smesh/src/SMESH_SWIG/smesh.py

2332 lines
91 KiB
Python

# Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
# File : smesh.py
# Author : Francis KLOSS, OCC
# Module : SMESH
"""
\namespace smesh
\brief Module smesh
"""
import salome
import geompy
import SMESH
from SMESH import *
import StdMeshers
# import NETGENPlugin module if possible
noNETGENPlugin = 0
try:
import NETGENPlugin
except ImportError:
noNETGENPlugin = 1
pass
# Types of algo
REGULAR = 1
PYTHON = 2
MEFISTO = 3
NETGEN = 4
GHS3D = 5
FULL_NETGEN = 6
Hexa = 7
Hexotic = 8
BLSURF = 9
# MirrorType enumeration
POINT = SMESH_MeshEditor.POINT
AXIS = SMESH_MeshEditor.AXIS
PLANE = SMESH_MeshEditor.PLANE
# Smooth_Method enumeration
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
# Fineness enumeration(for NETGEN)
VeryCoarse = 0
Coarse = 1
Moderate = 2
Fine = 3
VeryFine = 4
Custom = 5
NO_NAME = "NoName"
smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH")
smesh.SetCurrentStudy(salome.myStudy)
# Global functions
## Gets object name
def GetName(obj):
ior = salome.orb.object_to_string(obj)
sobj = salome.myStudy.FindObjectIOR(ior)
if sobj is None:
return NO_NAME
else:
attr = sobj.FindAttribute("AttributeName")[1]
return attr.Value()
## Sets name to object
def SetName(obj, name):
ior = salome.orb.object_to_string(obj)
sobj = salome.myStudy.FindObjectIOR(ior)
if not sobj is None:
attr = sobj.FindAttribute("AttributeName")[1]
attr.SetValue(name)
## Returns long value from enumeration
# Uses for SMESH.FunctorType enumeration
def EnumToLong(theItem):
return theItem._v
## Get PointStruct from vertex
# @param theVertex is GEOM object(vertex)
# @return SMESH.PointStruct
def GetPointStruct(theVertex):
[x, y, z] = geompy.PointCoordinates(theVertex)
return PointStruct(x,y,z)
## Get DirStruct from vector
# @param theVector is GEOM object(vector)
# @return SMESH.DirStruct
def GetDirStruct(theVector):
vertices = geompy.SubShapeAll( theVector, geompy.ShapeType["VERTEX"] )
if(len(vertices) != 2):
print "Error: vector object is incorrect."
return None
p1 = geompy.PointCoordinates(vertices[0])
p2 = geompy.PointCoordinates(vertices[1])
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
dir = DirStruct(pnt)
return dir
## Get AxisStruct from object
# @param theObj is GEOM object(line or plane)
# @return SMESH.AxisStruct
def GetAxisStruct(theObj):
edges = geompy.SubShapeAll( theObj, geompy.ShapeType["EDGE"] )
if len(edges) > 1:
vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] )
vertex3, vertex4 = geompy.SubShapeAll( edges[1], geompy.ShapeType["VERTEX"] )
vertex1 = geompy.PointCoordinates(vertex1)
vertex2 = geompy.PointCoordinates(vertex2)
vertex3 = geompy.PointCoordinates(vertex3)
vertex4 = geompy.PointCoordinates(vertex4)
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
return axis
elif len(edges) == 1:
vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] )
p1 = geompy.PointCoordinates( vertex1 )
p2 = geompy.PointCoordinates( vertex2 )
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
return axis
return None
# From SMESH_Gen interface:
# ------------------------
## Set the current mode
def SetEmbeddedMode( theMode ):
smesh.SetEmbeddedMode(theMode)
## Get the current mode
def IsEmbeddedMode():
return smesh.IsEmbeddedMode()
## Set the current study
def SetCurrentStudy( theStudy ):
smesh.SetCurrentStudy(theStudy)
## Get the current study
def GetCurrentStudy():
return smesh.GetCurrentStudy()
## Create Mesh object importing data from given UNV file
# @return an instance of Mesh class
def CreateMeshesFromUNV( theFileName ):
aSmeshMesh = smesh.CreateMeshesFromUNV(theFileName)
aMesh = Mesh(aSmeshMesh)
return aMesh
## Create Mesh object(s) importing data from given MED file
# @return a list of Mesh class instances
def CreateMeshesFromMED( theFileName ):
aSmeshMeshes, aStatus = smesh.CreateMeshesFromMED(theFileName)
aMeshes = []
for iMesh in range(len(aSmeshMeshes)) :
aMesh = Mesh(aSmeshMeshes[iMesh])
aMeshes.append(aMesh)
return aMeshes, aStatus
## Create Mesh object importing data from given STL file
# @return an instance of Mesh class
def CreateMeshesFromSTL( theFileName ):
aSmeshMesh = smesh.CreateMeshesFromSTL(theFileName)
aMesh = Mesh(aSmeshMesh)
return aMesh
## From SMESH_Gen interface
def GetSubShapesId( theMainObject, theListOfSubObjects ):
return smesh.GetSubShapesId(theMainObject, theListOfSubObjects)
## From SMESH_Gen interface. Creates pattern
def GetPattern():
return smesh.GetPattern()
# Filtering. Auxiliary functions:
# ------------------------------
## Creates an empty criterion
# @return SMESH.Filter.Criterion
def GetEmptyCriterion():
Type = EnumToLong(FT_Undefined)
Compare = EnumToLong(FT_Undefined)
Threshold = 0
ThresholdStr = ""
ThresholdID = ""
UnaryOp = EnumToLong(FT_Undefined)
BinaryOp = EnumToLong(FT_Undefined)
Tolerance = 1e-07
TypeOfElement = ALL
Precision = -1 ##@1e-07
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
## Creates a criterion by given parameters
# @param elementType is the type of elements(NODE, EDGE, FACE, VOLUME)
# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
# @param Treshold is threshold value (range of ids as string, shape, numeric)
# @param UnaryOp is FT_LogicalNOT or FT_Undefined
# @param BinaryOp is binary logical operation FT_LogicalAND, FT_LogicalOR or
# FT_Undefined(must be for the last criterion in criteria)
# @return SMESH.Filter.Criterion
def GetCriterion(elementType,
CritType,
Compare = FT_EqualTo,
Treshold="",
UnaryOp=FT_Undefined,
BinaryOp=FT_Undefined):
aCriterion = GetEmptyCriterion()
aCriterion.TypeOfElement = elementType
aCriterion.Type = EnumToLong(CritType)
aTreshold = Treshold
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
aCriterion.Compare = EnumToLong(Compare)
else:
aCriterion.Compare = EnumToLong(FT_EqualTo)
aTreshold = Compare
if CritType in [FT_BelongToGeom, FT_BelongToPlane,
FT_BelongToCylinder, FT_LyingOnGeom]:
# Check treshold
if isinstance(aTreshold, geompy.GEOM._objref_GEOM_Object):
aCriterion.ThresholdStr = GetName(aTreshold)
aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
else:
print "Error: Treshold should be a shape."
return None
elif CritType == FT_RangeOfIds:
# Check treshold
if isinstance(aTreshold, str):
aCriterion.ThresholdStr = aTreshold
else:
print "Error: Treshold should be a string."
return None
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume]:
# Here we don't need treshold
if aTreshold == FT_LogicalNOT:
aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT)
elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = aTreshold
else:
# Check treshold
try:
aTreshold = float(aTreshold)
aCriterion.Threshold = aTreshold
except:
print "Error: Treshold should be a number."
return None
if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT)
if Treshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = EnumToLong(Treshold)
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = EnumToLong(UnaryOp)
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = EnumToLong(BinaryOp)
return aCriterion
## Creates filter by given parameters of criterion
# @param elementType is the type of elements in the group
# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
# @param Treshold is threshold value (range of id ids as string, shape, numeric)
# @param UnaryOp is FT_LogicalNOT or FT_Undefined
# @return SMESH_Filter
def GetFilter(elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
Treshold="",
UnaryOp=FT_Undefined):
aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
aFilterMgr = smesh.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aCriteria = []
aCriteria.append(aCriterion)
aFilter.SetCriteria(aCriteria)
return aFilter
## Creates numerical functor by its type
# @param theCrierion is FT_...; functor type
# @return SMESH_NumericalFunctor
def GetFunctor(theCriterion):
aFilterMgr = smesh.CreateFilterManager()
if theCriterion == FT_AspectRatio:
return aFilterMgr.CreateAspectRatio()
elif theCriterion == FT_AspectRatio3D:
return aFilterMgr.CreateAspectRatio3D()
elif theCriterion == FT_Warping:
return aFilterMgr.CreateWarping()
elif theCriterion == FT_MinimumAngle:
return aFilterMgr.CreateMinimumAngle()
elif theCriterion == FT_Taper:
return aFilterMgr.CreateTaper()
elif theCriterion == FT_Skew:
return aFilterMgr.CreateSkew()
elif theCriterion == FT_Area:
return aFilterMgr.CreateArea()
elif theCriterion == FT_Volume3D:
return aFilterMgr.CreateVolume3D()
elif theCriterion == FT_MultiConnection:
return aFilterMgr.CreateMultiConnection()
elif theCriterion == FT_MultiConnection2D:
return aFilterMgr.CreateMultiConnection2D()
elif theCriterion == FT_Length:
return aFilterMgr.CreateLength()
elif theCriterion == FT_Length2D:
return aFilterMgr.CreateLength2D()
else:
print "Error: given parameter is not numerucal functor type."
## Mother class to define algorithm, recommended to don't use directly.
#
# More details.
class Mesh_Algorithm:
# @class Mesh_Algorithm
# @brief Class Mesh_Algorithm
mesh = 0
geom = 0
subm = 0
algo = 0
## If the algorithm is global, return 0; \n
# else return the submesh associated to this algorithm.
def GetSubMesh(self):
return self.subm
## Return the wrapped mesher.
def GetAlgorithm(self):
return self.algo
## Get list of hypothesis that can be used with this algorithm
def GetCompatibleHypothesis(self):
list = []
if self.algo:
list = self.algo.GetCompatibleHypothesis()
return list
## Get name of algo
def GetName(self):
GetName(self.algo)
## Set name to algo
def SetName(self, name):
SetName(self.algo, name)
## Get id of algo
def GetId(self):
return self.algo.GetId()
## Private method. Print error message if a hypothesis was not assigned.
def TreatHypoStatus(self, status, hypName, geomName, isAlgo):
if isAlgo:
hypType = "algorithm"
else:
hypType = "hypothesis"
if status == HYP_UNKNOWN_FATAL :
reason = "for unknown reason"
elif status == HYP_INCOMPATIBLE :
reason = "this hypothesis mismatches algorithm"
elif status == HYP_NOTCONFORM :
reason = "not conform mesh would be built"
elif status == HYP_ALREADY_EXIST :
reason = hypType + " of the same dimension already assigned to this shape"
elif status == HYP_BAD_DIM :
reason = hypType + " mismatches shape"
elif status == HYP_CONCURENT :
reason = "there are concurrent hypotheses on sub-shapes"
elif status == HYP_BAD_SUBSHAPE :
reason = "shape is neither the main one, nor its subshape, nor a valid group"
elif status == HYP_BAD_GEOMETRY:
reason = "geometry mismatches algorithm's expectation"
else:
return
hypName = '"' + hypName + '"'
geomName= '"' + geomName+ '"'
if status < HYP_UNKNOWN_FATAL:
print hypName, "was assigned to", geomName,"but", reason
else:
print hypName, "was not assigned to",geomName,":", reason
pass
## Private method.
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
if geom is None:
raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
self.mesh = mesh
piece = mesh.geom
if geom==0:
self.geom = piece
name = GetName(piece)
else:
self.geom = geom
name = GetName(geom)
if name==NO_NAME:
name = geompy.SubShapeName(geom, piece)
geompy.addToStudyInFather(piece, geom, name)
self.subm = mesh.mesh.GetSubMesh(geom, hypo)
self.algo = smesh.CreateHypothesis(hypo, so)
SetName(self.algo, name + "/" + hypo)
status = mesh.mesh.AddHypothesis(self.geom, self.algo)
self.TreatHypoStatus( status, hypo, name, 1 )
## Private method
def Hypothesis(self, hyp, args=[], so="libStdMeshersEngine.so"):
hypo = smesh.CreateHypothesis(hyp, so)
a = ""
s = "="
i = 0
n = len(args)
while i<n:
a = a + s + str(args[i])
s = ","
i = i + 1
name = GetName(self.geom)
SetName(hypo, name + "/" + hyp + a)
status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
self.TreatHypoStatus( status, hyp, name, 0 )
return hypo
# Public class: Mesh_Segment
# --------------------------
## Class to define a segment 1D algorithm for discretization
#
# More details.
class Mesh_Segment(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "Regular_1D")
## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
# @param l for the length of segments that cut an edge
def LocalLength(self, l):
hyp = self.Hypothesis("LocalLength", [l])
hyp.SetLength(l)
return hyp
## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
# @param n for the number of segments that cut an edge
# @param s for the scale factor (optional)
def NumberOfSegments(self, n, s=[]):
if s == []:
hyp = self.Hypothesis("NumberOfSegments", [n])
else:
hyp = self.Hypothesis("NumberOfSegments", [n,s])
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
return hyp
## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def Arithmetic1D(self, start, end):
hyp = self.Hypothesis("Arithmetic1D", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def StartEndLength(self, start, end):
hyp = self.Hypothesis("StartEndLength", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Define "Deflection1D" hypothesis
# @param d for the deflection
def Deflection1D(self, d):
hyp = self.Hypothesis("Deflection1D", [d])
hyp.SetDeflection(d)
return hyp
## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
# the opposite side in the case of quadrangular faces
def Propagation(self):
return self.Hypothesis("Propagation")
## Define "AutomaticLength" hypothesis
# @param fineness for the fineness [0-1]
def AutomaticLength(self, fineness=0):
hyp = self.Hypothesis("AutomaticLength")
hyp.SetFineness( fineness )
return hyp
## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
# If the 2D mesher sees that all boundary edges are quadratic ones,
# it generates quadratic faces, else it generates linear faces using
# medium nodes as if they were vertex ones.
# The 3D mesher generates quadratic volumes only if all boundary faces
# are quadratic ones, else it fails.
def QuadraticMesh(self):
hyp = self.Hypothesis("QuadraticMesh")
return hyp
# Public class: Mesh_Segment_Python
# ---------------------------------
## Class to define a segment 1D algorithm for discretization with python function
#
# More details.
class Mesh_Segment_Python(Mesh_Segment):
## Private constructor.
def __init__(self, mesh, geom=0):
import Python1dPlugin
self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
# @param n for the number of segments that cut an edge
# @param func for the python function that calculate the length of all segments
def PythonSplit1D(self, n, func):
hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so")
hyp.SetNumberOfSegments(n)
hyp.SetPythonLog10RatioFunction(func)
return hyp
# Public class: Mesh_Triangle
# ---------------------------
## Class to define a triangle 2D algorithm
#
# More details.
class Mesh_Triangle(Mesh_Algorithm):
algoType = 0
params = 0
_angleMeshS = 8
_gradation = 1.1
## Private constructor.
def __init__(self, mesh, algoType, geom=0):
if algoType == MEFISTO:
self.Create(mesh, geom, "MEFISTO_2D")
elif algoType == BLSURF:
import BLSURFPlugin
self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
elif algoType == NETGEN:
if noNETGENPlugin:
print "Warning: NETGENPlugin module has not been imported."
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
self.algoType = algoType
## Define "MaxElementArea" hypothesis to give the maximun area of each triangles
# @param area for the maximum area of each triangles
def MaxElementArea(self, area):
if self.algoType == MEFISTO:
hyp = self.Hypothesis("MaxElementArea", [area])
hyp.SetMaxElementArea(area)
return hyp
elif self.algoType == NETGEN:
print "Netgen 1D-2D algo doesn't support this hypothesis"
return None
## Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire
def LengthFromEdges(self):
if self.algoType == MEFISTO:
hyp = self.Hypothesis("LengthFromEdges")
return hyp
elif self.algoType == NETGEN:
print "Netgen 1D-2D algo doesn't support this hypothesis"
return None
## Define "Netgen 2D Parameters" hypothesis
def Parameters(self):
if self.algoType == NETGEN:
self.params = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
return self.params
elif self.algoType == MEFISTO:
print "Mefisto algo doesn't support this hypothesis"
return None
elif self.algoType == BLSURF:
self.params = self.Hypothesis("BLSURF_Parameters", [], "libBLSURFEngine.so")
return self.params
## Set MaxSize
def SetMaxSize(self, theSize):
if self.params == 0:
self.Parameters()
self.params.SetMaxSize(theSize)
## Set SecondOrder flag
def SetSecondOrder(seld, theVal):
if self.params == 0:
self.Parameters()
self.params.SetSecondOrder(theVal)
## Set Optimize flag
def SetOptimize(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetOptimize(theVal)
## Set Fineness
# @param theFineness is:
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
def SetFineness(self, theFineness):
if self.params == 0:
self.Parameters()
self.params.SetFineness(theFineness)
## Set GrowthRate
def SetGrowthRate(self, theRate):
if self.params == 0:
self.Parameters()
self.params.SetGrowthRate(theRate)
## Set NbSegPerEdge
def SetNbSegPerEdge(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetNbSegPerEdge(theVal)
## Set NbSegPerRadius
def SetNbSegPerRadius(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetNbSegPerRadius(theVal)
## Set PhysicalMesh
# @param thePhysicalMesh is:
# DefaultSize or Custom
def SetPhysicalMesh(self, thePhysicalMesh=1):
if self.params == 0:
self.Parameters()
self.params.SetPhysicalMesh(thePhysicalMesh)
## Set PhySize flag
def SetPhySize(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetPhySize(theVal)
## Set GeometricMesh
# @param theGeometricMesh is:
# DefaultGeom or Custom
def SetGeometricMesh(self, theGeometricMesh=0):
if self.params == 0:
self.Parameters()
if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1
self.params.SetGeometricMesh(theGeometricMesh)
## Set AngleMeshS flag
def SetAngleMeshS(self, theVal=_angleMeshS):
if self.params == 0:
self.Parameters()
if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
self.params.SetAngleMeshS(theVal)
## Set Gradation flag
def SetGradation(self, theVal=_gradation):
if self.params == 0:
self.Parameters()
if self.params.GetGeometricMesh() == 0: theVal = self._gradation
self.params.SetGradation(theVal)
## Set QuadAllowed flag
def SetQuadAllowed(self, toAllow=False):
if self.params == 0:
self.Parameters()
self.params.SetQuadAllowed(toAllow)
## Set Decimesh flag
def SetDecimesh(self, toAllow=False):
if self.params == 0:
self.Parameters()
self.params.SetDecimesh(toAllow)
# Public class: Mesh_Quadrangle
# -----------------------------
## Class to define a quadrangle 2D algorithm
#
# More details.
class Mesh_Quadrangle(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "Quadrangle_2D")
## Define "QuadranglePreference" hypothesis, forcing construction
# of quadrangles if the number of nodes on opposite edges is not the same
# in the case where the global number of nodes on edges is even
def QuadranglePreference(self):
hyp = self.Hypothesis("QuadranglePreference")
return hyp
# Public class: Mesh_Tetrahedron
# ------------------------------
## Class to define a tetrahedron 3D algorithm
#
# More details.
class Mesh_Tetrahedron(Mesh_Algorithm):
params = 0
algoType = 0
## Private constructor.
def __init__(self, mesh, algoType, geom=0):
if algoType == NETGEN:
self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
elif algoType == GHS3D:
import GHS3DPlugin
self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
elif algoType == FULL_NETGEN:
if noNETGENPlugin:
print "Warning: NETGENPlugin module has not been imported."
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
self.algoType = algoType
## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
# @param vol for the maximum volume of each tetrahedral
def MaxElementVolume(self, vol):
hyp = self.Hypothesis("MaxElementVolume", [vol])
hyp.SetMaxElementVolume(vol)
return hyp
## Define "Netgen 3D Parameters" hypothesis
def Parameters(self):
if (self.algoType == FULL_NETGEN):
self.params = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
return self.params
else:
print "Algo doesn't support this hypothesis"
return None
## Set MaxSize
def SetMaxSize(self, theSize):
if self.params == 0:
self.Parameters()
self.params.SetMaxSize(theSize)
## Set SecondOrder flag
def SetSecondOrder(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetSecondOrder(theVal)
## Set Optimize flag
def SetOptimize(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetOptimize(theVal)
## Set Fineness
# @param theFineness is:
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
def SetFineness(self, theFineness):
if self.params == 0:
self.Parameters()
self.params.SetFineness(theFineness)
## Set GrowthRate
def SetGrowthRate(self, theRate):
if self.params == 0:
self.Parameters()
self.params.SetGrowthRate(theRate)
## Set NbSegPerEdge
def SetNbSegPerEdge(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetNbSegPerEdge(theVal)
## Set NbSegPerRadius
def SetNbSegPerRadius(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetNbSegPerRadius(theVal)
# Public class: Mesh_Hexahedron
# ------------------------------
## Class to define a hexahedron 3D algorithm
#
# More details.
class Mesh_Hexahedron(Mesh_Algorithm):
## Private constructor.
## def __init__(self, mesh, geom=0):
## self.Create(mesh, geom, "Hexa_3D")
def __init__(self, mesh, algo, geom):
if algo == Hexa:
self.Create(mesh, geom, "Hexa_3D")
elif algo == Hexotic:
import HexoticPlugin
self.Create(mesh, geom, "Hexotic_3D" , "libHexoticEngine.so")
## Define "MinMaxQuad" hypothesis to give the three hexotic parameters
def MinMaxQuad(self, min=3, max=8, quad=True):
hyp = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so")
hyp.SetHexesMinLevel(min)
hyp.SetHexesMaxLevel(max)
hyp.SetHexoticQuadrangles(quad)
return hyp
# Deprecated, only for compatibility!
# Public class: Mesh_Netgen
# ------------------------------
## Class to define a NETGEN-based 2D or 3D algorithm
# that need no discrete boundary (i.e. independent)
#
# This class is deprecated, only for compatibility!
#
# More details.
class Mesh_Netgen(Mesh_Algorithm):
is3D = 0
## Private constructor.
def __init__(self, mesh, is3D, geom=0):
if noNETGENPlugin:
print "Warning: NETGENPlugin module has not been imported."
self.is3D = is3D
if is3D:
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
else:
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
## Define hypothesis containing parameters of the algorithm
def Parameters(self):
if self.is3D:
hyp = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
else:
hyp = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
return hyp
# Public class: Mesh_Projection1D
# ------------------------------
## Class to define a projection 1D algorithm
#
# More details.
class Mesh_Projection1D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "Projection_1D")
## Define "Source Edge" hypothesis, specifying a meshed edge to
# take a mesh pattern from, and optionally association of vertices
# between the source edge and a target one (where a hipothesis is assigned to)
# @param edge to take nodes distribution from
# @param mesh to take nodes distribution from (optional)
# @param srcV is vertex of \a edge to associate with \a tgtV (optional)
# @param tgtV is vertex of \a the edge where the algorithm is assigned,
# to associate with \a srcV (optional)
def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None):
hyp = self.Hypothesis("ProjectionSource1D")
hyp.SetSourceEdge( edge )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV, tgtV )
return hyp
# Public class: Mesh_Projection2D
# ------------------------------
## Class to define a projection 2D algorithm
#
# More details.
class Mesh_Projection2D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "Projection_2D")
## Define "Source Face" hypothesis, specifying a meshed face to
# take a mesh pattern from, and optionally association of vertices
# between the source face and a target one (where a hipothesis is assigned to)
# @param face to take mesh pattern from
# @param mesh to take mesh pattern from (optional)
# @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional)
# @param tgtV1 is vertex of \a the face where the algorithm is assigned,
# to associate with \a srcV1 (optional)
# @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional)
# @param tgtV2 is vertex of \a the face where the algorithm is assigned,
# to associate with \a srcV2 (optional)
#
# Note: association vertices must belong to one edge of a face
def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None, srcV2=None, tgtV2=None):
hyp = self.Hypothesis("ProjectionSource2D")
hyp.SetSourceFace( face )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
return hyp
# Public class: Mesh_Projection3D
# ------------------------------
## Class to define a projection 3D algorithm
#
# More details.
class Mesh_Projection3D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "Projection_3D")
## Define "Source Shape 3D" hypothesis, specifying a meshed solid to
# take a mesh pattern from, and optionally association of vertices
# between the source solid and a target one (where a hipothesis is assigned to)
# @param solid to take mesh pattern from
# @param mesh to take mesh pattern from (optional)
# @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional)
# @param tgtV1 is vertex of \a the solid where the algorithm is assigned,
# to associate with \a srcV1 (optional)
# @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional)
# @param tgtV2 is vertex of \a the solid where the algorithm is assigned,
# to associate with \a srcV2 (optional)
#
# Note: association vertices must belong to one edge of a solid
def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0, srcV2=0, tgtV2=0):
hyp = self.Hypothesis("ProjectionSource3D")
hyp.SetSource3DShape( solid )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
return hyp
# Public class: Mesh_Prism
# ------------------------
## Class to define a Prism 3D algorithm
#
# More details.
class Mesh_Prism3D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "Prism_3D")
# Public class: Mesh_RadialPrism
# -------------------------------
## Class to define a Radial Prism 3D algorithm
#
# More details.
class Mesh_RadialPrism3D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "RadialPrism_3D")
self.distribHyp = self.Hypothesis( "LayerDistribution" )
self.nbLayers = None
## Return 3D hypothesis holding the 1D one
def Get3DHypothesis(self):
return self.distribHyp
## Private method creating 1D hypothes and storing it in the LayerDistribution
# hypothes. Returns the created hypothes
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
if not self.nbLayers is None:
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
study = GetCurrentStudy() # prevent publishing of own 1D hypothesis
hyp = smesh.CreateHypothesis(hypType, so)
SetCurrentStudy( study ) # anable publishing
self.distribHyp.SetLayerDistribution( hyp )
return hyp
## Define "NumberOfLayers" hypothesis, specifying a number of layers of
# prisms to build between the inner and outer shells
def NumberOfLayers(self, n ):
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
self.nbLayers = self.Hypothesis("NumberOfLayers")
self.nbLayers.SetNumberOfLayers( n )
return self.nbLayers
## Define "LocalLength" hypothesis, specifying segment length
# to build between the inner and outer shells
# @param l for the length of segments
def LocalLength(self, l):
hyp = self.OwnHypothesis("LocalLength", [l])
hyp.SetLength(l)
return hyp
## Define "NumberOfSegments" hypothesis, specifying a number of layers of
# prisms to build between the inner and outer shells
# @param n for the number of segments
# @param s for the scale factor (optional)
def NumberOfSegments(self, n, s=[]):
if s == []:
hyp = self.OwnHypothesis("NumberOfSegments", [n])
else:
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
return hyp
## Define "Arithmetic1D" hypothesis, specifying distribution of segments
# to build between the inner and outer shells as arithmetic length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def Arithmetic1D(self, start, end):
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Define "StartEndLength" hypothesis, specifying distribution of segments
# to build between the inner and outer shells as geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def StartEndLength(self, start, end):
hyp = self.OwnHypothesis("StartEndLength", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Define "AutomaticLength" hypothesis, specifying number of segments
# to build between the inner and outer shells
# @param fineness for the fineness [0-1]
def AutomaticLength(self, fineness=0):
hyp = self.OwnHypothesis("AutomaticLength")
hyp.SetFineness( fineness )
return hyp
# Public class: Mesh
# ==================
## Class to define a mesh
#
# The class contains mesh shape, SMESH_Mesh, SMESH_MeshEditor
# More details.
class Mesh:
geom = 0
mesh = 0
editor = 0
## Constructor
#
# Creates mesh on the shape \a geom(or the empty mesh if geom equal to 0),
# sets GUI name of this mesh to \a name.
# @param obj Shape to be meshed or SMESH_Mesh object
# @param name Study name of the mesh
def __init__(self, obj=0, name=0):
if obj is None:
obj = 0
if obj != 0:
if isinstance(obj, geompy.GEOM._objref_GEOM_Object):
self.geom = obj
self.mesh = smesh.CreateMesh(self.geom)
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
self.SetMesh(obj)
else:
self.mesh = smesh.CreateEmptyMesh()
if name != 0:
SetName(self.mesh, name)
elif obj != 0:
SetName(self.mesh, GetName(obj))
self.editor = self.mesh.GetMeshEditor()
## Method that inits the Mesh object from SMESH_Mesh interface
# @param theMesh is SMESH_Mesh object
def SetMesh(self, theMesh):
self.mesh = theMesh
self.geom = self.mesh.GetShapeToMesh()
## Method that returns the mesh
# @return SMESH_Mesh object
def GetMesh(self):
return self.mesh
## Get mesh name
def GetName(self):
name = GetName(self.GetMesh())
return name
## Set name to mesh
def SetName(self, name):
SetName(self.GetMesh(), name)
## Get the subMesh object associated to a subShape. The subMesh object
# gives access to nodes and elements IDs.
# \n SubMesh will be used instead of SubShape in a next idl version to
# adress a specific subMesh...
def GetSubMesh(self, theSubObject, name):
submesh = self.mesh.GetSubMesh(theSubObject, name)
return submesh
## Method that returns the shape associated to the mesh
# @return GEOM_Object
def GetShape(self):
return self.geom
## Method that associates given shape to the mesh(entails the mesh recreation)
# @param geom shape to be meshed(GEOM_Object)
def SetShape(self, geom):
self.mesh = smesh.CreateMesh(geom)
## Return true if hypotheses are defined well
# @param theMesh is an instance of Mesh class
# @param theSubObject subshape of a mesh shape
def IsReadyToCompute(self, theSubObject):
return smesh.IsReadyToCompute(self.mesh, theSubObject)
## Return errors of hypotheses definintion
# error list is empty if everything is OK
# @param theMesh is an instance of Mesh class
# @param theSubObject subshape of a mesh shape
# @return a list of errors
def GetAlgoState(self, theSubObject):
return smesh.GetAlgoState(self.mesh, theSubObject)
## Return geometrical object the given element is built on.
# The returned geometrical object, if not nil, is either found in the
# study or is published by this method with the given name
# @param theMesh is an instance of Mesh class
# @param theElementID an id of the mesh element
# @param theGeomName user defined name of geometrical object
# @return GEOM::GEOM_Object instance
def GetGeometryByMeshElement(self, theElementID, theGeomName):
return smesh.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
## Returns mesh dimension depending on shape one
def MeshDimension(self):
shells = geompy.SubShapeAllIDs( self.geom, geompy.ShapeType["SHELL"] )
if len( shells ) > 0 :
return 3
elif geompy.NumberOfFaces( self.geom ) > 0 :
return 2
elif geompy.NumberOfEdges( self.geom ) > 0 :
return 1
else:
return 0;
pass
## Creates a segment discretization 1D algorithm.
# If the optional \a algo parameter is not sets, this algorithm is REGULAR.
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function
# @param geom If defined, subshape to be meshed
def Segment(self, algo=REGULAR, geom=0):
## if Segment(geom) is called by mistake
if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
algo, geom = geom, algo
pass
if algo == REGULAR:
return Mesh_Segment(self, geom)
elif algo == PYTHON:
return Mesh_Segment_Python(self, geom)
else:
return Mesh_Segment(self, geom)
## Creates a triangle 2D algorithm for faces.
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param algo values are: smesh.MEFISTO or smesh.NETGEN
# @param geom If defined, subshape to be meshed
def Triangle(self, algo=MEFISTO, geom=0):
## if Triangle(geom) is called by mistake
if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
geom = algo
algo = MEFISTO
return Mesh_Triangle(self, algo, geom)
## Creates a quadrangle 2D algorithm for faces.
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
def Quadrangle(self, geom=0):
return Mesh_Quadrangle(self, geom)
## Creates a tetrahedron 3D algorithm for solids.
# The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN
# @param geom If defined, subshape to be meshed
def Tetrahedron(self, algo=NETGEN, geom=0):
## if Tetrahedron(geom) is called by mistake
if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
algo, geom = geom, algo
pass
return Mesh_Tetrahedron(self, algo, geom)
## Creates a hexahedron 3D algorithm for solids.
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
## def Hexahedron(self, geom=0):
## return Mesh_Hexahedron(self, geom)
def Hexahedron(self, algo=Hexa, geom=0):
## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
if ( isinstance(algo, geompy.GEOM._objref_GEOM_Object) ):
if geom in [Hexa, Hexotic]: algo, geom = geom, algo
elif geom == 0: algo, geom = Hexa, algo
return Mesh_Hexahedron(self, algo, geom)
## Deprecated, only for compatibility!
def Netgen(self, is3D, geom=0):
return Mesh_Netgen(self, is3D, geom)
## Creates a projection 1D algorithm for edges.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
def Projection1D(self, geom=0):
return Mesh_Projection1D(self, geom)
## Creates a projection 2D algorithm for faces.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
def Projection2D(self, geom=0):
return Mesh_Projection2D(self, geom)
## Creates a projection 3D algorithm for solids.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
def Projection3D(self, geom=0):
return Mesh_Projection3D(self, geom)
## Creates a Prism 3D or RadialPrism 3D algorithm for solids.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
def Prism(self, geom=0):
shape = geom
if shape==0:
shape = self.geom
nbSolids = len( geompy.SubShapeAll( shape, geompy.ShapeType["SOLID"] ))
nbShells = len( geompy.SubShapeAll( shape, geompy.ShapeType["SHELL"] ))
if nbSolids == 0 or nbSolids == nbShells:
return Mesh_Prism3D(self, geom)
return Mesh_RadialPrism3D(self, geom)
## Compute the mesh and return the status of the computation
def Compute(self, geom=0):
if geom == 0 or not isinstance(geom, geompy.GEOM._objref_GEOM_Object):
if self.geom == 0:
print "Compute impossible: mesh is not constructed on geom shape."
return 0
else:
geom = self.geom
ok = smesh.Compute(self.mesh, geom)
if not ok:
errors = smesh.GetAlgoState( self.mesh, geom )
allReasons = ""
for err in errors:
if err.isGlobalAlgo:
glob = " global "
else:
glob = " local "
pass
dim = str(err.algoDim)
if err.name == MISSING_ALGO:
reason = glob + dim + "D algorithm is missing"
elif err.name == MISSING_HYPO:
name = '"' + err.algoName + '"'
reason = glob + dim + "D algorithm " + name + " misses " + dim + "D hypothesis"
elif err.name == NOT_CONFORM_MESH:
reason = "Global \"Not Conform mesh allowed\" hypothesis is missing"
elif err.name == BAD_PARAM_VALUE:
name = '"' + err.algoName + '"'
reason = "Hypothesis of" + glob + dim + "D algorithm " + name +\
" has a bad parameter value"
else:
reason = "For unknown reason."+\
" Revise Mesh.Compute() implementation in smesh.py!"
pass
if allReasons != "":
allReasons += "\n"
pass
allReasons += reason
pass
if allReasons != "":
print '"' + GetName(self.mesh) + '"',"not computed:"
print allReasons
pass
pass
if salome.sg.hasDesktop():
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init(salome.myStudyId)
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok )
salome.sg.updateObjBrowser(1)
pass
return ok
## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
# The parameter \a fineness [0,-1] defines mesh fineness
def AutomaticTetrahedralization(self, fineness=0):
dim = self.MeshDimension()
# assign hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Triangle().LengthFromEdges()
pass
if dim > 2 :
self.Tetrahedron(NETGEN)
pass
return self.Compute()
## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
# The parameter \a fineness [0,-1] defines mesh fineness
def AutomaticHexahedralization(self, fineness=0):
dim = self.MeshDimension()
# assign hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Quadrangle()
pass
if dim > 2 :
self.Hexahedron()
pass
return self.Compute()
## Get the list of hypothesis added on a geom
# @param geom is subhape of mesh geometry
def GetHypothesisList(self, geom):
return self.mesh.GetHypothesisList( geom )
## Removes all global hypotheses
def RemoveGlobalHypotheses(self):
current_hyps = self.mesh.GetHypothesisList( self.geom )
for hyp in current_hyps:
self.mesh.RemoveHypothesis( self.geom, hyp )
pass
pass
## Create a mesh group based on geometric object \a grp
# and give a \a name, \n if this parameter is not defined
# the name is the same as the geometric group name \n
# Note: Works like GroupOnGeom().
# @param grp is a geometric group, a vertex, an edge, a face or a solid
# @param name is the name of the mesh group
# @return SMESH_GroupOnGeom
def Group(self, grp, name=""):
return self.GroupOnGeom(grp, name)
## Deprecated, only for compatibility! Please, use ExportMED() method instead.
# Export the mesh in a file with the MED format and choice the \a version of MED format
# @param f is the file name
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
def ExportToMED(self, f, version, opt=0):
self.mesh.ExportToMED(f, opt, version)
## Export the mesh in a file with the MED format
# @param f is the file name
# @param auto_groups boolean parameter for creating/not creating
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
# the typical use is auto_groups=false.
# @param version MED format version(MED_V2_1 or MED_V2_2)
def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
self.mesh.ExportToMED(f, auto_groups, version)
## Export the mesh in a file with the DAT format
# @param f is the file name
def ExportDAT(self, f):
self.mesh.ExportDAT(f)
## Export the mesh in a file with the UNV format
# @param f is the file name
def ExportUNV(self, f):
self.mesh.ExportUNV(f)
## Export the mesh in a file with the STL format
# @param f is the file name
# @param ascii defined the kind of file contents
def ExportSTL(self, f, ascii=1):
self.mesh.ExportSTL(f, ascii)
# Operations with groups:
# ----------------------
## Creates an empty mesh group
# @param elementType is the type of elements in the group
# @param name is the name of the mesh group
# @return SMESH_Group
def CreateEmptyGroup(self, elementType, name):
return self.mesh.CreateGroup(elementType, name)
## Creates a mesh group based on geometric object \a grp
# and give a \a name, \n if this parameter is not defined
# the name is the same as the geometric group name
# @param grp is a geometric group, a vertex, an edge, a face or a solid
# @param name is the name of the mesh group
# @return SMESH_GroupOnGeom
def GroupOnGeom(self, grp, name="", type=None):
if name == "":
name = grp.GetName()
if type == None:
tgeo = str(grp.GetShapeType())
if tgeo == "VERTEX":
type = NODE
elif tgeo == "EDGE":
type = EDGE
elif tgeo == "FACE":
type = FACE
elif tgeo == "SOLID":
type = VOLUME
elif tgeo == "SHELL":
type = VOLUME
elif tgeo == "COMPOUND":
if len( geompy.GetObjectIDs( grp )) == 0:
print "Mesh.Group: empty geometric group", GetName( grp )
return 0
tgeo = geompy.GetType(grp)
if tgeo == geompy.ShapeType["VERTEX"]:
type = NODE
elif tgeo == geompy.ShapeType["EDGE"]:
type = EDGE
elif tgeo == geompy.ShapeType["FACE"]:
type = FACE
elif tgeo == geompy.ShapeType["SOLID"]:
type = VOLUME
if type == None:
print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
return 0
else:
return self.mesh.CreateGroupFromGEOM(type, name, grp)
## Create a mesh group by the given ids of elements
# @param groupName is the name of the mesh group
# @param elementType is the type of elements in the group
# @param elemIDs is the list of ids
# @return SMESH_Group
def MakeGroupByIds(self, groupName, elementType, elemIDs):
group = self.mesh.CreateGroup(elementType, groupName)
group.Add(elemIDs)
return group
## Create a mesh group by the given conditions
# @param groupName is the name of the mesh group
# @param elementType is the type of elements in the group
# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
# @param Treshold is threshold value (range of id ids as string, shape, numeric)
# @param UnaryOp is FT_LogicalNOT or FT_Undefined
# @return SMESH_Group
def MakeGroup(self,
groupName,
elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
Treshold="",
UnaryOp=FT_Undefined):
aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
group = self.MakeGroupByCriterion(groupName, aCriterion)
return group
## Create a mesh group by the given criterion
# @param groupName is the name of the mesh group
# @param Criterion is the instance of Criterion class
# @return SMESH_Group
def MakeGroupByCriterion(self, groupName, Criterion):
aFilterMgr = smesh.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aCriteria = []
aCriteria.append(Criterion)
aFilter.SetCriteria(aCriteria)
group = self.MakeGroupByFilter(groupName, aFilter)
return group
## Create a mesh group by the given criteria(list of criterions)
# @param groupName is the name of the mesh group
# @param Criteria is the list of criterions
# @return SMESH_Group
def MakeGroupByCriteria(self, groupName, theCriteria):
aFilterMgr = smesh.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aFilter.SetCriteria(theCriteria)
group = self.MakeGroupByFilter(groupName, aFilter)
return group
## Create a mesh group by the given filter
# @param groupName is the name of the mesh group
# @param Criterion is the instance of Filter class
# @return SMESH_Group
def MakeGroupByFilter(self, groupName, theFilter):
anIds = theFilter.GetElementsId(self.mesh)
anElemType = theFilter.GetElementType()
group = self.MakeGroupByIds(groupName, anElemType, anIds)
return group
## Pass mesh elements through the given filter and return ids
# @param theFilter is SMESH_Filter
# @return list of ids
def GetIdsFromFilter(self, theFilter):
return theFilter.GetElementsId(self.mesh)
## Verify whether 2D mesh element has free edges(edges connected to one face only)\n
# Returns list of special structures(borders).
# @return list of SMESH.FreeEdges.Border structure: edge id and two its nodes ids.
def GetFreeBorders(self):
aFilterMgr = smesh.CreateFilterManager()
aPredicate = aFilterMgr.CreateFreeEdges()
aPredicate.SetMesh(self.mesh)
aBorders = aPredicate.GetBorders()
return aBorders
## Remove a group
def RemoveGroup(self, group):
self.mesh.RemoveGroup(group)
## Remove group with its contents
def RemoveGroupWithContents(self, group):
self.mesh.RemoveGroupWithContents(group)
## Get the list of groups existing in the mesh
def GetGroups(self):
return self.mesh.GetGroups()
## Get the list of names of groups existing in the mesh
def GetGroupNames(self):
groups = self.GetGroups()
names = []
for group in groups:
names.append(group.GetName())
return names
## Union of two groups
# New group is created. All mesh elements that are
# present in initial groups are added to the new one
def UnionGroups(self, group1, group2, name):
return self.mesh.UnionGroups(group1, group2, name)
## Intersection of two groups
# New group is created. All mesh elements that are
# present in both initial groups are added to the new one.
def IntersectGroups(self, group1, group2, name):
return self.mesh.IntersectGroups(group1, group2, name)
## Cut of two groups
# New group is created. All mesh elements that are present in
# main group but do not present in tool group are added to the new one
def CutGroups(self, mainGroup, toolGroup, name):
return self.mesh.CutGroups(mainGroup, toolGroup, name)
# Get some info about mesh:
# ------------------------
## Get the log of nodes and elements added or removed since previous
# clear of the log.
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
# @return list of log_block structures:
# commandType
# number
# coords
# indexes
def GetLog(self, clearAfterGet):
return self.mesh.GetLog(clearAfterGet)
## Clear the log of nodes and elements added or removed since previous
# clear. Must be used immediately after GetLog if clearAfterGet is false.
def ClearLog(self):
self.mesh.ClearLog()
## Get the internal Id
def GetId(self):
return self.mesh.GetId()
## Get the study Id
def GetStudyId(self):
return self.mesh.GetStudyId()
## Check group names for duplications.
# Consider maximum group name length stored in MED file.
def HasDuplicatedGroupNamesMED(self):
return self.mesh.GetStudyId()
## Obtain instance of SMESH_MeshEditor
def GetMeshEditor(self):
return self.mesh.GetMeshEditor()
## Get MED Mesh
def GetMEDMesh(self):
return self.mesh.GetMEDMesh()
# Get informations about mesh contents:
# ------------------------------------
## Returns number of nodes in mesh
def NbNodes(self):
return self.mesh.NbNodes()
## Returns number of elements in mesh
def NbElements(self):
return self.mesh.NbElements()
## Returns number of edges in mesh
def NbEdges(self):
return self.mesh.NbEdges()
## Returns number of edges with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
def NbEdgesOfOrder(self, elementOrder):
return self.mesh.NbEdgesOfOrder(elementOrder)
## Returns number of faces in mesh
def NbFaces(self):
return self.mesh.NbFaces()
## Returns number of faces with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
def NbFacesOfOrder(self, elementOrder):
return self.mesh.NbFacesOfOrder(elementOrder)
## Returns number of triangles in mesh
def NbTriangles(self):
return self.mesh.NbTriangles()
## Returns number of triangles with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
def NbTrianglesOfOrder(self, elementOrder):
return self.mesh.NbTrianglesOfOrder(elementOrder)
## Returns number of quadrangles in mesh
def NbQuadrangles(self):
return self.mesh.NbQuadrangles()
## Returns number of quadrangles with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
def NbQuadranglesOfOrder(self, elementOrder):
return self.mesh.NbQuadranglesOfOrder(elementOrder)
## Returns number of polygons in mesh
def NbPolygons(self):
return self.mesh.NbPolygons()
## Returns number of volumes in mesh
def NbVolumes(self):
return self.mesh.NbVolumes()
## Returns number of volumes with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
def NbVolumesOfOrder(self, elementOrder):
return self.mesh.NbVolumesOfOrder(elementOrder)
## Returns number of tetrahedrons in mesh
def NbTetras(self):
return self.mesh.NbTetras()
## Returns number of tetrahedrons with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
def NbTetrasOfOrder(self, elementOrder):
return self.mesh.NbTetrasOfOrder(elementOrder)
## Returns number of hexahedrons in mesh
def NbHexas(self):
return self.mesh.NbHexas()
## Returns number of hexahedrons with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
def NbHexasOfOrder(self, elementOrder):
return self.mesh.NbHexasOfOrder(elementOrder)
## Returns number of pyramids in mesh
def NbPyramids(self):
return self.mesh.NbPyramids()
## Returns number of pyramids with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
def NbPyramidsOfOrder(self, elementOrder):
return self.mesh.NbPyramidsOfOrder(elementOrder)
## Returns number of prisms in mesh
def NbPrisms(self):
return self.mesh.NbPrisms()
## Returns number of prisms with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
def NbPrismsOfOrder(self, elementOrder):
return self.mesh.NbPrismsOfOrder(elementOrder)
## Returns number of polyhedrons in mesh
def NbPolyhedrons(self):
return self.mesh.NbPolyhedrons()
## Returns number of submeshes in mesh
def NbSubMesh(self):
return self.mesh.NbSubMesh()
## Returns list of mesh elements ids
def GetElementsId(self):
return self.mesh.GetElementsId()
## Returns list of ids of mesh elements with given type
# @param elementType is required type of elements
def GetElementsByType(self, elementType):
return self.mesh.GetElementsByType(elementType)
## Returns list of mesh nodes ids
def GetNodesId(self):
return self.mesh.GetNodesId()
# Get informations about mesh elements:
# ------------------------------------
## Returns type of mesh element
def GetElementType(self, id, iselem):
return self.mesh.GetElementType(id, iselem)
## Returns list of submesh elements ids
# @param shapeID is geom object(subshape) IOR
def GetSubMeshElementsId(self, shapeID):
return self.mesh.GetSubMeshElementsId(shapeID)
## Returns list of submesh nodes ids
# @param shapeID is geom object(subshape) IOR
def GetSubMeshNodesId(self, shapeID, all):
return self.mesh.GetSubMeshNodesId(shapeID, all)
## Returns list of ids of submesh elements with given type
# @param shapeID is geom object(subshape) IOR
def GetSubMeshElementType(self, shapeID):
return self.mesh.GetSubMeshElementType(shapeID)
## Get mesh description
def Dump(self):
return self.mesh.Dump()
# Get information about nodes and elements of mesh by its ids:
# -----------------------------------------------------------
## Get XYZ coordinates of node as list of double
# \n If there is not node for given ID - returns empty list
def GetNodeXYZ(self, id):
return self.mesh.GetNodeXYZ(id)
## For given node returns list of IDs of inverse elements
# \n If there is not node for given ID - returns empty list
def GetNodeInverseElements(self, id):
return self.mesh.GetNodeInverseElements(id)
## If given element is node returns IDs of shape from position
# \n If there is not node for given ID - returns -1
def GetShapeID(self, id):
return self.mesh.GetShapeID(id)
## For given element returns ID of result shape after
# FindShape() from SMESH_MeshEditor
# \n If there is not element for given ID - returns -1
def GetShapeIDForElem(id):
return self.mesh.GetShapeIDForElem(id)
## Returns number of nodes for given element
# \n If there is not element for given ID - returns -1
def GetElemNbNodes(self, id):
return self.mesh.GetElemNbNodes(id)
## Returns ID of node by given index for given element
# \n If there is not element for given ID - returns -1
# \n If there is not node for given index - returns -2
def GetElemNode(self, id, index):
return self.mesh.GetElemNode(id, index)
## Returns true if given node is medium node
# in given quadratic element
def IsMediumNode(self, elementID, nodeID):
return self.mesh.IsMediumNode(elementID, nodeID)
## Returns true if given node is medium node
# in one of quadratic elements
def IsMediumNodeOfAnyElem(self, nodeID, elementType):
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
## Returns number of edges for given element
def ElemNbEdges(self, id):
return self.mesh.ElemNbEdges(id)
## Returns number of faces for given element
def ElemNbFaces(self, id):
return self.mesh.ElemNbFaces(id)
## Returns true if given element is polygon
def IsPoly(self, id):
return self.mesh.IsPoly(id)
## Returns true if given element is quadratic
def IsQuadratic(self, id):
return self.mesh.IsQuadratic(id)
## Returns XYZ coordinates of bary center for given element
# as list of double
# \n If there is not element for given ID - returns empty list
def BaryCenter(self, id):
return self.mesh.BaryCenter(id)
# Mesh edition (SMESH_MeshEditor functionality):
# ---------------------------------------------
## Removes elements from mesh by ids
# @param IDsOfElements is list of ids of elements to remove
def RemoveElements(self, IDsOfElements):
return self.editor.RemoveElements(IDsOfElements)
## Removes nodes from mesh by ids
# @param IDsOfNodes is list of ids of nodes to remove
def RemoveNodes(self, IDsOfNodes):
return self.editor.RemoveNodes(IDsOfNodes)
## Add node to mesh by coordinates
def AddNode(self, x, y, z):
return self.editor.AddNode( x, y, z)
## Create edge both similar and quadratic (this is determed
# by number of given nodes).
# @param IdsOfNodes List of node IDs for creation of element.
# Needed order of nodes in this list corresponds to description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
def AddEdge(self, IDsOfNodes):
return self.editor.AddEdge(IDsOfNodes)
## Create face both similar and quadratic (this is determed
# by number of given nodes).
# @param IdsOfNodes List of node IDs for creation of element.
# Needed order of nodes in this list corresponds to description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
def AddFace(self, IDsOfNodes):
return self.editor.AddFace(IDsOfNodes)
## Add polygonal face to mesh by list of nodes ids
def AddPolygonalFace(self, IdsOfNodes):
return self.editor.AddPolygonalFace(IdsOfNodes)
## Create volume both similar and quadratic (this is determed
# by number of given nodes).
# @param IdsOfNodes List of node IDs for creation of element.
# Needed order of nodes in this list corresponds to description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
def AddVolume(self, IDsOfNodes):
return self.editor.AddVolume(IDsOfNodes)
## Create volume of many faces, giving nodes for each face.
# @param IdsOfNodes List of node IDs for volume creation face by face.
# @param Quantities List of integer values, Quantities[i]
# gives quantity of nodes in face number i.
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
## Create volume of many faces, giving IDs of existing faces.
# @param IdsOfFaces List of face IDs for volume creation.
#
# Note: The created volume will refer only to nodes
# of the given faces, not to the faces itself.
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
## Move node with given id
# @param NodeID id of the node
# @param x displacing along the X axis
# @param y displacing along the Y axis
# @param z displacing along the Z axis
def MoveNode(self, NodeID, x, y, z):
return self.editor.MoveNode(NodeID, x, y, z)
## Replace two neighbour triangles sharing Node1-Node2 link
# with ones built on the same 4 nodes but having other common link.
# @param NodeID1 first node id
# @param NodeID2 second node id
# @return false if proper faces not found
def InverseDiag(self, NodeID1, NodeID2):
return self.editor.InverseDiag(NodeID1, NodeID2)
## Replace two neighbour triangles sharing Node1-Node2 link
# with a quadrangle built on the same 4 nodes.
# @param NodeID1 first node id
# @param NodeID2 second node id
# @return false if proper faces not found
def DeleteDiag(self, NodeID1, NodeID2):
return self.editor.DeleteDiag(NodeID1, NodeID2)
## Reorient elements by ids
# @param IDsOfElements if undefined reorient all mesh elements
def Reorient(self, IDsOfElements=None):
if IDsOfElements == None:
IDsOfElements = self.GetElementsId()
return self.editor.Reorient(IDsOfElements)
## Reorient all elements of the object
# @param theObject is mesh, submesh or group
def ReorientObject(self, theObject):
return self.editor.ReorientObject(theObject)
## Fuse neighbour triangles into quadrangles.
# @param IDsOfElements The triangles to be fused,
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
# @param MaxAngle is a max angle between element normals at which fusion
# is still performed; theMaxAngle is mesured in radians.
# @return TRUE in case of success, FALSE otherwise.
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.TriToQuad(IDsOfElements, GetFunctor(theCriterion), MaxAngle)
## Fuse neighbour triangles of the object into quadrangles
# @param theObject is mesh, submesh or group
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
# @param MaxAngle is a max angle between element normals at which fusion
# is still performed; theMaxAngle is mesured in radians.
# @return TRUE in case of success, FALSE otherwise.
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
return self.editor.TriToQuadObject(theObject, GetFunctor(theCriterion), MaxAngle)
## Split quadrangles into triangles.
# @param IDsOfElements the faces to be splitted.
# @param theCriterion is FT_...; used to choose a diagonal for splitting.
# @param @return TRUE in case of success, FALSE otherwise.
def QuadToTri (self, IDsOfElements, theCriterion):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.QuadToTri(IDsOfElements, GetFunctor(theCriterion))
## Split quadrangles into triangles.
# @param theObject object to taking list of elements from, is mesh, submesh or group
# @param theCriterion is FT_...; used to choose a diagonal for splitting.
def QuadToTriObject (self, theObject, theCriterion):
return self.editor.QuadToTriObject(theObject, GetFunctor(theCriterion))
## Split quadrangles into triangles.
# @param theElems The faces to be splitted
# @param the13Diag is used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
def SplitQuad (self, IDsOfElements, Diag13):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.SplitQuad(IDsOfElements, Diag13)
## Split quadrangles into triangles.
# @param theObject is object to taking list of elements from, is mesh, submesh or group
def SplitQuadObject (self, theObject, Diag13):
return self.editor.SplitQuadObject(theObject, Diag13)
## Find better splitting of the given quadrangle.
# @param IDOfQuad ID of the quadrangle to be splitted.
# @param theCriterion is FT_...; a criterion to choose a diagonal for splitting.
# @return 1 if 1-3 diagonal is better, 2 if 2-4
# diagonal is better, 0 if error occurs.
def BestSplit (self, IDOfQuad, theCriterion):
return self.editor.BestSplit(IDOfQuad, GetFunctor(theCriterion))
## Smooth elements
# @param IDsOfElements list if ids of elements to smooth
# @param IDsOfFixedNodes list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Smooth elements belong to given object
# @param theObject object to smooth
# @param IDsOfFixedNodes list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
def SmoothObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxxAspectRatio, Method):
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxxAspectRatio, Method)
## Parametric smooth the given elements
# @param IDsOfElements list if ids of elements to smooth
# @param IDsOfFixedNodes list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
def SmoothParametric(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Parametric smooth elements belong to given object
# @param theObject object to smooth
# @param IDsOfFixedNodes list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Converts all mesh to quadratic one, deletes old elements, replacing
# them with quadratic ones with the same id.
def ConvertToQuadratic(self, theForce3d):
self.editor.ConvertToQuadratic(theForce3d)
## Converts all mesh from quadratic to ordinary ones,
# deletes old quadratic elements, \n replacing
# them with ordinary mesh elements with the same id.
def ConvertFromQuadratic(self):
return self.editor.ConvertFromQuadratic()
## Renumber mesh nodes
def RenumberNodes(self):
self.editor.RenumberNodes()
## Renumber mesh elements
def RenumberElements(self):
self.editor.RenumberElements()
## Generate new elements by rotation of the elements around the axis
# @param IDsOfElements list of ids of elements to sweep
# @param Axix axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)):
Axix = GetAxisStruct(Axix)
self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance)
## Generate new elements by rotation of the elements of object around the axis
# @param theObject object wich elements should be sweeped
# @param Axix axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance):
if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)):
Axix = GetAxisStruct(Axix)
self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance)
## Generate new elements by extrusion of the elements with given ids
# @param IDsOfElements list of elements ids for extrusion
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
StepVector = GetDirStruct(StepVector)
self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
## Generate new elements by extrusion of the elements with given ids
# @param IDsOfElements is ids of elements
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param ExtrFlags set flags for performing extrusion
# @param SewTolerance uses for comparing locations of nodes if flag
# EXTRUSION_FLAG_SEW is set
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance):
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
StepVector = GetDirStruct(StepVector)
self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance)
## Generate new elements by extrusion of the elements belong to object
# @param theObject object wich elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps):
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
StepVector = GetDirStruct(StepVector)
self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
## Generate new elements by extrusion of the elements belong to object
# @param theObject object wich elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps):
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
StepVector = GetDirStruct(StepVector)
self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
## Generate new elements by extrusion of the elements belong to object
# @param theObject object wich elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps):
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
StepVector = GetDirStruct(StepVector)
self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
## Generate new elements by extrusion of the given elements
# A path of extrusion must be a meshed edge.
# @param IDsOfElements is ids of elements
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
# @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
# @param Angles list of angles
# @param HasRefPoint allows to use base point
# @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
# User can specify any point as the Base Point and the shape will be rotated with respect to this point.
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)):
RefPoint = GetPointStruct(RefPoint)
return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh.GetMesh(), PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint)
## Generate new elements by extrusion of the elements belong to object
# A path of extrusion must be a meshed edge.
# @param IDsOfElements is ids of elements
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
# @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
# @param Angles list of angles
# @param HasRefPoint allows to use base point
# @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
# User can specify any point as the Base Point and the shape will be rotated with respect to this point.
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint):
if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)):
RefPoint = GetPointStruct(RefPoint)
return self.editor.ExtrusionAlongPathObject(theObject, PathMesh.GetMesh(), PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint)
## Symmetrical copy of mesh elements
# @param IDsOfElements list of elements ids
# @param Mirror is AxisStruct or geom object(point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
# If the Mirror is geom object this parameter is unnecessary
# @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)):
Mirror = GetAxisStruct(Mirror)
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
## Symmetrical copy of object
# @param theObject mesh, submesh or group
# @param Mirror is AxisStruct or geom object(point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
# If the Mirror is geom object this parameter is unnecessary
# @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0):
if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)):
Mirror = GetAxisStruct(Mirror)
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
## Translates the elements
# @param IDsOfElements list of elements ids
# @param Vector direction of translation(DirStruct or vector)
# @param Copy allows to copy the translated elements
def Translate(self, IDsOfElements, Vector, Copy):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)):
Vector = GetDirStruct(Vector)
self.editor.Translate(IDsOfElements, Vector, Copy)
## Translates the object
# @param theObject object to translate(mesh, submesh, or group)
# @param Vector direction of translation(DirStruct or geom vector)
# @param Copy allows to copy the translated elements
def TranslateObject(self, theObject, Vector, Copy):
if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)):
Vector = GetDirStruct(Vector)
self.editor.TranslateObject(theObject, Vector, Copy)
## Rotates the elements
# @param IDsOfElements list of elements ids
# @param Axis axis of rotation(AxisStruct or geom line)
# @param AngleInRadians angle of rotation(in radians)
# @param Copy allows to copy the rotated elements
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geompy.GEOM._objref_GEOM_Object)):
Axis = GetAxisStruct(Axis)
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
## Rotates the object
# @param theObject object to rotate(mesh, submesh, or group)
# @param Axis axis of rotation(AxisStruct or geom line)
# @param AngleInRadians angle of rotation(in radians)
# @param Copy allows to copy the rotated elements
def RotateObject (self, theObject, Axis, AngleInRadians, Copy):
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
## Find group of nodes close to each other within Tolerance.
# @param Tolerance tolerance value
# @param list of group of nodes
def FindCoincidentNodes (self, Tolerance):
return self.editor.FindCoincidentNodes(Tolerance)
## Merge nodes
# @param list of group of nodes
def MergeNodes (self, GroupsOfNodes):
self.editor.MergeNodes(GroupsOfNodes)
## Remove all but one of elements built on the same nodes.
def MergeEqualElements(self):
self.editor.MergeEqualElements()
## Sew free borders
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs):
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs)
## Sew conform free borders
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2):
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2)
## Sew border to side
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
## Sew two sides of a mesh. Nodes belonging to Side1 are
# merged with nodes of elements of Side2.
# Number of elements in theSide1 and in theSide2 must be
# equal and they should have similar node connectivity.
# The nodes to merge should belong to sides borders and
# the first node should be linked to the second.
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
## Set new nodes for given element.
# @param ide the element id
# @param newIDs nodes ids
# @return If number of nodes is not corresponded to type of element - returns false
def ChangeElemNodes(self, ide, newIDs):
return self.editor.ChangeElemNodes(ide, newIDs)
## If during last operation of MeshEditor some nodes were
# created this method returns list of it's IDs, \n
# if new nodes not created - returns empty list
def GetLastCreatedNodes(self):
return self.editor.GetLastCreatedNodes()
## If during last operation of MeshEditor some elements were
# created this method returns list of it's IDs, \n
# if new elements not creared - returns empty list
def GetLastCreatedElems(self):
return self.editor.GetLastCreatedElems()