mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-03-14 15:41:33 +05:00
2332 lines
91 KiB
Python
2332 lines
91 KiB
Python
# Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
|
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
|
#
|
|
# This library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License.
|
|
#
|
|
# This library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with this library; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
#
|
|
# File : smesh.py
|
|
# Author : Francis KLOSS, OCC
|
|
# Module : SMESH
|
|
|
|
"""
|
|
\namespace smesh
|
|
\brief Module smesh
|
|
"""
|
|
|
|
import salome
|
|
import geompy
|
|
|
|
import SMESH
|
|
from SMESH import *
|
|
|
|
import StdMeshers
|
|
|
|
# import NETGENPlugin module if possible
|
|
noNETGENPlugin = 0
|
|
try:
|
|
import NETGENPlugin
|
|
except ImportError:
|
|
noNETGENPlugin = 1
|
|
pass
|
|
|
|
# Types of algo
|
|
REGULAR = 1
|
|
PYTHON = 2
|
|
|
|
MEFISTO = 3
|
|
NETGEN = 4
|
|
GHS3D = 5
|
|
FULL_NETGEN = 6
|
|
Hexa = 7
|
|
Hexotic = 8
|
|
BLSURF = 9
|
|
|
|
# MirrorType enumeration
|
|
POINT = SMESH_MeshEditor.POINT
|
|
AXIS = SMESH_MeshEditor.AXIS
|
|
PLANE = SMESH_MeshEditor.PLANE
|
|
|
|
# Smooth_Method enumeration
|
|
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
|
|
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
|
|
|
|
# Fineness enumeration(for NETGEN)
|
|
VeryCoarse = 0
|
|
Coarse = 1
|
|
Moderate = 2
|
|
Fine = 3
|
|
VeryFine = 4
|
|
Custom = 5
|
|
|
|
|
|
NO_NAME = "NoName"
|
|
|
|
|
|
smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH")
|
|
smesh.SetCurrentStudy(salome.myStudy)
|
|
|
|
# Global functions
|
|
|
|
## Gets object name
|
|
def GetName(obj):
|
|
ior = salome.orb.object_to_string(obj)
|
|
sobj = salome.myStudy.FindObjectIOR(ior)
|
|
if sobj is None:
|
|
return NO_NAME
|
|
else:
|
|
attr = sobj.FindAttribute("AttributeName")[1]
|
|
return attr.Value()
|
|
|
|
## Sets name to object
|
|
def SetName(obj, name):
|
|
ior = salome.orb.object_to_string(obj)
|
|
sobj = salome.myStudy.FindObjectIOR(ior)
|
|
if not sobj is None:
|
|
attr = sobj.FindAttribute("AttributeName")[1]
|
|
attr.SetValue(name)
|
|
|
|
## Returns long value from enumeration
|
|
# Uses for SMESH.FunctorType enumeration
|
|
def EnumToLong(theItem):
|
|
return theItem._v
|
|
|
|
## Get PointStruct from vertex
|
|
# @param theVertex is GEOM object(vertex)
|
|
# @return SMESH.PointStruct
|
|
def GetPointStruct(theVertex):
|
|
[x, y, z] = geompy.PointCoordinates(theVertex)
|
|
return PointStruct(x,y,z)
|
|
|
|
## Get DirStruct from vector
|
|
# @param theVector is GEOM object(vector)
|
|
# @return SMESH.DirStruct
|
|
def GetDirStruct(theVector):
|
|
vertices = geompy.SubShapeAll( theVector, geompy.ShapeType["VERTEX"] )
|
|
if(len(vertices) != 2):
|
|
print "Error: vector object is incorrect."
|
|
return None
|
|
p1 = geompy.PointCoordinates(vertices[0])
|
|
p2 = geompy.PointCoordinates(vertices[1])
|
|
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
dir = DirStruct(pnt)
|
|
return dir
|
|
|
|
## Get AxisStruct from object
|
|
# @param theObj is GEOM object(line or plane)
|
|
# @return SMESH.AxisStruct
|
|
def GetAxisStruct(theObj):
|
|
edges = geompy.SubShapeAll( theObj, geompy.ShapeType["EDGE"] )
|
|
if len(edges) > 1:
|
|
vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] )
|
|
vertex3, vertex4 = geompy.SubShapeAll( edges[1], geompy.ShapeType["VERTEX"] )
|
|
vertex1 = geompy.PointCoordinates(vertex1)
|
|
vertex2 = geompy.PointCoordinates(vertex2)
|
|
vertex3 = geompy.PointCoordinates(vertex3)
|
|
vertex4 = geompy.PointCoordinates(vertex4)
|
|
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
|
|
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
|
|
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
|
|
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
|
|
return axis
|
|
elif len(edges) == 1:
|
|
vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] )
|
|
p1 = geompy.PointCoordinates( vertex1 )
|
|
p2 = geompy.PointCoordinates( vertex2 )
|
|
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
return axis
|
|
return None
|
|
|
|
# From SMESH_Gen interface:
|
|
# ------------------------
|
|
|
|
## Set the current mode
|
|
def SetEmbeddedMode( theMode ):
|
|
smesh.SetEmbeddedMode(theMode)
|
|
|
|
## Get the current mode
|
|
def IsEmbeddedMode():
|
|
return smesh.IsEmbeddedMode()
|
|
|
|
## Set the current study
|
|
def SetCurrentStudy( theStudy ):
|
|
smesh.SetCurrentStudy(theStudy)
|
|
|
|
## Get the current study
|
|
def GetCurrentStudy():
|
|
return smesh.GetCurrentStudy()
|
|
|
|
## Create Mesh object importing data from given UNV file
|
|
# @return an instance of Mesh class
|
|
def CreateMeshesFromUNV( theFileName ):
|
|
aSmeshMesh = smesh.CreateMeshesFromUNV(theFileName)
|
|
aMesh = Mesh(aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Create Mesh object(s) importing data from given MED file
|
|
# @return a list of Mesh class instances
|
|
def CreateMeshesFromMED( theFileName ):
|
|
aSmeshMeshes, aStatus = smesh.CreateMeshesFromMED(theFileName)
|
|
aMeshes = []
|
|
for iMesh in range(len(aSmeshMeshes)) :
|
|
aMesh = Mesh(aSmeshMeshes[iMesh])
|
|
aMeshes.append(aMesh)
|
|
return aMeshes, aStatus
|
|
|
|
## Create Mesh object importing data from given STL file
|
|
# @return an instance of Mesh class
|
|
def CreateMeshesFromSTL( theFileName ):
|
|
aSmeshMesh = smesh.CreateMeshesFromSTL(theFileName)
|
|
aMesh = Mesh(aSmeshMesh)
|
|
return aMesh
|
|
|
|
## From SMESH_Gen interface
|
|
def GetSubShapesId( theMainObject, theListOfSubObjects ):
|
|
return smesh.GetSubShapesId(theMainObject, theListOfSubObjects)
|
|
|
|
## From SMESH_Gen interface. Creates pattern
|
|
def GetPattern():
|
|
return smesh.GetPattern()
|
|
|
|
|
|
|
|
# Filtering. Auxiliary functions:
|
|
# ------------------------------
|
|
|
|
## Creates an empty criterion
|
|
# @return SMESH.Filter.Criterion
|
|
def GetEmptyCriterion():
|
|
Type = EnumToLong(FT_Undefined)
|
|
Compare = EnumToLong(FT_Undefined)
|
|
Threshold = 0
|
|
ThresholdStr = ""
|
|
ThresholdID = ""
|
|
UnaryOp = EnumToLong(FT_Undefined)
|
|
BinaryOp = EnumToLong(FT_Undefined)
|
|
Tolerance = 1e-07
|
|
TypeOfElement = ALL
|
|
Precision = -1 ##@1e-07
|
|
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
|
|
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
|
|
|
|
## Creates a criterion by given parameters
|
|
# @param elementType is the type of elements(NODE, EDGE, FACE, VOLUME)
|
|
# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
|
|
# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Treshold is threshold value (range of ids as string, shape, numeric)
|
|
# @param UnaryOp is FT_LogicalNOT or FT_Undefined
|
|
# @param BinaryOp is binary logical operation FT_LogicalAND, FT_LogicalOR or
|
|
# FT_Undefined(must be for the last criterion in criteria)
|
|
# @return SMESH.Filter.Criterion
|
|
def GetCriterion(elementType,
|
|
CritType,
|
|
Compare = FT_EqualTo,
|
|
Treshold="",
|
|
UnaryOp=FT_Undefined,
|
|
BinaryOp=FT_Undefined):
|
|
aCriterion = GetEmptyCriterion()
|
|
aCriterion.TypeOfElement = elementType
|
|
aCriterion.Type = EnumToLong(CritType)
|
|
|
|
aTreshold = Treshold
|
|
|
|
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
|
|
aCriterion.Compare = EnumToLong(Compare)
|
|
else:
|
|
aCriterion.Compare = EnumToLong(FT_EqualTo)
|
|
aTreshold = Compare
|
|
|
|
if CritType in [FT_BelongToGeom, FT_BelongToPlane,
|
|
FT_BelongToCylinder, FT_LyingOnGeom]:
|
|
# Check treshold
|
|
if isinstance(aTreshold, geompy.GEOM._objref_GEOM_Object):
|
|
aCriterion.ThresholdStr = GetName(aTreshold)
|
|
aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
|
|
else:
|
|
print "Error: Treshold should be a shape."
|
|
return None
|
|
elif CritType == FT_RangeOfIds:
|
|
# Check treshold
|
|
if isinstance(aTreshold, str):
|
|
aCriterion.ThresholdStr = aTreshold
|
|
else:
|
|
print "Error: Treshold should be a string."
|
|
return None
|
|
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume]:
|
|
# Here we don't need treshold
|
|
if aTreshold == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT)
|
|
elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = aTreshold
|
|
else:
|
|
# Check treshold
|
|
try:
|
|
aTreshold = float(aTreshold)
|
|
aCriterion.Threshold = aTreshold
|
|
except:
|
|
print "Error: Treshold should be a number."
|
|
return None
|
|
|
|
if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT)
|
|
|
|
if Treshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = EnumToLong(Treshold)
|
|
|
|
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = EnumToLong(UnaryOp)
|
|
|
|
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = EnumToLong(BinaryOp)
|
|
|
|
return aCriterion
|
|
|
|
## Creates filter by given parameters of criterion
|
|
# @param elementType is the type of elements in the group
|
|
# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
|
|
# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Treshold is threshold value (range of id ids as string, shape, numeric)
|
|
# @param UnaryOp is FT_LogicalNOT or FT_Undefined
|
|
# @return SMESH_Filter
|
|
def GetFilter(elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Treshold="",
|
|
UnaryOp=FT_Undefined):
|
|
aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
|
|
aFilterMgr = smesh.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aCriteria = []
|
|
aCriteria.append(aCriterion)
|
|
aFilter.SetCriteria(aCriteria)
|
|
return aFilter
|
|
|
|
## Creates numerical functor by its type
|
|
# @param theCrierion is FT_...; functor type
|
|
# @return SMESH_NumericalFunctor
|
|
def GetFunctor(theCriterion):
|
|
aFilterMgr = smesh.CreateFilterManager()
|
|
if theCriterion == FT_AspectRatio:
|
|
return aFilterMgr.CreateAspectRatio()
|
|
elif theCriterion == FT_AspectRatio3D:
|
|
return aFilterMgr.CreateAspectRatio3D()
|
|
elif theCriterion == FT_Warping:
|
|
return aFilterMgr.CreateWarping()
|
|
elif theCriterion == FT_MinimumAngle:
|
|
return aFilterMgr.CreateMinimumAngle()
|
|
elif theCriterion == FT_Taper:
|
|
return aFilterMgr.CreateTaper()
|
|
elif theCriterion == FT_Skew:
|
|
return aFilterMgr.CreateSkew()
|
|
elif theCriterion == FT_Area:
|
|
return aFilterMgr.CreateArea()
|
|
elif theCriterion == FT_Volume3D:
|
|
return aFilterMgr.CreateVolume3D()
|
|
elif theCriterion == FT_MultiConnection:
|
|
return aFilterMgr.CreateMultiConnection()
|
|
elif theCriterion == FT_MultiConnection2D:
|
|
return aFilterMgr.CreateMultiConnection2D()
|
|
elif theCriterion == FT_Length:
|
|
return aFilterMgr.CreateLength()
|
|
elif theCriterion == FT_Length2D:
|
|
return aFilterMgr.CreateLength2D()
|
|
else:
|
|
print "Error: given parameter is not numerucal functor type."
|
|
|
|
|
|
|
|
|
|
## Mother class to define algorithm, recommended to don't use directly.
|
|
#
|
|
# More details.
|
|
class Mesh_Algorithm:
|
|
# @class Mesh_Algorithm
|
|
# @brief Class Mesh_Algorithm
|
|
|
|
mesh = 0
|
|
geom = 0
|
|
subm = 0
|
|
algo = 0
|
|
|
|
## If the algorithm is global, return 0; \n
|
|
# else return the submesh associated to this algorithm.
|
|
def GetSubMesh(self):
|
|
return self.subm
|
|
|
|
## Return the wrapped mesher.
|
|
def GetAlgorithm(self):
|
|
return self.algo
|
|
|
|
## Get list of hypothesis that can be used with this algorithm
|
|
def GetCompatibleHypothesis(self):
|
|
list = []
|
|
if self.algo:
|
|
list = self.algo.GetCompatibleHypothesis()
|
|
return list
|
|
|
|
## Get name of algo
|
|
def GetName(self):
|
|
GetName(self.algo)
|
|
|
|
## Set name to algo
|
|
def SetName(self, name):
|
|
SetName(self.algo, name)
|
|
|
|
## Get id of algo
|
|
def GetId(self):
|
|
return self.algo.GetId()
|
|
|
|
## Private method. Print error message if a hypothesis was not assigned.
|
|
def TreatHypoStatus(self, status, hypName, geomName, isAlgo):
|
|
if isAlgo:
|
|
hypType = "algorithm"
|
|
else:
|
|
hypType = "hypothesis"
|
|
if status == HYP_UNKNOWN_FATAL :
|
|
reason = "for unknown reason"
|
|
elif status == HYP_INCOMPATIBLE :
|
|
reason = "this hypothesis mismatches algorithm"
|
|
elif status == HYP_NOTCONFORM :
|
|
reason = "not conform mesh would be built"
|
|
elif status == HYP_ALREADY_EXIST :
|
|
reason = hypType + " of the same dimension already assigned to this shape"
|
|
elif status == HYP_BAD_DIM :
|
|
reason = hypType + " mismatches shape"
|
|
elif status == HYP_CONCURENT :
|
|
reason = "there are concurrent hypotheses on sub-shapes"
|
|
elif status == HYP_BAD_SUBSHAPE :
|
|
reason = "shape is neither the main one, nor its subshape, nor a valid group"
|
|
elif status == HYP_BAD_GEOMETRY:
|
|
reason = "geometry mismatches algorithm's expectation"
|
|
else:
|
|
return
|
|
hypName = '"' + hypName + '"'
|
|
geomName= '"' + geomName+ '"'
|
|
if status < HYP_UNKNOWN_FATAL:
|
|
print hypName, "was assigned to", geomName,"but", reason
|
|
else:
|
|
print hypName, "was not assigned to",geomName,":", reason
|
|
pass
|
|
|
|
## Private method.
|
|
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
|
|
if geom is None:
|
|
raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
|
|
self.mesh = mesh
|
|
piece = mesh.geom
|
|
if geom==0:
|
|
self.geom = piece
|
|
name = GetName(piece)
|
|
else:
|
|
self.geom = geom
|
|
name = GetName(geom)
|
|
if name==NO_NAME:
|
|
name = geompy.SubShapeName(geom, piece)
|
|
geompy.addToStudyInFather(piece, geom, name)
|
|
self.subm = mesh.mesh.GetSubMesh(geom, hypo)
|
|
|
|
self.algo = smesh.CreateHypothesis(hypo, so)
|
|
SetName(self.algo, name + "/" + hypo)
|
|
status = mesh.mesh.AddHypothesis(self.geom, self.algo)
|
|
self.TreatHypoStatus( status, hypo, name, 1 )
|
|
|
|
## Private method
|
|
def Hypothesis(self, hyp, args=[], so="libStdMeshersEngine.so"):
|
|
hypo = smesh.CreateHypothesis(hyp, so)
|
|
a = ""
|
|
s = "="
|
|
i = 0
|
|
n = len(args)
|
|
while i<n:
|
|
a = a + s + str(args[i])
|
|
s = ","
|
|
i = i + 1
|
|
name = GetName(self.geom)
|
|
SetName(hypo, name + "/" + hyp + a)
|
|
status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
|
|
self.TreatHypoStatus( status, hyp, name, 0 )
|
|
return hypo
|
|
|
|
|
|
# Public class: Mesh_Segment
|
|
# --------------------------
|
|
|
|
## Class to define a segment 1D algorithm for discretization
|
|
#
|
|
# More details.
|
|
class Mesh_Segment(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "Regular_1D")
|
|
|
|
## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
|
|
# @param l for the length of segments that cut an edge
|
|
def LocalLength(self, l):
|
|
hyp = self.Hypothesis("LocalLength", [l])
|
|
hyp.SetLength(l)
|
|
return hyp
|
|
|
|
## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
|
|
# @param n for the number of segments that cut an edge
|
|
# @param s for the scale factor (optional)
|
|
def NumberOfSegments(self, n, s=[]):
|
|
if s == []:
|
|
hyp = self.Hypothesis("NumberOfSegments", [n])
|
|
else:
|
|
hyp = self.Hypothesis("NumberOfSegments", [n,s])
|
|
hyp.SetDistrType( 1 )
|
|
hyp.SetScaleFactor(s)
|
|
hyp.SetNumberOfSegments(n)
|
|
return hyp
|
|
|
|
## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
|
|
# @param start for the length of the first segment
|
|
# @param end for the length of the last segment
|
|
def Arithmetic1D(self, start, end):
|
|
hyp = self.Hypothesis("Arithmetic1D", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
|
|
# @param start for the length of the first segment
|
|
# @param end for the length of the last segment
|
|
def StartEndLength(self, start, end):
|
|
hyp = self.Hypothesis("StartEndLength", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Define "Deflection1D" hypothesis
|
|
# @param d for the deflection
|
|
def Deflection1D(self, d):
|
|
hyp = self.Hypothesis("Deflection1D", [d])
|
|
hyp.SetDeflection(d)
|
|
return hyp
|
|
|
|
## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
|
|
# the opposite side in the case of quadrangular faces
|
|
def Propagation(self):
|
|
return self.Hypothesis("Propagation")
|
|
|
|
## Define "AutomaticLength" hypothesis
|
|
# @param fineness for the fineness [0-1]
|
|
def AutomaticLength(self, fineness=0):
|
|
hyp = self.Hypothesis("AutomaticLength")
|
|
hyp.SetFineness( fineness )
|
|
return hyp
|
|
|
|
## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
|
|
# If the 2D mesher sees that all boundary edges are quadratic ones,
|
|
# it generates quadratic faces, else it generates linear faces using
|
|
# medium nodes as if they were vertex ones.
|
|
# The 3D mesher generates quadratic volumes only if all boundary faces
|
|
# are quadratic ones, else it fails.
|
|
def QuadraticMesh(self):
|
|
hyp = self.Hypothesis("QuadraticMesh")
|
|
return hyp
|
|
|
|
# Public class: Mesh_Segment_Python
|
|
# ---------------------------------
|
|
|
|
## Class to define a segment 1D algorithm for discretization with python function
|
|
#
|
|
# More details.
|
|
class Mesh_Segment_Python(Mesh_Segment):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
import Python1dPlugin
|
|
self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
|
|
|
|
## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
|
|
# @param n for the number of segments that cut an edge
|
|
# @param func for the python function that calculate the length of all segments
|
|
def PythonSplit1D(self, n, func):
|
|
hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so")
|
|
hyp.SetNumberOfSegments(n)
|
|
hyp.SetPythonLog10RatioFunction(func)
|
|
return hyp
|
|
|
|
# Public class: Mesh_Triangle
|
|
# ---------------------------
|
|
|
|
## Class to define a triangle 2D algorithm
|
|
#
|
|
# More details.
|
|
class Mesh_Triangle(Mesh_Algorithm):
|
|
|
|
algoType = 0
|
|
params = 0
|
|
_angleMeshS = 8
|
|
_gradation = 1.1
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, algoType, geom=0):
|
|
if algoType == MEFISTO:
|
|
self.Create(mesh, geom, "MEFISTO_2D")
|
|
elif algoType == BLSURF:
|
|
import BLSURFPlugin
|
|
self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
|
|
elif algoType == NETGEN:
|
|
if noNETGENPlugin:
|
|
print "Warning: NETGENPlugin module has not been imported."
|
|
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
|
|
self.algoType = algoType
|
|
|
|
## Define "MaxElementArea" hypothesis to give the maximun area of each triangles
|
|
# @param area for the maximum area of each triangles
|
|
def MaxElementArea(self, area):
|
|
if self.algoType == MEFISTO:
|
|
hyp = self.Hypothesis("MaxElementArea", [area])
|
|
hyp.SetMaxElementArea(area)
|
|
return hyp
|
|
elif self.algoType == NETGEN:
|
|
print "Netgen 1D-2D algo doesn't support this hypothesis"
|
|
return None
|
|
|
|
## Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire
|
|
def LengthFromEdges(self):
|
|
if self.algoType == MEFISTO:
|
|
hyp = self.Hypothesis("LengthFromEdges")
|
|
return hyp
|
|
elif self.algoType == NETGEN:
|
|
print "Netgen 1D-2D algo doesn't support this hypothesis"
|
|
return None
|
|
|
|
## Define "Netgen 2D Parameters" hypothesis
|
|
def Parameters(self):
|
|
if self.algoType == NETGEN:
|
|
self.params = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
|
|
return self.params
|
|
elif self.algoType == MEFISTO:
|
|
print "Mefisto algo doesn't support this hypothesis"
|
|
return None
|
|
elif self.algoType == BLSURF:
|
|
self.params = self.Hypothesis("BLSURF_Parameters", [], "libBLSURFEngine.so")
|
|
return self.params
|
|
|
|
## Set MaxSize
|
|
def SetMaxSize(self, theSize):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetMaxSize(theSize)
|
|
|
|
## Set SecondOrder flag
|
|
def SetSecondOrder(seld, theVal):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetSecondOrder(theVal)
|
|
|
|
## Set Optimize flag
|
|
def SetOptimize(self, theVal):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetOptimize(theVal)
|
|
|
|
## Set Fineness
|
|
# @param theFineness is:
|
|
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
|
|
def SetFineness(self, theFineness):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetFineness(theFineness)
|
|
|
|
## Set GrowthRate
|
|
def SetGrowthRate(self, theRate):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetGrowthRate(theRate)
|
|
|
|
## Set NbSegPerEdge
|
|
def SetNbSegPerEdge(self, theVal):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetNbSegPerEdge(theVal)
|
|
|
|
## Set NbSegPerRadius
|
|
def SetNbSegPerRadius(self, theVal):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetNbSegPerRadius(theVal)
|
|
|
|
## Set PhysicalMesh
|
|
# @param thePhysicalMesh is:
|
|
# DefaultSize or Custom
|
|
def SetPhysicalMesh(self, thePhysicalMesh=1):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetPhysicalMesh(thePhysicalMesh)
|
|
|
|
## Set PhySize flag
|
|
def SetPhySize(self, theVal):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetPhySize(theVal)
|
|
|
|
## Set GeometricMesh
|
|
# @param theGeometricMesh is:
|
|
# DefaultGeom or Custom
|
|
def SetGeometricMesh(self, theGeometricMesh=0):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1
|
|
self.params.SetGeometricMesh(theGeometricMesh)
|
|
|
|
## Set AngleMeshS flag
|
|
def SetAngleMeshS(self, theVal=_angleMeshS):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
|
|
self.params.SetAngleMeshS(theVal)
|
|
|
|
## Set Gradation flag
|
|
def SetGradation(self, theVal=_gradation):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
if self.params.GetGeometricMesh() == 0: theVal = self._gradation
|
|
self.params.SetGradation(theVal)
|
|
|
|
## Set QuadAllowed flag
|
|
def SetQuadAllowed(self, toAllow=False):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetQuadAllowed(toAllow)
|
|
|
|
## Set Decimesh flag
|
|
def SetDecimesh(self, toAllow=False):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetDecimesh(toAllow)
|
|
|
|
# Public class: Mesh_Quadrangle
|
|
# -----------------------------
|
|
|
|
## Class to define a quadrangle 2D algorithm
|
|
#
|
|
# More details.
|
|
class Mesh_Quadrangle(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "Quadrangle_2D")
|
|
|
|
## Define "QuadranglePreference" hypothesis, forcing construction
|
|
# of quadrangles if the number of nodes on opposite edges is not the same
|
|
# in the case where the global number of nodes on edges is even
|
|
def QuadranglePreference(self):
|
|
hyp = self.Hypothesis("QuadranglePreference")
|
|
return hyp
|
|
|
|
# Public class: Mesh_Tetrahedron
|
|
# ------------------------------
|
|
|
|
## Class to define a tetrahedron 3D algorithm
|
|
#
|
|
# More details.
|
|
class Mesh_Tetrahedron(Mesh_Algorithm):
|
|
|
|
params = 0
|
|
algoType = 0
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, algoType, geom=0):
|
|
if algoType == NETGEN:
|
|
self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
|
|
elif algoType == GHS3D:
|
|
import GHS3DPlugin
|
|
self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
|
|
elif algoType == FULL_NETGEN:
|
|
if noNETGENPlugin:
|
|
print "Warning: NETGENPlugin module has not been imported."
|
|
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
|
|
self.algoType = algoType
|
|
|
|
## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
|
|
# @param vol for the maximum volume of each tetrahedral
|
|
def MaxElementVolume(self, vol):
|
|
hyp = self.Hypothesis("MaxElementVolume", [vol])
|
|
hyp.SetMaxElementVolume(vol)
|
|
return hyp
|
|
|
|
## Define "Netgen 3D Parameters" hypothesis
|
|
def Parameters(self):
|
|
if (self.algoType == FULL_NETGEN):
|
|
self.params = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
|
|
return self.params
|
|
else:
|
|
print "Algo doesn't support this hypothesis"
|
|
return None
|
|
|
|
## Set MaxSize
|
|
def SetMaxSize(self, theSize):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetMaxSize(theSize)
|
|
|
|
## Set SecondOrder flag
|
|
def SetSecondOrder(self, theVal):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetSecondOrder(theVal)
|
|
|
|
## Set Optimize flag
|
|
def SetOptimize(self, theVal):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetOptimize(theVal)
|
|
|
|
## Set Fineness
|
|
# @param theFineness is:
|
|
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
|
|
def SetFineness(self, theFineness):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetFineness(theFineness)
|
|
|
|
## Set GrowthRate
|
|
def SetGrowthRate(self, theRate):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetGrowthRate(theRate)
|
|
|
|
## Set NbSegPerEdge
|
|
def SetNbSegPerEdge(self, theVal):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetNbSegPerEdge(theVal)
|
|
|
|
## Set NbSegPerRadius
|
|
def SetNbSegPerRadius(self, theVal):
|
|
if self.params == 0:
|
|
self.Parameters()
|
|
self.params.SetNbSegPerRadius(theVal)
|
|
|
|
# Public class: Mesh_Hexahedron
|
|
# ------------------------------
|
|
|
|
## Class to define a hexahedron 3D algorithm
|
|
#
|
|
# More details.
|
|
class Mesh_Hexahedron(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
## def __init__(self, mesh, geom=0):
|
|
## self.Create(mesh, geom, "Hexa_3D")
|
|
def __init__(self, mesh, algo, geom):
|
|
if algo == Hexa:
|
|
self.Create(mesh, geom, "Hexa_3D")
|
|
elif algo == Hexotic:
|
|
import HexoticPlugin
|
|
self.Create(mesh, geom, "Hexotic_3D" , "libHexoticEngine.so")
|
|
|
|
## Define "MinMaxQuad" hypothesis to give the three hexotic parameters
|
|
def MinMaxQuad(self, min=3, max=8, quad=True):
|
|
hyp = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so")
|
|
hyp.SetHexesMinLevel(min)
|
|
hyp.SetHexesMaxLevel(max)
|
|
hyp.SetHexoticQuadrangles(quad)
|
|
return hyp
|
|
|
|
# Deprecated, only for compatibility!
|
|
# Public class: Mesh_Netgen
|
|
# ------------------------------
|
|
|
|
## Class to define a NETGEN-based 2D or 3D algorithm
|
|
# that need no discrete boundary (i.e. independent)
|
|
#
|
|
# This class is deprecated, only for compatibility!
|
|
#
|
|
# More details.
|
|
class Mesh_Netgen(Mesh_Algorithm):
|
|
|
|
is3D = 0
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, is3D, geom=0):
|
|
if noNETGENPlugin:
|
|
print "Warning: NETGENPlugin module has not been imported."
|
|
|
|
self.is3D = is3D
|
|
if is3D:
|
|
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
|
|
else:
|
|
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
|
|
|
|
## Define hypothesis containing parameters of the algorithm
|
|
def Parameters(self):
|
|
if self.is3D:
|
|
hyp = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
|
|
else:
|
|
hyp = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
|
|
return hyp
|
|
|
|
# Public class: Mesh_Projection1D
|
|
# ------------------------------
|
|
|
|
## Class to define a projection 1D algorithm
|
|
#
|
|
# More details.
|
|
class Mesh_Projection1D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "Projection_1D")
|
|
|
|
## Define "Source Edge" hypothesis, specifying a meshed edge to
|
|
# take a mesh pattern from, and optionally association of vertices
|
|
# between the source edge and a target one (where a hipothesis is assigned to)
|
|
# @param edge to take nodes distribution from
|
|
# @param mesh to take nodes distribution from (optional)
|
|
# @param srcV is vertex of \a edge to associate with \a tgtV (optional)
|
|
# @param tgtV is vertex of \a the edge where the algorithm is assigned,
|
|
# to associate with \a srcV (optional)
|
|
def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None):
|
|
hyp = self.Hypothesis("ProjectionSource1D")
|
|
hyp.SetSourceEdge( edge )
|
|
if not mesh is None and isinstance(mesh, Mesh):
|
|
mesh = mesh.GetMesh()
|
|
hyp.SetSourceMesh( mesh )
|
|
hyp.SetVertexAssociation( srcV, tgtV )
|
|
return hyp
|
|
|
|
|
|
# Public class: Mesh_Projection2D
|
|
# ------------------------------
|
|
|
|
## Class to define a projection 2D algorithm
|
|
#
|
|
# More details.
|
|
class Mesh_Projection2D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "Projection_2D")
|
|
|
|
## Define "Source Face" hypothesis, specifying a meshed face to
|
|
# take a mesh pattern from, and optionally association of vertices
|
|
# between the source face and a target one (where a hipothesis is assigned to)
|
|
# @param face to take mesh pattern from
|
|
# @param mesh to take mesh pattern from (optional)
|
|
# @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional)
|
|
# @param tgtV1 is vertex of \a the face where the algorithm is assigned,
|
|
# to associate with \a srcV1 (optional)
|
|
# @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional)
|
|
# @param tgtV2 is vertex of \a the face where the algorithm is assigned,
|
|
# to associate with \a srcV2 (optional)
|
|
#
|
|
# Note: association vertices must belong to one edge of a face
|
|
def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None, srcV2=None, tgtV2=None):
|
|
hyp = self.Hypothesis("ProjectionSource2D")
|
|
hyp.SetSourceFace( face )
|
|
if not mesh is None and isinstance(mesh, Mesh):
|
|
mesh = mesh.GetMesh()
|
|
hyp.SetSourceMesh( mesh )
|
|
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
|
|
return hyp
|
|
|
|
# Public class: Mesh_Projection3D
|
|
# ------------------------------
|
|
|
|
## Class to define a projection 3D algorithm
|
|
#
|
|
# More details.
|
|
class Mesh_Projection3D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "Projection_3D")
|
|
|
|
## Define "Source Shape 3D" hypothesis, specifying a meshed solid to
|
|
# take a mesh pattern from, and optionally association of vertices
|
|
# between the source solid and a target one (where a hipothesis is assigned to)
|
|
# @param solid to take mesh pattern from
|
|
# @param mesh to take mesh pattern from (optional)
|
|
# @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional)
|
|
# @param tgtV1 is vertex of \a the solid where the algorithm is assigned,
|
|
# to associate with \a srcV1 (optional)
|
|
# @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional)
|
|
# @param tgtV2 is vertex of \a the solid where the algorithm is assigned,
|
|
# to associate with \a srcV2 (optional)
|
|
#
|
|
# Note: association vertices must belong to one edge of a solid
|
|
def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0, srcV2=0, tgtV2=0):
|
|
hyp = self.Hypothesis("ProjectionSource3D")
|
|
hyp.SetSource3DShape( solid )
|
|
if not mesh is None and isinstance(mesh, Mesh):
|
|
mesh = mesh.GetMesh()
|
|
hyp.SetSourceMesh( mesh )
|
|
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
|
|
return hyp
|
|
|
|
|
|
# Public class: Mesh_Prism
|
|
# ------------------------
|
|
|
|
## Class to define a Prism 3D algorithm
|
|
#
|
|
# More details.
|
|
class Mesh_Prism3D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "Prism_3D")
|
|
|
|
# Public class: Mesh_RadialPrism
|
|
# -------------------------------
|
|
|
|
## Class to define a Radial Prism 3D algorithm
|
|
#
|
|
# More details.
|
|
class Mesh_RadialPrism3D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "RadialPrism_3D")
|
|
self.distribHyp = self.Hypothesis( "LayerDistribution" )
|
|
self.nbLayers = None
|
|
|
|
## Return 3D hypothesis holding the 1D one
|
|
def Get3DHypothesis(self):
|
|
return self.distribHyp
|
|
|
|
## Private method creating 1D hypothes and storing it in the LayerDistribution
|
|
# hypothes. Returns the created hypothes
|
|
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
|
|
if not self.nbLayers is None:
|
|
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
|
|
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
|
|
study = GetCurrentStudy() # prevent publishing of own 1D hypothesis
|
|
hyp = smesh.CreateHypothesis(hypType, so)
|
|
SetCurrentStudy( study ) # anable publishing
|
|
self.distribHyp.SetLayerDistribution( hyp )
|
|
return hyp
|
|
|
|
## Define "NumberOfLayers" hypothesis, specifying a number of layers of
|
|
# prisms to build between the inner and outer shells
|
|
def NumberOfLayers(self, n ):
|
|
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
|
|
self.nbLayers = self.Hypothesis("NumberOfLayers")
|
|
self.nbLayers.SetNumberOfLayers( n )
|
|
return self.nbLayers
|
|
|
|
## Define "LocalLength" hypothesis, specifying segment length
|
|
# to build between the inner and outer shells
|
|
# @param l for the length of segments
|
|
def LocalLength(self, l):
|
|
hyp = self.OwnHypothesis("LocalLength", [l])
|
|
hyp.SetLength(l)
|
|
return hyp
|
|
|
|
## Define "NumberOfSegments" hypothesis, specifying a number of layers of
|
|
# prisms to build between the inner and outer shells
|
|
# @param n for the number of segments
|
|
# @param s for the scale factor (optional)
|
|
def NumberOfSegments(self, n, s=[]):
|
|
if s == []:
|
|
hyp = self.OwnHypothesis("NumberOfSegments", [n])
|
|
else:
|
|
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
|
|
hyp.SetDistrType( 1 )
|
|
hyp.SetScaleFactor(s)
|
|
hyp.SetNumberOfSegments(n)
|
|
return hyp
|
|
|
|
## Define "Arithmetic1D" hypothesis, specifying distribution of segments
|
|
# to build between the inner and outer shells as arithmetic length increasing
|
|
# @param start for the length of the first segment
|
|
# @param end for the length of the last segment
|
|
def Arithmetic1D(self, start, end):
|
|
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Define "StartEndLength" hypothesis, specifying distribution of segments
|
|
# to build between the inner and outer shells as geometric length increasing
|
|
# @param start for the length of the first segment
|
|
# @param end for the length of the last segment
|
|
def StartEndLength(self, start, end):
|
|
hyp = self.OwnHypothesis("StartEndLength", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Define "AutomaticLength" hypothesis, specifying number of segments
|
|
# to build between the inner and outer shells
|
|
# @param fineness for the fineness [0-1]
|
|
def AutomaticLength(self, fineness=0):
|
|
hyp = self.OwnHypothesis("AutomaticLength")
|
|
hyp.SetFineness( fineness )
|
|
return hyp
|
|
|
|
|
|
# Public class: Mesh
|
|
# ==================
|
|
|
|
## Class to define a mesh
|
|
#
|
|
# The class contains mesh shape, SMESH_Mesh, SMESH_MeshEditor
|
|
# More details.
|
|
class Mesh:
|
|
|
|
geom = 0
|
|
mesh = 0
|
|
editor = 0
|
|
|
|
## Constructor
|
|
#
|
|
# Creates mesh on the shape \a geom(or the empty mesh if geom equal to 0),
|
|
# sets GUI name of this mesh to \a name.
|
|
# @param obj Shape to be meshed or SMESH_Mesh object
|
|
# @param name Study name of the mesh
|
|
def __init__(self, obj=0, name=0):
|
|
if obj is None:
|
|
obj = 0
|
|
if obj != 0:
|
|
if isinstance(obj, geompy.GEOM._objref_GEOM_Object):
|
|
self.geom = obj
|
|
self.mesh = smesh.CreateMesh(self.geom)
|
|
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
|
|
self.SetMesh(obj)
|
|
else:
|
|
self.mesh = smesh.CreateEmptyMesh()
|
|
if name != 0:
|
|
SetName(self.mesh, name)
|
|
elif obj != 0:
|
|
SetName(self.mesh, GetName(obj))
|
|
|
|
self.editor = self.mesh.GetMeshEditor()
|
|
|
|
## Method that inits the Mesh object from SMESH_Mesh interface
|
|
# @param theMesh is SMESH_Mesh object
|
|
def SetMesh(self, theMesh):
|
|
self.mesh = theMesh
|
|
self.geom = self.mesh.GetShapeToMesh()
|
|
|
|
## Method that returns the mesh
|
|
# @return SMESH_Mesh object
|
|
def GetMesh(self):
|
|
return self.mesh
|
|
|
|
## Get mesh name
|
|
def GetName(self):
|
|
name = GetName(self.GetMesh())
|
|
return name
|
|
|
|
## Set name to mesh
|
|
def SetName(self, name):
|
|
SetName(self.GetMesh(), name)
|
|
|
|
## Get the subMesh object associated to a subShape. The subMesh object
|
|
# gives access to nodes and elements IDs.
|
|
# \n SubMesh will be used instead of SubShape in a next idl version to
|
|
# adress a specific subMesh...
|
|
def GetSubMesh(self, theSubObject, name):
|
|
submesh = self.mesh.GetSubMesh(theSubObject, name)
|
|
return submesh
|
|
|
|
## Method that returns the shape associated to the mesh
|
|
# @return GEOM_Object
|
|
def GetShape(self):
|
|
return self.geom
|
|
|
|
## Method that associates given shape to the mesh(entails the mesh recreation)
|
|
# @param geom shape to be meshed(GEOM_Object)
|
|
def SetShape(self, geom):
|
|
self.mesh = smesh.CreateMesh(geom)
|
|
|
|
## Return true if hypotheses are defined well
|
|
# @param theMesh is an instance of Mesh class
|
|
# @param theSubObject subshape of a mesh shape
|
|
def IsReadyToCompute(self, theSubObject):
|
|
return smesh.IsReadyToCompute(self.mesh, theSubObject)
|
|
|
|
## Return errors of hypotheses definintion
|
|
# error list is empty if everything is OK
|
|
# @param theMesh is an instance of Mesh class
|
|
# @param theSubObject subshape of a mesh shape
|
|
# @return a list of errors
|
|
def GetAlgoState(self, theSubObject):
|
|
return smesh.GetAlgoState(self.mesh, theSubObject)
|
|
|
|
## Return geometrical object the given element is built on.
|
|
# The returned geometrical object, if not nil, is either found in the
|
|
# study or is published by this method with the given name
|
|
# @param theMesh is an instance of Mesh class
|
|
# @param theElementID an id of the mesh element
|
|
# @param theGeomName user defined name of geometrical object
|
|
# @return GEOM::GEOM_Object instance
|
|
def GetGeometryByMeshElement(self, theElementID, theGeomName):
|
|
return smesh.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
|
|
|
|
## Returns mesh dimension depending on shape one
|
|
def MeshDimension(self):
|
|
shells = geompy.SubShapeAllIDs( self.geom, geompy.ShapeType["SHELL"] )
|
|
if len( shells ) > 0 :
|
|
return 3
|
|
elif geompy.NumberOfFaces( self.geom ) > 0 :
|
|
return 2
|
|
elif geompy.NumberOfEdges( self.geom ) > 0 :
|
|
return 1
|
|
else:
|
|
return 0;
|
|
pass
|
|
|
|
## Creates a segment discretization 1D algorithm.
|
|
# If the optional \a algo parameter is not sets, this algorithm is REGULAR.
|
|
# If the optional \a geom parameter is not sets, this algorithm is global.
|
|
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
|
|
# @param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function
|
|
# @param geom If defined, subshape to be meshed
|
|
def Segment(self, algo=REGULAR, geom=0):
|
|
## if Segment(geom) is called by mistake
|
|
if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
|
|
algo, geom = geom, algo
|
|
pass
|
|
if algo == REGULAR:
|
|
return Mesh_Segment(self, geom)
|
|
elif algo == PYTHON:
|
|
return Mesh_Segment_Python(self, geom)
|
|
else:
|
|
return Mesh_Segment(self, geom)
|
|
|
|
## Creates a triangle 2D algorithm for faces.
|
|
# If the optional \a geom parameter is not sets, this algorithm is global.
|
|
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
|
|
# @param algo values are: smesh.MEFISTO or smesh.NETGEN
|
|
# @param geom If defined, subshape to be meshed
|
|
def Triangle(self, algo=MEFISTO, geom=0):
|
|
## if Triangle(geom) is called by mistake
|
|
if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
|
|
geom = algo
|
|
algo = MEFISTO
|
|
|
|
return Mesh_Triangle(self, algo, geom)
|
|
|
|
## Creates a quadrangle 2D algorithm for faces.
|
|
# If the optional \a geom parameter is not sets, this algorithm is global.
|
|
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
|
|
# @param geom If defined, subshape to be meshed
|
|
def Quadrangle(self, geom=0):
|
|
return Mesh_Quadrangle(self, geom)
|
|
|
|
## Creates a tetrahedron 3D algorithm for solids.
|
|
# The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
|
|
# If the optional \a geom parameter is not sets, this algorithm is global.
|
|
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
|
|
# @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN
|
|
# @param geom If defined, subshape to be meshed
|
|
def Tetrahedron(self, algo=NETGEN, geom=0):
|
|
## if Tetrahedron(geom) is called by mistake
|
|
if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
|
|
algo, geom = geom, algo
|
|
pass
|
|
return Mesh_Tetrahedron(self, algo, geom)
|
|
|
|
## Creates a hexahedron 3D algorithm for solids.
|
|
# If the optional \a geom parameter is not sets, this algorithm is global.
|
|
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
|
|
# @param geom If defined, subshape to be meshed
|
|
## def Hexahedron(self, geom=0):
|
|
## return Mesh_Hexahedron(self, geom)
|
|
def Hexahedron(self, algo=Hexa, geom=0):
|
|
## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
|
|
if ( isinstance(algo, geompy.GEOM._objref_GEOM_Object) ):
|
|
if geom in [Hexa, Hexotic]: algo, geom = geom, algo
|
|
elif geom == 0: algo, geom = Hexa, algo
|
|
return Mesh_Hexahedron(self, algo, geom)
|
|
|
|
## Deprecated, only for compatibility!
|
|
def Netgen(self, is3D, geom=0):
|
|
return Mesh_Netgen(self, is3D, geom)
|
|
|
|
## Creates a projection 1D algorithm for edges.
|
|
# If the optional \a geom parameter is not sets, this algorithm is global.
|
|
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
|
# @param geom If defined, subshape to be meshed
|
|
def Projection1D(self, geom=0):
|
|
return Mesh_Projection1D(self, geom)
|
|
|
|
## Creates a projection 2D algorithm for faces.
|
|
# If the optional \a geom parameter is not sets, this algorithm is global.
|
|
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
|
# @param geom If defined, subshape to be meshed
|
|
def Projection2D(self, geom=0):
|
|
return Mesh_Projection2D(self, geom)
|
|
|
|
## Creates a projection 3D algorithm for solids.
|
|
# If the optional \a geom parameter is not sets, this algorithm is global.
|
|
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
|
# @param geom If defined, subshape to be meshed
|
|
def Projection3D(self, geom=0):
|
|
return Mesh_Projection3D(self, geom)
|
|
|
|
## Creates a Prism 3D or RadialPrism 3D algorithm for solids.
|
|
# If the optional \a geom parameter is not sets, this algorithm is global.
|
|
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
|
# @param geom If defined, subshape to be meshed
|
|
def Prism(self, geom=0):
|
|
shape = geom
|
|
if shape==0:
|
|
shape = self.geom
|
|
nbSolids = len( geompy.SubShapeAll( shape, geompy.ShapeType["SOLID"] ))
|
|
nbShells = len( geompy.SubShapeAll( shape, geompy.ShapeType["SHELL"] ))
|
|
if nbSolids == 0 or nbSolids == nbShells:
|
|
return Mesh_Prism3D(self, geom)
|
|
return Mesh_RadialPrism3D(self, geom)
|
|
|
|
## Compute the mesh and return the status of the computation
|
|
def Compute(self, geom=0):
|
|
if geom == 0 or not isinstance(geom, geompy.GEOM._objref_GEOM_Object):
|
|
if self.geom == 0:
|
|
print "Compute impossible: mesh is not constructed on geom shape."
|
|
return 0
|
|
else:
|
|
geom = self.geom
|
|
ok = smesh.Compute(self.mesh, geom)
|
|
if not ok:
|
|
errors = smesh.GetAlgoState( self.mesh, geom )
|
|
allReasons = ""
|
|
for err in errors:
|
|
if err.isGlobalAlgo:
|
|
glob = " global "
|
|
else:
|
|
glob = " local "
|
|
pass
|
|
dim = str(err.algoDim)
|
|
if err.name == MISSING_ALGO:
|
|
reason = glob + dim + "D algorithm is missing"
|
|
elif err.name == MISSING_HYPO:
|
|
name = '"' + err.algoName + '"'
|
|
reason = glob + dim + "D algorithm " + name + " misses " + dim + "D hypothesis"
|
|
elif err.name == NOT_CONFORM_MESH:
|
|
reason = "Global \"Not Conform mesh allowed\" hypothesis is missing"
|
|
elif err.name == BAD_PARAM_VALUE:
|
|
name = '"' + err.algoName + '"'
|
|
reason = "Hypothesis of" + glob + dim + "D algorithm " + name +\
|
|
" has a bad parameter value"
|
|
else:
|
|
reason = "For unknown reason."+\
|
|
" Revise Mesh.Compute() implementation in smesh.py!"
|
|
pass
|
|
if allReasons != "":
|
|
allReasons += "\n"
|
|
pass
|
|
allReasons += reason
|
|
pass
|
|
if allReasons != "":
|
|
print '"' + GetName(self.mesh) + '"',"not computed:"
|
|
print allReasons
|
|
pass
|
|
pass
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(salome.myStudyId)
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok )
|
|
salome.sg.updateObjBrowser(1)
|
|
pass
|
|
return ok
|
|
|
|
## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
|
|
# The parameter \a fineness [0,-1] defines mesh fineness
|
|
def AutomaticTetrahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Triangle().LengthFromEdges()
|
|
pass
|
|
if dim > 2 :
|
|
self.Tetrahedron(NETGEN)
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
|
|
# The parameter \a fineness [0,-1] defines mesh fineness
|
|
def AutomaticHexahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Quadrangle()
|
|
pass
|
|
if dim > 2 :
|
|
self.Hexahedron()
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Get the list of hypothesis added on a geom
|
|
# @param geom is subhape of mesh geometry
|
|
def GetHypothesisList(self, geom):
|
|
return self.mesh.GetHypothesisList( geom )
|
|
|
|
## Removes all global hypotheses
|
|
def RemoveGlobalHypotheses(self):
|
|
current_hyps = self.mesh.GetHypothesisList( self.geom )
|
|
for hyp in current_hyps:
|
|
self.mesh.RemoveHypothesis( self.geom, hyp )
|
|
pass
|
|
pass
|
|
|
|
## Create a mesh group based on geometric object \a grp
|
|
# and give a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometric group name \n
|
|
# Note: Works like GroupOnGeom().
|
|
# @param grp is a geometric group, a vertex, an edge, a face or a solid
|
|
# @param name is the name of the mesh group
|
|
# @return SMESH_GroupOnGeom
|
|
def Group(self, grp, name=""):
|
|
return self.GroupOnGeom(grp, name)
|
|
|
|
## Deprecated, only for compatibility! Please, use ExportMED() method instead.
|
|
# Export the mesh in a file with the MED format and choice the \a version of MED format
|
|
# @param f is the file name
|
|
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
|
|
def ExportToMED(self, f, version, opt=0):
|
|
self.mesh.ExportToMED(f, opt, version)
|
|
|
|
## Export the mesh in a file with the MED format
|
|
# @param f is the file name
|
|
# @param auto_groups boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
|
|
# the typical use is auto_groups=false.
|
|
# @param version MED format version(MED_V2_1 or MED_V2_2)
|
|
def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
|
|
self.mesh.ExportToMED(f, auto_groups, version)
|
|
|
|
## Export the mesh in a file with the DAT format
|
|
# @param f is the file name
|
|
def ExportDAT(self, f):
|
|
self.mesh.ExportDAT(f)
|
|
|
|
## Export the mesh in a file with the UNV format
|
|
# @param f is the file name
|
|
def ExportUNV(self, f):
|
|
self.mesh.ExportUNV(f)
|
|
|
|
## Export the mesh in a file with the STL format
|
|
# @param f is the file name
|
|
# @param ascii defined the kind of file contents
|
|
def ExportSTL(self, f, ascii=1):
|
|
self.mesh.ExportSTL(f, ascii)
|
|
|
|
|
|
# Operations with groups:
|
|
# ----------------------
|
|
|
|
## Creates an empty mesh group
|
|
# @param elementType is the type of elements in the group
|
|
# @param name is the name of the mesh group
|
|
# @return SMESH_Group
|
|
def CreateEmptyGroup(self, elementType, name):
|
|
return self.mesh.CreateGroup(elementType, name)
|
|
|
|
## Creates a mesh group based on geometric object \a grp
|
|
# and give a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometric group name
|
|
# @param grp is a geometric group, a vertex, an edge, a face or a solid
|
|
# @param name is the name of the mesh group
|
|
# @return SMESH_GroupOnGeom
|
|
def GroupOnGeom(self, grp, name="", type=None):
|
|
if name == "":
|
|
name = grp.GetName()
|
|
|
|
if type == None:
|
|
tgeo = str(grp.GetShapeType())
|
|
if tgeo == "VERTEX":
|
|
type = NODE
|
|
elif tgeo == "EDGE":
|
|
type = EDGE
|
|
elif tgeo == "FACE":
|
|
type = FACE
|
|
elif tgeo == "SOLID":
|
|
type = VOLUME
|
|
elif tgeo == "SHELL":
|
|
type = VOLUME
|
|
elif tgeo == "COMPOUND":
|
|
if len( geompy.GetObjectIDs( grp )) == 0:
|
|
print "Mesh.Group: empty geometric group", GetName( grp )
|
|
return 0
|
|
tgeo = geompy.GetType(grp)
|
|
if tgeo == geompy.ShapeType["VERTEX"]:
|
|
type = NODE
|
|
elif tgeo == geompy.ShapeType["EDGE"]:
|
|
type = EDGE
|
|
elif tgeo == geompy.ShapeType["FACE"]:
|
|
type = FACE
|
|
elif tgeo == geompy.ShapeType["SOLID"]:
|
|
type = VOLUME
|
|
|
|
if type == None:
|
|
print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
|
|
return 0
|
|
else:
|
|
return self.mesh.CreateGroupFromGEOM(type, name, grp)
|
|
|
|
## Create a mesh group by the given ids of elements
|
|
# @param groupName is the name of the mesh group
|
|
# @param elementType is the type of elements in the group
|
|
# @param elemIDs is the list of ids
|
|
# @return SMESH_Group
|
|
def MakeGroupByIds(self, groupName, elementType, elemIDs):
|
|
group = self.mesh.CreateGroup(elementType, groupName)
|
|
group.Add(elemIDs)
|
|
return group
|
|
|
|
## Create a mesh group by the given conditions
|
|
# @param groupName is the name of the mesh group
|
|
# @param elementType is the type of elements in the group
|
|
# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
|
|
# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Treshold is threshold value (range of id ids as string, shape, numeric)
|
|
# @param UnaryOp is FT_LogicalNOT or FT_Undefined
|
|
# @return SMESH_Group
|
|
def MakeGroup(self,
|
|
groupName,
|
|
elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Treshold="",
|
|
UnaryOp=FT_Undefined):
|
|
aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
|
|
group = self.MakeGroupByCriterion(groupName, aCriterion)
|
|
return group
|
|
|
|
## Create a mesh group by the given criterion
|
|
# @param groupName is the name of the mesh group
|
|
# @param Criterion is the instance of Criterion class
|
|
# @return SMESH_Group
|
|
def MakeGroupByCriterion(self, groupName, Criterion):
|
|
aFilterMgr = smesh.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aCriteria = []
|
|
aCriteria.append(Criterion)
|
|
aFilter.SetCriteria(aCriteria)
|
|
group = self.MakeGroupByFilter(groupName, aFilter)
|
|
return group
|
|
|
|
## Create a mesh group by the given criteria(list of criterions)
|
|
# @param groupName is the name of the mesh group
|
|
# @param Criteria is the list of criterions
|
|
# @return SMESH_Group
|
|
def MakeGroupByCriteria(self, groupName, theCriteria):
|
|
aFilterMgr = smesh.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aFilter.SetCriteria(theCriteria)
|
|
group = self.MakeGroupByFilter(groupName, aFilter)
|
|
return group
|
|
|
|
## Create a mesh group by the given filter
|
|
# @param groupName is the name of the mesh group
|
|
# @param Criterion is the instance of Filter class
|
|
# @return SMESH_Group
|
|
def MakeGroupByFilter(self, groupName, theFilter):
|
|
anIds = theFilter.GetElementsId(self.mesh)
|
|
anElemType = theFilter.GetElementType()
|
|
group = self.MakeGroupByIds(groupName, anElemType, anIds)
|
|
return group
|
|
|
|
## Pass mesh elements through the given filter and return ids
|
|
# @param theFilter is SMESH_Filter
|
|
# @return list of ids
|
|
def GetIdsFromFilter(self, theFilter):
|
|
return theFilter.GetElementsId(self.mesh)
|
|
|
|
## Verify whether 2D mesh element has free edges(edges connected to one face only)\n
|
|
# Returns list of special structures(borders).
|
|
# @return list of SMESH.FreeEdges.Border structure: edge id and two its nodes ids.
|
|
def GetFreeBorders(self):
|
|
aFilterMgr = smesh.CreateFilterManager()
|
|
aPredicate = aFilterMgr.CreateFreeEdges()
|
|
aPredicate.SetMesh(self.mesh)
|
|
aBorders = aPredicate.GetBorders()
|
|
return aBorders
|
|
|
|
## Remove a group
|
|
def RemoveGroup(self, group):
|
|
self.mesh.RemoveGroup(group)
|
|
|
|
## Remove group with its contents
|
|
def RemoveGroupWithContents(self, group):
|
|
self.mesh.RemoveGroupWithContents(group)
|
|
|
|
## Get the list of groups existing in the mesh
|
|
def GetGroups(self):
|
|
return self.mesh.GetGroups()
|
|
|
|
## Get the list of names of groups existing in the mesh
|
|
def GetGroupNames(self):
|
|
groups = self.GetGroups()
|
|
names = []
|
|
for group in groups:
|
|
names.append(group.GetName())
|
|
return names
|
|
|
|
## Union of two groups
|
|
# New group is created. All mesh elements that are
|
|
# present in initial groups are added to the new one
|
|
def UnionGroups(self, group1, group2, name):
|
|
return self.mesh.UnionGroups(group1, group2, name)
|
|
|
|
## Intersection of two groups
|
|
# New group is created. All mesh elements that are
|
|
# present in both initial groups are added to the new one.
|
|
def IntersectGroups(self, group1, group2, name):
|
|
return self.mesh.IntersectGroups(group1, group2, name)
|
|
|
|
## Cut of two groups
|
|
# New group is created. All mesh elements that are present in
|
|
# main group but do not present in tool group are added to the new one
|
|
def CutGroups(self, mainGroup, toolGroup, name):
|
|
return self.mesh.CutGroups(mainGroup, toolGroup, name)
|
|
|
|
|
|
# Get some info about mesh:
|
|
# ------------------------
|
|
|
|
## Get the log of nodes and elements added or removed since previous
|
|
# clear of the log.
|
|
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
|
|
# @return list of log_block structures:
|
|
# commandType
|
|
# number
|
|
# coords
|
|
# indexes
|
|
def GetLog(self, clearAfterGet):
|
|
return self.mesh.GetLog(clearAfterGet)
|
|
|
|
## Clear the log of nodes and elements added or removed since previous
|
|
# clear. Must be used immediately after GetLog if clearAfterGet is false.
|
|
def ClearLog(self):
|
|
self.mesh.ClearLog()
|
|
|
|
## Get the internal Id
|
|
def GetId(self):
|
|
return self.mesh.GetId()
|
|
|
|
## Get the study Id
|
|
def GetStudyId(self):
|
|
return self.mesh.GetStudyId()
|
|
|
|
## Check group names for duplications.
|
|
# Consider maximum group name length stored in MED file.
|
|
def HasDuplicatedGroupNamesMED(self):
|
|
return self.mesh.GetStudyId()
|
|
|
|
## Obtain instance of SMESH_MeshEditor
|
|
def GetMeshEditor(self):
|
|
return self.mesh.GetMeshEditor()
|
|
|
|
## Get MED Mesh
|
|
def GetMEDMesh(self):
|
|
return self.mesh.GetMEDMesh()
|
|
|
|
|
|
# Get informations about mesh contents:
|
|
# ------------------------------------
|
|
|
|
## Returns number of nodes in mesh
|
|
def NbNodes(self):
|
|
return self.mesh.NbNodes()
|
|
|
|
## Returns number of elements in mesh
|
|
def NbElements(self):
|
|
return self.mesh.NbElements()
|
|
|
|
## Returns number of edges in mesh
|
|
def NbEdges(self):
|
|
return self.mesh.NbEdges()
|
|
|
|
## Returns number of edges with given order in mesh
|
|
# @param elementOrder is order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
def NbEdgesOfOrder(self, elementOrder):
|
|
return self.mesh.NbEdgesOfOrder(elementOrder)
|
|
|
|
## Returns number of faces in mesh
|
|
def NbFaces(self):
|
|
return self.mesh.NbFaces()
|
|
|
|
## Returns number of faces with given order in mesh
|
|
# @param elementOrder is order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
def NbFacesOfOrder(self, elementOrder):
|
|
return self.mesh.NbFacesOfOrder(elementOrder)
|
|
|
|
## Returns number of triangles in mesh
|
|
def NbTriangles(self):
|
|
return self.mesh.NbTriangles()
|
|
|
|
## Returns number of triangles with given order in mesh
|
|
# @param elementOrder is order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
def NbTrianglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbTrianglesOfOrder(elementOrder)
|
|
|
|
## Returns number of quadrangles in mesh
|
|
def NbQuadrangles(self):
|
|
return self.mesh.NbQuadrangles()
|
|
|
|
## Returns number of quadrangles with given order in mesh
|
|
# @param elementOrder is order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
def NbQuadranglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbQuadranglesOfOrder(elementOrder)
|
|
|
|
## Returns number of polygons in mesh
|
|
def NbPolygons(self):
|
|
return self.mesh.NbPolygons()
|
|
|
|
## Returns number of volumes in mesh
|
|
def NbVolumes(self):
|
|
return self.mesh.NbVolumes()
|
|
|
|
## Returns number of volumes with given order in mesh
|
|
# @param elementOrder is order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
def NbVolumesOfOrder(self, elementOrder):
|
|
return self.mesh.NbVolumesOfOrder(elementOrder)
|
|
|
|
## Returns number of tetrahedrons in mesh
|
|
def NbTetras(self):
|
|
return self.mesh.NbTetras()
|
|
|
|
## Returns number of tetrahedrons with given order in mesh
|
|
# @param elementOrder is order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
def NbTetrasOfOrder(self, elementOrder):
|
|
return self.mesh.NbTetrasOfOrder(elementOrder)
|
|
|
|
## Returns number of hexahedrons in mesh
|
|
def NbHexas(self):
|
|
return self.mesh.NbHexas()
|
|
|
|
## Returns number of hexahedrons with given order in mesh
|
|
# @param elementOrder is order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
def NbHexasOfOrder(self, elementOrder):
|
|
return self.mesh.NbHexasOfOrder(elementOrder)
|
|
|
|
## Returns number of pyramids in mesh
|
|
def NbPyramids(self):
|
|
return self.mesh.NbPyramids()
|
|
|
|
## Returns number of pyramids with given order in mesh
|
|
# @param elementOrder is order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
def NbPyramidsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPyramidsOfOrder(elementOrder)
|
|
|
|
## Returns number of prisms in mesh
|
|
def NbPrisms(self):
|
|
return self.mesh.NbPrisms()
|
|
|
|
## Returns number of prisms with given order in mesh
|
|
# @param elementOrder is order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
def NbPrismsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPrismsOfOrder(elementOrder)
|
|
|
|
## Returns number of polyhedrons in mesh
|
|
def NbPolyhedrons(self):
|
|
return self.mesh.NbPolyhedrons()
|
|
|
|
## Returns number of submeshes in mesh
|
|
def NbSubMesh(self):
|
|
return self.mesh.NbSubMesh()
|
|
|
|
## Returns list of mesh elements ids
|
|
def GetElementsId(self):
|
|
return self.mesh.GetElementsId()
|
|
|
|
## Returns list of ids of mesh elements with given type
|
|
# @param elementType is required type of elements
|
|
def GetElementsByType(self, elementType):
|
|
return self.mesh.GetElementsByType(elementType)
|
|
|
|
## Returns list of mesh nodes ids
|
|
def GetNodesId(self):
|
|
return self.mesh.GetNodesId()
|
|
|
|
# Get informations about mesh elements:
|
|
# ------------------------------------
|
|
|
|
## Returns type of mesh element
|
|
def GetElementType(self, id, iselem):
|
|
return self.mesh.GetElementType(id, iselem)
|
|
|
|
## Returns list of submesh elements ids
|
|
# @param shapeID is geom object(subshape) IOR
|
|
def GetSubMeshElementsId(self, shapeID):
|
|
return self.mesh.GetSubMeshElementsId(shapeID)
|
|
|
|
## Returns list of submesh nodes ids
|
|
# @param shapeID is geom object(subshape) IOR
|
|
def GetSubMeshNodesId(self, shapeID, all):
|
|
return self.mesh.GetSubMeshNodesId(shapeID, all)
|
|
|
|
## Returns list of ids of submesh elements with given type
|
|
# @param shapeID is geom object(subshape) IOR
|
|
def GetSubMeshElementType(self, shapeID):
|
|
return self.mesh.GetSubMeshElementType(shapeID)
|
|
|
|
## Get mesh description
|
|
def Dump(self):
|
|
return self.mesh.Dump()
|
|
|
|
|
|
# Get information about nodes and elements of mesh by its ids:
|
|
# -----------------------------------------------------------
|
|
|
|
## Get XYZ coordinates of node as list of double
|
|
# \n If there is not node for given ID - returns empty list
|
|
def GetNodeXYZ(self, id):
|
|
return self.mesh.GetNodeXYZ(id)
|
|
|
|
## For given node returns list of IDs of inverse elements
|
|
# \n If there is not node for given ID - returns empty list
|
|
def GetNodeInverseElements(self, id):
|
|
return self.mesh.GetNodeInverseElements(id)
|
|
|
|
## If given element is node returns IDs of shape from position
|
|
# \n If there is not node for given ID - returns -1
|
|
def GetShapeID(self, id):
|
|
return self.mesh.GetShapeID(id)
|
|
|
|
## For given element returns ID of result shape after
|
|
# FindShape() from SMESH_MeshEditor
|
|
# \n If there is not element for given ID - returns -1
|
|
def GetShapeIDForElem(id):
|
|
return self.mesh.GetShapeIDForElem(id)
|
|
|
|
## Returns number of nodes for given element
|
|
# \n If there is not element for given ID - returns -1
|
|
def GetElemNbNodes(self, id):
|
|
return self.mesh.GetElemNbNodes(id)
|
|
|
|
## Returns ID of node by given index for given element
|
|
# \n If there is not element for given ID - returns -1
|
|
# \n If there is not node for given index - returns -2
|
|
def GetElemNode(self, id, index):
|
|
return self.mesh.GetElemNode(id, index)
|
|
|
|
## Returns true if given node is medium node
|
|
# in given quadratic element
|
|
def IsMediumNode(self, elementID, nodeID):
|
|
return self.mesh.IsMediumNode(elementID, nodeID)
|
|
|
|
## Returns true if given node is medium node
|
|
# in one of quadratic elements
|
|
def IsMediumNodeOfAnyElem(self, nodeID, elementType):
|
|
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
|
|
|
|
## Returns number of edges for given element
|
|
def ElemNbEdges(self, id):
|
|
return self.mesh.ElemNbEdges(id)
|
|
|
|
## Returns number of faces for given element
|
|
def ElemNbFaces(self, id):
|
|
return self.mesh.ElemNbFaces(id)
|
|
|
|
## Returns true if given element is polygon
|
|
def IsPoly(self, id):
|
|
return self.mesh.IsPoly(id)
|
|
|
|
## Returns true if given element is quadratic
|
|
def IsQuadratic(self, id):
|
|
return self.mesh.IsQuadratic(id)
|
|
|
|
## Returns XYZ coordinates of bary center for given element
|
|
# as list of double
|
|
# \n If there is not element for given ID - returns empty list
|
|
def BaryCenter(self, id):
|
|
return self.mesh.BaryCenter(id)
|
|
|
|
|
|
# Mesh edition (SMESH_MeshEditor functionality):
|
|
# ---------------------------------------------
|
|
|
|
## Removes elements from mesh by ids
|
|
# @param IDsOfElements is list of ids of elements to remove
|
|
def RemoveElements(self, IDsOfElements):
|
|
return self.editor.RemoveElements(IDsOfElements)
|
|
|
|
## Removes nodes from mesh by ids
|
|
# @param IDsOfNodes is list of ids of nodes to remove
|
|
def RemoveNodes(self, IDsOfNodes):
|
|
return self.editor.RemoveNodes(IDsOfNodes)
|
|
|
|
## Add node to mesh by coordinates
|
|
def AddNode(self, x, y, z):
|
|
return self.editor.AddNode( x, y, z)
|
|
|
|
|
|
## Create edge both similar and quadratic (this is determed
|
|
# by number of given nodes).
|
|
# @param IdsOfNodes List of node IDs for creation of element.
|
|
# Needed order of nodes in this list corresponds to description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
|
|
def AddEdge(self, IDsOfNodes):
|
|
return self.editor.AddEdge(IDsOfNodes)
|
|
|
|
## Create face both similar and quadratic (this is determed
|
|
# by number of given nodes).
|
|
# @param IdsOfNodes List of node IDs for creation of element.
|
|
# Needed order of nodes in this list corresponds to description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
|
|
def AddFace(self, IDsOfNodes):
|
|
return self.editor.AddFace(IDsOfNodes)
|
|
|
|
## Add polygonal face to mesh by list of nodes ids
|
|
def AddPolygonalFace(self, IdsOfNodes):
|
|
return self.editor.AddPolygonalFace(IdsOfNodes)
|
|
|
|
## Create volume both similar and quadratic (this is determed
|
|
# by number of given nodes).
|
|
# @param IdsOfNodes List of node IDs for creation of element.
|
|
# Needed order of nodes in this list corresponds to description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
|
|
def AddVolume(self, IDsOfNodes):
|
|
return self.editor.AddVolume(IDsOfNodes)
|
|
|
|
## Create volume of many faces, giving nodes for each face.
|
|
# @param IdsOfNodes List of node IDs for volume creation face by face.
|
|
# @param Quantities List of integer values, Quantities[i]
|
|
# gives quantity of nodes in face number i.
|
|
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
|
|
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
|
|
|
|
## Create volume of many faces, giving IDs of existing faces.
|
|
# @param IdsOfFaces List of face IDs for volume creation.
|
|
#
|
|
# Note: The created volume will refer only to nodes
|
|
# of the given faces, not to the faces itself.
|
|
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
|
|
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
|
|
|
|
## Move node with given id
|
|
# @param NodeID id of the node
|
|
# @param x displacing along the X axis
|
|
# @param y displacing along the Y axis
|
|
# @param z displacing along the Z axis
|
|
def MoveNode(self, NodeID, x, y, z):
|
|
return self.editor.MoveNode(NodeID, x, y, z)
|
|
|
|
## Replace two neighbour triangles sharing Node1-Node2 link
|
|
# with ones built on the same 4 nodes but having other common link.
|
|
# @param NodeID1 first node id
|
|
# @param NodeID2 second node id
|
|
# @return false if proper faces not found
|
|
def InverseDiag(self, NodeID1, NodeID2):
|
|
return self.editor.InverseDiag(NodeID1, NodeID2)
|
|
|
|
## Replace two neighbour triangles sharing Node1-Node2 link
|
|
# with a quadrangle built on the same 4 nodes.
|
|
# @param NodeID1 first node id
|
|
# @param NodeID2 second node id
|
|
# @return false if proper faces not found
|
|
def DeleteDiag(self, NodeID1, NodeID2):
|
|
return self.editor.DeleteDiag(NodeID1, NodeID2)
|
|
|
|
## Reorient elements by ids
|
|
# @param IDsOfElements if undefined reorient all mesh elements
|
|
def Reorient(self, IDsOfElements=None):
|
|
if IDsOfElements == None:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.Reorient(IDsOfElements)
|
|
|
|
## Reorient all elements of the object
|
|
# @param theObject is mesh, submesh or group
|
|
def ReorientObject(self, theObject):
|
|
return self.editor.ReorientObject(theObject)
|
|
|
|
## Fuse neighbour triangles into quadrangles.
|
|
# @param IDsOfElements The triangles to be fused,
|
|
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
|
|
# @param MaxAngle is a max angle between element normals at which fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.TriToQuad(IDsOfElements, GetFunctor(theCriterion), MaxAngle)
|
|
|
|
## Fuse neighbour triangles of the object into quadrangles
|
|
# @param theObject is mesh, submesh or group
|
|
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
|
|
# @param MaxAngle is a max angle between element normals at which fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
|
|
return self.editor.TriToQuadObject(theObject, GetFunctor(theCriterion), MaxAngle)
|
|
|
|
## Split quadrangles into triangles.
|
|
# @param IDsOfElements the faces to be splitted.
|
|
# @param theCriterion is FT_...; used to choose a diagonal for splitting.
|
|
# @param @return TRUE in case of success, FALSE otherwise.
|
|
def QuadToTri (self, IDsOfElements, theCriterion):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.QuadToTri(IDsOfElements, GetFunctor(theCriterion))
|
|
|
|
## Split quadrangles into triangles.
|
|
# @param theObject object to taking list of elements from, is mesh, submesh or group
|
|
# @param theCriterion is FT_...; used to choose a diagonal for splitting.
|
|
def QuadToTriObject (self, theObject, theCriterion):
|
|
return self.editor.QuadToTriObject(theObject, GetFunctor(theCriterion))
|
|
|
|
## Split quadrangles into triangles.
|
|
# @param theElems The faces to be splitted
|
|
# @param the13Diag is used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
def SplitQuad (self, IDsOfElements, Diag13):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.SplitQuad(IDsOfElements, Diag13)
|
|
|
|
## Split quadrangles into triangles.
|
|
# @param theObject is object to taking list of elements from, is mesh, submesh or group
|
|
def SplitQuadObject (self, theObject, Diag13):
|
|
return self.editor.SplitQuadObject(theObject, Diag13)
|
|
|
|
## Find better splitting of the given quadrangle.
|
|
# @param IDOfQuad ID of the quadrangle to be splitted.
|
|
# @param theCriterion is FT_...; a criterion to choose a diagonal for splitting.
|
|
# @return 1 if 1-3 diagonal is better, 2 if 2-4
|
|
# diagonal is better, 0 if error occurs.
|
|
def BestSplit (self, IDOfQuad, theCriterion):
|
|
return self.editor.BestSplit(IDOfQuad, GetFunctor(theCriterion))
|
|
|
|
## Smooth elements
|
|
# @param IDsOfElements list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Smooth elements belong to given object
|
|
# @param theObject object to smooth
|
|
# @param IDsOfFixedNodes list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
def SmoothObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxxAspectRatio, Method):
|
|
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxxAspectRatio, Method)
|
|
|
|
## Parametric smooth the given elements
|
|
# @param IDsOfElements list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
def SmoothParametric(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Parametric smooth elements belong to given object
|
|
# @param theObject object to smooth
|
|
# @param IDsOfFixedNodes list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Converts all mesh to quadratic one, deletes old elements, replacing
|
|
# them with quadratic ones with the same id.
|
|
def ConvertToQuadratic(self, theForce3d):
|
|
self.editor.ConvertToQuadratic(theForce3d)
|
|
|
|
## Converts all mesh from quadratic to ordinary ones,
|
|
# deletes old quadratic elements, \n replacing
|
|
# them with ordinary mesh elements with the same id.
|
|
def ConvertFromQuadratic(self):
|
|
return self.editor.ConvertFromQuadratic()
|
|
|
|
## Renumber mesh nodes
|
|
def RenumberNodes(self):
|
|
self.editor.RenumberNodes()
|
|
|
|
## Renumber mesh elements
|
|
def RenumberElements(self):
|
|
self.editor.RenumberElements()
|
|
|
|
## Generate new elements by rotation of the elements around the axis
|
|
# @param IDsOfElements list of ids of elements to sweep
|
|
# @param Axix axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)):
|
|
Axix = GetAxisStruct(Axix)
|
|
self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance)
|
|
|
|
## Generate new elements by rotation of the elements of object around the axis
|
|
# @param theObject object wich elements should be sweeped
|
|
# @param Axix axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance):
|
|
if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)):
|
|
Axix = GetAxisStruct(Axix)
|
|
self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance)
|
|
|
|
## Generate new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements list of elements ids for extrusion
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
|
|
StepVector = GetDirStruct(StepVector)
|
|
self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
|
|
|
|
## Generate new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements is ids of elements
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
# @param ExtrFlags set flags for performing extrusion
|
|
# @param SewTolerance uses for comparing locations of nodes if flag
|
|
# EXTRUSION_FLAG_SEW is set
|
|
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance):
|
|
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
|
|
StepVector = GetDirStruct(StepVector)
|
|
self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance)
|
|
|
|
## Generate new elements by extrusion of the elements belong to object
|
|
# @param theObject object wich elements should be processed
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps):
|
|
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
|
|
StepVector = GetDirStruct(StepVector)
|
|
self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
|
|
|
|
## Generate new elements by extrusion of the elements belong to object
|
|
# @param theObject object wich elements should be processed
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps):
|
|
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
|
|
StepVector = GetDirStruct(StepVector)
|
|
self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
|
|
|
|
## Generate new elements by extrusion of the elements belong to object
|
|
# @param theObject object wich elements should be processed
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps):
|
|
if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
|
|
StepVector = GetDirStruct(StepVector)
|
|
self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
|
|
|
|
## Generate new elements by extrusion of the given elements
|
|
# A path of extrusion must be a meshed edge.
|
|
# @param IDsOfElements is ids of elements
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
|
|
# @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows to use base point
|
|
# @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
|
|
# User can specify any point as the Base Point and the shape will be rotated with respect to this point.
|
|
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)):
|
|
RefPoint = GetPointStruct(RefPoint)
|
|
return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh.GetMesh(), PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint)
|
|
|
|
## Generate new elements by extrusion of the elements belong to object
|
|
# A path of extrusion must be a meshed edge.
|
|
# @param IDsOfElements is ids of elements
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
|
|
# @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows to use base point
|
|
# @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
|
|
# User can specify any point as the Base Point and the shape will be rotated with respect to this point.
|
|
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint):
|
|
if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)):
|
|
RefPoint = GetPointStruct(RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject(theObject, PathMesh.GetMesh(), PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint)
|
|
|
|
## Symmetrical copy of mesh elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Mirror is AxisStruct or geom object(point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is geom object this parameter is unnecessary
|
|
# @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
|
|
def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)):
|
|
Mirror = GetAxisStruct(Mirror)
|
|
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
|
|
|
|
## Symmetrical copy of object
|
|
# @param theObject mesh, submesh or group
|
|
# @param Mirror is AxisStruct or geom object(point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is geom object this parameter is unnecessary
|
|
# @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
|
|
def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0):
|
|
if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)):
|
|
Mirror = GetAxisStruct(Mirror)
|
|
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
|
|
|
|
## Translates the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Vector direction of translation(DirStruct or vector)
|
|
# @param Copy allows to copy the translated elements
|
|
def Translate(self, IDsOfElements, Vector, Copy):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)):
|
|
Vector = GetDirStruct(Vector)
|
|
self.editor.Translate(IDsOfElements, Vector, Copy)
|
|
|
|
## Translates the object
|
|
# @param theObject object to translate(mesh, submesh, or group)
|
|
# @param Vector direction of translation(DirStruct or geom vector)
|
|
# @param Copy allows to copy the translated elements
|
|
def TranslateObject(self, theObject, Vector, Copy):
|
|
if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)):
|
|
Vector = GetDirStruct(Vector)
|
|
self.editor.TranslateObject(theObject, Vector, Copy)
|
|
|
|
## Rotates the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Axis axis of rotation(AxisStruct or geom line)
|
|
# @param AngleInRadians angle of rotation(in radians)
|
|
# @param Copy allows to copy the rotated elements
|
|
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompy.GEOM._objref_GEOM_Object)):
|
|
Axis = GetAxisStruct(Axis)
|
|
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
|
|
|
|
## Rotates the object
|
|
# @param theObject object to rotate(mesh, submesh, or group)
|
|
# @param Axis axis of rotation(AxisStruct or geom line)
|
|
# @param AngleInRadians angle of rotation(in radians)
|
|
# @param Copy allows to copy the rotated elements
|
|
def RotateObject (self, theObject, Axis, AngleInRadians, Copy):
|
|
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
|
|
|
|
## Find group of nodes close to each other within Tolerance.
|
|
# @param Tolerance tolerance value
|
|
# @param list of group of nodes
|
|
def FindCoincidentNodes (self, Tolerance):
|
|
return self.editor.FindCoincidentNodes(Tolerance)
|
|
|
|
## Merge nodes
|
|
# @param list of group of nodes
|
|
def MergeNodes (self, GroupsOfNodes):
|
|
self.editor.MergeNodes(GroupsOfNodes)
|
|
|
|
## Remove all but one of elements built on the same nodes.
|
|
def MergeEqualElements(self):
|
|
self.editor.MergeEqualElements()
|
|
|
|
## Sew free borders
|
|
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sew conform free borders
|
|
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2):
|
|
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2)
|
|
|
|
## Sew border to side
|
|
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sew two sides of a mesh. Nodes belonging to Side1 are
|
|
# merged with nodes of elements of Side2.
|
|
# Number of elements in theSide1 and in theSide2 must be
|
|
# equal and they should have similar node connectivity.
|
|
# The nodes to merge should belong to sides borders and
|
|
# the first node should be linked to the second.
|
|
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
|
|
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
|
|
|
|
## Set new nodes for given element.
|
|
# @param ide the element id
|
|
# @param newIDs nodes ids
|
|
# @return If number of nodes is not corresponded to type of element - returns false
|
|
def ChangeElemNodes(self, ide, newIDs):
|
|
return self.editor.ChangeElemNodes(ide, newIDs)
|
|
|
|
## If during last operation of MeshEditor some nodes were
|
|
# created this method returns list of it's IDs, \n
|
|
# if new nodes not created - returns empty list
|
|
def GetLastCreatedNodes(self):
|
|
return self.editor.GetLastCreatedNodes()
|
|
|
|
## If during last operation of MeshEditor some elements were
|
|
# created this method returns list of it's IDs, \n
|
|
# if new elements not creared - returns empty list
|
|
def GetLastCreatedElems(self):
|
|
return self.editor.GetLastCreatedElems()
|