smesh/src/StdMeshers/StdMeshers_CompositeHexa_3D.cxx
2020-04-15 18:19:44 +03:00

2151 lines
72 KiB
C++

// Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementation of SMESH idl descriptions
// File : StdMeshers_CompositeHexa_3D.cxx
// Module : SMESH
// Created : Tue Nov 25 11:04:59 2008
// Author : Edward AGAPOV (eap)
#include "StdMeshers_CompositeHexa_3D.hxx"
#include "SMDS_Mesh.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_SetIterator.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESHDS_SubMesh.hxx"
#include "SMESH_Block.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_ComputeError.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MeshAlgos.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include "StdMeshers_ViscousLayers.hxx"
#include <BRepAdaptor_Surface.hxx>
#include <BRep_Tool.hxx>
#include <Standard_ErrorHandler.hxx>
#include <Standard_Failure.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_MapIteratorOfMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopTools_SequenceOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Vertex.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <gp_XYZ.hxx>
#include <list>
#include <set>
#include <vector>
using namespace std;
#ifdef _DEBUG_
// #define DEB_FACES
// #define DEB_GRID
// #define DUMP_VERT(msg,V) { TopoDS_Vertex v = V; gp_Pnt p = BRep_Tool::Pnt(v); cout << msg << "( "<< p.X()<<", "<<p.Y()<<", "<<p.Z()<<" )"<<endl; }
#endif
#ifndef DUMP_VERT
#define DUMP_VERT(msg,v)
#endif
//================================================================================
// text for message about an internal error
#define ERR_LI(txt) SMESH_Comment(txt) << ":" << __LINE__
// order corresponds to right order of edges in CASCADE face
enum EQuadSides{ Q_BOTTOM=0, Q_RIGHT, Q_TOP, Q_LEFT, Q_CHILD, Q_PARENT };
enum EBoxSides{ B_BOTTOM=0, B_RIGHT, B_TOP, B_LEFT, B_FRONT, B_BACK, B_UNDEFINED };
enum EAxes{ COO_X=1, COO_Y, COO_Z };
//================================================================================
/*!
* \brief Converter of a pair of integers to a sole index
*/
struct _Indexer
{
int _xSize, _ySize;
_Indexer( int xSize, int ySize ): _xSize(xSize), _ySize(ySize) {}
int size() const { return _xSize * _ySize; }
int operator()(const int x, const int y) const { return y * _xSize + x; }
};
//================================================================================
/*!
* \brief Wrapper of a composite or an ordinary edge.
*/
class _FaceSide
{
public:
_FaceSide(const _FaceSide& other);
_FaceSide(const TopoDS_Edge& edge=TopoDS_Edge());
_FaceSide(const list<TopoDS_Edge>& edges);
_FaceSide* GetSide(const int i);
const _FaceSide* GetSide(const int i) const;
int size() const { return myChildren.size(); }
int NbVertices() const;
int NbCommonVertices( const TopTools_MapOfShape& VV ) const;
TopoDS_Vertex FirstVertex() const;
TopoDS_Vertex LastVertex() const;
TopoDS_Vertex Vertex(int i) const;
TopoDS_Edge Edge(int i) const;
bool Contain( const _FaceSide& side, int* which=0 ) const;
bool Contain( const TopoDS_Vertex& vertex ) const;
void AppendSide( const _FaceSide& side );
void SetBottomSide( int i );
int GetNbSegments(SMESH_ProxyMesh& mesh, const SMESHDS_SubMesh* smToCheckEdges=0) const;
bool StoreNodes(SMESH_ProxyMesh& mesh, vector<const SMDS_MeshNode*>& myGrid,
bool reverse, bool isProxy, const SMESHDS_SubMesh* smToCheckEdges=0 );
void SetID(EQuadSides id) { myID = id; }
static inline const TopoDS_TShape* ptr(const TopoDS_Shape& theShape)
{ return theShape.TShape().operator->(); }
void Dump() const;
private:
TopoDS_Edge myEdge;
list< _FaceSide > myChildren;
int myNbChildren;
TopTools_MapOfShape myVertices;
EQuadSides myID; // debug
};
//================================================================================
/*!
* \brief Class corresponding to a meshed composite face of a box.
* Provides simplified access to it's sub-mesh data.
*/
class _QuadFaceGrid
{
typedef list< _QuadFaceGrid > TChildren;
public:
_QuadFaceGrid();
public: //** Methods to find and orient faces of 6 sides of the box **//
//!< initialization
bool Init(const TopoDS_Face& f, SMESH_ProxyMesh& mesh );
//!< try to unite self with other face
bool AddContinuousFace( const _QuadFaceGrid& f, const TopTools_MapOfShape& internalEdges );
//!< Try to set the side as bottom hirizontal side
bool SetBottomSide(const _FaceSide& side, int* sideIndex=0);
//!< Return face adjacent to zero-based i-th side of this face
_QuadFaceGrid* FindAdjacentForSide(int i, list<_QuadFaceGrid>& faces, EBoxSides id) const;
//!< Reverse edges in order to have the bottom edge going along axes of the unit box
void ReverseEdges();
bool IsComplex() const { return !myChildren.empty(); }
int NbChildren() const { return myChildren.size(); }
typedef SMDS_SetIterator< const _QuadFaceGrid&,
TChildren::const_iterator,
SMDS::SimpleAccessor<const _QuadFaceGrid&,TChildren::const_iterator>,
SMDS::PassAllValueFilter<_QuadFaceGrid> >
TChildIterator;
TChildIterator GetChildren() const
{ return TChildIterator( myChildren.begin(), myChildren.end()); }
public: //** Loading and access to mesh **//
//!< Load nodes of a mesh
bool LoadGrid( SMESH_ProxyMesh& mesh );
//!< Computes normalized parameters of nodes of myGrid
void ComputeIJK( int i1, int i2, double v3 );
//!< Return number of segments on the hirizontal sides
int GetNbHoriSegments(SMESH_ProxyMesh& mesh, bool withBrothers=false) const;
//!< Return number of segments on the vertical sides
int GetNbVertSegments(SMESH_ProxyMesh& mesh, bool withBrothers=false) const;
//!< Return edge on the hirizontal bottom sides
int GetHoriEdges(vector<TopoDS_Edge> & edges) const;
//!< Return a node by its position
const SMDS_MeshNode* GetNode(int iHori, int iVert) const;
//!< Return node coordinates by its position
gp_XYZ GetXYZ(int iHori, int iVert) const;
//!< Return normalized parameters of nodes within the unitary cube
gp_XYZ& GetIJK(int iCol, int iRow) { return myIJK[ myIndexer( iCol, iRow )]; }
public: //** Access to member fields **//
//!< Return i-th face side (0<i<4)
const _FaceSide& GetSide(int i) const;
//!< Return it's face, NULL if it is composite
TopoDS_Face GetFace() const { return myFace; }
//!< Return normal to the face at vertex v
bool GetNormal( const TopoDS_Vertex& v, gp_Vec& n ) const;
SMESH_ComputeErrorPtr GetError() const { return myError; }
void SetID(EBoxSides id) { myID = id; }
void DumpGrid() const;
void DumpVertices() const;
private:
bool error(const std::string& text, int code = COMPERR_ALGO_FAILED)
{ myError = SMESH_ComputeError::New( code, text ); return false; }
bool error(const SMESH_ComputeErrorPtr& err)
{ myError = err; return ( !myError || myError->IsOK() ); }
bool loadCompositeGrid(SMESH_ProxyMesh& mesh);
bool fillGrid(SMESH_ProxyMesh& theMesh,
vector<const SMDS_MeshNode*> & theGrid,
const _Indexer& theIndexer,
int theX,
int theY);
bool locateChildren();
void setBrothers( set< _QuadFaceGrid* >& notLocatedBrothers );
TopoDS_Face myFace;
_FaceSide mySides;
bool myReverse;
TChildren myChildren;
_QuadFaceGrid* myLeftBottomChild;
_QuadFaceGrid* myRightBrother;
_QuadFaceGrid* myUpBrother;
_Indexer myIndexer;
vector<const SMDS_MeshNode*> myGrid;
vector<gp_XYZ> myIJK; // normalized parameters of nodes
SMESH_ComputeErrorPtr myError;
EBoxSides myID; // debug
};
//================================================================================
/*!
* \brief Constructor
*/
//================================================================================
StdMeshers_CompositeHexa_3D::StdMeshers_CompositeHexa_3D(int hypId, SMESH_Gen* gen)
:SMESH_3D_Algo(hypId, gen)
{
_name = "CompositeHexa_3D";
_shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type
}
//================================================================================
/*!
* \brief always return true
*/
//================================================================================
bool StdMeshers_CompositeHexa_3D::CheckHypothesis(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
Hypothesis_Status& aStatus)
{
aStatus = HYP_OK;
return true;
}
namespace
{
//================================================================================
/*!
* \brief Checks structure of a quadrangular mesh at the common VERTEX of two EDGEs.
* Returns true if there are two quadrangles near the VERTEX.
*/
//================================================================================
bool isContinuousMesh(TopoDS_Edge E1,
TopoDS_Edge E2,
const TopoDS_Face& F,
const SMESH_ProxyMesh& mesh)
{
if (E1.Orientation() > TopAbs_REVERSED) // INTERNAL
E1.Orientation( TopAbs_FORWARD );
if (E2.Orientation() > TopAbs_REVERSED) // INTERNAL
E2.Orientation( TopAbs_FORWARD );
TopoDS_Vertex V;
if ( !TopExp::CommonVertex( E1, E2, V )) return false;
const SMDS_MeshNode* n = SMESH_Algo::VertexNode( V, mesh.GetMeshDS() );
if ( !n ) return SMESH_Algo::IsContinuous( E1, E2 ); // meshed by "composite segment"
n = mesh.GetProxyNode( n );
const SMESHDS_SubMesh* sm = mesh.GetSubMesh( F );
if ( !sm ) return false;
int nbQuads = 0;
SMDS_ElemIteratorPtr fIt = mesh.GetInverseElementIterator( n, SMDSAbs_Face );
if ( !fIt->more() )
return SMESH_Algo::IsContinuous( E1, E2 ); // meshed by "composite segment"
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
if ( !sm->Contains( f )) continue;
if ( f->NbCornerNodes() == 4 )
++nbQuads;
else
return false;
}
return nbQuads == 2;
}
//================================================================================
/*!
* \brief Return true if a vertex holds a node and this node is used by some quadrangle
*/
//================================================================================
// bool isMeshedVertex( TopoDS_Vertex& V,
// const SMESH_Mesh& mesh )
// {
// const SMDS_MeshNode* n = SMESH_Algo::VertexNode( V, mesh.GetMeshDS() );
// if ( !n ) return false;
// SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator(SMDSAbs_Face);
// while ( fIt->more() )
// {
// const SMDS_MeshElement* f = fIt->next();
// if ( f->NbCornerNodes() == 4 )
// return true;
// }
// return false;
// }
//================================================================================
/*!
* \brief Finds VERTEXes located at block corners
*/
//================================================================================
void getBlockCorners( SMESH_ProxyMesh& mesh,
const TopoDS_Shape& shape,
TopTools_MapOfShape& cornerVV)
{
std::set<int> faceIDs; // ids of FACEs in the shape
TopExp_Explorer exp;
for ( exp.Init( shape, TopAbs_FACE ); exp.More(); exp.Next() )
faceIDs.insert( mesh.GetMeshDS()->ShapeToIndex( exp.Current() ));
TopTools_MapOfShape checkedVV;
for ( exp.Init( shape, TopAbs_VERTEX ); exp.More(); exp.Next() )
{
TopoDS_Vertex V = TopoDS::Vertex( exp.Current() );
if ( !checkedVV.Add( V )) continue;
const SMDS_MeshNode* n = SMESH_Algo::VertexNode( V, mesh.GetMeshDS() );
if ( !n ) continue;
const SMDS_MeshNode* nProxy = mesh.GetProxyNode( n );
bool isProxy = ( nProxy != n );
n = nProxy;
int nbQuads = 0;
SMDS_ElemIteratorPtr fIt = mesh.GetInverseElementIterator( n, SMDSAbs_Face );
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
if ( !faceIDs.count( f->getshapeId() )) continue;
if ( isProxy && !mesh.GetSubMesh( f->getshapeId() )->Contains( f ))
continue;
if ( f->NbCornerNodes() == 4 )
++nbQuads;
else
nbQuads = 100;
}
if ( nbQuads == 3 )
cornerVV.Add( V );
}
}
//================================================================================
/*!
* \brief Return EDGEs dividing one box side
*/
//================================================================================
bool getInternalEdges( SMESH_Mesh& mesh,
const TopoDS_Shape& shape,
const TopTools_MapOfShape& cornerVV,
TopTools_MapOfShape& internEE)
{
TopTools_IndexedMapOfShape subEE, subFF;
TopExp::MapShapes( shape, TopAbs_EDGE, subEE );
TopExp::MapShapes( shape, TopAbs_FACE, subFF );
TopoDS_Vertex VV[2];
TopTools_MapOfShape subChecked, ridgeEE;
TopTools_MapIteratorOfMapOfShape vIt( cornerVV );
for ( ; vIt.More(); vIt.Next() )
{
TopoDS_Shape V0 = vIt.Key();
// walk from one corner VERTEX to another along ridge EDGEs
PShapeIteratorPtr riIt = SMESH_MesherHelper::GetAncestors( V0, mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* riE = riIt->next() )
{
if ( !subEE.Contains( *riE ) || !subChecked.Add( *riE ))
continue;
TopoDS_Edge ridgeE = TopoDS::Edge( *riE );
while ( !ridgeE.IsNull() )
{
if ( !ridgeEE.Add( ridgeE ))
break;
TopExp::Vertices( ridgeE, VV[0], VV[1] );
TopoDS_Shape V1 = VV[ V0.IsSame( VV[0] )];
if ( cornerVV.Contains( V1 ) )
break; // ridgeE reached a corner VERTEX
// detect internal EDGEs among those sharing V1. There can be 2, 3 or 4 EDGEs and
// number of internal EDGEs is N-2
TopoDS_Shape nextRidgeE;
PShapeIteratorPtr eIt = SMESH_MesherHelper::GetAncestors( V1, mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* E = eIt->next() )
{
if ( E->IsSame( ridgeE ) || !subEE.Contains( *E ) || !subChecked.Add( *E ))
continue;
// look for FACEs sharing both E and ridgeE
PShapeIteratorPtr fIt = SMESH_MesherHelper::GetAncestors( *E, mesh, TopAbs_FACE );
while ( const TopoDS_Shape* F = fIt->next() )
{
if ( !SMESH_MesherHelper::IsSubShape( ridgeE, *F ))
continue;
if ( !subFF.Contains( *F ))
continue;
if ( isContinuousMesh( ridgeE, TopoDS::Edge( *E ), TopoDS::Face( *F ), mesh ))
{
nextRidgeE = *E;
}
else
{
internEE.Add( *E );
}
break;
}
}
// look for the next ridge EDGE ending at V1
if ( nextRidgeE.IsNull() )
{
eIt = SMESH_MesherHelper::GetAncestors( V1, mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* E = eIt->next() )
if ( !ridgeE.IsSame( *E ) && !internEE.Contains( *E ) && subEE.Contains( *E ))
{
nextRidgeE = *E;
break;
}
}
ridgeE = TopoDS::Edge( nextRidgeE );
V0 = V1;
if ( ridgeE.IsNull() )
return false;
} // check EDGEs around the last VERTEX of ridgeE
} // loop on ridge EDGEs around a corner VERTEX
} // loop on on corner VERTEXes
if ( subEE.Extent() > ridgeEE.Extent() + internEE.Extent() ) // PAL23269
for ( int i = 1; i < subEE.Extent(); ++i )
if ( !ridgeEE.Contains( subEE(i) ))
internEE.Add( subEE(i) );
return true;
} // getInternalEdges()
//================================================================================
/*!
* \brief Find a face including two given nodes
*/
//================================================================================
const SMDS_MeshElement* FindFaceByNodes( const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
TIDSortedElemSet avoidSet,
SMESH_ProxyMesh& mesh)
{
SMDS_ElemIteratorPtr faceIt = mesh.GetInverseElementIterator( n1, SMDSAbs_Face );
while ( faceIt->more() )
{
const SMDS_MeshElement* f = faceIt->next();
if ( !avoidSet.count( f ) && f->GetNodeIndex( n2 ) >= 0 )
return f;
}
return 0;
}
//================================================================================
/*!
* \brief Check that a segment bounds a face belonging to smOfFaces
*/
//================================================================================
bool IsSegmentOnSubMeshBoundary( const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMESHDS_SubMesh* smOfFaces,
SMESH_ProxyMesh& mesh)
{
TIDSortedElemSet avoidSet;
bool faceFound = false;
while ( const SMDS_MeshElement* f = FindFaceByNodes( n1, n2, avoidSet, mesh ))
{
if (( faceFound = smOfFaces->Contains( f )))
break;
avoidSet.insert( f );
}
return faceFound;
}
} // namespace
//================================================================================
/*!
* \brief Tries to find 6 sides of a box
*/
//================================================================================
bool StdMeshers_CompositeHexa_3D::findBoxFaces( const TopoDS_Shape& shape,
list< _QuadFaceGrid >& boxFaces,
SMESH_Mesh& mesh,
SMESH_ProxyMesh& proxyMesh,
_QuadFaceGrid * & fBottom,
_QuadFaceGrid * & fTop,
_QuadFaceGrid * & fFront,
_QuadFaceGrid * & fBack,
_QuadFaceGrid * & fLeft,
_QuadFaceGrid * & fRight)
{
TopTools_MapOfShape cornerVertices;
getBlockCorners( proxyMesh, shape, cornerVertices );
if ( cornerVertices.Extent() != 8 )
return error( COMPERR_BAD_INPUT_MESH, "Can't find 8 corners of a block by 2D mesh" );
TopTools_MapOfShape internalEdges;
if ( !getInternalEdges( mesh, shape, cornerVertices, internalEdges ))
return error( COMPERR_BAD_INPUT_MESH, "2D mesh is not suitable for i,j,k hexa meshing" );
list< _QuadFaceGrid >::iterator boxFace;
TopExp_Explorer exp;
int nbFaces = 0;
for ( exp.Init( shape, TopAbs_FACE ); exp.More(); exp.Next(), ++nbFaces )
{
_QuadFaceGrid f;
if ( !f.Init( TopoDS::Face( exp.Current() ), proxyMesh ))
return error (COMPERR_BAD_SHAPE);
_QuadFaceGrid* prevContinuous = 0;
for ( boxFace = boxFaces.begin(); boxFace != boxFaces.end(); ++boxFace )
{
if ( prevContinuous )
{
if ( prevContinuous->AddContinuousFace( *boxFace, internalEdges ))
boxFace = --boxFaces.erase( boxFace );
}
else if ( boxFace->AddContinuousFace( f, internalEdges ))
{
prevContinuous = & (*boxFace);
}
}
if ( !prevContinuous )
boxFaces.push_back( f );
}
// Check what we have
if ( boxFaces.size() != 6 && nbFaces != 6)
return error
(COMPERR_BAD_SHAPE,
SMESH_Comment("Can't find 6 sides of a box. Number of found sides - ")<<boxFaces.size());
if ( boxFaces.size() != 6 && nbFaces == 6 ) { // strange ordinary box with continuous faces
boxFaces.resize( 6 );
boxFace = boxFaces.begin();
for ( exp.Init( shape, TopAbs_FACE); exp.More(); exp.Next(), ++boxFace )
boxFace->Init( TopoDS::Face( exp.Current() ), proxyMesh );
}
// ----------------------------------------
// Find out position of faces within a box
// ----------------------------------------
// start from a bottom face
fBottom = &boxFaces.front();
fBottom->SetID( B_BOTTOM );
// find vertical faces
fFront = fBottom->FindAdjacentForSide( Q_BOTTOM, boxFaces, B_FRONT );
fLeft = fBottom->FindAdjacentForSide( Q_RIGHT, boxFaces, B_LEFT );
fBack = fBottom->FindAdjacentForSide( Q_TOP, boxFaces, B_BACK );
fRight = fBottom->FindAdjacentForSide( Q_LEFT, boxFaces, B_RIGHT );
// check the found
if ( !fFront || !fBack || !fLeft || !fRight )
return error(COMPERR_BAD_SHAPE);
// find a top face
fTop = 0;
for ( boxFace = ++boxFaces.begin(); boxFace != boxFaces.end() && !fTop; ++boxFace )
{
fTop = & (*boxFace);
fTop->SetID( B_TOP );
if ( fTop==fFront || fTop==fLeft || fTop==fBack || fTop==fRight )
fTop = 0;
}
// set bottom of the top side
if ( !fTop->SetBottomSide( fFront->GetSide( Q_TOP ) )) {
if ( !fFront->IsComplex() )
return error( ERR_LI("Error in StdMeshers_CompositeHexa_3D::Compute()"));
else {
_QuadFaceGrid::TChildIterator chIt = fFront->GetChildren();
while ( chIt.more() ) {
const _QuadFaceGrid& frontChild = chIt.next();
if ( fTop->SetBottomSide( frontChild.GetSide( Q_TOP )))
break;
}
}
}
if ( !fTop )
return error(COMPERR_BAD_SHAPE);
// orient bottom edge of faces along axes of the unit box
fBottom->ReverseEdges();
fBack ->ReverseEdges();
fLeft ->ReverseEdges();
return true;
}
//================================================================================
/*!
* \brief Computes hexahedral mesh on a box with composite sides
* \param aMesh - mesh to compute
* \param aShape - shape to mesh
* \retval bool - success sign
*/
//================================================================================
bool StdMeshers_CompositeHexa_3D::Compute(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape)
{
SMESH_MesherHelper helper( theMesh );
_quadraticMesh = helper.IsQuadraticSubMesh( theShape );
helper.SetElementsOnShape( true );
// get Viscous Mesh
SMESH_ProxyMesh::Ptr proxyMesh;
SMESH_HypoFilter vlFilter( SMESH_HypoFilter::HasName( StdMeshers_ViscousLayers::GetHypType() ));
const SMESH_Hypothesis * hyp = theMesh.GetHypothesis( theShape, vlFilter, true );
const StdMeshers_ViscousLayers* vlHyp = static_cast< const StdMeshers_ViscousLayers* >( hyp );
if ( vlHyp )
proxyMesh = vlHyp->Compute( theMesh, theShape, /*toMakeN2NMap=*/true );
else
proxyMesh.reset( new SMESH_ProxyMesh( theMesh ));
// -------------------------
// Try to find 6 side faces
// -------------------------
list< _QuadFaceGrid > boxFaceContainer;
_QuadFaceGrid *fBottom, *fTop, *fFront, *fBack, *fLeft, *fRight;
if ( ! findBoxFaces( theShape, boxFaceContainer, theMesh, *proxyMesh,
fBottom, fTop, fFront, fBack, fLeft, fRight))
return false;
// ------------------------------------------
// Fill columns of nodes with existing nodes
// ------------------------------------------
// let faces load their grids
if ( !fBottom->LoadGrid( *proxyMesh )) return error( fBottom->GetError() );
if ( !fBack ->LoadGrid( *proxyMesh )) return error( fBack ->GetError() );
if ( !fLeft ->LoadGrid( *proxyMesh )) return error( fLeft ->GetError() );
if ( !fFront ->LoadGrid( *proxyMesh )) return error( fFront ->GetError() );
if ( !fRight ->LoadGrid( *proxyMesh )) return error( fRight ->GetError() );
if ( !fTop ->LoadGrid( *proxyMesh )) return error( fTop ->GetError() );
// compute normalized parameters of nodes on sides (PAL23189)
fBottom->ComputeIJK( COO_X, COO_Y, /*z=*/0. );
fBack ->ComputeIJK( COO_X, COO_Z, /*y=*/1. );
fLeft ->ComputeIJK( COO_Y, COO_Z, /*x=*/0. );
fFront ->ComputeIJK( COO_X, COO_Z, /*y=*/0. );
fRight ->ComputeIJK( COO_Y, COO_Z, /*x=*/1. );
fTop ->ComputeIJK( COO_X, COO_Y, /*z=*/1. );
int x, xSize = fBottom->GetNbHoriSegments(*proxyMesh) + 1, X = xSize - 1;
int y, ySize = fBottom->GetNbVertSegments(*proxyMesh) + 1, Y = ySize - 1;
int z, zSize = fFront ->GetNbVertSegments(*proxyMesh) + 1, Z = zSize - 1;
_Indexer colIndex( xSize, ySize );
vector< vector< const SMDS_MeshNode* > > columns( colIndex.size() );
// fill node columns by front and back box sides
for ( x = 0; x < xSize; ++x ) {
vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( x, 0 )];
vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( x, Y )];
column0.resize( zSize );
column1.resize( zSize );
for ( z = 0; z < zSize; ++z ) {
column0[ z ] = fFront->GetNode( x, z );
column1[ z ] = fBack ->GetNode( x, z );
}
}
// fill node columns by left and right box sides
for ( y = 1; y < ySize-1; ++y ) {
vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( 0, y )];
vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( X, y )];
column0.resize( zSize );
column1.resize( zSize );
for ( z = 0; z < zSize; ++z ) {
column0[ z ] = fLeft ->GetNode( y, z );
column1[ z ] = fRight->GetNode( y, z );
}
}
// get nodes from top and bottom box sides
for ( x = 1; x < xSize-1; ++x ) {
for ( y = 1; y < ySize-1; ++y ) {
vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )];
column.resize( zSize );
column.front() = fBottom->GetNode( x, y );
column.back() = fTop ->GetNode( x, y );
}
}
// ----------------------------
// Add internal nodes of a box
// ----------------------------
// projection points of internal nodes on box sub-shapes by which
// coordinates of internal nodes are computed
vector<gp_XYZ> pointsOnShapes( SMESH_Block::ID_Shell );
// projections on vertices are constant
pointsOnShapes[ SMESH_Block::ID_V000 ] = fBottom->GetXYZ( 0, 0 );
pointsOnShapes[ SMESH_Block::ID_V100 ] = fBottom->GetXYZ( X, 0 );
pointsOnShapes[ SMESH_Block::ID_V010 ] = fBottom->GetXYZ( 0, Y );
pointsOnShapes[ SMESH_Block::ID_V110 ] = fBottom->GetXYZ( X, Y );
pointsOnShapes[ SMESH_Block::ID_V001 ] = fTop->GetXYZ( 0, 0 );
pointsOnShapes[ SMESH_Block::ID_V101 ] = fTop->GetXYZ( X, 0 );
pointsOnShapes[ SMESH_Block::ID_V011 ] = fTop->GetXYZ( 0, Y );
pointsOnShapes[ SMESH_Block::ID_V111 ] = fTop->GetXYZ( X, Y );
gp_XYZ params; // normalized parameters of an internal node within the unit box
for ( x = 1; x < xSize-1; ++x )
{
const double rX = x / double(X);
for ( y = 1; y < ySize-1; ++y )
{
const double rY = y / double(Y);
// column to fill during z loop
vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )];
// points projections on horizontal edges
pointsOnShapes[ SMESH_Block::ID_Ex00 ] = fBottom->GetXYZ( x, 0 );
pointsOnShapes[ SMESH_Block::ID_Ex10 ] = fBottom->GetXYZ( x, Y );
pointsOnShapes[ SMESH_Block::ID_E0y0 ] = fBottom->GetXYZ( 0, y );
pointsOnShapes[ SMESH_Block::ID_E1y0 ] = fBottom->GetXYZ( X, y );
pointsOnShapes[ SMESH_Block::ID_Ex01 ] = fTop->GetXYZ( x, 0 );
pointsOnShapes[ SMESH_Block::ID_Ex11 ] = fTop->GetXYZ( x, Y );
pointsOnShapes[ SMESH_Block::ID_E0y1 ] = fTop->GetXYZ( 0, y );
pointsOnShapes[ SMESH_Block::ID_E1y1 ] = fTop->GetXYZ( X, y );
// points projections on horizontal faces
pointsOnShapes[ SMESH_Block::ID_Fxy0 ] = fBottom->GetXYZ( x, y );
pointsOnShapes[ SMESH_Block::ID_Fxy1 ] = fTop ->GetXYZ( x, y );
for ( z = 1; z < zSize-1; ++z ) // z loop
{
// compute normalized parameters of an internal node within the unit box
const double rZ = z / double(Z);
const gp_XYZ& pBo = fBottom->GetIJK( x, y );
const gp_XYZ& pTo = fTop ->GetIJK( x, y );
const gp_XYZ& pFr = fFront ->GetIJK( x, z );
const gp_XYZ& pBa = fBack ->GetIJK( x, z );
const gp_XYZ& pLe = fLeft ->GetIJK( y, z );
const gp_XYZ& pRi = fRight ->GetIJK( y, z );
params.SetCoord( 1, 0.5 * ( pBo.X() * ( 1. - rZ ) + pTo.X() * rZ +
pFr.X() * ( 1. - rY ) + pBa.X() * rY ));
params.SetCoord( 2, 0.5 * ( pBo.Y() * ( 1. - rZ ) + pTo.Y() * rZ +
pLe.Y() * ( 1. - rX ) + pRi.Y() * rX ));
params.SetCoord( 3, 0.5 * ( pFr.Z() * ( 1. - rY ) + pBa.Z() * rY +
pLe.Z() * ( 1. - rX ) + pRi.Z() * rX ));
// point projections on vertical edges
pointsOnShapes[ SMESH_Block::ID_E00z ] = fFront->GetXYZ( 0, z );
pointsOnShapes[ SMESH_Block::ID_E10z ] = fFront->GetXYZ( X, z );
pointsOnShapes[ SMESH_Block::ID_E01z ] = fBack->GetXYZ( 0, z );
pointsOnShapes[ SMESH_Block::ID_E11z ] = fBack->GetXYZ( X, z );
// point projections on vertical faces
pointsOnShapes[ SMESH_Block::ID_Fx0z ] = fFront->GetXYZ( x, z );
pointsOnShapes[ SMESH_Block::ID_Fx1z ] = fBack ->GetXYZ( x, z );
pointsOnShapes[ SMESH_Block::ID_F0yz ] = fLeft ->GetXYZ( y, z );
pointsOnShapes[ SMESH_Block::ID_F1yz ] = fRight->GetXYZ( y, z );
// compute internal node coordinates
gp_XYZ coords;
SMESH_Block::ShellPoint( params, pointsOnShapes, coords );
column[ z ] = helper.AddNode( coords.X(), coords.Y(), coords.Z() );
#ifdef DEB_GRID
// debug
//cout << "----------------------------------------------------------------------"<<endl;
//for ( int id = SMESH_Block::ID_V000; id < SMESH_Block::ID_Shell; ++id)
//{
// gp_XYZ p = pointsOnShapes[ id ];
// SMESH_Block::DumpShapeID( id,cout)<<" ( "<<p.X()<<", "<<p.Y()<<", "<<p.Z()<<" )"<<endl;
//}
//cout << "Params: ( "<< params.X()<<", "<<params.Y()<<", "<<params.Z()<<" )"<<endl;
//cout << "coords: ( "<< coords.X()<<", "<<coords.Y()<<", "<<coords.Z()<<" )"<<endl;
#endif
}
}
}
// faces no more needed, free memory
boxFaceContainer.clear();
// ----------------
// Add hexahedrons
// ----------------
for ( x = 0; x < xSize-1; ++x ) {
for ( y = 0; y < ySize-1; ++y ) {
vector< const SMDS_MeshNode* >& col00 = columns[ colIndex( x, y )];
vector< const SMDS_MeshNode* >& col10 = columns[ colIndex( x+1, y )];
vector< const SMDS_MeshNode* >& col01 = columns[ colIndex( x, y+1 )];
vector< const SMDS_MeshNode* >& col11 = columns[ colIndex( x+1, y+1 )];
for ( z = 0; z < zSize-1; ++z )
{
// bottom face normal of a hexa mush point outside the volume
helper.AddVolume(col00[z], col01[z], col11[z], col10[z],
col00[z+1], col01[z+1], col11[z+1], col10[z+1]);
}
}
}
return true;
}
//================================================================================
/*!
* Evaluate
*/
//================================================================================
bool StdMeshers_CompositeHexa_3D::Evaluate(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape,
MapShapeNbElems& aResMap)
{
SMESH_ProxyMesh::Ptr proxyMesh( new SMESH_ProxyMesh( theMesh ));
// -------------------------
// Try to find 6 side faces
// -------------------------
list< _QuadFaceGrid > boxFaceContainer;
_QuadFaceGrid *fBottom, *fTop, *fFront, *fBack, *fLeft, *fRight;
if ( ! findBoxFaces( theShape, boxFaceContainer, theMesh, *proxyMesh,
fBottom, fTop, fFront, fBack, fLeft, fRight))
return false;
// Find a less complex side
_QuadFaceGrid * lessComplexSide = & boxFaceContainer.front();
list< _QuadFaceGrid >::iterator face = boxFaceContainer.begin();
for ( ++face; face != boxFaceContainer.end() && lessComplexSide->IsComplex(); ++face )
if ( face->NbChildren() < lessComplexSide->NbChildren() )
lessComplexSide = & *face;
// Get an 1D size of lessComplexSide
int nbSeg1 = 0;
vector<TopoDS_Edge> edges;
if ( !lessComplexSide->GetHoriEdges(edges) )
return false;
for ( size_t i = 0; i < edges.size(); ++i )
{
const vector<int>& nbElems = aResMap[ theMesh.GetSubMesh( edges[i] )];
if ( !nbElems.empty() )
nbSeg1 += Max( nbElems[ SMDSEntity_Edge ], nbElems[ SMDSEntity_Quad_Edge ]);
}
// Get an 1D size of a box side orthogonal to lessComplexSide
int nbSeg2 = 0;
_QuadFaceGrid* ortoSide =
lessComplexSide->FindAdjacentForSide( Q_LEFT, boxFaceContainer, B_UNDEFINED );
edges.clear();
if ( !ortoSide || !ortoSide->GetHoriEdges(edges) ) return false;
for ( size_t i = 0; i < edges.size(); ++i )
{
const vector<int>& nbElems = aResMap[ theMesh.GetSubMesh( edges[i] )];
if ( !nbElems.empty() )
nbSeg2 += Max( nbElems[ SMDSEntity_Edge ], nbElems[ SMDSEntity_Quad_Edge ]);
}
// Get an 2D size of a box side orthogonal to lessComplexSide
int nbFaces = 0, nbQuadFace = 0;
list< TopoDS_Face > sideFaces;
if ( ortoSide->IsComplex() )
for ( _QuadFaceGrid::TChildIterator child = ortoSide->GetChildren(); child.more(); )
sideFaces.push_back( child.next().GetFace() );
else
sideFaces.push_back( ortoSide->GetFace() );
//
list< TopoDS_Face >::iterator f = sideFaces.begin();
for ( ; f != sideFaces.end(); ++f )
{
const vector<int>& nbElems = aResMap[ theMesh.GetSubMesh( *f )];
if ( !nbElems.empty() )
{
nbFaces = nbElems[ SMDSEntity_Quadrangle ];
nbQuadFace = nbElems[ SMDSEntity_Quad_Quadrangle ];
}
}
// Fill nb of elements
vector<int> aResVec(SMDSEntity_Last,0);
int nbSeg3 = ( nbFaces + nbQuadFace ) / nbSeg2;
aResVec[SMDSEntity_Node] = (nbSeg1-1) * (nbSeg2-1) * (nbSeg3-1);
aResVec[SMDSEntity_Hexa] = nbSeg1 * nbFaces;
aResVec[SMDSEntity_Quad_Hexa] = nbSeg1 * nbQuadFace;
aResMap.insert( make_pair( theMesh.GetSubMesh(theShape), aResVec ));
return true;
}
//================================================================================
/*!
* \brief constructor of non-initialized _QuadFaceGrid
*/
//================================================================================
_QuadFaceGrid::_QuadFaceGrid():
myReverse(false), myRightBrother(0), myUpBrother(0), myIndexer(0,0), myID(B_UNDEFINED)
{
}
//================================================================================
/*!
* \brief Initialization
*/
//================================================================================
bool _QuadFaceGrid::Init(const TopoDS_Face& f, SMESH_ProxyMesh& mesh)
{
myFace = f;
mySides = _FaceSide();
myReverse = false;
myLeftBottomChild = myRightBrother = myUpBrother = 0;
myChildren.clear();
myGrid.clear();
//if ( myFace.Orientation() != TopAbs_FORWARD )
//myFace.Reverse();
list< TopoDS_Edge > edges;
list< int > nbEdgesInWire;
int nbWire = SMESH_Block::GetOrderedEdges (myFace, edges, nbEdgesInWire);
if ( nbWire != 1 )
return false;
list< TopoDS_Edge >::iterator edgeIt = edges.begin();
if ( nbEdgesInWire.front() == 4 ) // exactly 4 edges
{
for ( ; edgeIt != edges.end(); ++edgeIt )
mySides.AppendSide( _FaceSide( *edgeIt ));
}
else if ( nbEdgesInWire.front() > 4 ) { // more than 4 edges - try to unite some
list< TopoDS_Edge > sideEdges;
while ( !edges.empty()) {
sideEdges.clear();
sideEdges.splice( sideEdges.end(), edges, edges.begin());// edges.front()->sideEdges.back()
if ( SMESH_Algo::isDegenerated( sideEdges.back() ))
continue;
while ( !edges.empty() ) {
if ( isContinuousMesh( sideEdges.back(), edges.front(), f, mesh )) {
sideEdges.splice( sideEdges.end(), edges, edges.begin());
}
else if ( isContinuousMesh( sideEdges.front(), edges.back(), f, mesh )) {
sideEdges.splice( sideEdges.begin(), edges, --edges.end());
}
else {
break;
}
}
mySides.AppendSide( _FaceSide( sideEdges ));
}
}
if (mySides.size() != 4)
return false;
#ifdef _DEBUG_
mySides.GetSide( Q_BOTTOM )->SetID( Q_BOTTOM );
mySides.GetSide( Q_RIGHT )->SetID( Q_RIGHT );
mySides.GetSide( Q_TOP )->SetID( Q_TOP );
mySides.GetSide( Q_LEFT )->SetID( Q_LEFT );
#endif
return true;
}
//================================================================================
/*!
* \brief Try to unite self with other ordinary face
*/
//================================================================================
bool _QuadFaceGrid::AddContinuousFace( const _QuadFaceGrid& other,
const TopTools_MapOfShape& internalEdges)
{
for ( int i = 0; i < 4; ++i )
{
const _FaceSide& otherSide = other.GetSide( i );
int iMyCommon;
if ( mySides.Contain( otherSide, &iMyCommon ))
{
if ( internalEdges.Contains( otherSide.Edge( 0 )))
{
DUMP_VERT("Cont 1", mySides.GetSide(iMyCommon)->FirstVertex());
DUMP_VERT("Cont 2", mySides.GetSide(iMyCommon)->LastVertex());
DUMP_VERT("Cont 3", otherSide.FirstVertex());
DUMP_VERT("Cont 4", otherSide.LastVertex());
if ( myChildren.empty() )
{
myChildren.push_back( *this );
myFace.Nullify();
}
else // find iMyCommon in myChildren
{
for ( TChildIterator children = GetChildren(); children.more(); ) {
const _QuadFaceGrid& child = children.next();
if ( child.mySides.Contain( otherSide, &iMyCommon ))
break;
}
}
// orient new children equally
int otherBottomIndex = SMESH_MesherHelper::WrapIndex( i - iMyCommon + 2, 4 );
if ( other.IsComplex() )
for ( TChildIterator children = other.GetChildren(); children.more(); ) {
myChildren.push_back( children.next() );
myChildren.back().SetBottomSide( myChildren.back().GetSide( otherBottomIndex ));
}
else {
myChildren.push_back( other );
myChildren.back().SetBottomSide( myChildren.back().GetSide( otherBottomIndex ));
}
myLeftBottomChild = 0;
// collect vertices in mySides
if ( other.IsComplex() )
for ( TChildIterator children = other.GetChildren(); children.more(); )
{
const _QuadFaceGrid& child = children.next();
for ( int i = 0; i < 4; ++i )
mySides.AppendSide( child.GetSide(i) );
}
else
for ( int i = 0; i < 4; ++i )
mySides.AppendSide( other.GetSide(i) );
return true;
}
}
}
return false;
}
//================================================================================
/*!
* \brief Try to set the side as bottom hirizontal side
*/
//================================================================================
bool _QuadFaceGrid::SetBottomSide(const _FaceSide& bottom, int* sideIndex)
{
myLeftBottomChild = myRightBrother = myUpBrother = 0;
int myBottomIndex;
if ( myChildren.empty() )
{
if ( mySides.Contain( bottom, &myBottomIndex )) {
mySides.SetBottomSide( myBottomIndex );
if ( sideIndex )
*sideIndex = myBottomIndex;
return true;
}
}
else
{
TChildren::iterator childFace = myChildren.begin(), childEnd = myChildren.end();
for ( ; childFace != childEnd; ++childFace )
{
if ( childFace->SetBottomSide( bottom, &myBottomIndex ))
{
TChildren::iterator orientedChild = childFace;
for ( childFace = myChildren.begin(); childFace != childEnd; ++childFace ) {
if ( childFace != orientedChild )
childFace->SetBottomSide( childFace->GetSide( myBottomIndex ));
}
if ( sideIndex )
*sideIndex = myBottomIndex;
return true;
}
}
}
return false;
}
//================================================================================
/*!
* \brief Return face adjacent to i-th side of this face, (0<i<4)
*/
//================================================================================
_QuadFaceGrid* _QuadFaceGrid::FindAdjacentForSide(int i,
list<_QuadFaceGrid>& faces,
EBoxSides id) const
{
const _FaceSide & iSide = GetSide( i );
list< _QuadFaceGrid >::iterator boxFace = faces.begin();
for ( ; boxFace != faces.end(); ++boxFace )
{
_QuadFaceGrid* f = & (*boxFace);
if ( f != this && f->SetBottomSide( iSide ))
return f->SetID( id ), f;
}
return (_QuadFaceGrid*) 0;
}
//================================================================================
/*!
* \brief Return i-th side
*/
//================================================================================
const _FaceSide& _QuadFaceGrid::GetSide(int i) const
{
if ( myChildren.empty() )
return *mySides.GetSide(i);
_QuadFaceGrid* me = const_cast<_QuadFaceGrid*>(this);
if ( !me->locateChildren() || !myLeftBottomChild )
return *mySides.GetSide(i);
const _QuadFaceGrid* child = myLeftBottomChild;
switch ( i ){
case Q_BOTTOM:
case Q_LEFT:
break;
case Q_RIGHT:
while ( child->myRightBrother )
child = child->myRightBrother;
break;
case Q_TOP:
while ( child->myUpBrother )
child = child->myUpBrother;
break;
default: ;
}
return child->GetSide( i );
}
//================================================================================
/*!
* \brief Reverse edges in order to have them oriented along axes of the unit box
*/
//================================================================================
void _QuadFaceGrid::ReverseEdges()
{
myReverse = !myReverse;
// #ifdef DEB_FACES
// if ( !myFace.IsNull() )
// TopAbs::Print(myFace.Orientation(), cout);
// #endif
if ( myChildren.empty() )
{
DumpVertices();
}
else
{
DumpVertices();
TChildren::iterator child = myChildren.begin(), childEnd = myChildren.end();
for ( ; child != childEnd; ++child )
child->ReverseEdges();
}
}
//================================================================================
/*!
* \brief Load nodes of a mesh
*/
//================================================================================
bool _QuadFaceGrid::LoadGrid( SMESH_ProxyMesh& mesh )
{
if ( !myChildren.empty() )
{
// Let child faces load their grids
TChildren::iterator child = myChildren.begin(), childEnd = myChildren.end();
for ( ; child != childEnd; ++child ) {
child->SetID( myID );
if ( !child->LoadGrid( mesh ) )
return error( child->GetError() );
}
// Fill myGrid with nodes of patches
return loadCompositeGrid( mesh );
}
// ---------------------------------------
// Fill myGrid with nodes bound to myFace
// ---------------------------------------
if ( !myGrid.empty() )
return true;
const SMESHDS_SubMesh* faceSubMesh = mesh.GetSubMesh( myFace );
// check that all faces are quadrangular
SMDS_ElemIteratorPtr fIt = faceSubMesh->GetElements();
while ( fIt->more() )
if ( fIt->next()->NbNodes() % 4 > 0 )
return error("Non-quadrangular mesh faces are not allowed on sides of a composite block");
bool isProxy, isTmpElem;
if ( faceSubMesh && faceSubMesh->NbElements() > 0 )
{
isProxy = dynamic_cast< const SMESH_ProxyMesh::SubMesh* >( faceSubMesh );
isTmpElem = mesh.IsTemporary( faceSubMesh->GetElements()->next() );
}
const SMESHDS_SubMesh* smToCheckEdges = ( isProxy && !isTmpElem ) ? faceSubMesh : 0;
myIndexer._xSize = 1 + mySides.GetSide( Q_BOTTOM )->GetNbSegments( mesh, smToCheckEdges );
myIndexer._ySize = 1 + mySides.GetSide( Q_LEFT )->GetNbSegments( mesh, smToCheckEdges );
myGrid.resize( myIndexer.size() );
// store nodes bound to the bottom edge
mySides.GetSide( Q_BOTTOM )->StoreNodes( mesh, myGrid, myReverse, isProxy, smToCheckEdges );
// store the rest nodes row by row
TIDSortedElemSet avoidSet;
const SMDS_MeshElement* firstQuad = 0; // most left face above the last row of found nodes
size_t nbFoundNodes = myIndexer._xSize;
while ( nbFoundNodes != myGrid.size() )
{
// first and last nodes of the last filled row of nodes
const SMDS_MeshNode* n1down = myGrid[ nbFoundNodes - myIndexer._xSize ];
const SMDS_MeshNode* n2down = myGrid[ nbFoundNodes - myIndexer._xSize + 1];
const SMDS_MeshNode* n1downLast = myGrid[ nbFoundNodes-1 ];
// find the first face above the row by the first two left nodes
//
// n1up n2up
// o---o
// | |
// o---o o o o o
//n1down n2down
//
firstQuad = FindFaceByNodes( n1down, n2down, avoidSet, mesh );
while ( firstQuad && !faceSubMesh->Contains( firstQuad )) {
avoidSet.insert( firstQuad );
firstQuad = FindFaceByNodes( n1down, n2down, avoidSet, mesh);
}
if ( !firstQuad || !faceSubMesh->Contains( firstQuad ))
return error(ERR_LI("Error in _QuadFaceGrid::LoadGrid()"));
// find the node of quad bound to the left geom edge
int i2down = firstQuad->GetNodeIndex( n2down );
const SMDS_MeshNode* n1up = firstQuad->GetNode(( i2down+2 ) % 4 );
myGrid[ nbFoundNodes++ ] = n1up;
// the 4-the node of the first quad
int i1down = firstQuad->GetNodeIndex( n1down );
const SMDS_MeshNode* n2up = firstQuad->GetNode(( i1down+2 ) % 4 );
myGrid[ nbFoundNodes++ ] = n2up;
n1down = n2down;
n1up = n2up;
const SMDS_MeshElement* quad = firstQuad;
// find the rest nodes by remaining faces above the row
//
// n1up
// o---o--o
// | | | ->
// o---o--o o o o
// n1downLast
//
while ( n1down != n1downLast )
{
// next face
avoidSet.clear(); avoidSet.insert( quad );
quad = FindFaceByNodes( n1down, n1up, avoidSet, mesh );
if ( !quad || quad->NbNodes() % 4 > 0)
return error(ERR_LI("Error in _QuadFaceGrid::LoadGrid()"));
// next node
if ( quad->GetNode( i1down ) != n1down ) // check already found index
i1down = quad->GetNodeIndex( n1down );
n2up = quad->GetNode(( i1down+2 ) % 4 );
myGrid[ nbFoundNodes++ ] = n2up;
n1down = myGrid[ nbFoundNodes - myIndexer._xSize - 1 ];
n1up = n2up;
}
avoidSet.clear(); avoidSet.insert( firstQuad );
}
DumpGrid(); // debug
return true;
}
//================================================================================
/*!
* \brief Fill myIJK with normalized parameters of nodes in myGrid
* \param [in] i1 - coordinate index along rows of myGrid
* \param [in] i2 - coordinate index along columns of myGrid
* \param [in] v3 - value of the constant parameter
*/
//================================================================================
void _QuadFaceGrid::ComputeIJK( int i1, int i2, double v3 )
{
gp_XYZ ijk( v3, v3, v3 );
myIJK.resize( myIndexer.size(), ijk );
const size_t nbCol = myIndexer._xSize;
const size_t nbRow = myIndexer._ySize;
vector< double > len( nbRow );
len[0] = 0;
for ( size_t i = 0; i < nbCol; ++i )
{
gp_Pnt pPrev = GetXYZ( i, 0 );
for ( size_t j = 1; j < nbRow; ++j )
{
gp_Pnt p = GetXYZ( i, j );
len[ j ] = len[ j-1 ] + p.Distance( pPrev );
pPrev = p;
}
for ( size_t j = 0; j < nbRow; ++j )
GetIJK( i, j ).SetCoord( i2, len[ j ]/len.back() );
}
len.resize( nbCol );
for ( size_t j = 0; j < nbRow; ++j )
{
gp_Pnt pPrev = GetXYZ( 0, j );
for ( size_t i = 1; i < nbCol; ++i )
{
gp_Pnt p = GetXYZ( i, j );
len[ i ] = len[ i-1 ] + p.Distance( pPrev );
pPrev = p;
}
for ( size_t i = 0; i < nbCol; ++i )
GetIJK( i, j ).SetCoord( i1, len[ i ]/len.back() );
}
}
//================================================================================
/*!
* \brief Find out mutual location of children: find their right and up brothers
*/
//================================================================================
bool _QuadFaceGrid::locateChildren()
{
if ( myLeftBottomChild )
return true;
TChildren::iterator child = myChildren.begin(), childEnd = myChildren.end();
// find a child sharing it's first bottom vertex with no other brother
myLeftBottomChild = 0;
for ( ; !myLeftBottomChild && child != childEnd; ++child )
{
TopoDS_Vertex leftVertex = child->GetSide( Q_BOTTOM ).FirstVertex();
bool sharedVertex = false;
TChildren::iterator otherChild = myChildren.begin();
for ( ; otherChild != childEnd && !sharedVertex; ++otherChild )
if ( otherChild != child )
sharedVertex = otherChild->mySides.Contain( leftVertex );
if ( !sharedVertex ) {
myLeftBottomChild = & (*child);
DUMP_VERT("0 left bottom Vertex: ",leftVertex );
}
}
if (!myLeftBottomChild)
return error(ERR_LI("Error in locateChildren()"));
set< _QuadFaceGrid* > notLocatedChilren;
for (child = myChildren.begin() ; child != childEnd; ++child )
notLocatedChilren.insert( & (*child));
// connect myLeftBottomChild to it's right and upper brothers
notLocatedChilren.erase( myLeftBottomChild );
myLeftBottomChild->setBrothers( notLocatedChilren );
if ( !notLocatedChilren.empty() )
return error(ERR_LI("Error in locateChildren()"));
return true;
}
//================================================================================
/*!
* \brief Fill myGrid with nodes of patches
*/
//================================================================================
bool _QuadFaceGrid::loadCompositeGrid(SMESH_ProxyMesh& mesh)
{
// Find out mutual location of children: find their right and up brothers
if ( !locateChildren() )
return false;
// Load nodes according to mutual location of children
// grid size
myIndexer._xSize = 1 + myLeftBottomChild->GetNbHoriSegments( mesh, /*withBrothers=*/true );
myIndexer._ySize = 1 + myLeftBottomChild->GetNbVertSegments( mesh, /*withBrothers=*/true );
myGrid.resize( myIndexer.size() );
int fromX = myReverse ? myIndexer._xSize : 0;
if ( !myLeftBottomChild->fillGrid( mesh, myGrid, myIndexer, fromX, 0 ))
return error( myLeftBottomChild->GetError() );
DumpGrid();
return true;
}
//================================================================================
/*!
* \brief Find right an upper brothers among notLocatedBrothers
*/
//================================================================================
void _QuadFaceGrid::setBrothers( set< _QuadFaceGrid* >& notLocatedBrothers )
{
if ( !notLocatedBrothers.empty() )
{
// find right brother
TopoDS_Vertex rightVertex = GetSide( Q_BOTTOM ).LastVertex();
DUMP_VERT("1 right bottom Vertex: ",rightVertex );
set< _QuadFaceGrid* >::iterator brIt, brEnd = notLocatedBrothers.end();
for ( brIt = notLocatedBrothers.begin(); brIt != brEnd; ++brIt )
{
_QuadFaceGrid* brother = *brIt;
TopoDS_Vertex brotherLeftVertex = brother->GetSide( Q_BOTTOM ).FirstVertex();
DUMP_VERT( "brother left bottom: ", brotherLeftVertex );
if ( rightVertex.IsSame( brotherLeftVertex )) {
myRightBrother = brother;
notLocatedBrothers.erase( brIt );
break;
}
}
// find upper brother
TopoDS_Vertex upVertex = GetSide( Q_LEFT ).FirstVertex();
DUMP_VERT("1 left up Vertex: ",upVertex);
brIt = notLocatedBrothers.begin(), brEnd = notLocatedBrothers.end();
for ( ; brIt != brEnd; ++brIt )
{
_QuadFaceGrid* brother = *brIt;
TopoDS_Vertex brotherLeftVertex = brother->GetSide( Q_BOTTOM ).FirstVertex();
DUMP_VERT("brother left bottom: ", brotherLeftVertex);
if ( upVertex.IsSame( brotherLeftVertex )) {
myUpBrother = brother;
notLocatedBrothers.erase( myUpBrother );
break;
}
}
// recursive call
if ( myRightBrother )
myRightBrother->setBrothers( notLocatedBrothers );
if ( myUpBrother )
myUpBrother->setBrothers( notLocatedBrothers );
}
}
//================================================================================
/*!
* \brief Store nodes of a simple face into grid starting from (x,y) position
*/
//================================================================================
bool _QuadFaceGrid::fillGrid(SMESH_ProxyMesh& theMesh,
vector<const SMDS_MeshNode*> & theGrid,
const _Indexer& theIndexer,
int theX,
int theY)
{
if ( myGrid.empty() && !LoadGrid( theMesh ))
return false;
// store my own grid in the global grid
int fromX = myReverse ? theX - myIndexer._xSize: theX;
for ( int i = 0, x = fromX; i < myIndexer._xSize; ++i, ++x )
for ( int j = 0, y = theY; j < myIndexer._ySize; ++j, ++y )
theGrid[ theIndexer( x, y )] = myGrid[ myIndexer( i, j )];
// store grids of my right and upper brothers
if ( myRightBrother )
{
if ( myReverse )
fromX += 1;
else
fromX += myIndexer._xSize - 1;
if ( !myRightBrother->fillGrid( theMesh, theGrid, theIndexer, fromX, theY ))
return error( myRightBrother->GetError() );
}
if ( myUpBrother )
{
if ( !myUpBrother->fillGrid( theMesh, theGrid, theIndexer,
theX, theY + myIndexer._ySize - 1))
return error( myUpBrother->GetError() );
}
return true;
}
//================================================================================
/*!
* \brief Return number of segments on the hirizontal sides
*/
//================================================================================
int _QuadFaceGrid::GetNbHoriSegments(SMESH_ProxyMesh& mesh, bool withBrothers) const
{
int nbSegs = 0;
if ( myLeftBottomChild )
{
nbSegs += myLeftBottomChild->GetNbHoriSegments( mesh, true );
}
else
{
nbSegs = mySides.GetSide( Q_BOTTOM )->GetNbSegments( mesh );
if ( withBrothers && myRightBrother )
nbSegs += myRightBrother->GetNbHoriSegments( mesh, withBrothers );
}
return nbSegs;
}
//================================================================================
/*!
* \brief Return number of segments on the vertical sides
*/
//================================================================================
int _QuadFaceGrid::GetNbVertSegments(SMESH_ProxyMesh& mesh, bool withBrothers) const
{
int nbSegs = 0;
if ( myLeftBottomChild )
{
nbSegs += myLeftBottomChild->GetNbVertSegments( mesh, true );
}
else
{
nbSegs = mySides.GetSide( Q_LEFT )->GetNbSegments(mesh,0);
if ( withBrothers && myUpBrother )
nbSegs += myUpBrother->GetNbVertSegments( mesh, withBrothers );
}
return nbSegs;
}
//================================================================================
/*!
* \brief Return edge on the hirizontal bottom sides
*/
//================================================================================
int _QuadFaceGrid::GetHoriEdges(vector<TopoDS_Edge> & edges) const
{
if ( myLeftBottomChild )
{
return myLeftBottomChild->GetHoriEdges( edges );
}
else
{
const _FaceSide* bottom = mySides.GetSide( Q_BOTTOM );
int i = 0;
while ( true ) {
TopoDS_Edge e = bottom->Edge( i++ );
if ( e.IsNull() )
break;
else
edges.push_back( e );
}
if ( myRightBrother )
myRightBrother->GetHoriEdges( edges );
}
return edges.size();
}
//================================================================================
/*!
* \brief Return a node by its position
*/
//================================================================================
const SMDS_MeshNode* _QuadFaceGrid::GetNode(int iHori, int iVert) const
{
return myGrid[ myIndexer( iHori, iVert )];
}
//================================================================================
/*!
* \brief Return node coordinates by its position
*/
//================================================================================
gp_XYZ _QuadFaceGrid::GetXYZ(int iHori, int iVert) const
{
SMESH_TNodeXYZ xyz = myGrid[ myIndexer( iHori, iVert )];
return xyz;
}
//================================================================================
/*!
* \brief Return normal to the face at vertex v
*/
//================================================================================
bool _QuadFaceGrid::GetNormal( const TopoDS_Vertex& v, gp_Vec& n ) const
{
if ( myChildren.empty() )
{
if ( mySides.Contain( v )) {
try {
gp_Pnt2d uv = BRep_Tool::Parameters( v, myFace );
BRepAdaptor_Surface surface( myFace );
gp_Pnt p; gp_Vec d1u, d1v;
surface.D1( uv.X(), uv.Y(), p, d1u, d1v );
n = d1u.Crossed( d1v );
return true;
}
catch (Standard_Failure) {
return false;
}
}
}
else
{
TChildren::const_iterator child = myChildren.begin(), childEnd = myChildren.end();
for ( ; child != childEnd; ++child )
if ( child->GetNormal( v, n ))
return true;
}
return false;
}
//================================================================================
/*!
* \brief Dumps coordinates of grid nodes
*/
//================================================================================
void _QuadFaceGrid::DumpGrid() const
{
#ifdef DEB_GRID
const char* names[] = { "B_BOTTOM", "B_RIGHT", "B_TOP", "B_LEFT", "B_FRONT", "B_BACK" };
cout << "****** Face " << names[ myID ] << endl;
if ( myChildren.empty() || !myGrid.empty() )
{
cout << "x size: " << myIndexer._xSize << "; y size: " << myIndexer._ySize << endl;
for ( int y = 0; y < myIndexer._ySize; ++y ) {
cout << "-- row " << y << endl;
for ( int x = 0; x < myIndexer._xSize; ++x ) {
const SMDS_MeshNode* n = myGrid[ myIndexer( x, y ) ];
cout << x << " ( " << n->X() << ", " << n->Y() << ", " << n->Z() << " )" << endl;
}
}
}
else
{
cout << "Nb children: " << myChildren.size() << endl;
TChildren::const_iterator child = myChildren.begin(), childEnd = myChildren.end();
for ( int i=0; child != childEnd; ++child, ++i ) {
cout << " *** SUBFACE " << i+1 << endl;
((_QuadFaceGrid&)(*child)).SetID( myID );
child->DumpGrid();
}
}
#endif
}
//================================================================================
/*!
* \brief Dump vertices
*/
//================================================================================
void _QuadFaceGrid::DumpVertices() const
{
#ifdef DEB_FACES
cout << "****** Face ";
const char* names[] = { "B_BOTTOM", "B_RIGHT", "B_TOP", "B_LEFT", "B_FRONT", "B_BACK" };
if ( myID >= B_BOTTOM && myID < B_BACK )
cout << names[ myID ] << endl;
else
cout << "UNDEFINED" << endl;
if ( myChildren.empty() )
{
for ( int i = 0; i < 4; ++i )
{
cout << " Side "; mySides.GetSide( i )->Dump();
}
}
else
{
cout << "-- Nb children: " << myChildren.size() << endl;
TChildren::const_iterator child = myChildren.begin(), childEnd = myChildren.end();
for ( int i=0; child != childEnd; ++child, ++i ) {
cout << " *** SUBFACE " << i+1 << endl;
((_QuadFaceGrid&)(*child)).SetID( myID );
child->DumpVertices();
}
}
#endif
}
//=======================================================================
//function : _FaceSide
//purpose : copy constructor
//=======================================================================
_FaceSide::_FaceSide(const _FaceSide& other)
{
myEdge = other.myEdge;
myChildren = other.myChildren;
myNbChildren = other.myNbChildren;
myVertices.Assign( other.myVertices );
myID = other.myID;
}
//================================================================================
/*!
* \brief Construct a face side of one edge
*/
//================================================================================
_FaceSide::_FaceSide(const TopoDS_Edge& edge):
myEdge( edge ), myNbChildren(0)
{
if ( !edge.IsNull() )
for ( TopExp_Explorer exp( edge, TopAbs_VERTEX ); exp.More(); exp.Next() )
//myVertices.insert( ptr ( exp.Current() ));
myVertices.Add( exp.Current() );
}
//================================================================================
/*!
* \brief Construct a face side of several edges
*/
//================================================================================
_FaceSide::_FaceSide(const list<TopoDS_Edge>& edges):
myNbChildren(0)
{
list<TopoDS_Edge>::const_iterator edge = edges.begin(), eEnd = edges.end();
for ( ; edge != eEnd; ++edge ) {
myChildren.push_back( _FaceSide( *edge ));
myNbChildren++;
myVertices.Add( myChildren.back().FirstVertex() );
myVertices.Add( myChildren.back().LastVertex() );
myChildren.back().SetID( Q_CHILD ); // not to splice them
}
}
//=======================================================================
//function : GetSide
//purpose :
//=======================================================================
_FaceSide* _FaceSide::GetSide(const int i)
{
if ( i >= myNbChildren )
return 0;
list< _FaceSide >::iterator side = myChildren.begin();
if ( i )
std::advance( side, i );
return & (*side);
}
//=======================================================================
//function : GetSide
//purpose :
//=======================================================================
const _FaceSide* _FaceSide::GetSide(const int i) const
{
return const_cast< _FaceSide* >(this)->GetSide(i);
}
//=======================================================================
//function : NbVertices
//purpose : return nb of vertices in the side
//=======================================================================
int _FaceSide::NbVertices() const
{
if ( myChildren.empty() )
return myVertices.Extent();
return myNbChildren + 1;
}
//=======================================================================
//function : NbCommonVertices
//purpose : Returns number of my vertices common with the given ones
//=======================================================================
int _FaceSide::NbCommonVertices( const TopTools_MapOfShape& VV ) const
{
int nbCommon = 0;
TopTools_MapIteratorOfMapOfShape vIt ( myVertices );
for ( ; vIt.More(); vIt.Next() )
nbCommon += ( VV.Contains( vIt.Key() ));
return nbCommon;
}
//=======================================================================
//function : FirstVertex
//purpose :
//=======================================================================
TopoDS_Vertex _FaceSide::FirstVertex() const
{
if ( myChildren.empty() )
return TopExp::FirstVertex( myEdge, Standard_True );
return myChildren.front().FirstVertex();
}
//=======================================================================
//function : LastVertex
//purpose :
//=======================================================================
TopoDS_Vertex _FaceSide::LastVertex() const
{
if ( myChildren.empty() )
return TopExp::LastVertex( myEdge, Standard_True );
return myChildren.back().LastVertex();
}
//=======================================================================
//function : Vertex
//purpose :
//=======================================================================
TopoDS_Vertex _FaceSide::Vertex(int i) const
{
if ( myChildren.empty() )
return i ? LastVertex() : FirstVertex();
if ( i >= myNbChildren )
return myChildren.back().LastVertex();
return GetSide(i)->FirstVertex();
}
//================================================================================
/*!
* \brief Return i-the zero-based edge of the side
*/
//================================================================================
TopoDS_Edge _FaceSide::Edge(int i) const
{
if ( i == 0 && !myEdge.IsNull() )
return myEdge;
if ( const _FaceSide* iSide = GetSide( i ))
return iSide->myEdge;
return TopoDS_Edge();
}
//=======================================================================
//function : Contain
//purpose :
//=======================================================================
bool _FaceSide::Contain( const _FaceSide& side, int* which ) const
{
if ( !which || myChildren.empty() )
{
if ( which )
*which = 0;
int nbCommon = 0;
TopTools_MapIteratorOfMapOfShape vIt ( side.myVertices );
for ( ; vIt.More(); vIt.Next() )
nbCommon += ( myVertices.Contains( vIt.Key() ));
return (nbCommon > 1);
}
list< _FaceSide >::const_iterator mySide = myChildren.begin(), sideEnd = myChildren.end();
for ( int i = 0; mySide != sideEnd; ++mySide, ++i ) {
if ( mySide->Contain( side )) {
*which = i;
return true;
}
}
return false;
}
//=======================================================================
//function : Contain
//purpose :
//=======================================================================
bool _FaceSide::Contain( const TopoDS_Vertex& vertex ) const
{
return myVertices.Contains( vertex );
}
//=======================================================================
//function : AppendSide
//purpose :
//=======================================================================
void _FaceSide::AppendSide( const _FaceSide& side )
{
if ( !myEdge.IsNull() )
{
myChildren.push_back( *this );
myNbChildren = 1;
myEdge.Nullify();
}
myChildren.push_back( side );
myNbChildren++;
TopTools_MapIteratorOfMapOfShape vIt ( side.myVertices );
for ( ; vIt.More(); vIt.Next() )
myVertices.Add( vIt.Key() );
myID = Q_PARENT;
myChildren.back().SetID( EQuadSides( myNbChildren-1 ));
}
//=======================================================================
//function : SetBottomSide
//purpose :
//=======================================================================
void _FaceSide::SetBottomSide( int i )
{
if ( i > 0 && myID == Q_PARENT ) {
list< _FaceSide >::iterator sideEnd, side = myChildren.begin();
std::advance( side, i );
myChildren.splice( myChildren.begin(), myChildren, side, myChildren.end() );
side = myChildren.begin(), sideEnd = myChildren.end();
for ( int i = 0; side != sideEnd; ++side, ++i ) {
side->SetID( EQuadSides(i) );
side->SetBottomSide(i);
}
}
}
//=======================================================================
//function : GetNbSegments
//purpose :
//=======================================================================
int _FaceSide::GetNbSegments(SMESH_ProxyMesh& mesh, const SMESHDS_SubMesh* smToCheckEdges) const
{
int nb = 0;
if ( myChildren.empty() )
{
nb = mesh.GetSubMesh(myEdge)->NbElements();
if ( smToCheckEdges )
{
// check that segments bound faces belonging to smToCheckEdges
SMDS_ElemIteratorPtr segIt = mesh.GetSubMesh(myEdge)->GetElements();
while ( segIt->more() )
{
const SMDS_MeshElement* seg = segIt->next();
if ( !IsSegmentOnSubMeshBoundary( mesh.GetProxyNode( seg->GetNode(0) ),
mesh.GetProxyNode( seg->GetNode(1) ),
smToCheckEdges, mesh ))
--nb;
}
}
}
else
{
list< _FaceSide >::const_iterator side = myChildren.begin(), sideEnd = myChildren.end();
for ( ; side != sideEnd; ++side )
nb += side->GetNbSegments( mesh, smToCheckEdges );
}
return nb;
}
//=======================================================================
//function : StoreNodes
//purpose :
//=======================================================================
bool _FaceSide::StoreNodes(SMESH_ProxyMesh& mesh,
vector<const SMDS_MeshNode*>& myGrid,
bool reverse,
bool isProxy,
const SMESHDS_SubMesh* smToCheckEdges)
{
list< TopoDS_Edge > edges;
if ( myChildren.empty() )
{
edges.push_back( myEdge );
}
else
{
list< _FaceSide >::const_iterator side = myChildren.begin(), sideEnd = myChildren.end();
for ( ; side != sideEnd; ++side )
if ( reverse )
edges.push_front( side->myEdge );
else
edges.push_back ( side->myEdge );
}
int nbNodes = 0;
list< TopoDS_Edge >::iterator edge = edges.begin(), eEnd = edges.end();
for ( ; edge != eEnd; ++edge )
{
typedef map< double, const SMDS_MeshNode* > TParamNodeMap;
TParamNodeMap nodes;
bool ok = SMESH_Algo::GetSortedNodesOnEdge( mesh.GetMeshDS(),
*edge,
/*ignoreMediumNodes=*/true,
nodes);
if ( !ok ) return false;
// skip nodes on VERTEXes not included in faces
if ( !nodes.begin()->second->GetInverseElementIterator(SMDSAbs_Face)->more() )
nodes.erase( nodes.begin() );
if ( !nodes.empty() &&
!nodes.rbegin()->second->GetInverseElementIterator(SMDSAbs_Face)->more() )
nodes.erase( --nodes.end() );
if ( isProxy )
{
TParamNodeMap::iterator u_node, nEnd = nodes.end();
for ( u_node = nodes.begin(); u_node != nEnd; ++u_node )
u_node->second = mesh.GetProxyNode( u_node->second );
}
if ( smToCheckEdges ) // erase nodes of segments not bounding faces of smToCheckEdges
{
{
TParamNodeMap::iterator u_node1, u_node2 = nodes.begin(), nEnd = nodes.end();
for ( u_node1 = u_node2++; u_node2 != nEnd; u_node1 = u_node2++ )
if ( IsSegmentOnSubMeshBoundary( u_node1->second, u_node2->second,
smToCheckEdges, mesh ))
break;
else
nodes.erase( u_node1 );
}
{
TParamNodeMap::reverse_iterator u_node1, u_node2 = nodes.rbegin(), nEnd = nodes.rend();
for ( u_node1 = u_node2++; u_node2 != nEnd; u_node1 = u_node2++ )
if ( IsSegmentOnSubMeshBoundary( u_node1->second, u_node2->second,
smToCheckEdges, mesh ))
break;
else
nodes.erase( --( u_node1.base() ));
}
}
bool forward = ( edge->Orientation() == TopAbs_FORWARD );
if ( reverse ) forward = !forward;
if ( forward )
{
TParamNodeMap::iterator u_node, nEnd = nodes.end();
for ( u_node = nodes.begin(); u_node != nEnd; ++u_node )
myGrid[ nbNodes++ ] = u_node->second;
}
else
{
TParamNodeMap::reverse_iterator u_node, nEnd = nodes.rend();
for ( u_node = nodes.rbegin(); u_node != nEnd; ++u_node )
myGrid[ nbNodes++ ] = u_node->second;
}
nbNodes--; // node on vertex present in two adjacent edges
}
return nbNodes > 0;
}
//=======================================================================
//function : Dump
//purpose : dump end vertices
//=======================================================================
void _FaceSide::Dump() const
{
if ( myChildren.empty() )
{
const char* sideNames[] = { "Q_BOTTOM", "Q_RIGHT", "Q_TOP", "Q_LEFT", "Q_CHILD", "Q_PARENT" };
if ( myID >= Q_BOTTOM && myID < Q_PARENT )
cout << sideNames[ myID ] << endl;
else
cout << "<UNDEFINED ID>" << endl;
TopoDS_Vertex f = FirstVertex();
TopoDS_Vertex l = LastVertex();
gp_Pnt pf = BRep_Tool::Pnt(f);
gp_Pnt pl = BRep_Tool::Pnt(l);
cout << "\t ( "<< ptr( f ) << " - " << ptr( l )<< " )"
<< "\t ( "<< pf.X()<<", "<<pf.Y()<<", "<<pf.Z()<<" ) - "
<< " ( "<< pl.X()<<", "<<pl.Y()<<", "<<pl.Z()<<" )"<<endl;
}
else
{
list< _FaceSide >::const_iterator side = myChildren.begin(), sideEnd = myChildren.end();
for ( ; side != sideEnd; ++side ) {
side->Dump();
cout << "\t";
}
}
}