mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2024-11-15 18:18:34 +05:00
253 lines
6.3 KiB
Plaintext
253 lines
6.3 KiB
Plaintext
/*!
|
|
|
|
\page tui_creating_meshes_page Creating Meshes
|
|
|
|
\n First of all see \ref example_3d_mesh "Example of 3d mesh generation",
|
|
which is an example of good python script style for Mesh module.
|
|
|
|
<br>
|
|
<h2>Construction of a Mesh</h2>
|
|
|
|
\code
|
|
import geompy
|
|
import smesh
|
|
|
|
# create a box
|
|
box = geompy.MakeBox(0., 0., 0., 100., 200., 300.)
|
|
idbox = geompy.addToStudy(box, "box")
|
|
|
|
# create a mesh
|
|
tetra = smesh.Mesh(box, "MeshBox")
|
|
|
|
algo1D = tetra.Segment()
|
|
algo1D.NumberOfSegments(7)
|
|
|
|
algo2D = tetra.Triangle()
|
|
algo2D.MaxElementArea(800.)
|
|
|
|
algo3D = tetra.Tetrahedron(smesh.NETGEN)
|
|
algo3D.MaxElementVolume(900.)
|
|
|
|
# compute the mesh
|
|
ret = tetra.Compute()
|
|
if ret == 0:
|
|
print "problem when computing the mesh"
|
|
else:
|
|
print "mesh computed"
|
|
pass
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_construction_submesh
|
|
<h2>Construction of a Submesh</h2>
|
|
|
|
\code
|
|
from geompy import *
|
|
import smesh
|
|
|
|
# create a box
|
|
box = MakeBoxDXDYDZ(10., 10., 10.)
|
|
addToStudy(box, "Box")
|
|
|
|
# select one edge of the box for definition of a local hypothesis
|
|
p5 = MakeVertex(5., 0., 0.)
|
|
EdgeX = GetEdgeNearPoint(box, p5)
|
|
addToStudyInFather(box, EdgeX, "Edge [0,0,0 - 10,0,0]")
|
|
|
|
# create a hexahedral mesh on the box
|
|
quadra = smesh.Mesh(box, "Box : quadrangle 2D mesh")
|
|
|
|
# create a regular 1D algorithm for the faces
|
|
algo1D = quadra.Segment()
|
|
|
|
# define "NumberOfSegments" hypothesis to cut
|
|
# all the edges in a fixed number of segments
|
|
algo1D.NumberOfSegments(4)
|
|
|
|
# create a quadrangle 2D algorithm for the faces
|
|
quadra.Quadrangle()
|
|
|
|
# construct a submesh on the edge with a local hypothesis
|
|
algo_local = quadra.Segment(EdgeX)
|
|
|
|
# define "Arithmetic1D" hypothesis to cut the edge in several segments with increasing arithmetic length
|
|
algo_local.Arithmetic1D(1, 4)
|
|
|
|
# define "Propagation" hypothesis that propagates all other hypotheses
|
|
# on all edges of the opposite side in case of quadrangular faces
|
|
algo_local.Propagation()
|
|
|
|
# compute the mesh
|
|
quadra.Compute()
|
|
|
|
\endcode
|
|
|
|
<br>
|
|
<h2>Change priority of submeshes in Mesh</h2>
|
|
|
|
\code
|
|
import salome
|
|
import geompy
|
|
import smesh
|
|
import SMESH
|
|
|
|
Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
|
|
[Face_1,Face_2,Face_3,Face_4,Face_5,Face_6] = geompy.SubShapeAllSorted(Box_1, geompy.ShapeType["FACE"])
|
|
|
|
# create Mesh object on Box shape
|
|
Mesh_1 = smesh.Mesh(Box_1)
|
|
|
|
# assign mesh algorithms
|
|
Regular_1D = Mesh_1.Segment()
|
|
Nb_Segments_1 = Regular_1D.NumberOfSegments(20)
|
|
Nb_Segments_1.SetDistrType( 0 )
|
|
MEFISTO_2D = Mesh_1.Triangle()
|
|
Max_Element_Area_1 = MEFISTO_2D.MaxElementArea(1200)
|
|
Tetrahedron_Netgen = Mesh_1.Tetrahedron(algo=smesh.NETGEN)
|
|
Max_Element_Volume_1 = Tetrahedron_Netgen.MaxElementVolume(40000)
|
|
|
|
# create submesh and assign algorithms on Face_1
|
|
Netgen_1D_2D = Mesh_1.Triangle(algo=smesh.NETGEN,geom=Face_1)
|
|
SubMesh_1 = Netgen_1D_2D.GetSubMesh()
|
|
NETGEN_2D_Simple_Parameters_1 = Netgen_1D_2D.Parameters(which=smesh.SIMPLE)
|
|
NETGEN_2D_Simple_Parameters_1.SetNumberOfSegments( 4 )
|
|
NETGEN_2D_Simple_Parameters_1.LengthFromEdges()
|
|
|
|
# create submesh and assign algorithms on Face_2
|
|
Netgen_1D_2D_1 = Mesh_1.Triangle(algo=smesh.NETGEN,geom=Face_2)
|
|
SubMesh_2 = Netgen_1D_2D_1.GetSubMesh()
|
|
NETGEN_2D_Simple_Parameters_2 = Netgen_1D_2D_1.Parameters(which=smesh.SIMPLE)
|
|
NETGEN_2D_Simple_Parameters_2.SetNumberOfSegments( 8 )
|
|
NETGEN_2D_Simple_Parameters_2.LengthFromEdges()
|
|
smeshObj_1 = smesh.CreateHypothesis('NETGEN_SimpleParameters_2D',
|
|
'NETGENEngine')
|
|
|
|
# create submesh and assign algorithms on Face_3
|
|
Netgen_1D_2D_2 = Mesh_1.Triangle(algo=smesh.NETGEN,geom=Face_3)
|
|
SubMesh_3 = Netgen_1D_2D_2.GetSubMesh()
|
|
NETGEN_2D_Simple_Parameters_3 = Netgen_1D_2D_2.Parameters(which=smesh.SIMPLE)
|
|
NETGEN_2D_Simple_Parameters_3.SetNumberOfSegments( 12 )
|
|
NETGEN_2D_Simple_Parameters_3.LengthFromEdges()
|
|
|
|
# check exisiting submesh priority order
|
|
[ [ SubMesh_1, SubMesh_3, SubMesh_2 ] ] = Mesh_1.GetMeshOrder()
|
|
# set new submesh order
|
|
isDone = Mesh_1.SetMeshOrder( [ [ SubMesh_1, SubMesh_2, SubMesh_3 ] ])
|
|
# compute mesh
|
|
isDone = Mesh_1.Compute()
|
|
|
|
# clear mesh result and compute with other submesh order
|
|
Mesh_1.Clear()
|
|
isDone = Mesh_1.SetMeshOrder( [ [ SubMesh_2, SubMesh_1, SubMesh_3 ] ])
|
|
isDone = Mesh_1.Compute()
|
|
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_editing_mesh
|
|
<h2>Editing of a mesh</h2>
|
|
|
|
\code
|
|
import geompy
|
|
import smesh
|
|
|
|
def PrintMeshInfo(theMesh):
|
|
aMesh = theMesh.GetMesh()
|
|
print "Information about mesh:"
|
|
print "Number of nodes : ", aMesh.NbNodes()
|
|
print "Number of edges : ", aMesh.NbEdges()
|
|
print "Number of faces : ", aMesh.NbFaces()
|
|
print "Number of volumes : ", aMesh.NbVolumes()
|
|
pass
|
|
|
|
# create a box
|
|
box = geompy.MakeBox(0., 0., 0., 20., 20., 20.)
|
|
geompy.addToStudy(box, "box")
|
|
|
|
# select one edge of the box for definition of a local hypothesis
|
|
subShapeList = geompy.SubShapeAll(box, geompy.ShapeType["EDGE"])
|
|
edge = subShapeList[0]
|
|
name = geompy.SubShapeName(edge, box)
|
|
geompy.addToStudyInFather(box, edge, name)
|
|
|
|
# create a mesh
|
|
tria = smesh.Mesh(box, "Mesh 2D")
|
|
algo1D = tria.Segment()
|
|
hyp1 = algo1D.NumberOfSegments(3)
|
|
algo2D = tria.Triangle()
|
|
hyp2 = algo2D.MaxElementArea(10.)
|
|
|
|
# create a sub-mesh
|
|
algo_local = tria.Segment(edge)
|
|
hyp3 = algo_local.Arithmetic1D(1, 6)
|
|
hyp4 = algo_local.Propagation()
|
|
|
|
# compute the mesh
|
|
tria.Compute()
|
|
PrintMeshInfo(tria)
|
|
|
|
# remove a local hypothesis
|
|
mesh = tria.GetMesh()
|
|
mesh.RemoveHypothesis(edge, hyp4)
|
|
|
|
# compute the mesh
|
|
tria.Compute()
|
|
PrintMeshInfo(tria)
|
|
|
|
# change the value of the 2D hypothesis
|
|
hyp2.SetMaxElementArea(2.)
|
|
|
|
# compute the mesh
|
|
tria.Compute()
|
|
PrintMeshInfo(tria)
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_export_mesh
|
|
<h2>Export of a Mesh</h2>
|
|
|
|
\code
|
|
import geompy
|
|
import smesh
|
|
|
|
# create a box
|
|
box = geompy.MakeBox(0., 0., 0., 100., 200., 300.)
|
|
idbox = geompy.addToStudy(box, "box")
|
|
|
|
# create a mesh
|
|
tetra = smesh.Mesh(box, "MeshBox")
|
|
|
|
algo1D = tetra.Segment()
|
|
algo1D.NumberOfSegments(7)
|
|
|
|
algo2D = tetra.Triangle()
|
|
algo2D.MaxElementArea(800.)
|
|
|
|
algo3D = tetra.Tetrahedron(smesh.NETGEN)
|
|
algo3D.MaxElementVolume(900.)
|
|
|
|
# compute the mesh
|
|
tetra.Compute()
|
|
|
|
# export the mesh in a MED file
|
|
tetra.ExportMED("/tmp/meshMED.med", 0)
|
|
\endcode
|
|
|
|
<br>
|
|
<h2>How to mesh a cylinder with hexahedrons?</h2>
|
|
Here you can see an example of python script, creating a hexahedral
|
|
mesh on a cylinder. And a picture below the source code of the script,
|
|
demonstrating the resulting mesh.
|
|
\include ex24_cylinder.py
|
|
|
|
\image html mesh_cylinder_hexa.png
|
|
|
|
<br>
|
|
\anchor tui_building_compound
|
|
<h2>Building a compound of meshes</h2>
|
|
\dontinclude SMESH_BuildCompound.py
|
|
\skipline import geompy
|
|
\until #end
|
|
|
|
*/
|