mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-09 00:00:34 +05:00
6de9a2197d
use set<element,comparator> instead of map<ID,element> to have elements sorted by ID
4491 lines
159 KiB
C++
4491 lines
159 KiB
C++
// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
|
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
|
|
// File : SMESH_Pattern.hxx
|
|
// Created : Mon Aug 2 10:30:00 2004
|
|
// Author : Edward AGAPOV (eap)
|
|
|
|
#include "SMESH_Pattern.hxx"
|
|
|
|
#include <BRepAdaptor_Curve.hxx>
|
|
#include <BRepTools.hxx>
|
|
#include <BRepTools_WireExplorer.hxx>
|
|
#include <BRep_Tool.hxx>
|
|
#include <Bnd_Box.hxx>
|
|
#include <Bnd_Box2d.hxx>
|
|
#include <ElSLib.hxx>
|
|
#include <Extrema_GenExtPS.hxx>
|
|
#include <Extrema_POnSurf.hxx>
|
|
#include <Geom2d_Curve.hxx>
|
|
#include <GeomAdaptor_Surface.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_Surface.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <TopAbs_ShapeEnum.hxx>
|
|
#include <TopExp.hxx>
|
|
#include <TopLoc_Location.hxx>
|
|
#include <TopoDS.hxx>
|
|
#include <TopoDS_Edge.hxx>
|
|
#include <TopoDS_Face.hxx>
|
|
#include <TopoDS_Iterator.hxx>
|
|
#include <TopoDS_Shell.hxx>
|
|
#include <TopoDS_Vertex.hxx>
|
|
#include <TopoDS_Wire.hxx>
|
|
#include <TopTools_ListIteratorOfListOfShape.hxx>
|
|
#include <gp_Ax2.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Trsf.hxx>
|
|
#include <gp_XY.hxx>
|
|
#include <gp_XYZ.hxx>
|
|
|
|
#include "SMDS_EdgePosition.hxx"
|
|
#include "SMDS_FacePosition.hxx"
|
|
#include "SMDS_MeshElement.hxx"
|
|
#include "SMDS_MeshFace.hxx"
|
|
#include "SMDS_MeshNode.hxx"
|
|
#include "SMDS_VolumeTool.hxx"
|
|
#include "SMESHDS_Group.hxx"
|
|
#include "SMESHDS_Mesh.hxx"
|
|
#include "SMESHDS_SubMesh.hxx"
|
|
#include "SMESH_Block.hxx"
|
|
#include "SMESH_Mesh.hxx"
|
|
#include "SMESH_MeshEditor.hxx"
|
|
#include "SMESH_subMesh.hxx"
|
|
|
|
#include "utilities.h"
|
|
|
|
using namespace std;
|
|
|
|
typedef map< const SMDS_MeshElement*, int > TNodePointIDMap;
|
|
|
|
#define smdsNode( elem ) static_cast<const SMDS_MeshNode*>( elem )
|
|
|
|
//=======================================================================
|
|
//function : SMESH_Pattern
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
SMESH_Pattern::SMESH_Pattern ()
|
|
{
|
|
}
|
|
//=======================================================================
|
|
//function : getInt
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static inline int getInt( const char * theSring )
|
|
{
|
|
if ( *theSring < '0' || *theSring > '9' )
|
|
return -1;
|
|
|
|
char *ptr;
|
|
int val = strtol( theSring, &ptr, 10 );
|
|
if ( ptr == theSring ||
|
|
// there must not be neither '.' nor ',' nor 'E' ...
|
|
(*ptr != ' ' && *ptr != '\n' && *ptr != '\0'))
|
|
return -1;
|
|
|
|
return val;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : getDouble
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static inline double getDouble( const char * theSring )
|
|
{
|
|
char *ptr;
|
|
return strtod( theSring, &ptr );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : readLine
|
|
//purpose : Put token starting positions in theFields until '\n' or '\0'
|
|
// Return the number of the found tokens
|
|
//=======================================================================
|
|
|
|
static int readLine (list <const char*> & theFields,
|
|
const char* & theLineBeg,
|
|
const bool theClearFields )
|
|
{
|
|
if ( theClearFields )
|
|
theFields.clear();
|
|
|
|
// algo:
|
|
/* loop */
|
|
/* switch ( symbol ) { */
|
|
/* case white-space: */
|
|
/* look for a non-space symbol; */
|
|
/* case string-end: */
|
|
/* case line-end: */
|
|
/* exit; */
|
|
/* case comment beginning: */
|
|
/* skip all till a line-end; */
|
|
/* case a number */
|
|
/* put its position in theFields, skip till a white-space;*/
|
|
/* default: */
|
|
/* abort; */
|
|
/* till line-end */
|
|
|
|
int nbRead = 0;
|
|
bool stopReading = false;
|
|
do {
|
|
bool goOn = true;
|
|
bool isNumber = false;
|
|
switch ( *theLineBeg )
|
|
{
|
|
case ' ': // white space
|
|
case '\t': // tab
|
|
case 13: // ^M
|
|
break;
|
|
|
|
case '\n': // a line ends
|
|
stopReading = ( nbRead > 0 );
|
|
break;
|
|
|
|
case '!': // comment
|
|
do theLineBeg++;
|
|
while ( *theLineBeg != '\n' && *theLineBeg != '\0' );
|
|
goOn = false;
|
|
break;
|
|
|
|
case '\0': // file ends
|
|
return nbRead;
|
|
|
|
case '-': // real number
|
|
case '+':
|
|
case '.':
|
|
isNumber = true;
|
|
default: // data
|
|
isNumber = isNumber || ( *theLineBeg >= '0' && *theLineBeg <= '9' );
|
|
if ( isNumber ) {
|
|
theFields.push_back( theLineBeg );
|
|
nbRead++;
|
|
do theLineBeg++;
|
|
while (*theLineBeg != ' ' &&
|
|
*theLineBeg != '\n' &&
|
|
*theLineBeg != '\0');
|
|
goOn = false;
|
|
}
|
|
else
|
|
return 0; // incorrect file format
|
|
}
|
|
|
|
if ( goOn )
|
|
theLineBeg++;
|
|
|
|
} while ( !stopReading );
|
|
|
|
return nbRead;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Load
|
|
//purpose : Load a pattern from <theFile>
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Load (const char* theFileContents)
|
|
{
|
|
MESSAGE("Load( file ) ");
|
|
|
|
// file structure:
|
|
|
|
// ! This is a comment
|
|
// NB_POINTS ! 1 integer - the number of points in the pattern.
|
|
// X1 Y1 [Z1] ! 2 or 3 reals - nodes coordinates within 2D or 3D domain:
|
|
// X2 Y2 [Z2] ! the pattern dimention is defined by the number of coordinates
|
|
// ...
|
|
// [ ID1 ID2 ... IDn ] ! Indices of key-points for a 2D pattern (only).
|
|
// ! elements description goes after all
|
|
// ID1 ID2 ... IDn ! 2-4 or 4-8 integers - nodal connectivity of a 2D or 3D element.
|
|
// ...
|
|
|
|
Clear();
|
|
|
|
const char* lineBeg = theFileContents;
|
|
list <const char*> fields;
|
|
const bool clearFields = true;
|
|
|
|
// NB_POINTS ! 1 integer - the number of points in the pattern.
|
|
|
|
if ( readLine( fields, lineBeg, clearFields ) != 1 ) {
|
|
MESSAGE("Error reading NB_POINTS");
|
|
return setErrorCode( ERR_READ_NB_POINTS );
|
|
}
|
|
int nbPoints = getInt( fields.front() );
|
|
|
|
// X1 Y1 [Z1] ! 2 or 3 reals - nodes coordinates within 2D or 3D domain:
|
|
|
|
// read the first point coordinates to define pattern dimention
|
|
int dim = readLine( fields, lineBeg, clearFields );
|
|
if ( dim == 2 )
|
|
myIs2D = true;
|
|
else if ( dim == 3 )
|
|
myIs2D = false;
|
|
else {
|
|
MESSAGE("Error reading points: wrong nb of coordinates");
|
|
return setErrorCode( ERR_READ_POINT_COORDS );
|
|
}
|
|
if ( nbPoints <= dim ) {
|
|
MESSAGE(" Too few points ");
|
|
return setErrorCode( ERR_READ_TOO_FEW_POINTS );
|
|
}
|
|
|
|
// read the rest points
|
|
int iPoint;
|
|
for ( iPoint = 1; iPoint < nbPoints; iPoint++ )
|
|
if ( readLine( fields, lineBeg, !clearFields ) != dim ) {
|
|
MESSAGE("Error reading points : wrong nb of coordinates ");
|
|
return setErrorCode( ERR_READ_POINT_COORDS );
|
|
}
|
|
// store point coordinates
|
|
myPoints.resize( nbPoints );
|
|
list <const char*>::iterator fIt = fields.begin();
|
|
for ( iPoint = 0; iPoint < nbPoints; iPoint++ )
|
|
{
|
|
TPoint & p = myPoints[ iPoint ];
|
|
for ( int iCoord = 1; iCoord <= dim; iCoord++, fIt++ )
|
|
{
|
|
double coord = getDouble( *fIt );
|
|
if ( !myIs2D && ( coord < 0.0 || coord > 1.0 )) {
|
|
MESSAGE("Error reading 3D points, value should be in [0,1]: " << coord);
|
|
Clear();
|
|
return setErrorCode( ERR_READ_3D_COORD );
|
|
}
|
|
p.myInitXYZ.SetCoord( iCoord, coord );
|
|
if ( myIs2D )
|
|
p.myInitUV.SetCoord( iCoord, coord );
|
|
}
|
|
}
|
|
|
|
// [ ID1 ID2 ... IDn ] ! Indices of key-points for a 2D pattern (only).
|
|
if ( myIs2D )
|
|
{
|
|
if ( readLine( fields, lineBeg, clearFields ) == 0 ) {
|
|
MESSAGE("Error: missing key-points");
|
|
Clear();
|
|
return setErrorCode( ERR_READ_NO_KEYPOINT );
|
|
}
|
|
set<int> idSet;
|
|
for ( fIt = fields.begin(); fIt != fields.end(); fIt++ )
|
|
{
|
|
int pointIndex = getInt( *fIt );
|
|
if ( pointIndex >= nbPoints || pointIndex < 0 ) {
|
|
MESSAGE("Error: invalid point index " << pointIndex );
|
|
Clear();
|
|
return setErrorCode( ERR_READ_BAD_INDEX );
|
|
}
|
|
if ( idSet.insert( pointIndex ).second ) // unique?
|
|
myKeyPointIDs.push_back( pointIndex );
|
|
}
|
|
}
|
|
|
|
// ID1 ID2 ... IDn ! 2-4 or 4-8 integers - nodal connectivity of a 2D or 3D element.
|
|
|
|
while ( readLine( fields, lineBeg, clearFields ))
|
|
{
|
|
myElemPointIDs.push_back( TElemDef() );
|
|
TElemDef& elemPoints = myElemPointIDs.back();
|
|
for ( fIt = fields.begin(); fIt != fields.end(); fIt++ )
|
|
{
|
|
int pointIndex = getInt( *fIt );
|
|
if ( pointIndex >= nbPoints || pointIndex < 0 ) {
|
|
MESSAGE("Error: invalid point index " << pointIndex );
|
|
Clear();
|
|
return setErrorCode( ERR_READ_BAD_INDEX );
|
|
}
|
|
elemPoints.push_back( pointIndex );
|
|
}
|
|
// check the nb of nodes in element
|
|
bool Ok = true;
|
|
switch ( elemPoints.size() ) {
|
|
case 3: if ( !myIs2D ) Ok = false; break;
|
|
case 4: break;
|
|
case 5:
|
|
case 6:
|
|
case 8: if ( myIs2D ) Ok = false; break;
|
|
default: Ok = false;
|
|
}
|
|
if ( !Ok ) {
|
|
MESSAGE("Error: wrong nb of nodes in element " << elemPoints.size() );
|
|
Clear();
|
|
return setErrorCode( ERR_READ_ELEM_POINTS );
|
|
}
|
|
}
|
|
if ( myElemPointIDs.empty() ) {
|
|
MESSAGE("Error: no elements");
|
|
Clear();
|
|
return setErrorCode( ERR_READ_NO_ELEMS );
|
|
}
|
|
|
|
findBoundaryPoints(); // sort key-points
|
|
|
|
return setErrorCode( ERR_OK );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Save
|
|
//purpose : Save the loaded pattern into the file <theFileName>
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Save (ostream& theFile)
|
|
{
|
|
MESSAGE(" ::Save(file) " );
|
|
if ( !IsLoaded() ) {
|
|
MESSAGE(" Pattern not loaded ");
|
|
return setErrorCode( ERR_SAVE_NOT_LOADED );
|
|
}
|
|
|
|
theFile << "!!! SALOME Mesh Pattern file" << endl;
|
|
theFile << "!!!" << endl;
|
|
theFile << "!!! Nb of points:" << endl;
|
|
theFile << myPoints.size() << endl;
|
|
|
|
// point coordinates
|
|
const int width = 8;
|
|
// theFile.width( 8 );
|
|
// theFile.setf(ios::fixed);// use 123.45 floating notation
|
|
// theFile.setf(ios::right);
|
|
// theFile.flags( theFile.flags() & ~ios::showpoint); // do not show trailing zeros
|
|
// theFile.setf(ios::showpoint); // do not show trailing zeros
|
|
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
|
|
for ( int i = 0; pVecIt != myPoints.end(); pVecIt++, i++ ) {
|
|
const gp_XYZ & xyz = (*pVecIt).myInitXYZ;
|
|
theFile << " " << setw( width ) << xyz.X() << " " << setw( width ) << xyz.Y();
|
|
if ( !myIs2D ) theFile << " " << setw( width ) << xyz.Z();
|
|
theFile << " !- " << i << endl; // point id to ease reading by a human being
|
|
}
|
|
// key-points
|
|
if ( myIs2D ) {
|
|
theFile << "!!! Indices of " << myKeyPointIDs.size() << " key-points:" << endl;
|
|
list< int >::const_iterator kpIt = myKeyPointIDs.begin();
|
|
for ( ; kpIt != myKeyPointIDs.end(); kpIt++ )
|
|
theFile << " " << *kpIt;
|
|
if ( !myKeyPointIDs.empty() )
|
|
theFile << endl;
|
|
}
|
|
// elements
|
|
theFile << "!!! Indices of points of " << myElemPointIDs.size() << " elements:" << endl;
|
|
list<TElemDef >::const_iterator epIt = myElemPointIDs.begin();
|
|
for ( ; epIt != myElemPointIDs.end(); epIt++ )
|
|
{
|
|
const TElemDef & elemPoints = *epIt;
|
|
TElemDef::const_iterator iIt = elemPoints.begin();
|
|
for ( ; iIt != elemPoints.end(); iIt++ )
|
|
theFile << " " << *iIt;
|
|
theFile << endl;
|
|
}
|
|
|
|
theFile << endl;
|
|
|
|
return setErrorCode( ERR_OK );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : sortBySize
|
|
//purpose : sort theListOfList by size
|
|
//=======================================================================
|
|
|
|
template<typename T> struct TSizeCmp {
|
|
bool operator ()( const list < T > & l1, const list < T > & l2 )
|
|
const { return l1.size() < l2.size(); }
|
|
};
|
|
|
|
template<typename T> void sortBySize( list< list < T > > & theListOfList )
|
|
{
|
|
if ( theListOfList.size() > 2 ) {
|
|
TSizeCmp< T > SizeCmp;
|
|
theListOfList.sort( SizeCmp );
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : project
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static gp_XY project (const SMDS_MeshNode* theNode,
|
|
Extrema_GenExtPS & theProjectorPS)
|
|
{
|
|
gp_Pnt P( theNode->X(), theNode->Y(), theNode->Z() );
|
|
theProjectorPS.Perform( P );
|
|
if ( !theProjectorPS.IsDone() ) {
|
|
MESSAGE( "SMESH_Pattern: point projection FAILED");
|
|
return gp_XY(0.,0.);
|
|
}
|
|
double u, v, minVal = DBL_MAX;
|
|
for ( int i = theProjectorPS.NbExt(); i > 0; i-- )
|
|
if ( theProjectorPS.Value( i ) < minVal ) {
|
|
minVal = theProjectorPS.Value( i );
|
|
theProjectorPS.Point( i ).Parameter( u, v );
|
|
}
|
|
return gp_XY( u, v );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : areNodesBound
|
|
//purpose : true if all nodes of faces are bound to shapes
|
|
//=======================================================================
|
|
|
|
template <class TFaceIterator> bool areNodesBound( TFaceIterator & faceItr )
|
|
{
|
|
while ( faceItr->more() )
|
|
{
|
|
SMDS_ElemIteratorPtr nIt = faceItr->next()->nodesIterator();
|
|
while ( nIt->more() )
|
|
{
|
|
const SMDS_MeshNode* node = smdsNode( nIt->next() );
|
|
SMDS_PositionPtr pos = node->GetPosition();
|
|
if ( !pos || !pos->GetShapeId() ) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : isMeshBoundToShape
|
|
//purpose : return true if all 2d elements are bound to shape
|
|
// if aFaceSubmesh != NULL, then check faces bound to it
|
|
// else check all faces in aMeshDS
|
|
//=======================================================================
|
|
|
|
static bool isMeshBoundToShape(SMESHDS_Mesh * aMeshDS,
|
|
SMESHDS_SubMesh * aFaceSubmesh,
|
|
const bool isMainShape)
|
|
{
|
|
if ( isMainShape ) {
|
|
// check that all faces are bound to aFaceSubmesh
|
|
if ( aMeshDS->NbFaces() != aFaceSubmesh->NbElements() )
|
|
return false;
|
|
}
|
|
|
|
// check face nodes binding
|
|
if ( aFaceSubmesh ) {
|
|
SMDS_ElemIteratorPtr fIt = aFaceSubmesh->GetElements();
|
|
return areNodesBound( fIt );
|
|
}
|
|
SMDS_FaceIteratorPtr fIt = aMeshDS->facesIterator();
|
|
return areNodesBound( fIt );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Load
|
|
//purpose : Create a pattern from the mesh built on <theFace>.
|
|
// <theProject>==true makes override nodes positions
|
|
// on <theFace> computed by mesher
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Load (SMESH_Mesh* theMesh,
|
|
const TopoDS_Face& theFace,
|
|
bool theProject)
|
|
{
|
|
MESSAGE(" ::Load(face) " );
|
|
Clear();
|
|
myIs2D = true;
|
|
|
|
SMESHDS_Mesh * aMeshDS = theMesh->GetMeshDS();
|
|
SMESHDS_SubMesh * fSubMesh = aMeshDS->MeshElements( theFace );
|
|
SMESH_MesherHelper helper( *theMesh );
|
|
helper.SetSubShape( theFace );
|
|
|
|
int nbNodes = ( !fSubMesh ? 0 : fSubMesh->NbNodes() );
|
|
int nbElems = ( !fSubMesh ? 0 : fSubMesh->NbElements() );
|
|
if ( nbElems == 0 && aMeshDS->NbFaces() == 0 )
|
|
{
|
|
MESSAGE( "No elements bound to the face");
|
|
return setErrorCode( ERR_LOAD_EMPTY_SUBMESH );
|
|
}
|
|
|
|
TopoDS_Face face = TopoDS::Face( theFace.Oriented( TopAbs_FORWARD ));
|
|
|
|
// check that face is not closed
|
|
bool isClosed = helper.HasSeam();
|
|
TopoDS_Vertex bidon;
|
|
list<TopoDS_Edge> eList;
|
|
list<TopoDS_Edge>::iterator elIt;
|
|
SMESH_Block::GetOrderedEdges( face, bidon, eList, myNbKeyPntInBoundary );
|
|
|
|
// check that requested or needed projection is possible
|
|
bool isMainShape = theMesh->IsMainShape( face );
|
|
bool needProject = !isMeshBoundToShape( aMeshDS, fSubMesh, isMainShape );
|
|
bool canProject = ( nbElems ? true : isMainShape );
|
|
if ( isClosed )
|
|
canProject = false; // so far
|
|
|
|
if ( ( theProject || needProject ) && !canProject )
|
|
return setErrorCode( ERR_LOADF_CANT_PROJECT );
|
|
|
|
Extrema_GenExtPS projector;
|
|
GeomAdaptor_Surface aSurface( BRep_Tool::Surface( face ));
|
|
if ( theProject || needProject )
|
|
projector.Initialize( aSurface, 20,20, 1e-5,1e-5 );
|
|
|
|
int iPoint = 0;
|
|
TNodePointIDMap nodePointIDMap;
|
|
TNodePointIDMap closeNodePointIDMap; // for nodes on seam edges
|
|
|
|
if ( needProject )
|
|
{
|
|
MESSAGE("Project the submesh");
|
|
// ---------------------------------------------------------------
|
|
// The case where the submesh is projected to theFace
|
|
// ---------------------------------------------------------------
|
|
|
|
// get all faces
|
|
list< const SMDS_MeshElement* > faces;
|
|
if ( nbElems > 0 ) {
|
|
SMDS_ElemIteratorPtr fIt = fSubMesh->GetElements();
|
|
while ( fIt->more() ) {
|
|
const SMDS_MeshElement* f = fIt->next();
|
|
if ( f && f->GetType() == SMDSAbs_Face )
|
|
faces.push_back( f );
|
|
}
|
|
}
|
|
else {
|
|
SMDS_FaceIteratorPtr fIt = aMeshDS->facesIterator();
|
|
while ( fIt->more() )
|
|
faces.push_back( fIt->next() );
|
|
}
|
|
|
|
// put nodes of all faces into the nodePointIDMap and fill myElemPointIDs
|
|
list< const SMDS_MeshElement* >::iterator fIt = faces.begin();
|
|
for ( ; fIt != faces.end(); ++fIt )
|
|
{
|
|
myElemPointIDs.push_back( TElemDef() );
|
|
TElemDef& elemPoints = myElemPointIDs.back();
|
|
SMDS_ElemIteratorPtr nIt = (*fIt)->nodesIterator();
|
|
while ( nIt->more() )
|
|
{
|
|
const SMDS_MeshElement* node = nIt->next();
|
|
TNodePointIDMap::iterator nIdIt = nodePointIDMap.find( node );
|
|
if ( nIdIt == nodePointIDMap.end() )
|
|
{
|
|
elemPoints.push_back( iPoint );
|
|
nodePointIDMap.insert( make_pair( node, iPoint++ ));
|
|
}
|
|
else
|
|
elemPoints.push_back( (*nIdIt).second );
|
|
}
|
|
}
|
|
myPoints.resize( iPoint );
|
|
|
|
// project all nodes of 2d elements to theFace
|
|
TNodePointIDMap::iterator nIdIt = nodePointIDMap.begin();
|
|
for ( ; nIdIt != nodePointIDMap.end(); nIdIt++ )
|
|
{
|
|
const SMDS_MeshNode* node = smdsNode( (*nIdIt).first );
|
|
TPoint * p = & myPoints[ (*nIdIt).second ];
|
|
p->myInitUV = project( node, projector );
|
|
p->myInitXYZ.SetCoord( p->myInitUV.X(), p->myInitUV.Y(), 0 );
|
|
}
|
|
// find key-points: the points most close to UV of vertices
|
|
TopExp_Explorer vExp( face, TopAbs_VERTEX );
|
|
set<int> foundIndices;
|
|
for ( ; vExp.More(); vExp.Next() ) {
|
|
const TopoDS_Vertex v = TopoDS::Vertex( vExp.Current() );
|
|
gp_Pnt2d uv = BRep_Tool::Parameters( v, face );
|
|
double minDist = DBL_MAX;
|
|
int index;
|
|
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
|
|
for ( iPoint = 0; pVecIt != myPoints.end(); pVecIt++, iPoint++ ) {
|
|
double dist = uv.SquareDistance( (*pVecIt).myInitUV );
|
|
if ( dist < minDist ) {
|
|
minDist = dist;
|
|
index = iPoint;
|
|
}
|
|
}
|
|
if ( foundIndices.insert( index ).second ) // unique?
|
|
myKeyPointIDs.push_back( index );
|
|
}
|
|
myIsBoundaryPointsFound = false;
|
|
|
|
}
|
|
else
|
|
{
|
|
// ---------------------------------------------------------------------
|
|
// The case where a pattern is being made from the mesh built by mesher
|
|
// ---------------------------------------------------------------------
|
|
|
|
// Load shapes in the consequent order and count nb of points
|
|
|
|
// vertices
|
|
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ ) {
|
|
myShapeIDMap.Add( TopExp::FirstVertex( *elIt, true ));
|
|
if ( BRep_Tool::IsClosed( *elIt, theFace ) )
|
|
myShapeIDMap.Add( TopExp::LastVertex( *elIt, true ));
|
|
SMESHDS_SubMesh * eSubMesh = aMeshDS->MeshElements( *elIt );
|
|
if ( eSubMesh )
|
|
nbNodes += eSubMesh->NbNodes() + 1;
|
|
}
|
|
// edges
|
|
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
|
|
myShapeIDMap.Add( *elIt );
|
|
// the face
|
|
myShapeIDMap.Add( face );
|
|
|
|
myPoints.resize( nbNodes );
|
|
|
|
// Load U of points on edges
|
|
|
|
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
|
|
{
|
|
TopoDS_Edge & edge = *elIt;
|
|
list< TPoint* > & ePoints = getShapePoints( edge );
|
|
double f, l;
|
|
Handle(Geom2d_Curve) C2d;
|
|
if ( !theProject )
|
|
C2d = BRep_Tool::CurveOnSurface( edge, face, f, l );
|
|
bool isForward = ( edge.Orientation() == TopAbs_FORWARD );
|
|
|
|
TopoDS_Shape v1 = TopExp::FirstVertex( edge, true ); // always FORWARD
|
|
TopoDS_Shape v2 = TopExp::LastVertex( edge, true ); // always REVERSED
|
|
// to make adjacent edges share key-point, we make v2 FORWARD too
|
|
// (as we have different points for same shape with different orienation)
|
|
v2.Reverse();
|
|
|
|
// on closed face we must have REVERSED some of seam vertices
|
|
bool isSeam = helper.IsSeamShape( edge );
|
|
if ( isClosed ) {
|
|
if ( isSeam ) { // reverse on reversed SEAM edge
|
|
if ( !isForward ) {
|
|
v1.Reverse();
|
|
v2.Reverse();
|
|
}
|
|
}
|
|
else { // on CLOSED edge
|
|
for ( int is2 = 0; is2 < 2; ++is2 ) {
|
|
TopoDS_Shape & v = is2 ? v2 : v1;
|
|
if ( helper.IsSeamShape( v ) ) {
|
|
// reverse or not depending on orientation of adjacent seam
|
|
TopoDS_Edge seam;
|
|
list<TopoDS_Edge>::iterator eIt2 = elIt;
|
|
if ( is2 )
|
|
seam = ( ++eIt2 == eList.end() ? eList.front() : *eIt2 );
|
|
else
|
|
seam = ( eIt2 == eList.begin() ? eList.back() : *(--eIt2) );
|
|
if ( seam.Orientation() == TopAbs_REVERSED )
|
|
v.Reverse();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// the forward key-point
|
|
list< TPoint* > * vPoint = & getShapePoints( v1 );
|
|
if ( vPoint->empty() )
|
|
{
|
|
SMESHDS_SubMesh * vSubMesh = aMeshDS->MeshElements( v1 );
|
|
if ( vSubMesh && vSubMesh->NbNodes() ) {
|
|
myKeyPointIDs.push_back( iPoint );
|
|
SMDS_NodeIteratorPtr nIt = vSubMesh->GetNodes();
|
|
const SMDS_MeshNode* node = nIt->next();
|
|
if ( v1.Orientation() == TopAbs_REVERSED )
|
|
closeNodePointIDMap.insert( make_pair( node, iPoint ));
|
|
else
|
|
nodePointIDMap.insert( make_pair( node, iPoint ));
|
|
|
|
TPoint* keyPoint = &myPoints[ iPoint++ ];
|
|
vPoint->push_back( keyPoint );
|
|
if ( theProject )
|
|
keyPoint->myInitUV = project( node, projector );
|
|
else
|
|
keyPoint->myInitUV = C2d->Value( isForward ? f : l ).XY();
|
|
keyPoint->myInitXYZ.SetCoord (keyPoint->myInitUV.X(), keyPoint->myInitUV.Y(), 0);
|
|
}
|
|
}
|
|
if ( !vPoint->empty() )
|
|
ePoints.push_back( vPoint->front() );
|
|
|
|
// on-edge points
|
|
SMESHDS_SubMesh * eSubMesh = aMeshDS->MeshElements( edge );
|
|
if ( eSubMesh && eSubMesh->NbNodes() )
|
|
{
|
|
// loop on nodes of an edge: sort them by param on edge
|
|
typedef map < double, const SMDS_MeshNode* > TParamNodeMap;
|
|
TParamNodeMap paramNodeMap;
|
|
SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
|
|
while ( nIt->more() )
|
|
{
|
|
const SMDS_MeshNode* node = smdsNode( nIt->next() );
|
|
const SMDS_EdgePosition* epos =
|
|
static_cast<const SMDS_EdgePosition*>(node->GetPosition().get());
|
|
double u = epos->GetUParameter();
|
|
paramNodeMap.insert( TParamNodeMap::value_type( u, node ));
|
|
}
|
|
// put U in [0,1] so that the first key-point has U==0
|
|
double du = l - f;
|
|
TParamNodeMap::iterator unIt = paramNodeMap.begin();
|
|
TParamNodeMap::reverse_iterator unRIt = paramNodeMap.rbegin();
|
|
while ( unIt != paramNodeMap.end() )
|
|
{
|
|
TPoint* p = & myPoints[ iPoint ];
|
|
ePoints.push_back( p );
|
|
const SMDS_MeshNode* node = isForward ? (*unIt).second : (*unRIt).second;
|
|
if ( isSeam && !isForward )
|
|
closeNodePointIDMap.insert( make_pair( node, iPoint ));
|
|
else
|
|
nodePointIDMap.insert ( make_pair( node, iPoint ));
|
|
|
|
if ( theProject )
|
|
p->myInitUV = project( node, projector );
|
|
else {
|
|
double u = isForward ? (*unIt).first : (*unRIt).first;
|
|
p->myInitU = isForward ? (( u - f ) / du ) : ( 1.0 - ( u - f ) / du );
|
|
p->myInitUV = C2d->Value( u ).XY();
|
|
}
|
|
p->myInitXYZ.SetCoord( p->myInitUV.X(), p->myInitUV.Y(), 0 );
|
|
unIt++; unRIt++;
|
|
iPoint++;
|
|
}
|
|
}
|
|
// the reverse key-point
|
|
vPoint = & getShapePoints( v2 );
|
|
if ( vPoint->empty() )
|
|
{
|
|
SMESHDS_SubMesh * vSubMesh = aMeshDS->MeshElements( v2 );
|
|
if ( vSubMesh && vSubMesh->NbNodes() ) {
|
|
myKeyPointIDs.push_back( iPoint );
|
|
SMDS_NodeIteratorPtr nIt = vSubMesh->GetNodes();
|
|
const SMDS_MeshNode* node = nIt->next();
|
|
if ( v2.Orientation() == TopAbs_REVERSED )
|
|
closeNodePointIDMap.insert( make_pair( node, iPoint ));
|
|
else
|
|
nodePointIDMap.insert( make_pair( node, iPoint ));
|
|
|
|
TPoint* keyPoint = &myPoints[ iPoint++ ];
|
|
vPoint->push_back( keyPoint );
|
|
if ( theProject )
|
|
keyPoint->myInitUV = project( node, projector );
|
|
else
|
|
keyPoint->myInitUV = C2d->Value( isForward ? l : f ).XY();
|
|
keyPoint->myInitXYZ.SetCoord( keyPoint->myInitUV.X(), keyPoint->myInitUV.Y(), 0 );
|
|
}
|
|
}
|
|
if ( !vPoint->empty() )
|
|
ePoints.push_back( vPoint->front() );
|
|
|
|
// compute U of edge-points
|
|
if ( theProject )
|
|
{
|
|
double totalDist = 0;
|
|
list< TPoint* >::iterator pIt = ePoints.begin();
|
|
TPoint* prevP = *pIt;
|
|
prevP->myInitU = totalDist;
|
|
for ( pIt++; pIt != ePoints.end(); pIt++ ) {
|
|
TPoint* p = *pIt;
|
|
totalDist += ( p->myInitUV - prevP->myInitUV ).Modulus();
|
|
p->myInitU = totalDist;
|
|
prevP = p;
|
|
}
|
|
if ( totalDist > DBL_MIN)
|
|
for ( pIt = ePoints.begin(); pIt != ePoints.end(); pIt++ ) {
|
|
TPoint* p = *pIt;
|
|
p->myInitU /= totalDist;
|
|
}
|
|
}
|
|
} // loop on edges of a wire
|
|
|
|
// Load in-face points and elements
|
|
|
|
if ( fSubMesh && fSubMesh->NbElements() )
|
|
{
|
|
list< TPoint* > & fPoints = getShapePoints( face );
|
|
SMDS_NodeIteratorPtr nIt = fSubMesh->GetNodes();
|
|
while ( nIt->more() )
|
|
{
|
|
const SMDS_MeshNode* node = smdsNode( nIt->next() );
|
|
nodePointIDMap.insert( make_pair( node, iPoint ));
|
|
TPoint* p = &myPoints[ iPoint++ ];
|
|
fPoints.push_back( p );
|
|
if ( theProject )
|
|
p->myInitUV = project( node, projector );
|
|
else {
|
|
const SMDS_FacePosition* pos =
|
|
static_cast<const SMDS_FacePosition*>(node->GetPosition().get());
|
|
p->myInitUV.SetCoord( pos->GetUParameter(), pos->GetVParameter() );
|
|
}
|
|
p->myInitXYZ.SetCoord( p->myInitUV.X(), p->myInitUV.Y(), 0 );
|
|
}
|
|
// load elements
|
|
SMDS_ElemIteratorPtr elemIt = fSubMesh->GetElements();
|
|
while ( elemIt->more() )
|
|
{
|
|
const SMDS_MeshElement* elem = elemIt->next();
|
|
SMDS_ElemIteratorPtr nIt = elem->nodesIterator();
|
|
myElemPointIDs.push_back( TElemDef() );
|
|
TElemDef& elemPoints = myElemPointIDs.back();
|
|
// find point indices corresponding to element nodes
|
|
while ( nIt->more() )
|
|
{
|
|
const SMDS_MeshNode* node = smdsNode( nIt->next() );
|
|
iPoint = nodePointIDMap[ node ]; // point index of interest
|
|
// for a node on a seam edge there are two points
|
|
TNodePointIDMap::iterator n_id = closeNodePointIDMap.end();
|
|
if ( helper.IsSeamShape( node->GetPosition()->GetShapeId() ))
|
|
n_id = closeNodePointIDMap.find( node );
|
|
if ( n_id != closeNodePointIDMap.end() )
|
|
{
|
|
TPoint & p1 = myPoints[ iPoint ];
|
|
TPoint & p2 = myPoints[ n_id->second ];
|
|
// Select point closest to the rest nodes of element in UV space
|
|
SMDS_ElemIteratorPtr nIt2 = elem->nodesIterator();
|
|
const SMDS_MeshNode* notSeamNode = 0;
|
|
// find node not on a seam edge
|
|
while ( nIt2->more() && !notSeamNode ) {
|
|
const SMDS_MeshNode* n = smdsNode( nIt2->next() );
|
|
if ( !helper.IsSeamShape( n->GetPosition()->GetShapeId() ))
|
|
notSeamNode = n;
|
|
}
|
|
gp_Pnt2d uv = helper.GetNodeUV( theFace, node, notSeamNode );
|
|
double dist1 = uv.SquareDistance( p1.myInitUV );
|
|
double dist2 = uv.SquareDistance( p2.myInitUV );
|
|
if ( dist2 < dist1 )
|
|
iPoint = n_id->second;
|
|
}
|
|
elemPoints.push_back( iPoint );
|
|
}
|
|
}
|
|
}
|
|
|
|
myIsBoundaryPointsFound = true;
|
|
}
|
|
|
|
// Assure that U range is proportional to V range
|
|
|
|
Bnd_Box2d bndBox;
|
|
vector< TPoint >::iterator pVecIt = myPoints.begin();
|
|
for ( ; pVecIt != myPoints.end(); pVecIt++ )
|
|
bndBox.Add( gp_Pnt2d( (*pVecIt).myInitUV ));
|
|
double minU, minV, maxU, maxV;
|
|
bndBox.Get( minU, minV, maxU, maxV );
|
|
double dU = maxU - minU, dV = maxV - minV;
|
|
if ( dU <= DBL_MIN || dV <= DBL_MIN ) {
|
|
Clear();
|
|
bndBox.SetVoid();
|
|
// define where is the problem, in the face or in the mesh
|
|
TopExp_Explorer vExp( face, TopAbs_VERTEX );
|
|
for ( ; vExp.More(); vExp.Next() ) {
|
|
gp_Pnt2d uv = BRep_Tool::Parameters( TopoDS::Vertex( vExp.Current() ), face );
|
|
bndBox.Add( uv );
|
|
}
|
|
bndBox.Get( minU, minV, maxU, maxV );
|
|
dU = maxU - minU, dV = maxV - minV;
|
|
if ( dU <= DBL_MIN || dV <= DBL_MIN )
|
|
// face problem
|
|
return setErrorCode( ERR_LOADF_NARROW_FACE );
|
|
else
|
|
// mesh is projected onto a line, e.g.
|
|
return setErrorCode( ERR_LOADF_CANT_PROJECT );
|
|
}
|
|
double ratio = dU / dV, maxratio = 3, scale;
|
|
int iCoord = 0;
|
|
if ( ratio > maxratio ) {
|
|
scale = ratio / maxratio;
|
|
iCoord = 2;
|
|
}
|
|
else if ( ratio < 1./maxratio ) {
|
|
scale = maxratio / ratio;
|
|
iCoord = 1;
|
|
}
|
|
if ( iCoord ) {
|
|
SCRUTE( scale );
|
|
for ( pVecIt = myPoints.begin(); pVecIt != myPoints.end(); pVecIt++ ) {
|
|
TPoint & p = *pVecIt;
|
|
p.myInitUV.SetCoord( iCoord, p.myInitUV.Coord( iCoord ) * scale );
|
|
p.myInitXYZ.SetCoord( p.myInitUV.X(), p.myInitUV.Y(), 0 );
|
|
}
|
|
}
|
|
if ( myElemPointIDs.empty() ) {
|
|
MESSAGE( "No elements bound to the face");
|
|
return setErrorCode( ERR_LOAD_EMPTY_SUBMESH );
|
|
}
|
|
|
|
return setErrorCode( ERR_OK );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : computeUVOnEdge
|
|
//purpose : compute coordinates of points on theEdge
|
|
//=======================================================================
|
|
|
|
void SMESH_Pattern::computeUVOnEdge (const TopoDS_Edge& theEdge,
|
|
const list< TPoint* > & ePoints )
|
|
{
|
|
bool isForward = ( theEdge.Orientation() == TopAbs_FORWARD );
|
|
double f, l;
|
|
Handle(Geom2d_Curve) C2d =
|
|
BRep_Tool::CurveOnSurface( theEdge, TopoDS::Face( myShape ), f, l );
|
|
|
|
ePoints.back()->myInitU = 1.0;
|
|
list< TPoint* >::const_iterator pIt = ePoints.begin();
|
|
for ( pIt++; pIt != ePoints.end(); pIt++ )
|
|
{
|
|
TPoint* point = *pIt;
|
|
// U
|
|
double du = ( isForward ? point->myInitU : 1 - point->myInitU );
|
|
point->myU = ( f * ( 1 - du ) + l * du );
|
|
// UV
|
|
point->myUV = C2d->Value( point->myU ).XY();
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : intersectIsolines
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static bool intersectIsolines(const gp_XY& uv11, const gp_XY& uv12, const double r1,
|
|
const gp_XY& uv21, const gp_XY& uv22, const double r2,
|
|
gp_XY& resUV,
|
|
bool& isDeformed)
|
|
{
|
|
gp_XY loc1 = uv11 * ( 1 - r1 ) + uv12 * r1;
|
|
gp_XY loc2 = uv21 * ( 1 - r2 ) + uv22 * r2;
|
|
resUV = 0.5 * ( loc1 + loc2 );
|
|
isDeformed = ( loc1 - loc2 ).SquareModulus() > 1e-8;
|
|
// double len1 = ( uv11 - uv12 ).Modulus();
|
|
// double len2 = ( uv21 - uv22 ).Modulus();
|
|
// resUV = loc1 * len2 / ( len1 + len2 ) + loc2 * len1 / ( len1 + len2 );
|
|
// return true;
|
|
|
|
|
|
// gp_Lin2d line1( uv11, uv12 - uv11 );
|
|
// gp_Lin2d line2( uv21, uv22 - uv21 );
|
|
// double angle = Abs( line1.Angle( line2 ) );
|
|
|
|
// IntAna2d_AnaIntersection inter;
|
|
// inter.Perform( line1.Normal( loc1 ), line2.Normal( loc2 ) );
|
|
// if ( inter.IsDone() && inter.NbPoints() == 1 )
|
|
// {
|
|
// gp_Pnt2d interUV = inter.Point(1).Value();
|
|
// resUV += interUV.XY();
|
|
// inter.Perform( line1, line2 );
|
|
// interUV = inter.Point(1).Value();
|
|
// resUV += interUV.XY();
|
|
|
|
// resUV /= 2.;
|
|
// }
|
|
return true;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : compUVByIsoIntersection
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::compUVByIsoIntersection (const list< list< TPoint* > >& theBndPoints,
|
|
const gp_XY& theInitUV,
|
|
gp_XY& theUV,
|
|
bool & theIsDeformed )
|
|
{
|
|
// compute UV by intersection of 2 iso lines
|
|
//gp_Lin2d isoLine[2];
|
|
gp_XY uv1[2], uv2[2];
|
|
double ratio[2];
|
|
const double zero = DBL_MIN;
|
|
for ( int iIso = 0; iIso < 2; iIso++ )
|
|
{
|
|
// to build an iso line:
|
|
// find 2 pairs of consequent edge-points such that the range of their
|
|
// initial parameters encloses the in-face point initial parameter
|
|
gp_XY UV[2], initUV[2];
|
|
int nbUV = 0, iCoord = iIso + 1;
|
|
double initParam = theInitUV.Coord( iCoord );
|
|
|
|
list< list< TPoint* > >::const_iterator bndIt = theBndPoints.begin();
|
|
for ( ; bndIt != theBndPoints.end(); bndIt++ )
|
|
{
|
|
const list< TPoint* > & bndPoints = * bndIt;
|
|
TPoint* prevP = bndPoints.back(); // this is the first point
|
|
list< TPoint* >::const_iterator pIt = bndPoints.begin();
|
|
bool coincPrev = false;
|
|
// loop on the edge-points
|
|
for ( ; pIt != bndPoints.end(); pIt++ )
|
|
{
|
|
double paramDiff = initParam - (*pIt)->myInitUV.Coord( iCoord );
|
|
double prevParamDiff = initParam - prevP->myInitUV.Coord( iCoord );
|
|
double sumOfDiff = Abs(prevParamDiff) + Abs(paramDiff);
|
|
if (!coincPrev && // ignore if initParam coincides with prev point param
|
|
sumOfDiff > zero && // ignore if both points coincide with initParam
|
|
prevParamDiff * paramDiff <= zero )
|
|
{
|
|
// find UV in parametric space of theFace
|
|
double r = Abs(prevParamDiff) / sumOfDiff;
|
|
gp_XY uvInit = (*pIt)->myInitUV * r + prevP->myInitUV * ( 1 - r );
|
|
int i = nbUV++;
|
|
if ( i >= 2 ) {
|
|
// throw away uv most distant from <theInitUV>
|
|
gp_XY vec0 = initUV[0] - theInitUV;
|
|
gp_XY vec1 = initUV[1] - theInitUV;
|
|
gp_XY vec = uvInit - theInitUV;
|
|
bool isBetween = ( vec0 * vec1 < 0 ); // is theInitUV between initUV[0] and initUV[1]
|
|
double dist0 = vec0.SquareModulus();
|
|
double dist1 = vec1.SquareModulus();
|
|
double dist = vec .SquareModulus();
|
|
if ( !isBetween || dist < dist0 || dist < dist1 ) {
|
|
i = ( dist0 < dist1 ? 1 : 0 );
|
|
if ( isBetween && vec.Dot( i ? vec1 : vec0 ) < 0 )
|
|
i = 3; // theInitUV must remain between
|
|
}
|
|
}
|
|
if ( i < 2 ) {
|
|
initUV[ i ] = uvInit;
|
|
UV[ i ] = (*pIt)->myUV * r + prevP->myUV * ( 1 - r );
|
|
}
|
|
coincPrev = ( Abs(paramDiff) <= zero );
|
|
}
|
|
else
|
|
coincPrev = false;
|
|
prevP = *pIt;
|
|
}
|
|
}
|
|
if ( nbUV < 2 || (UV[0]-UV[1]).SquareModulus() <= DBL_MIN*DBL_MIN ) {
|
|
MESSAGE(" consequent edge-points not found, nb UV found: " << nbUV <<
|
|
", for point: " << theInitUV.X() <<" " << theInitUV.Y() );
|
|
return setErrorCode( ERR_APPLF_BAD_TOPOLOGY );
|
|
}
|
|
// an iso line should be normal to UV[0] - UV[1] direction
|
|
// and be located at the same relative distance as from initial ends
|
|
//gp_Lin2d iso( UV[0], UV[0] - UV[1] );
|
|
double r =
|
|
(initUV[0]-theInitUV).Modulus() / (initUV[0]-initUV[1]).Modulus();
|
|
//gp_Pnt2d isoLoc = UV[0] * ( 1 - r ) + UV[1] * r;
|
|
//isoLine[ iIso ] = iso.Normal( isoLoc );
|
|
uv1[ iIso ] = UV[0];
|
|
uv2[ iIso ] = UV[1];
|
|
ratio[ iIso ] = r;
|
|
}
|
|
if ( !intersectIsolines( uv1[0], uv2[0], ratio[0],
|
|
uv1[1], uv2[1], ratio[1], theUV, theIsDeformed )) {
|
|
MESSAGE(" Cant intersect isolines for a point "<<theInitUV.X()<<", "<<theInitUV.Y());
|
|
return setErrorCode( ERR_APPLF_BAD_TOPOLOGY );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// ==========================================================
|
|
// structure representing a node of a grid of iso-poly-lines
|
|
// ==========================================================
|
|
|
|
struct TIsoNode {
|
|
bool myIsMovable;
|
|
gp_XY myInitUV;
|
|
gp_XY myUV;
|
|
double myRatio[2];
|
|
gp_Dir2d myDir[2]; // boundary tangent dir for boundary nodes, iso dir for internal ones
|
|
TIsoNode* myNext[4]; // order: (iDir=0,isForward=0), (1,0), (0,1), (1,1)
|
|
TIsoNode* myBndNodes[4]; // order: (iDir=0,i=0), (1,0), (0,1), (1,1)
|
|
TIsoNode(double initU, double initV):
|
|
myInitUV( initU, initV ), myUV( 1e100, 1e100 ), myIsMovable(true)
|
|
{ myNext[0] = myNext[1] = myNext[2] = myNext[3] = 0; }
|
|
bool IsUVComputed() const
|
|
{ return myUV.X() != 1e100; }
|
|
bool IsMovable() const
|
|
{ return myIsMovable && myNext[0] && myNext[1] && myNext[2] && myNext[3]; }
|
|
void SetNotMovable()
|
|
{ myIsMovable = false; }
|
|
void SetBoundaryNode(TIsoNode* node, int iDir, int i)
|
|
{ myBndNodes[ iDir + i * 2 ] = node; }
|
|
TIsoNode* GetBoundaryNode(int iDir, int i)
|
|
{ return myBndNodes[ iDir + i * 2 ]; }
|
|
void SetNext(TIsoNode* node, int iDir, int isForward)
|
|
{ myNext[ iDir + isForward * 2 ] = node; }
|
|
TIsoNode* GetNext(int iDir, int isForward)
|
|
{ return myNext[ iDir + isForward * 2 ]; }
|
|
};
|
|
|
|
//=======================================================================
|
|
//function : getNextNode
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static inline TIsoNode* getNextNode(const TIsoNode* node, int dir )
|
|
{
|
|
TIsoNode* n = node->myNext[ dir ];
|
|
if ( n && !n->IsUVComputed()/* && node->IsMovable()*/ ) {
|
|
n = 0;//node->myBndNodes[ dir ];
|
|
// MESSAGE("getNextNode: use bnd for node "<<
|
|
// node->myInitUV.X()<<" "<<node->myInitUV.Y());
|
|
}
|
|
return n;
|
|
}
|
|
//=======================================================================
|
|
//function : checkQuads
|
|
//purpose : check if newUV destortes quadrangles around node,
|
|
// and if ( crit == FIX_OLD ) fix newUV in this case
|
|
//=======================================================================
|
|
|
|
enum { CHECK_NEW_IN, CHECK_NEW_OK, FIX_OLD };
|
|
|
|
static bool checkQuads (const TIsoNode* node,
|
|
gp_XY& newUV,
|
|
const bool reversed,
|
|
const int crit = FIX_OLD,
|
|
double fixSize = 0.)
|
|
{
|
|
gp_XY oldUV = node->myUV, oldUVFixed[4], oldUVImpr[4];
|
|
int nbOldFix = 0, nbOldImpr = 0;
|
|
double newBadRate = 0, oldBadRate = 0;
|
|
bool newIsOk = true, newIsIn = true, oldIsIn = true, oldIsOk = true;
|
|
int i, dir1 = 0, dir2 = 3;
|
|
for ( ; dir1 < 4; dir1++, dir2++ ) // loop on 4 quadrangles around <node>
|
|
{
|
|
if ( dir2 > 3 ) dir2 = 0;
|
|
TIsoNode* n[3];
|
|
// walking counterclockwise around a quad,
|
|
// nodes are in the order: node, n[0], n[1], n[2]
|
|
n[0] = getNextNode( node, dir1 );
|
|
n[2] = getNextNode( node, dir2 );
|
|
if ( !n[0] || !n[2] ) continue;
|
|
n[1] = getNextNode( n[0], dir2 );
|
|
if ( !n[1] ) n[1] = getNextNode( n[2], dir1 );
|
|
bool isTriangle = ( !n[1] );
|
|
if ( reversed ) {
|
|
TIsoNode* tmp = n[0]; n[0] = n[2]; n[2] = tmp;
|
|
}
|
|
// if ( fixSize != 0 ) {
|
|
// cout<<"NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<" UV: "<<node->myUV.X()<<" "<<node->myUV.Y()<<endl;
|
|
// cout<<"\t0: "<<n[0]->myInitUV.X()<<" "<<n[0]->myInitUV.Y()<<" UV: "<<n[0]->myUV.X()<<" "<<n[0]->myUV.Y()<<endl;
|
|
// cout<<"\t1: "<<n[1]->myInitUV.X()<<" "<<n[1]->myInitUV.Y()<<" UV: "<<n[1]->myUV.X()<<" "<<n[1]->myUV.Y()<<endl;
|
|
// cout<<"\t2: "<<n[2]->myInitUV.X()<<" "<<n[2]->myInitUV.Y()<<" UV: "<<n[2]->myUV.X()<<" "<<n[2]->myUV.Y()<<endl;
|
|
// }
|
|
// check if a quadrangle is degenerated
|
|
if ( !isTriangle &&
|
|
((( n[0]->myUV - n[1]->myUV ).SquareModulus() <= DBL_MIN ) ||
|
|
(( n[2]->myUV - n[1]->myUV ).SquareModulus() <= DBL_MIN )))
|
|
isTriangle = true;
|
|
if ( isTriangle &&
|
|
( n[0]->myUV - n[2]->myUV ).SquareModulus() <= DBL_MIN )
|
|
continue;
|
|
|
|
// find min size of the diagonal node-n[1]
|
|
double minDiag = fixSize;
|
|
if ( minDiag == 0. ) {
|
|
double maxLen2 = ( node->myUV - n[0]->myUV ).SquareModulus();
|
|
if ( !isTriangle ) {
|
|
maxLen2 = Max( maxLen2, ( n[0]->myUV - n[1]->myUV ).SquareModulus() );
|
|
maxLen2 = Max( maxLen2, ( n[1]->myUV - n[2]->myUV ).SquareModulus() );
|
|
}
|
|
maxLen2 = Max( maxLen2, ( n[2]->myUV - node->myUV ).SquareModulus() );
|
|
minDiag = sqrt( maxLen2 ) * PI / 60.; // ~ maxLen * Sin( 3 deg )
|
|
}
|
|
|
|
// check if newUV is behind 3 dirs: n[0]-n[1], n[1]-n[2] and n[0]-n[2]
|
|
// ( behind means "to the right of")
|
|
// it is OK if
|
|
// 1. newUV is not behind 01 and 12 dirs
|
|
// 2. or newUV is not behind 02 dir and n[2] is convex
|
|
bool newIn[3] = { true, true, true }, newOk[3] = { true, true, true };
|
|
bool wasIn[3] = { true, true, true }, wasOk[3] = { true, true, true };
|
|
gp_Vec2d moveVec[3], outVec[3];
|
|
for ( i = isTriangle ? 2 : 0; i < 3; i++ )
|
|
{
|
|
bool isDiag = ( i == 2 );
|
|
if ( isDiag && newOk[0] && newOk[1] && !isTriangle )
|
|
break;
|
|
gp_Vec2d sideDir;
|
|
if ( isDiag )
|
|
sideDir = gp_Vec2d( n[0]->myUV, n[2]->myUV );
|
|
else
|
|
sideDir = gp_Vec2d( n[i]->myUV, n[i+1]->myUV );
|
|
|
|
gp_Vec2d outDir( sideDir.Y(), -sideDir.X() ); // to the right
|
|
outDir.Normalize();
|
|
gp_Vec2d newDir( n[i]->myUV, newUV );
|
|
gp_Vec2d oldDir( n[i]->myUV, oldUV );
|
|
outVec[i] = outDir;
|
|
if ( newIsOk ) newOk[i] = ( outDir * newDir < -minDiag );
|
|
if ( newIsIn ) newIn[i] = ( outDir * newDir < 0 );
|
|
if ( crit == FIX_OLD ) {
|
|
wasIn[i] = ( outDir * oldDir < 0 );
|
|
wasOk[i] = ( outDir * oldDir < -minDiag );
|
|
if ( !newOk[i] )
|
|
newBadRate += outDir * newDir;
|
|
if ( !wasOk[i] )
|
|
oldBadRate += outDir * oldDir;
|
|
// push node inside
|
|
if ( !wasOk[i] ) {
|
|
double oldDist = - outDir * oldDir;//, l2 = outDir * newDir;
|
|
// double r = ( l1 - minDiag ) / ( l1 + l2 );
|
|
// moveVec[i] = r * gp_Vec2d( node->myUV, newUV );
|
|
moveVec[i] = ( oldDist - minDiag ) * outDir;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check if n[2] is convex
|
|
bool convex = true;
|
|
if ( !isTriangle )
|
|
convex = ( outVec[0] * gp_Vec2d( n[1]->myUV, n[2]->myUV ) < 0 );
|
|
|
|
bool isNewOk = ( newOk[0] && newOk[1] ) || ( newOk[2] && convex );
|
|
bool isNewIn = ( newIn[0] && newIn[1] ) || ( newIn[2] && convex );
|
|
newIsOk = ( newIsOk && isNewOk );
|
|
newIsIn = ( newIsIn && isNewIn );
|
|
|
|
if ( crit != FIX_OLD ) {
|
|
if ( crit == CHECK_NEW_OK && !newIsOk ) break;
|
|
if ( crit == CHECK_NEW_IN && !newIsIn ) break;
|
|
continue;
|
|
}
|
|
|
|
bool isOldIn = ( wasIn[0] && wasIn[1] ) || ( wasIn[2] && convex );
|
|
bool isOldOk = ( wasOk[0] && wasOk[1] ) || ( wasOk[2] && convex );
|
|
oldIsIn = ( oldIsIn && isOldIn );
|
|
oldIsOk = ( oldIsOk && isOldIn );
|
|
|
|
|
|
if ( !isOldIn ) { // node is outside a quadrangle
|
|
// move newUV inside a quadrangle
|
|
//MESSAGE("Quad "<< dir1 << " WAS IN " << wasIn[0]<<" "<<wasIn[1]<<" "<<wasIn[2]);
|
|
// node and newUV are outside: push newUV inside
|
|
gp_XY uv;
|
|
if ( convex || isTriangle ) {
|
|
uv = 0.5 * ( n[0]->myUV + n[2]->myUV ) - minDiag * outVec[2].XY();
|
|
}
|
|
else {
|
|
gp_Vec2d out = outVec[0].Normalized() + outVec[1].Normalized();
|
|
double outSize = out.Magnitude();
|
|
if ( outSize > DBL_MIN )
|
|
out /= outSize;
|
|
else
|
|
out.SetCoord( -outVec[1].Y(), outVec[1].X() );
|
|
uv = n[1]->myUV - minDiag * out.XY();
|
|
}
|
|
oldUVFixed[ nbOldFix++ ] = uv;
|
|
//node->myUV = newUV;
|
|
}
|
|
else if ( !isOldOk ) {
|
|
// try to fix old UV: move node inside as less as possible
|
|
//MESSAGE("Quad "<< dir1 << " old is BAD, try to fix old, minDiag: "<< minDiag);
|
|
gp_XY uv1, uv2 = node->myUV;
|
|
for ( i = isTriangle ? 2 : 0; i < 3; i++ ) // mark not computed vectors
|
|
if ( wasOk[i] )
|
|
moveVec[ i ].SetCoord( 1, 2e100); // not use this vector
|
|
while ( !isOldOk ) {
|
|
// find the least moveVec
|
|
int i, iMin = 4;
|
|
double minMove2 = 1e100;
|
|
for ( i = isTriangle ? 2 : 0; i < 3; i++ )
|
|
{
|
|
if ( moveVec[i].Coord(1) < 1e100 ) {
|
|
double move2 = moveVec[i].SquareMagnitude();
|
|
if ( move2 < minMove2 ) {
|
|
minMove2 = move2;
|
|
iMin = i;
|
|
}
|
|
}
|
|
}
|
|
if ( iMin == 4 ) {
|
|
break;
|
|
}
|
|
// move node to newUV
|
|
uv1 = node->myUV + moveVec[ iMin ].XY();
|
|
uv2 += moveVec[ iMin ].XY();
|
|
moveVec[ iMin ].SetCoord( 1, 2e100); // not use this vector more
|
|
// check if uv1 is ok
|
|
for ( i = isTriangle ? 2 : 0; i < 3; i++ )
|
|
wasOk[i] = ( outVec[i] * gp_Vec2d( n[i]->myUV, uv1 ) < -minDiag );
|
|
isOldOk = ( wasOk[0] && wasOk[1] ) || ( wasOk[2] && convex );
|
|
if ( isOldOk )
|
|
oldUVImpr[ nbOldImpr++ ] = uv1;
|
|
else {
|
|
// check if uv2 is ok
|
|
for ( i = isTriangle ? 2 : 0; i < 3; i++ )
|
|
wasOk[i] = ( outVec[i] * gp_Vec2d( n[i]->myUV, uv2 ) < -minDiag );
|
|
isOldOk = ( wasOk[0] && wasOk[1] ) || ( wasOk[2] && convex );
|
|
if ( isOldOk )
|
|
oldUVImpr[ nbOldImpr++ ] = uv2;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // loop on 4 quadrangles around <node>
|
|
|
|
if ( crit == CHECK_NEW_OK )
|
|
return newIsOk;
|
|
if ( crit == CHECK_NEW_IN )
|
|
return newIsIn;
|
|
|
|
if ( newIsOk )
|
|
return true;
|
|
|
|
if ( oldIsOk )
|
|
newUV = oldUV;
|
|
else {
|
|
if ( oldIsIn && nbOldImpr ) {
|
|
// MESSAGE(" Try to improve UV, init: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<
|
|
// " uv: "<<oldUV.X()<<" "<<oldUV.Y() );
|
|
gp_XY uv = oldUVImpr[ 0 ];
|
|
for ( int i = 1; i < nbOldImpr; i++ )
|
|
uv += oldUVImpr[ i ];
|
|
uv /= nbOldImpr;
|
|
if ( checkQuads( node, uv, reversed, CHECK_NEW_OK )) {
|
|
newUV = uv;
|
|
return false;
|
|
}
|
|
else {
|
|
//MESSAGE(" Cant improve UV, uv: "<<uv.X()<<" "<<uv.Y());
|
|
}
|
|
}
|
|
if ( !oldIsIn && nbOldFix ) {
|
|
// MESSAGE(" Try to fix UV, init: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<
|
|
// " uv: "<<oldUV.X()<<" "<<oldUV.Y() );
|
|
gp_XY uv = oldUVFixed[ 0 ];
|
|
for ( int i = 1; i < nbOldFix; i++ )
|
|
uv += oldUVFixed[ i ];
|
|
uv /= nbOldFix;
|
|
if ( checkQuads( node, uv, reversed, CHECK_NEW_IN )) {
|
|
newUV = uv;
|
|
return false;
|
|
}
|
|
else {
|
|
//MESSAGE(" Cant fix UV, uv: "<<uv.X()<<" "<<uv.Y());
|
|
}
|
|
}
|
|
if ( newIsIn && oldIsIn )
|
|
newUV = ( newBadRate < oldBadRate ) ? newUV : oldUV;
|
|
else if ( !newIsIn )
|
|
newUV = oldUV;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : compUVByElasticIsolines
|
|
//purpose : compute UV as nodes of iso-poly-lines consisting of
|
|
// segments keeping relative size as in the pattern
|
|
//=======================================================================
|
|
//#define DEB_COMPUVBYELASTICISOLINES
|
|
bool SMESH_Pattern::
|
|
compUVByElasticIsolines(const list< list< TPoint* > >& theBndPoints,
|
|
const list< TPoint* >& thePntToCompute)
|
|
{
|
|
//return false;
|
|
//cout << "============================== KEY POINTS =============================="<<endl;
|
|
// list< int >::iterator kpIt = myKeyPointIDs.begin();
|
|
// for ( ; kpIt != myKeyPointIDs.end(); kpIt++ ) {
|
|
// TPoint& p = myPoints[ *kpIt ];
|
|
// cout << "INIT: " << p.myInitUV.X() << " " << p.myInitUV.Y() <<
|
|
// " UV: " << p.myUV.X() << " " << p.myUV.Y() << endl;
|
|
// }
|
|
//cout << "=============================="<<endl;
|
|
|
|
// Define parameters of iso-grid nodes in U and V dir
|
|
|
|
set< double > paramSet[ 2 ];
|
|
list< list< TPoint* > >::const_iterator pListIt;
|
|
list< TPoint* >::const_iterator pIt;
|
|
for ( pListIt = theBndPoints.begin(); pListIt != theBndPoints.end(); pListIt++ ) {
|
|
const list< TPoint* > & pList = * pListIt;
|
|
for ( pIt = pList.begin(); pIt != pList.end(); pIt++ ) {
|
|
paramSet[0].insert( (*pIt)->myInitUV.X() );
|
|
paramSet[1].insert( (*pIt)->myInitUV.Y() );
|
|
}
|
|
}
|
|
for ( pIt = thePntToCompute.begin(); pIt != thePntToCompute.end(); pIt++ ) {
|
|
paramSet[0].insert( (*pIt)->myInitUV.X() );
|
|
paramSet[1].insert( (*pIt)->myInitUV.Y() );
|
|
}
|
|
// unite close parameters and split too long segments
|
|
int iDir;
|
|
double tol[ 2 ];
|
|
for ( iDir = 0; iDir < 2; iDir++ )
|
|
{
|
|
set< double > & params = paramSet[ iDir ];
|
|
double range = ( *params.rbegin() - *params.begin() );
|
|
double toler = range / 1e6;
|
|
tol[ iDir ] = toler;
|
|
// double maxSegment = range / params.size() / 2.;
|
|
//
|
|
// set< double >::iterator parIt = params.begin();
|
|
// double prevPar = *parIt;
|
|
// for ( parIt++; parIt != params.end(); parIt++ )
|
|
// {
|
|
// double segLen = (*parIt) - prevPar;
|
|
// if ( segLen < toler )
|
|
// ;//params.erase( prevPar ); // unite
|
|
// else if ( segLen > maxSegment )
|
|
// params.insert( prevPar + 0.5 * segLen ); // split
|
|
// prevPar = (*parIt);
|
|
// }
|
|
}
|
|
|
|
// Make nodes of a grid of iso-poly-lines
|
|
|
|
list < TIsoNode > nodes;
|
|
typedef list < TIsoNode *> TIsoLine;
|
|
map < double, TIsoLine > isoMap[ 2 ];
|
|
|
|
set< double > & params0 = paramSet[ 0 ];
|
|
set< double >::iterator par0It = params0.begin();
|
|
for ( ; par0It != params0.end(); par0It++ )
|
|
{
|
|
TIsoLine & isoLine0 = isoMap[0][ *par0It ]; // vertical isoline with const U
|
|
set< double > & params1 = paramSet[ 1 ];
|
|
set< double >::iterator par1It = params1.begin();
|
|
for ( ; par1It != params1.end(); par1It++ )
|
|
{
|
|
nodes.push_back( TIsoNode( *par0It, *par1It ) );
|
|
isoLine0.push_back( & nodes.back() );
|
|
isoMap[1][ *par1It ].push_back( & nodes.back() );
|
|
}
|
|
}
|
|
|
|
// Compute intersections of boundaries with iso-lines:
|
|
// only boundary nodes will have computed UV so far
|
|
|
|
Bnd_Box2d uvBnd;
|
|
list< list< TPoint* > >::const_iterator bndIt = theBndPoints.begin();
|
|
list< TIsoNode* > bndNodes; // nodes corresponding to outer theBndPoints
|
|
for ( ; bndIt != theBndPoints.end(); bndIt++ )
|
|
{
|
|
const list< TPoint* > & bndPoints = * bndIt;
|
|
TPoint* prevP = bndPoints.back(); // this is the first point
|
|
list< TPoint* >::const_iterator pIt = bndPoints.begin();
|
|
// loop on the edge-points
|
|
for ( ; pIt != bndPoints.end(); pIt++ )
|
|
{
|
|
TPoint* point = *pIt;
|
|
for ( iDir = 0; iDir < 2; iDir++ )
|
|
{
|
|
const int iCoord = iDir + 1;
|
|
const int iOtherCoord = 2 - iDir;
|
|
double par1 = prevP->myInitUV.Coord( iCoord );
|
|
double par2 = point->myInitUV.Coord( iCoord );
|
|
double parDif = par2 - par1;
|
|
if ( Abs( parDif ) <= DBL_MIN )
|
|
continue;
|
|
// find iso-lines intersecting a bounadry
|
|
double toler = tol[ 1 - iDir ];
|
|
double minPar = Min ( par1, par2 );
|
|
double maxPar = Max ( par1, par2 );
|
|
map < double, TIsoLine >& isos = isoMap[ iDir ];
|
|
map < double, TIsoLine >::iterator isoIt = isos.begin();
|
|
for ( ; isoIt != isos.end(); isoIt++ )
|
|
{
|
|
double isoParam = (*isoIt).first;
|
|
if ( isoParam < minPar || isoParam > maxPar )
|
|
continue;
|
|
double r = ( isoParam - par1 ) / parDif;
|
|
gp_XY uv = ( 1 - r ) * prevP->myUV + r * point->myUV;
|
|
gp_XY initUV = ( 1 - r ) * prevP->myInitUV + r * point->myInitUV;
|
|
double otherPar = initUV.Coord( iOtherCoord ); // along isoline
|
|
// find existing node with otherPar or insert a new one
|
|
TIsoLine & isoLine = (*isoIt).second;
|
|
double nodePar;
|
|
TIsoLine::iterator nIt = isoLine.begin();
|
|
for ( ; nIt != isoLine.end(); nIt++ ) {
|
|
nodePar = (*nIt)->myInitUV.Coord( iOtherCoord );
|
|
if ( nodePar >= otherPar )
|
|
break;
|
|
}
|
|
TIsoNode * node;
|
|
if ( Abs( nodePar - otherPar ) <= toler )
|
|
node = ( nIt == isoLine.end() ) ? isoLine.back() : (*nIt);
|
|
else {
|
|
nodes.push_back( TIsoNode( initUV.X(), initUV.Y() ) );
|
|
node = & nodes.back();
|
|
isoLine.insert( nIt, node );
|
|
}
|
|
node->SetNotMovable();
|
|
node->myUV = uv;
|
|
uvBnd.Add( gp_Pnt2d( uv ));
|
|
// cout << "bnd: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<" UV: "<<node->myUV.X()<<" "<<node->myUV.Y()<<endl;
|
|
// tangent dir
|
|
gp_XY tgt( point->myUV - prevP->myUV );
|
|
if ( ::IsEqual( r, 1. ))
|
|
node->myDir[ 0 ] = tgt;
|
|
else if ( ::IsEqual( r, 0. ))
|
|
node->myDir[ 1 ] = tgt;
|
|
else
|
|
node->myDir[ 1 ] = node->myDir[ 0 ] = tgt;
|
|
// keep boundary nodes corresponding to boundary points
|
|
if ( bndIt == theBndPoints.begin() && ::IsEqual( r, 1. ))
|
|
if ( bndNodes.empty() || bndNodes.back() != node )
|
|
bndNodes.push_back( node );
|
|
} // loop on isolines
|
|
} // loop on 2 directions
|
|
prevP = point;
|
|
} // loop on boundary points
|
|
} // loop on boundaries
|
|
|
|
// Define orientation
|
|
|
|
// find the point with the least X
|
|
double leastX = DBL_MAX;
|
|
TIsoNode * leftNode;
|
|
list < TIsoNode >::iterator nodeIt = nodes.begin();
|
|
for ( ; nodeIt != nodes.end(); nodeIt++ ) {
|
|
TIsoNode & node = *nodeIt;
|
|
if ( node.IsUVComputed() && node.myUV.X() < leastX ) {
|
|
leastX = node.myUV.X();
|
|
leftNode = &node;
|
|
}
|
|
// if ( node.IsUVComputed() ) {
|
|
// cout << "bndNode INIT: " << node.myInitUV.X()<<" "<<node.myInitUV.Y()<<" UV: "<<
|
|
// node.myUV.X()<<" "<<node.myUV.Y()<<endl<<
|
|
// " dir0: "<<node.myDir[0].X()<<" "<<node.myDir[0].Y() <<
|
|
// " dir1: "<<node.myDir[1].X()<<" "<<node.myDir[1].Y() << endl;
|
|
// }
|
|
}
|
|
bool reversed = ( leftNode->myDir[0].Y() + leftNode->myDir[1].Y() > 0 );
|
|
//SCRUTE( reversed );
|
|
|
|
// Prepare internal nodes:
|
|
// 1. connect nodes
|
|
// 2. compute ratios
|
|
// 3. find boundary nodes for each node
|
|
// 4. remove nodes out of the boundary
|
|
for ( iDir = 0; iDir < 2; iDir++ )
|
|
{
|
|
const int iCoord = 2 - iDir; // coord changing along an isoline
|
|
map < double, TIsoLine >& isos = isoMap[ iDir ];
|
|
map < double, TIsoLine >::iterator isoIt = isos.begin();
|
|
for ( ; isoIt != isos.end(); isoIt++ )
|
|
{
|
|
TIsoLine & isoLine = (*isoIt).second;
|
|
bool firstCompNodeFound = false;
|
|
TIsoLine::iterator lastCompNodePos, nPrevIt, nIt, nNextIt, nIt2;
|
|
nPrevIt = nIt = nNextIt = isoLine.begin();
|
|
nIt++;
|
|
nNextIt++; nNextIt++;
|
|
while ( nIt != isoLine.end() )
|
|
{
|
|
// 1. connect prev - cur
|
|
TIsoNode* node = *nIt, * prevNode = *nPrevIt;
|
|
if ( !firstCompNodeFound && prevNode->IsUVComputed() ) {
|
|
firstCompNodeFound = true;
|
|
lastCompNodePos = nPrevIt;
|
|
}
|
|
if ( firstCompNodeFound ) {
|
|
node->SetNext( prevNode, iDir, 0 );
|
|
prevNode->SetNext( node, iDir, 1 );
|
|
}
|
|
// 2. compute ratio
|
|
if ( nNextIt != isoLine.end() ) {
|
|
double par1 = prevNode->myInitUV.Coord( iCoord );
|
|
double par2 = node->myInitUV.Coord( iCoord );
|
|
double par3 = (*nNextIt)->myInitUV.Coord( iCoord );
|
|
node->myRatio[ iDir ] = ( par2 - par1 ) / ( par3 - par1 );
|
|
}
|
|
// 3. find boundary nodes
|
|
if ( node->IsUVComputed() )
|
|
lastCompNodePos = nIt;
|
|
else if ( firstCompNodeFound && nNextIt != isoLine.end() ) {
|
|
TIsoNode* bndNode1 = *lastCompNodePos, *bndNode2 = 0;
|
|
for ( nIt2 = nNextIt; nIt2 != isoLine.end(); nIt2++ )
|
|
if ( (*nIt2)->IsUVComputed() )
|
|
break;
|
|
if ( nIt2 != isoLine.end() ) {
|
|
bndNode2 = *nIt2;
|
|
node->SetBoundaryNode( bndNode1, iDir, 0 );
|
|
node->SetBoundaryNode( bndNode2, iDir, 1 );
|
|
// cout << "--------------------------------------------------"<<endl;
|
|
// cout << "bndNode1: " << bndNode1->myUV.X()<<" "<<bndNode1->myUV.Y()<<endl<<
|
|
// " dir0: "<<bndNode1->myDir[0].X()<<" "<<bndNode1->myDir[0].Y() <<
|
|
// " dir1: "<<bndNode1->myDir[1].X()<<" "<<bndNode1->myDir[1].Y() << endl;
|
|
// cout << "bndNode2: " << bndNode2->myUV.X()<<" "<<bndNode2->myUV.Y()<<endl<<
|
|
// " dir0: "<<bndNode2->myDir[0].X()<<" "<<bndNode2->myDir[0].Y() <<
|
|
// " dir1: "<<bndNode2->myDir[1].X()<<" "<<bndNode2->myDir[1].Y() << endl;
|
|
}
|
|
else {
|
|
/// WHAT IN THIS CASE ????????????? MAY BE THIS, I AM NOT SURE :(
|
|
node->SetBoundaryNode( 0, iDir, 0 );
|
|
node->SetBoundaryNode( 0, iDir, 1 );
|
|
}
|
|
}
|
|
nIt++; nPrevIt++;
|
|
if ( nNextIt != isoLine.end() ) nNextIt++;
|
|
// 4. remove nodes out of the boundary
|
|
if ( !firstCompNodeFound )
|
|
isoLine.pop_front();
|
|
} // loop on isoLine nodes
|
|
|
|
// remove nodes after the boundary
|
|
// for ( nIt = ++lastCompNodePos; nIt != isoLine.end(); nIt++ )
|
|
// (*nIt)->SetNotMovable();
|
|
isoLine.erase( ++lastCompNodePos, isoLine.end() );
|
|
} // loop on isolines
|
|
} // loop on 2 directions
|
|
|
|
// Compute local isoline direction for internal nodes
|
|
|
|
/*
|
|
map < double, TIsoLine >& isos = isoMap[ 0 ]; // vertical isolines with const U
|
|
map < double, TIsoLine >::iterator isoIt = isos.begin();
|
|
for ( ; isoIt != isos.end(); isoIt++ )
|
|
{
|
|
TIsoLine & isoLine = (*isoIt).second;
|
|
TIsoLine::iterator nIt = isoLine.begin();
|
|
for ( ; nIt != isoLine.end(); nIt++ )
|
|
{
|
|
TIsoNode* node = *nIt;
|
|
if ( node->IsUVComputed() || !node->IsMovable() )
|
|
continue;
|
|
gp_Vec2d aTgt[2], aNorm[2];
|
|
double ratio[2];
|
|
bool OK = true;
|
|
for ( iDir = 0; iDir < 2; iDir++ )
|
|
{
|
|
TIsoNode* bndNode1 = node->GetBoundaryNode( iDir, 0 );
|
|
TIsoNode* bndNode2 = node->GetBoundaryNode( iDir, 1 );
|
|
if ( !bndNode1 || !bndNode2 ) {
|
|
OK = false;
|
|
break;
|
|
}
|
|
const int iCoord = 2 - iDir; // coord changing along an isoline
|
|
double par1 = bndNode1->myInitUV.Coord( iCoord );
|
|
double par2 = node->myInitUV.Coord( iCoord );
|
|
double par3 = bndNode2->myInitUV.Coord( iCoord );
|
|
ratio[ iDir ] = ( par2 - par1 ) / ( par3 - par1 );
|
|
|
|
gp_Vec2d tgt1( bndNode1->myDir[0].XY() + bndNode1->myDir[1].XY() );
|
|
gp_Vec2d tgt2( bndNode2->myDir[0].XY() + bndNode2->myDir[1].XY() );
|
|
if ( bool( iDir ) == reversed ) tgt2.Reverse(); // along perpend. isoline
|
|
else tgt1.Reverse();
|
|
//cout<<" tgt: " << tgt1.X()<<" "<<tgt1.Y()<<" | "<< tgt2.X()<<" "<<tgt2.Y()<<endl;
|
|
|
|
if ( ratio[ iDir ] < 0.5 )
|
|
aNorm[ iDir ] = gp_Vec2d( -tgt1.Y(), tgt1.X() ); // rotate tgt to the left
|
|
else
|
|
aNorm[ iDir ] = gp_Vec2d( -tgt2.Y(), tgt2.X() );
|
|
if ( iDir == 1 )
|
|
aNorm[ iDir ].Reverse(); // along iDir isoline
|
|
|
|
double angle = tgt1.Angle( tgt2 ); // [-PI, PI]
|
|
// maybe angle is more than |PI|
|
|
if ( Abs( angle ) > PI / 2. ) {
|
|
// check direction of the last but one perpendicular isoline
|
|
TIsoNode* prevNode = bndNode2->GetNext( iDir, 0 );
|
|
bndNode1 = prevNode->GetBoundaryNode( 1 - iDir, 0 );
|
|
bndNode2 = prevNode->GetBoundaryNode( 1 - iDir, 1 );
|
|
gp_Vec2d isoDir( bndNode1->myUV, bndNode2->myUV );
|
|
if ( isoDir * tgt2 < 0 )
|
|
isoDir.Reverse();
|
|
double angle2 = tgt1.Angle( isoDir );
|
|
//cout << " isoDir: "<< isoDir.X() <<" "<<isoDir.Y() << " ANGLE: "<< angle << " "<<angle2<<endl;
|
|
if (angle2 * angle < 0 && // check the sign of an angle close to PI
|
|
Abs ( Abs ( angle ) - PI ) <= PI / 180. ) {
|
|
//MESSAGE("REVERSE ANGLE");
|
|
angle = -angle;
|
|
}
|
|
if ( Abs( angle2 ) > Abs( angle ) ||
|
|
( angle2 * angle < 0 && Abs( angle2 ) > Abs( angle - angle2 ))) {
|
|
//MESSAGE("Add PI");
|
|
// cout << "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
|
|
// cout <<"ISO: " << isoParam << " " << (*iso2It).first << endl;
|
|
// cout << "bndNode1: " << bndNode1->myUV.X()<<" "<<bndNode1->myUV.Y()<< endl;
|
|
// cout << "bndNode2: " << bndNode2->myUV.X()<<" "<<bndNode2->myUV.Y()<<endl;
|
|
// cout <<" tgt: " << tgt1.X()<<" "<<tgt1.Y()<<" "<< tgt2.X()<<" "<<tgt2.Y()<<endl;
|
|
angle += ( angle < 0 ) ? 2. * PI : -2. * PI;
|
|
}
|
|
}
|
|
aTgt[ iDir ] = tgt1.Rotated( angle * ratio[ iDir ] ).XY();
|
|
} // loop on 2 dir
|
|
|
|
if ( OK ) {
|
|
for ( iDir = 0; iDir < 2; iDir++ )
|
|
{
|
|
aTgt[iDir].Normalize();
|
|
aNorm[1-iDir].Normalize();
|
|
double r = Abs ( ratio[iDir] - 0.5 ) * 2.0; // [0,1] - distance from the middle
|
|
r *= r;
|
|
|
|
node->myDir[iDir] = //aTgt[iDir];
|
|
aNorm[1-iDir] * r + aTgt[iDir] * ( 1. - r );
|
|
}
|
|
// cout << "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
|
|
// cout <<" tgt: " << tgt1.X()<<" "<<tgt1.Y()<<" - "<< tgt2.X()<<" "<<tgt2.Y()<<endl;
|
|
// cout << " isoDir: "<< node->myDir[0].X() <<" "<<node->myDir[0].Y()<<" | "
|
|
// << node->myDir[1].X() <<" "<<node->myDir[1].Y()<<endl;
|
|
}
|
|
} // loop on iso nodes
|
|
} // loop on isolines
|
|
*/
|
|
// Find nodes to start computing UV from
|
|
|
|
list< TIsoNode* > startNodes;
|
|
list< TIsoNode* >::iterator nIt = bndNodes.end();
|
|
TIsoNode* node = *(--nIt);
|
|
TIsoNode* prevNode = *(--nIt);
|
|
for ( nIt = bndNodes.begin(); nIt != bndNodes.end(); nIt++ )
|
|
{
|
|
TIsoNode* nextNode = *nIt;
|
|
gp_Vec2d initTgt1( prevNode->myInitUV, node->myInitUV );
|
|
gp_Vec2d initTgt2( node->myInitUV, nextNode->myInitUV );
|
|
double initAngle = initTgt1.Angle( initTgt2 );
|
|
double angle = node->myDir[0].Angle( node->myDir[1] );
|
|
if ( reversed ) angle = -angle;
|
|
if ( initAngle > angle && initAngle - angle > PI / 2.1 ) {
|
|
// find a close internal node
|
|
TIsoNode* nClose = 0;
|
|
list< TIsoNode* > testNodes;
|
|
testNodes.push_back( node );
|
|
list< TIsoNode* >::iterator it = testNodes.begin();
|
|
for ( ; !nClose && it != testNodes.end(); it++ )
|
|
{
|
|
for (int i = 0; i < 4; i++ )
|
|
{
|
|
nClose = (*it)->myNext[ i ];
|
|
if ( nClose ) {
|
|
if ( !nClose->IsUVComputed() )
|
|
break;
|
|
else {
|
|
testNodes.push_back( nClose );
|
|
nClose = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
startNodes.push_back( nClose );
|
|
// cout << "START: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<" UV: "<<
|
|
// node->myUV.X()<<" "<<node->myUV.Y()<<endl<<
|
|
// "initAngle: " << initAngle << " angle: " << angle << endl;
|
|
// cout <<" init tgt: " << initTgt1.X()<<" "<<initTgt1.Y()<<" | "<< initTgt2.X()<<" "<<initTgt2.Y()<<endl;
|
|
// cout << " tgt: "<< node->myDir[ 0 ].X() <<" "<<node->myDir[ 0 ].Y()<<" | "<<
|
|
// node->myDir[ 1 ].X() <<" "<<node->myDir[ 1 ].Y()<<endl;
|
|
// cout << "CLOSE: "<<nClose->myInitUV.X()<<" "<<nClose->myInitUV.Y()<<endl;
|
|
}
|
|
prevNode = node;
|
|
node = nextNode;
|
|
}
|
|
|
|
// Compute starting UV of internal nodes
|
|
|
|
list < TIsoNode* > internNodes;
|
|
bool needIteration = true;
|
|
if ( startNodes.empty() ) {
|
|
MESSAGE( " Starting UV by compUVByIsoIntersection()");
|
|
needIteration = false;
|
|
map < double, TIsoLine >& isos = isoMap[ 0 ];
|
|
map < double, TIsoLine >::iterator isoIt = isos.begin();
|
|
for ( ; isoIt != isos.end(); isoIt++ )
|
|
{
|
|
TIsoLine & isoLine = (*isoIt).second;
|
|
TIsoLine::iterator nIt = isoLine.begin();
|
|
for ( ; !needIteration && nIt != isoLine.end(); nIt++ )
|
|
{
|
|
TIsoNode* node = *nIt;
|
|
if ( !node->IsUVComputed() && node->IsMovable() ) {
|
|
internNodes.push_back( node );
|
|
//bool isDeformed;
|
|
if ( !compUVByIsoIntersection(theBndPoints, node->myInitUV,
|
|
node->myUV, needIteration ))
|
|
node->myUV = node->myInitUV;
|
|
}
|
|
}
|
|
}
|
|
if ( needIteration )
|
|
for ( nIt = bndNodes.begin(); nIt != bndNodes.end(); nIt++ )
|
|
{
|
|
TIsoNode* node = *nIt, *nClose = 0;
|
|
list< TIsoNode* > testNodes;
|
|
testNodes.push_back( node );
|
|
list< TIsoNode* >::iterator it = testNodes.begin();
|
|
for ( ; !nClose && it != testNodes.end(); it++ )
|
|
{
|
|
for (int i = 0; i < 4; i++ )
|
|
{
|
|
nClose = (*it)->myNext[ i ];
|
|
if ( nClose ) {
|
|
if ( !nClose->IsUVComputed() && nClose->IsMovable() )
|
|
break;
|
|
else {
|
|
testNodes.push_back( nClose );
|
|
nClose = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
startNodes.push_back( nClose );
|
|
}
|
|
}
|
|
|
|
double aMin[2], aMax[2], step[2];
|
|
uvBnd.Get( aMin[0], aMin[1], aMax[0], aMax[1] );
|
|
double minUvSize = Min ( aMax[0]-aMin[0], aMax[1]-aMin[1] );
|
|
step[0] = minUvSize / paramSet[ 0 ].size() / 10;
|
|
step[1] = minUvSize / paramSet[ 1 ].size() / 10;
|
|
//cout << "STEPS: " << step[0] << " " << step[1]<< endl;
|
|
|
|
for ( nIt = startNodes.begin(); nIt != startNodes.end(); nIt++ )
|
|
{
|
|
TIsoNode* prevN[2], *node = *nIt;
|
|
if ( node->IsUVComputed() || !node->IsMovable() )
|
|
continue;
|
|
gp_XY newUV( 0, 0 ), sumDir( 0, 0 );
|
|
int nbComp = 0, nbPrev = 0;
|
|
for ( iDir = 0; iDir < 2; iDir++ )
|
|
{
|
|
TIsoNode* prevNode1 = 0, *prevNode2 = 0;
|
|
TIsoNode* n = node->GetNext( iDir, 0 );
|
|
if ( n->IsUVComputed() )
|
|
prevNode1 = n;
|
|
else
|
|
startNodes.push_back( n );
|
|
n = node->GetNext( iDir, 1 );
|
|
if ( n->IsUVComputed() )
|
|
prevNode2 = n;
|
|
else
|
|
startNodes.push_back( n );
|
|
if ( !prevNode1 ) {
|
|
prevNode1 = prevNode2;
|
|
prevNode2 = 0;
|
|
}
|
|
if ( prevNode1 ) nbPrev++;
|
|
if ( prevNode2 ) nbPrev++;
|
|
if ( prevNode1 ) {
|
|
gp_XY dir;
|
|
double prevPar = prevNode1->myInitUV.Coord( 2 - iDir );
|
|
double par = node->myInitUV.Coord( 2 - iDir );
|
|
bool isEnd = ( prevPar > par );
|
|
// dir = node->myDir[ 1 - iDir ].XY() * ( isEnd ? -1. : 1. );
|
|
//cout << "__________"<<endl<< "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
|
|
TIsoNode* bndNode = node->GetBoundaryNode( iDir, isEnd );
|
|
if ( !bndNode ) {
|
|
MESSAGE("Why we are here?");
|
|
continue;
|
|
}
|
|
gp_XY tgt( bndNode->myDir[0].XY() + bndNode->myDir[1].XY() );
|
|
dir.SetCoord( 1, tgt.Y() * ( reversed ? 1 : -1 ));
|
|
dir.SetCoord( 2, tgt.X() * ( reversed ? -1 : 1 ));
|
|
//cout << "bndNode UV: " << bndNode->myUV.X()<<" "<<bndNode->myUV.Y()<< endl;
|
|
// cout << " tgt: "<< bndNode->myDir[ 0 ].X() <<" "<<bndNode->myDir[ 0 ].Y()<<" | "<<
|
|
// bndNode->myDir[ 1 ].X() <<" "<<bndNode->myDir[ 1 ].Y()<<endl;
|
|
//cout << "prevNode UV: " << prevNode1->myUV.X()<<" "<<prevNode1->myUV.Y()<<
|
|
//" par: " << prevPar << endl;
|
|
// cout <<" tgt: " << tgt.X()<<" "<<tgt.Y()<<endl;
|
|
//cout << " DIR: "<< dir.X() <<" "<<dir.Y()<<endl;
|
|
if ( prevNode2 ) {
|
|
//cout << "____2next______"<<endl<< "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
|
|
gp_XY & uv1 = prevNode1->myUV;
|
|
gp_XY & uv2 = prevNode2->myUV;
|
|
// dir = ( uv2 - uv1 );
|
|
// double len = dir.Modulus();
|
|
// if ( len > DBL_MIN )
|
|
// dir /= len * 0.5;
|
|
double r = node->myRatio[ iDir ];
|
|
newUV += uv1 * ( 1 - r ) + uv2 * r;
|
|
}
|
|
else {
|
|
newUV += prevNode1->myUV + dir * step[ iDir ];
|
|
}
|
|
sumDir += dir;
|
|
prevN[ iDir ] = prevNode1;
|
|
nbComp++;
|
|
}
|
|
}
|
|
if ( !nbComp ) continue;
|
|
newUV /= nbComp;
|
|
node->myUV = newUV;
|
|
//cout << "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
|
|
|
|
// check if a quadrangle is not distorted
|
|
if ( nbPrev > 1 ) {
|
|
//int crit = ( nbPrev == 4 ) ? FIX_OLD : CHECK_NEW_IN;
|
|
if ( !checkQuads( node, newUV, reversed, FIX_OLD, step[0] + step[1] )) {
|
|
//cout <<" newUV: " << node->myUV.X() << " "<<node->myUV.Y() << " nbPrev: "<<nbPrev<< endl;
|
|
// cout << "_FIX_INIT_ fixedUV: " << newUV.X() << " "<<newUV.Y() << endl;
|
|
node->myUV = newUV;
|
|
}
|
|
}
|
|
internNodes.push_back( node );
|
|
}
|
|
|
|
// Move nodes
|
|
|
|
static int maxNbIter = 100;
|
|
#ifdef DEB_COMPUVBYELASTICISOLINES
|
|
// maxNbIter++;
|
|
bool useNbMoveNode = 0;
|
|
static int maxNbNodeMove = 100;
|
|
maxNbNodeMove++;
|
|
int nbNodeMove = 0;
|
|
if ( !useNbMoveNode )
|
|
maxNbIter = ( maxNbIter < 0 ) ? 100 : -1;
|
|
#endif
|
|
double maxMove;
|
|
int nbIter = 0;
|
|
do {
|
|
if ( !needIteration) break;
|
|
#ifdef DEB_COMPUVBYELASTICISOLINES
|
|
if ( nbIter >= maxNbIter ) break;
|
|
#endif
|
|
maxMove = 0.0;
|
|
list < TIsoNode* >::iterator nIt = internNodes.begin();
|
|
for ( ; nIt != internNodes.end(); nIt++ ) {
|
|
#ifdef DEB_COMPUVBYELASTICISOLINES
|
|
if (useNbMoveNode )
|
|
cout << nbNodeMove <<" =================================================="<<endl;
|
|
#endif
|
|
TIsoNode * node = *nIt;
|
|
// make lines
|
|
//gp_Lin2d line[2];
|
|
gp_XY loc[2];
|
|
for ( iDir = 0; iDir < 2; iDir++ )
|
|
{
|
|
gp_XY & uv1 = node->GetNext( iDir, 0 )->myUV;
|
|
gp_XY & uv2 = node->GetNext( iDir, 1 )->myUV;
|
|
double r = node->myRatio[ iDir ];
|
|
loc[ iDir ] = uv1 * ( 1 - r ) + uv2 * r;
|
|
// line[ iDir ].SetLocation( loc[ iDir ] );
|
|
// line[ iDir ].SetDirection( node->myDir[ iDir ] );
|
|
}
|
|
// define ratio
|
|
bool ok = true; // <- stupid fix TO AVOID PB OF NODES WITH NULL BND NODES
|
|
double locR[2] = { 0, 0 };
|
|
for ( iDir = 0; iDir < 2; iDir++ )
|
|
{
|
|
const int iCoord = 2 - iDir; // coord changing along an isoline
|
|
TIsoNode* bndNode1 = node->GetBoundaryNode( iDir, 0 );
|
|
TIsoNode* bndNode2 = node->GetBoundaryNode( iDir, 1 );
|
|
if ( !bndNode1 || !bndNode2 ) {
|
|
ok = false; break;
|
|
}
|
|
double par1 = bndNode1->myInitUV.Coord( iCoord );
|
|
double par2 = node->myInitUV.Coord( iCoord );
|
|
double par3 = bndNode2->myInitUV.Coord( iCoord );
|
|
double r = ( par2 - par1 ) / ( par3 - par1 );
|
|
r = Abs ( r - 0.5 ) * 2.0; // [0,1] - distance from the middle
|
|
locR[ iDir ] = ( 1 - r * r ) * 0.25;
|
|
}
|
|
//locR[0] = locR[1] = 0.25;
|
|
// intersect the 2 lines and move a node
|
|
//IntAna2d_AnaIntersection inter( line[0], line[1] );
|
|
if ( ok /*inter.IsDone() && inter.NbPoints() ==*/ )
|
|
{
|
|
// double intR = 1 - locR[0] - locR[1];
|
|
// gp_XY newUV = inter.Point(1).Value().XY();
|
|
// if ( !checkQuads( node, newUV, reversed, CHECK_NEW_IN ))
|
|
// newUV = ( locR[0] * loc[0] + locR[1] * loc[1] ) / ( 1 - intR );
|
|
// else
|
|
// newUV = intR * newUV + locR[0] * loc[0] + locR[1] * loc[1];
|
|
gp_XY newUV = 0.5 * ( loc[0] + loc[1] );
|
|
// avoid parallel isolines intersection
|
|
checkQuads( node, newUV, reversed );
|
|
|
|
maxMove = Max( maxMove, ( newUV - node->myUV ).SquareModulus());
|
|
node->myUV = newUV;
|
|
} // intersection found
|
|
#ifdef DEB_COMPUVBYELASTICISOLINES
|
|
if (useNbMoveNode && ++nbNodeMove >= maxNbNodeMove ) break;
|
|
#endif
|
|
} // loop on internal nodes
|
|
#ifdef DEB_COMPUVBYELASTICISOLINES
|
|
if (useNbMoveNode && nbNodeMove >= maxNbNodeMove ) break;
|
|
#endif
|
|
} while ( maxMove > 1e-8 && nbIter++ < maxNbIter );
|
|
|
|
MESSAGE( "compUVByElasticIsolines(): Nb iterations " << nbIter << " dist: " << sqrt( maxMove ));
|
|
|
|
if ( nbIter >= maxNbIter && sqrt(maxMove) > minUvSize * 0.05 ) {
|
|
MESSAGE( "compUVByElasticIsolines() failed: "<<sqrt(maxMove)<<">"<<minUvSize * 0.05);
|
|
#ifndef DEB_COMPUVBYELASTICISOLINES
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// Set computed UV to points
|
|
|
|
for ( pIt = thePntToCompute.begin(); pIt != thePntToCompute.end(); pIt++ ) {
|
|
TPoint* point = *pIt;
|
|
//gp_XY oldUV = point->myUV;
|
|
double minDist = DBL_MAX;
|
|
list < TIsoNode >::iterator nIt = nodes.begin();
|
|
for ( ; nIt != nodes.end(); nIt++ ) {
|
|
double dist = ( (*nIt).myInitUV - point->myInitUV ).SquareModulus();
|
|
if ( dist < minDist ) {
|
|
minDist = dist;
|
|
point->myUV = (*nIt).myUV;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : setFirstEdge
|
|
//purpose : choose the best first edge of theWire; return the summary distance
|
|
// between point UV computed by isolines intersection and
|
|
// eventual UV got from edge p-curves
|
|
//=======================================================================
|
|
|
|
//#define DBG_SETFIRSTEDGE
|
|
double SMESH_Pattern::setFirstEdge (list< TopoDS_Edge > & theWire, int theFirstEdgeID)
|
|
{
|
|
int iE, nbEdges = theWire.size();
|
|
if ( nbEdges == 1 )
|
|
return 0;
|
|
|
|
// Transform UVs computed by iso to fit bnd box of a wire
|
|
|
|
// max nb of points on an edge
|
|
int maxNbPnt = 0;
|
|
int eID = theFirstEdgeID;
|
|
for ( iE = 0; iE < nbEdges; iE++ )
|
|
maxNbPnt = Max ( maxNbPnt, getShapePoints( eID++ ).size() );
|
|
|
|
// compute bnd boxes
|
|
TopoDS_Face face = TopoDS::Face( myShape );
|
|
Bnd_Box2d bndBox, eBndBox;
|
|
eID = theFirstEdgeID;
|
|
list< TopoDS_Edge >::iterator eIt;
|
|
list< TPoint* >::iterator pIt;
|
|
for ( eIt = theWire.begin(); eIt != theWire.end(); eIt++ )
|
|
{
|
|
// UV by isos stored in TPoint.myXYZ
|
|
list< TPoint* > & ePoints = getShapePoints( eID++ );
|
|
for ( pIt = ePoints.begin(); pIt != ePoints.end(); pIt++ ) {
|
|
TPoint* p = (*pIt);
|
|
bndBox.Add( gp_Pnt2d( p->myXYZ.X(), p->myXYZ.Y() ));
|
|
}
|
|
// UV by an edge p-curve
|
|
double f, l;
|
|
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface( *eIt, face, f, l );
|
|
double dU = ( l - f ) / ( maxNbPnt - 1 );
|
|
for ( int i = 0; i < maxNbPnt; i++ )
|
|
eBndBox.Add( C2d->Value( f + i * dU ));
|
|
}
|
|
|
|
// transform UVs by isos
|
|
double minPar[2], maxPar[2], eMinPar[2], eMaxPar[2];
|
|
bndBox.Get( minPar[0], minPar[1], maxPar[0], maxPar[1] );
|
|
eBndBox.Get( eMinPar[0], eMinPar[1], eMaxPar[0], eMaxPar[1] );
|
|
#ifdef DBG_SETFIRSTEDGE
|
|
cout << "EDGES: X: " << eMinPar[0] << " - " << eMaxPar[0] << " Y: "
|
|
<< eMinPar[1] << " - " << eMaxPar[1] << endl;
|
|
#endif
|
|
for ( int iC = 1, i = 0; i < 2; iC++, i++ ) // loop on 2 coordinates
|
|
{
|
|
double dMin = eMinPar[i] - minPar[i];
|
|
double dMax = eMaxPar[i] - maxPar[i];
|
|
double dPar = maxPar[i] - minPar[i];
|
|
eID = theFirstEdgeID;
|
|
for ( iE = 0; iE < nbEdges; iE++ ) // loop on edges of a boundary
|
|
{
|
|
list< TPoint* > & ePoints = getShapePoints( eID++ );
|
|
for ( pIt = ++ePoints.begin(); pIt != ePoints.end(); pIt++ ) // loop on edge points
|
|
{
|
|
double par = (*pIt)->myXYZ.Coord( iC );
|
|
double r = ( par - minPar[i] ) / dPar;
|
|
par += ( 1 - r ) * dMin + r * dMax;
|
|
(*pIt)->myXYZ.SetCoord( iC, par );
|
|
}
|
|
}
|
|
}
|
|
|
|
TopoDS_Edge eBest;
|
|
double minDist = DBL_MAX;
|
|
for ( iE = 0 ; iE < nbEdges; iE++ )
|
|
{
|
|
#ifdef DBG_SETFIRSTEDGE
|
|
cout << " VARIANT " << iE << endl;
|
|
#endif
|
|
// evaluate the distance between UV computed by the 2 methods:
|
|
// by isos intersection ( myXYZ ) and by edge p-curves ( myUV )
|
|
double dist = 0;
|
|
int eID = theFirstEdgeID;
|
|
for ( eIt = theWire.begin(); eIt != theWire.end(); eIt++ )
|
|
{
|
|
list< TPoint* > & ePoints = getShapePoints( eID++ );
|
|
computeUVOnEdge( *eIt, ePoints );
|
|
for ( pIt = ++ePoints.begin(); pIt != ePoints.end(); pIt++ ) {
|
|
TPoint* p = (*pIt);
|
|
dist += ( p->myUV - gp_XY( p->myXYZ.X(), p->myXYZ.Y() )).SquareModulus();
|
|
#ifdef DBG_SETFIRSTEDGE
|
|
cout << " ISO : ( " << p->myXYZ.X() << ", "<< p->myXYZ.Y() << " ) PCURVE : ( " <<
|
|
p->myUV.X() << ", " << p->myUV.Y() << ") " << endl;
|
|
#endif
|
|
}
|
|
}
|
|
#ifdef DBG_SETFIRSTEDGE
|
|
cout << "dist -- " << dist << endl;
|
|
#endif
|
|
if ( dist < minDist ) {
|
|
minDist = dist;
|
|
eBest = theWire.front();
|
|
}
|
|
// check variant with another first edge
|
|
theWire.splice( theWire.begin(), theWire, --theWire.end(), theWire.end() );
|
|
}
|
|
// put the best first edge to the theWire front
|
|
if ( eBest != theWire.front() ) {
|
|
eIt = find ( theWire.begin(), theWire.end(), eBest );
|
|
theWire.splice( theWire.begin(), theWire, eIt, theWire.end() );
|
|
}
|
|
|
|
return minDist;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : sortSameSizeWires
|
|
//purpose : sort wires in theWireList from theFromWire until theToWire,
|
|
// the wires are set in the order to correspond to the order
|
|
// of boundaries; after sorting, edges in the wires are put
|
|
// in a good order, point UVs on edges are computed and points
|
|
// are appended to theEdgesPointsList
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::sortSameSizeWires (TListOfEdgesList & theWireList,
|
|
const TListOfEdgesList::iterator& theFromWire,
|
|
const TListOfEdgesList::iterator& theToWire,
|
|
const int theFirstEdgeID,
|
|
list< list< TPoint* > >& theEdgesPointsList )
|
|
{
|
|
TopoDS_Face F = TopoDS::Face( myShape );
|
|
int iW, nbWires = 0;
|
|
TListOfEdgesList::iterator wlIt = theFromWire;
|
|
while ( wlIt++ != theToWire )
|
|
nbWires++;
|
|
|
|
// Recompute key-point UVs by isolines intersection,
|
|
// compute CG of key-points for each wire and bnd boxes of GCs
|
|
|
|
bool aBool;
|
|
gp_XY orig( gp::Origin2d().XY() );
|
|
vector< gp_XY > vGcVec( nbWires, orig ), gcVec( nbWires, orig );
|
|
Bnd_Box2d bndBox, vBndBox;
|
|
int eID = theFirstEdgeID;
|
|
list< TopoDS_Edge >::iterator eIt;
|
|
for ( iW = 0, wlIt = theFromWire; wlIt != theToWire; wlIt++, iW++ )
|
|
{
|
|
list< TopoDS_Edge > & wire = *wlIt;
|
|
for ( eIt = wire.begin(); eIt != wire.end(); eIt++ )
|
|
{
|
|
list< TPoint* > & ePoints = getShapePoints( eID++ );
|
|
TPoint* p = ePoints.front();
|
|
if ( !compUVByIsoIntersection( theEdgesPointsList, p->myInitUV, p->myUV, aBool )) {
|
|
MESSAGE("cant sortSameSizeWires()");
|
|
return false;
|
|
}
|
|
gcVec[iW] += p->myUV;
|
|
bndBox.Add( gp_Pnt2d( p->myUV ));
|
|
TopoDS_Vertex V = TopExp::FirstVertex( *eIt, true );
|
|
gp_Pnt2d vXY = BRep_Tool::Parameters( V, F );
|
|
vGcVec[iW] += vXY.XY();
|
|
vBndBox.Add( vXY );
|
|
// keep the computed UV to compare against by setFirstEdge()
|
|
p->myXYZ.SetCoord( p->myUV.X(), p->myUV.Y(), 0. );
|
|
}
|
|
gcVec[iW] /= nbWires;
|
|
vGcVec[iW] /= nbWires;
|
|
// cout << " Wire " << iW << " iso: " << gcVec[iW].X() << " " << gcVec[iW].Y() << endl <<
|
|
// " \t vertex: " << vGcVec[iW].X() << " " << vGcVec[iW].Y() << endl;
|
|
}
|
|
|
|
// Transform GCs computed by isos to fit in bnd box of GCs by vertices
|
|
|
|
double minPar[2], maxPar[2], vMinPar[2], vMaxPar[2];
|
|
bndBox.Get( minPar[0], minPar[1], maxPar[0], maxPar[1] );
|
|
vBndBox.Get( vMinPar[0], vMinPar[1], vMaxPar[0], vMaxPar[1] );
|
|
for ( int iC = 1, i = 0; i < 2; iC++, i++ ) // loop on 2 coordinates
|
|
{
|
|
double dMin = vMinPar[i] - minPar[i];
|
|
double dMax = vMaxPar[i] - maxPar[i];
|
|
double dPar = maxPar[i] - minPar[i];
|
|
if ( Abs( dPar ) <= DBL_MIN )
|
|
continue;
|
|
for ( iW = 0; iW < nbWires; iW++ ) { // loop on GCs of wires
|
|
double par = gcVec[iW].Coord( iC );
|
|
double r = ( par - minPar[i] ) / dPar;
|
|
par += ( 1 - r ) * dMin + r * dMax;
|
|
gcVec[iW].SetCoord( iC, par );
|
|
}
|
|
}
|
|
|
|
// Define boundary - wire correspondence by GC closeness
|
|
|
|
TListOfEdgesList tmpWList;
|
|
tmpWList.splice( tmpWList.end(), theWireList, theFromWire, theToWire );
|
|
typedef map< int, TListOfEdgesList::iterator > TIntWirePosMap;
|
|
TIntWirePosMap bndIndWirePosMap;
|
|
vector< bool > bndFound( nbWires, false );
|
|
for ( iW = 0, wlIt = tmpWList.begin(); iW < nbWires; iW++, wlIt++ )
|
|
{
|
|
// cout << " TRSF Wire " << iW << " iso: " << gcVec[iW].X() << " " << gcVec[iW].Y() << endl <<
|
|
// " \t vertex: " << vGcVec[iW].X() << " " << vGcVec[iW].Y() << endl;
|
|
double minDist = DBL_MAX;
|
|
gp_XY & wGc = vGcVec[ iW ];
|
|
int bIndex;
|
|
for ( int iB = 0; iB < nbWires; iB++ ) {
|
|
if ( bndFound[ iB ] ) continue;
|
|
double dist = ( wGc - gcVec[ iB ] ).SquareModulus();
|
|
if ( dist < minDist ) {
|
|
minDist = dist;
|
|
bIndex = iB;
|
|
}
|
|
}
|
|
bndFound[ bIndex ] = true;
|
|
bndIndWirePosMap.insert( TIntWirePosMap::value_type( bIndex, wlIt ));
|
|
}
|
|
|
|
// Treat each wire
|
|
|
|
TIntWirePosMap::iterator bIndWPosIt = bndIndWirePosMap.begin();
|
|
eID = theFirstEdgeID;
|
|
for ( ; bIndWPosIt != bndIndWirePosMap.end(); bIndWPosIt++ )
|
|
{
|
|
TListOfEdgesList::iterator wirePos = (*bIndWPosIt).second;
|
|
list < TopoDS_Edge > & wire = ( *wirePos );
|
|
|
|
// choose the best first edge of a wire
|
|
setFirstEdge( wire, eID );
|
|
|
|
// compute eventual UV and fill theEdgesPointsList
|
|
theEdgesPointsList.push_back( list< TPoint* >() );
|
|
list< TPoint* > & edgesPoints = theEdgesPointsList.back();
|
|
for ( eIt = wire.begin(); eIt != wire.end(); eIt++ )
|
|
{
|
|
list< TPoint* > & ePoints = getShapePoints( eID++ );
|
|
computeUVOnEdge( *eIt, ePoints );
|
|
edgesPoints.insert( edgesPoints.end(), ePoints.begin(), (--ePoints.end()));
|
|
}
|
|
// put wire back to theWireList
|
|
wlIt = wirePos++;
|
|
theWireList.splice( theToWire, tmpWList, wlIt, wirePos );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Apply
|
|
//purpose : Compute nodes coordinates applying
|
|
// the loaded pattern to <theFace>. The first key-point
|
|
// will be mapped into <theVertexOnKeyPoint1>
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Apply (const TopoDS_Face& theFace,
|
|
const TopoDS_Vertex& theVertexOnKeyPoint1,
|
|
const bool theReverse)
|
|
{
|
|
MESSAGE(" ::Apply(face) " );
|
|
TopoDS_Face face = theReverse ? TopoDS::Face( theFace.Reversed() ) : theFace;
|
|
if ( !setShapeToMesh( face ))
|
|
return false;
|
|
|
|
// find points on edges, it fills myNbKeyPntInBoundary
|
|
if ( !findBoundaryPoints() )
|
|
return false;
|
|
|
|
// Define the edges order so that the first edge starts at
|
|
// theVertexOnKeyPoint1
|
|
|
|
list< TopoDS_Edge > eList;
|
|
list< int > nbVertexInWires;
|
|
int nbWires = SMESH_Block::GetOrderedEdges( face, theVertexOnKeyPoint1, eList, nbVertexInWires);
|
|
if ( !theVertexOnKeyPoint1.IsSame( TopExp::FirstVertex( eList.front(), true )))
|
|
{
|
|
MESSAGE( " theVertexOnKeyPoint1 not found in the outer wire ");
|
|
return setErrorCode( ERR_APPLF_BAD_VERTEX );
|
|
}
|
|
// check nb wires and edges
|
|
list< int > l1 = myNbKeyPntInBoundary, l2 = nbVertexInWires;
|
|
l1.sort(); l2.sort();
|
|
if ( l1 != l2 )
|
|
{
|
|
MESSAGE( "Wrong nb vertices in wires" );
|
|
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
|
|
}
|
|
|
|
// here shapes get IDs, for the outer wire IDs are OK
|
|
list<TopoDS_Edge>::iterator elIt = eList.begin();
|
|
for ( ; elIt != eList.end(); elIt++ ) {
|
|
myShapeIDMap.Add( TopExp::FirstVertex( *elIt, true ));
|
|
if ( BRep_Tool::IsClosed( *elIt, theFace ) )
|
|
myShapeIDMap.Add( TopExp::LastVertex( *elIt, true ));
|
|
}
|
|
int nbVertices = myShapeIDMap.Extent();
|
|
|
|
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
|
|
myShapeIDMap.Add( *elIt );
|
|
|
|
myShapeIDMap.Add( face );
|
|
|
|
if ( myShapeIDToPointsMap.size() != myShapeIDMap.Extent()/* + nbSeamShapes*/ ) {
|
|
MESSAGE( myShapeIDToPointsMap.size() <<" != " << myShapeIDMap.Extent());
|
|
return setErrorCode( ERR_APPLF_INTERNAL_EEROR );
|
|
}
|
|
|
|
// points on edges to be used for UV computation of in-face points
|
|
list< list< TPoint* > > edgesPointsList;
|
|
edgesPointsList.push_back( list< TPoint* >() );
|
|
list< TPoint* > * edgesPoints = & edgesPointsList.back();
|
|
list< TPoint* >::iterator pIt;
|
|
|
|
// compute UV of points on the outer wire
|
|
int iE, nbEdgesInOuterWire = nbVertexInWires.front();
|
|
for (iE = 0, elIt = eList.begin();
|
|
iE < nbEdgesInOuterWire && elIt != eList.end();
|
|
iE++, elIt++ )
|
|
{
|
|
list< TPoint* > & ePoints = getShapePoints( *elIt );
|
|
// compute UV
|
|
computeUVOnEdge( *elIt, ePoints );
|
|
// collect on-edge points (excluding the last one)
|
|
edgesPoints->insert( edgesPoints->end(), ePoints.begin(), --ePoints.end());
|
|
}
|
|
|
|
// If there are several wires, define the order of edges of inner wires:
|
|
// compute UV of inner edge-points using 2 methods: the one for in-face points
|
|
// and the one for on-edge points and then choose the best edge order
|
|
// by the best correspondance of the 2 results
|
|
if ( nbWires > 1 )
|
|
{
|
|
// compute UV of inner edge-points using the method for in-face points
|
|
// and devide eList into a list of separate wires
|
|
bool aBool;
|
|
list< list< TopoDS_Edge > > wireList;
|
|
list<TopoDS_Edge>::iterator eIt = elIt;
|
|
list<int>::iterator nbEIt = nbVertexInWires.begin();
|
|
for ( nbEIt++; nbEIt != nbVertexInWires.end(); nbEIt++ )
|
|
{
|
|
int nbEdges = *nbEIt;
|
|
wireList.push_back( list< TopoDS_Edge >() );
|
|
list< TopoDS_Edge > & wire = wireList.back();
|
|
for ( iE = 0 ; iE < nbEdges; eIt++, iE++ )
|
|
{
|
|
list< TPoint* > & ePoints = getShapePoints( *eIt );
|
|
pIt = ePoints.begin();
|
|
for ( pIt++; pIt != ePoints.end(); pIt++ ) {
|
|
TPoint* p = (*pIt);
|
|
if ( !compUVByIsoIntersection( edgesPointsList, p->myInitUV, p->myUV, aBool )) {
|
|
MESSAGE("cant Apply(face)");
|
|
return false;
|
|
}
|
|
// keep the computed UV to compare against by setFirstEdge()
|
|
p->myXYZ.SetCoord( p->myUV.X(), p->myUV.Y(), 0. );
|
|
}
|
|
wire.push_back( *eIt );
|
|
}
|
|
}
|
|
// remove inner edges from eList
|
|
eList.erase( elIt, eList.end() );
|
|
|
|
// sort wireList by nb edges in a wire
|
|
sortBySize< TopoDS_Edge > ( wireList );
|
|
|
|
// an ID of the first edge of a boundary
|
|
int id1 = nbVertices + nbEdgesInOuterWire + 1;
|
|
// if ( nbSeamShapes > 0 )
|
|
// id1 += 2; // 2 vertices more
|
|
|
|
// find points - edge correspondence for wires of unique size,
|
|
// edge order within a wire should be defined only
|
|
|
|
list< list< TopoDS_Edge > >::iterator wlIt = wireList.begin();
|
|
while ( wlIt != wireList.end() )
|
|
{
|
|
list< TopoDS_Edge >& wire = (*wlIt);
|
|
int nbEdges = wire.size();
|
|
wlIt++;
|
|
if ( wlIt == wireList.end() || (*wlIt).size() != nbEdges ) // a unique size wire
|
|
{
|
|
// choose the best first edge of a wire
|
|
setFirstEdge( wire, id1 );
|
|
|
|
// compute eventual UV and collect on-edge points
|
|
edgesPointsList.push_back( list< TPoint* >() );
|
|
edgesPoints = & edgesPointsList.back();
|
|
int eID = id1;
|
|
for ( eIt = wire.begin(); eIt != wire.end(); eIt++ )
|
|
{
|
|
list< TPoint* > & ePoints = getShapePoints( eID++ );
|
|
computeUVOnEdge( *eIt, ePoints );
|
|
edgesPoints->insert( edgesPoints->end(), ePoints.begin(), (--ePoints.end()));
|
|
}
|
|
}
|
|
id1 += nbEdges;
|
|
}
|
|
|
|
// find boundary - wire correspondence for several wires of same size
|
|
|
|
id1 = nbVertices + nbEdgesInOuterWire + 1;
|
|
wlIt = wireList.begin();
|
|
while ( wlIt != wireList.end() )
|
|
{
|
|
int nbSameSize = 0, nbEdges = (*wlIt).size();
|
|
list< list< TopoDS_Edge > >::iterator wlIt2 = wlIt;
|
|
wlIt2++;
|
|
while ( wlIt2 != wireList.end() && (*wlIt2).size() == nbEdges ) { // a same size wire
|
|
nbSameSize++;
|
|
wlIt2++;
|
|
}
|
|
if ( nbSameSize > 0 )
|
|
if (!sortSameSizeWires(wireList, wlIt, wlIt2, id1, edgesPointsList))
|
|
return false;
|
|
wlIt = wlIt2;
|
|
id1 += nbEdges * ( nbSameSize + 1 );
|
|
}
|
|
|
|
// add well-ordered edges to eList
|
|
|
|
for ( wlIt = wireList.begin(); wlIt != wireList.end(); wlIt++ )
|
|
{
|
|
list< TopoDS_Edge >& wire = (*wlIt);
|
|
eList.splice( eList.end(), wire, wire.begin(), wire.end() );
|
|
}
|
|
|
|
// re-fill myShapeIDMap - all shapes get good IDs
|
|
|
|
myShapeIDMap.Clear();
|
|
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
|
|
myShapeIDMap.Add( TopExp::FirstVertex( *elIt, true ));
|
|
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
|
|
myShapeIDMap.Add( *elIt );
|
|
myShapeIDMap.Add( face );
|
|
|
|
} // there are inner wires
|
|
|
|
// Compute XYZ of on-edge points
|
|
|
|
TopLoc_Location loc;
|
|
for ( iE = nbVertices + 1, elIt = eList.begin(); elIt != eList.end(); elIt++ )
|
|
{
|
|
BRepAdaptor_Curve C3d( *elIt );
|
|
list< TPoint* > & ePoints = getShapePoints( iE++ );
|
|
pIt = ePoints.begin();
|
|
for ( pIt++; pIt != ePoints.end(); pIt++ )
|
|
{
|
|
TPoint* point = *pIt;
|
|
point->myXYZ = C3d.Value( point->myU );
|
|
}
|
|
}
|
|
|
|
// Compute UV and XYZ of in-face points
|
|
|
|
// try to use a simple algo
|
|
list< TPoint* > & fPoints = getShapePoints( face );
|
|
bool isDeformed = false;
|
|
for ( pIt = fPoints.begin(); !isDeformed && pIt != fPoints.end(); pIt++ )
|
|
if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
|
|
(*pIt)->myUV, isDeformed )) {
|
|
MESSAGE("cant Apply(face)");
|
|
return false;
|
|
}
|
|
// try to use a complex algo if it is a difficult case
|
|
if ( isDeformed && !compUVByElasticIsolines( edgesPointsList, fPoints ))
|
|
{
|
|
for ( ; pIt != fPoints.end(); pIt++ ) // continue with the simple algo
|
|
if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
|
|
(*pIt)->myUV, isDeformed )) {
|
|
MESSAGE("cant Apply(face)");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Handle(Geom_Surface) aSurface = BRep_Tool::Surface( face, loc );
|
|
const gp_Trsf & aTrsf = loc.Transformation();
|
|
for ( pIt = fPoints.begin(); pIt != fPoints.end(); pIt++ )
|
|
{
|
|
TPoint * point = *pIt;
|
|
point->myXYZ = aSurface->Value( point->myUV.X(), point->myUV.Y() );
|
|
if ( !loc.IsIdentity() )
|
|
aTrsf.Transforms( point->myXYZ.ChangeCoord() );
|
|
}
|
|
|
|
myIsComputed = true;
|
|
|
|
return setErrorCode( ERR_OK );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Apply
|
|
//purpose : Compute nodes coordinates applying
|
|
// the loaded pattern to <theFace>. The first key-point
|
|
// will be mapped into <theNodeIndexOnKeyPoint1>-th node
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Apply (const SMDS_MeshFace* theFace,
|
|
const int theNodeIndexOnKeyPoint1,
|
|
const bool theReverse)
|
|
{
|
|
// MESSAGE(" ::Apply(MeshFace) " );
|
|
|
|
if ( !IsLoaded() ) {
|
|
MESSAGE( "Pattern not loaded" );
|
|
return setErrorCode( ERR_APPL_NOT_LOADED );
|
|
}
|
|
|
|
// check nb of nodes
|
|
if (theFace->NbNodes() != myNbKeyPntInBoundary.front() ) {
|
|
MESSAGE( myKeyPointIDs.size() << " != " << theFace->NbNodes() );
|
|
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
|
|
}
|
|
|
|
// find points on edges, it fills myNbKeyPntInBoundary
|
|
if ( !findBoundaryPoints() )
|
|
return false;
|
|
|
|
// check that there are no holes in a pattern
|
|
if (myNbKeyPntInBoundary.size() > 1 ) {
|
|
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
|
|
}
|
|
|
|
// Define the nodes order
|
|
|
|
list< const SMDS_MeshNode* > nodes;
|
|
list< const SMDS_MeshNode* >::iterator n = nodes.end();
|
|
SMDS_ElemIteratorPtr noIt = theFace->nodesIterator();
|
|
int iSub = 0;
|
|
while ( noIt->more() ) {
|
|
const SMDS_MeshNode* node = smdsNode( noIt->next() );
|
|
nodes.push_back( node );
|
|
if ( iSub++ == theNodeIndexOnKeyPoint1 )
|
|
n = --nodes.end();
|
|
}
|
|
if ( n != nodes.end() ) {
|
|
if ( theReverse ) {
|
|
if ( n != --nodes.end() )
|
|
nodes.splice( nodes.begin(), nodes, ++n, nodes.end() );
|
|
nodes.reverse();
|
|
}
|
|
else if ( n != nodes.begin() )
|
|
nodes.splice( nodes.end(), nodes, nodes.begin(), n );
|
|
}
|
|
list< gp_XYZ > xyzList;
|
|
myOrderedNodes.resize( theFace->NbNodes() );
|
|
for ( iSub = 0, n = nodes.begin(); n != nodes.end(); ++n ) {
|
|
xyzList.push_back( gp_XYZ( (*n)->X(), (*n)->Y(), (*n)->Z() ));
|
|
myOrderedNodes[ iSub++] = *n;
|
|
}
|
|
|
|
// Define a face plane
|
|
|
|
list< gp_XYZ >::iterator xyzIt = xyzList.begin();
|
|
gp_Pnt P ( *xyzIt++ );
|
|
gp_Vec Vx( P, *xyzIt++ ), N;
|
|
do {
|
|
N = Vx ^ gp_Vec( P, *xyzIt++ );
|
|
} while ( N.SquareMagnitude() <= DBL_MIN && xyzIt != xyzList.end() );
|
|
if ( N.SquareMagnitude() <= DBL_MIN )
|
|
return setErrorCode( ERR_APPLF_BAD_FACE_GEOM );
|
|
gp_Ax2 pos( P, N, Vx );
|
|
|
|
// Compute UV of key-points on a plane
|
|
for ( xyzIt = xyzList.begin(), iSub = 1; xyzIt != xyzList.end(); xyzIt++, iSub++ )
|
|
{
|
|
gp_Vec vec ( pos.Location(), *xyzIt );
|
|
TPoint* p = getShapePoints( iSub ).front();
|
|
p->myUV.SetX( vec * pos.XDirection() );
|
|
p->myUV.SetY( vec * pos.YDirection() );
|
|
p->myXYZ = *xyzIt;
|
|
}
|
|
|
|
// points on edges to be used for UV computation of in-face points
|
|
list< list< TPoint* > > edgesPointsList;
|
|
edgesPointsList.push_back( list< TPoint* >() );
|
|
list< TPoint* > * edgesPoints = & edgesPointsList.back();
|
|
list< TPoint* >::iterator pIt;
|
|
|
|
// compute UV and XYZ of points on edges
|
|
|
|
for ( xyzIt = xyzList.begin(); xyzIt != xyzList.end(); iSub++ )
|
|
{
|
|
gp_XYZ& xyz1 = *xyzIt++;
|
|
gp_XYZ& xyz2 = ( xyzIt != xyzList.end() ) ? *xyzIt : xyzList.front();
|
|
|
|
list< TPoint* > & ePoints = getShapePoints( iSub );
|
|
ePoints.back()->myInitU = 1.0;
|
|
list< TPoint* >::const_iterator pIt = ++ePoints.begin();
|
|
while ( *pIt != ePoints.back() )
|
|
{
|
|
TPoint* p = *pIt++;
|
|
p->myXYZ = xyz1 * ( 1 - p->myInitU ) + xyz2 * p->myInitU;
|
|
gp_Vec vec ( pos.Location(), p->myXYZ );
|
|
p->myUV.SetX( vec * pos.XDirection() );
|
|
p->myUV.SetY( vec * pos.YDirection() );
|
|
}
|
|
// collect on-edge points (excluding the last one)
|
|
edgesPoints->insert( edgesPoints->end(), ePoints.begin(), --ePoints.end());
|
|
}
|
|
|
|
// Compute UV and XYZ of in-face points
|
|
|
|
// try to use a simple algo to compute UV
|
|
list< TPoint* > & fPoints = getShapePoints( iSub );
|
|
bool isDeformed = false;
|
|
for ( pIt = fPoints.begin(); !isDeformed && pIt != fPoints.end(); pIt++ )
|
|
if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
|
|
(*pIt)->myUV, isDeformed )) {
|
|
MESSAGE("cant Apply(face)");
|
|
return false;
|
|
}
|
|
// try to use a complex algo if it is a difficult case
|
|
if ( isDeformed && !compUVByElasticIsolines( edgesPointsList, fPoints ))
|
|
{
|
|
for ( ; pIt != fPoints.end(); pIt++ ) // continue with the simple algo
|
|
if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
|
|
(*pIt)->myUV, isDeformed )) {
|
|
MESSAGE("cant Apply(face)");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for ( pIt = fPoints.begin(); pIt != fPoints.end(); pIt++ )
|
|
{
|
|
(*pIt)->myXYZ = ElSLib::PlaneValue( (*pIt)->myUV.X(), (*pIt)->myUV.Y(), pos );
|
|
}
|
|
|
|
myIsComputed = true;
|
|
|
|
return setErrorCode( ERR_OK );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : undefinedXYZ
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static const gp_XYZ& undefinedXYZ()
|
|
{
|
|
static gp_XYZ xyz( 1.e100, 0., 0. );
|
|
return xyz;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : isDefined
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
inline static bool isDefined(const gp_XYZ& theXYZ)
|
|
{
|
|
return theXYZ.X() < 1.e100;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Apply
|
|
//purpose : Compute nodes coordinates applying
|
|
// the loaded pattern to <theFaces>. The first key-point
|
|
// will be mapped into <theNodeIndexOnKeyPoint1>-th node
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Apply (std::set<const SMDS_MeshFace*>& theFaces,
|
|
const int theNodeIndexOnKeyPoint1,
|
|
const bool theReverse)
|
|
{
|
|
MESSAGE(" ::Apply(set<MeshFace>) " );
|
|
|
|
if ( !IsLoaded() ) {
|
|
MESSAGE( "Pattern not loaded" );
|
|
return setErrorCode( ERR_APPL_NOT_LOADED );
|
|
}
|
|
|
|
// find points on edges, it fills myNbKeyPntInBoundary
|
|
if ( !findBoundaryPoints() )
|
|
return false;
|
|
|
|
// check that there are no holes in a pattern
|
|
if (myNbKeyPntInBoundary.size() > 1 ) {
|
|
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
|
|
}
|
|
|
|
myShape.Nullify();
|
|
myXYZ.clear();
|
|
myElemXYZIDs.clear();
|
|
myXYZIdToNodeMap.clear();
|
|
myElements.clear();
|
|
myIdsOnBoundary.clear();
|
|
myReverseConnectivity.clear();
|
|
|
|
myXYZ.resize( myPoints.size() * theFaces.size(), undefinedXYZ() );
|
|
myElements.reserve( theFaces.size() );
|
|
|
|
// to find point index
|
|
map< TPoint*, int > pointIndex;
|
|
for ( int i = 0; i < myPoints.size(); i++ )
|
|
pointIndex.insert( make_pair( & myPoints[ i ], i ));
|
|
|
|
int ind1 = 0; // lowest point index for a face
|
|
|
|
// apply to each face in theFaces set
|
|
set<const SMDS_MeshFace*>::iterator face = theFaces.begin();
|
|
for ( ; face != theFaces.end(); ++face )
|
|
{
|
|
if ( !Apply( *face, theNodeIndexOnKeyPoint1, theReverse )) {
|
|
MESSAGE( "Failed on " << *face );
|
|
continue;
|
|
}
|
|
myElements.push_back( *face );
|
|
|
|
// store computed points belonging to elements
|
|
list< TElemDef >::iterator ll = myElemPointIDs.begin();
|
|
for ( ; ll != myElemPointIDs.end(); ++ll )
|
|
{
|
|
myElemXYZIDs.push_back(TElemDef());
|
|
TElemDef& xyzIds = myElemXYZIDs.back();
|
|
TElemDef& pIds = *ll;
|
|
for ( TElemDef::iterator id = pIds.begin(); id != pIds.end(); id++ ) {
|
|
int pIndex = *id + ind1;
|
|
xyzIds.push_back( pIndex );
|
|
myXYZ[ pIndex ] = myPoints[ *id ].myXYZ.XYZ();
|
|
myReverseConnectivity[ pIndex ].push_back( & xyzIds );
|
|
}
|
|
}
|
|
// put points on links to myIdsOnBoundary,
|
|
// they will be used to sew new elements on adjacent refined elements
|
|
int nbNodes = (*face)->NbNodes(), eID = nbNodes + 1;
|
|
for ( int i = 0; i < nbNodes; i++ )
|
|
{
|
|
list< TPoint* > & linkPoints = getShapePoints( eID++ );
|
|
const SMDS_MeshNode* n1 = myOrderedNodes[ i ];
|
|
const SMDS_MeshNode* n2 = myOrderedNodes[ i + 1 == nbNodes ? 0 : i + 1 ];
|
|
// make a link and a node set
|
|
TNodeSet linkSet, node1Set;
|
|
linkSet.insert( n1 );
|
|
linkSet.insert( n2 );
|
|
node1Set.insert( n1 );
|
|
list< TPoint* >::iterator p = linkPoints.begin();
|
|
{
|
|
// map the first link point to n1
|
|
int nId = pointIndex[ *p ] + ind1;
|
|
myXYZIdToNodeMap[ nId ] = n1;
|
|
list< list< int > >& groups = myIdsOnBoundary[ node1Set ];
|
|
groups.push_back(list< int > ());
|
|
groups.back().push_back( nId );
|
|
}
|
|
// add the linkSet to the map
|
|
list< list< int > >& groups = myIdsOnBoundary[ linkSet ];
|
|
groups.push_back(list< int > ());
|
|
list< int >& indList = groups.back();
|
|
// add points to the map excluding the end points
|
|
for ( p++; *p != linkPoints.back(); p++ )
|
|
indList.push_back( pointIndex[ *p ] + ind1 );
|
|
}
|
|
ind1 += myPoints.size();
|
|
}
|
|
|
|
return !myElemXYZIDs.empty();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Apply
|
|
//purpose : Compute nodes coordinates applying
|
|
// the loaded pattern to <theVolumes>. The (0,0,0) key-point
|
|
// will be mapped into <theNode000Index>-th node. The
|
|
// (0,0,1) key-point will be mapped into <theNode000Index>-th
|
|
// node.
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Apply (std::set<const SMDS_MeshVolume*> & theVolumes,
|
|
const int theNode000Index,
|
|
const int theNode001Index)
|
|
{
|
|
MESSAGE(" ::Apply(set<MeshVolumes>) " );
|
|
|
|
if ( !IsLoaded() ) {
|
|
MESSAGE( "Pattern not loaded" );
|
|
return setErrorCode( ERR_APPL_NOT_LOADED );
|
|
}
|
|
|
|
// bind ID to points
|
|
if ( !findBoundaryPoints() )
|
|
return false;
|
|
|
|
// check that there are no holes in a pattern
|
|
if (myNbKeyPntInBoundary.size() > 1 ) {
|
|
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
|
|
}
|
|
|
|
myShape.Nullify();
|
|
myXYZ.clear();
|
|
myElemXYZIDs.clear();
|
|
myXYZIdToNodeMap.clear();
|
|
myElements.clear();
|
|
myIdsOnBoundary.clear();
|
|
myReverseConnectivity.clear();
|
|
|
|
myXYZ.resize( myPoints.size() * theVolumes.size(), undefinedXYZ() );
|
|
myElements.reserve( theVolumes.size() );
|
|
|
|
// to find point index
|
|
map< TPoint*, int > pointIndex;
|
|
for ( int i = 0; i < myPoints.size(); i++ )
|
|
pointIndex.insert( make_pair( & myPoints[ i ], i ));
|
|
|
|
int ind1 = 0; // lowest point index for an element
|
|
|
|
// apply to each element in theVolumes set
|
|
set<const SMDS_MeshVolume*>::iterator vol = theVolumes.begin();
|
|
for ( ; vol != theVolumes.end(); ++vol )
|
|
{
|
|
if ( !Apply( *vol, theNode000Index, theNode001Index )) {
|
|
MESSAGE( "Failed on " << *vol );
|
|
continue;
|
|
}
|
|
myElements.push_back( *vol );
|
|
|
|
// store computed points belonging to elements
|
|
list< TElemDef >::iterator ll = myElemPointIDs.begin();
|
|
for ( ; ll != myElemPointIDs.end(); ++ll )
|
|
{
|
|
myElemXYZIDs.push_back(TElemDef());
|
|
TElemDef& xyzIds = myElemXYZIDs.back();
|
|
TElemDef& pIds = *ll;
|
|
for ( TElemDef::iterator id = pIds.begin(); id != pIds.end(); id++ ) {
|
|
int pIndex = *id + ind1;
|
|
xyzIds.push_back( pIndex );
|
|
myXYZ[ pIndex ] = myPoints[ *id ].myXYZ.XYZ();
|
|
myReverseConnectivity[ pIndex ].push_back( & xyzIds );
|
|
}
|
|
}
|
|
// put points on edges and faces to myIdsOnBoundary,
|
|
// they will be used to sew new elements on adjacent refined elements
|
|
for ( int Id = SMESH_Block::ID_V000; Id <= SMESH_Block::ID_F1yz; Id++ )
|
|
{
|
|
// make a set of sub-points
|
|
TNodeSet subNodes;
|
|
vector< int > subIDs;
|
|
if ( SMESH_Block::IsVertexID( Id )) {
|
|
subNodes.insert( myOrderedNodes[ Id - 1 ]);
|
|
}
|
|
else if ( SMESH_Block::IsEdgeID( Id )) {
|
|
SMESH_Block::GetEdgeVertexIDs( Id, subIDs );
|
|
subNodes.insert( myOrderedNodes[ subIDs.front() - 1 ]);
|
|
subNodes.insert( myOrderedNodes[ subIDs.back() - 1 ]);
|
|
}
|
|
else {
|
|
SMESH_Block::GetFaceEdgesIDs( Id, subIDs );
|
|
int e1 = subIDs[ 0 ], e2 = subIDs[ 1 ];
|
|
SMESH_Block::GetEdgeVertexIDs( e1, subIDs );
|
|
subNodes.insert( myOrderedNodes[ subIDs.front() - 1 ]);
|
|
subNodes.insert( myOrderedNodes[ subIDs.back() - 1 ]);
|
|
SMESH_Block::GetEdgeVertexIDs( e2, subIDs );
|
|
subNodes.insert( myOrderedNodes[ subIDs.front() - 1 ]);
|
|
subNodes.insert( myOrderedNodes[ subIDs.back() - 1 ]);
|
|
}
|
|
// add points
|
|
list< TPoint* > & points = getShapePoints( Id );
|
|
list< TPoint* >::iterator p = points.begin();
|
|
list< list< int > >& groups = myIdsOnBoundary[ subNodes ];
|
|
groups.push_back(list< int > ());
|
|
list< int >& indList = groups.back();
|
|
for ( ; p != points.end(); p++ )
|
|
indList.push_back( pointIndex[ *p ] + ind1 );
|
|
if ( subNodes.size() == 1 ) // vertex case
|
|
myXYZIdToNodeMap[ indList.back() ] = myOrderedNodes[ Id - 1 ];
|
|
}
|
|
ind1 += myPoints.size();
|
|
}
|
|
|
|
return !myElemXYZIDs.empty();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Load
|
|
//purpose : Create a pattern from the mesh built on <theBlock>
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Load (SMESH_Mesh* theMesh,
|
|
const TopoDS_Shell& theBlock)
|
|
{
|
|
MESSAGE(" ::Load(volume) " );
|
|
Clear();
|
|
myIs2D = false;
|
|
SMESHDS_SubMesh * aSubMesh;
|
|
|
|
// load shapes in myShapeIDMap
|
|
SMESH_Block block;
|
|
TopoDS_Vertex v1, v2;
|
|
if ( !block.LoadBlockShapes( theBlock, v1, v2, myShapeIDMap ))
|
|
return setErrorCode( ERR_LOADV_BAD_SHAPE );
|
|
|
|
// count nodes
|
|
int nbNodes = 0, shapeID;
|
|
for ( shapeID = 1; shapeID <= myShapeIDMap.Extent(); shapeID++ )
|
|
{
|
|
const TopoDS_Shape& S = myShapeIDMap( shapeID );
|
|
aSubMesh = getSubmeshWithElements( theMesh, S );
|
|
if ( aSubMesh )
|
|
nbNodes += aSubMesh->NbNodes();
|
|
}
|
|
myPoints.resize( nbNodes );
|
|
|
|
// load U of points on edges
|
|
TNodePointIDMap nodePointIDMap;
|
|
int iPoint = 0;
|
|
for ( shapeID = 1; shapeID <= myShapeIDMap.Extent(); shapeID++ )
|
|
{
|
|
const TopoDS_Shape& S = myShapeIDMap( shapeID );
|
|
list< TPoint* > & shapePoints = getShapePoints( shapeID );
|
|
aSubMesh = getSubmeshWithElements( theMesh, S );
|
|
if ( ! aSubMesh ) continue;
|
|
SMDS_NodeIteratorPtr nIt = aSubMesh->GetNodes();
|
|
if ( !nIt->more() ) continue;
|
|
|
|
// store a node and a point
|
|
while ( nIt->more() ) {
|
|
const SMDS_MeshNode* node = smdsNode( nIt->next() );
|
|
nodePointIDMap.insert( make_pair( node, iPoint ));
|
|
if ( block.IsVertexID( shapeID ))
|
|
myKeyPointIDs.push_back( iPoint );
|
|
TPoint* p = & myPoints[ iPoint++ ];
|
|
shapePoints.push_back( p );
|
|
p->myXYZ.SetCoord( node->X(), node->Y(), node->Z() );
|
|
p->myInitXYZ.SetCoord( 0,0,0 );
|
|
}
|
|
list< TPoint* >::iterator pIt = shapePoints.begin();
|
|
|
|
// compute init XYZ
|
|
switch ( S.ShapeType() )
|
|
{
|
|
case TopAbs_VERTEX:
|
|
case TopAbs_EDGE: {
|
|
|
|
for ( ; pIt != shapePoints.end(); pIt++ ) {
|
|
double * coef = block.GetShapeCoef( shapeID );
|
|
for ( int iCoord = 1; iCoord <= 3; iCoord++ )
|
|
if ( coef[ iCoord - 1] > 0 )
|
|
(*pIt)->myInitXYZ.SetCoord( iCoord, 1. );
|
|
}
|
|
if ( S.ShapeType() == TopAbs_VERTEX )
|
|
break;
|
|
|
|
const TopoDS_Edge& edge = TopoDS::Edge( S );
|
|
double f,l;
|
|
BRep_Tool::Range( edge, f, l );
|
|
int iCoord = SMESH_Block::GetCoordIndOnEdge( shapeID );
|
|
bool isForward = SMESH_Block::IsForwardEdge( edge, myShapeIDMap );
|
|
pIt = shapePoints.begin();
|
|
nIt = aSubMesh->GetNodes();
|
|
for ( ; nIt->more(); pIt++ )
|
|
{
|
|
const SMDS_MeshNode* node = smdsNode( nIt->next() );
|
|
const SMDS_EdgePosition* epos =
|
|
static_cast<const SMDS_EdgePosition*>(node->GetPosition().get());
|
|
double u = ( epos->GetUParameter() - f ) / ( l - f );
|
|
(*pIt)->myInitXYZ.SetCoord( iCoord, isForward ? u : 1 - u );
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
for ( ; pIt != shapePoints.end(); pIt++ )
|
|
{
|
|
if ( !block.ComputeParameters( (*pIt)->myXYZ, (*pIt)->myInitXYZ, shapeID )) {
|
|
MESSAGE( "!block.ComputeParameters()" );
|
|
return setErrorCode( ERR_LOADV_COMPUTE_PARAMS );
|
|
}
|
|
}
|
|
}
|
|
} // loop on block sub-shapes
|
|
|
|
// load elements
|
|
|
|
aSubMesh = getSubmeshWithElements( theMesh, theBlock );
|
|
if ( aSubMesh )
|
|
{
|
|
SMDS_ElemIteratorPtr elemIt = aSubMesh->GetElements();
|
|
while ( elemIt->more() ) {
|
|
SMDS_ElemIteratorPtr nIt = elemIt->next()->nodesIterator();
|
|
myElemPointIDs.push_back( TElemDef() );
|
|
TElemDef& elemPoints = myElemPointIDs.back();
|
|
while ( nIt->more() )
|
|
elemPoints.push_back( nodePointIDMap[ nIt->next() ]);
|
|
}
|
|
}
|
|
|
|
myIsBoundaryPointsFound = true;
|
|
|
|
return setErrorCode( ERR_OK );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : getSubmeshWithElements
|
|
//purpose : return submesh containing elements bound to theBlock in theMesh
|
|
//=======================================================================
|
|
|
|
SMESHDS_SubMesh * SMESH_Pattern::getSubmeshWithElements(SMESH_Mesh* theMesh,
|
|
const TopoDS_Shape& theShape)
|
|
{
|
|
SMESHDS_SubMesh * aSubMesh = theMesh->GetMeshDS()->MeshElements( theShape );
|
|
if ( aSubMesh && ( aSubMesh->GetElements()->more() || aSubMesh->GetNodes()->more() ))
|
|
return aSubMesh;
|
|
|
|
if ( theShape.ShapeType() == TopAbs_SHELL )
|
|
{
|
|
// look for submesh of VOLUME
|
|
TopTools_ListIteratorOfListOfShape it( theMesh->GetAncestors( theShape ));
|
|
for (; it.More(); it.Next()) {
|
|
aSubMesh = theMesh->GetMeshDS()->MeshElements( it.Value() );
|
|
if ( aSubMesh && ( aSubMesh->GetElements()->more() || aSubMesh->GetNodes()->more() ))
|
|
return aSubMesh;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Apply
|
|
//purpose : Compute nodes coordinates applying
|
|
// the loaded pattern to <theBlock>. The (0,0,0) key-point
|
|
// will be mapped into <theVertex000>. The (0,0,1)
|
|
// fifth key-point will be mapped into <theVertex001>.
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Apply (const TopoDS_Shell& theBlock,
|
|
const TopoDS_Vertex& theVertex000,
|
|
const TopoDS_Vertex& theVertex001)
|
|
{
|
|
MESSAGE(" ::Apply(volume) " );
|
|
|
|
if (!findBoundaryPoints() || // bind ID to points
|
|
!setShapeToMesh( theBlock )) // check theBlock is a suitable shape
|
|
return false;
|
|
|
|
SMESH_Block block; // bind ID to shape
|
|
if (!block.LoadBlockShapes( theBlock, theVertex000, theVertex001, myShapeIDMap ))
|
|
return setErrorCode( ERR_APPLV_BAD_SHAPE );
|
|
|
|
// compute XYZ of points on shapes
|
|
|
|
for ( int shapeID = 1; shapeID <= myShapeIDMap.Extent(); shapeID++ )
|
|
{
|
|
list< TPoint* > & shapePoints = getShapePoints( shapeID );
|
|
list< TPoint* >::iterator pIt = shapePoints.begin();
|
|
const TopoDS_Shape& S = myShapeIDMap( shapeID );
|
|
switch ( S.ShapeType() )
|
|
{
|
|
case TopAbs_VERTEX: {
|
|
|
|
for ( ; pIt != shapePoints.end(); pIt++ )
|
|
block.VertexPoint( shapeID, (*pIt)->myXYZ.ChangeCoord() );
|
|
break;
|
|
}
|
|
case TopAbs_EDGE: {
|
|
|
|
for ( ; pIt != shapePoints.end(); pIt++ )
|
|
block.EdgePoint( shapeID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
|
|
break;
|
|
}
|
|
case TopAbs_FACE: {
|
|
|
|
for ( ; pIt != shapePoints.end(); pIt++ )
|
|
block.FacePoint( shapeID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
|
|
break;
|
|
}
|
|
default:
|
|
for ( ; pIt != shapePoints.end(); pIt++ )
|
|
block.ShellPoint( (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
|
|
}
|
|
} // loop on block sub-shapes
|
|
|
|
myIsComputed = true;
|
|
|
|
return setErrorCode( ERR_OK );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Apply
|
|
//purpose : Compute nodes coordinates applying
|
|
// the loaded pattern to <theVolume>. The (0,0,0) key-point
|
|
// will be mapped into <theNode000Index>-th node. The
|
|
// (0,0,1) key-point will be mapped into <theNode000Index>-th
|
|
// node.
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::Apply (const SMDS_MeshVolume* theVolume,
|
|
const int theNode000Index,
|
|
const int theNode001Index)
|
|
{
|
|
//MESSAGE(" ::Apply(MeshVolume) " );
|
|
|
|
if (!findBoundaryPoints()) // bind ID to points
|
|
return false;
|
|
|
|
SMESH_Block block; // bind ID to shape
|
|
if (!block.LoadMeshBlock( theVolume, theNode000Index, theNode001Index, myOrderedNodes ))
|
|
return setErrorCode( ERR_APPLV_BAD_SHAPE );
|
|
// compute XYZ of points on shapes
|
|
|
|
for ( int ID = SMESH_Block::ID_V000; ID <= SMESH_Block::ID_Shell; ID++ )
|
|
{
|
|
list< TPoint* > & shapePoints = getShapePoints( ID );
|
|
list< TPoint* >::iterator pIt = shapePoints.begin();
|
|
|
|
if ( block.IsVertexID( ID ))
|
|
for ( ; pIt != shapePoints.end(); pIt++ ) {
|
|
block.VertexPoint( ID, (*pIt)->myXYZ.ChangeCoord() );
|
|
}
|
|
else if ( block.IsEdgeID( ID ))
|
|
for ( ; pIt != shapePoints.end(); pIt++ ) {
|
|
block.EdgePoint( ID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
|
|
}
|
|
else if ( block.IsFaceID( ID ))
|
|
for ( ; pIt != shapePoints.end(); pIt++ ) {
|
|
block.FacePoint( ID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
|
|
}
|
|
else
|
|
for ( ; pIt != shapePoints.end(); pIt++ )
|
|
block.ShellPoint( (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
|
|
} // loop on block sub-shapes
|
|
|
|
myIsComputed = true;
|
|
|
|
return setErrorCode( ERR_OK );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : mergePoints
|
|
//purpose : Merge XYZ on edges and/or faces.
|
|
//=======================================================================
|
|
|
|
void SMESH_Pattern::mergePoints (const bool uniteGroups)
|
|
{
|
|
map< TNodeSet, list< list< int > > >::iterator idListIt = myIdsOnBoundary.begin();
|
|
for ( ; idListIt != myIdsOnBoundary.end(); idListIt++ )
|
|
{
|
|
list<list< int > >& groups = idListIt->second;
|
|
if ( groups.size() < 2 )
|
|
continue;
|
|
|
|
// find tolerance
|
|
const TNodeSet& nodes = idListIt->first;
|
|
double tol2 = 1.e-10;
|
|
if ( nodes.size() > 1 ) {
|
|
Bnd_Box box;
|
|
TNodeSet::const_iterator n = nodes.begin();
|
|
for ( ; n != nodes.end(); ++n )
|
|
box.Add( gp_Pnt( (*n)->X(), (*n)->Y(), (*n)->Z() ));
|
|
double x, y, z, X, Y, Z;
|
|
box.Get( x, y, z, X, Y, Z );
|
|
gp_Pnt p( x, y, z ), P( X, Y, Z );
|
|
tol2 = 1.e-4 * p.SquareDistance( P );
|
|
}
|
|
|
|
// to unite groups on link
|
|
bool unite = ( uniteGroups && nodes.size() == 2 );
|
|
map< double, int > distIndMap;
|
|
const SMDS_MeshNode* node = *nodes.begin();
|
|
gp_Pnt P( node->X(), node->Y(), node->Z() );
|
|
|
|
// compare points, replace indices
|
|
|
|
list< int >::iterator ind1, ind2;
|
|
list< list< int > >::iterator grpIt1, grpIt2;
|
|
for ( grpIt1 = groups.begin(); grpIt1 != groups.end(); grpIt1++ )
|
|
{
|
|
list< int >& indices1 = *grpIt1;
|
|
grpIt2 = grpIt1;
|
|
for ( grpIt2++; grpIt2 != groups.end(); grpIt2++ )
|
|
{
|
|
list< int >& indices2 = *grpIt2;
|
|
for ( ind1 = indices1.begin(); ind1 != indices1.end(); ind1++ )
|
|
{
|
|
gp_XYZ& p1 = myXYZ[ *ind1 ];
|
|
ind2 = indices2.begin();
|
|
while ( ind2 != indices2.end() )
|
|
{
|
|
gp_XYZ& p2 = myXYZ[ *ind2 ];
|
|
//MESSAGE("COMP: " << *ind1 << " " << *ind2 << " X: " << p2.X() << " tol2: " << tol2);
|
|
if ( ( p1 - p2 ).SquareModulus() <= tol2 )
|
|
{
|
|
ASSERT( myReverseConnectivity.find( *ind2 ) != myReverseConnectivity.end() );
|
|
list< TElemDef* > & elemXYZIDsList = myReverseConnectivity[ *ind2 ];
|
|
list< TElemDef* >::iterator elemXYZIDs = elemXYZIDsList.begin();
|
|
for ( ; elemXYZIDs != elemXYZIDsList.end(); elemXYZIDs++ )
|
|
{
|
|
//MESSAGE( " Replace " << *ind2 << " with " << *ind1 );
|
|
myXYZ[ *ind2 ] = undefinedXYZ();
|
|
replace( (*elemXYZIDs)->begin(), (*elemXYZIDs)->end(), *ind2, *ind1 );
|
|
}
|
|
ind2 = indices2.erase( ind2 );
|
|
}
|
|
else
|
|
ind2++;
|
|
}
|
|
}
|
|
}
|
|
if ( unite ) { // sort indices using distIndMap
|
|
for ( ind1 = indices1.begin(); ind1 != indices1.end(); ind1++ )
|
|
{
|
|
ASSERT( isDefined( myXYZ[ *ind1 ] ));
|
|
double dist = P.SquareDistance( myXYZ[ *ind1 ]);
|
|
distIndMap.insert( make_pair( dist, *ind1 ));
|
|
}
|
|
}
|
|
}
|
|
if ( unite ) { // put all sorted indices into the first group
|
|
list< int >& g = groups.front();
|
|
g.clear();
|
|
map< double, int >::iterator dist_ind = distIndMap.begin();
|
|
for ( ; dist_ind != distIndMap.end(); dist_ind++ )
|
|
g.push_back( dist_ind->second );
|
|
}
|
|
} // loop on myIdsOnBoundary
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : makePolyElements
|
|
//purpose : prepare intermediate data to create Polygons and Polyhedrons
|
|
//=======================================================================
|
|
|
|
void SMESH_Pattern::
|
|
makePolyElements(const vector< const SMDS_MeshNode* >& theNodes,
|
|
const bool toCreatePolygons,
|
|
const bool toCreatePolyedrs)
|
|
{
|
|
myPolyElemXYZIDs.clear();
|
|
myPolyElems.clear();
|
|
myPolyElems.reserve( myIdsOnBoundary.size() );
|
|
|
|
// make a set of refined elements
|
|
TIDSortedElemSet avoidSet, elemSet;
|
|
std::vector<const SMDS_MeshElement*>::iterator itv = myElements.begin();
|
|
for(; itv!=myElements.end(); itv++) {
|
|
const SMDS_MeshElement* el = (*itv);
|
|
avoidSet.insert( el );
|
|
}
|
|
//avoidSet.insert( myElements.begin(), myElements.end() );
|
|
|
|
map< TNodeSet, list< list< int > > >::iterator indListIt, nn_IdList;
|
|
|
|
if ( toCreatePolygons )
|
|
{
|
|
int lastFreeId = myXYZ.size();
|
|
|
|
// loop on links of refined elements
|
|
indListIt = myIdsOnBoundary.begin();
|
|
for ( ; indListIt != myIdsOnBoundary.end(); indListIt++ )
|
|
{
|
|
const TNodeSet & linkNodes = indListIt->first;
|
|
if ( linkNodes.size() != 2 )
|
|
continue; // skip face
|
|
const SMDS_MeshNode* n1 = * linkNodes.begin();
|
|
const SMDS_MeshNode* n2 = * linkNodes.rbegin();
|
|
|
|
list<list< int > >& idGroups = indListIt->second; // ids of nodes to build
|
|
if ( idGroups.empty() || idGroups.front().empty() )
|
|
continue;
|
|
|
|
// find not refined face having n1-n2 link
|
|
|
|
while (true)
|
|
{
|
|
const SMDS_MeshElement* face =
|
|
SMESH_MeshEditor::FindFaceInSet( n1, n2, elemSet, avoidSet );
|
|
if ( face )
|
|
{
|
|
avoidSet.insert ( face );
|
|
myPolyElems.push_back( face );
|
|
|
|
// some links of <face> are split;
|
|
// make list of xyz for <face>
|
|
myPolyElemXYZIDs.push_back(TElemDef());
|
|
TElemDef & faceNodeIds = myPolyElemXYZIDs.back();
|
|
// loop on links of a <face>
|
|
SMDS_ElemIteratorPtr nIt = face->nodesIterator();
|
|
int i = 0, nbNodes = face->NbNodes();
|
|
vector<const SMDS_MeshNode*> nodes( nbNodes + 1 );
|
|
while ( nIt->more() )
|
|
nodes[ i++ ] = smdsNode( nIt->next() );
|
|
nodes[ i ] = nodes[ 0 ];
|
|
for ( i = 0; i < nbNodes; ++i )
|
|
{
|
|
// look for point mapped on a link
|
|
TNodeSet faceLinkNodes;
|
|
faceLinkNodes.insert( nodes[ i ] );
|
|
faceLinkNodes.insert( nodes[ i + 1 ] );
|
|
if ( faceLinkNodes == linkNodes )
|
|
nn_IdList = indListIt;
|
|
else
|
|
nn_IdList = myIdsOnBoundary.find( faceLinkNodes );
|
|
// add face point ids
|
|
faceNodeIds.push_back( ++lastFreeId );
|
|
myXYZIdToNodeMap.insert( make_pair( lastFreeId, nodes[ i ]));
|
|
if ( nn_IdList != myIdsOnBoundary.end() )
|
|
{
|
|
// there are points mapped on a link
|
|
list< int >& mappedIds = nn_IdList->second.front();
|
|
if ( isReversed( nodes[ i ], mappedIds ))
|
|
faceNodeIds.insert (faceNodeIds.end(),mappedIds.rbegin(), mappedIds.rend() );
|
|
else
|
|
faceNodeIds.insert (faceNodeIds.end(),mappedIds.begin(), mappedIds.end() );
|
|
}
|
|
} // loop on links of a <face>
|
|
} // if ( face )
|
|
else
|
|
break;
|
|
} // while (true)
|
|
|
|
if ( myIs2D && idGroups.size() > 1 ) {
|
|
|
|
// sew new elements on 2 refined elements sharing n1-n2 link
|
|
|
|
list< int >& idsOnLink = idGroups.front();
|
|
// temporarily add ids of link nodes to idsOnLink
|
|
bool rev = isReversed( n1, idsOnLink );
|
|
for ( int i = 0; i < 2; ++i )
|
|
{
|
|
TNodeSet nodeSet;
|
|
nodeSet.insert( i ? n2 : n1 );
|
|
ASSERT( myIdsOnBoundary.find( nodeSet ) != myIdsOnBoundary.end() );
|
|
list<list< int > >& groups = myIdsOnBoundary[ nodeSet ];
|
|
int nodeId = groups.front().front();
|
|
bool append = i;
|
|
if ( rev ) append = !append;
|
|
if ( append )
|
|
idsOnLink.push_back( nodeId );
|
|
else
|
|
idsOnLink.push_front( nodeId );
|
|
}
|
|
list< int >::iterator id = idsOnLink.begin();
|
|
for ( ; id != idsOnLink.end(); ++id ) // loop on XYZ ids on a link
|
|
{
|
|
list< TElemDef* >& elemDefs = myReverseConnectivity[ *id ]; // elems sharing id
|
|
list< TElemDef* >::iterator pElemDef = elemDefs.begin();
|
|
for ( ; pElemDef != elemDefs.end(); pElemDef++ ) // loop on elements sharing id
|
|
{
|
|
TElemDef* pIdList = *pElemDef; // ptr on list of ids making element up
|
|
// look for <id> in element definition
|
|
TElemDef::iterator idDef = find( pIdList->begin(), pIdList->end(), *id );
|
|
ASSERT ( idDef != pIdList->end() );
|
|
// look for 2 neighbour ids of <id> in element definition
|
|
for ( int prev = 0; prev < 2; ++prev ) {
|
|
TElemDef::iterator idDef2 = idDef;
|
|
if ( prev )
|
|
idDef2 = ( idDef2 == pIdList->begin() ) ? --pIdList->end() : --idDef2;
|
|
else
|
|
idDef2 = ( ++idDef2 == pIdList->end() ) ? pIdList->begin() : idDef2;
|
|
// look for idDef2 on a link starting from id
|
|
list< int >::iterator id2 = find( id, idsOnLink.end(), *idDef2 );
|
|
if ( id2 != idsOnLink.end() && id != --id2 ) { // found not next to id
|
|
// insert ids located on link between <id> and <id2>
|
|
// into the element definition between idDef and idDef2
|
|
if ( prev )
|
|
for ( ; id2 != id; --id2 )
|
|
pIdList->insert( idDef, *id2 );
|
|
else {
|
|
list< int >::iterator id1 = id;
|
|
for ( ++id1, ++id2; id1 != id2; ++id1 )
|
|
pIdList->insert( idDef2, *id1 );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// remove ids of link nodes
|
|
idsOnLink.pop_front();
|
|
idsOnLink.pop_back();
|
|
}
|
|
} // loop on myIdsOnBoundary
|
|
} // if ( toCreatePolygons )
|
|
|
|
if ( toCreatePolyedrs )
|
|
{
|
|
// check volumes adjacent to the refined elements
|
|
SMDS_VolumeTool volTool;
|
|
vector<const SMDS_MeshElement*>::iterator refinedElem = myElements.begin();
|
|
for ( ; refinedElem != myElements.end(); ++refinedElem )
|
|
{
|
|
// loop on nodes of refinedElem
|
|
SMDS_ElemIteratorPtr nIt = (*refinedElem)->nodesIterator();
|
|
while ( nIt->more() ) {
|
|
const SMDS_MeshNode* node = smdsNode( nIt->next() );
|
|
// loop on inverse elements of node
|
|
SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator();
|
|
while ( eIt->more() )
|
|
{
|
|
const SMDS_MeshElement* elem = eIt->next();
|
|
if ( !volTool.Set( elem ) || !avoidSet.insert( elem ).second )
|
|
continue; // skip faces or refined elements
|
|
// add polyhedron definition
|
|
myPolyhedronQuantities.push_back(vector<int> ());
|
|
myPolyElemXYZIDs.push_back(TElemDef());
|
|
vector<int>& quantity = myPolyhedronQuantities.back();
|
|
TElemDef & elemDef = myPolyElemXYZIDs.back();
|
|
// get definitions of new elements on volume faces
|
|
bool makePoly = false;
|
|
for ( int iF = 0; iF < volTool.NbFaces(); ++iF )
|
|
{
|
|
if ( getFacesDefinition(volTool.GetFaceNodes( iF ),
|
|
volTool.NbFaceNodes( iF ),
|
|
theNodes, elemDef, quantity))
|
|
makePoly = true;
|
|
}
|
|
if ( makePoly )
|
|
myPolyElems.push_back( elem );
|
|
else {
|
|
myPolyhedronQuantities.pop_back();
|
|
myPolyElemXYZIDs.pop_back();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : getFacesDefinition
|
|
//purpose : return faces definition for a volume face defined by theBndNodes
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::
|
|
getFacesDefinition(const SMDS_MeshNode** theBndNodes,
|
|
const int theNbBndNodes,
|
|
const vector< const SMDS_MeshNode* >& theNodes,
|
|
list< int >& theFaceDefs,
|
|
vector<int>& theQuantity)
|
|
{
|
|
bool makePoly = false;
|
|
// cout << "FROM FACE NODES: " <<endl;
|
|
// for ( int i = 0; i < theNbBndNodes; ++i )
|
|
// cout << theBndNodes[ i ];
|
|
|
|
set< const SMDS_MeshNode* > bndNodeSet;
|
|
for ( int i = 0; i < theNbBndNodes; ++i )
|
|
bndNodeSet.insert( theBndNodes[ i ]);
|
|
|
|
map< TNodeSet, list< list< int > > >::iterator nn_IdList;
|
|
|
|
// make a set of all nodes on a face
|
|
set< int > ids;
|
|
if ( !myIs2D ) { // for 2D, merge only edges
|
|
nn_IdList = myIdsOnBoundary.find( bndNodeSet );
|
|
if ( nn_IdList != myIdsOnBoundary.end() ) {
|
|
makePoly = true;
|
|
list< int > & faceIds = nn_IdList->second.front();
|
|
ids.insert( faceIds.begin(), faceIds.end() );
|
|
}
|
|
}
|
|
//bool hasIdsInFace = !ids.empty();
|
|
|
|
// add ids on links and bnd nodes
|
|
int lastFreeId = Max( myXYZIdToNodeMap.rbegin()->first, theNodes.size() );
|
|
TElemDef faceDef; // definition for the case if there is no new adjacent volumes
|
|
for ( int iN = 0; iN < theNbBndNodes; ++iN )
|
|
{
|
|
// add id of iN-th bnd node
|
|
TNodeSet nSet;
|
|
nSet.insert( theBndNodes[ iN ] );
|
|
nn_IdList = myIdsOnBoundary.find( nSet );
|
|
int bndId = ++lastFreeId;
|
|
if ( nn_IdList != myIdsOnBoundary.end() ) {
|
|
bndId = nn_IdList->second.front().front();
|
|
ids.insert( bndId );
|
|
}
|
|
else
|
|
myXYZIdToNodeMap.insert( make_pair( bndId, theBndNodes[ iN ] ));
|
|
faceDef.push_back( bndId );
|
|
// add ids on a link
|
|
TNodeSet linkNodes;
|
|
linkNodes.insert( theBndNodes[ iN ]);
|
|
linkNodes.insert( theBndNodes[ iN + 1 == theNbBndNodes ? 0 : iN + 1 ]);
|
|
nn_IdList = myIdsOnBoundary.find( linkNodes );
|
|
if ( nn_IdList != myIdsOnBoundary.end() ) {
|
|
makePoly = true;
|
|
list< int > & linkIds = nn_IdList->second.front();
|
|
ids.insert( linkIds.begin(), linkIds.end() );
|
|
if ( isReversed( theBndNodes[ iN ], linkIds ))
|
|
faceDef.insert( faceDef.end(), linkIds.begin(), linkIds.end() );
|
|
else
|
|
faceDef.insert( faceDef.end(), linkIds.rbegin(), linkIds.rend() );
|
|
}
|
|
}
|
|
|
|
// find faces definition of new volumes
|
|
|
|
bool defsAdded = false;
|
|
if ( !myIs2D ) { // for 2D, merge only edges
|
|
SMDS_VolumeTool vol;
|
|
set< TElemDef* > checkedVolDefs;
|
|
set< int >::iterator id = ids.begin();
|
|
for ( ; id != ids.end(); ++id )
|
|
{
|
|
// definitions of volumes sharing id
|
|
list< TElemDef* >& defList = myReverseConnectivity[ *id ];
|
|
ASSERT( !defList.empty() );
|
|
// loop on volume definitions
|
|
list< TElemDef* >::iterator pIdList = defList.begin();
|
|
for ( ; pIdList != defList.end(); ++pIdList)
|
|
{
|
|
if ( !checkedVolDefs.insert( *pIdList ).second )
|
|
continue; // skip already checked volume definition
|
|
vector< int > idVec;
|
|
idVec.reserve( (*pIdList)->size() );
|
|
idVec.insert( idVec.begin(), (*pIdList)->begin(), (*pIdList)->end() );
|
|
// loop on face defs of a volume
|
|
SMDS_VolumeTool::VolumeType volType = vol.GetType( idVec.size() );
|
|
if ( volType == SMDS_VolumeTool::UNKNOWN )
|
|
continue;
|
|
int nbFaces = vol.NbFaces( volType );
|
|
for ( int iF = 0; iF < nbFaces; ++iF )
|
|
{
|
|
const int* nodeInds = vol.GetFaceNodesIndices( volType, iF, true );
|
|
int iN, nbN = vol.NbFaceNodes( volType, iF );
|
|
// check if all nodes of a faces are in <ids>
|
|
bool all = true;
|
|
for ( iN = 0; iN < nbN && all; ++iN ) {
|
|
int nodeId = idVec[ nodeInds[ iN ]];
|
|
all = ( ids.find( nodeId ) != ids.end() );
|
|
}
|
|
if ( all ) {
|
|
// store a face definition
|
|
for ( iN = 0; iN < nbN; ++iN ) {
|
|
theFaceDefs.push_back( idVec[ nodeInds[ iN ]]);
|
|
}
|
|
theQuantity.push_back( nbN );
|
|
defsAdded = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ( !defsAdded ) {
|
|
theQuantity.push_back( faceDef.size() );
|
|
theFaceDefs.splice( theFaceDefs.end(), faceDef, faceDef.begin(), faceDef.end() );
|
|
}
|
|
|
|
return makePoly;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : clearSubMesh
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static bool clearSubMesh( SMESH_Mesh* theMesh,
|
|
const TopoDS_Shape& theShape)
|
|
{
|
|
bool removed = false;
|
|
if ( SMESH_subMesh * aSubMesh = theMesh->GetSubMeshContaining( theShape ))
|
|
{
|
|
if ( aSubMesh->GetSubMeshDS() ) {
|
|
removed =
|
|
aSubMesh->GetSubMeshDS()->NbElements() || aSubMesh->GetSubMeshDS()->NbNodes();
|
|
aSubMesh->ComputeStateEngine( SMESH_subMesh::CLEAN );
|
|
}
|
|
}
|
|
else {
|
|
SMESHDS_Mesh* aMeshDS = theMesh->GetMeshDS();
|
|
if ( SMESHDS_SubMesh* aSubMeshDS = aMeshDS->MeshElements( theShape ))
|
|
{
|
|
SMDS_ElemIteratorPtr eIt = aSubMeshDS->GetElements();
|
|
removed = eIt->more();
|
|
while ( eIt->more() )
|
|
aMeshDS->RemoveElement( eIt->next() );
|
|
SMDS_NodeIteratorPtr nIt = aSubMeshDS->GetNodes();
|
|
removed = removed || nIt->more();
|
|
while ( nIt->more() )
|
|
aMeshDS->RemoveNode( smdsNode( nIt->next() ));
|
|
}
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : clearMesh
|
|
//purpose : clear mesh elements existing on myShape in theMesh
|
|
//=======================================================================
|
|
|
|
void SMESH_Pattern::clearMesh(SMESH_Mesh* theMesh) const
|
|
{
|
|
|
|
if ( !myShape.IsNull() )
|
|
{
|
|
if ( !clearSubMesh( theMesh, myShape ) && !myIs2D ) { // myShape is SHELL but volumes may be bound to SOLID
|
|
TopTools_ListIteratorOfListOfShape it( theMesh->GetAncestors( myShape ));
|
|
for (; it.More() && it.Value().ShapeType() == TopAbs_SOLID; it.Next())
|
|
{
|
|
clearSubMesh( theMesh, it.Value() );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : MakeMesh
|
|
//purpose : Create nodes and elements in <theMesh> using nodes
|
|
// coordinates computed by either of Apply...() methods
|
|
// WARNING : StdMeshers_Projection_... relies on MakeMesh() behavior: that
|
|
// it does not care of nodes and elements already existing on
|
|
// subshapes. DO NOT MERGE them or modify also StdMeshers_Projection_..
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::MakeMesh(SMESH_Mesh* theMesh,
|
|
const bool toCreatePolygons,
|
|
const bool toCreatePolyedrs)
|
|
{
|
|
MESSAGE(" ::MakeMesh() " );
|
|
if ( !myIsComputed )
|
|
return setErrorCode( ERR_MAKEM_NOT_COMPUTED );
|
|
|
|
mergePoints( toCreatePolygons );
|
|
|
|
SMESHDS_Mesh* aMeshDS = theMesh->GetMeshDS();
|
|
|
|
// clear elements and nodes existing on myShape
|
|
clearMesh(theMesh);
|
|
|
|
bool onMeshElements = ( !myElements.empty() );
|
|
|
|
// Create missing nodes
|
|
|
|
vector< const SMDS_MeshNode* > nodesVector; // i-th point/xyz -> node
|
|
if ( onMeshElements )
|
|
{
|
|
nodesVector.resize( Max( myXYZ.size(), myXYZIdToNodeMap.rbegin()->first ), 0 );
|
|
map< int, const SMDS_MeshNode*>::iterator i_node = myXYZIdToNodeMap.begin();
|
|
for ( ; i_node != myXYZIdToNodeMap.end(); i_node++ ) {
|
|
nodesVector[ i_node->first ] = i_node->second;
|
|
}
|
|
for ( int i = 0; i < myXYZ.size(); ++i ) {
|
|
if ( !nodesVector[ i ] && isDefined( myXYZ[ i ] ) )
|
|
nodesVector[ i ] = aMeshDS->AddNode (myXYZ[ i ].X(),
|
|
myXYZ[ i ].Y(),
|
|
myXYZ[ i ].Z());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
nodesVector.resize( myPoints.size(), 0 );
|
|
|
|
// to find point index
|
|
map< TPoint*, int > pointIndex;
|
|
for ( int i = 0; i < myPoints.size(); i++ )
|
|
pointIndex.insert( make_pair( & myPoints[ i ], i ));
|
|
|
|
// loop on sub-shapes of myShape: create nodes
|
|
map< int, list< TPoint* > >::iterator idPointIt = myShapeIDToPointsMap.begin();
|
|
for ( ; idPointIt != myShapeIDToPointsMap.end(); idPointIt++ )
|
|
{
|
|
TopoDS_Shape S;
|
|
//SMESHDS_SubMesh * subMeshDS = 0;
|
|
if ( !myShapeIDMap.IsEmpty() ) {
|
|
S = myShapeIDMap( idPointIt->first );
|
|
//subMeshDS = aMeshDS->MeshElements( S );
|
|
}
|
|
list< TPoint* > & points = idPointIt->second;
|
|
list< TPoint* >::iterator pIt = points.begin();
|
|
for ( ; pIt != points.end(); pIt++ )
|
|
{
|
|
TPoint* point = *pIt;
|
|
int pIndex = pointIndex[ point ];
|
|
if ( nodesVector [ pIndex ] )
|
|
continue;
|
|
SMDS_MeshNode* node = aMeshDS->AddNode (point->myXYZ.X(),
|
|
point->myXYZ.Y(),
|
|
point->myXYZ.Z());
|
|
nodesVector [ pIndex ] = node;
|
|
|
|
if ( true /*subMeshDS*/ ) {
|
|
// !!!!! do not merge new nodes with ones existing on submeshes (see method comment)
|
|
switch ( S.ShapeType() ) {
|
|
case TopAbs_VERTEX: {
|
|
aMeshDS->SetNodeOnVertex( node, TopoDS::Vertex( S )); break;
|
|
}
|
|
case TopAbs_EDGE: {
|
|
aMeshDS->SetNodeOnEdge( node, TopoDS::Edge( S ), point->myU ); break;
|
|
}
|
|
case TopAbs_FACE: {
|
|
aMeshDS->SetNodeOnFace( node, TopoDS::Face( S ),
|
|
point->myUV.X(), point->myUV.Y() ); break;
|
|
}
|
|
default:
|
|
aMeshDS->SetNodeInVolume( node, TopoDS::Shell( S ));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// create elements
|
|
|
|
if ( onMeshElements )
|
|
{
|
|
// prepare data to create poly elements
|
|
makePolyElements( nodesVector, toCreatePolygons, toCreatePolyedrs );
|
|
|
|
// refine elements
|
|
createElements( theMesh, nodesVector, myElemXYZIDs, myElements );
|
|
// sew old and new elements
|
|
createElements( theMesh, nodesVector, myPolyElemXYZIDs, myPolyElems );
|
|
}
|
|
else
|
|
{
|
|
createElements( theMesh, nodesVector, myElemPointIDs, myElements );
|
|
}
|
|
|
|
// const map<int,SMESHDS_SubMesh*>& sm = aMeshDS->SubMeshes();
|
|
// map<int,SMESHDS_SubMesh*>::const_iterator i_sm = sm.begin();
|
|
// for ( ; i_sm != sm.end(); i_sm++ )
|
|
// {
|
|
// cout << " SM " << i_sm->first << " ";
|
|
// TopAbs::Print( aMeshDS->IndexToShape( i_sm->first ).ShapeType(), cout)<< " ";
|
|
// //SMDS_ElemIteratorPtr GetElements();
|
|
// SMDS_NodeIteratorPtr nit = i_sm->second->GetNodes();
|
|
// while ( nit->more() )
|
|
// cout << nit->next()->GetID() << " ";
|
|
// cout << endl;
|
|
// }
|
|
return setErrorCode( ERR_OK );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : createElements
|
|
//purpose : add elements to the mesh
|
|
//=======================================================================
|
|
|
|
void SMESH_Pattern::createElements(SMESH_Mesh* theMesh,
|
|
const vector<const SMDS_MeshNode* >& theNodesVector,
|
|
const list< TElemDef > & theElemNodeIDs,
|
|
const vector<const SMDS_MeshElement*>& theElements)
|
|
{
|
|
SMESHDS_Mesh* aMeshDS = theMesh->GetMeshDS();
|
|
SMESH_MeshEditor editor( theMesh );
|
|
|
|
bool onMeshElements = !theElements.empty();
|
|
|
|
// shapes and groups theElements are on
|
|
vector< int > shapeIDs;
|
|
vector< list< SMESHDS_Group* > > groups;
|
|
set< const SMDS_MeshNode* > shellNodes;
|
|
if ( onMeshElements )
|
|
{
|
|
shapeIDs.resize( theElements.size() );
|
|
groups.resize( theElements.size() );
|
|
const set<SMESHDS_GroupBase*>& allGroups = aMeshDS->GetGroups();
|
|
set<SMESHDS_GroupBase*>::const_iterator grIt;
|
|
for ( int i = 0; i < theElements.size(); i++ )
|
|
{
|
|
shapeIDs[ i ] = editor.FindShape( theElements[ i ] );
|
|
for ( grIt = allGroups.begin(); grIt != allGroups.end(); grIt++ ) {
|
|
SMESHDS_Group* group = dynamic_cast<SMESHDS_Group*>( *grIt );
|
|
if ( group && group->SMDSGroup().Contains( theElements[ i ] ))
|
|
groups[ i ].push_back( group );
|
|
}
|
|
}
|
|
// get all nodes bound to shells because their SpacePosition is not set
|
|
// by SMESHDS_Mesh::SetNodeInVolume()
|
|
TopoDS_Shape aMainShape = aMeshDS->ShapeToMesh();
|
|
if ( !aMainShape.IsNull() ) {
|
|
TopExp_Explorer shellExp( aMainShape, TopAbs_SHELL );
|
|
for ( ; shellExp.More(); shellExp.Next() )
|
|
{
|
|
SMESHDS_SubMesh * sm = aMeshDS->MeshElements( shellExp.Current() );
|
|
if ( sm ) {
|
|
SMDS_NodeIteratorPtr nIt = sm->GetNodes();
|
|
while ( nIt->more() )
|
|
shellNodes.insert( nIt->next() );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// nb new elements per a refined element
|
|
int nbNewElemsPerOld = 1;
|
|
if ( onMeshElements )
|
|
nbNewElemsPerOld = theElemNodeIDs.size() / theElements.size();
|
|
|
|
bool is2d = myIs2D;
|
|
|
|
list< TElemDef >::const_iterator enIt = theElemNodeIDs.begin();
|
|
list< vector<int> >::iterator quantity = myPolyhedronQuantities.begin();
|
|
for ( int iElem = 0; enIt != theElemNodeIDs.end(); enIt++, iElem++ )
|
|
{
|
|
const TElemDef & elemNodeInd = *enIt;
|
|
// retrieve nodes
|
|
vector< const SMDS_MeshNode* > nodes( elemNodeInd.size() );
|
|
TElemDef::const_iterator id = elemNodeInd.begin();
|
|
int nbNodes;
|
|
for ( nbNodes = 0; id != elemNodeInd.end(); id++ ) {
|
|
if ( *id < theNodesVector.size() )
|
|
nodes[ nbNodes++ ] = theNodesVector[ *id ];
|
|
else
|
|
nodes[ nbNodes++ ] = myXYZIdToNodeMap[ *id ];
|
|
}
|
|
// dim of refined elem
|
|
int elemIndex = iElem / nbNewElemsPerOld; // refined element index
|
|
if ( onMeshElements ) {
|
|
is2d = ( theElements[ elemIndex ]->GetType() == SMDSAbs_Face );
|
|
}
|
|
// add an element
|
|
const SMDS_MeshElement* elem = 0;
|
|
if ( is2d ) {
|
|
switch ( nbNodes ) {
|
|
case 3:
|
|
elem = aMeshDS->AddFace( nodes[0], nodes[1], nodes[2] ); break;
|
|
case 4:
|
|
elem = aMeshDS->AddFace( nodes[0], nodes[1], nodes[2], nodes[3] ); break;
|
|
case 6:
|
|
if ( !onMeshElements ) {// create a quadratic face
|
|
elem = aMeshDS->AddFace (nodes[0], nodes[1], nodes[2], nodes[3],
|
|
nodes[4], nodes[5] ); break;
|
|
} // else do not break but create a polygon
|
|
case 8:
|
|
if ( !onMeshElements ) {// create a quadratic face
|
|
elem = aMeshDS->AddFace (nodes[0], nodes[1], nodes[2], nodes[3],
|
|
nodes[4], nodes[5], nodes[6], nodes[7] ); break;
|
|
} // else do not break but create a polygon
|
|
default:
|
|
elem = aMeshDS->AddPolygonalFace( nodes );
|
|
}
|
|
}
|
|
else {
|
|
switch ( nbNodes ) {
|
|
case 4:
|
|
elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3] ); break;
|
|
case 5:
|
|
elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3],
|
|
nodes[4] ); break;
|
|
case 6:
|
|
elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3],
|
|
nodes[4], nodes[5] ); break;
|
|
case 8:
|
|
elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3],
|
|
nodes[4], nodes[5], nodes[6], nodes[7] ); break;
|
|
default:
|
|
elem = aMeshDS->AddPolyhedralVolume( nodes, *quantity++ );
|
|
}
|
|
}
|
|
// set element on a shape
|
|
if ( elem && onMeshElements ) // applied to mesh elements
|
|
{
|
|
int shapeID = shapeIDs[ elemIndex ];
|
|
if ( shapeID > 0 ) {
|
|
aMeshDS->SetMeshElementOnShape( elem, shapeID );
|
|
// set nodes on a shape
|
|
TopoDS_Shape S = aMeshDS->IndexToShape( shapeID );
|
|
if ( S.ShapeType() == TopAbs_SOLID ) {
|
|
TopoDS_Iterator shellIt( S );
|
|
if ( shellIt.More() )
|
|
shapeID = aMeshDS->ShapeToIndex( shellIt.Value() );
|
|
}
|
|
SMDS_ElemIteratorPtr noIt = elem->nodesIterator();
|
|
while ( noIt->more() ) {
|
|
SMDS_MeshNode* node = const_cast<SMDS_MeshNode*>(smdsNode( noIt->next() ));
|
|
if (!node->GetPosition()->GetShapeId() &&
|
|
shellNodes.find( node ) == shellNodes.end() ) {
|
|
if ( S.ShapeType() == TopAbs_FACE )
|
|
aMeshDS->SetNodeOnFace( node, shapeID );
|
|
else {
|
|
aMeshDS->SetNodeInVolume( node, shapeID );
|
|
shellNodes.insert( node );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// add elem in groups
|
|
list< SMESHDS_Group* >::iterator g = groups[ elemIndex ].begin();
|
|
for ( ; g != groups[ elemIndex ].end(); ++g )
|
|
(*g)->SMDSGroup().Add( elem );
|
|
}
|
|
if ( elem && !myShape.IsNull() ) // applied to shape
|
|
aMeshDS->SetMeshElementOnShape( elem, myShape );
|
|
}
|
|
|
|
// make that SMESH_subMesh::_computeState == COMPUTE_OK
|
|
// so that operations with hypotheses will erase the mesh being built
|
|
|
|
SMESH_subMesh * subMesh;
|
|
if ( !myShape.IsNull() ) {
|
|
subMesh = theMesh->GetSubMeshContaining( myShape );
|
|
if ( subMesh )
|
|
subMesh->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
|
|
}
|
|
if ( onMeshElements ) {
|
|
list< int > elemIDs;
|
|
for ( int i = 0; i < theElements.size(); i++ )
|
|
{
|
|
subMesh = theMesh->GetSubMeshContaining( shapeIDs[ i ] );
|
|
if ( subMesh )
|
|
subMesh->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
|
|
|
|
elemIDs.push_back( theElements[ i ]->GetID() );
|
|
}
|
|
// remove refined elements
|
|
editor.Remove( elemIDs, false );
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : isReversed
|
|
//purpose : check xyz ids order in theIdsList taking into account
|
|
// theFirstNode on a link
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::isReversed(const SMDS_MeshNode* theFirstNode,
|
|
const list< int >& theIdsList) const
|
|
{
|
|
if ( theIdsList.size() < 2 )
|
|
return false;
|
|
|
|
gp_Pnt Pf ( theFirstNode->X(), theFirstNode->Y(), theFirstNode->Z() );
|
|
gp_Pnt P[2];
|
|
list<int>::const_iterator id = theIdsList.begin();
|
|
for ( int i = 0; i < 2; ++i, ++id ) {
|
|
if ( *id < myXYZ.size() )
|
|
P[ i ] = myXYZ[ *id ];
|
|
else {
|
|
map< int, const SMDS_MeshNode*>::const_iterator i_n;
|
|
i_n = myXYZIdToNodeMap.find( *id );
|
|
ASSERT( i_n != myXYZIdToNodeMap.end() );
|
|
const SMDS_MeshNode* n = i_n->second;
|
|
P[ i ].SetCoord( n->X(), n->Y(), n->Z() );
|
|
}
|
|
}
|
|
return Pf.SquareDistance( P[ 1 ] ) < Pf.SquareDistance( P[ 0 ] );
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : arrangeBoundaries
|
|
//purpose : if there are several wires, arrange boundaryPoints so that
|
|
// the outer wire goes first and fix inner wires orientation
|
|
// update myKeyPointIDs to correspond to the order of key-points
|
|
// in boundaries; sort internal boundaries by the nb of key-points
|
|
//=======================================================================
|
|
|
|
void SMESH_Pattern::arrangeBoundaries (list< list< TPoint* > >& boundaryList)
|
|
{
|
|
typedef list< list< TPoint* > >::iterator TListOfListIt;
|
|
TListOfListIt bndIt;
|
|
list< TPoint* >::iterator pIt;
|
|
|
|
int nbBoundaries = boundaryList.size();
|
|
if ( nbBoundaries > 1 )
|
|
{
|
|
// sort boundaries by nb of key-points
|
|
if ( nbBoundaries > 2 )
|
|
{
|
|
// move boundaries in tmp list
|
|
list< list< TPoint* > > tmpList;
|
|
tmpList.splice( tmpList.begin(), boundaryList, boundaryList.begin(), boundaryList.end());
|
|
// make a map nb-key-points to boundary-position-in-tmpList,
|
|
// boundary-positions get ordered in it
|
|
typedef map< int, TListOfListIt > TNbKpBndPosMap;
|
|
TNbKpBndPosMap nbKpBndPosMap;
|
|
bndIt = tmpList.begin();
|
|
list< int >::iterator nbKpIt = myNbKeyPntInBoundary.begin();
|
|
for ( ; nbKpIt != myNbKeyPntInBoundary.end(); nbKpIt++, bndIt++ ) {
|
|
int nb = *nbKpIt * nbBoundaries;
|
|
while ( nbKpBndPosMap.find ( nb ) != nbKpBndPosMap.end() )
|
|
nb++;
|
|
nbKpBndPosMap.insert( TNbKpBndPosMap::value_type( nb, bndIt ));
|
|
}
|
|
// move boundaries back to boundaryList
|
|
TNbKpBndPosMap::iterator nbKpBndPosIt = nbKpBndPosMap.begin();
|
|
for ( ; nbKpBndPosIt != nbKpBndPosMap.end(); nbKpBndPosIt++ ) {
|
|
TListOfListIt & bndPos2 = (*nbKpBndPosIt).second;
|
|
TListOfListIt bndPos1 = bndPos2++;
|
|
boundaryList.splice( boundaryList.end(), tmpList, bndPos1, bndPos2 );
|
|
}
|
|
}
|
|
|
|
// Look for the outer boundary: the one with the point with the least X
|
|
double leastX = DBL_MAX;
|
|
TListOfListIt outerBndPos;
|
|
for ( bndIt = boundaryList.begin(); bndIt != boundaryList.end(); bndIt++ )
|
|
{
|
|
list< TPoint* >& boundary = (*bndIt);
|
|
for ( pIt = boundary.begin(); pIt != boundary.end(); pIt++)
|
|
{
|
|
TPoint* point = *pIt;
|
|
if ( point->myInitXYZ.X() < leastX ) {
|
|
leastX = point->myInitXYZ.X();
|
|
outerBndPos = bndIt;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( outerBndPos != boundaryList.begin() )
|
|
boundaryList.splice( boundaryList.begin(), boundaryList, outerBndPos, ++outerBndPos );
|
|
|
|
} // if nbBoundaries > 1
|
|
|
|
// Check boundaries orientation and re-fill myKeyPointIDs
|
|
|
|
set< TPoint* > keyPointSet;
|
|
list< int >::iterator kpIt = myKeyPointIDs.begin();
|
|
for ( ; kpIt != myKeyPointIDs.end(); kpIt++ )
|
|
keyPointSet.insert( & myPoints[ *kpIt ]);
|
|
myKeyPointIDs.clear();
|
|
|
|
// update myNbKeyPntInBoundary also
|
|
list< int >::iterator nbKpIt = myNbKeyPntInBoundary.begin();
|
|
|
|
for ( bndIt = boundaryList.begin(); bndIt != boundaryList.end(); bndIt++, nbKpIt++ )
|
|
{
|
|
// find the point with the least X
|
|
double leastX = DBL_MAX;
|
|
list< TPoint* >::iterator xpIt;
|
|
list< TPoint* >& boundary = (*bndIt);
|
|
for ( pIt = boundary.begin(); pIt != boundary.end(); pIt++)
|
|
{
|
|
TPoint* point = *pIt;
|
|
if ( point->myInitXYZ.X() < leastX ) {
|
|
leastX = point->myInitXYZ.X();
|
|
xpIt = pIt;
|
|
}
|
|
}
|
|
// find points next to the point with the least X
|
|
TPoint* p = *xpIt, *pPrev, *pNext;
|
|
if ( p == boundary.front() )
|
|
pPrev = *(++boundary.rbegin());
|
|
else {
|
|
xpIt--;
|
|
pPrev = *xpIt;
|
|
xpIt++;
|
|
}
|
|
if ( p == boundary.back() )
|
|
pNext = *(++boundary.begin());
|
|
else {
|
|
xpIt++;
|
|
pNext = *xpIt;
|
|
}
|
|
// vectors of boundary direction near <p>
|
|
gp_Vec2d v1( pPrev->myInitUV, p->myInitUV ), v2( p->myInitUV, pNext->myInitUV );
|
|
double sqMag1 = v1.SquareMagnitude(), sqMag2 = v2.SquareMagnitude();
|
|
if ( sqMag1 > DBL_MIN && sqMag2 > DBL_MIN ) {
|
|
double yPrev = v1.Y() / sqrt( sqMag1 );
|
|
double yNext = v2.Y() / sqrt( sqMag2 );
|
|
double sumY = yPrev + yNext;
|
|
bool reverse;
|
|
if ( bndIt == boundaryList.begin() ) // outer boundary
|
|
reverse = sumY > 0;
|
|
else
|
|
reverse = sumY < 0;
|
|
if ( reverse )
|
|
boundary.reverse();
|
|
}
|
|
|
|
// Put key-point IDs of a well-oriented boundary in myKeyPointIDs
|
|
(*nbKpIt) = 0; // count nb of key-points again
|
|
pIt = boundary.begin();
|
|
for ( ; pIt != boundary.end(); pIt++)
|
|
{
|
|
TPoint* point = *pIt;
|
|
if ( keyPointSet.find( point ) == keyPointSet.end() )
|
|
continue;
|
|
// find an index of a keypoint
|
|
int index = 0;
|
|
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
|
|
for ( ; pVecIt != myPoints.end(); pVecIt++, index++ )
|
|
if ( &(*pVecIt) == point )
|
|
break;
|
|
myKeyPointIDs.push_back( index );
|
|
(*nbKpIt)++;
|
|
}
|
|
myKeyPointIDs.pop_back(); // remove the first key-point from the back
|
|
(*nbKpIt)--;
|
|
|
|
} // loop on a list of boundaries
|
|
|
|
ASSERT( myKeyPointIDs.size() == keyPointSet.size() );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : findBoundaryPoints
|
|
//purpose : if loaded from file, find points to map on edges and faces and
|
|
// compute their parameters
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::findBoundaryPoints()
|
|
{
|
|
if ( myIsBoundaryPointsFound ) return true;
|
|
|
|
MESSAGE(" findBoundaryPoints() ");
|
|
|
|
myNbKeyPntInBoundary.clear();
|
|
|
|
if ( myIs2D )
|
|
{
|
|
set< TPoint* > pointsInElems;
|
|
|
|
// Find free links of elements:
|
|
// put links of all elements in a set and remove links encountered twice
|
|
|
|
typedef pair< TPoint*, TPoint*> TLink;
|
|
set< TLink > linkSet;
|
|
list<TElemDef >::iterator epIt = myElemPointIDs.begin();
|
|
for ( ; epIt != myElemPointIDs.end(); epIt++ )
|
|
{
|
|
TElemDef & elemPoints = *epIt;
|
|
TElemDef::iterator pIt = elemPoints.begin();
|
|
int prevP = elemPoints.back();
|
|
for ( ; pIt != elemPoints.end(); pIt++ ) {
|
|
TPoint* p1 = & myPoints[ prevP ];
|
|
TPoint* p2 = & myPoints[ *pIt ];
|
|
TLink link(( p1 < p2 ? p1 : p2 ), ( p1 < p2 ? p2 : p1 ));
|
|
ASSERT( link.first != link.second );
|
|
pair<set< TLink >::iterator,bool> itUniq = linkSet.insert( link );
|
|
if ( !itUniq.second )
|
|
linkSet.erase( itUniq.first );
|
|
prevP = *pIt;
|
|
|
|
pointsInElems.insert( p1 );
|
|
}
|
|
}
|
|
// Now linkSet contains only free links,
|
|
// find the points order that they have in boundaries
|
|
|
|
// 1. make a map of key-points
|
|
set< TPoint* > keyPointSet;
|
|
list< int >::iterator kpIt = myKeyPointIDs.begin();
|
|
for ( ; kpIt != myKeyPointIDs.end(); kpIt++ )
|
|
keyPointSet.insert( & myPoints[ *kpIt ]);
|
|
|
|
// 2. chain up boundary points
|
|
list< list< TPoint* > > boundaryList;
|
|
boundaryList.push_back( list< TPoint* >() );
|
|
list< TPoint* > * boundary = & boundaryList.back();
|
|
|
|
TPoint *point1, *point2, *keypoint1;
|
|
kpIt = myKeyPointIDs.begin();
|
|
point1 = keypoint1 = & myPoints[ *kpIt++ ];
|
|
// loop on free links: look for the next point
|
|
int iKeyPoint = 0;
|
|
set< TLink >::iterator lIt = linkSet.begin();
|
|
while ( lIt != linkSet.end() )
|
|
{
|
|
if ( (*lIt).first == point1 )
|
|
point2 = (*lIt).second;
|
|
else if ( (*lIt).second == point1 )
|
|
point2 = (*lIt).first;
|
|
else {
|
|
lIt++;
|
|
continue;
|
|
}
|
|
linkSet.erase( lIt );
|
|
lIt = linkSet.begin();
|
|
|
|
if ( keyPointSet.find( point2 ) == keyPointSet.end() ) // not a key-point
|
|
{
|
|
boundary->push_back( point2 );
|
|
}
|
|
else // a key-point found
|
|
{
|
|
keyPointSet.erase( point2 ); // keyPointSet contains not found key-points only
|
|
iKeyPoint++;
|
|
if ( point2 != keypoint1 ) // its not the boundary end
|
|
{
|
|
boundary->push_back( point2 );
|
|
}
|
|
else // the boundary end reached
|
|
{
|
|
boundary->push_front( keypoint1 );
|
|
boundary->push_back( keypoint1 );
|
|
myNbKeyPntInBoundary.push_back( iKeyPoint );
|
|
if ( keyPointSet.empty() )
|
|
break; // all boundaries containing key-points are found
|
|
|
|
// prepare to search for the next boundary
|
|
boundaryList.push_back( list< TPoint* >() );
|
|
boundary = & boundaryList.back();
|
|
point2 = keypoint1 = (*keyPointSet.begin());
|
|
}
|
|
}
|
|
point1 = point2;
|
|
} // loop on the free links set
|
|
|
|
if ( boundary->empty() ) {
|
|
MESSAGE(" a separate key-point");
|
|
return setErrorCode( ERR_READ_BAD_KEY_POINT );
|
|
}
|
|
|
|
// if there are several wires, arrange boundaryPoints so that
|
|
// the outer wire goes first and fix inner wires orientation;
|
|
// sort myKeyPointIDs to correspond to the order of key-points
|
|
// in boundaries
|
|
arrangeBoundaries( boundaryList );
|
|
|
|
// Find correspondence shape ID - points,
|
|
// compute points parameter on edge
|
|
|
|
keyPointSet.clear();
|
|
for ( kpIt = myKeyPointIDs.begin(); kpIt != myKeyPointIDs.end(); kpIt++ )
|
|
keyPointSet.insert( & myPoints[ *kpIt ]);
|
|
|
|
set< TPoint* > edgePointSet; // to find in-face points
|
|
int vertexID = 1; // the first index in TopTools_IndexedMapOfShape
|
|
int edgeID = myKeyPointIDs.size() + 1;
|
|
|
|
list< list< TPoint* > >::iterator bndIt = boundaryList.begin();
|
|
for ( ; bndIt != boundaryList.end(); bndIt++ )
|
|
{
|
|
boundary = & (*bndIt);
|
|
double edgeLength = 0;
|
|
list< TPoint* >::iterator pIt = boundary->begin();
|
|
getShapePoints( edgeID ).push_back( *pIt );
|
|
getShapePoints( vertexID++ ).push_back( *pIt );
|
|
for ( pIt++; pIt != boundary->end(); pIt++)
|
|
{
|
|
list< TPoint* > & edgePoints = getShapePoints( edgeID );
|
|
TPoint* prevP = edgePoints.empty() ? 0 : edgePoints.back();
|
|
TPoint* point = *pIt;
|
|
edgePointSet.insert( point );
|
|
if ( keyPointSet.find( point ) == keyPointSet.end() ) // inside-edge point
|
|
{
|
|
edgePoints.push_back( point );
|
|
edgeLength += ( point->myInitUV - prevP->myInitUV ).Modulus();
|
|
point->myInitU = edgeLength;
|
|
}
|
|
else // a key-point
|
|
{
|
|
// treat points on the edge which ends up: compute U [0,1]
|
|
edgePoints.push_back( point );
|
|
if ( edgePoints.size() > 2 ) {
|
|
edgeLength += ( point->myInitUV - prevP->myInitUV ).Modulus();
|
|
list< TPoint* >::iterator epIt = edgePoints.begin();
|
|
for ( ; epIt != edgePoints.end(); epIt++ )
|
|
(*epIt)->myInitU /= edgeLength;
|
|
}
|
|
// begin the next edge treatment
|
|
edgeLength = 0;
|
|
edgeID++;
|
|
if ( point != boundary->front() ) { // not the first key-point again
|
|
getShapePoints( edgeID ).push_back( point );
|
|
getShapePoints( vertexID++ ).push_back( point );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// find in-face points
|
|
list< TPoint* > & facePoints = getShapePoints( edgeID );
|
|
vector< TPoint >::iterator pVecIt = myPoints.begin();
|
|
for ( ; pVecIt != myPoints.end(); pVecIt++ ) {
|
|
TPoint* point = &(*pVecIt);
|
|
if ( edgePointSet.find( point ) == edgePointSet.end() &&
|
|
pointsInElems.find( point ) != pointsInElems.end())
|
|
facePoints.push_back( point );
|
|
}
|
|
|
|
} // 2D case
|
|
|
|
else // 3D case
|
|
{
|
|
// bind points to shapes according to point parameters
|
|
vector< TPoint >::iterator pVecIt = myPoints.begin();
|
|
for ( int i = 0; pVecIt != myPoints.end(); pVecIt++, i++ ) {
|
|
TPoint* point = &(*pVecIt);
|
|
int shapeID = SMESH_Block::GetShapeIDByParams( point->myInitXYZ );
|
|
getShapePoints( shapeID ).push_back( point );
|
|
// detect key-points
|
|
if ( SMESH_Block::IsVertexID( shapeID ))
|
|
myKeyPointIDs.push_back( i );
|
|
}
|
|
}
|
|
|
|
myIsBoundaryPointsFound = true;
|
|
return myIsBoundaryPointsFound;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Clear
|
|
//purpose : clear fields
|
|
//=======================================================================
|
|
|
|
void SMESH_Pattern::Clear()
|
|
{
|
|
myIsComputed = myIsBoundaryPointsFound = false;
|
|
|
|
myPoints.clear();
|
|
myKeyPointIDs.clear();
|
|
myElemPointIDs.clear();
|
|
myShapeIDToPointsMap.clear();
|
|
myShapeIDMap.Clear();
|
|
myShape.Nullify();
|
|
myNbKeyPntInBoundary.clear();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : setShapeToMesh
|
|
//purpose : set a shape to be meshed. Return True if meshing is possible
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::setShapeToMesh(const TopoDS_Shape& theShape)
|
|
{
|
|
if ( !IsLoaded() ) {
|
|
MESSAGE( "Pattern not loaded" );
|
|
return setErrorCode( ERR_APPL_NOT_LOADED );
|
|
}
|
|
|
|
TopAbs_ShapeEnum aType = theShape.ShapeType();
|
|
bool dimOk = ( myIs2D ? aType == TopAbs_FACE : aType == TopAbs_SHELL );
|
|
if ( !dimOk ) {
|
|
MESSAGE( "Pattern dimention mismatch" );
|
|
return setErrorCode( ERR_APPL_BAD_DIMENTION );
|
|
}
|
|
|
|
// check if a face is closed
|
|
int nbNodeOnSeamEdge = 0;
|
|
if ( myIs2D ) {
|
|
TopoDS_Face face = TopoDS::Face( theShape );
|
|
TopExp_Explorer eExp( theShape, TopAbs_EDGE );
|
|
for ( ; eExp.More() && nbNodeOnSeamEdge == 0; eExp.Next() )
|
|
if ( BRep_Tool::IsClosed( TopoDS::Edge( eExp.Current() ), face ))
|
|
nbNodeOnSeamEdge = 2;
|
|
}
|
|
|
|
// check nb of vertices
|
|
TopTools_IndexedMapOfShape vMap;
|
|
TopExp::MapShapes( theShape, TopAbs_VERTEX, vMap );
|
|
if ( vMap.Extent() + nbNodeOnSeamEdge != myKeyPointIDs.size() ) {
|
|
MESSAGE( myKeyPointIDs.size() + nbNodeOnSeamEdge << " != " << vMap.Extent() );
|
|
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
|
|
}
|
|
|
|
myElements.clear(); // not refine elements
|
|
myElemXYZIDs.clear();
|
|
|
|
myShapeIDMap.Clear();
|
|
myShape = theShape;
|
|
return true;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetMappedPoints
|
|
//purpose : Return nodes coordinates computed by Apply() method
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::GetMappedPoints ( list< const gp_XYZ * > & thePoints ) const
|
|
{
|
|
thePoints.clear();
|
|
if ( !myIsComputed )
|
|
return false;
|
|
|
|
if ( myElements.empty() ) { // applied to shape
|
|
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
|
|
for ( ; pVecIt != myPoints.end(); pVecIt++ )
|
|
thePoints.push_back( & (*pVecIt).myXYZ.XYZ() );
|
|
}
|
|
else { // applied to mesh elements
|
|
const gp_XYZ * definedXYZ = & myPoints[ myKeyPointIDs.front() ].myXYZ.XYZ();
|
|
vector<gp_XYZ>::const_iterator xyz = myXYZ.begin();
|
|
for ( ; xyz != myXYZ.end(); ++xyz )
|
|
if ( !isDefined( *xyz ))
|
|
thePoints.push_back( definedXYZ );
|
|
else
|
|
thePoints.push_back( & (*xyz) );
|
|
}
|
|
return !thePoints.empty();
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : GetPoints
|
|
//purpose : Return nodes coordinates of the pattern
|
|
//=======================================================================
|
|
|
|
bool SMESH_Pattern::GetPoints ( list< const gp_XYZ * > & thePoints ) const
|
|
{
|
|
thePoints.clear();
|
|
|
|
if ( !IsLoaded() )
|
|
return false;
|
|
|
|
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
|
|
for ( ; pVecIt != myPoints.end(); pVecIt++ )
|
|
thePoints.push_back( & (*pVecIt).myInitXYZ );
|
|
|
|
return ( thePoints.size() > 0 );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : getShapePoints
|
|
//purpose : return list of points located on theShape
|
|
//=======================================================================
|
|
|
|
list< SMESH_Pattern::TPoint* > &
|
|
SMESH_Pattern::getShapePoints(const TopoDS_Shape& theShape)
|
|
{
|
|
int aShapeID;
|
|
if ( !myShapeIDMap.Contains( theShape ))
|
|
aShapeID = myShapeIDMap.Add( theShape );
|
|
else
|
|
aShapeID = myShapeIDMap.FindIndex( theShape );
|
|
|
|
return myShapeIDToPointsMap[ aShapeID ];
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : getShapePoints
|
|
//purpose : return list of points located on the shape
|
|
//=======================================================================
|
|
|
|
list< SMESH_Pattern::TPoint* > & SMESH_Pattern::getShapePoints(const int theShapeID)
|
|
{
|
|
return myShapeIDToPointsMap[ theShapeID ];
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : DumpPoints
|
|
//purpose : Debug
|
|
//=======================================================================
|
|
|
|
void SMESH_Pattern::DumpPoints() const
|
|
{
|
|
#ifdef _DEBUG_
|
|
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
|
|
for ( int i = 0; pVecIt != myPoints.end(); pVecIt++, i++ )
|
|
cout << i << ": " << *pVecIt;
|
|
#endif
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : TPoint()
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
SMESH_Pattern::TPoint::TPoint()
|
|
{
|
|
#ifdef _DEBUG_
|
|
myInitXYZ.SetCoord(0,0,0);
|
|
myInitUV.SetCoord(0.,0.);
|
|
myInitU = 0;
|
|
myXYZ.SetCoord(0,0,0);
|
|
myUV.SetCoord(0.,0.);
|
|
myU = 0;
|
|
#endif
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : operator <<
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
ostream & operator <<(ostream & OS, const SMESH_Pattern::TPoint& p)
|
|
{
|
|
gp_XYZ xyz = p.myInitXYZ;
|
|
OS << "\tinit( xyz( " << xyz.X() << " " << xyz.Y() << " " << xyz.Z() << " )";
|
|
gp_XY xy = p.myInitUV;
|
|
OS << " uv( " << xy.X() << " " << xy.Y() << " )";
|
|
double u = p.myInitU;
|
|
OS << " u( " << u << " )) " << &p << endl;
|
|
xyz = p.myXYZ.XYZ();
|
|
OS << "\t ( xyz( " << xyz.X() << " " << xyz.Y() << " " << xyz.Z() << " )";
|
|
xy = p.myUV;
|
|
OS << " uv( " << xy.X() << " " << xy.Y() << " )";
|
|
u = p.myU;
|
|
OS << " u( " << u << " ))" << endl;
|
|
|
|
return OS;
|
|
}
|