mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2024-12-27 09:50:34 +05:00
1191 lines
41 KiB
C++
1191 lines
41 KiB
C++
// Copyright (C) 2007-2019 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
//
|
|
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
|
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
//
|
|
|
|
// SMESH SMESH : implementation of SMESH idl descriptions
|
|
// File : SMESH_Gen.cxx
|
|
// Author : Paul RASCLE, EDF
|
|
// Module : SMESH
|
|
//
|
|
|
|
//#define CHRONODEF
|
|
|
|
#include "SMESH_Gen.hxx"
|
|
|
|
#include "SMDS_Mesh.hxx"
|
|
#include "SMDS_MeshElement.hxx"
|
|
#include "SMDS_MeshNode.hxx"
|
|
#include "SMESHDS_Document.hxx"
|
|
#include "SMESH_HypoFilter.hxx"
|
|
#include "SMESH_Mesh.hxx"
|
|
#include "SMESH_MesherHelper.hxx"
|
|
#include "SMESH_subMesh.hxx"
|
|
|
|
#include "utilities.h"
|
|
#include "OpUtil.hxx"
|
|
#include "Utils_ExceptHandlers.hxx"
|
|
|
|
#include <TopoDS_Iterator.hxx>
|
|
#include <TopoDS.hxx>
|
|
|
|
#include "memoire.h"
|
|
|
|
#ifdef WIN32
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#include <Basics_Utils.hxx>
|
|
|
|
using namespace std;
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Constructor
|
|
*/
|
|
//=============================================================================
|
|
|
|
SMESH_Gen::SMESH_Gen()
|
|
{
|
|
_studyContext = new StudyContextStruct;
|
|
_studyContext->myDocument = new SMESHDS_Document();
|
|
_localId = 0;
|
|
_hypId = 0;
|
|
_segmentation = _nbSegments = 10;
|
|
_compute_canceled = false;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
// a structure used to nullify SMESH_Gen field of SMESH_Hypothesis,
|
|
// which is needed for SMESH_Hypothesis not deleted before ~SMESH_Gen()
|
|
struct _Hyp : public SMESH_Hypothesis
|
|
{
|
|
void NullifyGen()
|
|
{
|
|
_gen = 0;
|
|
}
|
|
};
|
|
}
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Destructor
|
|
*/
|
|
//=============================================================================
|
|
|
|
SMESH_Gen::~SMESH_Gen()
|
|
{
|
|
std::map < int, SMESH_Hypothesis * >::iterator i_hyp = _studyContext->mapHypothesis.begin();
|
|
for ( ; i_hyp != _studyContext->mapHypothesis.end(); ++i_hyp )
|
|
{
|
|
if ( _Hyp* h = static_cast< _Hyp*>( i_hyp->second ))
|
|
h->NullifyGen();
|
|
}
|
|
delete _studyContext->myDocument;
|
|
delete _studyContext;
|
|
}
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Creates a mesh in a study.
|
|
* if (theIsEmbeddedMode) { mesh modification commands are not logged }
|
|
*/
|
|
//=============================================================================
|
|
|
|
SMESH_Mesh* SMESH_Gen::CreateMesh(bool theIsEmbeddedMode)
|
|
throw(SALOME_Exception)
|
|
{
|
|
Unexpect aCatch(SalomeException);
|
|
|
|
// create a new SMESH_mesh object
|
|
SMESH_Mesh *aMesh = new SMESH_Mesh(_localId++,
|
|
this,
|
|
theIsEmbeddedMode,
|
|
_studyContext->myDocument);
|
|
_studyContext->mapMesh[_localId-1] = aMesh;
|
|
|
|
return aMesh;
|
|
}
|
|
|
|
//=============================================================================
|
|
/*
|
|
* Compute a mesh
|
|
*/
|
|
//=============================================================================
|
|
|
|
bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
|
|
const TopoDS_Shape & aShape,
|
|
const int aFlags /*= COMPACT_MESH*/,
|
|
const ::MeshDimension aDim /*=::MeshDim_3D*/,
|
|
TSetOfInt* aShapesId /*=0*/)
|
|
{
|
|
MEMOSTAT;
|
|
|
|
const bool aShapeOnly = aFlags & SHAPE_ONLY;
|
|
const bool anUpward = aFlags & UPWARD;
|
|
const bool aCompactMesh = aFlags & COMPACT_MESH;
|
|
|
|
bool ret = true;
|
|
|
|
SMESH_subMesh *sm = aMesh.GetSubMesh(aShape);
|
|
|
|
const bool includeSelf = true;
|
|
const bool complexShapeFirst = true;
|
|
const int globalAlgoDim = 100;
|
|
|
|
SMESH_subMeshIteratorPtr smIt;
|
|
|
|
// Fix of Issue 22150. Due to !BLSURF->OnlyUnaryInput(), BLSURF computes edges
|
|
// that must be computed by Projection 1D-2D while the Projection asks to compute
|
|
// one face only.
|
|
SMESH_subMesh::compute_event computeEvent =
|
|
aShapeOnly ? SMESH_subMesh::COMPUTE_SUBMESH : SMESH_subMesh::COMPUTE;
|
|
if ( !aMesh.HasShapeToMesh() )
|
|
computeEvent = SMESH_subMesh::COMPUTE_NOGEOM; // if several algos and no geometry
|
|
|
|
if ( anUpward ) // is called from the below code in this method
|
|
{
|
|
// ===============================================
|
|
// Mesh all the sub-shapes starting from vertices
|
|
// ===============================================
|
|
|
|
smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst);
|
|
while ( smIt->more() )
|
|
{
|
|
SMESH_subMesh* smToCompute = smIt->next();
|
|
|
|
// do not mesh vertices of a pseudo shape
|
|
const TopoDS_Shape& shape = smToCompute->GetSubShape();
|
|
const TopAbs_ShapeEnum shapeType = shape.ShapeType();
|
|
if ( !aMesh.HasShapeToMesh() && shapeType == TopAbs_VERTEX )
|
|
continue;
|
|
|
|
// check for preview dimension limitations
|
|
if ( aShapesId && GetShapeDim( shapeType ) > (int)aDim )
|
|
{
|
|
// clear compute state not to show previous compute errors
|
|
// if preview invoked less dimension less than previous
|
|
smToCompute->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
|
|
continue;
|
|
}
|
|
|
|
if (smToCompute->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE)
|
|
{
|
|
if (_compute_canceled)
|
|
return false;
|
|
setCurrentSubMesh( smToCompute );
|
|
smToCompute->ComputeStateEngine( computeEvent );
|
|
setCurrentSubMesh( NULL );
|
|
}
|
|
|
|
// we check all the sub-meshes here and detect if any of them failed to compute
|
|
if (smToCompute->GetComputeState() == SMESH_subMesh::FAILED_TO_COMPUTE &&
|
|
( shapeType != TopAbs_EDGE || !SMESH_Algo::isDegenerated( TopoDS::Edge( shape ))))
|
|
ret = false;
|
|
else if ( aShapesId )
|
|
aShapesId->insert( smToCompute->GetId() );
|
|
}
|
|
//aMesh.GetMeshDS()->Modified();
|
|
return ret;
|
|
}
|
|
else
|
|
{
|
|
// ================================================================
|
|
// Apply algos that do NOT require discreteized boundaries
|
|
// ("all-dimensional") and do NOT support sub-meshes, starting from
|
|
// the most complex shapes and collect sub-meshes with algos that
|
|
// DO support sub-meshes
|
|
// ================================================================
|
|
|
|
list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes[4]; // for each dim
|
|
|
|
// map to sort sm with same dim algos according to dim of
|
|
// the shape the algo assigned to (issue 0021217).
|
|
// Other issues influenced the algo applying order:
|
|
// 21406, 21556, 21893, 20206
|
|
multimap< int, SMESH_subMesh* > shDim2sm;
|
|
multimap< int, SMESH_subMesh* >::reverse_iterator shDim2smIt;
|
|
TopoDS_Shape algoShape;
|
|
int prevShapeDim = -1, aShapeDim;
|
|
|
|
smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst);
|
|
while ( smIt->more() )
|
|
{
|
|
SMESH_subMesh* smToCompute = smIt->next();
|
|
if ( smToCompute->GetComputeState() != SMESH_subMesh::READY_TO_COMPUTE )
|
|
continue;
|
|
|
|
const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
|
|
aShapeDim = GetShapeDim( aSubShape );
|
|
if ( aShapeDim < 1 ) break;
|
|
|
|
// check for preview dimension limitations
|
|
if ( aShapesId && aShapeDim > (int)aDim )
|
|
continue;
|
|
|
|
SMESH_Algo* algo = GetAlgo( smToCompute, &algoShape );
|
|
if ( algo && !algo->NeedDiscreteBoundary() )
|
|
{
|
|
if ( algo->SupportSubmeshes() )
|
|
{
|
|
// reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes
|
|
// so that more local algos to go first
|
|
if ( prevShapeDim != aShapeDim )
|
|
{
|
|
prevShapeDim = aShapeDim;
|
|
for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt )
|
|
if ( shDim2smIt->first == globalAlgoDim )
|
|
smWithAlgoSupportingSubmeshes[ aShapeDim ].push_back( shDim2smIt->second );
|
|
else
|
|
smWithAlgoSupportingSubmeshes[ aShapeDim ].push_front( shDim2smIt->second );
|
|
shDim2sm.clear();
|
|
}
|
|
// add smToCompute to shDim2sm map
|
|
if ( algoShape.IsSame( aMesh.GetShapeToMesh() ))
|
|
{
|
|
aShapeDim = globalAlgoDim; // to compute last
|
|
}
|
|
else
|
|
{
|
|
aShapeDim = GetShapeDim( algoShape );
|
|
if ( algoShape.ShapeType() == TopAbs_COMPOUND )
|
|
{
|
|
TopoDS_Iterator it( algoShape );
|
|
aShapeDim += GetShapeDim( it.Value() );
|
|
}
|
|
}
|
|
shDim2sm.insert( make_pair( aShapeDim, smToCompute ));
|
|
}
|
|
else // Compute w/o support of sub-meshes
|
|
{
|
|
if (_compute_canceled)
|
|
return false;
|
|
setCurrentSubMesh( smToCompute );
|
|
smToCompute->ComputeStateEngine( computeEvent );
|
|
setCurrentSubMesh( NULL );
|
|
if ( aShapesId )
|
|
aShapesId->insert( smToCompute->GetId() );
|
|
}
|
|
}
|
|
}
|
|
// reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes
|
|
for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt )
|
|
if ( shDim2smIt->first == globalAlgoDim )
|
|
smWithAlgoSupportingSubmeshes[3].push_back( shDim2smIt->second );
|
|
else
|
|
smWithAlgoSupportingSubmeshes[0].push_front( shDim2smIt->second );
|
|
|
|
// ======================================================
|
|
// Apply all-dimensional algorithms supporing sub-meshes
|
|
// ======================================================
|
|
|
|
std::vector< SMESH_subMesh* > smVec;
|
|
for ( aShapeDim = 0; aShapeDim < 4; ++aShapeDim )
|
|
{
|
|
// ------------------------------------------------
|
|
// sort list of sub-meshes according to mesh order
|
|
// ------------------------------------------------
|
|
smVec.assign( smWithAlgoSupportingSubmeshes[ aShapeDim ].begin(),
|
|
smWithAlgoSupportingSubmeshes[ aShapeDim ].end() );
|
|
aMesh.SortByMeshOrder( smVec );
|
|
|
|
// ------------------------------------------------------------
|
|
// compute sub-meshes with local uni-dimensional algos under
|
|
// sub-meshes with all-dimensional algos
|
|
// ------------------------------------------------------------
|
|
// start from lower shapes
|
|
for ( size_t i = 0; i < smVec.size(); ++i )
|
|
{
|
|
sm = smVec[i];
|
|
|
|
// get a shape the algo is assigned to
|
|
if ( !GetAlgo( sm, & algoShape ))
|
|
continue; // strange...
|
|
|
|
// look for more local algos
|
|
smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst);
|
|
while ( smIt->more() )
|
|
{
|
|
SMESH_subMesh* smToCompute = smIt->next();
|
|
|
|
const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
|
|
const int aShapeDim = GetShapeDim( aSubShape );
|
|
//if ( aSubShape.ShapeType() == TopAbs_VERTEX ) continue;
|
|
if ( aShapeDim < 1 ) continue;
|
|
|
|
// check for preview dimension limitations
|
|
if ( aShapesId && GetShapeDim( aSubShape.ShapeType() ) > (int)aDim )
|
|
continue;
|
|
|
|
SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
|
|
filter
|
|
.And( SMESH_HypoFilter::IsApplicableTo( aSubShape ))
|
|
.And( SMESH_HypoFilter::IsMoreLocalThan( algoShape, aMesh ));
|
|
|
|
if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( smToCompute, filter, true))
|
|
{
|
|
if ( ! subAlgo->NeedDiscreteBoundary() ) continue;
|
|
SMESH_Hypothesis::Hypothesis_Status status;
|
|
if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status ))
|
|
// mesh a lower smToCompute starting from vertices
|
|
Compute( aMesh, aSubShape, aFlags | SHAPE_ONLY_UPWARD, aDim, aShapesId );
|
|
// Compute( aMesh, aSubShape, aShapeOnly, /*anUpward=*/true, aDim, aShapesId );
|
|
}
|
|
}
|
|
}
|
|
// --------------------------------
|
|
// apply the all-dimensional algos
|
|
// --------------------------------
|
|
for ( size_t i = 0; i < smVec.size(); ++i )
|
|
{
|
|
sm = smVec[i];
|
|
if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE)
|
|
{
|
|
const TopAbs_ShapeEnum shapeType = sm->GetSubShape().ShapeType();
|
|
// check for preview dimension limitations
|
|
if ( aShapesId && GetShapeDim( shapeType ) > (int)aDim )
|
|
continue;
|
|
|
|
if (_compute_canceled)
|
|
return false;
|
|
setCurrentSubMesh( sm );
|
|
sm->ComputeStateEngine( computeEvent );
|
|
setCurrentSubMesh( NULL );
|
|
if ( aShapesId )
|
|
aShapesId->insert( sm->GetId() );
|
|
}
|
|
}
|
|
} // loop on shape dimensions
|
|
|
|
// -----------------------------------------------
|
|
// mesh the rest sub-shapes starting from vertices
|
|
// -----------------------------------------------
|
|
ret = Compute( aMesh, aShape, aFlags | UPWARD, aDim, aShapesId );
|
|
}
|
|
|
|
MEMOSTAT;
|
|
|
|
// fix quadratic mesh by bending iternal links near concave boundary
|
|
if ( aCompactMesh && // a final compute
|
|
aShape.IsSame( aMesh.GetShapeToMesh() ) &&
|
|
!aShapesId && // not preview
|
|
ret ) // everything is OK
|
|
{
|
|
SMESH_MesherHelper aHelper( aMesh );
|
|
if ( aHelper.IsQuadraticMesh() != SMESH_MesherHelper::LINEAR )
|
|
{
|
|
aHelper.FixQuadraticElements( sm->GetComputeError() );
|
|
}
|
|
}
|
|
|
|
if ( aCompactMesh )
|
|
{
|
|
aMesh.GetMeshDS()->Modified();
|
|
aMesh.GetMeshDS()->CompactMesh();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Prepare Compute a mesh
|
|
*/
|
|
//=============================================================================
|
|
void SMESH_Gen::PrepareCompute(SMESH_Mesh & aMesh,
|
|
const TopoDS_Shape & aShape)
|
|
{
|
|
_compute_canceled = false;
|
|
resetCurrentSubMesh();
|
|
}
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Cancel Compute a mesh
|
|
*/
|
|
//=============================================================================
|
|
void SMESH_Gen::CancelCompute(SMESH_Mesh & aMesh,
|
|
const TopoDS_Shape & aShape)
|
|
{
|
|
_compute_canceled = true;
|
|
if ( const SMESH_subMesh* sm = GetCurrentSubMesh() )
|
|
{
|
|
const_cast< SMESH_subMesh* >( sm )->ComputeStateEngine( SMESH_subMesh::COMPUTE_CANCELED );
|
|
}
|
|
resetCurrentSubMesh();
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns a sub-mesh being currently computed
|
|
*/
|
|
//================================================================================
|
|
|
|
const SMESH_subMesh* SMESH_Gen::GetCurrentSubMesh() const
|
|
{
|
|
return _sm_current.empty() ? 0 : _sm_current.back();
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Sets a sub-mesh being currently computed.
|
|
*
|
|
* An algorithm can call Compute() for a sub-shape, hence we keep a stack of sub-meshes
|
|
*/
|
|
//================================================================================
|
|
|
|
void SMESH_Gen::setCurrentSubMesh(SMESH_subMesh* sm)
|
|
{
|
|
if ( sm )
|
|
_sm_current.push_back( sm );
|
|
|
|
else if ( !_sm_current.empty() )
|
|
_sm_current.pop_back();
|
|
}
|
|
|
|
void SMESH_Gen::resetCurrentSubMesh()
|
|
{
|
|
_sm_current.clear();
|
|
}
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Evaluate a mesh
|
|
*/
|
|
//=============================================================================
|
|
|
|
bool SMESH_Gen::Evaluate(SMESH_Mesh & aMesh,
|
|
const TopoDS_Shape & aShape,
|
|
MapShapeNbElems& aResMap,
|
|
const bool anUpward,
|
|
TSetOfInt* aShapesId)
|
|
{
|
|
bool ret = true;
|
|
|
|
SMESH_subMesh *sm = aMesh.GetSubMesh(aShape);
|
|
|
|
const bool includeSelf = true;
|
|
const bool complexShapeFirst = true;
|
|
SMESH_subMeshIteratorPtr smIt;
|
|
|
|
if ( anUpward ) { // is called from below code here
|
|
// -----------------------------------------------
|
|
// mesh all the sub-shapes starting from vertices
|
|
// -----------------------------------------------
|
|
smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst);
|
|
while ( smIt->more() ) {
|
|
SMESH_subMesh* smToCompute = smIt->next();
|
|
|
|
// do not mesh vertices of a pseudo shape
|
|
const TopAbs_ShapeEnum shapeType = smToCompute->GetSubShape().ShapeType();
|
|
//if ( !aMesh.HasShapeToMesh() && shapeType == TopAbs_VERTEX )
|
|
// continue;
|
|
if ( !aMesh.HasShapeToMesh() ) {
|
|
if( shapeType == TopAbs_VERTEX || shapeType == TopAbs_WIRE ||
|
|
shapeType == TopAbs_SHELL )
|
|
continue;
|
|
}
|
|
|
|
smToCompute->Evaluate(aResMap);
|
|
if( aShapesId )
|
|
aShapesId->insert( smToCompute->GetId() );
|
|
}
|
|
return ret;
|
|
}
|
|
else {
|
|
// -----------------------------------------------------------------
|
|
// apply algos that DO NOT require Discreteized boundaries and DO NOT
|
|
// support sub-meshes, starting from the most complex shapes
|
|
// and collect sub-meshes with algos that DO support sub-meshes
|
|
// -----------------------------------------------------------------
|
|
list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes;
|
|
smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst);
|
|
while ( smIt->more() ) {
|
|
SMESH_subMesh* smToCompute = smIt->next();
|
|
const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
|
|
const int aShapeDim = GetShapeDim( aSubShape );
|
|
if ( aShapeDim < 1 ) break;
|
|
|
|
SMESH_Algo* algo = GetAlgo( smToCompute );
|
|
if ( algo && !algo->NeedDiscreteBoundary() ) {
|
|
if ( algo->SupportSubmeshes() ) {
|
|
smWithAlgoSupportingSubmeshes.push_front( smToCompute );
|
|
}
|
|
else {
|
|
smToCompute->Evaluate(aResMap);
|
|
if ( aShapesId )
|
|
aShapesId->insert( smToCompute->GetId() );
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------
|
|
// sort list of meshes according to mesh order
|
|
// ------------------------------------------------------------
|
|
std::vector< SMESH_subMesh* > smVec( smWithAlgoSupportingSubmeshes.begin(),
|
|
smWithAlgoSupportingSubmeshes.end() );
|
|
aMesh.SortByMeshOrder( smVec );
|
|
|
|
// ------------------------------------------------------------
|
|
// compute sub-meshes under shapes with algos that DO NOT require
|
|
// Discreteized boundaries and DO support sub-meshes
|
|
// ------------------------------------------------------------
|
|
// start from lower shapes
|
|
for ( size_t i = 0; i < smVec.size(); ++i )
|
|
{
|
|
sm = smVec[i];
|
|
|
|
// get a shape the algo is assigned to
|
|
TopoDS_Shape algoShape;
|
|
if ( !GetAlgo( sm, & algoShape ))
|
|
continue; // strange...
|
|
|
|
// look for more local algos
|
|
smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst);
|
|
while ( smIt->more() ) {
|
|
SMESH_subMesh* smToCompute = smIt->next();
|
|
|
|
const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
|
|
const int aShapeDim = GetShapeDim( aSubShape );
|
|
if ( aShapeDim < 1 ) continue;
|
|
|
|
SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
|
|
filter
|
|
.And( SMESH_HypoFilter::IsApplicableTo( aSubShape ))
|
|
.And( SMESH_HypoFilter::IsMoreLocalThan( algoShape, aMesh ));
|
|
|
|
if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( smToCompute, filter, true ))
|
|
{
|
|
if ( ! subAlgo->NeedDiscreteBoundary() ) continue;
|
|
SMESH_Hypothesis::Hypothesis_Status status;
|
|
if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status ))
|
|
// mesh a lower smToCompute starting from vertices
|
|
Evaluate( aMesh, aSubShape, aResMap, /*anUpward=*/true, aShapesId );
|
|
}
|
|
}
|
|
}
|
|
// ----------------------------------------------------------
|
|
// apply the algos that do not require Discreteized boundaries
|
|
// ----------------------------------------------------------
|
|
for ( size_t i = 0; i < smVec.size(); ++i )
|
|
{
|
|
sm = smVec[i];
|
|
sm->Evaluate(aResMap);
|
|
if ( aShapesId )
|
|
aShapesId->insert( sm->GetId() );
|
|
}
|
|
|
|
// -----------------------------------------------
|
|
// mesh the rest sub-shapes starting from vertices
|
|
// -----------------------------------------------
|
|
ret = Evaluate( aMesh, aShape, aResMap, /*anUpward=*/true, aShapesId );
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : checkConformIgnoredAlgos
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static bool checkConformIgnoredAlgos(SMESH_Mesh& aMesh,
|
|
SMESH_subMesh* aSubMesh,
|
|
const SMESH_Algo* aGlobIgnoAlgo,
|
|
const SMESH_Algo* aLocIgnoAlgo,
|
|
bool & checkConform,
|
|
set<SMESH_subMesh*>& aCheckedMap,
|
|
list< SMESH_Gen::TAlgoStateError > & theErrors)
|
|
{
|
|
ASSERT( aSubMesh );
|
|
if ( aSubMesh->GetSubShape().ShapeType() == TopAbs_VERTEX)
|
|
return true;
|
|
|
|
|
|
bool ret = true;
|
|
|
|
const list<const SMESHDS_Hypothesis*>& listHyp =
|
|
aMesh.GetMeshDS()->GetHypothesis( aSubMesh->GetSubShape() );
|
|
list<const SMESHDS_Hypothesis*>::const_iterator it=listHyp.begin();
|
|
for ( ; it != listHyp.end(); it++)
|
|
{
|
|
const SMESHDS_Hypothesis * aHyp = *it;
|
|
if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO)
|
|
continue;
|
|
|
|
const SMESH_Algo* algo = dynamic_cast<const SMESH_Algo*> (aHyp);
|
|
ASSERT ( algo );
|
|
|
|
if ( aLocIgnoAlgo ) // algo is hidden by a local algo of upper dim
|
|
{
|
|
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
|
|
theErrors.back().Set( SMESH_Hypothesis::HYP_HIDDEN_ALGO, algo, false );
|
|
INFOS( "Local <" << algo->GetName() << "> is hidden by local <"
|
|
<< aLocIgnoAlgo->GetName() << ">");
|
|
}
|
|
else
|
|
{
|
|
bool isGlobal = (aMesh.IsMainShape( aSubMesh->GetSubShape() ));
|
|
int dim = algo->GetDim();
|
|
int aMaxGlobIgnoDim = ( aGlobIgnoAlgo ? aGlobIgnoAlgo->GetDim() : -1 );
|
|
bool isNeededDim = ( aGlobIgnoAlgo ? aGlobIgnoAlgo->NeedLowerHyps( dim ) : false );
|
|
|
|
if (( dim < aMaxGlobIgnoDim && !isNeededDim ) &&
|
|
( isGlobal || !aGlobIgnoAlgo->SupportSubmeshes() ))
|
|
{
|
|
// algo is hidden by a global algo
|
|
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
|
|
theErrors.back().Set( SMESH_Hypothesis::HYP_HIDDEN_ALGO, algo, true );
|
|
INFOS( ( isGlobal ? "Global" : "Local" )
|
|
<< " <" << algo->GetName() << "> is hidden by global <"
|
|
<< aGlobIgnoAlgo->GetName() << ">");
|
|
}
|
|
else if ( !algo->NeedDiscreteBoundary() && !isGlobal)
|
|
{
|
|
// local algo is not hidden and hides algos on sub-shapes
|
|
if (checkConform && !aSubMesh->IsConform( algo ))
|
|
{
|
|
ret = false;
|
|
checkConform = false; // no more check conformity
|
|
INFOS( "ERROR: Local <" << algo->GetName() <<
|
|
"> would produce not conform mesh: "
|
|
"<Not Conform Mesh Allowed> hypothesis is missing");
|
|
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
|
|
theErrors.back().Set( SMESH_Hypothesis::HYP_NOTCONFORM, algo, false );
|
|
}
|
|
|
|
// sub-algos will be hidden by a local <algo> if <algo> does not support sub-meshes
|
|
if ( algo->SupportSubmeshes() )
|
|
algo = 0;
|
|
SMESH_subMeshIteratorPtr revItSub =
|
|
aSubMesh->getDependsOnIterator( /*includeSelf=*/false, /*complexShapeFirst=*/true);
|
|
bool checkConform2 = false;
|
|
while ( revItSub->more() )
|
|
{
|
|
SMESH_subMesh* sm = revItSub->next();
|
|
checkConformIgnoredAlgos (aMesh, sm, aGlobIgnoAlgo,
|
|
algo, checkConform2, aCheckedMap, theErrors);
|
|
aCheckedMap.insert( sm );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : checkMissing
|
|
//purpose : notify on missing hypothesis
|
|
// Return false if algo or hipothesis is missing
|
|
//=======================================================================
|
|
|
|
static bool checkMissing(SMESH_Gen* aGen,
|
|
SMESH_Mesh& aMesh,
|
|
SMESH_subMesh* aSubMesh,
|
|
const int aTopAlgoDim,
|
|
bool* globalChecked,
|
|
const bool checkNoAlgo,
|
|
set<SMESH_subMesh*>& aCheckedMap,
|
|
list< SMESH_Gen::TAlgoStateError > & theErrors)
|
|
{
|
|
switch ( aSubMesh->GetSubShape().ShapeType() )
|
|
{
|
|
case TopAbs_EDGE:
|
|
case TopAbs_FACE:
|
|
case TopAbs_SOLID: break; // check this sub-mesh, it can be meshed
|
|
default:
|
|
return true; // not meshable sub-mesh
|
|
}
|
|
if ( aCheckedMap.count( aSubMesh ))
|
|
return true;
|
|
|
|
int ret = true;
|
|
SMESH_Algo* algo = 0;
|
|
|
|
switch (aSubMesh->GetAlgoState())
|
|
{
|
|
case SMESH_subMesh::NO_ALGO: {
|
|
if (checkNoAlgo)
|
|
{
|
|
// should there be any algo?
|
|
int shapeDim = SMESH_Gen::GetShapeDim( aSubMesh->GetSubShape() );
|
|
if (aTopAlgoDim > shapeDim)
|
|
{
|
|
MESSAGE( "ERROR: " << shapeDim << "D algorithm is missing" );
|
|
ret = false;
|
|
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
|
|
theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, shapeDim, true );
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
case SMESH_subMesh::MISSING_HYP: {
|
|
// notify if an algo missing hyp is attached to aSubMesh
|
|
algo = aSubMesh->GetAlgo();
|
|
ASSERT( algo );
|
|
bool IsGlobalHypothesis = aGen->IsGlobalHypothesis( algo, aMesh );
|
|
if (!IsGlobalHypothesis || !globalChecked[ algo->GetDim() ])
|
|
{
|
|
TAlgoStateErrorName errName = SMESH_Hypothesis::HYP_MISSING;
|
|
SMESH_Hypothesis::Hypothesis_Status status;
|
|
algo->CheckHypothesis( aMesh, aSubMesh->GetSubShape(), status );
|
|
if ( status == SMESH_Hypothesis::HYP_BAD_PARAMETER ) {
|
|
MESSAGE( "ERROR: hypothesis of " << (IsGlobalHypothesis ? "Global " : "Local ")
|
|
<< "<" << algo->GetName() << "> has a bad parameter value");
|
|
errName = status;
|
|
} else if ( status == SMESH_Hypothesis::HYP_BAD_GEOMETRY ) {
|
|
MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ")
|
|
<< "<" << algo->GetName() << "> assigned to mismatching geometry");
|
|
errName = status;
|
|
} else {
|
|
MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ")
|
|
<< "<" << algo->GetName() << "> misses some hypothesis");
|
|
}
|
|
if (IsGlobalHypothesis)
|
|
globalChecked[ algo->GetDim() ] = true;
|
|
theErrors.push_back( SMESH_Gen::TAlgoStateError() );
|
|
theErrors.back().Set( errName, algo, IsGlobalHypothesis );
|
|
}
|
|
ret = false;
|
|
break;
|
|
}
|
|
case SMESH_subMesh::HYP_OK:
|
|
algo = aSubMesh->GetAlgo();
|
|
ret = true;
|
|
if (!algo->NeedDiscreteBoundary())
|
|
{
|
|
SMESH_subMeshIteratorPtr itsub = aSubMesh->getDependsOnIterator( /*includeSelf=*/false,
|
|
/*complexShapeFirst=*/false);
|
|
while ( itsub->more() )
|
|
aCheckedMap.insert( itsub->next() );
|
|
}
|
|
break;
|
|
default: ASSERT(0);
|
|
}
|
|
|
|
// do not check under algo that hides sub-algos or
|
|
// re-start checking NO_ALGO state
|
|
ASSERT (algo);
|
|
bool isTopLocalAlgo =
|
|
( aTopAlgoDim <= algo->GetDim() && !aGen->IsGlobalHypothesis( algo, aMesh ));
|
|
if (!algo->NeedDiscreteBoundary() || isTopLocalAlgo)
|
|
{
|
|
bool checkNoAlgo2 = ( algo->NeedDiscreteBoundary() );
|
|
SMESH_subMeshIteratorPtr itsub = aSubMesh->getDependsOnIterator( /*includeSelf=*/false,
|
|
/*complexShapeFirst=*/true);
|
|
while ( itsub->more() )
|
|
{
|
|
// sub-meshes should not be checked further more
|
|
SMESH_subMesh* sm = itsub->next();
|
|
|
|
if (isTopLocalAlgo)
|
|
{
|
|
//check algo on sub-meshes
|
|
int aTopAlgoDim2 = algo->GetDim();
|
|
if (!checkMissing (aGen, aMesh, sm, aTopAlgoDim2,
|
|
globalChecked, checkNoAlgo2, aCheckedMap, theErrors))
|
|
{
|
|
ret = false;
|
|
if (sm->GetAlgoState() == SMESH_subMesh::NO_ALGO )
|
|
checkNoAlgo2 = false;
|
|
}
|
|
}
|
|
aCheckedMap.insert( sm );
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CheckAlgoState
|
|
//purpose : notify on bad state of attached algos, return false
|
|
// if Compute() would fail because of some algo bad state
|
|
//=======================================================================
|
|
|
|
bool SMESH_Gen::CheckAlgoState(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape)
|
|
{
|
|
list< TAlgoStateError > errors;
|
|
return GetAlgoState( aMesh, aShape, errors );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetAlgoState
|
|
//purpose : notify on bad state of attached algos, return false
|
|
// if Compute() would fail because of some algo bad state
|
|
// theErrors list contains problems description
|
|
//=======================================================================
|
|
|
|
bool SMESH_Gen::GetAlgoState(SMESH_Mesh& theMesh,
|
|
const TopoDS_Shape& theShape,
|
|
list< TAlgoStateError > & theErrors)
|
|
{
|
|
bool ret = true;
|
|
bool hasAlgo = false;
|
|
|
|
SMESH_subMesh* sm = theMesh.GetSubMesh(theShape);
|
|
const SMESHDS_Mesh* meshDS = theMesh.GetMeshDS();
|
|
TopoDS_Shape mainShape = meshDS->ShapeToMesh();
|
|
|
|
// -----------------
|
|
// get global algos
|
|
// -----------------
|
|
|
|
const SMESH_Algo* aGlobAlgoArr[] = {0,0,0,0};
|
|
|
|
const list<const SMESHDS_Hypothesis*>& listHyp = meshDS->GetHypothesis( mainShape );
|
|
list<const SMESHDS_Hypothesis*>::const_iterator it=listHyp.begin();
|
|
for ( ; it != listHyp.end(); it++)
|
|
{
|
|
const SMESHDS_Hypothesis * aHyp = *it;
|
|
if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO)
|
|
continue;
|
|
|
|
const SMESH_Algo* algo = dynamic_cast<const SMESH_Algo*> (aHyp);
|
|
ASSERT ( algo );
|
|
|
|
int dim = algo->GetDim();
|
|
aGlobAlgoArr[ dim ] = algo;
|
|
|
|
hasAlgo = true;
|
|
}
|
|
|
|
// --------------------------------------------------------
|
|
// info on algos that will be ignored because of ones that
|
|
// don't NeedDiscreteBoundary() attached to super-shapes,
|
|
// check that a conform mesh will be produced
|
|
// --------------------------------------------------------
|
|
|
|
|
|
// find a global algo possibly hiding sub-algos
|
|
int dim;
|
|
const SMESH_Algo* aGlobIgnoAlgo = 0;
|
|
for (dim = 3; dim > 0; dim--)
|
|
{
|
|
if (aGlobAlgoArr[ dim ] &&
|
|
!aGlobAlgoArr[ dim ]->NeedDiscreteBoundary() /*&&
|
|
!aGlobAlgoArr[ dim ]->SupportSubmeshes()*/ )
|
|
{
|
|
aGlobIgnoAlgo = aGlobAlgoArr[ dim ];
|
|
break;
|
|
}
|
|
}
|
|
|
|
set<SMESH_subMesh*> aCheckedSubs;
|
|
bool checkConform = ( !theMesh.IsNotConformAllowed() );
|
|
|
|
// loop on theShape and its sub-shapes
|
|
SMESH_subMeshIteratorPtr revItSub = sm->getDependsOnIterator( /*includeSelf=*/true,
|
|
/*complexShapeFirst=*/true);
|
|
while ( revItSub->more() )
|
|
{
|
|
SMESH_subMesh* smToCheck = revItSub->next();
|
|
if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX)
|
|
break;
|
|
|
|
if ( aCheckedSubs.insert( smToCheck ).second ) // not yet checked
|
|
if (!checkConformIgnoredAlgos (theMesh, smToCheck, aGlobIgnoAlgo,
|
|
0, checkConform, aCheckedSubs, theErrors))
|
|
ret = false;
|
|
|
|
if ( smToCheck->GetAlgoState() != SMESH_subMesh::NO_ALGO )
|
|
hasAlgo = true;
|
|
}
|
|
|
|
// ----------------------------------------------------------------
|
|
// info on missing hypothesis and find out if all needed algos are
|
|
// well defined
|
|
// ----------------------------------------------------------------
|
|
|
|
// find max dim of global algo
|
|
int aTopAlgoDim = 0;
|
|
for (dim = 3; dim > 0; dim--)
|
|
{
|
|
if (aGlobAlgoArr[ dim ])
|
|
{
|
|
aTopAlgoDim = dim;
|
|
break;
|
|
}
|
|
}
|
|
bool checkNoAlgo = theMesh.HasShapeToMesh() ? bool( aTopAlgoDim ) : false;
|
|
bool globalChecked[] = { false, false, false, false };
|
|
|
|
// loop on theShape and its sub-shapes
|
|
aCheckedSubs.clear();
|
|
revItSub = sm->getDependsOnIterator( /*includeSelf=*/true, /*complexShapeFirst=*/true);
|
|
while ( revItSub->more() )
|
|
{
|
|
SMESH_subMesh* smToCheck = revItSub->next();
|
|
if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX)
|
|
break;
|
|
|
|
if (!checkMissing (this, theMesh, smToCheck, aTopAlgoDim,
|
|
globalChecked, checkNoAlgo, aCheckedSubs, theErrors))
|
|
{
|
|
ret = false;
|
|
if (smToCheck->GetAlgoState() == SMESH_subMesh::NO_ALGO )
|
|
checkNoAlgo = false;
|
|
}
|
|
}
|
|
|
|
if ( !hasAlgo ) {
|
|
ret = false;
|
|
theErrors.push_back( TAlgoStateError() );
|
|
theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, theMesh.HasShapeToMesh() ? 1 : 3, true );
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsGlobalHypothesis
|
|
//purpose : check if theAlgo is attached to the main shape
|
|
//=======================================================================
|
|
|
|
bool SMESH_Gen::IsGlobalHypothesis(const SMESH_Hypothesis* theHyp, SMESH_Mesh& aMesh)
|
|
{
|
|
SMESH_HypoFilter filter( SMESH_HypoFilter::Is( theHyp ));
|
|
return aMesh.GetHypothesis( aMesh.GetMeshDS()->ShapeToMesh(), filter, false );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return paths to xml files of plugins
|
|
*/
|
|
//================================================================================
|
|
|
|
std::vector< std::string > SMESH_Gen::GetPluginXMLPaths()
|
|
{
|
|
// Get paths to xml files of plugins
|
|
vector< string > xmlPaths;
|
|
string sep;
|
|
if ( const char* meshersList = getenv("SMESH_MeshersList") )
|
|
{
|
|
string meshers = meshersList, plugin;
|
|
string::size_type from = 0, pos;
|
|
while ( from < meshers.size() )
|
|
{
|
|
// cut off plugin name
|
|
pos = meshers.find( ':', from );
|
|
if ( pos != string::npos )
|
|
plugin = meshers.substr( from, pos-from );
|
|
else
|
|
plugin = meshers.substr( from ), pos = meshers.size();
|
|
from = pos + 1;
|
|
|
|
// get PLUGIN_ROOT_DIR path
|
|
string rootDirVar, pluginSubDir = plugin;
|
|
if ( plugin == "StdMeshers" )
|
|
rootDirVar = "SMESH", pluginSubDir = "smesh";
|
|
else
|
|
for ( pos = 0; pos < plugin.size(); ++pos )
|
|
rootDirVar += toupper( plugin[pos] );
|
|
rootDirVar += "_ROOT_DIR";
|
|
|
|
const char* rootDir = getenv( rootDirVar.c_str() );
|
|
if ( !rootDir || strlen(rootDir) == 0 )
|
|
{
|
|
rootDirVar = plugin + "_ROOT_DIR"; // HexoticPLUGIN_ROOT_DIR
|
|
rootDir = getenv( rootDirVar.c_str() );
|
|
if ( !rootDir || strlen(rootDir) == 0 ) continue;
|
|
}
|
|
|
|
// get a separator from rootDir
|
|
for ( pos = strlen( rootDir )-1; pos >= 0 && sep.empty(); --pos )
|
|
if ( rootDir[pos] == '/' || rootDir[pos] == '\\' )
|
|
{
|
|
sep = rootDir[pos];
|
|
break;
|
|
}
|
|
#ifdef WIN32
|
|
if (sep.empty() ) sep = "\\";
|
|
#else
|
|
if (sep.empty() ) sep = "/";
|
|
#endif
|
|
|
|
// get a path to resource file
|
|
string xmlPath = rootDir;
|
|
if ( xmlPath[ xmlPath.size()-1 ] != sep[0] )
|
|
xmlPath += sep;
|
|
xmlPath += "share" + sep + "salome" + sep + "resources" + sep;
|
|
for ( pos = 0; pos < pluginSubDir.size(); ++pos )
|
|
xmlPath += tolower( pluginSubDir[pos] );
|
|
xmlPath += sep + plugin + ".xml";
|
|
bool fileOK;
|
|
#ifdef WIN32
|
|
#ifdef UNICODE
|
|
const wchar_t* path = Kernel_Utils::decode_s(xmlPath);
|
|
#else
|
|
const char* path = xmlPath.c_str();
|
|
#endif
|
|
fileOK = (GetFileAttributes(path) != INVALID_FILE_ATTRIBUTES);
|
|
#ifdef UNICODE
|
|
delete path;
|
|
#endif
|
|
#else
|
|
fileOK = (access(xmlPath.c_str(), F_OK) == 0);
|
|
#endif
|
|
if ( fileOK )
|
|
xmlPaths.push_back( xmlPath );
|
|
}
|
|
}
|
|
|
|
return xmlPaths;
|
|
}
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Finds algo to mesh a shape. Optionally returns a shape the found algo is bound to
|
|
*/
|
|
//=============================================================================
|
|
|
|
SMESH_Algo *SMESH_Gen::GetAlgo(SMESH_Mesh & aMesh,
|
|
const TopoDS_Shape & aShape,
|
|
TopoDS_Shape* assignedTo)
|
|
{
|
|
return GetAlgo( aMesh.GetSubMesh( aShape ), assignedTo );
|
|
}
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Finds algo to mesh a sub-mesh. Optionally returns a shape the found algo is bound to
|
|
*/
|
|
//=============================================================================
|
|
|
|
SMESH_Algo *SMESH_Gen::GetAlgo(SMESH_subMesh * aSubMesh,
|
|
TopoDS_Shape* assignedTo)
|
|
{
|
|
if ( !aSubMesh ) return 0;
|
|
|
|
const TopoDS_Shape & aShape = aSubMesh->GetSubShape();
|
|
SMESH_Mesh& aMesh = *aSubMesh->GetFather();
|
|
|
|
SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() );
|
|
if ( aMesh.HasShapeToMesh() )
|
|
filter.And( filter.IsApplicableTo( aShape ));
|
|
|
|
typedef SMESH_Algo::Features AlgoData;
|
|
|
|
TopoDS_Shape assignedToShape;
|
|
SMESH_Algo* algo =
|
|
(SMESH_Algo*) aMesh.GetHypothesis( aSubMesh, filter, true, &assignedToShape );
|
|
|
|
if ( algo &&
|
|
aShape.ShapeType() == TopAbs_FACE &&
|
|
!aShape.IsSame( assignedToShape ) &&
|
|
SMESH_MesherHelper::NbAncestors( aShape, aMesh, TopAbs_SOLID ) > 1 )
|
|
{
|
|
// Issue 0021559. If there is another 2D algo with different types of output
|
|
// elements that can be used to mesh aShape, and 3D algos on adjacent SOLIDs
|
|
// have different types of input elements, we choose a most appropriate 2D algo.
|
|
|
|
// try to find a concurrent 2D algo
|
|
filter.AndNot( filter.Is( algo ));
|
|
TopoDS_Shape assignedToShape2;
|
|
SMESH_Algo* algo2 =
|
|
(SMESH_Algo*) aMesh.GetHypothesis( aSubMesh, filter, true, &assignedToShape2 );
|
|
if ( algo2 && // algo found
|
|
!assignedToShape2.IsSame( aMesh.GetShapeToMesh() ) && // algo is local
|
|
( SMESH_MesherHelper::GetGroupType( assignedToShape2 ) == // algo of the same level
|
|
SMESH_MesherHelper::GetGroupType( assignedToShape )) &&
|
|
aMesh.IsOrderOK( aMesh.GetSubMesh( assignedToShape2 ), // no forced order
|
|
aMesh.GetSubMesh( assignedToShape )))
|
|
{
|
|
// get algos on the adjacent SOLIDs
|
|
filter.Init( filter.IsAlgo() ).And( filter.HasDim( 3 ));
|
|
vector< SMESH_Algo* > algos3D;
|
|
PShapeIteratorPtr solidIt = SMESH_MesherHelper::GetAncestors( aShape, aMesh,
|
|
TopAbs_SOLID );
|
|
while ( const TopoDS_Shape* solid = solidIt->next() )
|
|
if ( SMESH_Algo* algo3D = (SMESH_Algo*) aMesh.GetHypothesis( *solid, filter, true ))
|
|
{
|
|
algos3D.push_back( algo3D );
|
|
filter.AndNot( filter.HasName( algo3D->GetName() ));
|
|
}
|
|
// check compatibility of algos
|
|
if ( algos3D.size() > 1 )
|
|
{
|
|
const AlgoData& algoData = algo->SMESH_Algo::GetFeatures();
|
|
const AlgoData& algoData2 = algo2->SMESH_Algo::GetFeatures();
|
|
const AlgoData& algoData3d0 = algos3D[0]->SMESH_Algo::GetFeatures();
|
|
const AlgoData& algoData3d1 = algos3D[1]->SMESH_Algo::GetFeatures();
|
|
if (( algoData2.IsCompatible( algoData3d0 ) &&
|
|
algoData2.IsCompatible( algoData3d1 ))
|
|
&&
|
|
!(algoData.IsCompatible( algoData3d0 ) &&
|
|
algoData.IsCompatible( algoData3d1 )))
|
|
algo = algo2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( assignedTo && algo )
|
|
* assignedTo = assignedToShape;
|
|
|
|
return algo;
|
|
}
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Returns StudyContextStruct for a study
|
|
*/
|
|
//=============================================================================
|
|
|
|
StudyContextStruct *SMESH_Gen::GetStudyContext()
|
|
{
|
|
return _studyContext;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return shape dimension by TopAbs_ShapeEnum
|
|
*/
|
|
//================================================================================
|
|
|
|
int SMESH_Gen::GetShapeDim(const TopAbs_ShapeEnum & aShapeType)
|
|
{
|
|
static vector<int> dim;
|
|
if ( dim.empty() )
|
|
{
|
|
dim.resize( TopAbs_SHAPE, -1 );
|
|
dim[ TopAbs_COMPOUND ] = MeshDim_3D;
|
|
dim[ TopAbs_COMPSOLID ] = MeshDim_3D;
|
|
dim[ TopAbs_SOLID ] = MeshDim_3D;
|
|
dim[ TopAbs_SHELL ] = MeshDim_2D;
|
|
dim[ TopAbs_FACE ] = MeshDim_2D;
|
|
dim[ TopAbs_WIRE ] = MeshDim_1D;
|
|
dim[ TopAbs_EDGE ] = MeshDim_1D;
|
|
dim[ TopAbs_VERTEX ] = MeshDim_0D;
|
|
}
|
|
return dim[ aShapeType ];
|
|
}
|
|
|
|
//=============================================================================
|
|
/*!
|
|
* Generate a new id unique within this Gen
|
|
*/
|
|
//=============================================================================
|
|
|
|
int SMESH_Gen::GetANewId()
|
|
{
|
|
return _hypId++;
|
|
}
|