smesh/src/SMESH/SMESH_Algo.hxx
2020-04-15 18:19:44 +03:00

522 lines
19 KiB
C++

// Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementation of SMESH idl descriptions
// File : SMESH_Algo.hxx
// Author : Paul RASCLE, EDF
// Module : SMESH
//
#ifndef _SMESH_ALGO_HXX_
#define _SMESH_ALGO_HXX_
#include "SMESH_SMESH.hxx"
#include "SMDSAbs_ElementType.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_ComputeError.hxx"
#include "SMESH_Hypothesis.hxx"
#include <GeomAbs_Shape.hxx>
#include <TopoDS_Shape.hxx>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
class SMDS_MeshNode;
class SMESHDS_Mesh;
class SMESHDS_SubMesh;
class SMESH_Gen;
class SMESH_HypoFilter;
class SMESH_Mesh;
class SMESH_MesherHelper;
class SMESH_ProxyMesh;
class SMESH_subMesh;
class TopoDS_Edge;
class TopoDS_Face;
class TopoDS_Shape;
class TopoDS_Vertex;
class TopoDS_Wire;
class gp_XYZ;
typedef std::map< SMESH_subMesh*, std::vector<int> > MapShapeNbElems;
typedef std::map< SMESH_subMesh*, std::vector<int> >::iterator MapShapeNbElemsItr;
// ==================================================================================
/*!
* \brief Root of all algorithms
*
* Methods of the class are grouped into several parts:
* - main lifecycle methods, like Compute()
* - methods describing features of the algorithm, like NeedShape()
* - methods related to dependencies between sub-meshes imposed by the algorithm
* - static utilities, like EdgeLength()
*/
// ==================================================================================
class SMESH_EXPORT SMESH_Algo : public SMESH_Hypothesis
{
public:
//==================================================================================
/*!
* \brief Structure describing algorithm features
*/
// --------------------------------------------------------------------------------
struct Features
{
int _dim;
std::set<SMDSAbs_GeometryType> _inElemTypes; // acceptable types of input mesh element
std::set<SMDSAbs_GeometryType> _outElemTypes; // produced types of mesh elements
std::string _label; // GUI type name
Features(): _dim( -1 ) {}
bool IsCompatible( const Features& algo2 ) const;
};
/*!
* \brief Return a structure describing algorithm features
*/
static const Features& GetFeatures( const std::string& algoType );
const Features& GetFeatures() const { return GetFeatures( _name ); }
public:
//==================================================================================
/*!
* \brief Creates algorithm
* \param hypId - algorithm ID
* \param gen - SMESH_Gen
*/
SMESH_Algo(int hypId, SMESH_Gen * gen);
/*!
* \brief Destructor
*/
virtual ~ SMESH_Algo();
/*!
* \brief Saves nothing in a stream
* \param save - the stream
* \retval std::ostream & - the stream
*/
virtual std::ostream & SaveTo(std::ostream & save);
/*!
* \brief Loads nothing from a stream
* \param load - the stream
* \retval std::ostream & - the stream
*/
virtual std::istream & LoadFrom(std::istream & load);
/*!
* \brief Return all types of compatible hypotheses
*/
const std::vector < std::string > & GetCompatibleHypothesis();
/*!
* \brief Check hypothesis definition to mesh a shape
* \param aMesh - the mesh
* \param aShape - the shape
* \param aStatus - check result
* \retval bool - true if hypothesis is well defined
*
* Textual description of a problem can be stored in _comment field.
*/
virtual bool CheckHypothesis(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus) = 0;
/*!
* \brief Computes mesh on a shape
* \param aMesh - the mesh
* \param aShape - the shape
* \retval bool - is a success
*
* Algorithms that !NeedDiscreteBoundary() || !OnlyUnaryInput() are
* to set SMESH_ComputeError returned by SMESH_submesh::GetComputeError()
* to report problematic sub-shapes
*/
virtual bool Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) = 0;
/*!
* \brief Computes mesh without geometry
* \param aMesh - the mesh
* \param aHelper - helper that must be used for adding elements to \aaMesh
* \retval bool - is a success
*
* The method is called if ( !aMesh->HasShapeToMesh() )
*/
virtual bool Compute(SMESH_Mesh & aMesh, SMESH_MesherHelper* aHelper);
/*!
* \brief Return true if the algorithm can mesh a given shape
* \param [in] aShape - shape to check
* \param [in] toCheckAll - if true, this check returns OK if all shapes are OK,
* else, returns OK if at least one shape is OK
* \retval bool - \c true by default
*/
virtual bool IsApplicableToShape(const TopoDS_Shape & shape, bool toCheckAll) const;
/*!
* \brief Sets _computeCanceled to true. It's usage depends on
* implementation of a particular mesher.
*/
virtual void CancelCompute();
/*!
* \brief If possible, returns progress of computation [0.,1.]
*/
virtual double GetProgress() const;
/*!
* \brief evaluates size of prospective mesh on a shape
* \param aMesh - the mesh
* \param aShape - the shape
* \param aResMap - prospective number of elements by SMDSAbs_ElementType by a sub-mesh
* \retval bool - is a success
*/
virtual bool Evaluate(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap) = 0;
/*!
* \brief Return a list of compatible hypotheses used to mesh a shape
* \param aMesh - the mesh
* \param aShape - the shape
* \param ignoreAuxiliary - do not include auxiliary hypotheses in the list
* \retval const std::list <const SMESHDS_Hypothesis*> - hypotheses list
*
* List the hypothesis used by the algorithm associated to the shape.
* Hypothesis associated to father shape -are- taken into account (see
* GetAppliedHypothesis). Relevant hypothesis have a name (type) listed in
* the algorithm. This method could be surcharged by specific algorithms, in
* case of several hypothesis simultaneously applicable.
*/
virtual const std::list <const SMESHDS_Hypothesis *> &
GetUsedHypothesis(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool ignoreAuxiliary=true) const;
/*!
* \brief Return sub-shape to which hypotheses returned by GetUsedHypothesis() are assigned
*/
virtual const std::list < TopoDS_Shape > & GetAssignedShapes() const;
/*!
* \brief Return the filter recognizing only compatible hypotheses
* \param ignoreAuxiliary - make filter ignore compatible auxiliary hypotheses
* \retval SMESH_HypoFilter* - the filter that can be NULL
*/
const SMESH_HypoFilter* GetCompatibleHypoFilter(const bool ignoreAuxiliary) const;
/*!
* \brief Just return false as the algorithm does not hold parameters values
*/
virtual bool SetParametersByMesh(const SMESH_Mesh* theMesh, const TopoDS_Shape& theShape);
virtual bool SetParametersByDefaults(const TDefaults& dflts, const SMESH_Mesh* theMesh=0);
/*!
* \brief return compute error
*/
SMESH_ComputeErrorPtr GetComputeError() const;
/*!
* \brief initialize compute error etc. before call of Compute()
*/
void InitComputeError();
/*!
* \brief Return compute progress by nb of calls of this method
*/
double GetProgressByTic() const;
/*!
* Return a vector of sub-meshes to Compute()
*/
std::vector<SMESH_subMesh*>& SubMeshesToCompute() { return _smToCompute; }
public:
// ==================================================================
// Algo features influencing how Compute() is called:
// in what turn and with what input shape
// ==================================================================
// SMESH_Hypothesis::GetDim();
// 1 - dimension of target mesh
bool OnlyUnaryInput() const { return _onlyUnaryInput; }
// 2 - is collection of tesselatable shapes inacceptable as input;
// "collection" means a shape containing shapes of dim equal
// to GetDim().
// Algo which can process a collection shape should expect
// an input temporary shape that is neither MainShape nor
// its child.
bool NeedDiscreteBoundary() const { return _requireDiscreteBoundary; }
// 3 - is a Dim-1 mesh prerequisite
bool NeedShape() const { return _requireShape; }
// 4 - is shape existence required
bool SupportSubmeshes() const { return _supportSubmeshes; }
// 5 - whether supports submeshes if !NeedDiscreteBoundary()
bool NeedLowerHyps(int dim) const { return _neededLowerHyps[ dim ]; }
// 6 - if algo !NeedDiscreteBoundary() but requires presence of
// hypotheses of dimension <dim> to generate all-dimensional mesh.
// This info is used not to issue warnings on hiding of lower global algos.
public:
// ==================================================================
// Methods to track non hierarchical dependencies between submeshes
// ==================================================================
/*!
* \brief Sets event listener to submeshes if necessary
* \param subMesh - submesh where algo is set
*
* This method is called when a submesh gets HYP_OK algo_state.
* After being set, event listener is notified on each event of a submesh.
* By default none listener is set
*/
virtual void SetEventListener(SMESH_subMesh* subMesh);
/*!
* \brief Allow algo to do something after persistent restoration
* \param subMesh - restored submesh
*
* This method is called only if a submesh has HYP_OK algo_state.
*/
virtual void SubmeshRestored(SMESH_subMesh* subMesh);
public:
// ==================================================================
// Common algo utilities
// ==================================================================
/*!
* \brief Fill vector of node parameters on geometrical edge, including vertex nodes
* \param theMesh - The mesh containing nodes
* \param theEdge - The geometrical edge of interest
* \param theParams - The resulting vector of sorted node parameters
* \retval bool - false if not all parameters are OK
* \warning Nodes moved to other geometry by MergeNodes() are NOT returned.
*/
static bool GetNodeParamOnEdge(const SMESHDS_Mesh* theMesh,
const TopoDS_Edge& theEdge,
std::vector< double > & theParams);
/*!
* \brief Fill map of node parameter on geometrical edge to node it-self
* \param theMesh - The mesh containing nodes
* \param theEdge - The geometrical edge of interest
* \param theNodes - The resulting map
* \param ignoreMediumNodes - to store medium nodes of quadratic elements or not
* \param typeToCheck - type of elements to check for medium nodes
* \retval bool - false if not all parameters are OK
* \warning Nodes moved to other geometry by MergeNodes() are NOT returned.
*/
static bool GetSortedNodesOnEdge(const SMESHDS_Mesh* theMesh,
const TopoDS_Edge& theEdge,
const bool ignoreMediumNodes,
std::map< double, const SMDS_MeshNode* > & theNodes,
const SMDSAbs_ElementType typeToCheck = SMDSAbs_All);
/*!
* \brief Compute length of an edge
* \param E - the edge
* \retval double - the length
*/
static double EdgeLength(const TopoDS_Edge & E);
int NumberOfPoints(SMESH_Mesh& aMesh,const TopoDS_Wire& W);
/*!
* \brief Return continuity of two edges
* \param E1 - the 1st edge
* \param E2 - the 2nd edge
* \retval GeomAbs_Shape - regularity at the junction between E1 and E2
*/
static GeomAbs_Shape Continuity(const TopoDS_Edge& E1, const TopoDS_Edge& E2);
/*!
* \brief Return true if an edge can be considered as a continuation of another
*/
static bool IsContinuous(const TopoDS_Edge & E1, const TopoDS_Edge & E2) {
return ( Continuity( E1, E2 ) >= GeomAbs_G1 );
}
/*!
* \brief Return true if an edge can be considered straight
*/
static bool IsStraight( const TopoDS_Edge & E, const bool degenResult=false );
/*!
* \brief Return true if an edge has no 3D curve
*/
static bool isDegenerated( const TopoDS_Edge & E, const bool checkLength=false );
/*!
* \brief Return the node built on a vertex
* \param V - the vertex
* \param meshDS - mesh data structure
* \retval const SMDS_MeshNode* - found node or NULL
*/
static const SMDS_MeshNode* VertexNode(const TopoDS_Vertex& V, const SMESHDS_Mesh* meshDS);
/*!
* \brief Return the node built on a vertex.
* A node moved to other geometry by MergeNodes() is also returned.
* \param V - the vertex
* \param mesh - mesh
* \retval const SMDS_MeshNode* - found node or NULL
*/
static const SMDS_MeshNode* VertexNode(const TopoDS_Vertex& V, const SMESH_Mesh* mesh);
/*!
* \brief Return the node built on a vertex.
* A node moved to other geometry by MergeNodes() is also returned.
* \param V - the vertex
* \param edgeSM - sub-mesh of a meshed EDGE sharing the vertex
* \param mesh - the mesh
* \param checkV - if \c true, presence of a node on the vertex is checked
* \retval const SMDS_MeshNode* - found node or NULL
*/
static const SMDS_MeshNode* VertexNode(const TopoDS_Vertex& V,
const SMESHDS_SubMesh* edgeSM,
const SMESH_Mesh* mesh,
const bool checkV=true);
enum EMeshError { MEr_OK = 0, MEr_HOLES, MEr_BAD_ORI, MEr_EMPTY };
/*!
* \brief Finds topological errors of a sub-mesh
*/
static EMeshError GetMeshError(SMESH_subMesh* subMesh);
protected:
/*!
* \brief store error and comment and then return ( error == COMPERR_OK )
*/
bool error(int error, const SMESH_Comment& comment = "");
/*!
* \brief store COMPERR_ALGO_FAILED error and comment and then return false
*/
bool error(const SMESH_Comment& comment = "")
{ return error(COMPERR_ALGO_FAILED, comment); }
/*!
* \brief store error and return error->IsOK()
*/
bool error(SMESH_ComputeErrorPtr error);
/*!
* \brief store a bad input element preventing computation,
* which may be a temporary one i.e. not residing the mesh,
* then it will be deleted by InitComputeError()
*/
void addBadInputElement(const SMDS_MeshElement* elem);
void addBadInputElements(const SMESHDS_SubMesh* sm,
const bool addNodes=false);
protected:
const SMESH_HypoFilter * _compatibleAllHypFilter;
const SMESH_HypoFilter * _compatibleNoAuxHypFilter;
std::vector<std::string> _compatibleHypothesis;
std::list<const SMESHDS_Hypothesis *> _usedHypList;
std::list<TopoDS_Shape> _assigedShapeList; // _usedHypList assigned to
// Algo features influencing which Compute() and how is called:
// in what turn and with what input shape.
// These fields must be redefined if necessary by each descendant at constructor.
bool _onlyUnaryInput; // mesh one shape of GetDim() at once. Default TRUE
bool _requireDiscreteBoundary;// GetDim()-1 mesh must be present. Default TRUE
bool _requireShape; // work with GetDim()-1 mesh bound to geom only. Default TRUE
bool _supportSubmeshes; // if !_requireDiscreteBoundary. Default FALSE
bool _neededLowerHyps[4]; // hyp dims needed by algo that !_requireDiscreteBoundary. Df. FALSE
// indicates if quadratic mesh creation is required,
// is usually set like this: _quadraticMesh = SMESH_MesherHelper::IsQuadraticSubMesh(shape)
bool _quadraticMesh;
int _error; //!< SMESH_ComputeErrorName or anything algo specific
std::string _comment; //!< any text explaining what is wrong in Compute()
std::list<const SMDS_MeshElement*> _badInputElements; //!< to explain COMPERR_BAD_INPUT_MESH
const SMDS_Mesh* _mesh; //!< mesh being computed, needed to create SMESH_BadInputElements
volatile bool _computeCanceled; //!< is set to True while computing to stop it
double _progress; /* progress of Compute() [0.,1.],
to be set by an algo really tracking the progress */
int _progressTic; // counter of calls from SMESH_Mesh::GetComputeProgress()
std::vector<SMESH_subMesh*> _smToCompute; // sub-meshes to Compute()
};
class SMESH_EXPORT SMESH_0D_Algo: public SMESH_Algo
{
public:
SMESH_0D_Algo(int hypId, SMESH_Gen* gen);
};
class SMESH_EXPORT SMESH_1D_Algo: public SMESH_Algo
{
public:
SMESH_1D_Algo(int hypId, SMESH_Gen* gen);
/*!
* \brief Return true if the algorithm can mesh a given shape
* \param [in] aShape - shape to check
* \param [in] toCheckAll - if true, this check returns OK if all shapes are OK,
* else, returns OK if at least one shape is OK
* \retval bool - \c true by default
*/
virtual bool IsApplicableToShape(const TopoDS_Shape & shape, bool toCheckAll) const;
};
class SMESH_EXPORT SMESH_2D_Algo: public SMESH_Algo
{
public:
SMESH_2D_Algo(int hypId, SMESH_Gen* gen);
/*!
* \brief Return true if the algorithm can mesh a given shape
* \param [in] aShape - shape to check
* \param [in] toCheckAll - if true, this check returns OK if all shapes are OK,
* else, returns OK if at least one shape is OK
* \retval bool - \c true by default
*/
virtual bool IsApplicableToShape(const TopoDS_Shape & shape, bool toCheckAll) const;
/*!
* \brief Method in which an algorithm generating a structured mesh
* fixes positions of in-face nodes after there movement
* due to insertion of viscous layers.
*/
virtual bool FixInternalNodes(const SMESH_ProxyMesh& mesh,
const TopoDS_Face& face);
};
class SMESH_EXPORT SMESH_3D_Algo: public SMESH_Algo
{
public:
SMESH_3D_Algo(int hypId, SMESH_Gen* gen);
/*!
* \brief Return true if the algorithm can mesh a given shape
* \param [in] aShape - shape to check
* \param [in] toCheckAll - if true, this check returns OK if all shapes are OK,
* else, returns OK if at least one shape is OK
* \retval bool - \c true by default
*/
virtual bool IsApplicableToShape(const TopoDS_Shape & shape, bool toCheckAll) const;
};
#endif