smesh/src/SMESH/SMESH_Algo.cxx
2011-08-12 13:12:13 +00:00

765 lines
25 KiB
C++

// Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
// SMESH SMESH : implementaion of SMESH idl descriptions
// File : SMESH_Algo.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
#include "SMESH_Algo.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_VolumeTool.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESHDS_SubMesh.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_TypeDefs.hxx"
#include <Basics_OCCTVersion.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepLProp.hxx>
#include <BRep_Tool.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <Geom_Surface.hxx>
#include <TopExp.hxx>
#include <TopLoc_Location.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Vertex.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <Standard_ErrorHandler.hxx>
#include <Standard_Failure.hxx>
#include "utilities.h"
#include <algorithm>
#include <limits>
using namespace std;
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Algo::SMESH_Algo (int hypId, int studyId, SMESH_Gen * gen)
: SMESH_Hypothesis(hypId, studyId, gen)
{
gen->_mapAlgo[hypId] = this;
_onlyUnaryInput = _requireDescretBoundary = _requireShape = true;
_quadraticMesh = _supportSubmeshes = false;
_error = COMPERR_OK;
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Algo::~SMESH_Algo()
{
}
//=============================================================================
/*!
* Usually an algoritm has nothing to save
*/
//=============================================================================
ostream & SMESH_Algo::SaveTo(ostream & save) { return save; }
istream & SMESH_Algo::LoadFrom(istream & load) { return load; }
//=============================================================================
/*!
*
*/
//=============================================================================
const vector < string > &SMESH_Algo::GetCompatibleHypothesis()
{
return _compatibleHypothesis;
}
//=============================================================================
/*!
* List the hypothesis used by the algorithm associated to the shape.
* Hypothesis associated to father shape -are- taken into account (see
* GetAppliedHypothesis). Relevant hypothesis have a name (type) listed in
* the algorithm. This method could be surcharged by specific algorithms, in
* case of several hypothesis simultaneously applicable.
*/
//=============================================================================
const list <const SMESHDS_Hypothesis *> &
SMESH_Algo::GetUsedHypothesis(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool ignoreAuxiliary)
{
_usedHypList.clear();
SMESH_HypoFilter filter;
if ( InitCompatibleHypoFilter( filter, ignoreAuxiliary ))
{
aMesh.GetHypotheses( aShape, filter, _usedHypList, true );
if ( ignoreAuxiliary && _usedHypList.size() > 1 )
_usedHypList.clear(); //only one compatible hypothesis allowed
}
return _usedHypList;
}
//=============================================================================
/*!
* List the relevant hypothesis associated to the shape. Relevant hypothesis
* have a name (type) listed in the algorithm. Hypothesis associated to
* father shape -are not- taken into account (see GetUsedHypothesis)
*/
//=============================================================================
const list<const SMESHDS_Hypothesis *> &
SMESH_Algo::GetAppliedHypothesis(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool ignoreAuxiliary)
{
_appliedHypList.clear();
SMESH_HypoFilter filter;
if ( InitCompatibleHypoFilter( filter, ignoreAuxiliary ))
aMesh.GetHypotheses( aShape, filter, _appliedHypList, false );
return _appliedHypList;
}
//=============================================================================
/*!
* Compute length of an edge
*/
//=============================================================================
double SMESH_Algo::EdgeLength(const TopoDS_Edge & E)
{
double UMin = 0, UMax = 0;
if (BRep_Tool::Degenerated(E))
return 0;
TopLoc_Location L;
Handle(Geom_Curve) C = BRep_Tool::Curve(E, L, UMin, UMax);
GeomAdaptor_Curve AdaptCurve(C, UMin, UMax); //range is important for periodic curves
double length = GCPnts_AbscissaPoint::Length(AdaptCurve, UMin, UMax);
return length;
}
//================================================================================
/*!
* \brief Calculate normal of a mesh face
*/
//================================================================================
bool SMESH_Algo::FaceNormal(const SMDS_MeshElement* F, gp_XYZ& normal, bool normalized)
{
if ( !F || F->GetType() != SMDSAbs_Face )
return false;
normal.SetCoord(0,0,0);
int nbNodes = F->IsQuadratic() ? F->NbNodes()/2 : F->NbNodes();
for ( int i = 0; i < nbNodes-2; ++i )
{
gp_XYZ p[3];
for ( int n = 0; n < 3; ++n )
{
const SMDS_MeshNode* node = F->GetNode( i + n );
p[n].SetCoord( node->X(), node->Y(), node->Z() );
}
normal += ( p[2] - p[1] ) ^ ( p[0] - p[1] );
}
double size2 = normal.SquareModulus();
bool ok = ( size2 > numeric_limits<double>::min() * numeric_limits<double>::min());
if ( normalized && ok )
normal /= sqrt( size2 );
return ok;
}
//================================================================================
/*!
* \brief Find out elements orientation on a geometrical face
* \param theFace - The face correctly oriented in the shape being meshed
* \param theMeshDS - The mesh data structure
* \retval bool - true if the face normal and the normal of first element
* in the correspoding submesh point in different directions
*/
//================================================================================
bool SMESH_Algo::IsReversedSubMesh (const TopoDS_Face& theFace,
SMESHDS_Mesh* theMeshDS)
{
if ( theFace.IsNull() || !theMeshDS )
return false;
// find out orientation of a meshed face
int faceID = theMeshDS->ShapeToIndex( theFace );
TopoDS_Shape aMeshedFace = theMeshDS->IndexToShape( faceID );
bool isReversed = ( theFace.Orientation() != aMeshedFace.Orientation() );
const SMESHDS_SubMesh * aSubMeshDSFace = theMeshDS->MeshElements( faceID );
if ( !aSubMeshDSFace )
return isReversed;
// find element with node located on face and get its normal
const SMDS_FacePosition* facePos = 0;
int vertexID = 0;
gp_Pnt nPnt[3];
gp_Vec Ne;
bool normalOK = false;
SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
while ( iteratorElem->more() ) // loop on elements on theFace
{
const SMDS_MeshElement* elem = iteratorElem->next();
if ( elem && elem->NbNodes() > 2 ) {
SMDS_ElemIteratorPtr nodesIt = elem->nodesIterator();
const SMDS_FacePosition* fPos = 0;
int i = 0, vID = 0;
while ( nodesIt->more() ) { // loop on nodes
const SMDS_MeshNode* node
= static_cast<const SMDS_MeshNode *>(nodesIt->next());
if ( i == 3 ) i = 2;
nPnt[ i++ ].SetCoord( node->X(), node->Y(), node->Z() );
// check position
const SMDS_PositionPtr& pos = node->GetPosition();
if ( !pos ) continue;
if ( pos->GetTypeOfPosition() == SMDS_TOP_FACE ) {
fPos = dynamic_cast< const SMDS_FacePosition* >( pos );
}
else if ( pos->GetTypeOfPosition() == SMDS_TOP_VERTEX ) {
vID = node->getshapeId();
}
}
if ( fPos || ( !normalOK && vID )) {
// compute normal
gp_Vec v01( nPnt[0], nPnt[1] ), v02( nPnt[0], nPnt[2] );
if ( v01.SquareMagnitude() > RealSmall() &&
v02.SquareMagnitude() > RealSmall() )
{
Ne = v01 ^ v02;
normalOK = ( Ne.SquareMagnitude() > RealSmall() );
}
// we need position on theFace or at least on vertex
if ( normalOK ) {
vertexID = vID;
if ((facePos = fPos))
break;
}
}
}
}
if ( !normalOK )
return isReversed;
// node position on face
double u,v;
if ( facePos ) {
u = facePos->GetUParameter();
v = facePos->GetVParameter();
}
else if ( vertexID ) {
TopoDS_Shape V = theMeshDS->IndexToShape( vertexID );
if ( V.IsNull() || V.ShapeType() != TopAbs_VERTEX )
return isReversed;
gp_Pnt2d uv = BRep_Tool::Parameters( TopoDS::Vertex( V ), theFace );
u = uv.X();
v = uv.Y();
}
else
{
return isReversed;
}
// face normal at node position
TopLoc_Location loc;
Handle(Geom_Surface) surf = BRep_Tool::Surface( theFace, loc );
if ( surf.IsNull() || surf->Continuity() < GeomAbs_C1 ) return isReversed;
gp_Vec d1u, d1v;
surf->D1( u, v, nPnt[0], d1u, d1v );
gp_Vec Nf = (d1u ^ d1v).Transformed( loc );
if ( theFace.Orientation() == TopAbs_REVERSED )
Nf.Reverse();
return Ne * Nf < 0.;
}
//================================================================================
/*!
* \brief Just return false as the algorithm does not hold parameters values
*/
//================================================================================
bool SMESH_Algo::SetParametersByMesh(const SMESH_Mesh* /*theMesh*/,
const TopoDS_Shape& /*theShape*/)
{
return false;
}
bool SMESH_Algo::SetParametersByDefaults(const TDefaults& , const SMESH_Mesh*)
{
return false;
}
//================================================================================
/*!
* \brief Fill vector of node parameters on geometrical edge, including vertex nodes
* \param theMesh - The mesh containing nodes
* \param theEdge - The geometrical edge of interest
* \param theParams - The resulting vector of sorted node parameters
* \retval bool - false if not all parameters are OK
*/
//================================================================================
bool SMESH_Algo::GetNodeParamOnEdge(const SMESHDS_Mesh* theMesh,
const TopoDS_Edge& theEdge,
vector< double > & theParams)
{
theParams.clear();
if ( !theMesh || theEdge.IsNull() )
return false;
SMESHDS_SubMesh * eSubMesh = theMesh->MeshElements( theEdge );
if ( !eSubMesh || !eSubMesh->GetElements()->more() )
return false; // edge is not meshed
//int nbEdgeNodes = 0;
set < double > paramSet;
if ( eSubMesh )
{
// loop on nodes of an edge: sort them by param on edge
SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* node = nIt->next();
const SMDS_PositionPtr& pos = node->GetPosition();
if ( pos->GetTypeOfPosition() != SMDS_TOP_EDGE )
return false;
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(node->GetPosition());
if ( !paramSet.insert( epos->GetUParameter() ).second )
return false; // equal parameters
}
}
// add vertex nodes params
TopoDS_Vertex V1,V2;
TopExp::Vertices( theEdge, V1, V2);
if ( VertexNode( V1, theMesh ) &&
!paramSet.insert( BRep_Tool::Parameter(V1,theEdge) ).second )
return false; // there are equal parameters
if ( VertexNode( V2, theMesh ) &&
!paramSet.insert( BRep_Tool::Parameter(V2,theEdge) ).second )
return false; // there are equal parameters
// fill the vector
theParams.resize( paramSet.size() );
set < double >::iterator par = paramSet.begin();
vector< double >::iterator vecPar = theParams.begin();
for ( ; par != paramSet.end(); ++par, ++vecPar )
*vecPar = *par;
return theParams.size() > 1;
}
//================================================================================
/*!
* \brief Fill vector of node parameters on geometrical edge, including vertex nodes
* \param theMesh - The mesh containing nodes
* \param theEdge - The geometrical edge of interest
* \param theParams - The resulting vector of sorted node parameters
* \retval bool - false if not all parameters are OK
*/
//================================================================================
bool SMESH_Algo::GetSortedNodesOnEdge(const SMESHDS_Mesh* theMesh,
const TopoDS_Edge& theEdge,
const bool ignoreMediumNodes,
map< double, const SMDS_MeshNode* > & theNodes)
{
theNodes.clear();
if ( !theMesh || theEdge.IsNull() )
return false;
SMESHDS_SubMesh * eSubMesh = theMesh->MeshElements( theEdge );
if ( !eSubMesh || !eSubMesh->GetElements()->more() )
return false; // edge is not meshed
int nbNodes = 0;
set < double > paramSet;
if ( eSubMesh )
{
// loop on nodes of an edge: sort them by param on edge
SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* node = nIt->next();
if ( ignoreMediumNodes ) {
SMDS_ElemIteratorPtr elemIt = node->GetInverseElementIterator();
if ( elemIt->more() && elemIt->next()->IsMediumNode( node ))
continue;
}
const SMDS_PositionPtr& pos = node->GetPosition();
if ( pos->GetTypeOfPosition() != SMDS_TOP_EDGE )
return false;
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(node->GetPosition());
theNodes.insert( make_pair( epos->GetUParameter(), node ));
//MESSAGE("U " << epos->GetUParameter() << " ID " << node->GetID());
++nbNodes;
}
}
// add vertex nodes
TopoDS_Vertex v1, v2;
TopExp::Vertices(theEdge, v1, v2);
const SMDS_MeshNode* n1 = VertexNode( v1, (SMESHDS_Mesh*) theMesh );
const SMDS_MeshNode* n2 = VertexNode( v2, (SMESHDS_Mesh*) theMesh );
//MESSAGE("Vertices ID " << n1->GetID() << " " << n2->GetID());
Standard_Real f, l;
BRep_Tool::Range(theEdge, f, l);
if ( v1.Orientation() != TopAbs_FORWARD )
std::swap( f, l );
if ( n1 && ++nbNodes )
theNodes.insert( make_pair( f, n1 ));
if ( n2 && ++nbNodes )
theNodes.insert( make_pair( l, n2 ));
return theNodes.size() == nbNodes;
}
//================================================================================
/*!
* \brief Make filter recognize only compatible hypotheses
* \param theFilter - the filter to initialize
* \param ignoreAuxiliary - make filter ignore compatible auxiliary hypotheses
*/
//================================================================================
bool SMESH_Algo::InitCompatibleHypoFilter( SMESH_HypoFilter & theFilter,
const bool ignoreAuxiliary) const
{
if ( !_compatibleHypothesis.empty() )
{
theFilter.Init( theFilter.HasName( _compatibleHypothesis[0] ));
for ( int i = 1; i < _compatibleHypothesis.size(); ++i )
theFilter.Or( theFilter.HasName( _compatibleHypothesis[ i ] ));
if ( ignoreAuxiliary )
theFilter.AndNot( theFilter.IsAuxiliary() );
return true;
}
return false;
}
//================================================================================
/*!
* \brief Return continuity of two edges
* \param E1 - the 1st edge
* \param E2 - the 2nd edge
* \retval GeomAbs_Shape - regularity at the junction between E1 and E2
*/
//================================================================================
GeomAbs_Shape SMESH_Algo::Continuity(TopoDS_Edge E1,
TopoDS_Edge E2)
{
//E1.Orientation(TopAbs_FORWARD), E2.Orientation(TopAbs_FORWARD); // avoid pb with internal edges
if (E1.Orientation() > TopAbs_REVERSED) // INTERNAL
E1.Orientation( TopAbs_FORWARD );
if (E2.Orientation() > TopAbs_REVERSED) // INTERNAL
E2.Orientation( TopAbs_FORWARD );
TopoDS_Vertex V = TopExp::LastVertex (E1, true);
if ( !V.IsSame( TopExp::FirstVertex(E2, true )))
if ( !TopExp::CommonVertex( E1, E2, V ))
return GeomAbs_C0;
Standard_Real u1 = BRep_Tool::Parameter( V, E1 );
Standard_Real u2 = BRep_Tool::Parameter( V, E2 );
BRepAdaptor_Curve C1( E1 ), C2( E2 );
Standard_Real tol = BRep_Tool::Tolerance( V );
Standard_Real angTol = 2e-3;
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
return BRepLProp::Continuity(C1, C2, u1, u2, tol, angTol);
}
catch (Standard_Failure) {
}
return GeomAbs_C0;
}
//================================================================================
/*!
* \brief Return the node built on a vertex
* \param V - the vertex
* \param meshDS - mesh
* \retval const SMDS_MeshNode* - found node or NULL
*/
//================================================================================
const SMDS_MeshNode* SMESH_Algo::VertexNode(const TopoDS_Vertex& V,
const SMESHDS_Mesh* meshDS)
{
if ( SMESHDS_SubMesh* sm = meshDS->MeshElements(V) ) {
SMDS_NodeIteratorPtr nIt= sm->GetNodes();
if (nIt->more())
return nIt->next();
}
return 0;
}
//=======================================================================
//function : GetCommonNodes
//purpose : Return nodes common to two elements
//=======================================================================
vector< const SMDS_MeshNode*> SMESH_Algo::GetCommonNodes(const SMDS_MeshElement* e1,
const SMDS_MeshElement* e2)
{
vector< const SMDS_MeshNode*> common;
for ( int i = 0 ; i < e1->NbNodes(); ++i )
if ( e2->GetNodeIndex( e1->GetNode( i )) >= 0 )
common.push_back( e1->GetNode( i ));
return common;
}
//=======================================================================
//function : GetMeshError
//purpose : Finds topological errors of a sub-mesh
//WARNING : 1D check is NOT implemented so far
//=======================================================================
SMESH_Algo::EMeshError SMESH_Algo::GetMeshError(SMESH_subMesh* subMesh)
{
EMeshError err = MEr_OK;
SMESHDS_SubMesh* smDS = subMesh->GetSubMeshDS();
if ( !smDS )
return MEr_EMPTY;
switch ( subMesh->GetSubShape().ShapeType() )
{
case TopAbs_FACE: { // ====================== 2D =====================
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
if ( !fIt->more() )
return MEr_EMPTY;
// We check that olny links on EDGEs encouter once, the rest links, twice
set< SMESH_TLink > links;
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
int nbNodes = f->NbCornerNodes(); // ignore medium nodes
for ( int i = 0; i < nbNodes; ++i )
{
const SMDS_MeshNode* n1 = f->GetNode( i );
const SMDS_MeshNode* n2 = f->GetNode(( i+1 ) % nbNodes);
std::pair< set< SMESH_TLink >::iterator, bool > it_added =
links.insert( SMESH_TLink( n1, n2 ));
if ( !it_added.second )
// As we do NOT(!) check if mesh is manifold, we believe that a link can
// encounter once or twice only (not three times), we erase a link as soon
// as it encounters twice to speed up search in the <links> map.
links.erase( it_added.first );
}
}
// the links remaining in the <links> should all be on EDGE
set< SMESH_TLink >::iterator linkIt = links.begin();
for ( ; linkIt != links.end(); ++linkIt )
{
const SMESH_TLink& link = *linkIt;
if ( link.node1()->GetPosition()->GetTypeOfPosition() > SMDS_TOP_EDGE ||
link.node2()->GetPosition()->GetTypeOfPosition() > SMDS_TOP_EDGE )
return MEr_HOLES;
}
// TODO: to check orientation
break;
}
case TopAbs_SOLID: { // ====================== 3D =====================
SMDS_ElemIteratorPtr vIt = smDS->GetElements();
if ( !vIt->more() )
return MEr_EMPTY;
SMDS_VolumeTool vTool;
while ( !vIt->more() )
{
if (!vTool.Set( vIt->next() ))
continue; // strange
for ( int iF = 0; iF < vTool.NbFaces(); ++iF )
if ( vTool.IsFreeFace( iF ))
{
int nbN = vTool.NbFaceNodes( iF );
const SMDS_MeshNode** nodes = vTool.GetFaceNodes( iF );
for ( int i = 0; i < nbN; ++i )
if ( nodes[i]->GetPosition()->GetTypeOfPosition() > SMDS_TOP_FACE )
return MEr_HOLES;
}
}
break;
}
default:;
}
return err;
}
//================================================================================
/*!
* \brief Sets event listener to submeshes if necessary
* \param subMesh - submesh where algo is set
*
* After being set, event listener is notified on each event of a submesh.
* By default non listener is set
*/
//================================================================================
void SMESH_Algo::SetEventListener(SMESH_subMesh* /*subMesh*/)
{
}
//================================================================================
/*!
* \brief Allow algo to do something after persistent restoration
* \param subMesh - restored submesh
*
* This method is called only if a submesh has HYP_OK algo_state.
*/
//================================================================================
void SMESH_Algo::SubmeshRestored(SMESH_subMesh* /*subMesh*/)
{
}
//================================================================================
/*!
* \brief Computes mesh without geometry
* \param aMesh - the mesh
* \param aHelper - helper that must be used for adding elements to \aaMesh
* \retval bool - is a success
*/
//================================================================================
bool SMESH_Algo::Compute(SMESH_Mesh & /*aMesh*/, SMESH_MesherHelper* /*aHelper*/)
{
return error( COMPERR_BAD_INPUT_MESH, "Mesh built on shape expected");
}
#ifdef WITH_SMESH_CANCEL_COMPUTE
void SMESH_Algo::CancelCompute()
{
}
#endif
//================================================================================
/*!
* \brief store error and comment and then return ( error == COMPERR_OK )
*/
//================================================================================
bool SMESH_Algo::error(int error, const SMESH_Comment& comment)
{
_error = error;
_comment = comment;
return ( error == COMPERR_OK );
}
//================================================================================
/*!
* \brief store error and return ( error == COMPERR_OK )
*/
//================================================================================
bool SMESH_Algo::error(SMESH_ComputeErrorPtr error)
{
if ( error ) {
_error = error->myName;
_comment = error->myComment;
_badInputElements = error->myBadElements;
return error->IsOK();
}
return true;
}
//================================================================================
/*!
* \brief return compute error
*/
//================================================================================
SMESH_ComputeErrorPtr SMESH_Algo::GetComputeError() const
{
SMESH_ComputeErrorPtr err = SMESH_ComputeError::New( _error, _comment, this );
// hope this method is called by only SMESH_subMesh after this->Compute()
err->myBadElements.splice( err->myBadElements.end(),
(list<const SMDS_MeshElement*>&) _badInputElements );
return err;
}
//================================================================================
/*!
* \brief initialize compute error
*/
//================================================================================
void SMESH_Algo::InitComputeError()
{
_error = COMPERR_OK;
_comment.clear();
list<const SMDS_MeshElement*>::iterator elem = _badInputElements.begin();
for ( ; elem != _badInputElements.end(); ++elem )
if ( (*elem)->GetID() < 1 )
delete *elem;
_badInputElements.clear();
}
//================================================================================
/*!
* \brief store a bad input element preventing computation,
* which may be a temporary one i.e. not residing the mesh,
* then it will be deleted by InitComputeError()
*/
//================================================================================
void SMESH_Algo::addBadInputElement(const SMDS_MeshElement* elem)
{
if ( elem )
_badInputElements.push_back( elem );
}