smesh/src/SMESH/SMESH_Gen.cxx
2019-02-14 15:33:05 +03:00

1191 lines
41 KiB
C++

// Copyright (C) 2007-2019 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementation of SMESH idl descriptions
// File : SMESH_Gen.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
//
//#define CHRONODEF
#include "SMESH_Gen.hxx"
#include "SMDS_Mesh.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESHDS_Document.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include "utilities.h"
#include "OpUtil.hxx"
#include "Utils_ExceptHandlers.hxx"
#include <TopoDS_Iterator.hxx>
#include <TopoDS.hxx>
#include "memoire.h"
#ifdef WIN32
#include <windows.h>
#endif
#include <Basics_Utils.hxx>
using namespace std;
//=============================================================================
/*!
* Constructor
*/
//=============================================================================
SMESH_Gen::SMESH_Gen()
{
_studyContext = new StudyContextStruct;
_studyContext->myDocument = new SMESHDS_Document();
_localId = 0;
_hypId = 0;
_segmentation = _nbSegments = 10;
_compute_canceled = false;
}
namespace
{
// a structure used to nullify SMESH_Gen field of SMESH_Hypothesis,
// which is needed for SMESH_Hypothesis not deleted before ~SMESH_Gen()
struct _Hyp : public SMESH_Hypothesis
{
void NullifyGen()
{
_gen = 0;
}
};
}
//=============================================================================
/*!
* Destructor
*/
//=============================================================================
SMESH_Gen::~SMESH_Gen()
{
std::map < int, SMESH_Hypothesis * >::iterator i_hyp = _studyContext->mapHypothesis.begin();
for ( ; i_hyp != _studyContext->mapHypothesis.end(); ++i_hyp )
{
if ( _Hyp* h = static_cast< _Hyp*>( i_hyp->second ))
h->NullifyGen();
}
delete _studyContext->myDocument;
delete _studyContext;
}
//=============================================================================
/*!
* Creates a mesh in a study.
* if (theIsEmbeddedMode) { mesh modification commands are not logged }
*/
//=============================================================================
SMESH_Mesh* SMESH_Gen::CreateMesh(bool theIsEmbeddedMode)
throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
// create a new SMESH_mesh object
SMESH_Mesh *aMesh = new SMESH_Mesh(_localId++,
this,
theIsEmbeddedMode,
_studyContext->myDocument);
_studyContext->mapMesh[_localId-1] = aMesh;
return aMesh;
}
//=============================================================================
/*
* Compute a mesh
*/
//=============================================================================
bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const int aFlags /*= COMPACT_MESH*/,
const ::MeshDimension aDim /*=::MeshDim_3D*/,
TSetOfInt* aShapesId /*=0*/)
{
MEMOSTAT;
const bool aShapeOnly = aFlags & SHAPE_ONLY;
const bool anUpward = aFlags & UPWARD;
const bool aCompactMesh = aFlags & COMPACT_MESH;
bool ret = true;
SMESH_subMesh *sm = aMesh.GetSubMesh(aShape);
const bool includeSelf = true;
const bool complexShapeFirst = true;
const int globalAlgoDim = 100;
SMESH_subMeshIteratorPtr smIt;
// Fix of Issue 22150. Due to !BLSURF->OnlyUnaryInput(), BLSURF computes edges
// that must be computed by Projection 1D-2D while the Projection asks to compute
// one face only.
SMESH_subMesh::compute_event computeEvent =
aShapeOnly ? SMESH_subMesh::COMPUTE_SUBMESH : SMESH_subMesh::COMPUTE;
if ( !aMesh.HasShapeToMesh() )
computeEvent = SMESH_subMesh::COMPUTE_NOGEOM; // if several algos and no geometry
if ( anUpward ) // is called from the below code in this method
{
// ===============================================
// Mesh all the sub-shapes starting from vertices
// ===============================================
smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst);
while ( smIt->more() )
{
SMESH_subMesh* smToCompute = smIt->next();
// do not mesh vertices of a pseudo shape
const TopoDS_Shape& shape = smToCompute->GetSubShape();
const TopAbs_ShapeEnum shapeType = shape.ShapeType();
if ( !aMesh.HasShapeToMesh() && shapeType == TopAbs_VERTEX )
continue;
// check for preview dimension limitations
if ( aShapesId && GetShapeDim( shapeType ) > (int)aDim )
{
// clear compute state not to show previous compute errors
// if preview invoked less dimension less than previous
smToCompute->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
continue;
}
if (smToCompute->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE)
{
if (_compute_canceled)
return false;
setCurrentSubMesh( smToCompute );
smToCompute->ComputeStateEngine( computeEvent );
setCurrentSubMesh( NULL );
}
// we check all the sub-meshes here and detect if any of them failed to compute
if (smToCompute->GetComputeState() == SMESH_subMesh::FAILED_TO_COMPUTE &&
( shapeType != TopAbs_EDGE || !SMESH_Algo::isDegenerated( TopoDS::Edge( shape ))))
ret = false;
else if ( aShapesId )
aShapesId->insert( smToCompute->GetId() );
}
//aMesh.GetMeshDS()->Modified();
return ret;
}
else
{
// ================================================================
// Apply algos that do NOT require discreteized boundaries
// ("all-dimensional") and do NOT support sub-meshes, starting from
// the most complex shapes and collect sub-meshes with algos that
// DO support sub-meshes
// ================================================================
list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes[4]; // for each dim
// map to sort sm with same dim algos according to dim of
// the shape the algo assigned to (issue 0021217).
// Other issues influenced the algo applying order:
// 21406, 21556, 21893, 20206
multimap< int, SMESH_subMesh* > shDim2sm;
multimap< int, SMESH_subMesh* >::reverse_iterator shDim2smIt;
TopoDS_Shape algoShape;
int prevShapeDim = -1, aShapeDim;
smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst);
while ( smIt->more() )
{
SMESH_subMesh* smToCompute = smIt->next();
if ( smToCompute->GetComputeState() != SMESH_subMesh::READY_TO_COMPUTE )
continue;
const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
aShapeDim = GetShapeDim( aSubShape );
if ( aShapeDim < 1 ) break;
// check for preview dimension limitations
if ( aShapesId && aShapeDim > (int)aDim )
continue;
SMESH_Algo* algo = GetAlgo( smToCompute, &algoShape );
if ( algo && !algo->NeedDiscreteBoundary() )
{
if ( algo->SupportSubmeshes() )
{
// reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes
// so that more local algos to go first
if ( prevShapeDim != aShapeDim )
{
prevShapeDim = aShapeDim;
for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt )
if ( shDim2smIt->first == globalAlgoDim )
smWithAlgoSupportingSubmeshes[ aShapeDim ].push_back( shDim2smIt->second );
else
smWithAlgoSupportingSubmeshes[ aShapeDim ].push_front( shDim2smIt->second );
shDim2sm.clear();
}
// add smToCompute to shDim2sm map
if ( algoShape.IsSame( aMesh.GetShapeToMesh() ))
{
aShapeDim = globalAlgoDim; // to compute last
}
else
{
aShapeDim = GetShapeDim( algoShape );
if ( algoShape.ShapeType() == TopAbs_COMPOUND )
{
TopoDS_Iterator it( algoShape );
aShapeDim += GetShapeDim( it.Value() );
}
}
shDim2sm.insert( make_pair( aShapeDim, smToCompute ));
}
else // Compute w/o support of sub-meshes
{
if (_compute_canceled)
return false;
setCurrentSubMesh( smToCompute );
smToCompute->ComputeStateEngine( computeEvent );
setCurrentSubMesh( NULL );
if ( aShapesId )
aShapesId->insert( smToCompute->GetId() );
}
}
}
// reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes
for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt )
if ( shDim2smIt->first == globalAlgoDim )
smWithAlgoSupportingSubmeshes[3].push_back( shDim2smIt->second );
else
smWithAlgoSupportingSubmeshes[0].push_front( shDim2smIt->second );
// ======================================================
// Apply all-dimensional algorithms supporing sub-meshes
// ======================================================
std::vector< SMESH_subMesh* > smVec;
for ( aShapeDim = 0; aShapeDim < 4; ++aShapeDim )
{
// ------------------------------------------------
// sort list of sub-meshes according to mesh order
// ------------------------------------------------
smVec.assign( smWithAlgoSupportingSubmeshes[ aShapeDim ].begin(),
smWithAlgoSupportingSubmeshes[ aShapeDim ].end() );
aMesh.SortByMeshOrder( smVec );
// ------------------------------------------------------------
// compute sub-meshes with local uni-dimensional algos under
// sub-meshes with all-dimensional algos
// ------------------------------------------------------------
// start from lower shapes
for ( size_t i = 0; i < smVec.size(); ++i )
{
sm = smVec[i];
// get a shape the algo is assigned to
if ( !GetAlgo( sm, & algoShape ))
continue; // strange...
// look for more local algos
smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst);
while ( smIt->more() )
{
SMESH_subMesh* smToCompute = smIt->next();
const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
const int aShapeDim = GetShapeDim( aSubShape );
//if ( aSubShape.ShapeType() == TopAbs_VERTEX ) continue;
if ( aShapeDim < 1 ) continue;
// check for preview dimension limitations
if ( aShapesId && GetShapeDim( aSubShape.ShapeType() ) > (int)aDim )
continue;
SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
filter
.And( SMESH_HypoFilter::IsApplicableTo( aSubShape ))
.And( SMESH_HypoFilter::IsMoreLocalThan( algoShape, aMesh ));
if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( smToCompute, filter, true))
{
if ( ! subAlgo->NeedDiscreteBoundary() ) continue;
SMESH_Hypothesis::Hypothesis_Status status;
if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status ))
// mesh a lower smToCompute starting from vertices
Compute( aMesh, aSubShape, aFlags | SHAPE_ONLY_UPWARD, aDim, aShapesId );
// Compute( aMesh, aSubShape, aShapeOnly, /*anUpward=*/true, aDim, aShapesId );
}
}
}
// --------------------------------
// apply the all-dimensional algos
// --------------------------------
for ( size_t i = 0; i < smVec.size(); ++i )
{
sm = smVec[i];
if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE)
{
const TopAbs_ShapeEnum shapeType = sm->GetSubShape().ShapeType();
// check for preview dimension limitations
if ( aShapesId && GetShapeDim( shapeType ) > (int)aDim )
continue;
if (_compute_canceled)
return false;
setCurrentSubMesh( sm );
sm->ComputeStateEngine( computeEvent );
setCurrentSubMesh( NULL );
if ( aShapesId )
aShapesId->insert( sm->GetId() );
}
}
} // loop on shape dimensions
// -----------------------------------------------
// mesh the rest sub-shapes starting from vertices
// -----------------------------------------------
ret = Compute( aMesh, aShape, aFlags | UPWARD, aDim, aShapesId );
}
MEMOSTAT;
// fix quadratic mesh by bending iternal links near concave boundary
if ( aCompactMesh && // a final compute
aShape.IsSame( aMesh.GetShapeToMesh() ) &&
!aShapesId && // not preview
ret ) // everything is OK
{
SMESH_MesherHelper aHelper( aMesh );
if ( aHelper.IsQuadraticMesh() != SMESH_MesherHelper::LINEAR )
{
aHelper.FixQuadraticElements( sm->GetComputeError() );
}
}
if ( aCompactMesh )
{
aMesh.GetMeshDS()->Modified();
aMesh.GetMeshDS()->CompactMesh();
}
return ret;
}
//=============================================================================
/*!
* Prepare Compute a mesh
*/
//=============================================================================
void SMESH_Gen::PrepareCompute(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape)
{
_compute_canceled = false;
resetCurrentSubMesh();
}
//=============================================================================
/*!
* Cancel Compute a mesh
*/
//=============================================================================
void SMESH_Gen::CancelCompute(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape)
{
_compute_canceled = true;
if ( const SMESH_subMesh* sm = GetCurrentSubMesh() )
{
const_cast< SMESH_subMesh* >( sm )->ComputeStateEngine( SMESH_subMesh::COMPUTE_CANCELED );
}
resetCurrentSubMesh();
}
//================================================================================
/*!
* \brief Returns a sub-mesh being currently computed
*/
//================================================================================
const SMESH_subMesh* SMESH_Gen::GetCurrentSubMesh() const
{
return _sm_current.empty() ? 0 : _sm_current.back();
}
//================================================================================
/*!
* \brief Sets a sub-mesh being currently computed.
*
* An algorithm can call Compute() for a sub-shape, hence we keep a stack of sub-meshes
*/
//================================================================================
void SMESH_Gen::setCurrentSubMesh(SMESH_subMesh* sm)
{
if ( sm )
_sm_current.push_back( sm );
else if ( !_sm_current.empty() )
_sm_current.pop_back();
}
void SMESH_Gen::resetCurrentSubMesh()
{
_sm_current.clear();
}
//=============================================================================
/*!
* Evaluate a mesh
*/
//=============================================================================
bool SMESH_Gen::Evaluate(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap,
const bool anUpward,
TSetOfInt* aShapesId)
{
bool ret = true;
SMESH_subMesh *sm = aMesh.GetSubMesh(aShape);
const bool includeSelf = true;
const bool complexShapeFirst = true;
SMESH_subMeshIteratorPtr smIt;
if ( anUpward ) { // is called from below code here
// -----------------------------------------------
// mesh all the sub-shapes starting from vertices
// -----------------------------------------------
smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst);
while ( smIt->more() ) {
SMESH_subMesh* smToCompute = smIt->next();
// do not mesh vertices of a pseudo shape
const TopAbs_ShapeEnum shapeType = smToCompute->GetSubShape().ShapeType();
//if ( !aMesh.HasShapeToMesh() && shapeType == TopAbs_VERTEX )
// continue;
if ( !aMesh.HasShapeToMesh() ) {
if( shapeType == TopAbs_VERTEX || shapeType == TopAbs_WIRE ||
shapeType == TopAbs_SHELL )
continue;
}
smToCompute->Evaluate(aResMap);
if( aShapesId )
aShapesId->insert( smToCompute->GetId() );
}
return ret;
}
else {
// -----------------------------------------------------------------
// apply algos that DO NOT require Discreteized boundaries and DO NOT
// support sub-meshes, starting from the most complex shapes
// and collect sub-meshes with algos that DO support sub-meshes
// -----------------------------------------------------------------
list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes;
smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst);
while ( smIt->more() ) {
SMESH_subMesh* smToCompute = smIt->next();
const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
const int aShapeDim = GetShapeDim( aSubShape );
if ( aShapeDim < 1 ) break;
SMESH_Algo* algo = GetAlgo( smToCompute );
if ( algo && !algo->NeedDiscreteBoundary() ) {
if ( algo->SupportSubmeshes() ) {
smWithAlgoSupportingSubmeshes.push_front( smToCompute );
}
else {
smToCompute->Evaluate(aResMap);
if ( aShapesId )
aShapesId->insert( smToCompute->GetId() );
}
}
}
// ------------------------------------------------------------
// sort list of meshes according to mesh order
// ------------------------------------------------------------
std::vector< SMESH_subMesh* > smVec( smWithAlgoSupportingSubmeshes.begin(),
smWithAlgoSupportingSubmeshes.end() );
aMesh.SortByMeshOrder( smVec );
// ------------------------------------------------------------
// compute sub-meshes under shapes with algos that DO NOT require
// Discreteized boundaries and DO support sub-meshes
// ------------------------------------------------------------
// start from lower shapes
for ( size_t i = 0; i < smVec.size(); ++i )
{
sm = smVec[i];
// get a shape the algo is assigned to
TopoDS_Shape algoShape;
if ( !GetAlgo( sm, & algoShape ))
continue; // strange...
// look for more local algos
smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst);
while ( smIt->more() ) {
SMESH_subMesh* smToCompute = smIt->next();
const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
const int aShapeDim = GetShapeDim( aSubShape );
if ( aShapeDim < 1 ) continue;
SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
filter
.And( SMESH_HypoFilter::IsApplicableTo( aSubShape ))
.And( SMESH_HypoFilter::IsMoreLocalThan( algoShape, aMesh ));
if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( smToCompute, filter, true ))
{
if ( ! subAlgo->NeedDiscreteBoundary() ) continue;
SMESH_Hypothesis::Hypothesis_Status status;
if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status ))
// mesh a lower smToCompute starting from vertices
Evaluate( aMesh, aSubShape, aResMap, /*anUpward=*/true, aShapesId );
}
}
}
// ----------------------------------------------------------
// apply the algos that do not require Discreteized boundaries
// ----------------------------------------------------------
for ( size_t i = 0; i < smVec.size(); ++i )
{
sm = smVec[i];
sm->Evaluate(aResMap);
if ( aShapesId )
aShapesId->insert( sm->GetId() );
}
// -----------------------------------------------
// mesh the rest sub-shapes starting from vertices
// -----------------------------------------------
ret = Evaluate( aMesh, aShape, aResMap, /*anUpward=*/true, aShapesId );
}
return ret;
}
//=======================================================================
//function : checkConformIgnoredAlgos
//purpose :
//=======================================================================
static bool checkConformIgnoredAlgos(SMESH_Mesh& aMesh,
SMESH_subMesh* aSubMesh,
const SMESH_Algo* aGlobIgnoAlgo,
const SMESH_Algo* aLocIgnoAlgo,
bool & checkConform,
set<SMESH_subMesh*>& aCheckedMap,
list< SMESH_Gen::TAlgoStateError > & theErrors)
{
ASSERT( aSubMesh );
if ( aSubMesh->GetSubShape().ShapeType() == TopAbs_VERTEX)
return true;
bool ret = true;
const list<const SMESHDS_Hypothesis*>& listHyp =
aMesh.GetMeshDS()->GetHypothesis( aSubMesh->GetSubShape() );
list<const SMESHDS_Hypothesis*>::const_iterator it=listHyp.begin();
for ( ; it != listHyp.end(); it++)
{
const SMESHDS_Hypothesis * aHyp = *it;
if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO)
continue;
const SMESH_Algo* algo = dynamic_cast<const SMESH_Algo*> (aHyp);
ASSERT ( algo );
if ( aLocIgnoAlgo ) // algo is hidden by a local algo of upper dim
{
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
theErrors.back().Set( SMESH_Hypothesis::HYP_HIDDEN_ALGO, algo, false );
INFOS( "Local <" << algo->GetName() << "> is hidden by local <"
<< aLocIgnoAlgo->GetName() << ">");
}
else
{
bool isGlobal = (aMesh.IsMainShape( aSubMesh->GetSubShape() ));
int dim = algo->GetDim();
int aMaxGlobIgnoDim = ( aGlobIgnoAlgo ? aGlobIgnoAlgo->GetDim() : -1 );
bool isNeededDim = ( aGlobIgnoAlgo ? aGlobIgnoAlgo->NeedLowerHyps( dim ) : false );
if (( dim < aMaxGlobIgnoDim && !isNeededDim ) &&
( isGlobal || !aGlobIgnoAlgo->SupportSubmeshes() ))
{
// algo is hidden by a global algo
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
theErrors.back().Set( SMESH_Hypothesis::HYP_HIDDEN_ALGO, algo, true );
INFOS( ( isGlobal ? "Global" : "Local" )
<< " <" << algo->GetName() << "> is hidden by global <"
<< aGlobIgnoAlgo->GetName() << ">");
}
else if ( !algo->NeedDiscreteBoundary() && !isGlobal)
{
// local algo is not hidden and hides algos on sub-shapes
if (checkConform && !aSubMesh->IsConform( algo ))
{
ret = false;
checkConform = false; // no more check conformity
INFOS( "ERROR: Local <" << algo->GetName() <<
"> would produce not conform mesh: "
"<Not Conform Mesh Allowed> hypothesis is missing");
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
theErrors.back().Set( SMESH_Hypothesis::HYP_NOTCONFORM, algo, false );
}
// sub-algos will be hidden by a local <algo> if <algo> does not support sub-meshes
if ( algo->SupportSubmeshes() )
algo = 0;
SMESH_subMeshIteratorPtr revItSub =
aSubMesh->getDependsOnIterator( /*includeSelf=*/false, /*complexShapeFirst=*/true);
bool checkConform2 = false;
while ( revItSub->more() )
{
SMESH_subMesh* sm = revItSub->next();
checkConformIgnoredAlgos (aMesh, sm, aGlobIgnoAlgo,
algo, checkConform2, aCheckedMap, theErrors);
aCheckedMap.insert( sm );
}
}
}
}
return ret;
}
//=======================================================================
//function : checkMissing
//purpose : notify on missing hypothesis
// Return false if algo or hipothesis is missing
//=======================================================================
static bool checkMissing(SMESH_Gen* aGen,
SMESH_Mesh& aMesh,
SMESH_subMesh* aSubMesh,
const int aTopAlgoDim,
bool* globalChecked,
const bool checkNoAlgo,
set<SMESH_subMesh*>& aCheckedMap,
list< SMESH_Gen::TAlgoStateError > & theErrors)
{
switch ( aSubMesh->GetSubShape().ShapeType() )
{
case TopAbs_EDGE:
case TopAbs_FACE:
case TopAbs_SOLID: break; // check this sub-mesh, it can be meshed
default:
return true; // not meshable sub-mesh
}
if ( aCheckedMap.count( aSubMesh ))
return true;
int ret = true;
SMESH_Algo* algo = 0;
switch (aSubMesh->GetAlgoState())
{
case SMESH_subMesh::NO_ALGO: {
if (checkNoAlgo)
{
// should there be any algo?
int shapeDim = SMESH_Gen::GetShapeDim( aSubMesh->GetSubShape() );
if (aTopAlgoDim > shapeDim)
{
MESSAGE( "ERROR: " << shapeDim << "D algorithm is missing" );
ret = false;
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, shapeDim, true );
}
}
return ret;
}
case SMESH_subMesh::MISSING_HYP: {
// notify if an algo missing hyp is attached to aSubMesh
algo = aSubMesh->GetAlgo();
ASSERT( algo );
bool IsGlobalHypothesis = aGen->IsGlobalHypothesis( algo, aMesh );
if (!IsGlobalHypothesis || !globalChecked[ algo->GetDim() ])
{
TAlgoStateErrorName errName = SMESH_Hypothesis::HYP_MISSING;
SMESH_Hypothesis::Hypothesis_Status status;
algo->CheckHypothesis( aMesh, aSubMesh->GetSubShape(), status );
if ( status == SMESH_Hypothesis::HYP_BAD_PARAMETER ) {
MESSAGE( "ERROR: hypothesis of " << (IsGlobalHypothesis ? "Global " : "Local ")
<< "<" << algo->GetName() << "> has a bad parameter value");
errName = status;
} else if ( status == SMESH_Hypothesis::HYP_BAD_GEOMETRY ) {
MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ")
<< "<" << algo->GetName() << "> assigned to mismatching geometry");
errName = status;
} else {
MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ")
<< "<" << algo->GetName() << "> misses some hypothesis");
}
if (IsGlobalHypothesis)
globalChecked[ algo->GetDim() ] = true;
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
theErrors.back().Set( errName, algo, IsGlobalHypothesis );
}
ret = false;
break;
}
case SMESH_subMesh::HYP_OK:
algo = aSubMesh->GetAlgo();
ret = true;
if (!algo->NeedDiscreteBoundary())
{
SMESH_subMeshIteratorPtr itsub = aSubMesh->getDependsOnIterator( /*includeSelf=*/false,
/*complexShapeFirst=*/false);
while ( itsub->more() )
aCheckedMap.insert( itsub->next() );
}
break;
default: ASSERT(0);
}
// do not check under algo that hides sub-algos or
// re-start checking NO_ALGO state
ASSERT (algo);
bool isTopLocalAlgo =
( aTopAlgoDim <= algo->GetDim() && !aGen->IsGlobalHypothesis( algo, aMesh ));
if (!algo->NeedDiscreteBoundary() || isTopLocalAlgo)
{
bool checkNoAlgo2 = ( algo->NeedDiscreteBoundary() );
SMESH_subMeshIteratorPtr itsub = aSubMesh->getDependsOnIterator( /*includeSelf=*/false,
/*complexShapeFirst=*/true);
while ( itsub->more() )
{
// sub-meshes should not be checked further more
SMESH_subMesh* sm = itsub->next();
if (isTopLocalAlgo)
{
//check algo on sub-meshes
int aTopAlgoDim2 = algo->GetDim();
if (!checkMissing (aGen, aMesh, sm, aTopAlgoDim2,
globalChecked, checkNoAlgo2, aCheckedMap, theErrors))
{
ret = false;
if (sm->GetAlgoState() == SMESH_subMesh::NO_ALGO )
checkNoAlgo2 = false;
}
}
aCheckedMap.insert( sm );
}
}
return ret;
}
//=======================================================================
//function : CheckAlgoState
//purpose : notify on bad state of attached algos, return false
// if Compute() would fail because of some algo bad state
//=======================================================================
bool SMESH_Gen::CheckAlgoState(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape)
{
list< TAlgoStateError > errors;
return GetAlgoState( aMesh, aShape, errors );
}
//=======================================================================
//function : GetAlgoState
//purpose : notify on bad state of attached algos, return false
// if Compute() would fail because of some algo bad state
// theErrors list contains problems description
//=======================================================================
bool SMESH_Gen::GetAlgoState(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape,
list< TAlgoStateError > & theErrors)
{
bool ret = true;
bool hasAlgo = false;
SMESH_subMesh* sm = theMesh.GetSubMesh(theShape);
const SMESHDS_Mesh* meshDS = theMesh.GetMeshDS();
TopoDS_Shape mainShape = meshDS->ShapeToMesh();
// -----------------
// get global algos
// -----------------
const SMESH_Algo* aGlobAlgoArr[] = {0,0,0,0};
const list<const SMESHDS_Hypothesis*>& listHyp = meshDS->GetHypothesis( mainShape );
list<const SMESHDS_Hypothesis*>::const_iterator it=listHyp.begin();
for ( ; it != listHyp.end(); it++)
{
const SMESHDS_Hypothesis * aHyp = *it;
if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO)
continue;
const SMESH_Algo* algo = dynamic_cast<const SMESH_Algo*> (aHyp);
ASSERT ( algo );
int dim = algo->GetDim();
aGlobAlgoArr[ dim ] = algo;
hasAlgo = true;
}
// --------------------------------------------------------
// info on algos that will be ignored because of ones that
// don't NeedDiscreteBoundary() attached to super-shapes,
// check that a conform mesh will be produced
// --------------------------------------------------------
// find a global algo possibly hiding sub-algos
int dim;
const SMESH_Algo* aGlobIgnoAlgo = 0;
for (dim = 3; dim > 0; dim--)
{
if (aGlobAlgoArr[ dim ] &&
!aGlobAlgoArr[ dim ]->NeedDiscreteBoundary() /*&&
!aGlobAlgoArr[ dim ]->SupportSubmeshes()*/ )
{
aGlobIgnoAlgo = aGlobAlgoArr[ dim ];
break;
}
}
set<SMESH_subMesh*> aCheckedSubs;
bool checkConform = ( !theMesh.IsNotConformAllowed() );
// loop on theShape and its sub-shapes
SMESH_subMeshIteratorPtr revItSub = sm->getDependsOnIterator( /*includeSelf=*/true,
/*complexShapeFirst=*/true);
while ( revItSub->more() )
{
SMESH_subMesh* smToCheck = revItSub->next();
if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX)
break;
if ( aCheckedSubs.insert( smToCheck ).second ) // not yet checked
if (!checkConformIgnoredAlgos (theMesh, smToCheck, aGlobIgnoAlgo,
0, checkConform, aCheckedSubs, theErrors))
ret = false;
if ( smToCheck->GetAlgoState() != SMESH_subMesh::NO_ALGO )
hasAlgo = true;
}
// ----------------------------------------------------------------
// info on missing hypothesis and find out if all needed algos are
// well defined
// ----------------------------------------------------------------
// find max dim of global algo
int aTopAlgoDim = 0;
for (dim = 3; dim > 0; dim--)
{
if (aGlobAlgoArr[ dim ])
{
aTopAlgoDim = dim;
break;
}
}
bool checkNoAlgo = theMesh.HasShapeToMesh() ? bool( aTopAlgoDim ) : false;
bool globalChecked[] = { false, false, false, false };
// loop on theShape and its sub-shapes
aCheckedSubs.clear();
revItSub = sm->getDependsOnIterator( /*includeSelf=*/true, /*complexShapeFirst=*/true);
while ( revItSub->more() )
{
SMESH_subMesh* smToCheck = revItSub->next();
if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX)
break;
if (!checkMissing (this, theMesh, smToCheck, aTopAlgoDim,
globalChecked, checkNoAlgo, aCheckedSubs, theErrors))
{
ret = false;
if (smToCheck->GetAlgoState() == SMESH_subMesh::NO_ALGO )
checkNoAlgo = false;
}
}
if ( !hasAlgo ) {
ret = false;
theErrors.push_back( TAlgoStateError() );
theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, theMesh.HasShapeToMesh() ? 1 : 3, true );
}
return ret;
}
//=======================================================================
//function : IsGlobalHypothesis
//purpose : check if theAlgo is attached to the main shape
//=======================================================================
bool SMESH_Gen::IsGlobalHypothesis(const SMESH_Hypothesis* theHyp, SMESH_Mesh& aMesh)
{
SMESH_HypoFilter filter( SMESH_HypoFilter::Is( theHyp ));
return aMesh.GetHypothesis( aMesh.GetMeshDS()->ShapeToMesh(), filter, false );
}
//================================================================================
/*!
* \brief Return paths to xml files of plugins
*/
//================================================================================
std::vector< std::string > SMESH_Gen::GetPluginXMLPaths()
{
// Get paths to xml files of plugins
vector< string > xmlPaths;
string sep;
if ( const char* meshersList = getenv("SMESH_MeshersList") )
{
string meshers = meshersList, plugin;
string::size_type from = 0, pos;
while ( from < meshers.size() )
{
// cut off plugin name
pos = meshers.find( ':', from );
if ( pos != string::npos )
plugin = meshers.substr( from, pos-from );
else
plugin = meshers.substr( from ), pos = meshers.size();
from = pos + 1;
// get PLUGIN_ROOT_DIR path
string rootDirVar, pluginSubDir = plugin;
if ( plugin == "StdMeshers" )
rootDirVar = "SMESH", pluginSubDir = "smesh";
else
for ( pos = 0; pos < plugin.size(); ++pos )
rootDirVar += toupper( plugin[pos] );
rootDirVar += "_ROOT_DIR";
const char* rootDir = getenv( rootDirVar.c_str() );
if ( !rootDir || strlen(rootDir) == 0 )
{
rootDirVar = plugin + "_ROOT_DIR"; // HexoticPLUGIN_ROOT_DIR
rootDir = getenv( rootDirVar.c_str() );
if ( !rootDir || strlen(rootDir) == 0 ) continue;
}
// get a separator from rootDir
for ( pos = strlen( rootDir )-1; pos >= 0 && sep.empty(); --pos )
if ( rootDir[pos] == '/' || rootDir[pos] == '\\' )
{
sep = rootDir[pos];
break;
}
#ifdef WIN32
if (sep.empty() ) sep = "\\";
#else
if (sep.empty() ) sep = "/";
#endif
// get a path to resource file
string xmlPath = rootDir;
if ( xmlPath[ xmlPath.size()-1 ] != sep[0] )
xmlPath += sep;
xmlPath += "share" + sep + "salome" + sep + "resources" + sep;
for ( pos = 0; pos < pluginSubDir.size(); ++pos )
xmlPath += tolower( pluginSubDir[pos] );
xmlPath += sep + plugin + ".xml";
bool fileOK;
#ifdef WIN32
#ifdef UNICODE
const wchar_t* path = Kernel_Utils::decode_s(xmlPath);
#else
const char* path = xmlPath.c_str();
#endif
fileOK = (GetFileAttributes(path) != INVALID_FILE_ATTRIBUTES);
#ifdef UNICODE
delete path;
#endif
#else
fileOK = (access(xmlPath.c_str(), F_OK) == 0);
#endif
if ( fileOK )
xmlPaths.push_back( xmlPath );
}
}
return xmlPaths;
}
//=============================================================================
/*!
* Finds algo to mesh a shape. Optionally returns a shape the found algo is bound to
*/
//=============================================================================
SMESH_Algo *SMESH_Gen::GetAlgo(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
TopoDS_Shape* assignedTo)
{
return GetAlgo( aMesh.GetSubMesh( aShape ), assignedTo );
}
//=============================================================================
/*!
* Finds algo to mesh a sub-mesh. Optionally returns a shape the found algo is bound to
*/
//=============================================================================
SMESH_Algo *SMESH_Gen::GetAlgo(SMESH_subMesh * aSubMesh,
TopoDS_Shape* assignedTo)
{
if ( !aSubMesh ) return 0;
const TopoDS_Shape & aShape = aSubMesh->GetSubShape();
SMESH_Mesh& aMesh = *aSubMesh->GetFather();
SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
if ( aMesh.HasShapeToMesh() )
filter.And( filter.IsApplicableTo( aShape ));
typedef SMESH_Algo::Features AlgoData;
TopoDS_Shape assignedToShape;
SMESH_Algo* algo =
(SMESH_Algo*) aMesh.GetHypothesis( aSubMesh, filter, true, &assignedToShape );
if ( algo &&
aShape.ShapeType() == TopAbs_FACE &&
!aShape.IsSame( assignedToShape ) &&
SMESH_MesherHelper::NbAncestors( aShape, aMesh, TopAbs_SOLID ) > 1 )
{
// Issue 0021559. If there is another 2D algo with different types of output
// elements that can be used to mesh aShape, and 3D algos on adjacent SOLIDs
// have different types of input elements, we choose a most appropriate 2D algo.
// try to find a concurrent 2D algo
filter.AndNot( filter.Is( algo ));
TopoDS_Shape assignedToShape2;
SMESH_Algo* algo2 =
(SMESH_Algo*) aMesh.GetHypothesis( aSubMesh, filter, true, &assignedToShape2 );
if ( algo2 && // algo found
!assignedToShape2.IsSame( aMesh.GetShapeToMesh() ) && // algo is local
( SMESH_MesherHelper::GetGroupType( assignedToShape2 ) == // algo of the same level
SMESH_MesherHelper::GetGroupType( assignedToShape )) &&
aMesh.IsOrderOK( aMesh.GetSubMesh( assignedToShape2 ), // no forced order
aMesh.GetSubMesh( assignedToShape )))
{
// get algos on the adjacent SOLIDs
filter.Init( filter.IsAlgo() ).And( filter.HasDim( 3 ));
vector< SMESH_Algo* > algos3D;
PShapeIteratorPtr solidIt = SMESH_MesherHelper::GetAncestors( aShape, aMesh,
TopAbs_SOLID );
while ( const TopoDS_Shape* solid = solidIt->next() )
if ( SMESH_Algo* algo3D = (SMESH_Algo*) aMesh.GetHypothesis( *solid, filter, true ))
{
algos3D.push_back( algo3D );
filter.AndNot( filter.HasName( algo3D->GetName() ));
}
// check compatibility of algos
if ( algos3D.size() > 1 )
{
const AlgoData& algoData = algo->SMESH_Algo::GetFeatures();
const AlgoData& algoData2 = algo2->SMESH_Algo::GetFeatures();
const AlgoData& algoData3d0 = algos3D[0]->SMESH_Algo::GetFeatures();
const AlgoData& algoData3d1 = algos3D[1]->SMESH_Algo::GetFeatures();
if (( algoData2.IsCompatible( algoData3d0 ) &&
algoData2.IsCompatible( algoData3d1 ))
&&
!(algoData.IsCompatible( algoData3d0 ) &&
algoData.IsCompatible( algoData3d1 )))
algo = algo2;
}
}
}
if ( assignedTo && algo )
* assignedTo = assignedToShape;
return algo;
}
//=============================================================================
/*!
* Returns StudyContextStruct for a study
*/
//=============================================================================
StudyContextStruct *SMESH_Gen::GetStudyContext()
{
return _studyContext;
}
//================================================================================
/*!
* \brief Return shape dimension by TopAbs_ShapeEnum
*/
//================================================================================
int SMESH_Gen::GetShapeDim(const TopAbs_ShapeEnum & aShapeType)
{
static vector<int> dim;
if ( dim.empty() )
{
dim.resize( TopAbs_SHAPE, -1 );
dim[ TopAbs_COMPOUND ] = MeshDim_3D;
dim[ TopAbs_COMPSOLID ] = MeshDim_3D;
dim[ TopAbs_SOLID ] = MeshDim_3D;
dim[ TopAbs_SHELL ] = MeshDim_2D;
dim[ TopAbs_FACE ] = MeshDim_2D;
dim[ TopAbs_WIRE ] = MeshDim_1D;
dim[ TopAbs_EDGE ] = MeshDim_1D;
dim[ TopAbs_VERTEX ] = MeshDim_0D;
}
return dim[ aShapeType ];
}
//=============================================================================
/*!
* Generate a new id unique within this Gen
*/
//=============================================================================
int SMESH_Gen::GetANewId()
{
return _hypId++;
}