smesh/src/StdMeshers/StdMeshers_Hexa_3D.cxx
2020-04-15 18:19:44 +03:00

943 lines
34 KiB
C++
Raw Blame History

// Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementation of SMESH idl descriptions
// File : StdMeshers_Hexa_3D.cxx
// Moved here from SMESH_Hexa_3D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
//
#include "StdMeshers_Hexa_3D.hxx"
#include "StdMeshers_CompositeHexa_3D.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "StdMeshers_HexaFromSkin_3D.hxx"
#include "StdMeshers_Penta_3D.hxx"
#include "StdMeshers_Prism_3D.hxx"
#include "StdMeshers_Quadrangle_2D.hxx"
#include "StdMeshers_ViscousLayers.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include "SMDS_MeshNode.hxx"
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_SequenceOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include "utilities.h"
#include "Utils_ExceptHandlers.hxx"
typedef SMESH_Comment TComm;
using namespace std;
static SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh &,
const TopoDS_Shape &,
SMESH_ProxyMesh* proxyMesh=0);
static bool EvaluatePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &,
MapShapeNbElems &);
//=============================================================================
/*!
* Constructor
*/
//=============================================================================
StdMeshers_Hexa_3D::StdMeshers_Hexa_3D(int hypId, SMESH_Gen * gen)
:SMESH_3D_Algo(hypId, gen)
{
_name = "Hexa_3D";
_shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type
_requireShape = false;
_compatibleHypothesis.push_back("ViscousLayers");
_quadAlgo = new StdMeshers_Quadrangle_2D( gen->GetANewId(), _gen );
}
//=============================================================================
/*!
* Destructor
*/
//=============================================================================
StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D()
{
delete _quadAlgo;
_quadAlgo = 0;
}
//=============================================================================
/*!
* Retrieves defined hypotheses
*/
//=============================================================================
bool StdMeshers_Hexa_3D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
// check nb of faces in the shape
/* PAL16229
aStatus = SMESH_Hypothesis::HYP_BAD_GEOMETRY;
int nbFaces = 0;
for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next())
if ( ++nbFaces > 6 )
break;
if ( nbFaces != 6 )
return false;
*/
_viscousLayersHyp = NULL;
const list<const SMESHDS_Hypothesis*>& hyps =
GetUsedHypothesis(aMesh, aShape, /*ignoreAuxiliary=*/false);
list <const SMESHDS_Hypothesis* >::const_iterator h = hyps.begin();
if ( h == hyps.end())
{
aStatus = SMESH_Hypothesis::HYP_OK;
return true;
}
// only StdMeshers_ViscousLayers can be used
aStatus = HYP_OK;
for ( ; h != hyps.end(); ++h )
{
if ( !(_viscousLayersHyp = dynamic_cast< const StdMeshers_ViscousLayers*> ( *h )))
break;
}
if ( !_viscousLayersHyp )
aStatus = HYP_INCOMPATIBLE;
else
error( _viscousLayersHyp->CheckHypothesis( aMesh, aShape, aStatus ));
return aStatus == HYP_OK;
}
namespace
{
//=============================================================================
typedef boost::shared_ptr< FaceQuadStruct > FaceQuadStructPtr;
typedef std::vector<gp_XYZ> TXYZColumn;
// symbolic names of box sides
enum EBoxSides{ B_BOTTOM=0, B_RIGHT, B_TOP, B_LEFT, B_FRONT, B_BACK, B_NB_SIDES };
// symbolic names of sides of quadrangle
enum EQuadSides{ Q_BOTTOM=0, Q_RIGHT, Q_TOP, Q_LEFT, Q_NB_SIDES };
enum EAxes{ COO_X=1, COO_Y, COO_Z };
//=============================================================================
/*!
* \brief Container of nodes of structured mesh on a qudrangular geom FACE
*/
struct _FaceGrid
{
// face sides
FaceQuadStructPtr _quad;
// map of (node parameter on EDGE) to (column (vector) of nodes)
TParam2ColumnMap _u2nodesMap;
// node column's taken from _u2nodesMap taking into account sub-shape orientation
vector<TNodeColumn> _columns;
// columns of normalized parameters of nodes within the unitary cube
vector<TXYZColumn> _ijkColumns;
// geometry of a cube side
TopoDS_Face _sideF;
const SMDS_MeshNode* GetNode(int iCol, int iRow) const
{
return _columns[iCol][iRow];
}
gp_XYZ GetXYZ(int iCol, int iRow) const
{
return SMESH_TNodeXYZ( GetNode( iCol, iRow ));
}
gp_XYZ& GetIJK(int iCol, int iRow)
{
return _ijkColumns[iCol][iRow];
}
};
//================================================================================
/*!
* \brief Converter of a pair of integers to a sole index
*/
struct _Indexer
{
int _xSize, _ySize;
_Indexer( int xSize, int ySize ): _xSize(xSize), _ySize(ySize) {}
int size() const { return _xSize * _ySize; }
int operator()(const int x, const int y) const { return y * _xSize + x; }
};
//================================================================================
/*!
* \brief Appends a range of node columns from a map to another map
*/
template< class TMapIterator >
void append( TParam2ColumnMap& toMap, TMapIterator from, TMapIterator to )
{
const SMDS_MeshNode* lastNode = toMap.rbegin()->second[0];
const SMDS_MeshNode* firstNode = from->second[0];
if ( lastNode == firstNode )
from++;
double u = toMap.rbegin()->first;
for (; from != to; ++from )
{
u += 1;
TParam2ColumnMap::iterator u2nn = toMap.insert( toMap.end(), make_pair ( u, TNodeColumn()));
u2nn->second.swap( from->second );
}
}
//================================================================================
/*!
* \brief Finds FaceQuadStruct having a side equal to a given one and rearranges
* the found FaceQuadStruct::side to have the given side at a Q_BOTTOM place
*/
FaceQuadStructPtr getQuadWithBottom( StdMeshers_FaceSidePtr side,
FaceQuadStructPtr quad[ 6 ])
{
FaceQuadStructPtr foundQuad;
for ( int i = 1; i < 6; ++i )
{
if ( !quad[i] ) continue;
for ( size_t iS = 0; iS < quad[i]->side.size(); ++iS )
{
const StdMeshers_FaceSidePtr side2 = quad[i]->side[iS];
if (( side->FirstVertex().IsSame( side2->FirstVertex() ) ||
side->FirstVertex().IsSame( side2->LastVertex() ))
&&
( side->LastVertex().IsSame( side2->FirstVertex() ) ||
side->LastVertex().IsSame( side2->LastVertex() ))
)
{
if ( iS != Q_BOTTOM )
{
vector< FaceQuadStruct::Side > newSides;
for ( size_t j = iS; j < quad[i]->side.size(); ++j )
newSides.push_back( quad[i]->side[j] );
for ( size_t j = 0; j < iS; ++j )
newSides.push_back( quad[i]->side[j] );
quad[i]->side.swap( newSides );
}
foundQuad.swap(quad[i]);
return foundQuad;
}
}
}
return foundQuad;
}
//================================================================================
/*!
* \brief Returns true if the 1st base node of sideGrid1 belongs to sideGrid2
*/
//================================================================================
bool beginsAtSide( const _FaceGrid& sideGrid1,
const _FaceGrid& sideGrid2,
SMESH_ProxyMesh::Ptr proxymesh )
{
const TNodeColumn& col0 = sideGrid2._u2nodesMap.begin()->second;
const TNodeColumn& col1 = sideGrid2._u2nodesMap.rbegin()->second;
const SMDS_MeshNode* n00 = col0.front();
const SMDS_MeshNode* n01 = col0.back();
const SMDS_MeshNode* n10 = col1.front();
const SMDS_MeshNode* n11 = col1.back();
const SMDS_MeshNode* n = (sideGrid1._u2nodesMap.begin()->second)[0];
if ( proxymesh )
{
n00 = proxymesh->GetProxyNode( n00 );
n10 = proxymesh->GetProxyNode( n10 );
n01 = proxymesh->GetProxyNode( n01 );
n11 = proxymesh->GetProxyNode( n11 );
n = proxymesh->GetProxyNode( n );
}
return ( n == n00 || n == n01 || n == n10 || n == n11 );
}
//================================================================================
/*!
* \brief Fill in _FaceGrid::_ijkColumns
* \param [in,out] fg - a _FaceGrid
* \param [in] i1 - coordinate index along _columns
* \param [in] i2 - coordinate index along _columns[i]
* \param [in] v3 - value of the constant parameter
*/
//================================================================================
void computeIJK( _FaceGrid& fg, int i1, int i2, double v3 )
{
gp_XYZ ijk( v3, v3, v3 );
const size_t nbCol = fg._columns.size();
const size_t nbRow = fg._columns[0].size();
fg._ijkColumns.resize( nbCol );
for ( size_t i = 0; i < nbCol; ++i )
fg._ijkColumns[ i ].resize( nbRow, ijk );
vector< double > len( nbRow );
len[0] = 0;
for ( size_t i = 0; i < nbCol; ++i )
{
gp_Pnt pPrev = fg.GetXYZ( i, 0 );
for ( size_t j = 1; j < nbRow; ++j )
{
gp_Pnt p = fg.GetXYZ( i, j );
len[ j ] = len[ j-1 ] + p.Distance( pPrev );
pPrev = p;
}
for ( size_t j = 0; j < nbRow; ++j )
fg.GetIJK( i, j ).SetCoord( i2, len[ j ]/len.back() );
}
len.resize( nbCol );
for ( size_t j = 0; j < nbRow; ++j )
{
gp_Pnt pPrev = fg.GetXYZ( 0, j );
for ( size_t i = 1; i < nbCol; ++i )
{
gp_Pnt p = fg.GetXYZ( i, j );
len[ i ] = len[ i-1 ] + p.Distance( pPrev );
pPrev = p;
}
for ( size_t i = 0; i < nbCol; ++i )
fg.GetIJK( i, j ).SetCoord( i1, len[ i ]/len.back() );
}
}
}
//=============================================================================
/*!
* Generates hexahedron mesh on hexaedron like form using algorithm from
* "Application de l'interpolation transfinie <20> la cr<63>ation de maillages
* C0 ou G1 continus sur des triangles, quadrangles, tetraedres, pentaedres
* et hexaedres d<>form<72>s."
* Alain PERONNET - 8 janvier 1999
*/
//=============================================================================
bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape)
{
// PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside
//Unexpect aCatch(SalomeException);
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
// Shape verification
// ----------------------
// shape must be a solid (or a shell) with 6 faces
TopExp_Explorer exp(aShape,TopAbs_SHELL);
if ( !exp.More() )
return error(COMPERR_BAD_SHAPE, "No SHELL in the geometry");
if ( exp.Next(), exp.More() )
return error(COMPERR_BAD_SHAPE, "More than one SHELL in the geometry");
TopTools_IndexedMapOfShape FF, EE;
TopExp::MapShapes( aShape, TopAbs_FACE, FF);
if ( FF.Extent() != 6)
{
static StdMeshers_CompositeHexa_3D compositeHexa(_gen->GetANewId(), _gen);
if ( !compositeHexa.Compute( aMesh, aShape ))
return error( compositeHexa.GetComputeError() );
return true;
}
// Find sides of a cube
// ---------------------
// tool creating quadratic elements if needed
SMESH_MesherHelper helper (aMesh);
_quadraticMesh = helper.IsQuadraticSubMesh(aShape);
TopExp::MapShapes( aShape, TopAbs_EDGE, EE );
SMESH_MesherHelper* faceHelper = ( EE.Size() == 12 ) ? 0 : &helper;
FaceQuadStructPtr quad[ 6 ];
for ( int i = 0; i < 6; ++i )
{
if ( faceHelper )
faceHelper->SetSubShape( FF( i+1 ));
if ( !( quad[i] = FaceQuadStructPtr( _quadAlgo->CheckNbEdges( aMesh, FF( i+1 ),
/*considerMesh=*/true,
faceHelper))))
return error( _quadAlgo->GetComputeError() );
if ( quad[i]->side.size() != 4 )
return error( COMPERR_BAD_SHAPE, "Not a quadrangular box side" );
}
_FaceGrid aCubeSide[ 6 ];
swap( aCubeSide[B_BOTTOM]._quad, quad[0] );
swap( aCubeSide[B_BOTTOM]._quad->side[ Q_RIGHT],// direct the normal of bottom quad inside cube
aCubeSide[B_BOTTOM]._quad->side[ Q_LEFT ] );
aCubeSide[B_FRONT]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_BOTTOM], quad );
aCubeSide[B_RIGHT]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_RIGHT ], quad );
aCubeSide[B_BACK ]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_TOP ], quad );
aCubeSide[B_LEFT ]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_LEFT ], quad );
if ( aCubeSide[B_FRONT ]._quad )
aCubeSide[B_TOP]._quad = getQuadWithBottom( aCubeSide[B_FRONT ]._quad->side[Q_TOP ], quad );
for ( int i = 1; i < 6; ++i )
if ( !aCubeSide[i]._quad )
return error( COMPERR_BAD_SHAPE );
// Make viscous layers
// --------------------
SMESH_ProxyMesh::Ptr proxymesh;
if ( _viscousLayersHyp )
{
proxymesh = _viscousLayersHyp->Compute( aMesh, aShape, /*makeN2NMap=*/ true );
if ( !proxymesh )
return false;
}
// Check if there are triangles on cube sides
// -------------------------------------------
if ( aMesh.NbTriangles() > 0 )
{
for ( int i = 0; i < 6; ++i )
{
const TopoDS_Face& sideF = aCubeSide[i]._quad->face;
const SMESHDS_SubMesh* smDS =
proxymesh ? proxymesh->GetSubMesh( sideF ) : meshDS->MeshElements( sideF );
if ( !SMESH_MesherHelper::IsSameElemGeometry( smDS, SMDSGeom_QUADRANGLE,
/*nullSubMeshRes=*/false ))
{
SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape, proxymesh.get());
return error( err );
}
}
}
// Check presence of regular grid mesh on FACEs of the cube
// ------------------------------------------------------------
for ( int i = 0; i < 6; ++i )
{
const TopoDS_Face& F = aCubeSide[i]._quad->face;
StdMeshers_FaceSidePtr baseQuadSide = aCubeSide[i]._quad->side[ Q_BOTTOM ];
list<TopoDS_Edge> baseEdges( baseQuadSide->Edges().begin(), baseQuadSide->Edges().end() );
// assure correctness of node positions on baseE:
// helper.GetNodeU() will fix positions if they are wrong
helper.ToFixNodeParameters( true );
for ( int iE = 0; iE < baseQuadSide->NbEdges(); ++iE )
{
const TopoDS_Edge& baseE = baseQuadSide->Edge( iE );
if ( SMESHDS_SubMesh* smDS = meshDS->MeshElements( baseE ))
{
bool ok;
helper.SetSubShape( baseE );
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
while ( eIt->more() )
{
const SMDS_MeshElement* e = eIt->next();
// expect problems on a composite side
try { helper.GetNodeU( baseE, e->GetNode(0), e->GetNode(1), &ok); }
catch (...) {}
try { helper.GetNodeU( baseE, e->GetNode(1), e->GetNode(0), &ok); }
catch (...) {}
}
}
}
// load grid
bool ok =
helper.LoadNodeColumns( aCubeSide[i]._u2nodesMap, F, baseEdges, meshDS, proxymesh.get());
if ( ok )
{
// check if the loaded grid corresponds to nb of quadrangles on the FACE
const SMESHDS_SubMesh* faceSubMesh =
proxymesh ? proxymesh->GetSubMesh( F ) : meshDS->MeshElements( F );
const int nbQuads = faceSubMesh->NbElements();
const int nbHor = aCubeSide[i]._u2nodesMap.size() - 1;
const int nbVer = aCubeSide[i]._u2nodesMap.begin()->second.size() - 1;
ok = ( nbQuads == nbHor * nbVer );
}
if ( !ok )
{
SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape, proxymesh.get());
return error( err );
}
}
// Orient loaded grids of cube sides along axis of the unitary cube coord system
bool isReverse[6];
isReverse[B_BOTTOM] = beginsAtSide( aCubeSide[B_BOTTOM], aCubeSide[B_RIGHT ], proxymesh );
isReverse[B_TOP ] = beginsAtSide( aCubeSide[B_TOP ], aCubeSide[B_RIGHT ], proxymesh );
isReverse[B_FRONT ] = beginsAtSide( aCubeSide[B_FRONT ], aCubeSide[B_RIGHT ], proxymesh );
isReverse[B_BACK ] = beginsAtSide( aCubeSide[B_BACK ], aCubeSide[B_RIGHT ], proxymesh );
isReverse[B_LEFT ] = beginsAtSide( aCubeSide[B_LEFT ], aCubeSide[B_BACK ], proxymesh );
isReverse[B_RIGHT ] = beginsAtSide( aCubeSide[B_RIGHT ], aCubeSide[B_BACK ], proxymesh );
for ( int i = 0; i < 6; ++i )
{
aCubeSide[i]._columns.resize( aCubeSide[i]._u2nodesMap.size() );
size_t iFwd = 0, iRev = aCubeSide[i]._columns.size()-1;
size_t* pi = isReverse[i] ? &iRev : &iFwd;
TParam2ColumnMap::iterator u2nn = aCubeSide[i]._u2nodesMap.begin();
for ( ; iFwd < aCubeSide[i]._columns.size(); --iRev, ++iFwd, ++u2nn )
aCubeSide[i]._columns[ *pi ].swap( u2nn->second );
aCubeSide[i]._u2nodesMap.clear();
}
if ( proxymesh )
for ( int i = 0; i < 6; ++i )
for ( size_t j = 0; j < aCubeSide[i]._columns.size(); ++j)
for ( size_t k = 0; k < aCubeSide[i]._columns[j].size(); ++k)
{
const SMDS_MeshNode* & n = aCubeSide[i]._columns[j][k];
n = proxymesh->GetProxyNode( n );
}
// 4) Create internal nodes of the cube
// -------------------------------------
helper.SetSubShape( aShape );
helper.SetElementsOnShape(true);
// shortcuts to sides
_FaceGrid* fBottom = & aCubeSide[ B_BOTTOM ];
_FaceGrid* fRight = & aCubeSide[ B_RIGHT ];
_FaceGrid* fTop = & aCubeSide[ B_TOP ];
_FaceGrid* fLeft = & aCubeSide[ B_LEFT ];
_FaceGrid* fFront = & aCubeSide[ B_FRONT ];
_FaceGrid* fBack = & aCubeSide[ B_BACK ];
// cube size measured in nb of nodes
size_t x, xSize = fBottom->_columns.size() , X = xSize - 1;
size_t y, ySize = fLeft->_columns.size() , Y = ySize - 1;
size_t z, zSize = fLeft->_columns[0].size(), Z = zSize - 1;
// check sharing of FACEs (IPAL54417)
if ( fFront ->_columns.size() != xSize ||
fBack ->_columns.size() != xSize ||
fTop ->_columns.size() != xSize ||
fRight ->_columns.size() != ySize ||
fTop ->_columns[0].size() != ySize ||
fBottom->_columns[0].size() != ySize ||
fRight ->_columns[0].size() != zSize ||
fFront ->_columns[0].size() != zSize ||
fBack ->_columns[0].size() != zSize )
return error( COMPERR_BAD_SHAPE, "Not sewed faces" );
// columns of internal nodes "rising" from nodes of fBottom
_Indexer colIndex( xSize, ySize );
vector< vector< const SMDS_MeshNode* > > columns( colIndex.size() );
// fill node columns by front and back box sides
for ( x = 0; x < xSize; ++x ) {
vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( x, 0 )];
vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( x, Y )];
column0.resize( zSize );
column1.resize( zSize );
for ( z = 0; z < zSize; ++z ) {
column0[ z ] = fFront->GetNode( x, z );
column1[ z ] = fBack ->GetNode( x, z );
}
}
// fill node columns by left and right box sides
for ( y = 1; y < ySize-1; ++y ) {
vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( 0, y )];
vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( X, y )];
column0.resize( zSize );
column1.resize( zSize );
for ( z = 0; z < zSize; ++z ) {
column0[ z ] = fLeft ->GetNode( y, z );
column1[ z ] = fRight->GetNode( y, z );
}
}
// get nodes from top and bottom box sides
for ( x = 1; x < xSize-1; ++x ) {
for ( y = 1; y < ySize-1; ++y ) {
vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )];
column.resize( zSize );
column.front() = fBottom->GetNode( x, y );
column.back() = fTop ->GetNode( x, y );
}
}
// compute normalized parameters of nodes on sides (PAL23189)
computeIJK( *fBottom, COO_X, COO_Y, /*z=*/0. );
computeIJK( *fRight, COO_Y, COO_Z, /*x=*/1. );
computeIJK( *fTop, COO_X, COO_Y, /*z=*/1. );
computeIJK( *fLeft, COO_Y, COO_Z, /*x=*/0. );
computeIJK( *fFront, COO_X, COO_Z, /*y=*/0. );
computeIJK( *fBack, COO_X, COO_Z, /*y=*/1. );
// projection points of the internal node on cube sub-shapes by which
// coordinates of the internal node are computed
vector<gp_XYZ> pointsOnShapes( SMESH_Block::ID_Shell );
// projections on vertices are constant
pointsOnShapes[ SMESH_Block::ID_V000 ] = fBottom->GetXYZ( 0, 0 );
pointsOnShapes[ SMESH_Block::ID_V100 ] = fBottom->GetXYZ( X, 0 );
pointsOnShapes[ SMESH_Block::ID_V010 ] = fBottom->GetXYZ( 0, Y );
pointsOnShapes[ SMESH_Block::ID_V110 ] = fBottom->GetXYZ( X, Y );
pointsOnShapes[ SMESH_Block::ID_V001 ] = fTop->GetXYZ( 0, 0 );
pointsOnShapes[ SMESH_Block::ID_V101 ] = fTop->GetXYZ( X, 0 );
pointsOnShapes[ SMESH_Block::ID_V011 ] = fTop->GetXYZ( 0, Y );
pointsOnShapes[ SMESH_Block::ID_V111 ] = fTop->GetXYZ( X, Y );
gp_XYZ params; // normalized parameters of an internal node within the unit box
for ( x = 1; x < xSize-1; ++x )
{
const double rX = x / double(X);
for ( y = 1; y < ySize-1; ++y )
{
const double rY = y / double(Y);
// a column to fill in during z loop
vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )];
// projection points on horizontal edges
pointsOnShapes[ SMESH_Block::ID_Ex00 ] = fBottom->GetXYZ( x, 0 );
pointsOnShapes[ SMESH_Block::ID_Ex10 ] = fBottom->GetXYZ( x, Y );
pointsOnShapes[ SMESH_Block::ID_E0y0 ] = fBottom->GetXYZ( 0, y );
pointsOnShapes[ SMESH_Block::ID_E1y0 ] = fBottom->GetXYZ( X, y );
pointsOnShapes[ SMESH_Block::ID_Ex01 ] = fTop->GetXYZ( x, 0 );
pointsOnShapes[ SMESH_Block::ID_Ex11 ] = fTop->GetXYZ( x, Y );
pointsOnShapes[ SMESH_Block::ID_E0y1 ] = fTop->GetXYZ( 0, y );
pointsOnShapes[ SMESH_Block::ID_E1y1 ] = fTop->GetXYZ( X, y );
// projection points on horizontal faces
pointsOnShapes[ SMESH_Block::ID_Fxy0 ] = fBottom->GetXYZ( x, y );
pointsOnShapes[ SMESH_Block::ID_Fxy1 ] = fTop ->GetXYZ( x, y );
for ( z = 1; z < zSize-1; ++z ) // z loop
{
const double rZ = z / double(Z);
const gp_XYZ& pBo = fBottom->GetIJK( x, y );
const gp_XYZ& pTo = fTop ->GetIJK( x, y );
const gp_XYZ& pFr = fFront ->GetIJK( x, z );
const gp_XYZ& pBa = fBack ->GetIJK( x, z );
const gp_XYZ& pLe = fLeft ->GetIJK( y, z );
const gp_XYZ& pRi = fRight ->GetIJK( y, z );
params.SetCoord( 1, 0.5 * ( pBo.X() * ( 1. - rZ ) + pTo.X() * rZ +
pFr.X() * ( 1. - rY ) + pBa.X() * rY ));
params.SetCoord( 2, 0.5 * ( pBo.Y() * ( 1. - rZ ) + pTo.Y() * rZ +
pLe.Y() * ( 1. - rX ) + pRi.Y() * rX ));
params.SetCoord( 3, 0.5 * ( pFr.Z() * ( 1. - rY ) + pBa.Z() * rY +
pLe.Z() * ( 1. - rX ) + pRi.Z() * rX ));
// projection points on vertical edges
pointsOnShapes[ SMESH_Block::ID_E00z ] = fFront->GetXYZ( 0, z );
pointsOnShapes[ SMESH_Block::ID_E10z ] = fFront->GetXYZ( X, z );
pointsOnShapes[ SMESH_Block::ID_E01z ] = fBack->GetXYZ( 0, z );
pointsOnShapes[ SMESH_Block::ID_E11z ] = fBack->GetXYZ( X, z );
// projection points on vertical faces
pointsOnShapes[ SMESH_Block::ID_Fx0z ] = fFront->GetXYZ( x, z );
pointsOnShapes[ SMESH_Block::ID_Fx1z ] = fBack ->GetXYZ( x, z );
pointsOnShapes[ SMESH_Block::ID_F0yz ] = fLeft ->GetXYZ( y, z );
pointsOnShapes[ SMESH_Block::ID_F1yz ] = fRight->GetXYZ( y, z );
// compute internal node coordinates
gp_XYZ coords;
SMESH_Block::ShellPoint( params, pointsOnShapes, coords );
column[ z ] = helper.AddNode( coords.X(), coords.Y(), coords.Z() );
}
}
}
// side data no more needed, free memory
for ( int i = 0; i < 6; ++i )
aCubeSide[i]._columns.clear();
// 5) Create hexahedrons
// ---------------------
for ( x = 0; x < xSize-1; ++x ) {
for ( y = 0; y < ySize-1; ++y ) {
vector< const SMDS_MeshNode* >& col00 = columns[ colIndex( x, y )];
vector< const SMDS_MeshNode* >& col10 = columns[ colIndex( x+1, y )];
vector< const SMDS_MeshNode* >& col01 = columns[ colIndex( x, y+1 )];
vector< const SMDS_MeshNode* >& col11 = columns[ colIndex( x+1, y+1 )];
for ( z = 0; z < zSize-1; ++z )
{
// bottom face normal of a hexa mush point outside the volume
helper.AddVolume(col00[z], col01[z], col11[z], col10[z],
col00[z+1], col01[z+1], col11[z+1], col10[z+1]);
}
}
}
return true;
}
//=============================================================================
/*!
* Evaluate
*/
//=============================================================================
bool StdMeshers_Hexa_3D::Evaluate(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap)
{
vector < SMESH_subMesh * >meshFaces;
TopTools_SequenceOfShape aFaces;
for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) {
aFaces.Append(exp.Current());
SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
ASSERT(aSubMesh);
meshFaces.push_back(aSubMesh);
}
if (meshFaces.size() != 6) {
//return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block");
static StdMeshers_CompositeHexa_3D compositeHexa(-10, aMesh.GetGen());
return compositeHexa.Evaluate(aMesh, aShape, aResMap);
}
int i = 0;
for(; i<6; i++) {
//TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
TopoDS_Shape aFace = aFaces.Value(i+1);
SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
if( !algo ) {
std::vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aResVec));
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
string algoName = algo->GetName();
bool isAllQuad = false;
if (algoName == "Quadrangle_2D") {
MapShapeNbElemsItr anIt = aResMap.find(meshFaces[i]);
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
if( nbtri == 0 )
isAllQuad = true;
}
if ( ! isAllQuad ) {
return EvaluatePentahedralMesh(aMesh, aShape, aResMap);
}
}
// find number of 1d elems for 1 face
int nb1d = 0;
TopTools_MapOfShape Edges1;
bool IsQuadratic = false;
bool IsFirst = true;
for (TopExp_Explorer exp(aFaces.Value(1), TopAbs_EDGE); exp.More(); exp.Next()) {
Edges1.Add(exp.Current());
SMESH_subMesh *sm = aMesh.GetSubMesh(exp.Current());
if( sm ) {
MapShapeNbElemsItr anIt = aResMap.find(sm);
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
if(IsFirst) {
IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
IsFirst = false;
}
}
}
// find face opposite to 1 face
int OppNum = 0;
for(i=2; i<=6; i++) {
bool IsOpposite = true;
for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) {
if( Edges1.Contains(exp.Current()) ) {
IsOpposite = false;
break;
}
}
if(IsOpposite) {
OppNum = i;
break;
}
}
// find number of 2d elems on side faces
int nb2d = 0;
for(i=2; i<=6; i++) {
if( i == OppNum ) continue;
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[i-1] );
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
nb2d += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
}
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[0] );
std::vector<int> aVec = (*anIt).second;
int nb2d_face0 = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
int nb0d_face0 = aVec[SMDSEntity_Node];
std::vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
if(IsQuadratic) {
aResVec[SMDSEntity_Quad_Hexa] = nb2d_face0 * ( nb2d/nb1d );
int nb1d_face0_int = ( nb2d_face0*4 - nb1d ) / 2;
aResVec[SMDSEntity_Node] = nb0d_face0 * ( 2*nb2d/nb1d - 1 ) - nb1d_face0_int * nb2d/nb1d;
}
else {
aResVec[SMDSEntity_Node] = nb0d_face0 * ( nb2d/nb1d - 1 );
aResVec[SMDSEntity_Hexa] = nb2d_face0 * ( nb2d/nb1d );
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aResVec));
return true;
}
//================================================================================
/*!
* \brief Computes hexahedral mesh from 2D mesh of block
*/
//================================================================================
bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh & aMesh, SMESH_MesherHelper* aHelper)
{
static StdMeshers_HexaFromSkin_3D * algo = 0;
if ( !algo ) {
SMESH_Gen* gen = aMesh.GetGen();
algo = new StdMeshers_HexaFromSkin_3D( gen->GetANewId(), gen );
}
algo->InitComputeError();
algo->Compute( aMesh, aHelper );
return error( algo->GetComputeError());
}
//================================================================================
/*!
* \brief Return true if the algorithm can mesh this shape
* \param [in] aShape - shape to check
* \param [in] toCheckAll - if true, this check returns OK if all shapes are OK,
* else, returns OK if at least one shape is OK
*/
//================================================================================
bool StdMeshers_Hexa_3D::IsApplicable( const TopoDS_Shape & aShape, bool toCheckAll )
{
TopExp_Explorer exp0( aShape, TopAbs_SOLID );
if ( !exp0.More() ) return false;
for ( ; exp0.More(); exp0.Next() )
{
int nbFoundShells = 0;
TopExp_Explorer exp1( exp0.Current(), TopAbs_SHELL );
for ( ; exp1.More(); exp1.Next(), ++nbFoundShells)
if ( nbFoundShells == 2 ) break;
if ( nbFoundShells != 1 ) {
if ( toCheckAll ) return false;
continue;
}
exp1.Init( exp0.Current(), TopAbs_FACE );
int nbEdges = SMESH_MesherHelper::Count( exp1.Current(), TopAbs_EDGE, /*ignoreSame=*/true );
bool ok = ( nbEdges > 3 );
if ( toCheckAll && !ok ) return false;
if ( !toCheckAll && ok ) return true;
}
return toCheckAll;
};
//=======================================================================
//function : ComputePentahedralMesh
//purpose :
//=======================================================================
SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
SMESH_ProxyMesh* proxyMesh)
{
SMESH_ComputeErrorPtr err = SMESH_ComputeError::New();
if ( proxyMesh )
{
err->myName = COMPERR_BAD_INPUT_MESH;
err->myComment = "Can't build pentahedral mesh on viscous layers";
return err;
}
bool bOK;
StdMeshers_Penta_3D anAlgo;
//
bOK=anAlgo.Compute(aMesh, aShape);
//
err = anAlgo.GetComputeError();
//
if ( !bOK && anAlgo.ErrorStatus() == 5 )
{
static StdMeshers_Prism_3D * aPrism3D = 0;
if ( !aPrism3D ) {
SMESH_Gen* gen = aMesh.GetGen();
aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), gen );
}
SMESH_Hypothesis::Hypothesis_Status aStatus;
if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) {
aPrism3D->InitComputeError();
bOK = aPrism3D->Compute( aMesh, aShape );
err = aPrism3D->GetComputeError();
}
}
return err;
}
//=======================================================================
//function : EvaluatePentahedralMesh
//purpose :
//=======================================================================
bool EvaluatePentahedralMesh(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap)
{
StdMeshers_Penta_3D anAlgo;
bool bOK = anAlgo.Evaluate(aMesh, aShape, aResMap);
//err = anAlgo.GetComputeError();
//if ( !bOK && anAlgo.ErrorStatus() == 5 )
if( !bOK ) {
static StdMeshers_Prism_3D * aPrism3D = 0;
if ( !aPrism3D ) {
SMESH_Gen* gen = aMesh.GetGen();
aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), gen );
}
SMESH_Hypothesis::Hypothesis_Status aStatus;
if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) {
return aPrism3D->Evaluate(aMesh, aShape, aResMap);
}
}
return bOK;
}