smesh/src/SMESH_SWIG/smesh_algorithm.py
eap 2283860a0a bos #20649 [CEA 19946] SMESH tests regression
partially roll back 0f2942 because of hung up at calling
   any method of shaperBuilder in TUI mode
2021-04-22 16:42:18 +03:00

482 lines
22 KiB
Python

# Copyright (C) 2007-2021 CEA/DEN, EDF R&D, OPEN CASCADE
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
## @package smesh_algorithm
# Python API for base Mesh_Algorithm class.
# This package is a part of SALOME %Mesh module Python API
import salome
from salome.geom import geomBuilder
import SMESH, StdMeshers
class Mesh_Algorithm:
"""
The base class to define meshing algorithms
Note:
This class should not be used directly, it is supposed to be sub-classed
for implementing Python API for specific meshing algorithms
For each meshing algorithm, a python class inheriting from class *Mesh_Algorithm*
should be defined. This descendant class should have two attributes defining the way
it is created by class :class:`~smeshBuilder.Mesh` (see e.g. class :class:`~StdMeshersBuilder.StdMeshersBuilder_Segment`):
- :code:`meshMethod` attribute defines name of method of class :class:`~smeshBuilder.Mesh` by calling which the
python class of algorithm is created; this method is dynamically added to the :class:`~smeshBuilder.Mesh` class
in runtime. For example, if in :code:`class MyPlugin_Algorithm` this attribute is defined as::
meshMethod = "MyAlgorithm"
then an instance of :code:`MyPlugin_Algorithm` can be created by the direct invocation of the function
of :class:`~smeshBuilder.Mesh` class::
my_algo = mesh.MyAlgorithm()
- :code:`algoType` defines type of algorithm and is used mostly to discriminate
algorithms that are created by the same method of class :class:`~smeshBuilder.Mesh`. For example, if this attribute
is specified in :code:`MyPlugin_Algorithm` class as::
algoType = "MyPLUGIN"
then it's creation code can be::
my_algo = mesh.MyAlgorithm(algo="MyPLUGIN")
"""
def __init__(self):
"""
Private constructor
"""
self.mesh = None
self.geom = None
self.subm = None
self.algo = None
pass
def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD):
"""
Finds a hypothesis in the study by its type name and parameters.
Finds only the hypotheses created in smeshBuilder engine.
Returns:
:class:`~SMESH.SMESH_Hypothesis`
"""
study = salome.myStudy
if not study: return None
#to do: find component by smeshpyD object, not by its data type
scomp = study.FindComponent(smeshpyD.ComponentDataType())
if scomp is not None:
res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot)
# Check if the root label of the hypotheses exists
if res and hypRoot is not None:
iter = study.NewChildIterator(hypRoot)
# Check all published hypotheses
while iter.More():
hypo_so_i = iter.Value()
attr = hypo_so_i.FindAttribute("AttributeIOR")[1]
if attr is not None:
anIOR = attr.Value()
if not anIOR: continue # prevent exception in orb.string_to_object()
hypo_o_i = salome.orb.string_to_object(anIOR)
if hypo_o_i is not None:
# Check if this is a hypothesis
hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis)
if hypo_i is not None:
# Check if the hypothesis belongs to current engine
if smeshpyD.GetObjectId(hypo_i) > 0:
# Check if this is the required hypothesis
if hypo_i.GetName() == hypname:
# Check arguments
if CompareMethod(hypo_i, args):
# found!!!
return hypo_i
pass
pass
pass
pass
pass
iter.Next()
pass
pass
pass
return None
def FindAlgorithm (self, algoname, smeshpyD):
"""
Finds the algorithm in the study by its type name.
Finds only the algorithms, which have been created in smeshBuilder engine.
Returns:
SMESH.SMESH_Algo
"""
study = salome.myStudy
if not study: return None
#to do: find component by smeshpyD object, not by its data type
scomp = study.FindComponent(smeshpyD.ComponentDataType())
if scomp is not None:
res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot)
# Check if the root label of the algorithms exists
if res and hypRoot is not None:
iter = study.NewChildIterator(hypRoot)
# Check all published algorithms
while iter.More():
algo_so_i = iter.Value()
attr = algo_so_i.FindAttribute("AttributeIOR")[1]
if attr is not None:
anIOR = attr.Value()
if not anIOR: continue # prevent exception in orb.string_to_object()
algo_o_i = salome.orb.string_to_object(anIOR)
if algo_o_i is not None:
# Check if this is an algorithm
algo_i = algo_o_i._narrow(SMESH.SMESH_Algo)
if algo_i is not None:
# Checks if the algorithm belongs to the current engine
if smeshpyD.GetObjectId(algo_i) > 0:
# Check if this is the required algorithm
if algo_i.GetName() == algoname:
# found!!!
return algo_i
pass
pass
pass
pass
iter.Next()
pass
pass
pass
return None
def GetSubMesh(self):
"""
If the algorithm is global, returns 0;
else returns the :class:`~SMESH.SMESH_subMesh` associated to this algorithm.
"""
return self.subm
def GetAlgorithm(self):
"""
Returns the wrapped mesher.
"""
return self.algo
def GetCompatibleHypothesis(self):
"""
Gets the list of hypothesis that can be used with this algorithm
"""
mylist = []
if self.algo:
mylist = self.algo.GetCompatibleHypothesis()
return mylist
def GetName(self):
"""
Gets the name of the algorithm
"""
from salome.smesh.smeshBuilder import GetName
return GetName(self.algo)
def SetName(self, name):
"""
Sets the name to the algorithm
"""
self.mesh.smeshpyD.SetName(self.algo, name)
def GetId(self):
"""
Gets the id of the algorithm
"""
return self.algo.GetId()
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
"""
Private method.
"""
if geom is None and mesh.mesh.HasShapeToMesh():
raise RuntimeError("Attempt to create " + hypo + " algorithm on None shape")
algo = self.FindAlgorithm(hypo, mesh.smeshpyD)
if algo is None:
algo = mesh.smeshpyD.CreateHypothesis(hypo, so)
pass
self.Assign(algo, mesh, geom)
return self.algo
def Assign(self, algo, mesh, geom):
"""
Private method
"""
from salome.smesh.smeshBuilder import AssureGeomPublished, TreatHypoStatus, GetName
if geom is None and mesh.mesh.HasShapeToMesh():
raise RuntimeError("Attempt to create " + algo + " algorithm on None shape")
self.mesh = mesh
if not geom or geom.IsSame( mesh.geom ):
self.geom = mesh.geom
else:
self.geom = geom
AssureGeomPublished( mesh, geom )
self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
self.algo = algo
status = mesh.AddHypothesis(self.algo, self.geom)
return
def CompareHyp (self, hyp, args):
print("CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName())
return False
def CompareEqualHyp (self, hyp, args):
return True
def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so",
UseExisting=0, CompareMethod="", toAdd=True):
"""
Private method
"""
from salome.smesh.smeshBuilder import TreatHypoStatus, GetName
hypo = None
if UseExisting:
if CompareMethod == "": CompareMethod = self.CompareHyp
hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD)
pass
if hypo is None:
hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so)
a = ""
s = "="
for arg in args:
argStr = str(arg)
if isinstance( arg, geomBuilder.GEOM._objref_GEOM_Object ):
argStr = arg.GetStudyEntry()
if not argStr: argStr = "GEOM_Obj_%s", arg.GetEntry()
if len( argStr ) > 10:
argStr = argStr[:7]+"..."
if argStr[0] == '[': argStr += ']'
a = a + s + argStr
s = ","
pass
if len(a) > 50:
a = a[:47]+"..."
self.mesh.smeshpyD.SetName(hypo, hyp + a)
pass
geomName=""
if self.geom:
geomName = GetName(self.geom)
if toAdd:
status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
TreatHypoStatus( status, GetName(hypo), geomName, 0, self.mesh )
return hypo
def MainShapeEntry(self):
"""
Returns entry of the shape to mesh in the study
"""
if not self.mesh or not self.mesh.GetMesh(): return ""
if not self.mesh.GetMesh().HasShapeToMesh(): return ""
shape = self.mesh.GetShape()
return shape.GetStudyEntry()
def ViscousLayers(self, thickness, numberOfLayers, stretchFactor,
faces=[], isFacesToIgnore=True,
extrMethod=StdMeshers.SURF_OFFSET_SMOOTH, groupName=""):
"""
Defines "ViscousLayers" hypothesis to give parameters of layers of prisms to build
near mesh boundary. This hypothesis can be used by several 3D algorithms:
NETGEN 3D, MG-Tetra, Hexahedron(i,j,k)
Parameters:
thickness: total thickness of layers of prisms
numberOfLayers: number of layers of prisms
stretchFactor: factor (>1.0) of growth of layer thickness towards inside of mesh
faces: list of geometrical faces (or their ids).
Viscous layers are either generated on these faces or not, depending on
the value of **isFacesToIgnore** parameter.
isFacesToIgnore: if *True*, the Viscous layers are not generated on the
faces specified by the previous parameter (**faces**).
extrMethod: extrusion method defines how position of new nodes are found during
prism construction and how creation of distorted and intersecting prisms is
prevented. Possible values are:
- StdMeshers.SURF_OFFSET_SMOOTH (default) method extrudes nodes along normal
to underlying geometrical surface. Smoothing of internal surface of
element layers can be used to avoid creation of invalid prisms.
- StdMeshers.FACE_OFFSET method extrudes nodes along average normal of
surrounding mesh faces till intersection with a neighbor mesh face
translated along its own normal by the layers thickness. Thickness
of layers can be limited to avoid creation of invalid prisms.
- StdMeshers.NODE_OFFSET method extrudes nodes along average normal of
surrounding mesh faces by the layers thickness. Thickness of
layers can be limited to avoid creation of invalid prisms.
groupName: name of a group to contain elements of layers. If not provided,
no group is created. The group is created upon mesh generation.
It can be retrieved by calling
::
group = mesh.GetGroupByName( groupName, SMESH.VOLUME )[0]
Returns:
StdMeshers.StdMeshers_ViscousLayers hypothesis
"""
if not isinstance(self.algo, SMESH._objref_SMESH_3D_Algo):
raise TypeError("ViscousLayers are supported by 3D algorithms only")
if not "ViscousLayers" in self.GetCompatibleHypothesis():
raise TypeError("ViscousLayers are not supported by %s"%self.algo.GetName())
if faces and isinstance( faces, geomBuilder.GEOM._objref_GEOM_Object ):
faces = [ faces ]
if faces and isinstance( faces[0], geomBuilder.GEOM._objref_GEOM_Object ):
faceIDs = []
for shape in faces:
try:
ff = self.mesh.geompyD.SubShapeAll( shape, self.mesh.geompyD.ShapeType["FACE"] )
for f in ff:
faceIDs.append( self.mesh.geompyD.GetSubShapeID(self.mesh.geom, f))
except:
# try to get the SHAPERSTUDY engine directly, because GetGen does not work because of
# simplification of access in geomBuilder: omniORB.registerObjref
from SHAPERSTUDY_utils import getEngine
gen = getEngine()
if gen:
aShapeOp = gen.GetIShapesOperations()
ff = aShapeOp.ExtractSubShapes( shape, self.mesh.geompyD.ShapeType["FACE"], False)
for f in ff:
faceIDs.append( aShapeOp.GetSubShapeIndex( self.mesh.geom, f ))
faces = faceIDs
hyp = self.Hypothesis("ViscousLayers",
[thickness, numberOfLayers, stretchFactor, faces, isFacesToIgnore],
toAdd=False)
hyp.SetTotalThickness( thickness )
hyp.SetNumberLayers( numberOfLayers )
hyp.SetStretchFactor( stretchFactor )
hyp.SetFaces( faces, isFacesToIgnore )
hyp.SetMethod( extrMethod )
hyp.SetGroupName( groupName )
self.mesh.AddHypothesis( hyp, self.geom )
return hyp
def ViscousLayers2D(self, thickness, numberOfLayers, stretchFactor,
edges=[], isEdgesToIgnore=True, groupName="" ):
"""
Defines "ViscousLayers2D" hypothesis to give parameters of layers of quadrilateral
elements to build near mesh boundary. This hypothesis can be used by several 2D algorithms:
NETGEN 2D, NETGEN 1D-2D, Quadrangle (mapping), MEFISTO, MG-CADSurf
Parameters:
thickness: total thickness of layers of quadrilaterals
numberOfLayers: number of layers
stretchFactor: factor (>1.0) of growth of layer thickness towards inside of mesh
edges: list of geometrical edges (or their ids).
Viscous layers are either generated on these edges or not, depending on
the value of **isEdgesToIgnore** parameter.
isEdgesToIgnore: if *True*, the Viscous layers are not generated on the
edges specified by the previous parameter (**edges**).
groupName: name of a group to contain elements of layers. If not provided,
no group is created. The group is created upon mesh generation.
It can be retrieved by calling
::
group = mesh.GetGroupByName( groupName, SMESH.FACE )[0]
Returns:
StdMeshers.StdMeshers_ViscousLayers2D hypothesis
"""
if not isinstance(self.algo, SMESH._objref_SMESH_2D_Algo):
raise TypeError("ViscousLayers2D are supported by 2D algorithms only")
if not "ViscousLayers2D" in self.GetCompatibleHypothesis():
raise TypeError("ViscousLayers2D are not supported by %s"%self.algo.GetName())
if edges and not isinstance( edges, list ) and not isinstance( edges, tuple ):
edges = [edges]
if edges and isinstance( edges[0], geomBuilder.GEOM._objref_GEOM_Object ):
edgeIDs = []
for shape in edges:
try:
ee = self.mesh.geompyD.SubShapeAll( shape, self.mesh.geompyD.ShapeType["EDGE"])
for e in ee:
edgeIDs.append( self.mesh.geompyD.GetSubShapeID( self.mesh.geom, e ))
except:
# try to get the SHAPERSTUDY engine directly, because GetGen does not work because of
# simplification of access in geomBuilder: omniORB.registerObjref
from SHAPERSTUDY_utils import getEngine
gen = getEngine()
if gen:
aShapeOp = gen.GetIShapesOperations()
ee = aShapeOp.ExtractSubShapes( shape, self.mesh.geompyD.ShapeType["EDGE"], False)
for e in ee:
edgeIDs.append( aShapeOp.GetSubShapeIndex( self.mesh.geom, e ))
edges = edgeIDs
hyp = self.Hypothesis("ViscousLayers2D",
[thickness, numberOfLayers, stretchFactor, edges, isEdgesToIgnore],
toAdd=False)
hyp.SetTotalThickness(thickness)
hyp.SetNumberLayers(numberOfLayers)
hyp.SetStretchFactor(stretchFactor)
hyp.SetEdges(edges, isEdgesToIgnore)
hyp.SetGroupName( groupName )
self.mesh.AddHypothesis( hyp, self.geom )
return hyp
def ReversedEdgeIndices(self, reverseList):
"""
Transform a list of either edges or tuples (edge, 1st_vertex_of_edge)
into a list acceptable to SetReversedEdges() of some 1D hypotheses
"""
resList = []
geompy = self.mesh.geompyD
for i in reverseList:
if isinstance( i, int ):
s = geompy.GetSubShape(self.mesh.geom, [i])
#bos #20082 begin:
if s is None and type(self.geom) != geomBuilder.GEOM._objref_GEOM_Object:
# try to get the SHAPERSTUDY engine directly, as GetGen does not work because of
# simplification of access in geomBuilder: omniORB.registerObjref
from SHAPERSTUDY_utils import getEngine
gen = getEngine()
if gen:
aShapeOp = gen.GetIShapesOperations()
s = aShapeOp.GetSubShape(self.mesh.geom, i)
#bos #20082 end
if s.GetShapeType() != geomBuilder.GEOM.EDGE:
raise TypeError("Not EDGE index given")
resList.append( i )
elif isinstance( i, geomBuilder.GEOM._objref_GEOM_Object ):
if i.GetShapeType() != geomBuilder.GEOM.EDGE:
raise TypeError("Not an EDGE given")
resList.append( geompy.GetSubShapeID(self.mesh.geom, i ))
elif len( i ) > 1:
e = i[0]
v = i[1]
if not isinstance( e, geomBuilder.GEOM._objref_GEOM_Object ) or \
not isinstance( v, geomBuilder.GEOM._objref_GEOM_Object ):
raise TypeError("A list item must be a tuple (edge, 1st_vertex_of_edge)")
if v.GetShapeType() == geomBuilder.GEOM.EDGE and \
e.GetShapeType() == geomBuilder.GEOM.VERTEX:
v,e = e,v
if e.GetShapeType() != geomBuilder.GEOM.EDGE or \
v.GetShapeType() != geomBuilder.GEOM.VERTEX:
raise TypeError("A list item must be a tuple (edge, 1st_vertex_of_edge)")
vFirst = geompy.GetVertexByIndex( e, 0, False )
tol = geompy.Tolerance( vFirst )[-1]
if geompy.MinDistance( v, vFirst ) > 1.5*tol:
resList.append( geompy.GetSubShapeID(self.mesh.geom, e ))
else:
raise TypeError("Item must be either an edge or tuple (edge, 1st_vertex_of_edge)")
return resList