
|
|
self.SetMesh(obj)
|
|
else:
|
|
self.mesh = self.smeshpyD.CreateEmptyMesh()
|
|
if name != 0:
|
|
self.smeshpyD.SetName(self.mesh, name)
|
|
elif obj != 0:
|
|
self.smeshpyD.SetName(self.mesh, GetName(obj))
|
|
|
|
if not self.geom:
|
|
self.geom = self.mesh.GetShapeToMesh()
|
|
|
|
self.editor = self.mesh.GetMeshEditor()
|
|
|
|
# set self to algoCreator's
|
|
for attrName in dir(self):
|
|
attr = getattr( self, attrName )
|
|
if isinstance( attr, algoCreator ):
|
|
setattr( self, attrName, attr.copy( self ))
|
|
|
|
## Initializes the Mesh object from an instance of SMESH_Mesh interface
|
|
# @param theMesh a SMESH_Mesh object
|
|
# @ingroup l2_construct
|
|
def SetMesh(self, theMesh):
|
|
self.mesh = theMesh
|
|
self.geom = self.mesh.GetShapeToMesh()
|
|
|
|
## Returns the mesh, that is an instance of SMESH_Mesh interface
|
|
# @return a SMESH_Mesh object
|
|
# @ingroup l2_construct
|
|
def GetMesh(self):
|
|
return self.mesh
|
|
|
|
## Gets the name of the mesh
|
|
# @return the name of the mesh as a string
|
|
# @ingroup l2_construct
|
|
def GetName(self):
|
|
name = GetName(self.GetMesh())
|
|
return name
|
|
|
|
## Sets a name to the mesh
|
|
# @param name a new name of the mesh
|
|
# @ingroup l2_construct
|
|
def SetName(self, name):
|
|
self.smeshpyD.SetName(self.GetMesh(), name)
|
|
|
|
## Gets the subMesh object associated to a \a theSubObject geometrical object.
|
|
# The subMesh object gives access to the IDs of nodes and elements.
|
|
# @param geom a geometrical object (shape)
|
|
# @param name a name for the submesh
|
|
# @return an object of type SMESH_SubMesh, representing a part of mesh, which lies on the given shape
|
|
# @ingroup l2_submeshes
|
|
def GetSubMesh(self, geom, name):
|
|
AssureGeomPublished( self, geom, name )
|
|
submesh = self.mesh.GetSubMesh( geom, name )
|
|
return submesh
|
|
|
|
## Returns the shape associated to the mesh
|
|
# @return a GEOM_Object
|
|
# @ingroup l2_construct
|
|
def GetShape(self):
|
|
return self.geom
|
|
|
|
## Associates the given shape to the mesh (entails the recreation of the mesh)
|
|
# @param geom the shape to be meshed (GEOM_Object)
|
|
# @ingroup l2_construct
|
|
def SetShape(self, geom):
|
|
self.mesh = self.smeshpyD.CreateMesh(geom)
|
|
|
|
## Loads mesh from the study after opening the study
|
|
def Load(self):
|
|
self.mesh.Load()
|
|
|
|
## Returns true if the hypotheses are defined well
|
|
# @param theSubObject a sub-shape of a mesh shape
|
|
# @return True or False
|
|
# @ingroup l2_construct
|
|
def IsReadyToCompute(self, theSubObject):
|
|
return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
|
|
|
|
## Returns errors of hypotheses definition.
|
|
# The list of errors is empty if everything is OK.
|
|
# @param theSubObject a sub-shape of a mesh shape
|
|
# @return a list of errors
|
|
# @ingroup l2_construct
|
|
def GetAlgoState(self, theSubObject):
|
|
return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
|
|
|
|
## Returns a geometrical object on which the given element was built.
|
|
# The returned geometrical object, if not nil, is either found in the
|
|
# study or published by this method with the given name
|
|
# @param theElementID the id of the mesh element
|
|
# @param theGeomName the user-defined name of the geometrical object
|
|
# @return GEOM::GEOM_Object instance
|
|
# @ingroup l2_construct
|
|
def GetGeometryByMeshElement(self, theElementID, theGeomName):
|
|
return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
|
|
|
|
## Returns the mesh dimension depending on the dimension of the underlying shape
|
|
# @return mesh dimension as an integer value [0,3]
|
|
# @ingroup l1_auxiliary
|
|
def MeshDimension(self):
|
|
shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] )
|
|
if len( shells ) > 0 :
|
|
return 3
|
|
elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
|
|
return 2
|
|
elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
|
|
return 1
|
|
else:
|
|
return 0;
|
|
pass
|
|
|
|
## Evaluates size of prospective mesh on a shape
|
|
# @return a list where i-th element is a number of elements of i-th SMESH.EntityType
|
|
# To know predicted number of e.g. edges, inquire it this way
|
|
# Evaluate()[ EnumToLong( Entity_Edge )]
|
|
def Evaluate(self, geom=0):
|
|
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
|
|
if self.geom == 0:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
else:
|
|
geom = self.geom
|
|
return self.smeshpyD.Evaluate(self.mesh, geom)
|
|
|
|
|
|
## Computes the mesh and returns the status of the computation
|
|
# @param geom geomtrical shape on which mesh data should be computed
|
|
# @param discardModifs if True and the mesh has been edited since
|
|
# a last total re-compute and that may prevent successful partial re-compute,
|
|
# then the mesh is cleaned before Compute()
|
|
# @return True or False
|
|
# @ingroup l2_construct
|
|
def Compute(self, geom=0, discardModifs=False):
|
|
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
|
|
if self.geom == 0:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
else:
|
|
geom = self.geom
|
|
ok = False
|
|
try:
|
|
if discardModifs and self.mesh.HasModificationsToDiscard(): # issue 0020693
|
|
self.mesh.Clear()
|
|
ok = self.smeshpyD.Compute(self.mesh, geom)
|
|
except SALOME.SALOME_Exception, ex:
|
|
print "Mesh computation failed, exception caught:"
|
|
print " ", ex.details.text
|
|
except:
|
|
import traceback
|
|
print "Mesh computation failed, exception caught:"
|
|
traceback.print_exc()
|
|
if True:#not ok:
|
|
allReasons = ""
|
|
|
|
# Treat compute errors
|
|
computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, geom )
|
|
for err in computeErrors:
|
|
shapeText = ""
|
|
if self.mesh.HasShapeToMesh():
|
|
try:
|
|
mainIOR = salome.orb.object_to_string(geom)
|
|
for sname in salome.myStudyManager.GetOpenStudies():
|
|
s = salome.myStudyManager.GetStudyByName(sname)
|
|
if not s: continue
|
|
mainSO = s.FindObjectIOR(mainIOR)
|
|
if not mainSO: continue
|
|
if err.subShapeID == 1:
|
|
shapeText = ' on "%s"' % mainSO.GetName()
|
|
subIt = s.NewChildIterator(mainSO)
|
|
while subIt.More():
|
|
subSO = subIt.Value()
|
|
subIt.Next()
|
|
obj = subSO.GetObject()
|
|
if not obj: continue
|
|
go = obj._narrow( geompyDC.GEOM._objref_GEOM_Object )
|
|
if not go: continue
|
|
ids = go.GetSubShapeIndices()
|
|
if len(ids) == 1 and ids[0] == err.subShapeID:
|
|
shapeText = ' on "%s"' % subSO.GetName()
|
|
break
|
|
if not shapeText:
|
|
shape = self.geompyD.GetSubShape( geom, [err.subShapeID])
|
|
if shape:
|
|
shapeText = " on %s #%s" % (shape.GetShapeType(), err.subShapeID)
|
|
else:
|
|
shapeText = " on subshape #%s" % (err.subShapeID)
|
|
except:
|
|
shapeText = " on subshape #%s" % (err.subShapeID)
|
|
errText = ""
|
|
stdErrors = ["OK", #COMPERR_OK
|
|
"Invalid input mesh", #COMPERR_BAD_INPUT_MESH
|
|
"std::exception", #COMPERR_STD_EXCEPTION
|
|
"OCC exception", #COMPERR_OCC_EXCEPTION
|
|
"SALOME exception", #COMPERR_SLM_EXCEPTION
|
|
"Unknown exception", #COMPERR_EXCEPTION
|
|
"Memory allocation problem", #COMPERR_MEMORY_PB
|
|
"Algorithm failed", #COMPERR_ALGO_FAILED
|
|
"Unexpected geometry"]#COMPERR_BAD_SHAPE
|
|
if err.code > 0:
|
|
if err.code < len(stdErrors): errText = stdErrors[err.code]
|
|
else:
|
|
errText = "code %s" % -err.code
|
|
if errText: errText += ". "
|
|
errText += err.comment
|
|
if allReasons != "":allReasons += "\n"
|
|
allReasons += '"%s" failed%s. Error: %s' %(err.algoName, shapeText, errText)
|
|
pass
|
|
|
|
# Treat hyp errors
|
|
errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
|
|
for err in errors:
|
|
if err.isGlobalAlgo:
|
|
glob = "global"
|
|
else:
|
|
glob = "local"
|
|
pass
|
|
dim = err.algoDim
|
|
name = err.algoName
|
|
if len(name) == 0:
|
|
reason = '%s %sD algorithm is missing' % (glob, dim)
|
|
elif err.state == HYP_MISSING:
|
|
reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
|
|
% (glob, dim, name, dim))
|
|
elif err.state == HYP_NOTCONFORM:
|
|
reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
|
|
elif err.state == HYP_BAD_PARAMETER:
|
|
reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
|
|
% ( glob, dim, name ))
|
|
elif err.state == HYP_BAD_GEOMETRY:
|
|
reason = ('%s %sD algorithm "%s" is assigned to mismatching'
|
|
'geometry' % ( glob, dim, name ))
|
|
else:
|
|
reason = "For unknown reason."+\
|
|
" Revise Mesh.Compute() implementation in smeshDC.py!"
|
|
pass
|
|
if allReasons != "":allReasons += "\n"
|
|
allReasons += reason
|
|
pass
|
|
if allReasons != "":
|
|
print '"' + GetName(self.mesh) + '"',"has not been computed:"
|
|
print allReasons
|
|
ok = False
|
|
elif not ok:
|
|
print '"' + GetName(self.mesh) + '"',"has not been computed."
|
|
pass
|
|
pass
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
|
|
salome.sg.updateObjBrowser(1)
|
|
pass
|
|
return ok
|
|
|
|
## Return submesh objects list in meshing order
|
|
# @return list of list of submesh objects
|
|
# @ingroup l2_construct
|
|
def GetMeshOrder(self):
|
|
return self.mesh.GetMeshOrder()
|
|
|
|
## Return submesh objects list in meshing order
|
|
# @return list of list of submesh objects
|
|
# @ingroup l2_construct
|
|
def SetMeshOrder(self, submeshes):
|
|
return self.mesh.SetMeshOrder(submeshes)
|
|
|
|
## Removes all nodes and elements
|
|
# @ingroup l2_construct
|
|
def Clear(self):
|
|
self.mesh.Clear()
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
|
|
salome.sg.updateObjBrowser(1)
|
|
|
|
## Removes all nodes and elements of indicated shape
|
|
# @ingroup l2_construct
|
|
def ClearSubMesh(self, geomId):
|
|
self.mesh.ClearSubMesh(geomId)
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
|
|
salome.sg.updateObjBrowser(1)
|
|
|
|
## Computes a tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
|
|
# @param fineness [0.0,1.0] defines mesh fineness
|
|
# @return True or False
|
|
# @ingroup l3_algos_basic
|
|
def AutomaticTetrahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Triangle().LengthFromEdges()
|
|
pass
|
|
if dim > 2 :
|
|
from NETGENPluginDC import NETGEN
|
|
self.Tetrahedron(NETGEN)
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Computes an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
|
|
# @param fineness [0.0, 1.0] defines mesh fineness
|
|
# @return True or False
|
|
# @ingroup l3_algos_basic
|
|
def AutomaticHexahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign the hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Quadrangle()
|
|
pass
|
|
if dim > 2 :
|
|
self.Hexahedron()
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Assigns a hypothesis
|
|
# @param hyp a hypothesis to assign
|
|
# @param geom a subhape of mesh geometry
|
|
# @return SMESH.Hypothesis_Status
|
|
# @ingroup l2_hypotheses
|
|
def AddHypothesis(self, hyp, geom=0):
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
if not geom:
|
|
geom = self.geom
|
|
if not geom:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
pass
|
|
status = self.mesh.AddHypothesis(geom, hyp)
|
|
isAlgo = hyp._narrow( SMESH_Algo )
|
|
hyp_name = GetName( hyp )
|
|
geom_name = ""
|
|
if geom:
|
|
geom_name = GetName( geom )
|
|
TreatHypoStatus( status, hyp_name, geom_name, isAlgo )
|
|
return status
|
|
|
|
## Return True if an algorithm of hypothesis is assigned to a given shape
|
|
# @param hyp a hypothesis to check
|
|
# @param geom a subhape of mesh geometry
|
|
# @return True of False
|
|
# @ingroup l2_hypotheses
|
|
def IsUsedHypothesis(self, hyp, geom):
|
|
if not hyp or not geom:
|
|
return False
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
hyps = self.GetHypothesisList(geom)
|
|
for h in hyps:
|
|
if h.GetId() == hyp.GetId():
|
|
return True
|
|
return False
|
|
|
|
## Unassigns a hypothesis
|
|
# @param hyp a hypothesis to unassign
|
|
# @param geom a sub-shape of mesh geometry
|
|
# @return SMESH.Hypothesis_Status
|
|
# @ingroup l2_hypotheses
|
|
def RemoveHypothesis(self, hyp, geom=0):
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
if not geom:
|
|
geom = self.geom
|
|
pass
|
|
status = self.mesh.RemoveHypothesis(geom, hyp)
|
|
return status
|
|
|
|
## Gets the list of hypotheses added on a geometry
|
|
# @param geom a sub-shape of mesh geometry
|
|
# @return the sequence of SMESH_Hypothesis
|
|
# @ingroup l2_hypotheses
|
|
def GetHypothesisList(self, geom):
|
|
return self.mesh.GetHypothesisList( geom )
|
|
|
|
## Removes all global hypotheses
|
|
# @ingroup l2_hypotheses
|
|
def RemoveGlobalHypotheses(self):
|
|
current_hyps = self.mesh.GetHypothesisList( self.geom )
|
|
for hyp in current_hyps:
|
|
self.mesh.RemoveHypothesis( self.geom, hyp )
|
|
pass
|
|
pass
|
|
|
|
## Deprecated, used only for compatibility! Please, use ExportToMEDX() method instead.
|
|
# Exports the mesh in a file in MED format and chooses the \a version of MED format
|
|
## allowing to overwrite the file if it exists or add the exported data to its contents
|
|
# @param f the file name
|
|
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
|
|
# @param opt boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ...
|
|
# @param overwrite boolean parameter for overwriting/not overwriting the file
|
|
# @ingroup l2_impexp
|
|
def ExportToMED(self, f, version, opt=0, overwrite=1):
|
|
self.mesh.ExportToMEDX(f, opt, version, overwrite)
|
|
|
|
## Exports the mesh in a file in MED format and chooses the \a version of MED format
|
|
## allowing to overwrite the file if it exists or add the exported data to its contents
|
|
# @param f is the file name
|
|
# @param auto_groups boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
|
|
# the typical use is auto_groups=false.
|
|
# @param version MED format version(MED_V2_1 or MED_V2_2)
|
|
# @param overwrite boolean parameter for overwriting/not overwriting the file
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportMED(self, f, auto_groups=0, version=MED_V2_2, overwrite=1, meshPart=None):
|
|
if meshPart:
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
self.mesh.ExportPartToMED( meshPart, f, auto_groups, version, overwrite )
|
|
else:
|
|
self.mesh.ExportToMEDX(f, auto_groups, version, overwrite)
|
|
|
|
## Exports the mesh in a file in SAUV format
|
|
# @param f is the file name
|
|
# @param auto_groups boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
|
|
# the typical use is auto_groups=false.
|
|
# @ingroup l2_impexp
|
|
def ExportSAUV(self, f, auto_groups=0):
|
|
self.mesh.ExportSAUV(f, auto_groups)
|
|
|
|
## Exports the mesh in a file in DAT format
|
|
# @param f the file name
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportDAT(self, f, meshPart=None):
|
|
if meshPart:
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
self.mesh.ExportPartToDAT( meshPart, f )
|
|
else:
|
|
self.mesh.ExportDAT(f)
|
|
|
|
## Exports the mesh in a file in UNV format
|
|
# @param f the file name
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportUNV(self, f, meshPart=None):
|
|
if meshPart:
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
self.mesh.ExportPartToUNV( meshPart, f )
|
|
else:
|
|
self.mesh.ExportUNV(f)
|
|
|
|
## Export the mesh in a file in STL format
|
|
# @param f the file name
|
|
# @param ascii defines the file encoding
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportSTL(self, f, ascii=1, meshPart=None):
|
|
if meshPart:
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
self.mesh.ExportPartToSTL( meshPart, f, ascii )
|
|
else:
|
|
self.mesh.ExportSTL(f, ascii)
|
|
|
|
## Exports the mesh in a file in CGNS format
|
|
# @param f is the file name
|
|
# @param overwrite boolean parameter for overwriting/not overwriting the file
|
|
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
|
|
# @ingroup l2_impexp
|
|
def ExportCGNS(self, f, overwrite=1, meshPart=None):
|
|
if isinstance( meshPart, list ):
|
|
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
|
|
if isinstance( meshPart, Mesh ):
|
|
meshPart = meshPart.mesh
|
|
elif not meshPart:
|
|
meshPart = self.mesh
|
|
self.mesh.ExportCGNS(meshPart, f, overwrite)
|
|
|
|
# Operations with groups:
|
|
# ----------------------
|
|
|
|
## Creates an empty mesh group
|
|
# @param elementType the type of elements in the group
|
|
# @param name the name of the mesh group
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def CreateEmptyGroup(self, elementType, name):
|
|
return self.mesh.CreateGroup(elementType, name)
|
|
|
|
## Creates a mesh group based on the geometric object \a grp
|
|
# and gives a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometric group name \n
|
|
# Note: Works like GroupOnGeom().
|
|
# @param grp a geometric group, a vertex, an edge, a face or a solid
|
|
# @param name the name of the mesh group
|
|
# @return SMESH_GroupOnGeom
|
|
# @ingroup l2_grps_create
|
|
def Group(self, grp, name=""):
|
|
return self.GroupOnGeom(grp, name)
|
|
|
|
## Creates a mesh group based on the geometrical object \a grp
|
|
# and gives a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometrical group name
|
|
# @param grp a geometrical group, a vertex, an edge, a face or a solid
|
|
# @param name the name of the mesh group
|
|
# @param typ the type of elements in the group. If not set, it is
|
|
# automatically detected by the type of the geometry
|
|
# @return SMESH_GroupOnGeom
|
|
# @ingroup l2_grps_create
|
|
def GroupOnGeom(self, grp, name="", typ=None):
|
|
AssureGeomPublished( self, grp, name )
|
|
if name == "":
|
|
name = grp.GetName()
|
|
if not typ:
|
|
typ = self._groupTypeFromShape( grp )
|
|
return self.mesh.CreateGroupFromGEOM(typ, name, grp)
|
|
|
|
## Pivate method to get a type of group on geometry
|
|
def _groupTypeFromShape( self, shape ):
|
|
tgeo = str(shape.GetShapeType())
|
|
if tgeo == "VERTEX":
|
|
typ = NODE
|
|
elif tgeo == "EDGE":
|
|
typ = EDGE
|
|
elif tgeo == "FACE" or tgeo == "SHELL":
|
|
typ = FACE
|
|
elif tgeo == "SOLID" or tgeo == "COMPSOLID":
|
|
typ = VOLUME
|
|
elif tgeo == "COMPOUND":
|
|
sub = self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHAPE"])
|
|
if not sub:
|
|
raise ValueError,"_groupTypeFromShape(): empty geometric group or compound '%s'" % GetName(shape)
|
|
return self._groupTypeFromShape( sub[0] )
|
|
else:
|
|
raise ValueError, \
|
|
"_groupTypeFromShape(): invalid geometry '%s'" % GetName(shape)
|
|
return typ
|
|
|
|
## Creates a mesh group with given \a name based on the \a filter which
|
|
## is a special type of group dynamically updating it's contents during
|
|
## mesh modification
|
|
# @param typ the type of elements in the group
|
|
# @param name the name of the mesh group
|
|
# @param filter the filter defining group contents
|
|
# @return SMESH_GroupOnFilter
|
|
# @ingroup l2_grps_create
|
|
def GroupOnFilter(self, typ, name, filter):
|
|
return self.mesh.CreateGroupFromFilter(typ, name, filter)
|
|
|
|
## Creates a mesh group by the given ids of elements
|
|
# @param groupName the name of the mesh group
|
|
# @param elementType the type of elements in the group
|
|
# @param elemIDs the list of ids
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByIds(self, groupName, elementType, elemIDs):
|
|
group = self.mesh.CreateGroup(elementType, groupName)
|
|
group.Add(elemIDs)
|
|
return group
|
|
|
|
## Creates a mesh group by the given conditions
|
|
# @param groupName the name of the mesh group
|
|
# @param elementType the type of elements in the group
|
|
# @param CritType the type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
|
|
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Threshold the threshold value (range of id ids as string, shape, numeric)
|
|
# @param UnaryOp FT_LogicalNOT or FT_Undefined
|
|
# @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
|
|
# FT_LyingOnGeom, FT_CoplanarFaces criteria
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroup(self,
|
|
groupName,
|
|
elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Threshold="",
|
|
UnaryOp=FT_Undefined,
|
|
Tolerance=1e-07):
|
|
aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance)
|
|
group = self.MakeGroupByCriterion(groupName, aCriterion)
|
|
return group
|
|
|
|
## Creates a mesh group by the given criterion
|
|
# @param groupName the name of the mesh group
|
|
# @param Criterion the instance of Criterion class
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByCriterion(self, groupName, Criterion):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aCriteria = []
|
|
aCriteria.append(Criterion)
|
|
aFilter.SetCriteria(aCriteria)
|
|
group = self.MakeGroupByFilter(groupName, aFilter)
|
|
aFilterMgr.UnRegister()
|
|
return group
|
|
|
|
## Creates a mesh group by the given criteria (list of criteria)
|
|
# @param groupName the name of the mesh group
|
|
# @param theCriteria the list of criteria
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByCriteria(self, groupName, theCriteria):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aFilter.SetCriteria(theCriteria)
|
|
group = self.MakeGroupByFilter(groupName, aFilter)
|
|
aFilterMgr.UnRegister()
|
|
return group
|
|
|
|
## Creates a mesh group by the given filter
|
|
# @param groupName the name of the mesh group
|
|
# @param theFilter the instance of Filter class
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByFilter(self, groupName, theFilter):
|
|
group = self.CreateEmptyGroup(theFilter.GetElementType(), groupName)
|
|
theFilter.SetMesh( self.mesh )
|
|
group.AddFrom( theFilter )
|
|
return group
|
|
|
|
## Passes mesh elements through the given filter and return IDs of fitting elements
|
|
# @param theFilter SMESH_Filter
|
|
# @return a list of ids
|
|
# @ingroup l1_controls
|
|
def GetIdsFromFilter(self, theFilter):
|
|
theFilter.SetMesh( self.mesh )
|
|
return theFilter.GetIDs()
|
|
|
|
## Verifies whether a 2D mesh element has free edges (edges connected to one face only)\n
|
|
# Returns a list of special structures (borders).
|
|
# @return a list of SMESH.FreeEdges.Border structure: edge id and ids of two its nodes.
|
|
# @ingroup l1_controls
|
|
def GetFreeBorders(self):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aPredicate = aFilterMgr.CreateFreeEdges()
|
|
aPredicate.SetMesh(self.mesh)
|
|
aBorders = aPredicate.GetBorders()
|
|
aFilterMgr.UnRegister()
|
|
return aBorders
|
|
|
|
## Removes a group
|
|
# @ingroup l2_grps_delete
|
|
def RemoveGroup(self, group):
|
|
self.mesh.RemoveGroup(group)
|
|
|
|
## Removes a group with its contents
|
|
# @ingroup l2_grps_delete
|
|
def RemoveGroupWithContents(self, group):
|
|
self.mesh.RemoveGroupWithContents(group)
|
|
|
|
## Gets the list of groups existing in the mesh
|
|
# @return a sequence of SMESH_GroupBase
|
|
# @ingroup l2_grps_create
|
|
def GetGroups(self):
|
|
return self.mesh.GetGroups()
|
|
|
|
## Gets the number of groups existing in the mesh
|
|
# @return the quantity of groups as an integer value
|
|
# @ingroup l2_grps_create
|
|
def NbGroups(self):
|
|
return self.mesh.NbGroups()
|
|
|
|
## Gets the list of names of groups existing in the mesh
|
|
# @return list of strings
|
|
# @ingroup l2_grps_create
|
|
def GetGroupNames(self):
|
|
groups = self.GetGroups()
|
|
names = []
|
|
for group in groups:
|
|
names.append(group.GetName())
|
|
return names
|
|
|
|
## Produces a union of two groups
|
|
# A new group is created. All mesh elements that are
|
|
# present in the initial groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def UnionGroups(self, group1, group2, name):
|
|
return self.mesh.UnionGroups(group1, group2, name)
|
|
|
|
## Produces a union list of groups
|
|
# New group is created. All mesh elements that are present in
|
|
# initial groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def UnionListOfGroups(self, groups, name):
|
|
return self.mesh.UnionListOfGroups(groups, name)
|
|
|
|
## Prodices an intersection of two groups
|
|
# A new group is created. All mesh elements that are common
|
|
# for the two initial groups are added to the new one.
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def IntersectGroups(self, group1, group2, name):
|
|
return self.mesh.IntersectGroups(group1, group2, name)
|
|
|
|
## Produces an intersection of groups
|
|
# New group is created. All mesh elements that are present in all
|
|
# initial groups simultaneously are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def IntersectListOfGroups(self, groups, name):
|
|
return self.mesh.IntersectListOfGroups(groups, name)
|
|
|
|
## Produces a cut of two groups
|
|
# A new group is created. All mesh elements that are present in
|
|
# the main group but are not present in the tool group are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CutGroups(self, main_group, tool_group, name):
|
|
return self.mesh.CutGroups(main_group, tool_group, name)
|
|
|
|
## Produces a cut of groups
|
|
# A new group is created. All mesh elements that are present in main groups
|
|
# but do not present in tool groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CutListOfGroups(self, main_groups, tool_groups, name):
|
|
return self.mesh.CutListOfGroups(main_groups, tool_groups, name)
|
|
|
|
## Produces a group of elements of specified type using list of existing groups
|
|
# A new group is created. System
|
|
# 1) extracts all nodes on which groups elements are built
|
|
# 2) combines all elements of specified dimension laying on these nodes
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CreateDimGroup(self, groups, elem_type, name):
|
|
return self.mesh.CreateDimGroup(groups, elem_type, name)
|
|
|
|
|
|
## Convert group on geom into standalone group
|
|
# @ingroup l2_grps_delete
|
|
def ConvertToStandalone(self, group):
|
|
return self.mesh.ConvertToStandalone(group)
|
|
|
|
# Get some info about mesh:
|
|
# ------------------------
|
|
|
|
## Returns the log of nodes and elements added or removed
|
|
# since the previous clear of the log.
|
|
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
|
|
# @return list of log_block structures:
|
|
# commandType
|
|
# number
|
|
# coords
|
|
# indexes
|
|
# @ingroup l1_auxiliary
|
|
def GetLog(self, clearAfterGet):
|
|
return self.mesh.GetLog(clearAfterGet)
|
|
|
|
## Clears the log of nodes and elements added or removed since the previous
|
|
# clear. Must be used immediately after GetLog if clearAfterGet is false.
|
|
# @ingroup l1_auxiliary
|
|
def ClearLog(self):
|
|
self.mesh.ClearLog()
|
|
|
|
## Toggles auto color mode on the object.
|
|
# @param theAutoColor the flag which toggles auto color mode.
|
|
# @ingroup l1_auxiliary
|
|
def SetAutoColor(self, theAutoColor):
|
|
self.mesh.SetAutoColor(theAutoColor)
|
|
|
|
## Gets flag of object auto color mode.
|
|
# @return True or False
|
|
# @ingroup l1_auxiliary
|
|
def GetAutoColor(self):
|
|
return self.mesh.GetAutoColor()
|
|
|
|
## Gets the internal ID
|
|
# @return integer value, which is the internal Id of the mesh
|
|
# @ingroup l1_auxiliary
|
|
def GetId(self):
|
|
return self.mesh.GetId()
|
|
|
|
## Get the study Id
|
|
# @return integer value, which is the study Id of the mesh
|
|
# @ingroup l1_auxiliary
|
|
def GetStudyId(self):
|
|
return self.mesh.GetStudyId()
|
|
|
|
## Checks the group names for duplications.
|
|
# Consider the maximum group name length stored in MED file.
|
|
# @return True or False
|
|
# @ingroup l1_auxiliary
|
|
def HasDuplicatedGroupNamesMED(self):
|
|
return self.mesh.HasDuplicatedGroupNamesMED()
|
|
|
|
## Obtains the mesh editor tool
|
|
# @return an instance of SMESH_MeshEditor
|
|
# @ingroup l1_modifying
|
|
def GetMeshEditor(self):
|
|
return self.mesh.GetMeshEditor()
|
|
|
|
## Wrap a list of IDs of elements or nodes into SMESH_IDSource which
|
|
# can be passed as argument to accepting mesh, group or sub-mesh
|
|
# @return an instance of SMESH_IDSource
|
|
# @ingroup l1_auxiliary
|
|
def GetIDSource(self, ids, elemType):
|
|
return self.GetMeshEditor().MakeIDSource(ids, elemType)
|
|
|
|
## Gets MED Mesh
|
|
# @return an instance of SALOME_MED::MESH
|
|
# @ingroup l1_auxiliary
|
|
def GetMEDMesh(self):
|
|
return self.mesh.GetMEDMesh()
|
|
|
|
|
|
# Get informations about mesh contents:
|
|
# ------------------------------------
|
|
|
|
## Gets the mesh stattistic
|
|
# @return dictionary type element - count of elements
|
|
# @ingroup l1_meshinfo
|
|
def GetMeshInfo(self, obj = None):
|
|
if not obj: obj = self.mesh
|
|
return self.smeshpyD.GetMeshInfo(obj)
|
|
|
|
## Returns the number of nodes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbNodes(self):
|
|
return self.mesh.NbNodes()
|
|
|
|
## Returns the number of elements in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbElements(self):
|
|
return self.mesh.NbElements()
|
|
|
|
## Returns the number of 0d elements in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def Nb0DElements(self):
|
|
return self.mesh.Nb0DElements()
|
|
|
|
## Returns the number of edges in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbEdges(self):
|
|
return self.mesh.NbEdges()
|
|
|
|
## Returns the number of edges with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbEdgesOfOrder(self, elementOrder):
|
|
return self.mesh.NbEdgesOfOrder(elementOrder)
|
|
|
|
## Returns the number of faces in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbFaces(self):
|
|
return self.mesh.NbFaces()
|
|
|
|
## Returns the number of faces with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbFacesOfOrder(self, elementOrder):
|
|
return self.mesh.NbFacesOfOrder(elementOrder)
|
|
|
|
## Returns the number of triangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTriangles(self):
|
|
return self.mesh.NbTriangles()
|
|
|
|
## Returns the number of triangles with the given order in the mesh
|
|
# @param elementOrder is the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTrianglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbTrianglesOfOrder(elementOrder)
|
|
|
|
## Returns the number of quadrangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbQuadrangles(self):
|
|
return self.mesh.NbQuadrangles()
|
|
|
|
## Returns the number of quadrangles with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbQuadranglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbQuadranglesOfOrder(elementOrder)
|
|
|
|
## Returns the number of biquadratic quadrangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbBiQuadQuadrangles(self):
|
|
return self.mesh.NbBiQuadQuadrangles()
|
|
|
|
## Returns the number of polygons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPolygons(self):
|
|
return self.mesh.NbPolygons()
|
|
|
|
## Returns the number of volumes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbVolumes(self):
|
|
return self.mesh.NbVolumes()
|
|
|
|
## Returns the number of volumes with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbVolumesOfOrder(self, elementOrder):
|
|
return self.mesh.NbVolumesOfOrder(elementOrder)
|
|
|
|
## Returns the number of tetrahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTetras(self):
|
|
return self.mesh.NbTetras()
|
|
|
|
## Returns the number of tetrahedrons with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTetrasOfOrder(self, elementOrder):
|
|
return self.mesh.NbTetrasOfOrder(elementOrder)
|
|
|
|
## Returns the number of hexahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexas(self):
|
|
return self.mesh.NbHexas()
|
|
|
|
## Returns the number of hexahedrons with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexasOfOrder(self, elementOrder):
|
|
return self.mesh.NbHexasOfOrder(elementOrder)
|
|
|
|
## Returns the number of triquadratic hexahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTriQuadraticHexas(self):
|
|
return self.mesh.NbTriQuadraticHexas()
|
|
|
|
## Returns the number of pyramids in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPyramids(self):
|
|
return self.mesh.NbPyramids()
|
|
|
|
## Returns the number of pyramids with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPyramidsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPyramidsOfOrder(elementOrder)
|
|
|
|
## Returns the number of prisms in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPrisms(self):
|
|
return self.mesh.NbPrisms()
|
|
|
|
## Returns the number of prisms with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPrismsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPrismsOfOrder(elementOrder)
|
|
|
|
## Returns the number of hexagonal prisms in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexagonalPrisms(self):
|
|
return self.mesh.NbHexagonalPrisms()
|
|
|
|
## Returns the number of polyhedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPolyhedrons(self):
|
|
return self.mesh.NbPolyhedrons()
|
|
|
|
## Returns the number of submeshes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbSubMesh(self):
|
|
return self.mesh.NbSubMesh()
|
|
|
|
## Returns the list of mesh elements IDs
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElementsId(self):
|
|
return self.mesh.GetElementsId()
|
|
|
|
## Returns the list of IDs of mesh elements with the given type
|
|
# @param elementType the required type of elements (SMESH.NODE, SMESH.EDGE, SMESH.FACE or SMESH.VOLUME)
|
|
# @return list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElementsByType(self, elementType):
|
|
return self.mesh.GetElementsByType(elementType)
|
|
|
|
## Returns the list of mesh nodes IDs
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodesId(self):
|
|
return self.mesh.GetNodesId()
|
|
|
|
# Get the information about mesh elements:
|
|
# ------------------------------------
|
|
|
|
## Returns the type of mesh element
|
|
# @return the value from SMESH::ElementType enumeration
|
|
# @ingroup l1_meshinfo
|
|
def GetElementType(self, id, iselem):
|
|
return self.mesh.GetElementType(id, iselem)
|
|
|
|
## Returns the geometric type of mesh element
|
|
# @return the value from SMESH::EntityType enumeration
|
|
# @ingroup l1_meshinfo
|
|
def GetElementGeomType(self, id):
|
|
return self.mesh.GetElementGeomType(id)
|
|
|
|
## Returns the list of submesh elements IDs
|
|
# @param Shape a geom object(sub-shape) IOR
|
|
# Shape must be the sub-shape of a ShapeToMesh()
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshElementsId(self, Shape):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshElementsId(ShapeID)
|
|
|
|
## Returns the list of submesh nodes IDs
|
|
# @param Shape a geom object(sub-shape) IOR
|
|
# Shape must be the sub-shape of a ShapeToMesh()
|
|
# @param all If true, gives all nodes of submesh elements, otherwise gives only submesh nodes
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshNodesId(self, Shape, all):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshNodesId(ShapeID, all)
|
|
|
|
## Returns type of elements on given shape
|
|
# @param Shape a geom object(sub-shape) IOR
|
|
# Shape must be a sub-shape of a ShapeToMesh()
|
|
# @return element type
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshElementType(self, Shape):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshElementType(ShapeID)
|
|
|
|
## Gets the mesh description
|
|
# @return string value
|
|
# @ingroup l1_meshinfo
|
|
def Dump(self):
|
|
return self.mesh.Dump()
|
|
|
|
|
|
# Get the information about nodes and elements of a mesh by its IDs:
|
|
# -----------------------------------------------------------
|
|
|
|
## Gets XYZ coordinates of a node
|
|
# \n If there is no nodes for the given ID - returns an empty list
|
|
# @return a list of double precision values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodeXYZ(self, id):
|
|
return self.mesh.GetNodeXYZ(id)
|
|
|
|
## Returns list of IDs of inverse elements for the given node
|
|
# \n If there is no node for the given ID - returns an empty list
|
|
# @return a list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodeInverseElements(self, id):
|
|
return self.mesh.GetNodeInverseElements(id)
|
|
|
|
## @brief Returns the position of a node on the shape
|
|
# @return SMESH::NodePosition
|
|
# @ingroup l1_meshinfo
|
|
def GetNodePosition(self,NodeID):
|
|
return self.mesh.GetNodePosition(NodeID)
|
|
|
|
## If the given element is a node, returns the ID of shape
|
|
# \n If there is no node for the given ID - returns -1
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetShapeID(self, id):
|
|
return self.mesh.GetShapeID(id)
|
|
|
|
## Returns the ID of the result shape after
|
|
# FindShape() from SMESH_MeshEditor for the given element
|
|
# \n If there is no element for the given ID - returns -1
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetShapeIDForElem(self,id):
|
|
return self.mesh.GetShapeIDForElem(id)
|
|
|
|
## Returns the number of nodes for the given element
|
|
# \n If there is no element for the given ID - returns -1
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNbNodes(self, id):
|
|
return self.mesh.GetElemNbNodes(id)
|
|
|
|
## Returns the node ID the given index for the given element
|
|
# \n If there is no element for the given ID - returns -1
|
|
# \n If there is no node for the given index - returns -2
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNode(self, id, index):
|
|
return self.mesh.GetElemNode(id, index)
|
|
|
|
## Returns the IDs of nodes of the given element
|
|
# @return a list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNodes(self, id):
|
|
return self.mesh.GetElemNodes(id)
|
|
|
|
## Returns true if the given node is the medium node in the given quadratic element
|
|
# @ingroup l1_meshinfo
|
|
def IsMediumNode(self, elementID, nodeID):
|
|
return self.mesh.IsMediumNode(elementID, nodeID)
|
|
|
|
## Returns true if the given node is the medium node in one of quadratic elements
|
|
# @ingroup l1_meshinfo
|
|
def IsMediumNodeOfAnyElem(self, nodeID, elementType):
|
|
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
|
|
|
|
## Returns the number of edges for the given element
|
|
# @ingroup l1_meshinfo
|
|
def ElemNbEdges(self, id):
|
|
return self.mesh.ElemNbEdges(id)
|
|
|
|
## Returns the number of faces for the given element
|
|
# @ingroup l1_meshinfo
|
|
def ElemNbFaces(self, id):
|
|
return self.mesh.ElemNbFaces(id)
|
|
|
|
## Returns nodes of given face (counted from zero) for given volumic element.
|
|
# @ingroup l1_meshinfo
|
|
def GetElemFaceNodes(self,elemId, faceIndex):
|
|
return self.mesh.GetElemFaceNodes(elemId, faceIndex)
|
|
|
|
## Returns an element based on all given nodes.
|
|
# @ingroup l1_meshinfo
|
|
def FindElementByNodes(self,nodes):
|
|
return self.mesh.FindElementByNodes(nodes)
|
|
|
|
## Returns true if the given element is a polygon
|
|
# @ingroup l1_meshinfo
|
|
def IsPoly(self, id):
|
|
return self.mesh.IsPoly(id)
|
|
|
|
## Returns true if the given element is quadratic
|
|
# @ingroup l1_meshinfo
|
|
def IsQuadratic(self, id):
|
|
return self.mesh.IsQuadratic(id)
|
|
|
|
## Returns XYZ coordinates of the barycenter of the given element
|
|
# \n If there is no element for the given ID - returns an empty list
|
|
# @return a list of three double values
|
|
# @ingroup l1_meshinfo
|
|
def BaryCenter(self, id):
|
|
return self.mesh.BaryCenter(id)
|
|
|
|
|
|
# Get mesh measurements information:
|
|
# ------------------------------------
|
|
|
|
## Get minimum distance between two nodes, elements or distance to the origin
|
|
# @param id1 first node/element id
|
|
# @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return minimum distance value
|
|
# @sa GetMinDistance()
|
|
def MinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
|
|
aMeasure = self.GetMinDistance(id1, id2, isElem1, isElem2)
|
|
return aMeasure.value
|
|
|
|
## Get measure structure specifying minimum distance data between two objects
|
|
# @param id1 first node/element id
|
|
# @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
|
|
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
|
|
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
|
|
# @return Measure structure
|
|
# @sa MinDistance()
|
|
def GetMinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
|
|
if isElem1:
|
|
id1 = self.editor.MakeIDSource([id1], SMESH.FACE)
|
|
else:
|
|
id1 = self.editor.MakeIDSource([id1], SMESH.NODE)
|
|
if id2 != 0:
|
|
if isElem2:
|
|
id2 = self.editor.MakeIDSource([id2], SMESH.FACE)
|
|
else:
|
|
id2 = self.editor.MakeIDSource([id2], SMESH.NODE)
|
|
pass
|
|
else:
|
|
id2 = None
|
|
|
|
aMeasurements = self.smeshpyD.CreateMeasurements()
|
|
aMeasure = aMeasurements.MinDistance(id1, id2)
|
|
aMeasurements.UnRegister()
|
|
return aMeasure
|
|
|
|
## Get bounding box of the specified object(s)
|
|
# @param objects single source object or list of source objects or list of nodes/elements IDs
|
|
# @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
|
|
# @c False specifies that @a objects are nodes
|
|
# @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
|
|
# @sa GetBoundingBox()
|
|
def BoundingBox(self, objects=None, isElem=False):
|
|
result = self.GetBoundingBox(objects, isElem)
|
|
if result is None:
|
|
result = (0.0,)*6
|
|
else:
|
|
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
|
|
return result
|
|
|
|
## Get measure structure specifying bounding box data of the specified object(s)
|
|
# @param IDs single source object or list of source objects or list of nodes/elements IDs
|
|
# @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
|
|
# @c False specifies that @a objects are nodes
|
|
# @return Measure structure
|
|
# @sa BoundingBox()
|
|
def GetBoundingBox(self, IDs=None, isElem=False):
|
|
if IDs is None:
|
|
IDs = [self.mesh]
|
|
elif isinstance(IDs, tuple):
|
|
IDs = list(IDs)
|
|
if not isinstance(IDs, list):
|
|
IDs = [IDs]
|
|
if len(IDs) > 0 and isinstance(IDs[0], int):
|
|
IDs = [IDs]
|
|
srclist = []
|
|
for o in IDs:
|
|
if isinstance(o, Mesh):
|
|
srclist.append(o.mesh)
|
|
elif hasattr(o, "_narrow"):
|
|
src = o._narrow(SMESH.SMESH_IDSource)
|
|
if src: srclist.append(src)
|
|
pass
|
|
elif isinstance(o, list):
|
|
if isElem:
|
|
srclist.append(self.editor.MakeIDSource(o, SMESH.FACE))
|
|
else:
|
|
srclist.append(self.editor.MakeIDSource(o, SMESH.NODE))
|
|
pass
|
|
pass
|
|
aMeasurements = self.smeshpyD.CreateMeasurements()
|
|
aMeasure = aMeasurements.BoundingBox(srclist)
|
|
aMeasurements.UnRegister()
|
|
return aMeasure
|
|
|
|
# Mesh edition (SMESH_MeshEditor functionality):
|
|
# ---------------------------------------------
|
|
|
|
## Removes the elements from the mesh by ids
|
|
# @param IDsOfElements is a list of ids of elements to remove
|
|
# @return True or False
|
|
# @ingroup l2_modif_del
|
|
def RemoveElements(self, IDsOfElements):
|
|
return self.editor.RemoveElements(IDsOfElements)
|
|
|
|
## Removes nodes from mesh by ids
|
|
# @param IDsOfNodes is a list of ids of nodes to remove
|
|
# @return True or False
|
|
# @ingroup l2_modif_del
|
|
def RemoveNodes(self, IDsOfNodes):
|
|
return self.editor.RemoveNodes(IDsOfNodes)
|
|
|
|
## Removes all orphan (free) nodes from mesh
|
|
# @return number of the removed nodes
|
|
# @ingroup l2_modif_del
|
|
def RemoveOrphanNodes(self):
|
|
return self.editor.RemoveOrphanNodes()
|
|
|
|
## Add a node to the mesh by coordinates
|
|
# @return Id of the new node
|
|
# @ingroup l2_modif_add
|
|
def AddNode(self, x, y, z):
|
|
x,y,z,Parameters = ParseParameters(x,y,z)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.AddNode( x, y, z)
|
|
|
|
## Creates a 0D element on a node with given number.
|
|
# @param IDOfNode the ID of node for creation of the element.
|
|
# @return the Id of the new 0D element
|
|
# @ingroup l2_modif_add
|
|
def Add0DElement(self, IDOfNode):
|
|
return self.editor.Add0DElement(IDOfNode)
|
|
|
|
## Creates a linear or quadratic edge (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new edge
|
|
# @ingroup l2_modif_add
|
|
def AddEdge(self, IDsOfNodes):
|
|
return self.editor.AddEdge(IDsOfNodes)
|
|
|
|
## Creates a linear or quadratic face (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new face
|
|
# @ingroup l2_modif_add
|
|
def AddFace(self, IDsOfNodes):
|
|
return self.editor.AddFace(IDsOfNodes)
|
|
|
|
## Adds a polygonal face to the mesh by the list of node IDs
|
|
# @param IdsOfNodes the list of node IDs for creation of the element.
|
|
# @return the Id of the new face
|
|
# @ingroup l2_modif_add
|
|
def AddPolygonalFace(self, IdsOfNodes):
|
|
return self.editor.AddPolygonalFace(IdsOfNodes)
|
|
|
|
## Creates both simple and quadratic volume (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddVolume(self, IDsOfNodes):
|
|
return self.editor.AddVolume(IDsOfNodes)
|
|
|
|
## Creates a volume of many faces, giving nodes for each face.
|
|
# @param IdsOfNodes the list of node IDs for volume creation face by face.
|
|
# @param Quantities the list of integer values, Quantities[i]
|
|
# gives the quantity of nodes in face number i.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
|
|
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
|
|
|
|
## Creates a volume of many faces, giving the IDs of the existing faces.
|
|
# @param IdsOfFaces the list of face IDs for volume creation.
|
|
#
|
|
# Note: The created volume will refer only to the nodes
|
|
# of the given faces, not to the faces themselves.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
|
|
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
|
|
|
|
|
|
## @brief Binds a node to a vertex
|
|
# @param NodeID a node ID
|
|
# @param Vertex a vertex or vertex ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnVertex(self, NodeID, Vertex):
|
|
if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)):
|
|
VertexID = Vertex.GetSubShapeIndices()[0]
|
|
else:
|
|
VertexID = Vertex
|
|
try:
|
|
self.editor.SetNodeOnVertex(NodeID, VertexID)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
|
|
## @brief Stores the node position on an edge
|
|
# @param NodeID a node ID
|
|
# @param Edge an edge or edge ID
|
|
# @param paramOnEdge a parameter on the edge where the node is located
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
|
|
if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)):
|
|
EdgeID = Edge.GetSubShapeIndices()[0]
|
|
else:
|
|
EdgeID = Edge
|
|
try:
|
|
self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
## @brief Stores node position on a face
|
|
# @param NodeID a node ID
|
|
# @param Face a face or face ID
|
|
# @param u U parameter on the face where the node is located
|
|
# @param v V parameter on the face where the node is located
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnFace(self, NodeID, Face, u, v):
|
|
if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)):
|
|
FaceID = Face.GetSubShapeIndices()[0]
|
|
else:
|
|
FaceID = Face
|
|
try:
|
|
self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
## @brief Binds a node to a solid
|
|
# @param NodeID a node ID
|
|
# @param Solid a solid or solid ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeInVolume(self, NodeID, Solid):
|
|
if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)):
|
|
SolidID = Solid.GetSubShapeIndices()[0]
|
|
else:
|
|
SolidID = Solid
|
|
try:
|
|
self.editor.SetNodeInVolume(NodeID, SolidID)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
## @brief Bind an element to a shape
|
|
# @param ElementID an element ID
|
|
# @param Shape a shape or shape ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetMeshElementOnShape(self, ElementID, Shape):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
try:
|
|
self.editor.SetMeshElementOnShape(ElementID, ShapeID)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
|
|
## Moves the node with the given id
|
|
# @param NodeID the id of the node
|
|
# @param x a new X coordinate
|
|
# @param y a new Y coordinate
|
|
# @param z a new Z coordinate
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_movenode
|
|
def MoveNode(self, NodeID, x, y, z):
|
|
x,y,z,Parameters = ParseParameters(x,y,z)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.MoveNode(NodeID, x, y, z)
|
|
|
|
## Finds the node closest to a point and moves it to a point location
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @param NodeID if specified (>0), the node with this ID is moved,
|
|
# otherwise, the node closest to point (@a x,@a y,@a z) is moved
|
|
# @return the ID of a node
|
|
# @ingroup l2_modif_throughp
|
|
def MoveClosestNodeToPoint(self, x, y, z, NodeID):
|
|
x,y,z,Parameters = ParseParameters(x,y,z)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.MoveClosestNodeToPoint(x, y, z, NodeID)
|
|
|
|
## Finds the node closest to a point
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @return the ID of a node
|
|
# @ingroup l2_modif_throughp
|
|
def FindNodeClosestTo(self, x, y, z):
|
|
#preview = self.mesh.GetMeshEditPreviewer()
|
|
#return preview.MoveClosestNodeToPoint(x, y, z, -1)
|
|
return self.editor.FindNodeClosestTo(x, y, z)
|
|
|
|
## Finds the elements where a point lays IN or ON
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @param elementType type of elements to find (SMESH.ALL type
|
|
# means elements of any type excluding nodes and 0D elements)
|
|
# @param meshPart a part of mesh (group, sub-mesh) to search within
|
|
# @return list of IDs of found elements
|
|
# @ingroup l2_modif_throughp
|
|
def FindElementsByPoint(self, x, y, z, elementType = SMESH.ALL, meshPart=None):
|
|
if meshPart:
|
|
return self.editor.FindAmongElementsByPoint( meshPart, x, y, z, elementType );
|
|
else:
|
|
return self.editor.FindElementsByPoint(x, y, z, elementType)
|
|
|
|
# Return point state in a closed 2D mesh in terms of TopAbs_State enumeration.
|
|
# TopAbs_UNKNOWN state means that either mesh is wrong or the analysis fails.
|
|
|
|
def GetPointState(self, x, y, z):
|
|
return self.editor.GetPointState(x, y, z)
|
|
|
|
## Finds the node closest to a point and moves it to a point location
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @return the ID of a moved node
|
|
# @ingroup l2_modif_throughp
|
|
def MeshToPassThroughAPoint(self, x, y, z):
|
|
return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
|
|
|
|
## Replaces two neighbour triangles sharing Node1-Node2 link
|
|
# with the triangles built on the same 4 nodes but having other common link.
|
|
# @param NodeID1 the ID of the first node
|
|
# @param NodeID2 the ID of the second node
|
|
# @return false if proper faces were not found
|
|
# @ingroup l2_modif_invdiag
|
|
def InverseDiag(self, NodeID1, NodeID2):
|
|
return self.editor.InverseDiag(NodeID1, NodeID2)
|
|
|
|
## Replaces two neighbour triangles sharing Node1-Node2 link
|
|
# with a quadrangle built on the same 4 nodes.
|
|
# @param NodeID1 the ID of the first node
|
|
# @param NodeID2 the ID of the second node
|
|
# @return false if proper faces were not found
|
|
# @ingroup l2_modif_unitetri
|
|
def DeleteDiag(self, NodeID1, NodeID2):
|
|
return self.editor.DeleteDiag(NodeID1, NodeID2)
|
|
|
|
## Reorients elements by ids
|
|
# @param IDsOfElements if undefined reorients all mesh elements
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_changori
|
|
def Reorient(self, IDsOfElements=None):
|
|
if IDsOfElements == None:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.Reorient(IDsOfElements)
|
|
|
|
## Reorients all elements of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_changori
|
|
def ReorientObject(self, theObject):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.ReorientObject(theObject)
|
|
|
|
## Fuses the neighbouring triangles into quadrangles.
|
|
# @param IDsOfElements The triangles to be fused,
|
|
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
|
|
# @param MaxAngle is the maximum angle between element normals at which the fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# Also it could be a name of variable which defines angle in degrees.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_unitetri
|
|
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
|
|
flag = False
|
|
if isinstance(MaxAngle,str):
|
|
flag = True
|
|
MaxAngle,Parameters = ParseAngles(MaxAngle)
|
|
self.mesh.SetParameters(Parameters)
|
|
if not IDsOfElements:
|
|
IDsOfElements = self.GetElementsId()
|
|
Functor = 0
|
|
if ( isinstance( theCriterion, SMESH._objref_NumericalFunctor ) ):
|
|
Functor = theCriterion
|
|
else:
|
|
Functor = self.smeshpyD.GetFunctor(theCriterion)
|
|
return self.editor.TriToQuad(IDsOfElements, Functor, MaxAngle)
|
|
|
|
## Fuses the neighbouring triangles of the object into quadrangles
|
|
# @param theObject is mesh, submesh or group
|
|
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
|
|
# @param MaxAngle a max angle between element normals at which the fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_unitetri
|
|
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
|
|
MaxAngle,Parameters = ParseAngles(MaxAngle)
|
|
self.mesh.SetParameters(Parameters)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param IDsOfElements the faces to be splitted.
|
|
# @param theCriterion FT_...; used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def QuadToTri (self, IDsOfElements, theCriterion):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
|
|
# @param theCriterion FT_...; used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def QuadToTriObject (self, theObject, theCriterion):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param IDsOfElements the faces to be splitted
|
|
# @param Diag13 is used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitQuad (self, IDsOfElements, Diag13):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.SplitQuad(IDsOfElements, Diag13)
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
|
|
# @param Diag13 is used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitQuadObject (self, theObject, Diag13):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SplitQuadObject(theObject, Diag13)
|
|
|
|
## Finds a better splitting of the given quadrangle.
|
|
# @param IDOfQuad the ID of the quadrangle to be splitted.
|
|
# @param theCriterion FT_...; a criterion to choose a diagonal for splitting.
|
|
# @return 1 if 1-3 diagonal is better, 2 if 2-4
|
|
# diagonal is better, 0 if error occurs.
|
|
# @ingroup l2_modif_cutquadr
|
|
def BestSplit (self, IDOfQuad, theCriterion):
|
|
return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Splits volumic elements into tetrahedrons
|
|
# @param elemIDs either list of elements or mesh or group or submesh
|
|
# @param method flags passing splitting method: Hex_5Tet, Hex_6Tet, Hex_24Tet
|
|
# Hex_5Tet - split the hexahedron into 5 tetrahedrons, etc
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitVolumesIntoTetra(self, elemIDs, method=Hex_5Tet ):
|
|
if isinstance( elemIDs, Mesh ):
|
|
elemIDs = elemIDs.GetMesh()
|
|
if ( isinstance( elemIDs, list )):
|
|
elemIDs = self.editor.MakeIDSource(elemIDs, SMESH.VOLUME)
|
|
self.editor.SplitVolumesIntoTetra(elemIDs, method)
|
|
|
|
## Splits quadrangle faces near triangular facets of volumes
|
|
#
|
|
# @ingroup l1_auxiliary
|
|
def SplitQuadsNearTriangularFacets(self):
|
|
faces_array = self.GetElementsByType(SMESH.FACE)
|
|
for face_id in faces_array:
|
|
if self.GetElemNbNodes(face_id) == 4: # quadrangle
|
|
quad_nodes = self.mesh.GetElemNodes(face_id)
|
|
node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
|
|
isVolumeFound = False
|
|
for node1_elem in node1_elems:
|
|
if not isVolumeFound:
|
|
if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
|
|
nb_nodes = self.GetElemNbNodes(node1_elem)
|
|
if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
|
|
volume_elem = node1_elem
|
|
volume_nodes = self.mesh.GetElemNodes(volume_elem)
|
|
if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
|
|
if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
|
|
isVolumeFound = True
|
|
if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
|
|
self.SplitQuad([face_id], False) # diagonal 2-4
|
|
elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
|
|
isVolumeFound = True
|
|
self.SplitQuad([face_id], True) # diagonal 1-3
|
|
elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
|
|
if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
|
|
isVolumeFound = True
|
|
self.SplitQuad([face_id], True) # diagonal 1-3
|
|
|
|
## @brief Splits hexahedrons into tetrahedrons.
|
|
#
|
|
# This operation uses pattern mapping functionality for splitting.
|
|
# @param theObject the object from which the list of hexahedrons is taken; this is mesh, submesh or group.
|
|
# @param theNode000,theNode001 within the range [0,7]; gives the orientation of the
|
|
# pattern relatively each hexahedron: the (0,0,0) key-point of the pattern
|
|
# will be mapped into <VAR>theNode000</VAR>-th node of each volume, the (0,0,1)
|
|
# key-point will be mapped into <VAR>theNode001</VAR>-th node of each volume.
|
|
# The (0,0,0) key-point of the used pattern corresponds to a non-split corner.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l1_auxiliary
|
|
def SplitHexaToTetras (self, theObject, theNode000, theNode001):
|
|
# Pattern: 5.---------.6
|
|
# /|#* /|
|
|
# / | #* / |
|
|
# / | # * / |
|
|
# / | # /* |
|
|
# (0,0,1) 4.---------.7 * |
|
|
# |#* |1 | # *|
|
|
# | # *.----|---#.2
|
|
# | #/ * | /
|
|
# | /# * | /
|
|
# | / # * | /
|
|
# |/ #*|/
|
|
# (0,0,0) 0.---------.3
|
|
pattern_tetra = "!!! Nb of points: \n 8 \n\
|
|
!!! Points: \n\
|
|
0 0 0 !- 0 \n\
|
|
0 1 0 !- 1 \n\
|
|
1 1 0 !- 2 \n\
|
|
1 0 0 !- 3 \n\
|
|
0 0 1 !- 4 \n\
|
|
0 1 1 !- 5 \n\
|
|
1 1 1 !- 6 \n\
|
|
1 0 1 !- 7 \n\
|
|
!!! Indices of points of 6 tetras: \n\
|
|
0 3 4 1 \n\
|
|
7 4 3 1 \n\
|
|
4 7 5 1 \n\
|
|
6 2 5 7 \n\
|
|
1 5 2 7 \n\
|
|
2 3 1 7 \n"
|
|
|
|
pattern = self.smeshpyD.GetPattern()
|
|
isDone = pattern.LoadFromFile(pattern_tetra)
|
|
if not isDone:
|
|
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
|
|
return isDone
|
|
|
|
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
|
|
isDone = pattern.MakeMesh(self.mesh, False, False)
|
|
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
|
|
|
|
# split quafrangle faces near triangular facets of volumes
|
|
self.SplitQuadsNearTriangularFacets()
|
|
|
|
return isDone
|
|
|
|
## @brief Split hexahedrons into prisms.
|
|
#
|
|
# Uses the pattern mapping functionality for splitting.
|
|
# @param theObject the object (mesh, submesh or group) from where the list of hexahedrons is taken;
|
|
# @param theNode000,theNode001 (within the range [0,7]) gives the orientation of the
|
|
# pattern relatively each hexahedron: keypoint (0,0,0) of the pattern
|
|
# will be mapped into the <VAR>theNode000</VAR>-th node of each volume, keypoint (0,0,1)
|
|
# will be mapped into the <VAR>theNode001</VAR>-th node of each volume.
|
|
# Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l1_auxiliary
|
|
def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
|
|
# Pattern: 5.---------.6
|
|
# /|# /|
|
|
# / | # / |
|
|
# / | # / |
|
|
# / | # / |
|
|
# (0,0,1) 4.---------.7 |
|
|
# | | | |
|
|
# | 1.----|----.2
|
|
# | / * | /
|
|
# | / * | /
|
|
# | / * | /
|
|
# |/ *|/
|
|
# (0,0,0) 0.---------.3
|
|
pattern_prism = "!!! Nb of points: \n 8 \n\
|
|
!!! Points: \n\
|
|
0 0 0 !- 0 \n\
|
|
0 1 0 !- 1 \n\
|
|
1 1 0 !- 2 \n\
|
|
1 0 0 !- 3 \n\
|
|
0 0 1 !- 4 \n\
|
|
0 1 1 !- 5 \n\
|
|
1 1 1 !- 6 \n\
|
|
1 0 1 !- 7 \n\
|
|
!!! Indices of points of 2 prisms: \n\
|
|
0 1 3 4 5 7 \n\
|
|
2 3 1 6 7 5 \n"
|
|
|
|
pattern = self.smeshpyD.GetPattern()
|
|
isDone = pattern.LoadFromFile(pattern_prism)
|
|
if not isDone:
|
|
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
|
|
return isDone
|
|
|
|
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
|
|
isDone = pattern.MakeMesh(self.mesh, False, False)
|
|
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
|
|
|
|
# Splits quafrangle faces near triangular facets of volumes
|
|
self.SplitQuadsNearTriangularFacets()
|
|
|
|
return isDone
|
|
|
|
## Smoothes elements
|
|
# @param IDsOfElements the list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
MaxNbOfIterations,MaxAspectRatio,Parameters = ParseParameters(MaxNbOfIterations,MaxAspectRatio)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Smoothes elements which belong to the given object
|
|
# @param theObject the object to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Parametrically smoothes the given elements
|
|
# @param IDsOfElements the list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
MaxNbOfIterations,MaxAspectRatio,Parameters = ParseParameters(MaxNbOfIterations,MaxAspectRatio)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Parametrically smoothes the elements which belong to the given object
|
|
# @param theObject the object to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Converts the mesh to quadratic, deletes old elements, replacing
|
|
# them with quadratic with the same id.
|
|
# @param theForce3d new node creation method:
|
|
# 0 - the medium node lies at the geometrical entity from which the mesh element is built
|
|
# 1 - the medium node lies at the middle of the line segments connecting start and end node of a mesh element
|
|
# @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
|
|
# @ingroup l2_modif_tofromqu
|
|
def ConvertToQuadratic(self, theForce3d, theSubMesh=None):
|
|
if theSubMesh:
|
|
self.editor.ConvertToQuadraticObject(theForce3d,theSubMesh)
|
|
else:
|
|
self.editor.ConvertToQuadratic(theForce3d)
|
|
|
|
## Converts the mesh from quadratic to ordinary,
|
|
# deletes old quadratic elements, \n replacing
|
|
# them with ordinary mesh elements with the same id.
|
|
# @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
|
|
# @ingroup l2_modif_tofromqu
|
|
def ConvertFromQuadratic(self, theSubMesh=None):
|
|
if theSubMesh:
|
|
self.editor.ConvertFromQuadraticObject(theSubMesh)
|
|
else:
|
|
return self.editor.ConvertFromQuadratic()
|
|
|
|
## Creates 2D mesh as skin on boundary faces of a 3D mesh
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def Make2DMeshFrom3D(self):
|
|
return self.editor. Make2DMeshFrom3D()
|
|
|
|
## Creates missing boundary elements
|
|
# @param elements - elements whose boundary is to be checked:
|
|
# mesh, group, sub-mesh or list of elements
|
|
# if elements is mesh, it must be the mesh whose MakeBoundaryMesh() is called
|
|
# @param dimension - defines type of boundary elements to create:
|
|
# SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D
|
|
# SMESH.BND_1DFROM3D creates mesh edges on all borders of free facets of 3D cells
|
|
# @param groupName - a name of group to store created boundary elements in,
|
|
# "" means not to create the group
|
|
# @param meshName - a name of new mesh to store created boundary elements in,
|
|
# "" means not to create the new mesh
|
|
# @param toCopyElements - if true, the checked elements will be copied into
|
|
# the new mesh else only boundary elements will be copied into the new mesh
|
|
# @param toCopyExistingBondary - if true, not only new but also pre-existing
|
|
# boundary elements will be copied into the new mesh
|
|
# @return tuple (mesh, group) where bondary elements were added to
|
|
# @ingroup l2_modif_edit
|
|
def MakeBoundaryMesh(self, elements, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
|
|
toCopyElements=False, toCopyExistingBondary=False):
|
|
if isinstance( elements, Mesh ):
|
|
elements = elements.GetMesh()
|
|
if ( isinstance( elements, list )):
|
|
elemType = SMESH.ALL
|
|
if elements: elemType = self.GetElementType( elements[0], iselem=True)
|
|
elements = self.editor.MakeIDSource(elements, elemType)
|
|
mesh, group = self.editor.MakeBoundaryMesh(elements,dimension,groupName,meshName,
|
|
toCopyElements,toCopyExistingBondary)
|
|
if mesh: mesh = self.smeshpyD.Mesh(mesh)
|
|
return mesh, group
|
|
|
|
##
|
|
# @brief Creates missing boundary elements around either the whole mesh or
|
|
# groups of 2D elements
|
|
# @param dimension - defines type of boundary elements to create
|
|
# @param groupName - a name of group to store all boundary elements in,
|
|
# "" means not to create the group
|
|
# @param meshName - a name of a new mesh, which is a copy of the initial
|
|
# mesh + created boundary elements; "" means not to create the new mesh
|
|
# @param toCopyAll - if true, the whole initial mesh will be copied into
|
|
# the new mesh else only boundary elements will be copied into the new mesh
|
|
# @param groups - groups of 2D elements to make boundary around
|
|
# @retval tuple( long, mesh, groups )
|
|
# long - number of added boundary elements
|
|
# mesh - the mesh where elements were added to
|
|
# group - the group of boundary elements or None
|
|
#
|
|
def MakeBoundaryElements(self, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
|
|
toCopyAll=False, groups=[]):
|
|
nb, mesh, group = self.editor.MakeBoundaryElements(dimension,groupName,meshName,
|
|
toCopyAll,groups)
|
|
if mesh: mesh = self.smeshpyD.Mesh(mesh)
|
|
return nb, mesh, group
|
|
|
|
## Renumber mesh nodes
|
|
# @ingroup l2_modif_renumber
|
|
def RenumberNodes(self):
|
|
self.editor.RenumberNodes()
|
|
|
|
## Renumber mesh elements
|
|
# @ingroup l2_modif_renumber
|
|
def RenumberElements(self):
|
|
self.editor.RenumberElements()
|
|
|
|
## Generates new elements by rotation of the elements around the axis
|
|
# @param IDsOfElements the list of ids of elements to sweep
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param NbOfSteps the number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,AngleParameters = ParseAngles(AngleInRadians)
|
|
NbOfSteps,Tolerance,Parameters = ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepMakeGroups(IDsOfElements, Axis,
|
|
AngleInRadians, NbOfSteps, Tolerance)
|
|
self.editor.RotationSweep(IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,AngleParameters = ParseAngles(AngleInRadians)
|
|
NbOfSteps,Tolerance,Parameters = ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepObjectMakeGroups(theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance)
|
|
self.editor.RotationSweepObject(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject1D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,AngleParameters = ParseAngles(AngleInRadians)
|
|
NbOfSteps,Tolerance,Parameters = ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepObject1DMakeGroups(theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance)
|
|
self.editor.RotationSweepObject1D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject2D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,AngleParameters = ParseAngles(AngleInRadians)
|
|
NbOfSteps,Tolerance,Parameters = ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepObject2DMakeGroups(theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance)
|
|
self.editor.RotationSweepObject2D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements the list of elements ids for extrusion
|
|
# @param StepVector vector or DirStruct, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param IsNodes is True if elements with given ids are nodes
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False, IsNodes = False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
NbOfSteps,Parameters = ParseParameters(NbOfSteps)
|
|
Parameters = StepVector.PS.parameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
if(IsNodes):
|
|
return self.editor.ExtrusionSweepMakeGroups0D(IDsOfElements, StepVector, NbOfSteps)
|
|
else:
|
|
return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps)
|
|
if(IsNodes):
|
|
self.editor.ExtrusionSweep0D(IDsOfElements, StepVector, NbOfSteps)
|
|
else:
|
|
self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements is ids of elements
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
# @param ExtrFlags sets flags for extrusion
|
|
# @param SewTolerance uses for comparing locations of nodes if flag
|
|
# EXTRUSION_FLAG_SEW is set
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance, MakeGroups=False):
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
if MakeGroups:
|
|
return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance)
|
|
self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# @param theObject the object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param StepVector vector, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param IsNodes is True if elements which belong to the object are nodes
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False, IsNodes=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
NbOfSteps,Parameters = ParseParameters(NbOfSteps)
|
|
Parameters = StepVector.PS.parameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
if(IsNodes):
|
|
return self.editor.ExtrusionSweepObject0DMakeGroups(theObject, StepVector, NbOfSteps)
|
|
else:
|
|
return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps)
|
|
if(IsNodes):
|
|
self.editor.ExtrusionSweepObject0D(theObject, StepVector, NbOfSteps)
|
|
else:
|
|
self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# @param theObject object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param StepVector vector, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups to generate new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
NbOfSteps,Parameters = ParseParameters(NbOfSteps)
|
|
Parameters = StepVector.PS.parameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# @param theObject object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param StepVector vector, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
NbOfSteps,Parameters = ParseParameters(NbOfSteps)
|
|
Parameters = StepVector.PS.parameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
|
|
|
|
## Generates new elements by extrusion of the given elements
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param Base mesh or group, or submesh, or list of ids of elements for extrusion
|
|
# @param Path - 1D mesh or 1D sub-mesh, along which proceeds the extrusion
|
|
# @param NodeStart the start node from Path. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles in radians
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param ElemType type of elements for extrusion (if param Base is a mesh)
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathX(self, Base, Path, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups, ElemType):
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
pass
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
Parameters = AnglesParameters + var_separator + RefPoint.parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
|
|
if (isinstance(Path, Mesh)): Path = Path.GetMesh()
|
|
|
|
if isinstance(Base, list):
|
|
IDsOfElements = []
|
|
if Base == []: IDsOfElements = self.GetElementsId()
|
|
else: IDsOfElements = Base
|
|
return self.editor.ExtrusionAlongPathX(IDsOfElements, Path, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups, ElemType)
|
|
else:
|
|
if isinstance(Base, Mesh): Base = Base.GetMesh()
|
|
if isinstance(Base, SMESH._objref_SMESH_Mesh) or isinstance(Base, SMESH._objref_SMESH_Group) or isinstance(Base, SMESH._objref_SMESH_subMesh):
|
|
return self.editor.ExtrusionAlongPathObjX(Base, Path, NodeStart,
|
|
HasAngles, Angles, LinearVariation,
|
|
HasRefPoint, RefPoint, MakeGroups, ElemType)
|
|
else:
|
|
raise RuntimeError, "Invalid Base for ExtrusionAlongPathX"
|
|
|
|
|
|
## Generates new elements by extrusion of the given elements
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param IDsOfElements ids of elements
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles in radians
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
pass
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
Parameters = AnglesParameters + var_separator + RefPoint.parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint, RefPoint)
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
Parameters = AnglesParameters + var_separator + RefPoint.parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject(theObject, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint,
|
|
RefPoint)
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject1D(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
Parameters = AnglesParameters + var_separator + RefPoint.parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathObject1DMakeGroups(theObject, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject1D(theObject, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint,
|
|
RefPoint)
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object which elements should be processed.
|
|
# It can be a mesh, a sub mesh or a group.
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject2D(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
Parameters = AnglesParameters + var_separator + RefPoint.parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathObject2DMakeGroups(theObject, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject2D(theObject, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint,
|
|
RefPoint)
|
|
|
|
## Creates a symmetrical copy of mesh elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Mirror is AxisStruct or geom object(point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param Copy allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0)
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
self.mesh.SetParameters(Mirror.parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
|
|
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh by a symmetrical copy of mesh elements
|
|
# @param IDsOfElements the list of elements ids
|
|
# @param Mirror is AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param MakeGroups to generate new groups from existing ones
|
|
# @param NewMeshName a name of the new mesh to create
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
mesh.SetParameters(Mirror.parameters)
|
|
mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
|
|
MakeGroups, NewMeshName)
|
|
return Mesh(self.smeshpyD,self.geompyD,mesh)
|
|
|
|
## Creates a symmetrical copy of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @param Mirror AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param Copy allows copying the element (Copy is 1) or replacing it with its mirror (Copy is 0)
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
self.mesh.SetParameters(Mirror.parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
|
|
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh by a symmetrical copy of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @param Mirror AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the new mesh to create
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
self.mesh.SetParameters(Mirror.parameters)
|
|
mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
|
|
MakeGroups, NewMeshName)
|
|
return Mesh( self.smeshpyD,self.geompyD,mesh )
|
|
|
|
## Translates the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Vector the direction of translation (DirStruct or vector)
|
|
# @param Copy allows copying the translated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
self.mesh.SetParameters(Vector.PS.parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
|
|
self.editor.Translate(IDsOfElements, Vector, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh of translated elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Vector the direction of translation (DirStruct or vector)
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
self.mesh.SetParameters(Vector.PS.parameters)
|
|
mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
|
|
return Mesh ( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Translates the object
|
|
# @param theObject the object to translate (mesh, submesh, or group)
|
|
# @param Vector direction of translation (DirStruct or geom vector)
|
|
# @param Copy allows copying the translated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
self.mesh.SetParameters(Vector.PS.parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.TranslateObjectMakeGroups(theObject, Vector)
|
|
self.editor.TranslateObject(theObject, Vector, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh from the translated object
|
|
# @param theObject the object to translate (mesh, submesh, or group)
|
|
# @param Vector the direction of translation (DirStruct or geom vector)
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
self.mesh.SetParameters(Vector.PS.parameters)
|
|
mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
|
|
|
|
## Scales the object
|
|
# @param theObject - the object to translate (mesh, submesh, or group)
|
|
# @param thePoint - base point for scale
|
|
# @param theScaleFact - list of 1-3 scale factors for axises
|
|
# @param Copy - allows copying the translated elements
|
|
# @param MakeGroups - forces the generation of new groups from existing
|
|
# ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True,
|
|
# empty list otherwise
|
|
def Scale(self, theObject, thePoint, theScaleFact, Copy, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( theObject, list )):
|
|
theObject = self.GetIDSource(theObject, SMESH.ALL)
|
|
|
|
self.mesh.SetParameters(thePoint.parameters)
|
|
|
|
if Copy and MakeGroups:
|
|
return self.editor.ScaleMakeGroups(theObject, thePoint, theScaleFact)
|
|
self.editor.Scale(theObject, thePoint, theScaleFact, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh from the translated object
|
|
# @param theObject - the object to translate (mesh, submesh, or group)
|
|
# @param thePoint - base point for scale
|
|
# @param theScaleFact - list of 1-3 scale factors for axises
|
|
# @param MakeGroups - forces the generation of new groups from existing ones
|
|
# @param NewMeshName - the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
def ScaleMakeMesh(self, theObject, thePoint, theScaleFact, MakeGroups=False, NewMeshName=""):
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( theObject, list )):
|
|
theObject = self.GetIDSource(theObject,SMESH.ALL)
|
|
|
|
self.mesh.SetParameters(thePoint.parameters)
|
|
mesh = self.editor.ScaleMakeMesh(theObject, thePoint, theScaleFact,
|
|
MakeGroups, NewMeshName)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
|
|
|
|
## Rotates the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param Copy allows copying the rotated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,Parameters = ParseAngles(AngleInRadians)
|
|
Parameters = Axis.parameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
|
|
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh of rotated elements
|
|
# @param IDsOfElements list of element ids
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,Parameters = ParseAngles(AngleInRadians)
|
|
Parameters = Axis.parameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
|
|
MakeGroups, NewMeshName)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Rotates the object
|
|
# @param theObject the object to rotate( mesh, submesh, or group)
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param Copy allows copying the rotated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,Parameters = ParseAngles(AngleInRadians)
|
|
Parameters = Axis.parameters + ":" + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
|
|
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh from the rotated object
|
|
# @param theObject the object to rotate (mesh, submesh, or group)
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
|
|
if (isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
AngleInRadians,Parameters = ParseAngles(AngleInRadians)
|
|
Parameters = Axis.parameters + ":" + Parameters
|
|
mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
|
|
MakeGroups, NewMeshName)
|
|
self.mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Finds groups of ajacent nodes within Tolerance.
|
|
# @param Tolerance the value of tolerance
|
|
# @return the list of groups of nodes
|
|
# @ingroup l2_modif_trsf
|
|
def FindCoincidentNodes (self, Tolerance):
|
|
return self.editor.FindCoincidentNodes(Tolerance)
|
|
|
|
## Finds groups of ajacent nodes within Tolerance.
|
|
# @param Tolerance the value of tolerance
|
|
# @param SubMeshOrGroup SubMesh or Group
|
|
# @param exceptNodes list of either SubMeshes, Groups or node IDs to exclude from search
|
|
# @return the list of groups of nodes
|
|
# @ingroup l2_modif_trsf
|
|
def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance, exceptNodes=[]):
|
|
if (isinstance( SubMeshOrGroup, Mesh )):
|
|
SubMeshOrGroup = SubMeshOrGroup.GetMesh()
|
|
if not isinstance( exceptNodes, list):
|
|
exceptNodes = [ exceptNodes ]
|
|
if exceptNodes and isinstance( exceptNodes[0], int):
|
|
exceptNodes = [ self.GetIDSource( exceptNodes, SMESH.NODE)]
|
|
return self.editor.FindCoincidentNodesOnPartBut(SubMeshOrGroup, Tolerance,exceptNodes)
|
|
|
|
## Merges nodes
|
|
# @param GroupsOfNodes the list of groups of nodes
|
|
# @ingroup l2_modif_trsf
|
|
def MergeNodes (self, GroupsOfNodes):
|
|
self.editor.MergeNodes(GroupsOfNodes)
|
|
|
|
## Finds the elements built on the same nodes.
|
|
# @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
|
|
# @return a list of groups of equal elements
|
|
# @ingroup l2_modif_trsf
|
|
def FindEqualElements (self, MeshOrSubMeshOrGroup):
|
|
if ( isinstance( MeshOrSubMeshOrGroup, Mesh )):
|
|
MeshOrSubMeshOrGroup = MeshOrSubMeshOrGroup.GetMesh()
|
|
return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
|
|
|
|
## Merges elements in each given group.
|
|
# @param GroupsOfElementsID groups of elements for merging
|
|
# @ingroup l2_modif_trsf
|
|
def MergeElements(self, GroupsOfElementsID):
|
|
self.editor.MergeElements(GroupsOfElementsID)
|
|
|
|
## Leaves one element and removes all other elements built on the same nodes.
|
|
# @ingroup l2_modif_trsf
|
|
def MergeEqualElements(self):
|
|
self.editor.MergeEqualElements()
|
|
|
|
## Sews free borders
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sews conform free borders
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2):
|
|
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2)
|
|
|
|
## Sews border to side
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sews two sides of a mesh. The nodes belonging to Side1 are
|
|
# merged with the nodes of elements of Side2.
|
|
# The number of elements in theSide1 and in theSide2 must be
|
|
# equal and they should have similar nodal connectivity.
|
|
# The nodes to merge should belong to side borders and
|
|
# the first node should be linked to the second.
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
|
|
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
|
|
|
|
## Sets new nodes for the given element.
|
|
# @param ide the element id
|
|
# @param newIDs nodes ids
|
|
# @return If the number of nodes does not correspond to the type of element - returns false
|
|
# @ingroup l2_modif_edit
|
|
def ChangeElemNodes(self, ide, newIDs):
|
|
return self.editor.ChangeElemNodes(ide, newIDs)
|
|
|
|
## If during the last operation of MeshEditor some nodes were
|
|
# created, this method returns the list of their IDs, \n
|
|
# if new nodes were not created - returns empty list
|
|
# @return the list of integer values (can be empty)
|
|
# @ingroup l1_auxiliary
|
|
def GetLastCreatedNodes(self):
|
|
return self.editor.GetLastCreatedNodes()
|
|
|
|
## If during the last operation of MeshEditor some elements were
|
|
# created this method returns the list of their IDs, \n
|
|
# if new elements were not created - returns empty list
|
|
# @return the list of integer values (can be empty)
|
|
# @ingroup l1_auxiliary
|
|
def GetLastCreatedElems(self):
|
|
return self.editor.GetLastCreatedElems()
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theNodes identifiers of nodes to be doubled
|
|
# @param theModifiedElems identifiers of elements to be updated by the new (doubled)
|
|
# nodes. If list of element identifiers is empty then nodes are doubled but
|
|
# they not assigned to elements
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodes(self, theNodes, theModifiedElems):
|
|
return self.editor.DoubleNodes(theNodes, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodeId identifiers of node to be doubled
|
|
# @param theModifiedElems identifiers of elements to be updated
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNode(self, theNodeId, theModifiedElems):
|
|
return self.editor.DoubleNode(theNodeId, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodes group of nodes to be doubled
|
|
# @param theModifiedElems group of elements to be updated.
|
|
# @param theMakeGroup forces the generation of a group containing new nodes.
|
|
# @return TRUE or a created group if operation has been completed successfully,
|
|
# FALSE or None otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeGroup(self, theNodes, theModifiedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeGroupNew(theNodes, theModifiedElems)
|
|
return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodes list of groups of nodes to be doubled
|
|
# @param theModifiedElems list of groups of elements to be updated.
|
|
# @param theMakeGroup forces the generation of a group containing new nodes.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeGroups(self, theNodes, theModifiedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeGroupsNew(theNodes, theModifiedElems)
|
|
return self.editor.DoubleNodeGroups(theNodes, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theElems - the list of elements (edges or faces) to be replicated
|
|
# The nodes for duplication could be found from these elements
|
|
# @param theNodesNot - list of nodes to NOT replicate
|
|
# @param theAffectedElems - the list of elements (cells and edges) to which the
|
|
# replicated nodes should be associated to.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElem(self, theElems, theNodesNot, theAffectedElems):
|
|
return self.editor.DoubleNodeElem(theElems, theNodesNot, theAffectedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theElems - the list of elements (edges or faces) to be replicated
|
|
# The nodes for duplication could be found from these elements
|
|
# @param theNodesNot - list of nodes to NOT replicate
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.DoubleNodeElemInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - group of of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - group of nodes not to replicated
|
|
# @param theAffectedElems - group of elements to which the replicated nodes
|
|
# should be associated to.
|
|
# @param theMakeGroup forces the generation of a group containing new elements.
|
|
# @return TRUE or a created group if operation has been completed successfully,
|
|
# FALSE or None otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeElemGroupNew(theElems, theNodesNot, theAffectedElems)
|
|
return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - group of of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - group of nodes not to replicated
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemGroupInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.DoubleNodeElemGroupInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - list of groups of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - list of groups of nodes not to replicated
|
|
# @param theAffectedElems - group of elements to which the replicated nodes
|
|
# should be associated to.
|
|
# @param theMakeGroup forces the generation of a group containing new elements.
|
|
# @return TRUE or a created group if operation has been completed successfully,
|
|
# FALSE or None otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems, theMakeGroup=False):
|
|
if theMakeGroup:
|
|
return self.editor.DoubleNodeElemGroupsNew(theElems, theNodesNot, theAffectedElems)
|
|
return self.editor.DoubleNodeElemGroups(theElems, theNodesNot, theAffectedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theElems - list of groups of elements (edges or faces) to be replicated
|
|
# @param theNodesNot - list of groups of nodes not to replicated
|
|
# @param theShape - shape to detect affected elements (element which geometric center
|
|
# located on or inside shape).
|
|
# The replicated nodes should be associated to affected elements.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape):
|
|
return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape)
|
|
|
|
## Double nodes on shared faces between groups of volumes and create flat elements on demand.
|
|
# The list of groups must describe a partition of the mesh volumes.
|
|
# The nodes of the internal faces at the boundaries of the groups are doubled.
|
|
# In option, the internal faces are replaced by flat elements.
|
|
# Triangles are transformed in prisms, and quadrangles in hexahedrons.
|
|
# @param theDomains - list of groups of volumes
|
|
# @param createJointElems - if TRUE, create the elements
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
def DoubleNodesOnGroupBoundaries(self, theDomains, createJointElems ):
|
|
return self.editor.DoubleNodesOnGroupBoundaries( theDomains, createJointElems )
|
|
|
|
## Double nodes on some external faces and create flat elements.
|
|
# Flat elements are mainly used by some types of mechanic calculations.
|
|
#
|
|
# Each group of the list must be constituted of faces.
|
|
# Triangles are transformed in prisms, and quadrangles in hexahedrons.
|
|
# @param theGroupsOfFaces - list of groups of faces
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
def CreateFlatElementsOnFacesGroups(self, theGroupsOfFaces ):
|
|
return self.editor.CreateFlatElementsOnFacesGroups( theGroupsOfFaces )
|
|
|
|
def _valueFromFunctor(self, funcType, elemId):
|
|
fn = self.smeshpyD.GetFunctor(funcType)
|
|
fn.SetMesh(self.mesh)
|
|
if fn.GetElementType() == self.GetElementType(elemId, True):
|
|
val = fn.GetValue(elemId)
|
|
else:
|
|
val = 0
|
|
return val
|
|
|
|
## Get length of 1D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's length value
|
|
# @ingroup l1_measurements
|
|
def GetLength(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Length, elemId)
|
|
|
|
## Get area of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's area value
|
|
# @ingroup l1_measurements
|
|
def GetArea(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Area, elemId)
|
|
|
|
## Get volume of 3D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's volume value
|
|
# @ingroup l1_measurements
|
|
def GetVolume(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Volume3D, elemId)
|
|
|
|
## Get maximum element length.
|
|
# @param elemId mesh element ID
|
|
# @return element's maximum length value
|
|
# @ingroup l1_measurements
|
|
def GetMaxElementLength(self, elemId):
|
|
if self.GetElementType(elemId, True) == SMESH.VOLUME:
|
|
ftype = SMESH.FT_MaxElementLength3D
|
|
else:
|
|
ftype = SMESH.FT_MaxElementLength2D
|
|
return self._valueFromFunctor(ftype, elemId)
|
|
|
|
## Get aspect ratio of 2D or 3D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's aspect ratio value
|
|
# @ingroup l1_measurements
|
|
def GetAspectRatio(self, elemId):
|
|
if self.GetElementType(elemId, True) == SMESH.VOLUME:
|
|
ftype = SMESH.FT_AspectRatio3D
|
|
else:
|
|
ftype = SMESH.FT_AspectRatio
|
|
return self._valueFromFunctor(ftype, elemId)
|
|
|
|
## Get warping angle of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's warping angle value
|
|
# @ingroup l1_measurements
|
|
def GetWarping(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Warping, elemId)
|
|
|
|
## Get minimum angle of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's minimum angle value
|
|
# @ingroup l1_measurements
|
|
def GetMinimumAngle(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_MinimumAngle, elemId)
|
|
|
|
## Get taper of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's taper value
|
|
# @ingroup l1_measurements
|
|
def GetTaper(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Taper, elemId)
|
|
|
|
## Get skew of 2D element.
|
|
# @param elemId mesh element ID
|
|
# @return element's skew value
|
|
# @ingroup l1_measurements
|
|
def GetSkew(self, elemId):
|
|
return self._valueFromFunctor(SMESH.FT_Skew, elemId)
|
|
|
|
## The mother class to define algorithm, it is not recommended to use it directly.
|
|
#
|
|
# More details.
|
|
# @ingroup l2_algorithms
|
|
class Mesh_Algorithm:
|
|
# @class Mesh_Algorithm
|
|
# @brief Class Mesh_Algorithm
|
|
|
|
#def __init__(self,smesh):
|
|
# self.smesh=smesh
|
|
def __init__(self):
|
|
self.mesh = None
|
|
self.geom = None
|
|
self.subm = None
|
|
self.algo = None
|
|
|
|
## Finds a hypothesis in the study by its type name and parameters.
|
|
# Finds only the hypotheses created in smeshpyD engine.
|
|
# @return SMESH.SMESH_Hypothesis
|
|
def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD):
|
|
study = smeshpyD.GetCurrentStudy()
|
|
#to do: find component by smeshpyD object, not by its data type
|
|
scomp = study.FindComponent(smeshpyD.ComponentDataType())
|
|
if scomp is not None:
|
|
res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot)
|
|
# Check if the root label of the hypotheses exists
|
|
if res and hypRoot is not None:
|
|
iter = study.NewChildIterator(hypRoot)
|
|
# Check all published hypotheses
|
|
while iter.More():
|
|
hypo_so_i = iter.Value()
|
|
attr = hypo_so_i.FindAttribute("AttributeIOR")[1]
|
|
if attr is not None:
|
|
anIOR = attr.Value()
|
|
hypo_o_i = salome.orb.string_to_object(anIOR)
|
|
if hypo_o_i is not None:
|
|
# Check if this is a hypothesis
|
|
hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis)
|
|
if hypo_i is not None:
|
|
# Check if the hypothesis belongs to current engine
|
|
if smeshpyD.GetObjectId(hypo_i) > 0:
|
|
# Check if this is the required hypothesis
|
|
if hypo_i.GetName() == hypname:
|
|
# Check arguments
|
|
if CompareMethod(hypo_i, args):
|
|
# found!!!
|
|
return hypo_i
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
iter.Next()
|
|
pass
|
|
pass
|
|
pass
|
|
return None
|
|
|
|
## Finds the algorithm in the study by its type name.
|
|
# Finds only the algorithms, which have been created in smeshpyD engine.
|
|
# @return SMESH.SMESH_Algo
|
|
def FindAlgorithm (self, algoname, smeshpyD):
|
|
study = smeshpyD.GetCurrentStudy()
|
|
#to do: find component by smeshpyD object, not by its data type
|
|
scomp = study.FindComponent(smeshpyD.ComponentDataType())
|
|
if scomp is not None:
|
|
res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot)
|
|
# Check if the root label of the algorithms exists
|
|
if res and hypRoot is not None:
|
|
iter = study.NewChildIterator(hypRoot)
|
|
# Check all published algorithms
|
|
while iter.More():
|
|
algo_so_i = iter.Value()
|
|
attr = algo_so_i.FindAttribute("AttributeIOR")[1]
|
|
if attr is not None:
|
|
anIOR = attr.Value()
|
|
algo_o_i = salome.orb.string_to_object(anIOR)
|
|
if algo_o_i is not None:
|
|
# Check if this is an algorithm
|
|
algo_i = algo_o_i._narrow(SMESH.SMESH_Algo)
|
|
if algo_i is not None:
|
|
# Checks if the algorithm belongs to the current engine
|
|
if smeshpyD.GetObjectId(algo_i) > 0:
|
|
# Check if this is the required algorithm
|
|
if algo_i.GetName() == algoname:
|
|
# found!!!
|
|
return algo_i
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
iter.Next()
|
|
pass
|
|
pass
|
|
pass
|
|
return None
|
|
|
|
## If the algorithm is global, returns 0; \n
|
|
# else returns the submesh associated to this algorithm.
|
|
def GetSubMesh(self):
|
|
return self.subm
|
|
|
|
## Returns the wrapped mesher.
|
|
def GetAlgorithm(self):
|
|
return self.algo
|
|
|
|
## Gets the list of hypothesis that can be used with this algorithm
|
|
def GetCompatibleHypothesis(self):
|
|
mylist = []
|
|
if self.algo:
|
|
mylist = self.algo.GetCompatibleHypothesis()
|
|
return mylist
|
|
|
|
## Gets the name of the algorithm
|
|
def GetName(self):
|
|
GetName(self.algo)
|
|
|
|
## Sets the name to the algorithm
|
|
def SetName(self, name):
|
|
self.mesh.smeshpyD.SetName(self.algo, name)
|
|
|
|
## Gets the id of the algorithm
|
|
def GetId(self):
|
|
return self.algo.GetId()
|
|
|
|
## Private method.
|
|
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
|
|
if geom is None:
|
|
raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
|
|
algo = self.FindAlgorithm(hypo, mesh.smeshpyD)
|
|
if algo is None:
|
|
algo = mesh.smeshpyD.CreateHypothesis(hypo, so)
|
|
pass
|
|
self.Assign(algo, mesh, geom)
|
|
return self.algo
|
|
|
|
## Private method
|
|
def Assign(self, algo, mesh, geom):
|
|
if geom is None:
|
|
raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape"
|
|
self.mesh = mesh
|
|
name = ""
|
|
if not geom:
|
|
self.geom = mesh.geom
|
|
else:
|
|
self.geom = geom
|
|
AssureGeomPublished( mesh, geom )
|
|
try:
|
|
name = GetName(geom)
|
|
pass
|
|
except:
|
|
pass
|
|
self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
|
|
self.algo = algo
|
|
status = mesh.mesh.AddHypothesis(self.geom, self.algo)
|
|
TreatHypoStatus( status, algo.GetName(), name, True )
|
|
return
|
|
|
|
def CompareHyp (self, hyp, args):
|
|
print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName()
|
|
return False
|
|
|
|
def CompareEqualHyp (self, hyp, args):
|
|
return True
|
|
|
|
## Private method
|
|
def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so",
|
|
UseExisting=0, CompareMethod=""):
|
|
hypo = None
|
|
if UseExisting:
|
|
if CompareMethod == "": CompareMethod = self.CompareHyp
|
|
hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD)
|
|
pass
|
|
if hypo is None:
|
|
hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so)
|
|
a = ""
|
|
s = "="
|
|
for arg in args:
|
|
argStr = str(arg)
|
|
if isinstance( arg, geompyDC.GEOM._objref_GEOM_Object ):
|
|
argStr = arg.GetStudyEntry()
|
|
if not argStr: argStr = "GEOM_Obj_%s", arg.GetEntry()
|
|
if len( argStr ) > 10:
|
|
argStr = argStr[:7]+"..."
|
|
if argStr[0] == '[': argStr += ']'
|
|
a = a + s + argStr
|
|
s = ","
|
|
pass
|
|
if len(a) > 50:
|
|
a = a[:47]+"..."
|
|
self.mesh.smeshpyD.SetName(hypo, hyp + a)
|
|
pass
|
|
geomName=""
|
|
if self.geom:
|
|
geomName = GetName(self.geom)
|
|
status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
|
|
TreatHypoStatus( status, GetName(hypo), geomName, 0 )
|
|
return hypo
|
|
|
|
## Returns entry of the shape to mesh in the study
|
|
def MainShapeEntry(self):
|
|
entry = ""
|
|
if not self.mesh or not self.mesh.GetMesh(): return entry
|
|
if not self.mesh.GetMesh().HasShapeToMesh(): return entry
|
|
study = self.mesh.smeshpyD.GetCurrentStudy()
|
|
ior = salome.orb.object_to_string( self.mesh.GetShape() )
|
|
sobj = study.FindObjectIOR(ior)
|
|
if sobj: entry = sobj.GetID()
|
|
if not entry: return ""
|
|
return entry
|
|
|
|
## Defines "ViscousLayers" hypothesis to give parameters of layers of prisms to build
|
|
# near mesh boundary. This hypothesis can be used by several 3D algorithms:
|
|
# NETGEN 3D, GHS3D, Hexahedron(i,j,k)
|
|
# @param thickness total thickness of layers of prisms
|
|
# @param numberOfLayers number of layers of prisms
|
|
# @param stretchFactor factor (>1.0) of growth of layer thickness towards inside of mesh
|
|
# @param ignoreFaces list of geometrical faces (or their ids) not to generate layers on
|
|
# @ingroup l3_hypos_additi
|
|
def ViscousLayers(self, thickness, numberOfLayers, stretchFactor, ignoreFaces=[]):
|
|
if not isinstance(self.algo, SMESH._objref_SMESH_3D_Algo):
|
|
raise TypeError, "ViscousLayers are supported by 3D algorithms only"
|
|
if not "ViscousLayers" in self.GetCompatibleHypothesis():
|
|
raise TypeError, "ViscousLayers are not supported by %s"%self.algo.GetName()
|
|
if ignoreFaces and isinstance( ignoreFaces[0], geompyDC.GEOM._objref_GEOM_Object ):
|
|
ignoreFaces = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, f) for f in ignoreFaces ]
|
|
hyp = self.Hypothesis("ViscousLayers",
|
|
[thickness, numberOfLayers, stretchFactor, ignoreFaces])
|
|
hyp.SetTotalThickness(thickness)
|
|
hyp.SetNumberLayers(numberOfLayers)
|
|
hyp.SetStretchFactor(stretchFactor)
|
|
hyp.SetIgnoreFaces(ignoreFaces)
|
|
return hyp
|
|
|
|
## Transform a list of ether edges or tuples (edge 1st_vertex_of_edge)
|
|
# into a list acceptable to SetReversedEdges() of some 1D hypotheses
|
|
# @ingroup l3_hypos_1dhyps
|
|
def ReversedEdgeIndices(self, reverseList):
|
|
resList = []
|
|
geompy = self.mesh.geompyD
|
|
for i in reverseList:
|
|
if isinstance( i, int ):
|
|
s = geompy.SubShapes(self.mesh.geom, [i])[0]
|
|
if s.GetShapeType() != geompyDC.GEOM.EDGE:
|
|
raise TypeError, "Not EDGE index given"
|
|
resList.append( i )
|
|
elif isinstance( i, geompyDC.GEOM._objref_GEOM_Object ):
|
|
if i.GetShapeType() != geompyDC.GEOM.EDGE:
|
|
raise TypeError, "Not an EDGE given"
|
|
resList.append( geompy.GetSubShapeID(self.mesh.geom, i ))
|
|
elif len( i ) > 1:
|
|
e = i[0]
|
|
v = i[1]
|
|
if not isinstance( e, geompyDC.GEOM._objref_GEOM_Object ) or \
|
|
not isinstance( v, geompyDC.GEOM._objref_GEOM_Object ):
|
|
raise TypeError, "A list item must be a tuple (edge 1st_vertex_of_edge)"
|
|
if v.GetShapeType() == geompyDC.GEOM.EDGE and \
|
|
e.GetShapeType() == geompyDC.GEOM.VERTEX:
|
|
v,e = e,v
|
|
if e.GetShapeType() != geompyDC.GEOM.EDGE or \
|
|
v.GetShapeType() != geompyDC.GEOM.VERTEX:
|
|
raise TypeError, "A list item must be a tuple (edge 1st_vertex_of_edge)"
|
|
vFirst = FirstVertexOnCurve( e )
|
|
tol = geompy.Tolerance( vFirst )[-1]
|
|
if geompy.MinDistance( v, vFirst ) > 1.5*tol:
|
|
resList.append( geompy.GetSubShapeID(self.mesh.geom, e ))
|
|
else:
|
|
raise TypeError, "Item must be either an edge or tuple (edge 1st_vertex_of_edge)"
|
|
return resList
|
|
|
|
|
|
class Pattern(SMESH._objref_SMESH_Pattern):
|
|
|
|
def ApplyToMeshFaces(self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse):
|
|
decrFun = lambda i: i-1
|
|
theNodeIndexOnKeyPoint1,Parameters = ParseParameters(theNodeIndexOnKeyPoint1, decrFun)
|
|
theMesh.SetParameters(Parameters)
|
|
return SMESH._objref_SMESH_Pattern.ApplyToMeshFaces( self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse )
|
|
|
|
def ApplyToHexahedrons(self, theMesh, theVolumesIDs, theNode000Index, theNode001Index):
|
|
decrFun = lambda i: i-1
|
|
theNode000Index,theNode001Index,Parameters = ParseParameters(theNode000Index,theNode001Index, decrFun)
|
|
theMesh.SetParameters(Parameters)
|
|
return SMESH._objref_SMESH_Pattern.ApplyToHexahedrons( self, theMesh, theVolumesIDs, theNode000Index, theNode001Index )
|
|
|
|
#Registering the new proxy for Pattern
|
|
omniORB.registerObjref(SMESH._objref_SMESH_Pattern._NP_RepositoryId, Pattern)
|
|
|
|
|
|
|
|
|
|
|
|
## Private class used to bind methods creating algorithms to the class Mesh
|
|
#
|
|
class algoCreator:
|
|
def __init__(self):
|
|
self.mesh = None
|
|
self.defaultAlgoType = ""
|
|
self.algoTypeToClass = {}
|
|
|
|
# Stores a python class of algorithm
|
|
def add(self, algoClass):
|
|
if type( algoClass ).__name__ == 'classobj' and \
|
|
hasattr( algoClass, "algoType"):
|
|
self.algoTypeToClass[ algoClass.algoType ] = algoClass
|
|
if not self.defaultAlgoType and \
|
|
hasattr( algoClass, "isDefault") and algoClass.isDefault:
|
|
self.defaultAlgoType = algoClass.algoType
|
|
#print "Add",algoClass.algoType, "dflt",self.defaultAlgoType
|
|
|
|
# creates a copy of self and assign mesh to the copy
|
|
def copy(self, mesh):
|
|
other = algoCreator()
|
|
other.defaultAlgoType = self.defaultAlgoType
|
|
other.algoTypeToClass = self.algoTypeToClass
|
|
other.mesh = mesh
|
|
return other
|
|
|
|
# creates an instance of algorithm
|
|
def __call__(self,algo="",geom=0,*args):
|
|
algoType = self.defaultAlgoType
|
|
for arg in args + (algo,):
|
|
if isinstance( arg, geompyDC.GEOM._objref_GEOM_Object ):
|
|
geom = arg
|
|
if isinstance( arg, str ) and arg:
|
|
algoType = arg
|
|
if not algoType and self.algoTypeToClass:
|
|
algoType = self.algoTypeToClass.keys()[0]
|
|
if self.algoTypeToClass.has_key( algoType ):
|
|
#print "Create algo",algoType
|
|
return self.algoTypeToClass[ algoType ]( self.mesh, geom )
|
|
raise RuntimeError, "No class found for algo type" % algoType
|
|
return None
|
|
|
|
# Private class used to substitute and store variable parameters of hypotheses.
|
|
class hypMethodWrapper:
|
|
def __init__(self, hyp, method):
|
|
self.hyp = hyp
|
|
self.method = method
|
|
#print "REBIND:", method.__name__
|
|
return
|
|
|
|
# call a method of hypothesis with calling SetVarParameter() before
|
|
def __call__(self,*args):
|
|
if not args:
|
|
return self.method( self.hyp, *args ) # hypothesis method with no args
|
|
|
|
#print "MethWrapper.__call__",self.method.__name__, args
|
|
try:
|
|
parsed = ParseParameters(*args) # replace variables with their values
|
|
self.hyp.SetVarParameter( parsed[-1], self.method.__name__ )
|
|
result = self.method( self.hyp, *parsed[:-1] ) # call hypothesis method
|
|
except omniORB.CORBA.BAD_PARAM: # raised by hypothesis method call
|
|
# maybe there is a replaced string arg which is not variable
|
|
result = self.method( self.hyp, *args )
|
|
except ValueError, detail: # raised by ParseParameters()
|
|
try:
|
|
result = self.method( self.hyp, *args )
|
|
except omniORB.CORBA.BAD_PARAM:
|
|
raise ValueError, detail # wrong variable name
|
|
|
|
return result
|