smesh/src/SMESH_SWIG/smeshBuilder.py

7159 lines
272 KiB
Python

# Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
# File : smeshBuilder.py
# Author : Francis KLOSS, OCC
# Module : SMESH
import salome
from salome.geom import geomBuilder
import SMESH # This is necessary for back compatibility
import omniORB # back compatibility
SMESH.MED_V2_1 = omniORB.EnumItem("MED_V2_1", 0) # back compatibility
SMESH.MED_V2_2 = omniORB.EnumItem("MED_V2_2", 1) # back compatibility
from SMESH import *
from salome.smesh.smesh_algorithm import Mesh_Algorithm
import SALOME
import SALOMEDS
import os
import inspect
# In case the omniORBpy EnumItem class does not fully support Python 3
# (for instance in version 4.2.1-2), the comparison ordering methods must be
# defined
#
try:
SMESH.Entity_Triangle < SMESH.Entity_Quadrangle
except TypeError:
def enumitem_eq(self, other):
try:
if isinstance(other, omniORB.EnumItem):
if other._parent_id == self._parent_id:
return self._v == other._v
else:
return self._parent_id == other._parent_id
else:
return id(self) == id(other)
except:
return id(self) == id(other)
def enumitem_lt(self, other):
try:
if isinstance(other, omniORB.EnumItem):
if other._parent_id == self._parent_id:
return self._v < other._v
else:
return self._parent_id < other._parent_id
else:
return id(self) < id(other)
except:
return id(self) < id(other)
def enumitem_le(self, other):
try:
if isinstance(other, omniORB.EnumItem):
if other._parent_id == self._parent_id:
return self._v <= other._v
else:
return self._parent_id <= other._parent_id
else:
return id(self) <= id(other)
except:
return id(self) <= id(other)
def enumitem_gt(self, other):
try:
if isinstance(other, omniORB.EnumItem):
if other._parent_id == self._parent_id:
return self._v > other._v
else:
return self._parent_id > other._parent_id
else:
return id(self) > id(other)
except:
return id(self) > id(other)
def enumitem_ge(self, other):
try:
if isinstance(other, omniORB.EnumItem):
if other._parent_id == self._parent_id:
return self._v >= other._v
else:
return self._parent_id >= other._parent_id
else:
return id(self) >= id(other)
except:
return id(self) >= id(other)
omniORB.EnumItem.__eq__ = enumitem_eq
omniORB.EnumItem.__lt__ = enumitem_lt
omniORB.EnumItem.__le__ = enumitem_le
omniORB.EnumItem.__gt__ = enumitem_gt
omniORB.EnumItem.__ge__ = enumitem_ge
class MeshMeta(type):
"""Private class used to workaround a problem that sometimes isinstance(m, Mesh) returns False
"""
def __instancecheck__(cls, inst):
"""Implement isinstance(inst, cls)."""
return any(cls.__subclasscheck__(c)
for c in {type(inst), inst.__class__})
def __subclasscheck__(cls, sub):
"""Implement issubclass(sub, cls)."""
return type.__subclasscheck__(cls, sub) or (cls.__name__ == sub.__name__ and cls.__module__ == sub.__module__)
def DegreesToRadians(AngleInDegrees):
"""Convert an angle from degrees to radians
"""
from math import pi
return AngleInDegrees * pi / 180.0
import salome_notebook
notebook = salome_notebook.notebook
# Salome notebook variable separator
var_separator = ":"
def ParseParameters(*args):
"""
Return list of variable values from salome notebook.
The last argument, if is callable, is used to modify values got from notebook
"""
Result = []
Parameters = ""
hasVariables = False
varModifFun=None
if args and callable(args[-1]):
args, varModifFun = args[:-1], args[-1]
for parameter in args:
Parameters += str(parameter) + var_separator
if isinstance(parameter,str):
# check if there is an inexistent variable name
if not notebook.isVariable(parameter):
raise ValueError("Variable with name '" + parameter + "' doesn't exist!!!")
parameter = notebook.get(parameter)
hasVariables = True
if varModifFun:
parameter = varModifFun(parameter)
pass
pass
Result.append(parameter)
pass
Parameters = Parameters[:-1]
Result.append( Parameters )
Result.append( hasVariables )
return Result
def ParseAngles(*args):
"""
Parse parameters while converting variables to radians
"""
return ParseParameters( *( args + (DegreesToRadians, )))
def __initPointStruct(point,*args):
"""
Substitute PointStruct.__init__() to create SMESH.PointStruct using notebook variables.
Parameters are stored in PointStruct.parameters attribute
"""
point.x, point.y, point.z, point.parameters,hasVars = ParseParameters(*args)
pass
SMESH.PointStruct.__init__ = __initPointStruct
def __initAxisStruct(ax,*args):
"""
Substitute AxisStruct.__init__() to create SMESH.AxisStruct using notebook variables.
Parameters are stored in AxisStruct.parameters attribute
"""
if len( args ) != 6:
raise RuntimeError("Bad nb args (%s) passed in SMESH.AxisStruct(x,y,z,dx,dy,dz)"%(len( args )))
ax.x, ax.y, ax.z, ax.vx, ax.vy, ax.vz, ax.parameters,hasVars = ParseParameters(*args)
pass
SMESH.AxisStruct.__init__ = __initAxisStruct
smeshPrecisionConfusion = 1.e-07
def IsEqual(val1, val2, tol=smeshPrecisionConfusion):
"""Compare real values using smeshPrecisionConfusion as tolerance
"""
if abs(val1 - val2) < tol:
return True
return False
NO_NAME = "NoName"
def GetName(obj):
"""
Return a name of an object
Returns:
object name
"""
if obj:
# object not null
if isinstance(obj, SALOMEDS._objref_SObject):
# study object
return obj.GetName()
try:
ior = salome.orb.object_to_string(obj)
except:
ior = None
if ior:
sobj = salome.myStudy.FindObjectIOR(ior)
if sobj:
return sobj.GetName()
if hasattr(obj, "GetName"):
# unknown CORBA object, having GetName() method
return obj.GetName()
else:
# unknown CORBA object, no GetName() method
return NO_NAME
pass
if hasattr(obj, "GetName"):
# unknown non-CORBA object, having GetName() method
return obj.GetName()
pass
raise RuntimeError("Null or invalid object")
def TreatHypoStatus(status, hypName, geomName, isAlgo, mesh):
"""
Print error message if a hypothesis was not assigned.
"""
if isAlgo:
hypType = "algorithm"
else:
hypType = "hypothesis"
pass
reason = ""
if hasattr( status, "__getitem__" ):
status, reason = status[0], status[1]
if status == HYP_UNKNOWN_FATAL:
reason = "for unknown reason"
elif status == HYP_INCOMPATIBLE:
reason = "this hypothesis mismatches the algorithm"
elif status == HYP_NOTCONFORM:
reason = "a non-conform mesh would be built"
elif status == HYP_ALREADY_EXIST:
if isAlgo: return # it does not influence anything
reason = hypType + " of the same dimension is already assigned to this shape"
elif status == HYP_BAD_DIM:
reason = hypType + " mismatches the shape"
elif status == HYP_CONCURRENT :
reason = "there are concurrent hypotheses on sub-shapes"
elif status == HYP_BAD_SUBSHAPE:
reason = "the shape is neither the main one, nor its sub-shape, nor a valid group"
elif status == HYP_BAD_GEOMETRY:
reason = "the algorithm is not applicable to this geometry"
elif status == HYP_HIDDEN_ALGO:
reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions"
elif status == HYP_HIDING_ALGO:
reason = "it hides algorithms of lower dimensions by generating elements of all dimensions"
elif status == HYP_NEED_SHAPE:
reason = "algorithm can't work without shape"
elif status == HYP_INCOMPAT_HYPS:
pass
else:
return
where = geomName
if where:
where = '"%s"' % geomName
if mesh:
meshName = GetName( mesh )
if meshName and meshName != NO_NAME:
where = '"%s" shape in "%s" mesh ' % ( geomName, meshName )
if status < HYP_UNKNOWN_FATAL and where:
print('"%s" was assigned to %s but %s' %( hypName, where, reason ))
elif where:
print('"%s" was not assigned to %s : %s' %( hypName, where, reason ))
else:
print('"%s" was not assigned : %s' %( hypName, reason ))
pass
def AssureGeomPublished(mesh, geom, name=''):
"""
Private method. Add geom (sub-shape of the main shape) into the study if not yet there
"""
if not isinstance( geom, geomBuilder.GEOM._objref_GEOM_Object ):
return
if not geom.GetStudyEntry():
## get a name
if not name and geom.GetShapeType() != geomBuilder.GEOM.COMPOUND:
# for all groups SubShapeName() return "Compound_-1"
name = mesh.geompyD.SubShapeName(geom, mesh.geom)
if not name:
name = "%s_%s"%(geom.GetShapeType(), id(geom)%10000)
## publish
mesh.geompyD.addToStudyInFather( mesh.geom, geom, name )
return
def FirstVertexOnCurve(mesh, edge):
"""
Returns:
the first vertex of a geometrical edge by ignoring orientation
"""
vv = mesh.geompyD.SubShapeAll( edge, geomBuilder.geomBuilder.ShapeType["VERTEX"])
if not vv:
raise TypeError("Given object has no vertices")
if len( vv ) == 1: return vv[0]
v0 = mesh.geompyD.MakeVertexOnCurve(edge,0.)
xyz = mesh.geompyD.PointCoordinates( v0 ) # coords of the first vertex
xyz1 = mesh.geompyD.PointCoordinates( vv[0] )
xyz2 = mesh.geompyD.PointCoordinates( vv[1] )
dist1, dist2 = 0,0
for i in range(3):
dist1 += abs( xyz[i] - xyz1[i] )
dist2 += abs( xyz[i] - xyz2[i] )
if dist1 < dist2:
return vv[0]
else:
return vv[1]
smeshInst = None
"""
Warning:
smeshInst is a singleton
"""
engine = None
doLcc = False
created = False
class smeshBuilder( SMESH._objref_SMESH_Gen, object ):
"""
This class allows to create, load or manipulate meshes.
It has a set of methods to create, load or copy meshes, to combine several meshes, etc.
It also has methods to get infos and measure meshes.
"""
# MirrorType enumeration
POINT = SMESH_MeshEditor.POINT
AXIS = SMESH_MeshEditor.AXIS
PLANE = SMESH_MeshEditor.PLANE
# Smooth_Method enumeration
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
PrecisionConfusion = smeshPrecisionConfusion
# TopAbs_State enumeration
[TopAbs_IN, TopAbs_OUT, TopAbs_ON, TopAbs_UNKNOWN] = list(range(4))
# Methods of splitting a hexahedron into tetrahedra
Hex_5Tet, Hex_6Tet, Hex_24Tet, Hex_2Prisms, Hex_4Prisms = 1, 2, 3, 1, 2
def __new__(cls, *args):
global engine
global smeshInst
global doLcc
#print("==== __new__", engine, smeshInst, doLcc)
if smeshInst is None:
# smesh engine is either retrieved from engine, or created
smeshInst = engine
# Following test avoids a recursive loop
if doLcc:
if smeshInst is not None:
# smesh engine not created: existing engine found
doLcc = False
if doLcc:
doLcc = False
# FindOrLoadComponent called:
# 1. CORBA resolution of server
# 2. the __new__ method is called again
#print("==== smeshInst = lcc.FindOrLoadComponent ", engine, smeshInst, doLcc)
smeshInst = salome.lcc.FindOrLoadComponent( "FactoryServer", "SMESH" )
else:
# FindOrLoadComponent not called
if smeshInst is None:
# smeshBuilder instance is created from lcc.FindOrLoadComponent
#print("==== smeshInst = super(smeshBuilder,cls).__new__(cls) ", engine, smeshInst, doLcc)
smeshInst = super(smeshBuilder,cls).__new__(cls)
else:
# smesh engine not created: existing engine found
#print("==== existing ", engine, smeshInst, doLcc)
pass
#print("====1 ", smeshInst)
return smeshInst
#print("====2 ", smeshInst)
return smeshInst
def __init__(self, *args):
global created
#print("--------------- smeshbuilder __init__ ---", created)
if not created:
created = True
SMESH._objref_SMESH_Gen.__init__(self, *args)
def DumpPython(self, theStudy, theIsPublished=True, theIsMultiFile=True):
"""
Dump component to the Python script.
This method overrides IDL function to allow default values for the parameters.
"""
return SMESH._objref_SMESH_Gen.DumpPython(self, theStudy, theIsPublished, theIsMultiFile)
def SetDumpPythonHistorical(self, isHistorical):
"""
Set mode of DumpPython(), *historical* or *snapshot*.
In the *historical* mode, the Python Dump script includes all commands
performed by SMESH engine. In the *snapshot* mode, commands
relating to objects removed from the Study are excluded from the script
as well as commands not influencing the current state of meshes
"""
if isHistorical: val = "true"
else: val = "false"
SMESH._objref_SMESH_Gen.SetOption(self, "historical_python_dump", val)
def init_smesh(self,geompyD = None):
"""
Set Geometry component
"""
#print("init_smesh")
self.UpdateStudy(geompyD)
notebook.myStudy = salome.myStudy
def Mesh(self, obj=0, name=0):
"""
Create a mesh. This mesh can be either
* an empty mesh not bound to geometry, if *obj* == 0
* an empty mesh bound to geometry, if *obj* is GEOM.GEOM_Object
* a mesh wrapping a :class:`CORBA mesh <SMESH.SMESH_Mesh>` given as *obj* parameter.
Parameters:
obj: either
1. a :class:`CORBA mesh <SMESH.SMESH_Mesh>` got by calling e.g.
::
salome.myStudy.FindObjectID("0:1:2:3").GetObject()
2. a geometrical object for meshing
3. none.
name: the name for the new mesh.
Returns:
an instance of class :class:`Mesh`.
"""
if isinstance(obj,str):
obj,name = name,obj
return Mesh(self, self.geompyD, obj, name)
def EnumToLong(self,theItem):
"""
Return a long value from enumeration
"""
return theItem._v
def ColorToString(self,c):
"""
Convert SALOMEDS.Color to string.
To be used with filters.
Parameters:
c: color value (SALOMEDS.Color)
Returns:
a string representation of the color.
"""
val = ""
if isinstance(c, SALOMEDS.Color):
val = "%s;%s;%s" % (c.R, c.G, c.B)
elif isinstance(c, str):
val = c
else:
raise ValueError("Color value should be of string or SALOMEDS.Color type")
return val
def GetPointStruct(self,theVertex):
"""
Get :class:`SMESH.PointStruct` from vertex
Parameters:
theVertex (GEOM.GEOM_Object): vertex
Returns:
:class:`SMESH.PointStruct`
"""
[x, y, z] = self.geompyD.PointCoordinates(theVertex)
return PointStruct(x,y,z)
def GetDirStruct(self,theVector):
"""
Get :class:`SMESH.DirStruct` from vector
Parameters:
theVector (GEOM.GEOM_Object): vector
Returns:
:class:`SMESH.DirStruct`
"""
vertices = self.geompyD.SubShapeAll( theVector, geomBuilder.geomBuilder.ShapeType["VERTEX"] )
if(len(vertices) != 2):
print("Error: vector object is incorrect.")
return None
p1 = self.geompyD.PointCoordinates(vertices[0])
p2 = self.geompyD.PointCoordinates(vertices[1])
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
dirst = DirStruct(pnt)
return dirst
def MakeDirStruct(self,x,y,z):
"""
Make :class:`SMESH.DirStruct` from a triplet of floats
Parameters:
x,y,z (float): vector components
Returns:
:class:`SMESH.DirStruct`
"""
pnt = PointStruct(x,y,z)
return DirStruct(pnt)
def GetAxisStruct(self,theObj):
"""
Get :class:`SMESH.AxisStruct` from a geometrical object
Parameters:
theObj (GEOM.GEOM_Object): line or plane
Returns:
:class:`SMESH.AxisStruct`
"""
import GEOM
edges = self.geompyD.SubShapeAll( theObj, geomBuilder.geomBuilder.ShapeType["EDGE"] )
axis = None
if len(edges) > 1:
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geomBuilder.geomBuilder.ShapeType["VERTEX"] )
vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geomBuilder.geomBuilder.ShapeType["VERTEX"] )
vertex1 = self.geompyD.PointCoordinates(vertex1)
vertex2 = self.geompyD.PointCoordinates(vertex2)
vertex3 = self.geompyD.PointCoordinates(vertex3)
vertex4 = self.geompyD.PointCoordinates(vertex4)
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
axis._mirrorType = SMESH.SMESH_MeshEditor.PLANE
elif len(edges) == 1:
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geomBuilder.geomBuilder.ShapeType["VERTEX"] )
p1 = self.geompyD.PointCoordinates( vertex1 )
p2 = self.geompyD.PointCoordinates( vertex2 )
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
axis._mirrorType = SMESH.SMESH_MeshEditor.AXIS
elif theObj.GetShapeType() == GEOM.VERTEX:
x,y,z = self.geompyD.PointCoordinates( theObj )
axis = AxisStruct( x,y,z, 1,0,0,)
axis._mirrorType = SMESH.SMESH_MeshEditor.POINT
return axis
# From SMESH_Gen interface:
# ------------------------
def SetName(self, obj, name):
"""
Set the given name to an object
Parameters:
obj: the object to rename
name: a new object name
"""
if isinstance( obj, Mesh ):
obj = obj.GetMesh()
elif isinstance( obj, Mesh_Algorithm ):
obj = obj.GetAlgorithm()
ior = salome.orb.object_to_string(obj)
SMESH._objref_SMESH_Gen.SetName(self, ior, name)
def SetEmbeddedMode( self,theMode ):
"""
Set the current mode
"""
SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
def IsEmbeddedMode(self):
"""
Get the current mode
"""
return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
def UpdateStudy( self, geompyD = None ):
"""
Update the current study. Calling UpdateStudy() allows to
update meshes at switching GEOM->SMESH
"""
#self.UpdateStudy()
if not geompyD:
from salome.geom import geomBuilder
geompyD = geomBuilder.geom
if not geompyD:
geompyD = geomBuilder.New()
pass
self.geompyD=geompyD
self.SetGeomEngine(geompyD)
SMESH._objref_SMESH_Gen.UpdateStudy(self)
sb = salome.myStudy.NewBuilder()
sc = salome.myStudy.FindComponent("SMESH")
if sc:
sb.LoadWith(sc, self)
pass
def SetEnablePublish( self, theIsEnablePublish ):
"""
Set enable publishing in the study. Calling SetEnablePublish( False ) allows to
switch **off** publishing in the Study of mesh objects.
"""
#self.SetEnablePublish(theIsEnablePublish)
SMESH._objref_SMESH_Gen.SetEnablePublish(self,theIsEnablePublish)
global notebook
notebook = salome_notebook.NoteBook( theIsEnablePublish )
def CreateMeshesFromUNV( self,theFileName ):
"""
Create a Mesh object importing data from the given UNV file
Returns:
an instance of class :class:`Mesh`
"""
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
def CreateMeshesFromMED( self,theFileName ):
"""
Create a Mesh object(s) importing data from the given MED file
Returns:
a tuple ( list of class :class:`Mesh` instances,
:class:`SMESH.DriverMED_ReadStatus` )
"""
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
aMeshes = [ Mesh(self, self.geompyD, m) for m in aSmeshMeshes ]
return aMeshes, aStatus
def CreateMeshesFromSAUV( self,theFileName ):
"""
Create a Mesh object(s) importing data from the given SAUV file
Returns:
a tuple ( list of class :class:`Mesh` instances, :class:`SMESH.DriverMED_ReadStatus` )
"""
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromSAUV(self,theFileName)
aMeshes = [ Mesh(self, self.geompyD, m) for m in aSmeshMeshes ]
return aMeshes, aStatus
def CreateMeshesFromSTL( self, theFileName ):
"""
Create a Mesh object importing data from the given STL file
Returns:
an instance of class :class:`Mesh`
"""
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
def CreateMeshesFromCGNS( self, theFileName ):
"""
Create Mesh objects importing data from the given CGNS file
Returns:
a tuple ( list of class :class:`Mesh` instances, :class:`SMESH.DriverMED_ReadStatus` )
"""
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromCGNS(self,theFileName)
aMeshes = [ Mesh(self, self.geompyD, m) for m in aSmeshMeshes ]
return aMeshes, aStatus
def CreateMeshesFromGMF( self, theFileName ):
"""
Create a Mesh object importing data from the given GMF file.
GMF files must have .mesh extension for the ASCII format and .meshb for
the binary format.
Returns:
( an instance of class :class:`Mesh`, :class:`SMESH.ComputeError` )
"""
aSmeshMesh, error = SMESH._objref_SMESH_Gen.CreateMeshesFromGMF(self,
theFileName,
True)
if error.comment: print("*** CreateMeshesFromGMF() errors:\n", error.comment)
return Mesh(self, self.geompyD, aSmeshMesh), error
def Concatenate( self, meshes, uniteIdenticalGroups,
mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False,
name = ""):
"""
Concatenate the given meshes into one mesh. All groups of input meshes will be
present in the new mesh.
Parameters:
meshes: :class:`meshes, sub-meshes, groups or filters <SMESH.SMESH_IDSource>` to combine into one mesh
uniteIdenticalGroups: if True, groups with same names are united, else they are renamed
mergeNodesAndElements: if True, equal nodes and elements are merged
mergeTolerance: tolerance for merging nodes
allGroups: forces creation of groups corresponding to every input mesh
name: name of a new mesh
Returns:
an instance of class :class:`Mesh`
"""
if not meshes: return None
for i,m in enumerate(meshes):
if isinstance(m, Mesh):
meshes[i] = m.GetMesh()
mergeTolerance,Parameters,hasVars = ParseParameters(mergeTolerance)
meshes[0].SetParameters(Parameters)
if allGroups:
aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
else:
aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
aMesh = Mesh(self, self.geompyD, aSmeshMesh, name=name)
return aMesh
def CopyMesh( self, meshPart, meshName, toCopyGroups=False, toKeepIDs=False):
"""
Create a mesh by copying a part of another mesh.
Parameters:
meshPart: a part of mesh to copy, either
:class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`.
To copy nodes or elements not forming any mesh object,
pass result of :meth:`Mesh.GetIDSource` as *meshPart*
meshName: a name of the new mesh
toCopyGroups: to create in the new mesh groups the copied elements belongs to
toKeepIDs: to preserve order of the copied elements or not
Returns:
an instance of class :class:`Mesh`
"""
if (isinstance( meshPart, Mesh )):
meshPart = meshPart.GetMesh()
mesh = SMESH._objref_SMESH_Gen.CopyMesh( self,meshPart,meshName,toCopyGroups,toKeepIDs )
return Mesh(self, self.geompyD, mesh)
def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
"""
Return IDs of sub-shapes
Parameters:
theMainObject (GEOM.GEOM_Object): a shape
theListOfSubObjects: sub-shapes (list of GEOM.GEOM_Object)
Returns:
the list of integer values
"""
return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
def GetPattern(self):
"""
Create a pattern mapper.
Returns:
an instance of :class:`SMESH.SMESH_Pattern`
:ref:`Example of Patterns usage <tui_pattern_mapping>`
"""
return SMESH._objref_SMESH_Gen.GetPattern(self)
def SetBoundaryBoxSegmentation(self, nbSegments):
"""
Set number of segments per diagonal of boundary box of geometry, by which
default segment length of appropriate 1D hypotheses is defined in GUI.
Default value is 10.
"""
SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
# Filtering. Auxiliary functions:
# ------------------------------
def GetEmptyCriterion(self):
"""
Create an empty criterion
Returns:
:class:`SMESH.Filter.Criterion`
"""
Type = self.EnumToLong(FT_Undefined)
Compare = self.EnumToLong(FT_Undefined)
Threshold = 0
ThresholdStr = ""
ThresholdID = ""
UnaryOp = self.EnumToLong(FT_Undefined)
BinaryOp = self.EnumToLong(FT_Undefined)
Tolerance = 1e-07
TypeOfElement = ALL
Precision = -1 ##@1e-07
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
def GetCriterion(self,elementType,
CritType,
Compare = FT_EqualTo,
Threshold="",
UnaryOp=FT_Undefined,
BinaryOp=FT_Undefined,
Tolerance=1e-07):
"""
Create a criterion by the given parameters
Criterion structures allow to define complex filters by combining them with logical operations (AND / OR) (see example below)
Parameters:
elementType: the :class:`type of elements <SMESH.ElementType>` (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME)
CritType: the type of criterion :class:`SMESH.FunctorType` (SMESH.FT_Taper, SMESH.FT_Area, etc.).
Note that the items starting from FT_LessThan are not suitable for *CritType*.
Compare: belongs to {SMESH.FT_LessThan, SMESH.FT_MoreThan, SMESH.FT_EqualTo}
Threshold: the threshold value (range of ids as string, shape, numeric)
UnaryOp: SMESH.FT_LogicalNOT or SMESH.FT_Undefined
BinaryOp: a binary logical operation SMESH.FT_LogicalAND, SMESH.FT_LogicalOR or
SMESH.FT_Undefined
Tolerance: the tolerance used by SMESH.FT_BelongToGeom, SMESH.FT_BelongToSurface,
SMESH.FT_LyingOnGeom, SMESH.FT_CoplanarFaces criteria
Returns:
:class:`SMESH.Filter.Criterion`
Example: :ref:`combining_filters`
"""
if not CritType in SMESH.FunctorType._items:
raise TypeError("CritType should be of SMESH.FunctorType")
aCriterion = self.GetEmptyCriterion()
aCriterion.TypeOfElement = elementType
aCriterion.Type = self.EnumToLong(CritType)
aCriterion.Tolerance = Tolerance
aThreshold = Threshold
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
aCriterion.Compare = self.EnumToLong(Compare)
elif Compare == "=" or Compare == "==":
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
elif Compare == "<":
aCriterion.Compare = self.EnumToLong(FT_LessThan)
elif Compare == ">":
aCriterion.Compare = self.EnumToLong(FT_MoreThan)
elif Compare != FT_Undefined:
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
aThreshold = Compare
if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
FT_BelongToCylinder, FT_LyingOnGeom]:
# Check that Threshold is GEOM object
if isinstance(aThreshold, geomBuilder.GEOM._objref_GEOM_Object):
aCriterion.ThresholdStr = GetName(aThreshold)
aCriterion.ThresholdID = aThreshold.GetStudyEntry()
if not aCriterion.ThresholdID:
name = aCriterion.ThresholdStr
if not name:
name = "%s_%s"%(aThreshold.GetShapeType(), id(aThreshold)%10000)
aCriterion.ThresholdID = self.geompyD.addToStudy( aThreshold, name )
# or a name of GEOM object
elif isinstance( aThreshold, str ):
aCriterion.ThresholdStr = aThreshold
else:
raise TypeError("The Threshold should be a shape.")
if isinstance(UnaryOp,float):
aCriterion.Tolerance = UnaryOp
UnaryOp = FT_Undefined
pass
elif CritType == FT_BelongToMeshGroup:
# Check that Threshold is a group
if isinstance(aThreshold, SMESH._objref_SMESH_GroupBase):
if aThreshold.GetType() != elementType:
raise ValueError("Group type mismatches Element type")
aCriterion.ThresholdStr = aThreshold.GetName()
aCriterion.ThresholdID = salome.orb.object_to_string( aThreshold )
study = salome.myStudy
if study:
so = study.FindObjectIOR( aCriterion.ThresholdID )
if so:
entry = so.GetID()
if entry:
aCriterion.ThresholdID = entry
else:
raise TypeError("The Threshold should be a Mesh Group")
elif CritType == FT_RangeOfIds:
# Check that Threshold is string
if isinstance(aThreshold, str):
aCriterion.ThresholdStr = aThreshold
else:
raise TypeError("The Threshold should be a string.")
elif CritType == FT_CoplanarFaces:
# Check the Threshold
if isinstance(aThreshold, int):
aCriterion.ThresholdID = str(aThreshold)
elif isinstance(aThreshold, str):
ID = int(aThreshold)
if ID < 1:
raise ValueError("Invalid ID of mesh face: '%s'"%aThreshold)
aCriterion.ThresholdID = aThreshold
else:
raise TypeError("The Threshold should be an ID of mesh face and not '%s'"%aThreshold)
elif CritType == FT_ConnectedElements:
# Check the Threshold
if isinstance(aThreshold, geomBuilder.GEOM._objref_GEOM_Object): # shape
aCriterion.ThresholdID = aThreshold.GetStudyEntry()
if not aCriterion.ThresholdID:
name = aThreshold.GetName()
if not name:
name = "%s_%s"%(aThreshold.GetShapeType(), id(aThreshold)%10000)
aCriterion.ThresholdID = self.geompyD.addToStudy( aThreshold, name )
elif isinstance(aThreshold, int): # node id
aCriterion.Threshold = aThreshold
elif isinstance(aThreshold, list): # 3 point coordinates
if len( aThreshold ) < 3:
raise ValueError("too few point coordinates, must be 3")
aCriterion.ThresholdStr = " ".join( [str(c) for c in aThreshold[:3]] )
elif isinstance(aThreshold, str):
if aThreshold.isdigit():
aCriterion.Threshold = aThreshold # node id
else:
aCriterion.ThresholdStr = aThreshold # hope that it's point coordinates
else:
raise TypeError("The Threshold should either a VERTEX, or a node ID, "\
"or a list of point coordinates and not '%s'"%aThreshold)
elif CritType == FT_ElemGeomType:
# Check the Threshold
try:
aCriterion.Threshold = self.EnumToLong(aThreshold)
assert( aThreshold in SMESH.GeometryType._items )
except:
if isinstance(aThreshold, int):
aCriterion.Threshold = aThreshold
else:
raise TypeError("The Threshold should be an integer or SMESH.GeometryType.")
pass
pass
elif CritType == FT_EntityType:
# Check the Threshold
try:
aCriterion.Threshold = self.EnumToLong(aThreshold)
assert( aThreshold in SMESH.EntityType._items )
except:
if isinstance(aThreshold, int):
aCriterion.Threshold = aThreshold
else:
raise TypeError("The Threshold should be an integer or SMESH.EntityType.")
pass
pass
elif CritType == FT_GroupColor:
# Check the Threshold
try:
aCriterion.ThresholdStr = self.ColorToString(aThreshold)
except:
raise TypeError("The threshold value should be of SALOMEDS.Color type")
pass
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_FreeNodes, FT_FreeFaces,
FT_LinearOrQuadratic, FT_BadOrientedVolume,
FT_BareBorderFace, FT_BareBorderVolume,
FT_OverConstrainedFace, FT_OverConstrainedVolume,
FT_EqualNodes,FT_EqualEdges,FT_EqualFaces,FT_EqualVolumes ]:
# At this point the Threshold is unnecessary
if aThreshold == FT_LogicalNOT:
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
elif aThreshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = aThreshold
else:
# Check Threshold
try:
aThreshold = float(aThreshold)
aCriterion.Threshold = aThreshold
except:
raise TypeError("The Threshold should be a number.")
return None
if Threshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
if Threshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(Threshold)
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(UnaryOp)
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(BinaryOp)
return aCriterion
def GetFilter(self,elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
Threshold="",
UnaryOp=FT_Undefined,
Tolerance=1e-07,
mesh=None):
"""
Create a filter with the given parameters
Parameters:
elementType: the :class:`type of elements <SMESH.ElementType>` (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME)
CritType: the :class:`type of criterion <SMESH.FunctorType>` (SMESH.FT_Taper, SMESH.FT_Area, etc.).
Note that the items starting from FT_LessThan are not suitable for CritType.
Compare: belongs to {SMESH.FT_LessThan, SMESH.FT_MoreThan, SMESH.FT_EqualTo}
Threshold: the threshold value (range of ids as string, shape, numeric)
UnaryOp: SMESH.FT_LogicalNOT or SMESH.FT_Undefined
Tolerance: the tolerance used by SMESH.FT_BelongToGeom, SMESH.FT_BelongToSurface,
SMESH.FT_LyingOnGeom, SMESH.FT_CoplanarFaces and SMESH.FT_EqualNodes criteria
mesh: the mesh to initialize the filter with
Returns:
:class:`SMESH.Filter`
Examples:
See :doc:`Filters usage examples <tui_filters>`
"""
aCriterion = self.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance)
aFilterMgr = self.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aCriteria = []
aCriteria.append(aCriterion)
aFilter.SetCriteria(aCriteria)
if mesh:
if isinstance( mesh, Mesh ): aFilter.SetMesh( mesh.GetMesh() )
else : aFilter.SetMesh( mesh )
aFilterMgr.UnRegister()
return aFilter
def GetFilterFromCriteria(self,criteria, binOp=SMESH.FT_LogicalAND):
"""
Create a filter from criteria
Parameters:
criteria: a list of :class:`SMESH.Filter.Criterion`
binOp: binary operator used when binary operator of criteria is undefined
Returns:
:class:`SMESH.Filter`
Examples:
See :doc:`Filters usage examples <tui_filters>`
"""
for i in range( len( criteria ) - 1 ):
if criteria[i].BinaryOp == self.EnumToLong( SMESH.FT_Undefined ):
criteria[i].BinaryOp = self.EnumToLong( binOp )
aFilterMgr = self.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aFilter.SetCriteria(criteria)
aFilterMgr.UnRegister()
return aFilter
def GetFunctor(self,theCriterion):
"""
Create a numerical functor by its type
Parameters:
theCriterion (SMESH.FunctorType): functor type.
Note that not all items correspond to numerical functors.
Returns:
:class:`SMESH.NumericalFunctor`
"""
if isinstance( theCriterion, SMESH._objref_NumericalFunctor ):
return theCriterion
aFilterMgr = self.CreateFilterManager()
functor = None
if theCriterion == FT_AspectRatio:
functor = aFilterMgr.CreateAspectRatio()
elif theCriterion == FT_AspectRatio3D:
functor = aFilterMgr.CreateAspectRatio3D()
elif theCriterion == FT_Warping:
functor = aFilterMgr.CreateWarping()
elif theCriterion == FT_MinimumAngle:
functor = aFilterMgr.CreateMinimumAngle()
elif theCriterion == FT_Taper:
functor = aFilterMgr.CreateTaper()
elif theCriterion == FT_Skew:
functor = aFilterMgr.CreateSkew()
elif theCriterion == FT_Area:
functor = aFilterMgr.CreateArea()
elif theCriterion == FT_Volume3D:
functor = aFilterMgr.CreateVolume3D()
elif theCriterion == FT_MaxElementLength2D:
functor = aFilterMgr.CreateMaxElementLength2D()
elif theCriterion == FT_MaxElementLength3D:
functor = aFilterMgr.CreateMaxElementLength3D()
elif theCriterion == FT_MultiConnection:
functor = aFilterMgr.CreateMultiConnection()
elif theCriterion == FT_MultiConnection2D:
functor = aFilterMgr.CreateMultiConnection2D()
elif theCriterion == FT_Length:
functor = aFilterMgr.CreateLength()
elif theCriterion == FT_Length2D:
functor = aFilterMgr.CreateLength2D()
elif theCriterion == FT_Deflection2D:
functor = aFilterMgr.CreateDeflection2D()
elif theCriterion == FT_NodeConnectivityNumber:
functor = aFilterMgr.CreateNodeConnectivityNumber()
elif theCriterion == FT_BallDiameter:
functor = aFilterMgr.CreateBallDiameter()
else:
print("Error: given parameter is not numerical functor type.")
aFilterMgr.UnRegister()
return functor
def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"):
"""
Create hypothesis
Parameters:
theHType (string): mesh hypothesis type
theLibName (string): mesh plug-in library name
Returns:
created hypothesis instance
"""
hyp = SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName )
if isinstance( hyp, SMESH._objref_SMESH_Algo ):
return hyp
# wrap hypothesis methods
for meth_name in dir( hyp.__class__ ):
if not meth_name.startswith("Get") and \
not meth_name in dir ( SMESH._objref_SMESH_Hypothesis ):
method = getattr ( hyp.__class__, meth_name )
if callable(method):
setattr( hyp, meth_name, hypMethodWrapper( hyp, method ))
return hyp
def GetMeshInfo(self, obj):
"""
Get the mesh statistic.
Use :meth:`smeshBuilder.EnumToLong` to get an integer from
an item of :class:`SMESH.EntityType`.
Returns:
dictionary { :class:`SMESH.EntityType` - "count of elements" }
"""
if isinstance( obj, Mesh ):
obj = obj.GetMesh()
d = {}
if hasattr(obj, "GetMeshInfo"):
values = obj.GetMeshInfo()
for i in range(SMESH.Entity_Last._v):
if i < len(values): d[SMESH.EntityType._item(i)]=values[i]
pass
return d
def MinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
"""
Get minimum distance between two objects
* If *src2* is None, and *id2* = 0, distance from *src1* / *id1* to the origin is computed.
* If *src2* is None, and *id2* != 0, it is assumed that both *id1* and *id2* belong to *src1*.
Parameters:
src1 (SMESH.SMESH_IDSource): first source object
src2 (SMESH.SMESH_IDSource): second source object
id1 (int): node/element id from the first source
id2 (int): node/element id from the second (or first) source
isElem1 (boolean): *True* if *id1* is element id, *False* if it is node id
isElem2 (boolean): *True* if *id2* is element id, *False* if it is node id
Returns:
minimum distance value
See also:
:meth:`GetMinDistance`
"""
result = self.GetMinDistance(src1, src2, id1, id2, isElem1, isElem2)
if result is None:
result = 0.0
else:
result = result.value
return result
def GetMinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
"""
Get :class:`SMESH.Measure` structure specifying minimum distance data between two objects
* If *src2* is None, and *id2* = 0, distance from *src1* / *id1* to the origin is computed.
* If *src2* is None, and *id2* != 0, it is assumed that both *id1* and *id2* belong to *src1*.
Parameters:
src1 (SMESH.SMESH_IDSource): first source object
src2 (SMESH.SMESH_IDSource): second source object
id1 (int): node/element id from the first source
id2 (int): node/element id from the second (or first) source
isElem1 (boolean): *True* if **id1** is element id, *False* if it is node id
isElem2 (boolean): *True* if **id2** is element id, *False* if it is node id
Returns:
:class:`SMESH.Measure` structure or None if input data is invalid
See also:
:meth:`MinDistance`
"""
if isinstance(src1, Mesh): src1 = src1.mesh
if isinstance(src2, Mesh): src2 = src2.mesh
if src2 is None and id2 != 0: src2 = src1
if not hasattr(src1, "_narrow"): return None
src1 = src1._narrow(SMESH.SMESH_IDSource)
if not src1: return None
unRegister = genObjUnRegister()
if id1 != 0:
m = src1.GetMesh()
e = m.GetMeshEditor()
if isElem1:
src1 = e.MakeIDSource([id1], SMESH.FACE)
else:
src1 = e.MakeIDSource([id1], SMESH.NODE)
unRegister.set( src1 )
pass
if hasattr(src2, "_narrow"):
src2 = src2._narrow(SMESH.SMESH_IDSource)
if src2 and id2 != 0:
m = src2.GetMesh()
e = m.GetMeshEditor()
if isElem2:
src2 = e.MakeIDSource([id2], SMESH.FACE)
else:
src2 = e.MakeIDSource([id2], SMESH.NODE)
unRegister.set( src2 )
pass
pass
aMeasurements = self.CreateMeasurements()
unRegister.set( aMeasurements )
result = aMeasurements.MinDistance(src1, src2)
return result
def BoundingBox(self, objects):
"""
Get bounding box of the specified object(s)
Parameters:
objects (SMESH.SMESH_IDSource): single source object or list of source objects
Returns:
tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
See also:
:meth:`GetBoundingBox`
"""
result = self.GetBoundingBox(objects)
if result is None:
result = (0.0,)*6
else:
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
return result
def GetBoundingBox(self, objects):
"""
Get :class:`SMESH.Measure` structure specifying bounding box data of the specified object(s)
Parameters:
objects (SMESH.SMESH_IDSource): single source object or list of source objects
Returns:
:class:`SMESH.Measure` structure
See also:
:meth:`BoundingBox`
"""
if isinstance(objects, tuple):
objects = list(objects)
if not isinstance(objects, list):
objects = [objects]
srclist = []
for o in objects:
if isinstance(o, Mesh):
srclist.append(o.mesh)
elif hasattr(o, "_narrow"):
src = o._narrow(SMESH.SMESH_IDSource)
if src: srclist.append(src)
pass
pass
aMeasurements = self.CreateMeasurements()
result = aMeasurements.BoundingBox(srclist)
aMeasurements.UnRegister()
return result
def GetLength(self, obj):
"""
Get sum of lengths of all 1D elements in the mesh object.
Parameters:
obj: :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Returns:
sum of lengths of all 1D elements
"""
if isinstance(obj, Mesh): obj = obj.mesh
if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh()
aMeasurements = self.CreateMeasurements()
value = aMeasurements.Length(obj)
aMeasurements.UnRegister()
return value
def GetArea(self, obj):
"""
Get sum of areas of all 2D elements in the mesh object.
Parameters:
obj: :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Returns:
sum of areas of all 2D elements
"""
if isinstance(obj, Mesh): obj = obj.mesh
if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh()
aMeasurements = self.CreateMeasurements()
value = aMeasurements.Area(obj)
aMeasurements.UnRegister()
return value
def GetVolume(self, obj):
"""
Get sum of volumes of all 3D elements in the mesh object.
Parameters:
obj: :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Returns:
sum of volumes of all 3D elements
"""
if isinstance(obj, Mesh): obj = obj.mesh
if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh()
aMeasurements = self.CreateMeasurements()
value = aMeasurements.Volume(obj)
aMeasurements.UnRegister()
return value
def GetGravityCenter(self, obj):
"""
Get gravity center of all nodes of the mesh object.
Parameters:
obj: :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Returns:
Three components of the gravity center (x,y,z)
"""
if isinstance(obj, Mesh): obj = obj.mesh
if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh()
aMeasurements = self.CreateMeasurements()
pointStruct = aMeasurements.GravityCenter(obj)
aMeasurements.UnRegister()
return pointStruct.x, pointStruct.y, pointStruct.z
pass # end of class smeshBuilder
import omniORB
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshBuilder)
"""Registering the new proxy for SMESH.SMESH_Gen"""
def New( instance=None, instanceGeom=None):
"""
Create a new smeshBuilder instance. The smeshBuilder class provides the Python
interface to create or load meshes.
Typical use is::
import salome
salome.salome_init()
from salome.smesh import smeshBuilder
smesh = smeshBuilder.New()
Parameters:
study: SALOME study, generally obtained by salome.myStudy.
instance: CORBA proxy of SMESH Engine. If None, the default Engine is used.
instanceGeom: CORBA proxy of GEOM Engine. If None, the default Engine is used.
Returns:
:class:`smeshBuilder` instance
"""
global engine
global smeshInst
global doLcc
engine = instance
if engine is None:
doLcc = True
smeshInst = smeshBuilder()
assert isinstance(smeshInst,smeshBuilder), "Smesh engine class is %s but should be smeshBuilder.smeshBuilder. Import salome.smesh.smeshBuilder before creating the instance."%smeshInst.__class__
smeshInst.init_smesh(instanceGeom)
return smeshInst
# Public class: Mesh
# ==================
class Mesh(metaclass = MeshMeta):
"""
This class allows defining and managing a mesh.
It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes.
It also has methods to define groups of mesh elements, to modify a mesh (by addition of
new nodes and elements and by changing the existing entities), to get information
about a mesh and to export a mesh in different formats.
"""
geom = 0
mesh = 0
editor = 0
def __init__(self, smeshpyD, geompyD, obj=0, name=0):
"""
Constructor
Create a mesh on the shape *obj* (or an empty mesh if *obj* is equal to 0) and
sets the GUI name of this mesh to *name*.
Parameters:
smeshpyD: an instance of smeshBuilder class
geompyD: an instance of geomBuilder class
obj: Shape to be meshed or :class:`SMESH.SMESH_Mesh` object
name: Study name of the mesh
"""
self.smeshpyD = smeshpyD
self.geompyD = geompyD
if obj is None:
obj = 0
objHasName = False
if obj != 0:
if isinstance(obj, geomBuilder.GEOM._objref_GEOM_Object):
self.geom = obj
objHasName = True
# publish geom of mesh (issue 0021122)
if not self.geom.GetStudyEntry():
objHasName = False
geompyD.init_geom()
if name:
geo_name = name + " shape"
else:
geo_name = "%s_%s to mesh"%(self.geom.GetShapeType(), id(self.geom)%100)
geompyD.addToStudy( self.geom, geo_name )
self.SetMesh( self.smeshpyD.CreateMesh(self.geom) )
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
self.SetMesh(obj)
else:
self.SetMesh( self.smeshpyD.CreateEmptyMesh() )
if name:
self.smeshpyD.SetName(self.mesh, name)
elif objHasName:
self.smeshpyD.SetName(self.mesh, GetName(obj)) # + " mesh"
if not self.geom:
self.geom = self.mesh.GetShapeToMesh()
self.editor = self.mesh.GetMeshEditor()
self.functors = [None] * SMESH.FT_Undefined._v
# set self to algoCreator's
for attrName in dir(self):
attr = getattr( self, attrName )
if isinstance( attr, algoCreator ):
setattr( self, attrName, attr.copy( self ))
pass
pass
pass
def __del__(self):
"""
Destructor. Clean-up resources
"""
if self.mesh:
#self.mesh.UnRegister()
pass
pass
def SetMesh(self, theMesh):
"""
Initialize the Mesh object from an instance of :class:`SMESH.SMESH_Mesh` interface
Parameters:
theMesh: a :class:`SMESH.SMESH_Mesh` object
"""
# do not call Register() as this prevents mesh servant deletion at closing study
#if self.mesh: self.mesh.UnRegister()
self.mesh = theMesh
if self.mesh:
#self.mesh.Register()
self.geom = self.mesh.GetShapeToMesh()
pass
def GetMesh(self):
"""
Return the mesh, that is an encapsulated instance of :class:`SMESH.SMESH_Mesh` interface
Returns:
a :class:`SMESH.SMESH_Mesh` object
"""
return self.mesh
def GetName(self):
"""
Get the name of the mesh
Returns:
the name of the mesh as a string
"""
name = GetName(self.GetMesh())
return name
def SetName(self, name):
"""
Set a name to the mesh
Parameters:
name: a new name of the mesh
"""
self.smeshpyD.SetName(self.GetMesh(), name)
def GetSubMesh(self, geom, name):
"""
Get a sub-mesh object associated to a *geom* geometrical object.
Parameters:
geom: a geometrical object (shape)
name: a name for the sub-mesh in the Object Browser
Returns:
an object of type :class:`SMESH.SMESH_subMesh`, representing a part of mesh,
which lies on the given shape
Note:
A sub-mesh is implicitly created when a sub-shape is specified at
creating an algorithm, for example::
algo1D = mesh.Segment(geom=Edge_1)
creates a sub-mesh on *Edge_1* and assign Wire Discretization algorithm to it.
The created sub-mesh can be retrieved from the algorithm::
submesh = algo1D.GetSubMesh()
"""
AssureGeomPublished( self, geom, name )
submesh = self.mesh.GetSubMesh( geom, name )
return submesh
def GetShape(self):
"""
Return the shape associated to the mesh
Returns:
a GEOM_Object
"""
return self.geom
def SetShape(self, geom):
"""
Associate the given shape to the mesh (entails the recreation of the mesh)
Parameters:
geom: the shape to be meshed (GEOM_Object)
"""
self.mesh = self.smeshpyD.CreateMesh(geom)
def Load(self):
"""
Load mesh from the study after opening the study
"""
self.mesh.Load()
def IsReadyToCompute(self, theSubObject):
"""
Return true if the hypotheses are defined well
Parameters:
theSubObject: a sub-shape of a mesh shape
Returns:
True or False
"""
return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
def GetAlgoState(self, theSubObject):
"""
Return errors of hypotheses definition.
The list of errors is empty if everything is OK.
Parameters:
theSubObject: a sub-shape of a mesh shape
Returns:
a list of errors
"""
return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
def GetGeometryByMeshElement(self, theElementID, theGeomName):
"""
Return a geometrical object on which the given element was built.
The returned geometrical object, if not nil, is either found in the
study or published by this method with the given name
Parameters:
theElementID: the id of the mesh element
theGeomName: the user-defined name of the geometrical object
Returns:
GEOM.GEOM_Object instance
"""
return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
def MeshDimension(self):
"""
Return the mesh dimension depending on the dimension of the underlying shape
or, if the mesh is not based on any shape, basing on deimension of elements
Returns:
mesh dimension as an integer value [0,3]
"""
if self.mesh.HasShapeToMesh():
shells = self.geompyD.SubShapeAllIDs( self.geom, self.geompyD.ShapeType["SOLID"] )
if len( shells ) > 0 :
return 3
elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
return 2
elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
return 1
else:
return 0;
else:
if self.NbVolumes() > 0: return 3
if self.NbFaces() > 0: return 2
if self.NbEdges() > 0: return 1
return 0
def Evaluate(self, geom=0):
"""
Evaluate size of prospective mesh on a shape
Returns:
a list where i-th element is a number of elements of i-th :class:`SMESH.EntityType`.
To know predicted number of e.g. edges, inquire it this way::
Evaluate()[ smesh.EnumToLong( SMESH.Entity_Edge )]
"""
if geom == 0 or not isinstance(geom, geomBuilder.GEOM._objref_GEOM_Object):
if self.geom == 0:
geom = self.mesh.GetShapeToMesh()
else:
geom = self.geom
return self.smeshpyD.Evaluate(self.mesh, geom)
def Compute(self, geom=0, discardModifs=False, refresh=False):
"""
Compute the mesh and return the status of the computation
Parameters:
geom: geomtrical shape on which mesh data should be computed
discardModifs: if True and the mesh has been edited since
a last total re-compute and that may prevent successful partial re-compute,
then the mesh is cleaned before Compute()
refresh: if *True*, Object Browser is automatically updated (when running in GUI)
Returns:
True or False
"""
if geom == 0 or not isinstance(geom, geomBuilder.GEOM._objref_GEOM_Object):
if self.geom == 0:
geom = self.mesh.GetShapeToMesh()
else:
geom = self.geom
ok = False
try:
if discardModifs and self.mesh.HasModificationsToDiscard(): # issue 0020693
self.mesh.Clear()
ok = self.smeshpyD.Compute(self.mesh, geom)
except SALOME.SALOME_Exception as ex:
print("Mesh computation failed, exception caught:")
print(" ", ex.details.text)
except:
import traceback
print("Mesh computation failed, exception caught:")
traceback.print_exc()
if True:#not ok:
allReasons = ""
# Treat compute errors
computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, geom )
shapeText = ""
for err in computeErrors:
if self.mesh.HasShapeToMesh():
shapeText = " on %s" % self.GetSubShapeName( err.subShapeID )
errText = ""
stdErrors = ["OK", #COMPERR_OK
"Invalid input mesh", #COMPERR_BAD_INPUT_MESH
"std::exception", #COMPERR_STD_EXCEPTION
"OCC exception", #COMPERR_OCC_EXCEPTION
"..", #COMPERR_SLM_EXCEPTION
"Unknown exception", #COMPERR_EXCEPTION
"Memory allocation problem", #COMPERR_MEMORY_PB
"Algorithm failed", #COMPERR_ALGO_FAILED
"Unexpected geometry", #COMPERR_BAD_SHAPE
"Warning", #COMPERR_WARNING
"Computation cancelled",#COMPERR_CANCELED
"No mesh on sub-shape"] #COMPERR_NO_MESH_ON_SHAPE
if err.code > 0:
if err.code < len(stdErrors): errText = stdErrors[err.code]
else:
errText = "code %s" % -err.code
if errText: errText += ". "
errText += err.comment
if allReasons: allReasons += "\n"
if ok:
allReasons += '- "%s"%s - %s' %(err.algoName, shapeText, errText)
else:
allReasons += '- "%s" failed%s. Error: %s' %(err.algoName, shapeText, errText)
pass
# Treat hyp errors
errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
for err in errors:
if err.isGlobalAlgo:
glob = "global"
else:
glob = "local"
pass
dim = err.algoDim
name = err.algoName
if len(name) == 0:
reason = '%s %sD algorithm is missing' % (glob, dim)
elif err.state == HYP_MISSING:
reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
% (glob, dim, name, dim))
elif err.state == HYP_NOTCONFORM:
reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
elif err.state == HYP_BAD_PARAMETER:
reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
% ( glob, dim, name ))
elif err.state == HYP_BAD_GEOMETRY:
reason = ('%s %sD algorithm "%s" is assigned to mismatching'
'geometry' % ( glob, dim, name ))
elif err.state == HYP_HIDDEN_ALGO:
reason = ('%s %sD algorithm "%s" is ignored due to presence of a %s '
'algorithm of upper dimension generating %sD mesh'
% ( glob, dim, name, glob, dim ))
else:
reason = ("For unknown reason. "
"Developer, revise Mesh.Compute() implementation in smeshBuilder.py!")
pass
if allReasons: allReasons += "\n"
allReasons += "- " + reason
pass
if not ok or allReasons != "":
msg = '"' + GetName(self.mesh) + '"'
if ok: msg += " has been computed with warnings"
else: msg += " has not been computed"
if allReasons != "": msg += ":"
else: msg += "."
print(msg)
print(allReasons)
pass
if salome.sg.hasDesktop():
if not isinstance( refresh, list): # not a call from subMesh.Compute()
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init()
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
if refresh: salome.sg.updateObjBrowser()
return ok
def GetComputeErrors(self, shape=0 ):
"""
Return a list of error messages (:class:`SMESH.ComputeError`) of the last :meth:`Compute`
"""
if shape == 0:
shape = self.mesh.GetShapeToMesh()
return self.smeshpyD.GetComputeErrors( self.mesh, shape )
def GetSubShapeName(self, subShapeID ):
"""
Return a name of a sub-shape by its ID.
Possible variants (for *subShapeID* == 3):
- **"Face_12"** - published sub-shape
- **FACE #3** - not published sub-shape
- **sub-shape #3** - invalid sub-shape ID
- **#3** - error in this function
Parameters:
subShapeID: a unique ID of a sub-shape
Returns:
a string describing the sub-shape
"""
if not self.mesh.HasShapeToMesh():
return ""
try:
shapeText = ""
mainIOR = salome.orb.object_to_string( self.GetShape() )
s = salome.myStudy
mainSO = s.FindObjectIOR(mainIOR)
if mainSO:
if subShapeID == 1:
shapeText = '"%s"' % mainSO.GetName()
subIt = s.NewChildIterator(mainSO)
while subIt.More():
subSO = subIt.Value()
subIt.Next()
obj = subSO.GetObject()
if not obj: continue
go = obj._narrow( geomBuilder.GEOM._objref_GEOM_Object )
if not go: continue
try:
ids = self.geompyD.GetSubShapeID( self.GetShape(), go )
except:
continue
if ids == subShapeID:
shapeText = '"%s"' % subSO.GetName()
break
if not shapeText:
shape = self.geompyD.GetSubShape( self.GetShape(), [subShapeID])
if shape:
shapeText = '%s #%s' % (shape.GetShapeType(), subShapeID)
else:
shapeText = 'sub-shape #%s' % (subShapeID)
except:
shapeText = "#%s" % (subShapeID)
return shapeText
def GetFailedShapes(self, publish=False):
"""
Return a list of sub-shapes meshing of which failed, grouped into GEOM groups by
error of an algorithm
Parameters:
publish: if *True*, the returned groups will be published in the study
Returns:
a list of GEOM groups each named after a failed algorithm
"""
algo2shapes = {}
computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, self.GetShape() )
for err in computeErrors:
shape = self.geompyD.GetSubShape( self.GetShape(), [err.subShapeID])
if not shape: continue
if err.algoName in algo2shapes:
algo2shapes[ err.algoName ].append( shape )
else:
algo2shapes[ err.algoName ] = [ shape ]
pass
groups = []
for algoName, shapes in list(algo2shapes.items()):
while shapes:
groupType = self.smeshpyD.EnumToLong( shapes[0].GetShapeType() )
otherTypeShapes = []
sameTypeShapes = []
group = self.geompyD.CreateGroup( self.geom, groupType )
for shape in shapes:
if shape.GetShapeType() == shapes[0].GetShapeType():
sameTypeShapes.append( shape )
else:
otherTypeShapes.append( shape )
self.geompyD.UnionList( group, sameTypeShapes )
if otherTypeShapes:
group.SetName( "%s %s" % ( algoName, shapes[0].GetShapeType() ))
else:
group.SetName( algoName )
groups.append( group )
shapes = otherTypeShapes
pass
if publish:
for group in groups:
self.geompyD.addToStudyInFather( self.geom, group, group.GetName() )
return groups
def GetMeshOrder(self):
"""
Return sub-mesh objects list in meshing order
Returns:
list of lists of :class:`sub-meshes <SMESH.SMESH_subMesh>`
"""
return self.mesh.GetMeshOrder()
def SetMeshOrder(self, submeshes):
"""
Set order in which concurrent sub-meshes should be meshed
Parameters:
submeshes: list of lists of :class:`sub-meshes <SMESH.SMESH_subMesh>`
"""
return self.mesh.SetMeshOrder(submeshes)
def Clear(self, refresh=False):
"""
Remove all nodes and elements generated on geometry. Imported elements remain.
Parameters:
refresh: if *True*, Object browser is automatically updated (when running in GUI)
"""
self.mesh.Clear()
if ( salome.sg.hasDesktop() ):
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init()
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
if refresh: salome.sg.updateObjBrowser()
def ClearSubMesh(self, geomId, refresh=False):
"""
Remove all nodes and elements of indicated shape
Parameters:
geomId: the ID of a sub-shape to remove elements on
refresh: if *True*, Object browser is automatically updated (when running in GUI)
"""
self.mesh.ClearSubMesh(geomId)
if salome.sg.hasDesktop():
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init()
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
if refresh: salome.sg.updateObjBrowser()
def AutomaticTetrahedralization(self, fineness=0):
"""
Compute a tetrahedral mesh using AutomaticLength + MEFISTO + Tetrahedron
Parameters:
fineness: [0.0,1.0] defines mesh fineness
Returns:
True or False
"""
dim = self.MeshDimension()
# assign hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Triangle().LengthFromEdges()
pass
if dim > 2 :
self.Tetrahedron()
pass
return self.Compute()
def AutomaticHexahedralization(self, fineness=0):
"""
Compute an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
Parameters:
fineness: [0.0, 1.0] defines mesh fineness
Returns:
True or False
"""
dim = self.MeshDimension()
# assign the hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Quadrangle()
pass
if dim > 2 :
self.Hexahedron()
pass
return self.Compute()
def AddHypothesis(self, hyp, geom=0):
"""
Assign a hypothesis
Parameters:
hyp: a hypothesis to assign
geom: a subhape of mesh geometry
Returns:
:class:`SMESH.Hypothesis_Status`
"""
if isinstance( hyp, geomBuilder.GEOM._objref_GEOM_Object ):
hyp, geom = geom, hyp
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
if not geom:
geom = self.geom
if not geom:
geom = self.mesh.GetShapeToMesh()
pass
isApplicable = True
if self.mesh.HasShapeToMesh():
hyp_type = hyp.GetName()
lib_name = hyp.GetLibName()
# checkAll = ( not geom.IsSame( self.mesh.GetShapeToMesh() ))
# if checkAll and geom:
# checkAll = geom.GetType() == 37
checkAll = False
isApplicable = self.smeshpyD.IsApplicable(hyp_type, lib_name, geom, checkAll)
if isApplicable:
AssureGeomPublished( self, geom, "shape for %s" % hyp.GetName())
status = self.mesh.AddHypothesis(geom, hyp)
else:
status = HYP_BAD_GEOMETRY, ""
hyp_name = GetName( hyp )
geom_name = ""
if geom:
geom_name = geom.GetName()
isAlgo = hyp._narrow( SMESH_Algo )
TreatHypoStatus( status, hyp_name, geom_name, isAlgo, self )
return status
def IsUsedHypothesis(self, hyp, geom):
"""
Return True if an algorithm or hypothesis is assigned to a given shape
Parameters:
hyp: an algorithm or hypothesis to check
geom: a subhape of mesh geometry
Returns:
True of False
"""
if not hyp: # or not geom
return False
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
hyps = self.GetHypothesisList(geom)
for h in hyps:
if h.GetId() == hyp.GetId():
return True
return False
def RemoveHypothesis(self, hyp, geom=0):
"""
Unassign a hypothesis
Parameters:
hyp (SMESH.SMESH_Hypothesis): a hypothesis to unassign
geom (GEOM.GEOM_Object): a sub-shape of mesh geometry
Returns:
:class:`SMESH.Hypothesis_Status`
"""
if not hyp:
return None
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
shape = geom
if not shape:
shape = self.geom
pass
if self.IsUsedHypothesis( hyp, shape ):
return self.mesh.RemoveHypothesis( shape, hyp )
hypName = GetName( hyp )
geoName = GetName( shape )
print("WARNING: RemoveHypothesis() failed as '%s' is not assigned to '%s' shape" % ( hypName, geoName ))
return None
def GetHypothesisList(self, geom):
"""
Get the list of hypotheses added on a geometry
Parameters:
geom (GEOM.GEOM_Object): a sub-shape of mesh geometry
Returns:
the sequence of :class:`SMESH.SMESH_Hypothesis`
"""
return self.mesh.GetHypothesisList( geom )
def RemoveGlobalHypotheses(self):
"""
Remove all global hypotheses
"""
current_hyps = self.mesh.GetHypothesisList( self.geom )
for hyp in current_hyps:
self.mesh.RemoveHypothesis( self.geom, hyp )
pass
pass
def ExportMED(self, *args, **kwargs):
"""
Export the mesh in a file in MED format
allowing to overwrite the file if it exists or add the exported data to its contents
Parameters:
fileName: is the file name
auto_groups (boolean): parameter for creating/not creating
the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
the typical use is auto_groups=False.
overwrite (boolean): parameter for overwriting/not overwriting the file
meshPart: a part of mesh (:class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`) to export instead of the mesh
autoDimension: if *True* (default), a space dimension of a MED mesh can be either
- 1D if all mesh nodes lie on OX coordinate axis, or
- 2D if all mesh nodes lie on XOY coordinate plane, or
- 3D in the rest cases.
If *autoDimension* is *False*, the space dimension is always 3.
fields: list of GEOM fields defined on the shape to mesh.
geomAssocFields: each character of this string means a need to export a
corresponding field; correspondence between fields and characters is following:
- 'v' stands for "_vertices _" field;
- 'e' stands for "_edges _" field;
- 'f' stands for "_faces _" field;
- 's' stands for "_solids _" field.
"""
# process positional arguments
args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] # backward compatibility
fileName = args[0]
auto_groups = args[1] if len(args) > 1 else False
overwrite = args[2] if len(args) > 2 else True
meshPart = args[3] if len(args) > 3 else None
autoDimension = args[4] if len(args) > 4 else True
fields = args[5] if len(args) > 5 else []
geomAssocFields = args[6] if len(args) > 6 else ''
# process keywords arguments
auto_groups = kwargs.get("auto_groups", auto_groups)
overwrite = kwargs.get("overwrite", overwrite)
meshPart = kwargs.get("meshPart", meshPart)
autoDimension = kwargs.get("autoDimension", autoDimension)
fields = kwargs.get("fields", fields)
geomAssocFields = kwargs.get("geomAssocFields", geomAssocFields)
# invoke engine's function
if meshPart or fields or geomAssocFields:
unRegister = genObjUnRegister()
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
unRegister.set( meshPart )
self.mesh.ExportPartToMED( meshPart, fileName, auto_groups, overwrite, autoDimension,
fields, geomAssocFields)
else:
self.mesh.ExportMED(fileName, auto_groups, overwrite, autoDimension)
def ExportSAUV(self, f, auto_groups=0):
"""
Export the mesh in a file in SAUV format
Parameters:
f: is the file name
auto_groups: boolean parameter for creating/not creating
the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
the typical use is auto_groups=False.
"""
self.mesh.ExportSAUV(f, auto_groups)
def ExportDAT(self, f, meshPart=None):
"""
Export the mesh in a file in DAT format
Parameters:
f: the file name
meshPart: a part of mesh (:class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`) to export instead of the mesh
"""
if meshPart:
unRegister = genObjUnRegister()
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
unRegister.set( meshPart )
self.mesh.ExportPartToDAT( meshPart, f )
else:
self.mesh.ExportDAT(f)
def ExportUNV(self, f, meshPart=None):
"""
Export the mesh in a file in UNV format
Parameters:
f: the file name
meshPart: a part of mesh (:class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`) to export instead of the mesh
"""
if meshPart:
unRegister = genObjUnRegister()
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
unRegister.set( meshPart )
self.mesh.ExportPartToUNV( meshPart, f )
else:
self.mesh.ExportUNV(f)
def ExportSTL(self, f, ascii=1, meshPart=None):
"""
Export the mesh in a file in STL format
Parameters:
f: the file name
ascii: defines the file encoding
meshPart: a part of mesh (:class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`) to export instead of the mesh
"""
if meshPart:
unRegister = genObjUnRegister()
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
unRegister.set( meshPart )
self.mesh.ExportPartToSTL( meshPart, f, ascii )
else:
self.mesh.ExportSTL(f, ascii)
def ExportCGNS(self, f, overwrite=1, meshPart=None, groupElemsByType=False):
"""
Export the mesh in a file in CGNS format
Parameters:
f: is the file name
overwrite: boolean parameter for overwriting/not overwriting the file
meshPart: a part of mesh (:class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`) to export instead of the mesh
groupElemsByType: if True all elements of same entity type are exported at ones,
else elements are exported in order of their IDs which can cause creation
of multiple cgns sections
"""
unRegister = genObjUnRegister()
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
unRegister.set( meshPart )
if isinstance( meshPart, Mesh ):
meshPart = meshPart.mesh
elif not meshPart:
meshPart = self.mesh
self.mesh.ExportCGNS(meshPart, f, overwrite, groupElemsByType)
def ExportGMF(self, f, meshPart=None):
"""
Export the mesh in a file in GMF format.
GMF files must have .mesh extension for the ASCII format and .meshb for
the bynary format. Other extensions are not allowed.
Parameters:
f: is the file name
meshPart: a part of mesh (:class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`) to export instead of the mesh
"""
unRegister = genObjUnRegister()
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
unRegister.set( meshPart )
if isinstance( meshPart, Mesh ):
meshPart = meshPart.mesh
elif not meshPart:
meshPart = self.mesh
self.mesh.ExportGMF(meshPart, f, True)
def ExportToMED(self, *args, **kwargs):
"""
Deprecated, used only for compatibility! Please, use :meth:`ExportMED` method instead.
Export the mesh in a file in MED format
allowing to overwrite the file if it exists or add the exported data to its contents
Parameters:
fileName: the file name
opt (boolean): parameter for creating/not creating
the groups Group_On_All_Nodes, Group_On_All_Faces, ...
overwrite: boolean parameter for overwriting/not overwriting the file
autoDimension: if *True* (default), a space dimension of a MED mesh can be either
- 1D if all mesh nodes lie on OX coordinate axis, or
- 2D if all mesh nodes lie on XOY coordinate plane, or
- 3D in the rest cases.
If **autoDimension** is *False*, the space dimension is always 3.
"""
print("WARNING: ExportToMED() is deprecated, use ExportMED() instead")
# process positional arguments
args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] # backward compatibility
fileName = args[0]
auto_groups = args[1] if len(args) > 1 else False
overwrite = args[2] if len(args) > 2 else True
autoDimension = args[3] if len(args) > 3 else True
# process keywords arguments
auto_groups = kwargs.get("opt", auto_groups) # old keyword name
auto_groups = kwargs.get("auto_groups", auto_groups) # new keyword name
overwrite = kwargs.get("overwrite", overwrite)
autoDimension = kwargs.get("autoDimension", autoDimension)
# invoke engine's function
self.mesh.ExportMED(fileName, auto_groups, overwrite, autoDimension)
def ExportToMEDX(self, *args, **kwargs):
"""
Deprecated, used only for compatibility! Please, use ExportMED() method instead.
Export the mesh in a file in MED format
Parameters:
fileName: the file name
opt (boolean): parameter for creating/not creating
the groups Group_On_All_Nodes, Group_On_All_Faces, ...
overwrite: boolean parameter for overwriting/not overwriting the file
autoDimension: if *True* (default), a space dimension of a MED mesh can be either
- 1D if all mesh nodes lie on OX coordinate axis, or
- 2D if all mesh nodes lie on XOY coordinate plane, or
- 3D in the rest cases.
If **autoDimension** is *False*, the space dimension is always 3.
"""
print("WARNING: ExportToMEDX() is deprecated, use ExportMED() instead")
# process positional arguments
args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] # backward compatibility
fileName = args[0]
auto_groups = args[1] if len(args) > 1 else False
overwrite = args[2] if len(args) > 2 else True
autoDimension = args[3] if len(args) > 3 else True
# process keywords arguments
auto_groups = kwargs.get("auto_groups", auto_groups)
overwrite = kwargs.get("overwrite", overwrite)
autoDimension = kwargs.get("autoDimension", autoDimension)
# invoke engine's function
self.mesh.ExportMED(fileName, auto_groups, overwrite, autoDimension)
# Operations with groups:
# ----------------------
def CreateEmptyGroup(self, elementType, name):
"""
Create an empty mesh group
Parameters:
elementType: the :class:`type <SMESH.ElementType>` of elements in the group;
either of (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME)
name: the name of the mesh group
Returns:
:class:`SMESH.SMESH_Group`
"""
return self.mesh.CreateGroup(elementType, name)
def Group(self, grp, name=""):
"""
Create a mesh group based on the geometric object *grp*
and give it a *name*.
If *name* is not defined the name of the geometric group is used
Note:
Works like :meth:`GroupOnGeom`.
Parameters:
grp: a geometric group, a vertex, an edge, a face or a solid
name: the name of the mesh group
Returns:
:class:`SMESH.SMESH_GroupOnGeom`
"""
return self.GroupOnGeom(grp, name)
def GroupOnGeom(self, grp, name="", typ=None):
"""
Create a mesh group based on the geometrical object *grp*
and gives a *name*.
if *name* is not defined the name of the geometric group is used
Parameters:
grp: a geometrical group, a vertex, an edge, a face or a solid
name: the name of the mesh group
typ: the type of elements in the group; either of
(SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME). If not set, it is
automatically detected by the type of the geometry
Returns:
:class:`SMESH.SMESH_GroupOnGeom`
"""
AssureGeomPublished( self, grp, name )
if name == "":
name = grp.GetName()
if not typ:
typ = self._groupTypeFromShape( grp )
return self.mesh.CreateGroupFromGEOM(typ, name, grp)
def _groupTypeFromShape( self, shape ):
"""
Pivate method to get a type of group on geometry
"""
tgeo = str(shape.GetShapeType())
if tgeo == "VERTEX":
typ = NODE
elif tgeo == "EDGE":
typ = EDGE
elif tgeo == "FACE" or tgeo == "SHELL":
typ = FACE
elif tgeo == "SOLID" or tgeo == "COMPSOLID":
typ = VOLUME
elif tgeo == "COMPOUND":
sub = self.geompyD.SubShapeAll( shape, self.geompyD.ShapeType["SHAPE"])
if not sub:
raise ValueError("_groupTypeFromShape(): empty geometric group or compound '%s'" % GetName(shape))
return self._groupTypeFromShape( sub[0] )
else:
raise ValueError("_groupTypeFromShape(): invalid geometry '%s'" % GetName(shape))
return typ
def GroupOnFilter(self, typ, name, filter):
"""
Create a mesh group with given *name* based on the *filter* which
is a special type of group dynamically updating it's contents during
mesh modification
Parameters:
typ: the type of elements in the group; either of
(SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME).
name: the name of the mesh group
filter (SMESH.Filter): the filter defining group contents
Returns:
:class:`SMESH.SMESH_GroupOnFilter`
"""
return self.mesh.CreateGroupFromFilter(typ, name, filter)
def MakeGroupByIds(self, groupName, elementType, elemIDs):
"""
Create a mesh group by the given ids of elements
Parameters:
groupName: the name of the mesh group
elementType: the type of elements in the group; either of
(SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME).
elemIDs: either the list of ids, :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Returns:
:class:`SMESH.SMESH_Group`
"""
group = self.mesh.CreateGroup(elementType, groupName)
if isinstance( elemIDs, Mesh ):
elemIDs = elemIDs.GetMesh()
if hasattr( elemIDs, "GetIDs" ):
if hasattr( elemIDs, "SetMesh" ):
elemIDs.SetMesh( self.GetMesh() )
group.AddFrom( elemIDs )
else:
group.Add(elemIDs)
return group
def MakeGroup(self,
groupName,
elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
Threshold="",
UnaryOp=FT_Undefined,
Tolerance=1e-07):
"""
Create a mesh group by the given conditions
Parameters:
groupName: the name of the mesh group
elementType (SMESH.ElementType): the type of elements (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME)
CritType (SMESH.FunctorType): the type of criterion (SMESH.FT_Taper, SMESH.FT_Area, etc.).
Note that the items starting from FT_LessThan are not suitable for CritType.
Compare (SMESH.FunctorType): belongs to {SMESH.FT_LessThan, SMESH.FT_MoreThan, SMESH.FT_EqualTo}
Threshold: the threshold value (range of ids as string, shape, numeric, depending on *CritType*)
UnaryOp (SMESH.FunctorType): SMESH.FT_LogicalNOT or SMESH.FT_Undefined
Tolerance (float): the tolerance used by SMESH.FT_BelongToGeom, SMESH.FT_BelongToSurface,
SMESH.FT_LyingOnGeom, SMESH.FT_CoplanarFaces criteria
Returns:
:class:`SMESH.SMESH_GroupOnFilter`
"""
aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance)
group = self.MakeGroupByCriterion(groupName, aCriterion)
return group
def MakeGroupByCriterion(self, groupName, Criterion):
"""
Create a mesh group by the given criterion
Parameters:
groupName: the name of the mesh group
Criterion: the instance of :class:`SMESH.Filter.Criterion` class
Returns:
:class:`SMESH.SMESH_GroupOnFilter`
See Also:
:meth:`smeshBuilder.GetCriterion`
"""
return self.MakeGroupByCriteria( groupName, [Criterion] )
def MakeGroupByCriteria(self, groupName, theCriteria, binOp=SMESH.FT_LogicalAND):
"""
Create a mesh group by the given criteria (list of :class:`SMESH.Filter.Criterion`)
Parameters:
groupName: the name of the mesh group
theCriteria: the list of :class:`SMESH.Filter.Criterion`
binOp: binary operator (SMESH.FT_LogicalAND or SMESH.FT_LogicalOR ) used when binary operator of criteria is undefined
Returns:
:class:`SMESH.SMESH_GroupOnFilter`
See Also:
:meth:`smeshBuilder.GetCriterion`
"""
aFilter = self.smeshpyD.GetFilterFromCriteria( theCriteria, binOp )
group = self.MakeGroupByFilter(groupName, aFilter)
return group
def MakeGroupByFilter(self, groupName, theFilter):
"""
Create a mesh group by the given filter
Parameters:
groupName (string): the name of the mesh group
theFilter (SMESH.Filter): the filter
Returns:
:class:`SMESH.SMESH_GroupOnFilter`
See Also:
:meth:`smeshBuilder.GetFilter`
"""
#group = self.CreateEmptyGroup(theFilter.GetElementType(), groupName)
#theFilter.SetMesh( self.mesh )
#group.AddFrom( theFilter )
group = self.GroupOnFilter( theFilter.GetElementType(), groupName, theFilter )
return group
def RemoveGroup(self, group):
"""
Remove a group
Parameters:
group (SMESH.SMESH_GroupBase): group to remove
"""
self.mesh.RemoveGroup(group)
def RemoveGroupWithContents(self, group):
"""
Remove a group with its contents
Parameters:
group (SMESH.SMESH_GroupBase): group to remove
"""
self.mesh.RemoveGroupWithContents(group)
def GetGroups(self, elemType = SMESH.ALL):
"""
Get the list of groups existing in the mesh in the order
of creation (starting from the oldest one)
Parameters:
elemType (SMESH.ElementType): type of elements the groups contain;
by default groups of elements of all types are returned
Returns:
a sequence of :class:`SMESH.SMESH_GroupBase`
"""
groups = self.mesh.GetGroups()
if elemType == SMESH.ALL:
return groups
typedGroups = []
for g in groups:
if g.GetType() == elemType:
typedGroups.append( g )
pass
pass
return typedGroups
def NbGroups(self):
"""
Get the number of groups existing in the mesh
Returns:
the quantity of groups as an integer value
"""
return self.mesh.NbGroups()
def GetGroupNames(self):
"""
Get the list of names of groups existing in the mesh
Returns:
list of strings
"""
groups = self.GetGroups()
names = []
for group in groups:
names.append(group.GetName())
return names
def GetGroupByName(self, name, elemType = None):
"""
Find groups by name and type
Parameters:
name (string): name of the group of interest
elemType (SMESH.ElementType): type of elements the groups contain;
by default one group of any type is returned;
if elemType == SMESH.ALL then all groups of any type are returned
Returns:
a list of :class:`SMESH.SMESH_GroupBase`
"""
groups = []
for group in self.GetGroups():
if group.GetName() == name:
if elemType is None:
return [group]
if ( elemType == SMESH.ALL or
group.GetType() == elemType ):
groups.append( group )
return groups
def UnionGroups(self, group1, group2, name):
"""
Produce a union of two groups.
A new group is created. All mesh elements that are
present in the initial groups are added to the new one
Parameters:
group1 (SMESH.SMESH_GroupBase): a group
group2 (SMESH.SMESH_GroupBase): another group
Returns:
instance of :class:`SMESH.SMESH_Group`
"""
return self.mesh.UnionGroups(group1, group2, name)
def UnionListOfGroups(self, groups, name):
"""
Produce a union list of groups.
New group is created. All mesh elements that are present in
initial groups are added to the new one
Parameters:
groups: list of :class:`SMESH.SMESH_GroupBase`
Returns:
instance of :class:`SMESH.SMESH_Group`
"""
return self.mesh.UnionListOfGroups(groups, name)
def IntersectGroups(self, group1, group2, name):
"""
Prodice an intersection of two groups.
A new group is created. All mesh elements that are common
for the two initial groups are added to the new one.
Parameters:
group1 (SMESH.SMESH_GroupBase): a group
group2 (SMESH.SMESH_GroupBase): another group
Returns:
instance of :class:`SMESH.SMESH_Group`
"""
return self.mesh.IntersectGroups(group1, group2, name)
def IntersectListOfGroups(self, groups, name):
"""
Produce an intersection of groups.
New group is created. All mesh elements that are present in all
initial groups simultaneously are added to the new one
Parameters:
groups: a list of :class:`SMESH.SMESH_GroupBase`
Returns:
instance of :class:`SMESH.SMESH_Group`
"""
return self.mesh.IntersectListOfGroups(groups, name)
def CutGroups(self, main_group, tool_group, name):
"""
Produce a cut of two groups.
A new group is created. All mesh elements that are present in
the main group but are not present in the tool group are added to the new one
Parameters:
main_group (SMESH.SMESH_GroupBase): a group to cut from
tool_group (SMESH.SMESH_GroupBase): a group to cut by
Returns:
an instance of :class:`SMESH.SMESH_Group`
"""
return self.mesh.CutGroups(main_group, tool_group, name)
def CutListOfGroups(self, main_groups, tool_groups, name):
"""
Produce a cut of groups.
A new group is created. All mesh elements that are present in main groups
but do not present in tool groups are added to the new one
Parameters:
main_group: groups to cut from (list of :class:`SMESH.SMESH_GroupBase`)
tool_group: groups to cut by (list of :class:`SMESH.SMESH_GroupBase`)
Returns:
an instance of :class:`SMESH.SMESH_Group`
"""
return self.mesh.CutListOfGroups(main_groups, tool_groups, name)
def CreateDimGroup(self, groups, elemType, name,
nbCommonNodes = SMESH.ALL_NODES, underlyingOnly = True):
"""
Create a standalone group of entities basing on nodes of other groups.
Parameters:
groups: list of reference :class:`sub-meshes, groups or filters <SMESH.SMESH_IDSource>`, of any type.
elemType: a type of elements to include to the new group; either of
(SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME).
name: a name of the new group.
nbCommonNodes: a criterion of inclusion of an element to the new group
basing on number of element nodes common with reference *groups*.
Meaning of possible values are:
- SMESH.ALL_NODES - include if all nodes are common,
- SMESH.MAIN - include if all corner nodes are common (meaningful for a quadratic mesh),
- SMESH.AT_LEAST_ONE - include if one or more node is common,
- SMEHS.MAJORITY - include if half of nodes or more are common.
underlyingOnly: if *True* (default), an element is included to the
new group provided that it is based on nodes of an element of *groups*;
in this case the reference *groups* are supposed to be of higher dimension
than *elemType*, which can be useful for example to get all faces lying on
volumes of the reference *groups*.
Returns:
an instance of :class:`SMESH.SMESH_Group`
"""
if isinstance( groups, SMESH._objref_SMESH_IDSource ):
groups = [groups]
return self.mesh.CreateDimGroup(groups, elemType, name, nbCommonNodes, underlyingOnly)
def ConvertToStandalone(self, group):
"""
Convert group on geom into standalone group
"""
return self.mesh.ConvertToStandalone(group)
# Get some info about mesh:
# ------------------------
def GetLog(self, clearAfterGet):
"""
Return the log of nodes and elements added or removed
since the previous clear of the log.
Parameters:
clearAfterGet: log is emptied after Get (safe if concurrents access)
Returns:
list of SMESH.log_block structures { commandType, number, coords, indexes }
"""
return self.mesh.GetLog(clearAfterGet)
def ClearLog(self):
"""
Clear the log of nodes and elements added or removed since the previous
clear. Must be used immediately after :meth:`GetLog` if clearAfterGet is false.
"""
self.mesh.ClearLog()
def SetAutoColor(self, theAutoColor):
"""
Toggle auto color mode on the object.
If switched on, a default color of a new group in Create Group dialog is chosen randomly.
Parameters:
theAutoColor (boolean): the flag which toggles auto color mode.
"""
self.mesh.SetAutoColor(theAutoColor)
def GetAutoColor(self):
"""
Get flag of object auto color mode.
Returns:
True or False
"""
return self.mesh.GetAutoColor()
def GetId(self):
"""
Get the internal ID
Returns:
integer value, which is the internal Id of the mesh
"""
return self.mesh.GetId()
def HasDuplicatedGroupNamesMED(self):
"""
Check the group names for duplications.
Consider the maximum group name length stored in MED file.
Returns:
True or False
"""
return self.mesh.HasDuplicatedGroupNamesMED()
def GetMeshEditor(self):
"""
Obtain the mesh editor tool
Returns:
an instance of :class:`SMESH.SMESH_MeshEditor`
"""
return self.editor
def GetIDSource(self, ids, elemType = SMESH.ALL):
"""
Wrap a list of IDs of elements or nodes into :class:`SMESH.SMESH_IDSource` which
can be passed as argument to a method accepting :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Parameters:
ids: list of IDs
elemType: type of elements; this parameter is used to distinguish
IDs of nodes from IDs of elements; by default ids are treated as
IDs of elements; use SMESH.NODE if ids are IDs of nodes.
Returns:
an instance of :class:`SMESH.SMESH_IDSource`
Warning:
call UnRegister() for the returned object as soon as it is no more useful::
idSrc = mesh.GetIDSource( [1,3,5], SMESH.NODE )
mesh.DoSomething( idSrc )
idSrc.UnRegister()
"""
if isinstance( ids, int ):
ids = [ids]
return self.editor.MakeIDSource(ids, elemType)
# Get information about mesh contents:
# ------------------------------------
def GetMeshInfo(self, obj = None):
"""
Get the mesh statistic.
Use :meth:`smeshBuilder.EnumToLong` to get an integer from
an item of :class:`SMESH.EntityType`.
Returns:
dictionary { :class:`SMESH.EntityType` - "count of elements" }
"""
if not obj: obj = self.mesh
return self.smeshpyD.GetMeshInfo(obj)
def NbNodes(self):
"""
Return the number of nodes in the mesh
Returns:
an integer value
"""
return self.mesh.NbNodes()
def NbElements(self):
"""
Return the number of elements in the mesh
Returns:
an integer value
"""
return self.mesh.NbElements()
def Nb0DElements(self):
"""
Return the number of 0d elements in the mesh
Returns:
an integer value
"""
return self.mesh.Nb0DElements()
def NbBalls(self):
"""
Return the number of ball discrete elements in the mesh
Returns:
an integer value
"""
return self.mesh.NbBalls()
def NbEdges(self):
"""
Return the number of edges in the mesh
Returns:
an integer value
"""
return self.mesh.NbEdges()
def NbEdgesOfOrder(self, elementOrder):
"""
Return the number of edges with the given order in the mesh
Parameters:
elementOrder: the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbEdgesOfOrder(elementOrder)
def NbFaces(self):
"""
Return the number of faces in the mesh
Returns:
an integer value
"""
return self.mesh.NbFaces()
def NbFacesOfOrder(self, elementOrder):
"""
Return the number of faces with the given order in the mesh
Parameters:
elementOrder: the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbFacesOfOrder(elementOrder)
def NbTriangles(self):
"""
Return the number of triangles in the mesh
Returns:
an integer value
"""
return self.mesh.NbTriangles()
def NbTrianglesOfOrder(self, elementOrder):
"""
Return the number of triangles with the given order in the mesh
Parameters:
elementOrder: is the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbTrianglesOfOrder(elementOrder)
def NbBiQuadTriangles(self):
"""
Return the number of biquadratic triangles in the mesh
Returns:
an integer value
"""
return self.mesh.NbBiQuadTriangles()
def NbQuadrangles(self):
"""
Return the number of quadrangles in the mesh
Returns:
an integer value
"""
return self.mesh.NbQuadrangles()
def NbQuadranglesOfOrder(self, elementOrder):
"""
Return the number of quadrangles with the given order in the mesh
Parameters:
elementOrder: the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbQuadranglesOfOrder(elementOrder)
def NbBiQuadQuadrangles(self):
"""
Return the number of biquadratic quadrangles in the mesh
Returns:
an integer value
"""
return self.mesh.NbBiQuadQuadrangles()
def NbPolygons(self, elementOrder = SMESH.ORDER_ANY):
"""
Return the number of polygons of given order in the mesh
Parameters:
elementOrder: the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbPolygonsOfOrder(elementOrder)
def NbVolumes(self):
"""
Return the number of volumes in the mesh
Returns:
an integer value
"""
return self.mesh.NbVolumes()
def NbVolumesOfOrder(self, elementOrder):
"""
Return the number of volumes with the given order in the mesh
Parameters:
elementOrder: the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbVolumesOfOrder(elementOrder)
def NbTetras(self):
"""
Return the number of tetrahedrons in the mesh
Returns:
an integer value
"""
return self.mesh.NbTetras()
def NbTetrasOfOrder(self, elementOrder):
"""
Return the number of tetrahedrons with the given order in the mesh
Parameters:
elementOrder: the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbTetrasOfOrder(elementOrder)
def NbHexas(self):
"""
Return the number of hexahedrons in the mesh
Returns:
an integer value
"""
return self.mesh.NbHexas()
def NbHexasOfOrder(self, elementOrder):
"""
Return the number of hexahedrons with the given order in the mesh
Parameters:
elementOrder: the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbHexasOfOrder(elementOrder)
def NbTriQuadraticHexas(self):
"""
Return the number of triquadratic hexahedrons in the mesh
Returns:
an integer value
"""
return self.mesh.NbTriQuadraticHexas()
def NbPyramids(self):
"""
Return the number of pyramids in the mesh
Returns:
an integer value
"""
return self.mesh.NbPyramids()
def NbPyramidsOfOrder(self, elementOrder):
"""
Return the number of pyramids with the given order in the mesh
Parameters:
elementOrder: the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbPyramidsOfOrder(elementOrder)
def NbPrisms(self):
"""
Return the number of prisms in the mesh
Returns:
an integer value
"""
return self.mesh.NbPrisms()
def NbPrismsOfOrder(self, elementOrder):
"""
Return the number of prisms with the given order in the mesh
Parameters:
elementOrder: the order of elements
(SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC)
Returns:
an integer value
"""
return self.mesh.NbPrismsOfOrder(elementOrder)
def NbHexagonalPrisms(self):
"""
Return the number of hexagonal prisms in the mesh
Returns:
an integer value
"""
return self.mesh.NbHexagonalPrisms()
def NbPolyhedrons(self):
"""
Return the number of polyhedrons in the mesh
Returns:
an integer value
"""
return self.mesh.NbPolyhedrons()
def NbSubMesh(self):
"""
Return the number of submeshes in the mesh
Returns:
an integer value
"""
return self.mesh.NbSubMesh()
def GetElementsId(self):
"""
Return the list of all mesh elements IDs
Returns:
the list of integer values
See Also:
:meth:`GetElementsByType`
"""
return self.mesh.GetElementsId()
def GetElementsByType(self, elementType):
"""
Return the list of IDs of mesh elements with the given type
Parameters:
elementType (SMESH.ElementType): the required type of elements
Returns:
list of integer values
"""
return self.mesh.GetElementsByType(elementType)
def GetNodesId(self):
"""
Return the list of mesh nodes IDs
Returns:
the list of integer values
"""
return self.mesh.GetNodesId()
# Get the information about mesh elements:
# ------------------------------------
def GetElementType(self, id, iselem=True):
"""
Return the type of mesh element or node
Returns:
the value from :class:`SMESH.ElementType` enumeration.
Return SMESH.ALL if element or node with the given ID does not exist
"""
return self.mesh.GetElementType(id, iselem)
def GetElementGeomType(self, id):
"""
Return the geometric type of mesh element
Returns:
the value from :class:`SMESH.EntityType` enumeration.
"""
return self.mesh.GetElementGeomType(id)
def GetElementShape(self, id):
"""
Return the shape type of mesh element
Returns:
the value from :class:`SMESH.GeometryType` enumeration.
"""
return self.mesh.GetElementShape(id)
def GetSubMeshElementsId(self, Shape):
"""
Return the list of sub-mesh elements IDs
Parameters:
Shape (GEOM.GEOM_Object): a geom object (sub-shape).
*Shape* must be the sub-shape of the :meth:`main shape <GetShape>`
Returns:
list of integer values
"""
if isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object):
ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape )
else:
ShapeID = Shape
return self.mesh.GetSubMeshElementsId(ShapeID)
def GetSubMeshNodesId(self, Shape, all):
"""
Return the list of sub-mesh nodes IDs
Parameters:
Shape: a geom object (sub-shape).
*Shape* must be the sub-shape of a :meth:`GetShape`
all: If True, gives all nodes of sub-mesh elements, otherwise gives only sub-mesh nodes
Returns:
list of integer values
"""
if isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object):
ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape )
else:
ShapeID = Shape
return self.mesh.GetSubMeshNodesId(ShapeID, all)
def GetSubMeshElementType(self, Shape):
"""
Return type of elements on given shape
Parameters:
Shape: a geom object (sub-shape).
*Shape* must be a sub-shape of a ShapeToMesh()
Returns:
:class:`SMESH.ElementType`
"""
if isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object):
ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape )
else:
ShapeID = Shape
return self.mesh.GetSubMeshElementType(ShapeID)
def Dump(self):
"""
Get the mesh description
Returns:
string value
"""
return self.mesh.Dump()
# Get the information about nodes and elements of a mesh by its IDs:
# -----------------------------------------------------------
def GetNodeXYZ(self, id):
"""
Get XYZ coordinates of a node.
If there is no node for the given ID - return an empty list
Returns:
list of float values
"""
return self.mesh.GetNodeXYZ(id)
def GetNodeInverseElements(self, id):
"""
Return list of IDs of inverse elements for the given node.
If there is no node for the given ID - return an empty list
Returns:
list of integer values
"""
return self.mesh.GetNodeInverseElements(id)
def GetNodePosition(self,NodeID):
"""
Return the position of a node on the shape
Returns:
:class:`SMESH.NodePosition`
"""
return self.mesh.GetNodePosition(NodeID)
def GetElementPosition(self,ElemID):
"""
Return the position of an element on the shape
Returns:
:class:`SMESH.ElementPosition`
"""
return self.mesh.GetElementPosition(ElemID)
def GetShapeID(self, id):
"""
Return the ID of the shape, on which the given node was generated.
Returns:
an integer value > 0 or -1 if there is no node for the given
ID or the node is not assigned to any geometry
"""
return self.mesh.GetShapeID(id)
def GetShapeIDForElem(self,id):
"""
Return the ID of the shape, on which the given element was generated.
Returns:
an integer value > 0 or -1 if there is no element for the given
ID or the element is not assigned to any geometry
"""
return self.mesh.GetShapeIDForElem(id)
def GetElemNbNodes(self, id):
"""
Return the number of nodes of the given element
Returns:
an integer value > 0 or -1 if there is no element for the given ID
"""
return self.mesh.GetElemNbNodes(id)
def GetElemNode(self, id, index):
"""
Return the node ID the given (zero based) index for the given element.
* If there is no element for the given ID - return -1.
* If there is no node for the given index - return -2.
Parameters:
id (int): element ID
index (int): node index within the element
Returns:
an integer value (ID)
See Also:
:meth:`GetElemNodes`
"""
return self.mesh.GetElemNode(id, index)
def GetElemNodes(self, id):
"""
Return the IDs of nodes of the given element
Returns:
a list of integer values
"""
return self.mesh.GetElemNodes(id)
def IsMediumNode(self, elementID, nodeID):
"""
Return true if the given node is the medium node in the given quadratic element
"""
return self.mesh.IsMediumNode(elementID, nodeID)
def IsMediumNodeOfAnyElem(self, nodeID, elementType = SMESH.ALL ):
"""
Return true if the given node is the medium node in one of quadratic elements
Parameters:
nodeID: ID of the node
elementType: the type of elements to check a state of the node, either of
(SMESH.ALL, SMESH.NODE, SMESH.EDGE, SMESH.FACE or SMESH.VOLUME)
"""
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
def ElemNbEdges(self, id):
"""
Return the number of edges for the given element
"""
return self.mesh.ElemNbEdges(id)
def ElemNbFaces(self, id):
"""
Return the number of faces for the given element
"""
return self.mesh.ElemNbFaces(id)
def GetElemFaceNodes(self,elemId, faceIndex):
"""
Return nodes of given face (counted from zero) for given volumic element.
"""
return self.mesh.GetElemFaceNodes(elemId, faceIndex)
def GetFaceNormal(self, faceId, normalized=False):
"""
Return three components of normal of given mesh face
(or an empty array in KO case)
"""
return self.mesh.GetFaceNormal(faceId,normalized)
def FindElementByNodes(self, nodes):
"""
Return an element based on all given nodes.
"""
return self.mesh.FindElementByNodes(nodes)
def GetElementsByNodes(self, nodes, elemType=SMESH.ALL):
"""
Return elements including all given nodes.
"""
return self.mesh.GetElementsByNodes( nodes, elemType )
def IsPoly(self, id):
"""
Return true if the given element is a polygon
"""
return self.mesh.IsPoly(id)
def IsQuadratic(self, id):
"""
Return true if the given element is quadratic
"""
return self.mesh.IsQuadratic(id)
def GetBallDiameter(self, id):
"""
Return diameter of a ball discrete element or zero in case of an invalid *id*
"""
return self.mesh.GetBallDiameter(id)
def BaryCenter(self, id):
"""
Return XYZ coordinates of the barycenter of the given element.
If there is no element for the given ID - return an empty list
Returns:
a list of three double values
"""
return self.mesh.BaryCenter(id)
def GetIdsFromFilter(self, theFilter):
"""
Pass mesh elements through the given filter and return IDs of fitting elements
Parameters:
theFilter: :class:`SMESH.Filter`
Returns:
a list of ids
See Also:
:meth:`SMESH.Filter.GetIDs`
"""
theFilter.SetMesh( self.mesh )
return theFilter.GetIDs()
# Get mesh measurements information:
# ------------------------------------
def GetFreeBorders(self):
"""
Verify whether a 2D mesh element has free edges (edges connected to one face only).
Return a list of special structures (borders).
Returns:
a list of :class:`SMESH.FreeEdges.Border`
"""
aFilterMgr = self.smeshpyD.CreateFilterManager()
aPredicate = aFilterMgr.CreateFreeEdges()
aPredicate.SetMesh(self.mesh)
aBorders = aPredicate.GetBorders()
aFilterMgr.UnRegister()
return aBorders
def MinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
"""
Get minimum distance between two nodes, elements or distance to the origin
Parameters:
id1: first node/element id
id2: second node/element id (if 0, distance from *id1* to the origin is computed)
isElem1: *True* if *id1* is element id, *False* if it is node id
isElem2: *True* if *id2* is element id, *False* if it is node id
Returns:
minimum distance value **GetMinDistance()**
"""
aMeasure = self.GetMinDistance(id1, id2, isElem1, isElem2)
return aMeasure.value
def GetMinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
"""
Get :class:`SMESH.Measure` structure specifying minimum distance data between two objects
Parameters:
id1: first node/element id
id2: second node/element id (if 0, distance from *id1* to the origin is computed)
isElem1: *True* if *id1* is element id, *False* if it is node id
isElem2: *True* if *id2* is element id, *False* if it is node id
Returns:
:class:`SMESH.Measure` structure
See Also:
:meth:`MinDistance`
"""
if isElem1:
id1 = self.editor.MakeIDSource([id1], SMESH.FACE)
else:
id1 = self.editor.MakeIDSource([id1], SMESH.NODE)
if id2 != 0:
if isElem2:
id2 = self.editor.MakeIDSource([id2], SMESH.FACE)
else:
id2 = self.editor.MakeIDSource([id2], SMESH.NODE)
pass
else:
id2 = None
aMeasurements = self.smeshpyD.CreateMeasurements()
aMeasure = aMeasurements.MinDistance(id1, id2)
genObjUnRegister([aMeasurements,id1, id2])
return aMeasure
def BoundingBox(self, objects=None, isElem=False):
"""
Get bounding box of the specified object(s)
Parameters:
objects: single :class:`source object <SMESH.SMESH_IDSource>` or list of source objects or list of nodes/elements IDs
isElem: if *objects* is a list of IDs, *True* value in this parameters specifies that *objects* are elements,
*False* specifies that *objects* are nodes
Returns:
tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
See Also:
:meth:`GetBoundingBox()`
"""
result = self.GetBoundingBox(objects, isElem)
if result is None:
result = (0.0,)*6
else:
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
return result
def GetBoundingBox(self, objects=None, isElem=False):
"""
Get :class:`SMESH.Measure` structure specifying bounding box data of the specified object(s)
Parameters:
objects: single :class:`source object <SMESH.SMESH_IDSource>` or list of source objects or list of nodes/elements IDs
isElem: if *objects* is a list of IDs, True means that *objects* are elements,
False means that *objects* are nodes
Returns:
:class:`SMESH.Measure` structure
See Also:
:meth:`BoundingBox()`
"""
if objects is None:
objects = [self.mesh]
elif isinstance(objects, tuple):
objects = list(objects)
if not isinstance(objects, list):
objects = [objects]
if len(objects) > 0 and isinstance(objects[0], int):
objects = [objects]
srclist = []
unRegister = genObjUnRegister()
for o in objects:
if isinstance(o, Mesh):
srclist.append(o.mesh)
elif hasattr(o, "_narrow"):
src = o._narrow(SMESH.SMESH_IDSource)
if src: srclist.append(src)
pass
elif isinstance(o, list):
if isElem:
srclist.append(self.editor.MakeIDSource(o, SMESH.FACE))
else:
srclist.append(self.editor.MakeIDSource(o, SMESH.NODE))
unRegister.set( srclist[-1] )
pass
pass
aMeasurements = self.smeshpyD.CreateMeasurements()
unRegister.set( aMeasurements )
aMeasure = aMeasurements.BoundingBox(srclist)
return aMeasure
# Mesh edition (SMESH_MeshEditor functionality):
# ---------------------------------------------
def RemoveElements(self, IDsOfElements):
"""
Remove the elements from the mesh by ids
Parameters:
IDsOfElements: is a list of ids of elements to remove
Returns:
True or False
"""
return self.editor.RemoveElements(IDsOfElements)
def RemoveNodes(self, IDsOfNodes):
"""
Remove nodes from mesh by ids
Parameters:
IDsOfNodes: is a list of ids of nodes to remove
Returns:
True or False
"""
return self.editor.RemoveNodes(IDsOfNodes)
def RemoveOrphanNodes(self):
"""
Remove all orphan (free) nodes from mesh
Returns:
number of the removed nodes
"""
return self.editor.RemoveOrphanNodes()
def AddNode(self, x, y, z):
"""
Add a node to the mesh by coordinates
Returns:
ID of the new node
"""
x,y,z,Parameters,hasVars = ParseParameters(x,y,z)
if hasVars: self.mesh.SetParameters(Parameters)
return self.editor.AddNode( x, y, z)
def Add0DElement( self, IDOfNode, DuplicateElements=True ):
"""
Create a 0D element on a node with given number.
Parameters:
IDOfNode: the ID of node for creation of the element.
DuplicateElements: to add one more 0D element to a node or not
Returns:
ID of the new 0D element
"""
return self.editor.Add0DElement( IDOfNode, DuplicateElements )
def Add0DElementsToAllNodes(self, theObject, theGroupName="", DuplicateElements=False):
"""
Create 0D elements on all nodes of the given elements except those
nodes on which a 0D element already exists.
Parameters:
theObject: an object on whose nodes 0D elements will be created.
It can be list of element IDs, :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
theGroupName: optional name of a group to add 0D elements created
and/or found on nodes of *theObject*.
DuplicateElements: to add one more 0D element to a node or not
Returns:
an object (a new group or a temporary :class:`SMESH.SMESH_IDSource`) holding
IDs of new and/or found 0D elements. IDs of 0D elements
can be retrieved from the returned object by
calling :meth:`GetIDs() <SMESH.SMESH_IDSource.GetIDs>`
"""
unRegister = genObjUnRegister()
if isinstance( theObject, Mesh ):
theObject = theObject.GetMesh()
elif isinstance( theObject, list ):
theObject = self.GetIDSource( theObject, SMESH.ALL )
unRegister.set( theObject )
return self.editor.Create0DElementsOnAllNodes( theObject, theGroupName, DuplicateElements )
def AddBall(self, IDOfNode, diameter):
"""
Create a ball element on a node with given ID.
Parameters:
IDOfNode: the ID of node for creation of the element.
diameter: the bal diameter.
Returns:
ID of the new ball element
"""
return self.editor.AddBall( IDOfNode, diameter )
def AddEdge(self, IDsOfNodes):
"""
Create a linear or quadratic edge (this is determined
by the number of given nodes).
Parameters:
IDsOfNodes: list of node IDs for creation of the element.
The order of nodes in this list should correspond to
the :ref:`connectivity convention <connectivity_page>`.
Returns:
ID of the new edge
"""
return self.editor.AddEdge(IDsOfNodes)
def AddFace(self, IDsOfNodes):
"""
Create a linear or quadratic face (this is determined
by the number of given nodes).
Parameters:
IDsOfNodes: list of node IDs for creation of the element.
The order of nodes in this list should correspond to
the :ref:`connectivity convention <connectivity_page>`.
Returns:
ID of the new face
"""
return self.editor.AddFace(IDsOfNodes)
def AddPolygonalFace(self, IdsOfNodes):
"""
Add a polygonal face defined by a list of node IDs
Parameters:
IdsOfNodes: the list of node IDs for creation of the element.
Returns:
ID of the new face
"""
return self.editor.AddPolygonalFace(IdsOfNodes)
def AddQuadPolygonalFace(self, IdsOfNodes):
"""
Add a quadratic polygonal face defined by a list of node IDs
Parameters:
IdsOfNodes: the list of node IDs for creation of the element;
corner nodes follow first.
Returns:
ID of the new face
"""
return self.editor.AddQuadPolygonalFace(IdsOfNodes)
def AddVolume(self, IDsOfNodes):
"""
Create both simple and quadratic volume (this is determined
by the number of given nodes).
Parameters:
IDsOfNodes: list of node IDs for creation of the element.
The order of nodes in this list should correspond to
the :ref:`connectivity convention <connectivity_page>`.
Returns:
ID of the new volumic element
"""
return self.editor.AddVolume(IDsOfNodes)
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
"""
Create a volume of many faces, giving nodes for each face.
Parameters:
IdsOfNodes: list of node IDs for volume creation, face by face.
Quantities: list of integer values, Quantities[i]
gives the quantity of nodes in face number i.
Returns:
ID of the new volumic element
"""
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
"""
Create a volume of many faces, giving the IDs of the existing faces.
Note:
The created volume will refer only to the nodes
of the given faces, not to the faces themselves.
Parameters:
IdsOfFaces: the list of face IDs for volume creation.
Returns:
ID of the new volumic element
"""
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
def SetNodeOnVertex(self, NodeID, Vertex):
"""
Binds a node to a vertex
Parameters:
NodeID: a node ID
Vertex: a vertex (GEOM.GEOM_Object) or vertex ID
Returns:
True if succeed else raises an exception
"""
if ( isinstance( Vertex, geomBuilder.GEOM._objref_GEOM_Object)):
VertexID = self.geompyD.GetSubShapeID( self.geom, Vertex )
else:
VertexID = Vertex
try:
self.editor.SetNodeOnVertex(NodeID, VertexID)
except SALOME.SALOME_Exception as inst:
raise ValueError(inst.details.text)
return True
def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
"""
Stores the node position on an edge
Parameters:
NodeID: a node ID
Edge: an edge (GEOM.GEOM_Object) or edge ID
paramOnEdge: a parameter on the edge where the node is located
Returns:
True if succeed else raises an exception
"""
if ( isinstance( Edge, geomBuilder.GEOM._objref_GEOM_Object)):
EdgeID = self.geompyD.GetSubShapeID( self.geom, Edge )
else:
EdgeID = Edge
try:
self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
except SALOME.SALOME_Exception as inst:
raise ValueError(inst.details.text)
return True
def SetNodeOnFace(self, NodeID, Face, u, v):
"""
Stores node position on a face
Parameters:
NodeID: a node ID
Face: a face (GEOM.GEOM_Object) or face ID
u: U parameter on the face where the node is located
v: V parameter on the face where the node is located
Returns:
True if succeed else raises an exception
"""
if ( isinstance( Face, geomBuilder.GEOM._objref_GEOM_Object)):
FaceID = self.geompyD.GetSubShapeID( self.geom, Face )
else:
FaceID = Face
try:
self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
except SALOME.SALOME_Exception as inst:
raise ValueError(inst.details.text)
return True
def SetNodeInVolume(self, NodeID, Solid):
"""
Binds a node to a solid
Parameters:
NodeID: a node ID
Solid: a solid (GEOM.GEOM_Object) or solid ID
Returns:
True if succeed else raises an exception
"""
if ( isinstance( Solid, geomBuilder.GEOM._objref_GEOM_Object)):
SolidID = self.geompyD.GetSubShapeID( self.geom, Solid )
else:
SolidID = Solid
try:
self.editor.SetNodeInVolume(NodeID, SolidID)
except SALOME.SALOME_Exception as inst:
raise ValueError(inst.details.text)
return True
def SetMeshElementOnShape(self, ElementID, Shape):
"""
Bind an element to a shape
Parameters:
ElementID: an element ID
Shape: a shape (GEOM.GEOM_Object) or shape ID
Returns:
True if succeed else raises an exception
"""
if ( isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object)):
ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape )
else:
ShapeID = Shape
try:
self.editor.SetMeshElementOnShape(ElementID, ShapeID)
except SALOME.SALOME_Exception as inst:
raise ValueError(inst.details.text)
return True
def MoveNode(self, NodeID, x, y, z):
"""
Move the node with the given id
Parameters:
NodeID: the id of the node
x: a new X coordinate
y: a new Y coordinate
z: a new Z coordinate
Returns:
True if succeed else False
"""
x,y,z,Parameters,hasVars = ParseParameters(x,y,z)
if hasVars: self.mesh.SetParameters(Parameters)
return self.editor.MoveNode(NodeID, x, y, z)
def MoveClosestNodeToPoint(self, x, y, z, NodeID):
"""
Find the node closest to a point and moves it to a point location
Parameters:
x: the X coordinate of a point
y: the Y coordinate of a point
z: the Z coordinate of a point
NodeID: if specified (>0), the node with this ID is moved,
otherwise, the node closest to point (*x*, *y*, *z*) is moved
Returns:
the ID of a moved node
"""
x,y,z,Parameters,hasVars = ParseParameters(x,y,z)
if hasVars: self.mesh.SetParameters(Parameters)
return self.editor.MoveClosestNodeToPoint(x, y, z, NodeID)
def FindNodeClosestTo(self, x, y, z):
"""
Find the node closest to a point
Parameters:
x: the X coordinate of a point
y: the Y coordinate of a point
z: the Z coordinate of a point
Returns:
the ID of a node
"""
#preview = self.mesh.GetMeshEditPreviewer()
#return preview.MoveClosestNodeToPoint(x, y, z, -1)
return self.editor.FindNodeClosestTo(x, y, z)
def FindElementsByPoint(self, x, y, z, elementType = SMESH.ALL, meshPart=None):
"""
Find the elements where a point lays IN or ON
Parameters:
x,y,z (float): coordinates of the point
elementType (SMESH.ElementType): type of elements to find; SMESH.ALL type
means elements of any type excluding nodes, discrete and 0D elements.
meshPart: a part of mesh (:class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`) to search within
Returns:
list of IDs of found elements
"""
if meshPart:
return self.editor.FindAmongElementsByPoint( meshPart, x, y, z, elementType );
else:
return self.editor.FindElementsByPoint(x, y, z, elementType)
def GetPointState(self, x, y, z):
"""
Return point state in a closed 2D mesh in terms of TopAbs_State enumeration:
0-IN, 1-OUT, 2-ON, 3-UNKNOWN.
UNKNOWN state means that either mesh is wrong or the analysis fails.
"""
return self.editor.GetPointState(x, y, z)
def IsManifold(self):
"""
Check if a 2D mesh is manifold
"""
return self.editor.IsManifold()
def IsCoherentOrientation2D(self):
"""
Check if orientation of 2D elements is coherent
"""
return self.editor.IsCoherentOrientation2D()
def MeshToPassThroughAPoint(self, x, y, z):
"""
Find the node closest to a point and moves it to a point location
Parameters:
x: the X coordinate of a point
y: the Y coordinate of a point
z: the Z coordinate of a point
Returns:
the ID of a moved node
"""
return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
def InverseDiag(self, NodeID1, NodeID2):
"""
Replace two neighbour triangles sharing Node1-Node2 link
with the triangles built on the same 4 nodes but having other common link.
Parameters:
NodeID1: the ID of the first node
NodeID2: the ID of the second node
Returns:
False if proper faces were not found
"""
return self.editor.InverseDiag(NodeID1, NodeID2)
def DeleteDiag(self, NodeID1, NodeID2):
"""
Replace two neighbour triangles sharing *Node1-Node2* link
with a quadrangle built on the same 4 nodes.
Parameters:
NodeID1: ID of the first node
NodeID2: ID of the second node
Returns:
False if proper faces were not found
"""
return self.editor.DeleteDiag(NodeID1, NodeID2)
def Reorient(self, IDsOfElements=None):
"""
Reorient elements by ids
Parameters:
IDsOfElements: if undefined reorients all mesh elements
Returns:
True if succeed else False
"""
if IDsOfElements == None:
IDsOfElements = self.GetElementsId()
return self.editor.Reorient(IDsOfElements)
def ReorientObject(self, theObject):
"""
Reorient all elements of the object
Parameters:
theObject: :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Returns:
True if succeed else False
"""
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.ReorientObject(theObject)
def Reorient2D(self, the2DObject, theDirection, theFaceOrPoint ):
"""
Reorient faces contained in *the2DObject*.
Parameters:
the2DObject: is a :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>` or list of IDs of 2D elements
theDirection: is a desired direction of normal of *theFace*.
It can be either a GEOM vector or a list of coordinates [x,y,z].
theFaceOrPoint: defines a face of *the2DObject* whose normal will be
compared with theDirection. It can be either ID of face or a point
by which the face will be found. The point can be given as either
a GEOM vertex or a list of point coordinates.
Returns:
number of reoriented faces
"""
unRegister = genObjUnRegister()
# check the2DObject
if isinstance( the2DObject, Mesh ):
the2DObject = the2DObject.GetMesh()
if isinstance( the2DObject, list ):
the2DObject = self.GetIDSource( the2DObject, SMESH.FACE )
unRegister.set( the2DObject )
# check theDirection
if isinstance( theDirection, geomBuilder.GEOM._objref_GEOM_Object):
theDirection = self.smeshpyD.GetDirStruct( theDirection )
if isinstance( theDirection, list ):
theDirection = self.smeshpyD.MakeDirStruct( *theDirection )
# prepare theFace and thePoint
theFace = theFaceOrPoint
thePoint = PointStruct(0,0,0)
if isinstance( theFaceOrPoint, geomBuilder.GEOM._objref_GEOM_Object):
thePoint = self.smeshpyD.GetPointStruct( theFaceOrPoint )
theFace = -1
if isinstance( theFaceOrPoint, list ):
thePoint = PointStruct( *theFaceOrPoint )
theFace = -1
if isinstance( theFaceOrPoint, PointStruct ):
thePoint = theFaceOrPoint
theFace = -1
return self.editor.Reorient2D( the2DObject, theDirection, theFace, thePoint )
def Reorient2DBy3D(self, the2DObject, the3DObject, theOutsideNormal=True ):
"""
Reorient faces according to adjacent volumes.
Parameters:
the2DObject: is a :class:`mesh, sub-mesh, group, filter <SMESH.SMESH_IDSource>` or list of
either IDs of faces or face groups.
the3DObject: is a :class:`mesh, sub-mesh, group, filter <SMESH.SMESH_IDSource>` or list of IDs of volumes.
theOutsideNormal: to orient faces to have their normals
pointing either *outside* or *inside* the adjacent volumes.
Returns:
number of reoriented faces.
"""
unRegister = genObjUnRegister()
# check the2DObject
if not isinstance( the2DObject, list ):
the2DObject = [ the2DObject ]
elif the2DObject and isinstance( the2DObject[0], int ):
the2DObject = self.GetIDSource( the2DObject, SMESH.FACE )
unRegister.set( the2DObject )
the2DObject = [ the2DObject ]
for i,obj2D in enumerate( the2DObject ):
if isinstance( obj2D, Mesh ):
the2DObject[i] = obj2D.GetMesh()
if isinstance( obj2D, list ):
the2DObject[i] = self.GetIDSource( obj2D, SMESH.FACE )
unRegister.set( the2DObject[i] )
# check the3DObject
if isinstance( the3DObject, Mesh ):
the3DObject = the3DObject.GetMesh()
if isinstance( the3DObject, list ):
the3DObject = self.GetIDSource( the3DObject, SMESH.VOLUME )
unRegister.set( the3DObject )
return self.editor.Reorient2DBy3D( the2DObject, the3DObject, theOutsideNormal )
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
"""
Fuse the neighbouring triangles into quadrangles.
Parameters:
IDsOfElements: The triangles to be fused.
theCriterion: a numerical functor, in terms of enum :class:`SMESH.FunctorType`, used to
applied to possible quadrangles to choose a neighbour to fuse with.
Note that not all items of :class:`SMESH.FunctorType` corresponds
to numerical functors.
MaxAngle: is the maximum angle between element normals at which the fusion
is still performed; theMaxAngle is measured in radians.
Also it could be a name of variable which defines angle in degrees.
Returns:
True in case of success, False otherwise.
"""
MaxAngle,Parameters,hasVars = ParseAngles(MaxAngle)
self.mesh.SetParameters(Parameters)
if not IDsOfElements:
IDsOfElements = self.GetElementsId()
Functor = self.smeshpyD.GetFunctor(theCriterion)
return self.editor.TriToQuad(IDsOfElements, Functor, MaxAngle)
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
"""
Fuse the neighbouring triangles of the object into quadrangles
Parameters:
theObject: is :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
theCriterion: is a numerical functor, in terms of enum :class:`SMESH.FunctorType`,
applied to possible quadrangles to choose a neighbour to fuse with.
Note that not all items of :class:`SMESH.FunctorType` corresponds
to numerical functors.
MaxAngle: a max angle between element normals at which the fusion
is still performed; theMaxAngle is measured in radians.
Returns:
True in case of success, False otherwise.
"""
MaxAngle,Parameters,hasVars = ParseAngles(MaxAngle)
self.mesh.SetParameters(Parameters)
if isinstance( theObject, Mesh ):
theObject = theObject.GetMesh()
Functor = self.smeshpyD.GetFunctor(theCriterion)
return self.editor.TriToQuadObject(theObject, Functor, MaxAngle)
def QuadToTri (self, IDsOfElements, theCriterion = None):
"""
Split quadrangles into triangles.
Parameters:
IDsOfElements: the faces to be splitted.
theCriterion: is a numerical functor, in terms of enum :class:`SMESH.FunctorType`, used to
choose a diagonal for splitting. If *theCriterion* is None, which is a default
value, then quadrangles will be split by the smallest diagonal.
Note that not all items of :class:`SMESH.FunctorType` corresponds
to numerical functors.
Returns:
True in case of success, False otherwise.
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if theCriterion is None:
theCriterion = FT_MaxElementLength2D
Functor = self.smeshpyD.GetFunctor(theCriterion)
return self.editor.QuadToTri(IDsOfElements, Functor)
def QuadToTriObject (self, theObject, theCriterion = None):
"""
Split quadrangles into triangles.
Parameters:
theObject: the object from which the list of elements is taken,
this is :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
theCriterion: is a numerical functor, in terms of enum :class:`SMESH.FunctorType`, used to
choose a diagonal for splitting. If *theCriterion* is None, which is a default
value, then quadrangles will be split by the smallest diagonal.
Note that not all items of :class:`SMESH.FunctorType` corresponds
to numerical functors.
Returns:
True in case of success, False otherwise.
"""
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if theCriterion is None:
theCriterion = FT_MaxElementLength2D
Functor = self.smeshpyD.GetFunctor(theCriterion)
return self.editor.QuadToTriObject(theObject, Functor)
def QuadTo4Tri (self, theElements=[]):
"""
Split each of given quadrangles into 4 triangles. A node is added at the center of
a quadrangle.
Parameters:
theElements: the faces to be splitted. This can be either
:class:`mesh, sub-mesh, group, filter <SMESH.SMESH_IDSource>`
or a list of face IDs. By default all quadrangles are split
"""
unRegister = genObjUnRegister()
if isinstance( theElements, Mesh ):
theElements = theElements.mesh
elif not theElements:
theElements = self.mesh
elif isinstance( theElements, list ):
theElements = self.GetIDSource( theElements, SMESH.FACE )
unRegister.set( theElements )
return self.editor.QuadTo4Tri( theElements )
def SplitQuad (self, IDsOfElements, Diag13):
"""
Split quadrangles into triangles.
Parameters:
IDsOfElements: the faces to be splitted
Diag13: is used to choose a diagonal for splitting.
Returns:
True in case of success, False otherwise.
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.SplitQuad(IDsOfElements, Diag13)
def SplitQuadObject (self, theObject, Diag13):
"""
Split quadrangles into triangles.
Parameters:
theObject: the object from which the list of elements is taken,
this is :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Diag13: is used to choose a diagonal for splitting.
Returns:
True in case of success, False otherwise.
"""
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SplitQuadObject(theObject, Diag13)
def BestSplit (self, IDOfQuad, theCriterion):
"""
Find a better splitting of the given quadrangle.
Parameters:
IDOfQuad: the ID of the quadrangle to be splitted.
theCriterion: is a numerical functor, in terms of enum :class:`SMESH.FunctorType`, used to
choose a diagonal for splitting.
Note that not all items of :class:`SMESH.FunctorType` corresponds
to numerical functors.
Returns:
* 1 if 1-3 diagonal is better,
* 2 if 2-4 diagonal is better,
* 0 if error occurs.
"""
return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
def SplitVolumesIntoTetra(self, elems, method=smeshBuilder.Hex_5Tet ):
"""
Split volumic elements into tetrahedrons
Parameters:
elems: either a list of elements or a :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
method: flags passing splitting method:
smesh.Hex_5Tet, smesh.Hex_6Tet, smesh.Hex_24Tet.
smesh.Hex_5Tet - to split the hexahedron into 5 tetrahedrons, etc.
"""
unRegister = genObjUnRegister()
if isinstance( elems, Mesh ):
elems = elems.GetMesh()
if ( isinstance( elems, list )):
elems = self.editor.MakeIDSource(elems, SMESH.VOLUME)
unRegister.set( elems )
self.editor.SplitVolumesIntoTetra(elems, method)
return
def SplitBiQuadraticIntoLinear(self, elems=None):
"""
Split bi-quadratic elements into linear ones without creation of additional nodes:
- bi-quadratic triangle will be split into 3 linear quadrangles;
- bi-quadratic quadrangle will be split into 4 linear quadrangles;
- tri-quadratic hexahedron will be split into 8 linear hexahedra.
Quadratic elements of lower dimension adjacent to the split bi-quadratic element
will be split in order to keep the mesh conformal.
Parameters:
elems: elements to split\: :class:`mesh, sub-mesh, group, filter <SMESH.SMESH_IDSource>` or element IDs;
if None (default), all bi-quadratic elements will be split
"""
unRegister = genObjUnRegister()
if elems and isinstance( elems, list ) and isinstance( elems[0], int ):
elems = self.editor.MakeIDSource(elems, SMESH.ALL)
unRegister.set( elems )
if elems is None:
elems = [ self.GetMesh() ]
if isinstance( elems, Mesh ):
elems = [ elems.GetMesh() ]
if not isinstance( elems, list ):
elems = [elems]
self.editor.SplitBiQuadraticIntoLinear( elems )
def SplitHexahedraIntoPrisms(self, elems, startHexPoint, facetNormal,
method=smeshBuilder.Hex_2Prisms, allDomains=False ):
"""
Split hexahedra into prisms
Parameters:
elems: either a list of elements or a :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
startHexPoint: a point used to find a hexahedron for which *facetNormal*
gives a normal vector defining facets to split into triangles.
*startHexPoint* can be either a triple of coordinates or a vertex.
facetNormal: a normal to a facet to split into triangles of a
hexahedron found by *startHexPoint*.
*facetNormal* can be either a triple of coordinates or an edge.
method: flags passing splitting method: smesh.Hex_2Prisms, smesh.Hex_4Prisms.
smesh.Hex_2Prisms - to split the hexahedron into 2 prisms, etc.
allDomains: if :code:`False`, only hexahedra adjacent to one closest
to *startHexPoint* are split, else *startHexPoint*
is used to find the facet to split in all domains present in *elems*.
"""
# IDSource
unRegister = genObjUnRegister()
if isinstance( elems, Mesh ):
elems = elems.GetMesh()
if ( isinstance( elems, list )):
elems = self.editor.MakeIDSource(elems, SMESH.VOLUME)
unRegister.set( elems )
pass
# axis
if isinstance( startHexPoint, geomBuilder.GEOM._objref_GEOM_Object):
startHexPoint = self.smeshpyD.GetPointStruct( startHexPoint )
elif isinstance( startHexPoint, list ):
startHexPoint = SMESH.PointStruct( startHexPoint[0],
startHexPoint[1],
startHexPoint[2])
if isinstance( facetNormal, geomBuilder.GEOM._objref_GEOM_Object):
facetNormal = self.smeshpyD.GetDirStruct( facetNormal )
elif isinstance( facetNormal, list ):
facetNormal = self.smeshpyD.MakeDirStruct( facetNormal[0],
facetNormal[1],
facetNormal[2])
self.mesh.SetParameters( startHexPoint.parameters + facetNormal.PS.parameters )
self.editor.SplitHexahedraIntoPrisms(elems, startHexPoint, facetNormal, method, allDomains)
def SplitQuadsNearTriangularFacets(self):
"""
Split quadrangle faces near triangular facets of volumes
"""
faces_array = self.GetElementsByType(SMESH.FACE)
for face_id in faces_array:
if self.GetElemNbNodes(face_id) == 4: # quadrangle
quad_nodes = self.mesh.GetElemNodes(face_id)
node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
isVolumeFound = False
for node1_elem in node1_elems:
if not isVolumeFound:
if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
nb_nodes = self.GetElemNbNodes(node1_elem)
if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
volume_elem = node1_elem
volume_nodes = self.mesh.GetElemNodes(volume_elem)
if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
isVolumeFound = True
if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
self.SplitQuad([face_id], False) # diagonal 2-4
elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
isVolumeFound = True
self.SplitQuad([face_id], True) # diagonal 1-3
elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
isVolumeFound = True
self.SplitQuad([face_id], True) # diagonal 1-3
def SplitHexaToTetras (self, theObject, theNode000, theNode001):
"""
Split hexahedrons into tetrahedrons.
This operation uses :doc:`pattern_mapping` functionality for splitting.
Parameters:
theObject: the object from which the list of hexahedrons is taken;
this is :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
theNode000,theNode001: within the range [0,7]; gives the orientation of the
pattern relatively each hexahedron: the (0,0,0) key-point of the pattern
will be mapped into *theNode000*-th node of each volume, the (0,0,1)
key-point will be mapped into *theNode001*-th node of each volume.
The (0,0,0) key-point of the used pattern corresponds to a non-split corner.
Returns:
True in case of success, False otherwise.
"""
# Pattern:
# 5.---------.6
# /|#* /|
# / | #* / |
# / | # * / |
# / | # /* |
# (0,0,1) 4.---------.7 * |
# |#* |1 | # *|
# | # *.----|---#.2
# | #/ * | /
# | /# * | /
# | / # * | /
# |/ #*|/
# (0,0,0) 0.---------.3
pattern_tetra = "!!! Nb of points: \n 8 \n\
!!! Points: \n\
0 0 0 !- 0 \n\
0 1 0 !- 1 \n\
1 1 0 !- 2 \n\
1 0 0 !- 3 \n\
0 0 1 !- 4 \n\
0 1 1 !- 5 \n\
1 1 1 !- 6 \n\
1 0 1 !- 7 \n\
!!! Indices of points of 6 tetras: \n\
0 3 4 1 \n\
7 4 3 1 \n\
4 7 5 1 \n\
6 2 5 7 \n\
1 5 2 7 \n\
2 3 1 7 \n"
pattern = self.smeshpyD.GetPattern()
isDone = pattern.LoadFromFile(pattern_tetra)
if not isDone:
print('Pattern.LoadFromFile :', pattern.GetErrorCode())
return isDone
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
isDone = pattern.MakeMesh(self.mesh, False, False)
if not isDone: print('Pattern.MakeMesh :', pattern.GetErrorCode())
# split quafrangle faces near triangular facets of volumes
self.SplitQuadsNearTriangularFacets()
return isDone
def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
"""
Split hexahedrons into prisms.
Uses the :doc:`pattern_mapping` functionality for splitting.
Parameters:
theObject: the object (:class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`) from where the list of hexahedrons is taken;
theNode000,theNode001: (within the range [0,7]) gives the orientation of the
pattern relatively each hexahedron: keypoint (0,0,0) of the pattern
will be mapped into the *theNode000* -th node of each volume, keypoint (0,0,1)
will be mapped into the *theNode001* -th node of each volume.
Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
Returns:
True in case of success, False otherwise.
"""
# Pattern: 5.---------.6
# /|# /|
# / | # / |
# / | # / |
# / | # / |
# (0,0,1) 4.---------.7 |
# | | | |
# | 1.----|----.2
# | / * | /
# | / * | /
# | / * | /
# |/ *|/
# (0,0,0) 0.---------.3
pattern_prism = "!!! Nb of points: \n 8 \n\
!!! Points: \n\
0 0 0 !- 0 \n\
0 1 0 !- 1 \n\
1 1 0 !- 2 \n\
1 0 0 !- 3 \n\
0 0 1 !- 4 \n\
0 1 1 !- 5 \n\
1 1 1 !- 6 \n\
1 0 1 !- 7 \n\
!!! Indices of points of 2 prisms: \n\
0 1 3 4 5 7 \n\
2 3 1 6 7 5 \n"
pattern = self.smeshpyD.GetPattern()
isDone = pattern.LoadFromFile(pattern_prism)
if not isDone:
print('Pattern.LoadFromFile :', pattern.GetErrorCode())
return isDone
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
isDone = pattern.MakeMesh(self.mesh, False, False)
if not isDone: print('Pattern.MakeMesh :', pattern.GetErrorCode())
# Split quafrangle faces near triangular facets of volumes
self.SplitQuadsNearTriangularFacets()
return isDone
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
"""
Smooth elements
Parameters:
IDsOfElements: the list if ids of elements to smooth
IDsOfFixedNodes: the list of ids of fixed nodes.
Note that nodes built on edges and boundary nodes are always fixed.
MaxNbOfIterations: the maximum number of iterations
MaxAspectRatio: varies in range [1.0, inf]
Method: is either Laplacian (smesh.LAPLACIAN_SMOOTH)
or Centroidal (smesh.CENTROIDAL_SMOOTH)
Returns:
True in case of success, False otherwise.
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
MaxNbOfIterations,MaxAspectRatio,Parameters,hasVars = ParseParameters(MaxNbOfIterations,MaxAspectRatio)
self.mesh.SetParameters(Parameters)
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
def SmoothObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
"""
Smooth elements which belong to the given object
Parameters:
theObject: the object to smooth
IDsOfFixedNodes: the list of ids of fixed nodes.
Note that nodes built on edges and boundary nodes are always fixed.
MaxNbOfIterations: the maximum number of iterations
MaxAspectRatio: varies in range [1.0, inf]
Method: is either Laplacian (smesh.LAPLACIAN_SMOOTH)
or Centroidal (smesh.CENTROIDAL_SMOOTH)
Returns:
True in case of success, False otherwise.
"""
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
"""
Parametrically smooth the given elements
Parameters:
IDsOfElements: the list if ids of elements to smooth
IDsOfFixedNodes: the list of ids of fixed nodes.
Note that nodes built on edges and boundary nodes are always fixed.
MaxNbOfIterations: the maximum number of iterations
MaxAspectRatio: varies in range [1.0, inf]
Method: is either Laplacian (smesh.LAPLACIAN_SMOOTH)
or Centroidal (smesh.CENTROIDAL_SMOOTH)
Returns:
True in case of success, False otherwise.
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
MaxNbOfIterations,MaxAspectRatio,Parameters,hasVars = ParseParameters(MaxNbOfIterations,MaxAspectRatio)
self.mesh.SetParameters(Parameters)
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
"""
Parametrically smooth the elements which belong to the given object
Parameters:
theObject: the object to smooth
IDsOfFixedNodes: the list of ids of fixed nodes.
Note that nodes built on edges and boundary nodes are always fixed.
MaxNbOfIterations: the maximum number of iterations
MaxAspectRatio: varies in range [1.0, inf]
Method: is either Laplacian (smesh.LAPLACIAN_SMOOTH)
or Centroidal (smesh.CENTROIDAL_SMOOTH)
Returns:
True in case of success, False otherwise.
"""
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
def ConvertToQuadratic(self, theForce3d=False, theSubMesh=None, theToBiQuad=False):
"""
Convert the mesh to quadratic or bi-quadratic, deletes old elements, replacing
them with quadratic with the same id.
Parameters:
theForce3d: method of new node creation:
* False - the medium node lies at the geometrical entity from which the mesh element is built
* True - the medium node lies at the middle of the line segments connecting two nodes of a mesh element
theSubMesh: a :class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>` to convert
theToBiQuad: If True, converts the mesh to bi-quadratic
Returns:
:class:`SMESH.ComputeError` which can hold a warning
Warning:
If *theSubMesh* is provided, the mesh can become non-conformal
"""
if isinstance( theSubMesh, Mesh ):
theSubMesh = theSubMesh.mesh
if theToBiQuad:
self.editor.ConvertToBiQuadratic(theForce3d,theSubMesh)
else:
if theSubMesh:
self.editor.ConvertToQuadraticObject(theForce3d,theSubMesh)
else:
self.editor.ConvertToQuadratic(theForce3d)
error = self.editor.GetLastError()
if error and error.comment:
print(error.comment)
return error
def ConvertFromQuadratic(self, theSubMesh=None):
"""
Convert the mesh from quadratic to ordinary,
deletes old quadratic elements,
replacing them with ordinary mesh elements with the same id.
Parameters:
theSubMesh: a :class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>` to convert
Warning:
If *theSubMesh* is provided, the mesh can become non-conformal
"""
if theSubMesh:
self.editor.ConvertFromQuadraticObject(theSubMesh)
else:
return self.editor.ConvertFromQuadratic()
def Make2DMeshFrom3D(self):
"""
Create 2D mesh as skin on boundary faces of a 3D mesh
Returns:
True if operation has been completed successfully, False otherwise
"""
return self.editor.Make2DMeshFrom3D()
def MakeBoundaryMesh(self, elements, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
toCopyElements=False, toCopyExistingBondary=False):
"""
Create missing boundary elements
Parameters:
elements: elements whose boundary is to be checked:
:class:`mesh, sub-mesh, group, filter <SMESH.SMESH_IDSource>` or list of elements.
If *elements* is mesh, it must be the mesh whose MakeBoundaryMesh() is called
dimension: defines type of boundary elements to create, either of
{ SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D }.
SMESH.BND_1DFROM3D create mesh edges on all borders of free facets of 3D cells
groupName: a name of group to store created boundary elements in,
"" means not to create the group
meshName: a name of new mesh to store created boundary elements in,
"" means not to create the new mesh
toCopyElements: if True, the checked elements will be copied into
the new mesh else only boundary elements will be copied into the new mesh
toCopyExistingBondary: if True, not only new but also pre-existing
boundary elements will be copied into the new mesh
Returns:
tuple (:class:`Mesh`, :class:`group <SMESH.SMESH_Group>`) where boundary elements were added to
"""
unRegister = genObjUnRegister()
if isinstance( elements, Mesh ):
elements = elements.GetMesh()
if ( isinstance( elements, list )):
elemType = SMESH.ALL
if elements: elemType = self.GetElementType( elements[0], iselem=True)
elements = self.editor.MakeIDSource(elements, elemType)
unRegister.set( elements )
mesh, group = self.editor.MakeBoundaryMesh(elements,dimension,groupName,meshName,
toCopyElements,toCopyExistingBondary)
if mesh: mesh = self.smeshpyD.Mesh(mesh)
return mesh, group
def MakeBoundaryElements(self, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
toCopyAll=False, groups=[]):
"""
Create missing boundary elements around either the whole mesh or
groups of elements
Parameters:
dimension: defines type of boundary elements to create, either of
{ SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D }
groupName: a name of group to store all boundary elements in,
"" means not to create the group
meshName: a name of a new mesh, which is a copy of the initial
mesh + created boundary elements; "" means not to create the new mesh
toCopyAll: if True, the whole initial mesh will be copied into
the new mesh else only boundary elements will be copied into the new mesh
groups: list of :class:`sub-meshes, groups or filters <SMESH.SMESH_IDSource>` of elements to make boundary around
Returns:
tuple( long, mesh, groups )
- long - number of added boundary elements
- mesh - the :class:`Mesh` where elements were added to
- group - the :class:`group <SMESH.SMESH_Group>` of boundary elements or None
"""
nb, mesh, group = self.editor.MakeBoundaryElements(dimension,groupName,meshName,
toCopyAll,groups)
if mesh: mesh = self.smeshpyD.Mesh(mesh)
return nb, mesh, group
def RenumberNodes(self):
"""
Renumber mesh nodes to remove unused node IDs
"""
self.editor.RenumberNodes()
def RenumberElements(self):
"""
Renumber mesh elements to remove unused element IDs
"""
self.editor.RenumberElements()
def _getIdSourceList(self, arg, idType, unRegister):
"""
Private method converting *arg* into a list of :class:`SMESH.SMESH_IDSource`
"""
if arg and isinstance( arg, list ):
if isinstance( arg[0], int ):
arg = self.GetIDSource( arg, idType )
unRegister.set( arg )
elif isinstance( arg[0], Mesh ):
arg[0] = arg[0].GetMesh()
elif isinstance( arg, Mesh ):
arg = arg.GetMesh()
if arg and isinstance( arg, SMESH._objref_SMESH_IDSource ):
arg = [arg]
return arg
def RotationSweepObjects(self, nodes, edges, faces, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
"""
Generate new elements by rotation of the given elements and nodes around the axis
Parameters:
nodes: nodes to revolve: a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`
edges: edges to revolve: a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`
faces: faces to revolve: a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`
Axis: the axis of rotation: :class:`SMESH.AxisStruct`, line (geom object) or [x,y,z,dx,dy,dz]
AngleInRadians: the angle of Rotation (in radians) or a name of variable
which defines angle in degrees
NbOfSteps: the number of steps
Tolerance: tolerance
MakeGroups: forces the generation of new groups from existing ones
TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size
of all steps, else - size of each step
Returns:
the list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
unRegister = genObjUnRegister()
nodes = self._getIdSourceList( nodes, SMESH.NODE, unRegister )
edges = self._getIdSourceList( edges, SMESH.EDGE, unRegister )
faces = self._getIdSourceList( faces, SMESH.FACE, unRegister )
if isinstance( Axis, geomBuilder.GEOM._objref_GEOM_Object):
Axis = self.smeshpyD.GetAxisStruct( Axis )
if isinstance( Axis, list ):
Axis = SMESH.AxisStruct( *Axis )
AngleInRadians,AngleParameters,hasVars = ParseAngles(AngleInRadians)
NbOfSteps,Tolerance,Parameters,hasVars = ParseParameters(NbOfSteps,Tolerance)
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if TotalAngle and NbOfSteps:
AngleInRadians /= NbOfSteps
return self.editor.RotationSweepObjects( nodes, edges, faces,
Axis, AngleInRadians,
NbOfSteps, Tolerance, MakeGroups)
def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
"""
Generate new elements by rotation of the elements around the axis
Parameters:
IDsOfElements: the list of ids of elements to sweep
Axis: the axis of rotation, :class:`SMESH.AxisStruct` or line(geom object)
AngleInRadians: the angle of Rotation (in radians) or a name of variable which defines angle in degrees
NbOfSteps: the number of steps
Tolerance: tolerance
MakeGroups: forces the generation of new groups from existing ones
TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size
of all steps, else - size of each step
Returns:
the list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
return self.RotationSweepObjects([], IDsOfElements, IDsOfElements, Axis,
AngleInRadians, NbOfSteps, Tolerance,
MakeGroups, TotalAngle)
def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
"""
Generate new elements by rotation of the elements of object around the axis
theObject object which elements should be sweeped.
It can be a mesh, a sub mesh or a group.
Parameters:
Axis: the axis of rotation, :class:`SMESH.AxisStruct` or line(geom object)
AngleInRadians: the angle of Rotation
NbOfSteps: number of steps
Tolerance: tolerance
MakeGroups: forces the generation of new groups from existing ones
TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size
of all steps, else - size of each step
Returns:
the list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
return self.RotationSweepObjects( [], theObject, theObject, Axis,
AngleInRadians, NbOfSteps, Tolerance,
MakeGroups, TotalAngle )
def RotationSweepObject1D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
"""
Generate new elements by rotation of the elements of object around the axis
theObject object which elements should be sweeped.
It can be a mesh, a sub mesh or a group.
Parameters:
Axis: the axis of rotation, :class:`SMESH.AxisStruct` or line(geom object)
AngleInRadians: the angle of Rotation
NbOfSteps: number of steps
Tolerance: tolerance
MakeGroups: forces the generation of new groups from existing ones
TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size
of all steps, else - size of each step
Returns:
the list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True,
empty list otherwise
"""
return self.RotationSweepObjects([],theObject,[], Axis,
AngleInRadians, NbOfSteps, Tolerance,
MakeGroups, TotalAngle)
def RotationSweepObject2D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
"""
Generate new elements by rotation of the elements of object around the axis
theObject object which elements should be sweeped.
It can be a mesh, a sub mesh or a group.
Parameters:
Axis: the axis of rotation, :class:`SMESH.AxisStruct` or line(geom object)
AngleInRadians: the angle of Rotation
NbOfSteps: number of steps
Tolerance: tolerance
MakeGroups: forces the generation of new groups from existing ones
TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size
of all steps, else - size of each step
Returns:
the list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
return self.RotationSweepObjects([],[],theObject, Axis, AngleInRadians,
NbOfSteps, Tolerance, MakeGroups, TotalAngle)
def ExtrusionSweepObjects(self, nodes, edges, faces, StepVector, NbOfSteps, MakeGroups=False,
scaleFactors=[], linearVariation=False, basePoint=[] ):
"""
Generate new elements by extrusion of the given elements and nodes
Parameters:
nodes: nodes to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`
edges: edges to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`
faces: faces to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`
StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining
the direction and value of extrusion for one step (the total extrusion
length will be NbOfSteps * ||StepVector||)
NbOfSteps: the number of steps
MakeGroups: forces the generation of new groups from existing ones
scaleFactors: optional scale factors to apply during extrusion
linearVariation: if *True*, scaleFactors are spread over all *scaleFactors*,
else scaleFactors[i] is applied to nodes at the i-th extrusion step
basePoint: optional scaling center; if not provided, a gravity center of
nodes and elements being extruded is used as the scaling center.
It can be either
- a list of tree components of the point or
- a node ID or
- a GEOM point
Returns:
the list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
Example: :ref:`tui_extrusion`
"""
unRegister = genObjUnRegister()
nodes = self._getIdSourceList( nodes, SMESH.NODE, unRegister )
edges = self._getIdSourceList( edges, SMESH.EDGE, unRegister )
faces = self._getIdSourceList( faces, SMESH.FACE, unRegister )
if isinstance( StepVector, geomBuilder.GEOM._objref_GEOM_Object):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
if isinstance( StepVector, list ):
StepVector = self.smeshpyD.MakeDirStruct(*StepVector)
if isinstance( basePoint, int):
xyz = self.GetNodeXYZ( basePoint )
if not xyz:
raise RuntimeError("Invalid node ID: %s" % basePoint)
basePoint = xyz
if isinstance( basePoint, geomBuilder.GEOM._objref_GEOM_Object ):
basePoint = self.geompyD.PointCoordinates( basePoint )
NbOfSteps,Parameters,hasVars = ParseParameters(NbOfSteps)
Parameters = StepVector.PS.parameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
return self.editor.ExtrusionSweepObjects( nodes, edges, faces,
StepVector, NbOfSteps,
scaleFactors, linearVariation, basePoint,
MakeGroups)
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False, IsNodes = False):
"""
Generate new elements by extrusion of the elements with given ids
Parameters:
IDsOfElements: the list of ids of elements or nodes for extrusion
StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining
the direction and value of extrusion for one step (the total extrusion
length will be NbOfSteps * ||StepVector||)
NbOfSteps: the number of steps
MakeGroups: forces the generation of new groups from existing ones
IsNodes: is True if elements with given ids are nodes
Returns:
the list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
Example: :ref:`tui_extrusion`
"""
n,e,f = [],[],[]
if IsNodes: n = IDsOfElements
else : e,f, = IDsOfElements,IDsOfElements
return self.ExtrusionSweepObjects(n,e,f, StepVector, NbOfSteps, MakeGroups)
def ExtrusionByNormal(self, Elements, StepSize, NbOfSteps,
ByAverageNormal=False, UseInputElemsOnly=True, MakeGroups=False, Dim = 2):
"""
Generate new elements by extrusion along the normal to a discretized surface or wire
Parameters:
Elements: elements to extrude - a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`.
Only faces can be extruded so far. A sub-mesh should be a sub-mesh on geom faces.
StepSize: length of one extrusion step (the total extrusion
length will be *NbOfSteps* *StepSize*).
NbOfSteps: number of extrusion steps.
ByAverageNormal: if True each node is translated by *StepSize*
along the average of the normal vectors to the faces sharing the node;
else each node is translated along the same average normal till
intersection with the plane got by translation of the face sharing
the node along its own normal by *StepSize*.
UseInputElemsOnly: to use only *Elements* when computing extrusion direction
for every node of *Elements*.
MakeGroups: forces generation of new groups from existing ones.
Dim: dimension of elements to extrude: 2 - faces or 1 - edges. Extrusion of edges
is not yet implemented. This parameter is used if *Elements* contains
both faces and edges, i.e. *Elements* is a Mesh.
Returns:
the list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True,
empty list otherwise.
Example: :ref:`tui_extrusion`
"""
unRegister = genObjUnRegister()
if isinstance( Elements, Mesh ):
Elements = [ Elements.GetMesh() ]
if isinstance( Elements, list ):
if not Elements:
raise RuntimeError("Elements empty!")
if isinstance( Elements[0], int ):
Elements = self.GetIDSource( Elements, SMESH.ALL )
unRegister.set( Elements )
if not isinstance( Elements, list ):
Elements = [ Elements ]
StepSize,NbOfSteps,Parameters,hasVars = ParseParameters(StepSize,NbOfSteps)
self.mesh.SetParameters(Parameters)
return self.editor.ExtrusionByNormal(Elements, StepSize, NbOfSteps,
ByAverageNormal, UseInputElemsOnly, MakeGroups, Dim)
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False, IsNodes=False):
"""
Generate new elements by extrusion of the elements or nodes which belong to the object
Parameters:
theObject: the object whose elements or nodes should be processed.
It can be a :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`.
StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining
the direction and value of extrusion for one step (the total extrusion
length will be NbOfSteps * ||StepVector||)
NbOfSteps: the number of steps
MakeGroups: forces the generation of new groups from existing ones
IsNodes: is True if elements to extrude are nodes
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
Example: :ref:`tui_extrusion`
"""
n,e,f = [],[],[]
if IsNodes: n = theObject
else : e,f, = theObject,theObject
return self.ExtrusionSweepObjects(n,e,f, StepVector, NbOfSteps, MakeGroups)
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
"""
Generate new elements by extrusion of edges which belong to the object
Parameters:
theObject: object whose 1D elements should be processed.
It can be a :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`.
StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining
the direction and value of extrusion for one step (the total extrusion
length will be NbOfSteps * ||StepVector||)
NbOfSteps: the number of steps
MakeGroups: to generate new groups from existing ones
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
Example: :ref:`tui_extrusion`
"""
return self.ExtrusionSweepObjects([],theObject,[], StepVector, NbOfSteps, MakeGroups)
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
"""
Generate new elements by extrusion of faces which belong to the object
Parameters:
theObject: object whose 2D elements should be processed.
It can be a :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`.
StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining
the direction and value of extrusion for one step (the total extrusion
length will be NbOfSteps * ||StepVector||)
NbOfSteps: the number of steps
MakeGroups: forces the generation of new groups from existing ones
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
Example: :ref:`tui_extrusion`
"""
return self.ExtrusionSweepObjects([],[],theObject, StepVector, NbOfSteps, MakeGroups)
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance, MakeGroups=False):
"""
Generate new elements by extrusion of the elements with given ids
Parameters:
IDsOfElements: is ids of elements
StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining
the direction and value of extrusion for one step (the total extrusion
length will be NbOfSteps * ||StepVector||)
NbOfSteps: the number of steps
ExtrFlags: sets flags for extrusion
SewTolerance: uses for comparing locations of nodes if flag
EXTRUSION_FLAG_SEW is set
MakeGroups: forces the generation of new groups from existing ones
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
if isinstance( StepVector, geomBuilder.GEOM._objref_GEOM_Object):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
if isinstance( StepVector, list ):
StepVector = self.smeshpyD.MakeDirStruct(*StepVector)
return self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance, MakeGroups)
def ExtrusionAlongPathObjects(self, Nodes, Edges, Faces, PathMesh, PathShape=None,
NodeStart=1, HasAngles=False, Angles=[], LinearVariation=False,
HasRefPoint=False, RefPoint=[0,0,0], MakeGroups=False):
"""
Generate new elements by extrusion of the given elements and nodes along the path.
The path of extrusion must be a meshed edge.
Parameters:
Nodes: nodes to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`
Edges: edges to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`
Faces: faces to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters <SMESH.SMESH_IDSource>`
PathMesh: 1D mesh or 1D sub-mesh, along which proceeds the extrusion
PathShape: shape (edge) defines the sub-mesh of PathMesh if PathMesh
contains not only path segments, else it can be None
NodeStart: the first or the last node on the path. Defines the direction of extrusion
HasAngles: allows the shape to be rotated around the path
to get the resulting mesh in a helical fashion
Angles: list of angles
LinearVariation: forces the computation of rotation angles as linear
variation of the given Angles along path steps
HasRefPoint: allows using the reference point
RefPoint: the reference point around which the shape is rotated (the mass center of the
shape by default). The User can specify any point as the Reference Point.
*RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct`
MakeGroups: forces the generation of new groups from existing ones
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` and
:class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>`
Example: :ref:`tui_extrusion_along_path`
"""
unRegister = genObjUnRegister()
Nodes = self._getIdSourceList( Nodes, SMESH.NODE, unRegister )
Edges = self._getIdSourceList( Edges, SMESH.EDGE, unRegister )
Faces = self._getIdSourceList( Faces, SMESH.FACE, unRegister )
if isinstance( RefPoint, geomBuilder.GEOM._objref_GEOM_Object):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
if isinstance( RefPoint, list ):
if not RefPoint: RefPoint = [0,0,0]
RefPoint = SMESH.PointStruct( *RefPoint )
if isinstance( PathMesh, Mesh ):
PathMesh = PathMesh.GetMesh()
Angles,AnglesParameters,hasVars = ParseAngles(Angles)
Parameters = AnglesParameters + var_separator + RefPoint.parameters
self.mesh.SetParameters(Parameters)
return self.editor.ExtrusionAlongPathObjects(Nodes, Edges, Faces,
PathMesh, PathShape, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups)
def ExtrusionAlongPathX(self, Base, Path, NodeStart,
HasAngles=False, Angles=[], LinearVariation=False,
HasRefPoint=False, RefPoint=[0,0,0], MakeGroups=False,
ElemType=SMESH.FACE):
"""
Generate new elements by extrusion of the given elements.
The path of extrusion must be a meshed edge.
Parameters:
Base: :class:`mesh, sub-mesh, group, filter <SMESH.SMESH_IDSource>`, or list of ids of elements for extrusion
Path: 1D mesh or 1D sub-mesh, along which proceeds the extrusion
NodeStart: the start node from Path. Defines the direction of extrusion
HasAngles: allows the shape to be rotated around the path
to get the resulting mesh in a helical fashion
Angles: list of angles in radians
LinearVariation: forces the computation of rotation angles as linear
variation of the given Angles along path steps
HasRefPoint: allows using the reference point
RefPoint: the reference point around which the elements are rotated (the mass
center of the elements by default).
The User can specify any point as the Reference Point.
*RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct`
MakeGroups: forces the generation of new groups from existing ones
ElemType: type of elements for extrusion (if param Base is a mesh)
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` and
:class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>`
if *MakeGroups* == True, only :class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>`
otherwise
Example: :ref:`tui_extrusion_along_path`
"""
n,e,f = [],[],[]
if ElemType == SMESH.NODE: n = Base
if ElemType == SMESH.EDGE: e = Base
if ElemType == SMESH.FACE: f = Base
gr,er = self.ExtrusionAlongPathObjects(n,e,f, Path, None, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups)
if MakeGroups: return gr,er
return er
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[],
MakeGroups=False, LinearVariation=False):
"""
Generate new elements by extrusion of the given elements.
The path of extrusion must be a meshed edge.
Parameters:
IDsOfElements: ids of elements
PathMesh: mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
PathShape: shape (edge) defines the sub-mesh for the path
NodeStart: the first or the last node on the edge. Defines the direction of extrusion
HasAngles: allows the shape to be rotated around the path
to get the resulting mesh in a helical fashion
Angles: list of angles in radians
HasRefPoint: allows using the reference point
RefPoint: the reference point around which the shape is rotated (the mass center of the shape by default).
The User can specify any point as the Reference Point.
*RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct`
MakeGroups: forces the generation of new groups from existing ones
LinearVariation: forces the computation of rotation angles as linear
variation of the given Angles along path steps
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` and
:class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>`
if *MakeGroups* == True, only :class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>` otherwise
Example: :ref:`tui_extrusion_along_path`
"""
n,e,f = [],IDsOfElements,IDsOfElements
gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape,
NodeStart, HasAngles, Angles,
LinearVariation,
HasRefPoint, RefPoint, MakeGroups)
if MakeGroups: return gr,er
return er
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[],
MakeGroups=False, LinearVariation=False):
"""
Generate new elements by extrusion of the elements which belong to the object.
The path of extrusion must be a meshed edge.
Parameters:
theObject: the object whose elements should be processed.
It can be a :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`.
PathMesh: mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
PathShape: shape (edge) defines the sub-mesh for the path
NodeStart: the first or the last node on the edge. Defines the direction of extrusion
HasAngles: allows the shape to be rotated around the path
to get the resulting mesh in a helical fashion
Angles: list of angles
HasRefPoint: allows using the reference point
RefPoint: the reference point around which the shape is rotated (the mass center of the shape by default).
The User can specify any point as the Reference Point.
*RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct`
MakeGroups: forces the generation of new groups from existing ones
LinearVariation: forces the computation of rotation angles as linear
variation of the given Angles along path steps
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` and
:class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>` if *MakeGroups* == True,
only :class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>` otherwise
Example: :ref:`tui_extrusion_along_path`
"""
n,e,f = [],theObject,theObject
gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups)
if MakeGroups: return gr,er
return er
def ExtrusionAlongPathObject1D(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[],
MakeGroups=False, LinearVariation=False):
"""
Generate new elements by extrusion of mesh segments which belong to the object.
The path of extrusion must be a meshed edge.
Parameters:
theObject: the object whose 1D elements should be processed.
It can be a :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`.
PathMesh: mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
PathShape: shape (edge) defines the sub-mesh for the path
NodeStart: the first or the last node on the edge. Defines the direction of extrusion
HasAngles: allows the shape to be rotated around the path
to get the resulting mesh in a helical fashion
Angles: list of angles
HasRefPoint: allows using the reference point
RefPoint: the reference point around which the shape is rotated (the mass center of the shape by default).
The User can specify any point as the Reference Point.
*RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct`
MakeGroups: forces the generation of new groups from existing ones
LinearVariation: forces the computation of rotation angles as linear
variation of the given Angles along path steps
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` and
:class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>` if *MakeGroups* == True,
only :class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>` otherwise
Example: :ref:`tui_extrusion_along_path`
"""
n,e,f = [],theObject,[]
gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups)
if MakeGroups: return gr,er
return er
def ExtrusionAlongPathObject2D(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[],
MakeGroups=False, LinearVariation=False):
"""
Generate new elements by extrusion of faces which belong to the object.
The path of extrusion must be a meshed edge.
Parameters:
theObject: the object whose 2D elements should be processed.
It can be a :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`.
PathMesh: mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
PathShape: shape (edge) defines the sub-mesh for the path
NodeStart: the first or the last node on the edge. Defines the direction of extrusion
HasAngles: allows the shape to be rotated around the path
to get the resulting mesh in a helical fashion
Angles: list of angles
HasRefPoint: allows using the reference point
RefPoint: the reference point around which the shape is rotated (the mass center of the shape by default).
The User can specify any point as the Reference Point.
*RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct`
MakeGroups: forces the generation of new groups from existing ones
LinearVariation: forces the computation of rotation angles as linear
variation of the given Angles along path steps
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` and
:class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>` if *MakeGroups* == True,
only :class:`error code <SMESH.SMESH_MeshEditor.Extrusion_Error>` otherwise
Example: :ref:`tui_extrusion_along_path`
"""
n,e,f = [],[],theObject
gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups)
if MakeGroups: return gr,er
return er
def Mirror(self, IDsOfElements, Mirror, theMirrorType=None, Copy=0, MakeGroups=False):
"""
Create a symmetrical copy of mesh elements
Parameters:
IDsOfElements: list of elements ids
Mirror: is :class:`SMESH.AxisStruct` or geom object (point, line, plane)
theMirrorType: smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE.
If the *Mirror* is a geom object this parameter is unnecessary
Copy: allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0)
MakeGroups: forces the generation of new groups from existing ones (if Copy)
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
theMirrorType = Mirror._mirrorType
else:
self.mesh.SetParameters(Mirror.parameters)
if Copy and MakeGroups:
return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
return []
def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType=0, MakeGroups=0, NewMeshName=""):
"""
Create a new mesh by a symmetrical copy of mesh elements
Parameters:
IDsOfElements: the list of elements ids
Mirror: is :class:`SMESH.AxisStruct` or geom object (point, line, plane)
theMirrorType: smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE.
If the *Mirror* is a geom object this parameter is unnecessary
MakeGroups: to generate new groups from existing ones
NewMeshName: a name of the new mesh to create
Returns:
instance of class :class:`Mesh`
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
theMirrorType = Mirror._mirrorType
else:
self.mesh.SetParameters(Mirror.parameters)
mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
MakeGroups, NewMeshName)
return Mesh(self.smeshpyD,self.geompyD,mesh)
def MirrorObject (self, theObject, Mirror, theMirrorType=None, Copy=0, MakeGroups=False):
"""
Create a symmetrical copy of the object
Parameters:
theObject: :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Mirror: :class:`SMESH.AxisStruct` or geom object (point, line, plane)
theMirrorType: smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE.
If the *Mirror* is a geom object this parameter is unnecessary
Copy: allows copying the element (Copy==True) or replacing it with its mirror (Copy==False)
MakeGroups: forces the generation of new groups from existing ones (if Copy)
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
theMirrorType = Mirror._mirrorType
else:
self.mesh.SetParameters(Mirror.parameters)
if Copy and MakeGroups:
return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
return []
def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType=0,MakeGroups=0,NewMeshName=""):
"""
Create a new mesh by a symmetrical copy of the object
Parameters:
theObject: :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Mirror: :class:`SMESH.AxisStruct` or geom object (point, line, plane)
theMirrorType: smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE.
If the *Mirror* is a geom object this parameter is unnecessary
MakeGroups: forces the generation of new groups from existing ones
NewMeshName: the name of the new mesh to create
Returns:
instance of class :class:`Mesh`
"""
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
theMirrorType = Mirror._mirrorType
else:
self.mesh.SetParameters(Mirror.parameters)
mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD,self.geompyD,mesh )
def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
"""
Translate the elements
Parameters:
IDsOfElements: list of elements ids
Vector: the direction of translation (:class:`SMESH.DirStruct` or vector or 3 vector components)
Copy: allows copying the translated elements
MakeGroups: forces the generation of new groups from existing ones (if Copy)
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
if isinstance( Vector, list ):
Vector = self.smeshpyD.MakeDirStruct(*Vector)
self.mesh.SetParameters(Vector.PS.parameters)
if Copy and MakeGroups:
return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
self.editor.Translate(IDsOfElements, Vector, Copy)
return []
def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
"""
Create a new mesh of translated elements
Parameters:
IDsOfElements: list of elements ids
Vector: the direction of translation (:class:`SMESH.DirStruct` or vector or 3 vector components)
MakeGroups: forces the generation of new groups from existing ones
NewMeshName: the name of the newly created mesh
Returns:
instance of class :class:`Mesh`
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
if isinstance( Vector, list ):
Vector = self.smeshpyD.MakeDirStruct(*Vector)
self.mesh.SetParameters(Vector.PS.parameters)
mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
return Mesh ( self.smeshpyD, self.geompyD, mesh )
def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
"""
Translate the object
Parameters:
theObject: the object to translate (:class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`)
Vector: direction of translation (:class:`SMESH.DirStruct` or geom vector or 3 vector components)
Copy: allows copying the translated elements
MakeGroups: forces the generation of new groups from existing ones (if Copy)
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
if isinstance( Vector, list ):
Vector = self.smeshpyD.MakeDirStruct(*Vector)
self.mesh.SetParameters(Vector.PS.parameters)
if Copy and MakeGroups:
return self.editor.TranslateObjectMakeGroups(theObject, Vector)
self.editor.TranslateObject(theObject, Vector, Copy)
return []
def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
"""
Create a new mesh from the translated object
Parameters:
theObject: the object to translate (:class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`)
Vector: the direction of translation (:class:`SMESH.DirStruct` or geom vector or 3 vector components)
MakeGroups: forces the generation of new groups from existing ones
NewMeshName: the name of the newly created mesh
Returns:
instance of class :class:`Mesh`
"""
if isinstance( theObject, Mesh ):
theObject = theObject.GetMesh()
if isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object ):
Vector = self.smeshpyD.GetDirStruct(Vector)
if isinstance( Vector, list ):
Vector = self.smeshpyD.MakeDirStruct(*Vector)
self.mesh.SetParameters(Vector.PS.parameters)
mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
def Scale(self, theObject, thePoint, theScaleFact, Copy, MakeGroups=False):
"""
Scale the object
Parameters:
theObject: the object to translate (:class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`)
thePoint: base point for scale (:class:`SMESH.PointStruct` or list of 3 coordinates)
theScaleFact: list of 1-3 scale factors for axises
Copy: allows copying the translated elements
MakeGroups: forces the generation of new groups from existing
ones (if Copy)
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True,
empty list otherwise
"""
unRegister = genObjUnRegister()
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( theObject, list )):
theObject = self.GetIDSource(theObject, SMESH.ALL)
unRegister.set( theObject )
if ( isinstance( thePoint, list )):
thePoint = PointStruct( thePoint[0], thePoint[1], thePoint[2] )
if ( isinstance( theScaleFact, float )):
theScaleFact = [theScaleFact]
if ( isinstance( theScaleFact, int )):
theScaleFact = [ float(theScaleFact)]
self.mesh.SetParameters(thePoint.parameters)
if Copy and MakeGroups:
return self.editor.ScaleMakeGroups(theObject, thePoint, theScaleFact)
self.editor.Scale(theObject, thePoint, theScaleFact, Copy)
return []
def ScaleMakeMesh(self, theObject, thePoint, theScaleFact, MakeGroups=False, NewMeshName=""):
"""
Create a new mesh from the translated object
Parameters:
theObject: the object to translate (:class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`)
thePoint: base point for scale (:class:`SMESH.PointStruct` or list of 3 coordinates)
theScaleFact: list of 1-3 scale factors for axises
MakeGroups: forces the generation of new groups from existing ones
NewMeshName: the name of the newly created mesh
Returns:
instance of class :class:`Mesh`
"""
unRegister = genObjUnRegister()
if (isinstance(theObject, Mesh)):
theObject = theObject.GetMesh()
if ( isinstance( theObject, list )):
theObject = self.GetIDSource(theObject,SMESH.ALL)
unRegister.set( theObject )
if ( isinstance( thePoint, list )):
thePoint = PointStruct( thePoint[0], thePoint[1], thePoint[2] )
if ( isinstance( theScaleFact, float )):
theScaleFact = [theScaleFact]
if ( isinstance( theScaleFact, int )):
theScaleFact = [ float(theScaleFact)]
self.mesh.SetParameters(thePoint.parameters)
mesh = self.editor.ScaleMakeMesh(theObject, thePoint, theScaleFact,
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
"""
Rotate the elements
Parameters:
IDsOfElements: list of elements ids
Axis: the axis of rotation (:class:`SMESH.AxisStruct` or geom line)
AngleInRadians: the angle of rotation (in radians) or a name of variable which defines angle in degrees
Copy: allows copying the rotated elements
MakeGroups: forces the generation of new groups from existing ones (if Copy)
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if *MakeGroups* == True, empty list otherwise
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geomBuilder.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
Parameters = Axis.parameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
return []
def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
"""
Create a new mesh of rotated elements
Parameters:
IDsOfElements: list of element ids
Axis: the axis of rotation (:class:`SMESH.AxisStruct` or geom line)
AngleInRadians: the angle of rotation (in radians) or a name of variable which defines angle in degrees
MakeGroups: forces the generation of new groups from existing ones
NewMeshName: the name of the newly created mesh
Returns:
instance of class :class:`Mesh`
"""
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geomBuilder.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
Parameters = Axis.parameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
"""
Rotate the object
Parameters:
theObject: the object to rotate (:class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`)
Axis: the axis of rotation (:class:`SMESH.AxisStruct` or geom line)
AngleInRadians: the angle of rotation (in radians) or a name of variable which defines angle in degrees
Copy: allows copying the rotated elements
MakeGroups: forces the generation of new groups from existing ones (if Copy)
Returns:
list of created :class:`groups <SMESH.SMESH_GroupBase>` if MakeGroups==True, empty list otherwise
"""
if (isinstance(theObject, Mesh)):
theObject = theObject.GetMesh()
if (isinstance(Axis, geomBuilder.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
Parameters = Axis.parameters + ":" + Parameters
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
return []
def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
"""
Create a new mesh from the rotated object
Parameters:
theObject: the object to rotate (:class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`)
Axis: the axis of rotation (:class:`SMESH.AxisStruct` or geom line)
AngleInRadians: the angle of rotation (in radians) or a name of variable which defines angle in degrees
MakeGroups: forces the generation of new groups from existing ones
NewMeshName: the name of the newly created mesh
Returns:
instance of class :class:`Mesh`
"""
if (isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if (isinstance(Axis, geomBuilder.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
Parameters = Axis.parameters + ":" + Parameters
mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
MakeGroups, NewMeshName)
self.mesh.SetParameters(Parameters)
return Mesh( self.smeshpyD, self.geompyD, mesh )
def Offset(self, theObject, Value, MakeGroups=False, CopyElements=False, NewMeshName=''):
"""
Create an offset mesh from the given 2D object
Parameters:
theObject (SMESH.SMESH_IDSource): the source object (mesh, sub-mesh, group or filter)
theValue (float): signed offset size
MakeGroups (boolean): forces the generation of new groups from existing ones
CopyElements (boolean): if *NewMeshName* is empty, True means to keep original elements,
False means to remove original elements.
NewMeshName (string): the name of a mesh to create. If empty, offset elements are added to this mesh
Returns:
A tuple (:class:`Mesh`, list of :class:`groups <SMESH.SMESH_Group>`)
"""
if isinstance( theObject, Mesh ):
theObject = theObject.GetMesh()
theValue,Parameters,hasVars = ParseParameters(Value)
mesh_groups = self.editor.Offset(theObject, Value, MakeGroups, CopyElements, NewMeshName)
self.mesh.SetParameters(Parameters)
# if mesh_groups[0]:
# return Mesh( self.smeshpyD, self.geompyD, mesh_groups[0] ), mesh_groups[1]
return mesh_groups
def FindCoincidentNodes (self, Tolerance, SeparateCornerAndMediumNodes=False):
"""
Find groups of adjacent nodes within Tolerance.
Parameters:
Tolerance (float): the value of tolerance
SeparateCornerAndMediumNodes (boolean): if *True*, in quadratic mesh puts
corner and medium nodes in separate groups thus preventing
their further merge.
Returns:
the list of groups of nodes IDs (e.g. [[1,12,13],[4,25]])
"""
return self.editor.FindCoincidentNodes( Tolerance, SeparateCornerAndMediumNodes )
def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance,
exceptNodes=[], SeparateCornerAndMediumNodes=False):
"""
Find groups of adjacent nodes within Tolerance.
Parameters:
Tolerance: the value of tolerance
SubMeshOrGroup: :class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`
exceptNodes: list of either SubMeshes, Groups or node IDs to exclude from search
SeparateCornerAndMediumNodes: if *True*, in quadratic mesh puts
corner and medium nodes in separate groups thus preventing
their further merge.
Returns:
the list of groups of nodes IDs (e.g. [[1,12,13],[4,25]])
"""
unRegister = genObjUnRegister()
if (isinstance( SubMeshOrGroup, Mesh )):
SubMeshOrGroup = SubMeshOrGroup.GetMesh()
if not isinstance( exceptNodes, list ):
exceptNodes = [ exceptNodes ]
if exceptNodes and isinstance( exceptNodes[0], int ):
exceptNodes = [ self.GetIDSource( exceptNodes, SMESH.NODE )]
unRegister.set( exceptNodes )
return self.editor.FindCoincidentNodesOnPartBut(SubMeshOrGroup, Tolerance,
exceptNodes, SeparateCornerAndMediumNodes)
def MergeNodes (self, GroupsOfNodes, NodesToKeep=[], AvoidMakingHoles=False):
"""
Merge nodes
Parameters:
GroupsOfNodes: a list of groups of nodes IDs for merging.
E.g. [[1,12,13],[25,4]] means that nodes 12, 13 and 4 will be removed and replaced
in all elements and groups by nodes 1 and 25 correspondingly
NodesToKeep: nodes to keep in the mesh: a list of groups, sub-meshes or node IDs.
If *NodesToKeep* does not include a node to keep for some group to merge,
then the first node in the group is kept.
AvoidMakingHoles: prevent merging nodes which cause removal of elements becoming
invalid
"""
# NodesToKeep are converted to SMESH.SMESH_IDSource in meshEditor.MergeNodes()
self.editor.MergeNodes( GroupsOfNodes, NodesToKeep, AvoidMakingHoles )
def FindEqualElements (self, MeshOrSubMeshOrGroup=None):
"""
Find the elements built on the same nodes.
Parameters:
MeshOrSubMeshOrGroup: :class:`mesh, sub-mesh, group or filter <SMESH.SMESH_IDSource>`
Returns:
the list of groups of equal elements IDs (e.g. [[1,12,13],[4,25]])
"""
if not MeshOrSubMeshOrGroup:
MeshOrSubMeshOrGroup=self.mesh
elif isinstance( MeshOrSubMeshOrGroup, Mesh ):
MeshOrSubMeshOrGroup = MeshOrSubMeshOrGroup.GetMesh()
return self.editor.FindEqualElements( MeshOrSubMeshOrGroup )
def MergeElements(self, GroupsOfElementsID):
"""
Merge elements in each given group.
Parameters:
GroupsOfElementsID: a list of groups (lists) of elements IDs for merging
(e.g. [[1,12,13],[25,4]] means that elements 12, 13 and 4 will be removed and
replaced in all groups by elements 1 and 25)
"""
self.editor.MergeElements(GroupsOfElementsID)
def MergeEqualElements(self):
"""
Leave one element and remove all other elements built on the same nodes.
"""
self.editor.MergeEqualElements()
def FindFreeBorders(self, ClosedOnly=True):
"""
Returns all or only closed free borders
Returns:
list of SMESH.FreeBorder's
"""
return self.editor.FindFreeBorders( ClosedOnly )
def FillHole(self, holeNodes):
"""
Fill with 2D elements a hole defined by a SMESH.FreeBorder.
Parameters:
FreeBorder: either a SMESH.FreeBorder or a list on node IDs. These nodes
must describe all sequential nodes of the hole border. The first and the last
nodes must be the same. Use :meth:`FindFreeBorders` to get nodes of holes.
"""
if holeNodes and isinstance( holeNodes, list ) and isinstance( holeNodes[0], int ):
holeNodes = SMESH.FreeBorder(nodeIDs=holeNodes)
if not isinstance( holeNodes, SMESH.FreeBorder ):
raise TypeError("holeNodes must be either SMESH.FreeBorder or list of integer and not %s" % holeNodes)
self.editor.FillHole( holeNodes )
def FindCoincidentFreeBorders (self, tolerance=0.):
"""
Return groups of FreeBorder's coincident within the given tolerance.
Parameters:
tolerance: the tolerance. If the tolerance <= 0.0 then one tenth of an average
size of elements adjacent to free borders being compared is used.
Returns:
SMESH.CoincidentFreeBorders structure
"""
return self.editor.FindCoincidentFreeBorders( tolerance )
def SewCoincidentFreeBorders (self, freeBorders, createPolygons=False, createPolyhedra=False):
"""
Sew FreeBorder's of each group
Parameters:
freeBorders: either a SMESH.CoincidentFreeBorders structure or a list of lists
where each enclosed list contains node IDs of a group of coincident free
borders such that each consequent triple of IDs within a group describes
a free border in a usual way: n1, n2, nLast - i.e. 1st node, 2nd node and
last node of a border.
For example [[1, 2, 10, 20, 21, 40], [11, 12, 15, 55, 54, 41]] describes two
groups of coincident free borders, each group including two borders.
createPolygons: if :code:`True` faces adjacent to free borders are converted to
polygons if a node of opposite border falls on a face edge, else such
faces are split into several ones.
createPolyhedra: if :code:`True` volumes adjacent to free borders are converted to
polyhedra if a node of opposite border falls on a volume edge, else such
volumes, if any, remain intact and the mesh becomes non-conformal.
Returns:
a number of successfully sewed groups
"""
if freeBorders and isinstance( freeBorders, list ):
# construct SMESH.CoincidentFreeBorders
if isinstance( freeBorders[0], int ):
freeBorders = [freeBorders]
borders = []
coincidentGroups = []
for nodeList in freeBorders:
if not nodeList or len( nodeList ) % 3:
raise ValueError("Wrong number of nodes in this group: %s" % nodeList)
group = []
while nodeList:
group.append ( SMESH.FreeBorderPart( len(borders), 0, 1, 2 ))
borders.append( SMESH.FreeBorder( nodeList[:3] ))
nodeList = nodeList[3:]
pass
coincidentGroups.append( group )
pass
freeBorders = SMESH.CoincidentFreeBorders( borders, coincidentGroups )
return self.editor.SewCoincidentFreeBorders( freeBorders, createPolygons, createPolyhedra )
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs):
"""
Sew free borders
Returns:
:class:`error code <SMESH.SMESH_MeshEditor.Sew_Error>`
"""
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs)
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2):
"""
Sew conform free borders
Returns:
:class:`error code <SMESH.SMESH_MeshEditor.Sew_Error>`
"""
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2)
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
"""
Sew border to side
Returns:
:class:`error code <SMESH.SMESH_MeshEditor.Sew_Error>`
"""
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
"""
Sew two sides of a mesh. The nodes belonging to Side1 are
merged with the nodes of elements of Side2.
The number of elements in theSide1 and in theSide2 must be
equal and they should have similar nodal connectivity.
The nodes to merge should belong to side borders and
the first node should be linked to the second.
Returns:
:class:`error code <SMESH.SMESH_MeshEditor.Sew_Error>`
"""
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
def ChangeElemNodes(self, ide, newIDs):
"""
Set new nodes for the given element.
Parameters:
ide: the element ID
newIDs: nodes IDs
Returns:
False if the number of nodes does not correspond to the type of element
"""
return self.editor.ChangeElemNodes(ide, newIDs)
def GetLastCreatedNodes(self):
"""
If during the last operation of :class:`SMESH.SMESH_MeshEditor` some nodes were
created, this method return the list of their IDs.
If new nodes were not created - return empty list
Returns:
the list of integer values (can be empty)
"""
return self.editor.GetLastCreatedNodes()
def GetLastCreatedElems(self):
"""
If during the last operation of :class:`SMESH.SMESH_MeshEditor` some elements were
created this method return the list of their IDs.
If new elements were not created - return empty list
Returns:
the list of integer values (can be empty)
"""
return self.editor.GetLastCreatedElems()
def ClearLastCreated(self):
"""
Forget what nodes and elements were created by the last mesh edition operation
"""
self.editor.ClearLastCreated()
def DoubleElements(self, theElements, theGroupName=""):
"""
Create duplicates of given elements, i.e. create new elements based on the
same nodes as the given ones.
Parameters:
theElements: container of elements to duplicate. It can be a
:class:`mesh, sub-mesh, group, filter <SMESH.SMESH_IDSource>`
or a list of element IDs. If *theElements* is
a :class:`Mesh`, elements of highest dimension are duplicated
theGroupName: a name of group to contain the generated elements.
If a group with such a name already exists, the new elements
are added to the existing group, else a new group is created.
If *theGroupName* is empty, new elements are not added
in any group.
Returns:
a :class:`group <SMESH.SMESH_Group>` where the new elements are added.
None if *theGroupName* == "".
"""
unRegister = genObjUnRegister()
if isinstance( theElements, Mesh ):
theElements = theElements.mesh
elif isinstance( theElements, list ):
theElements = self.GetIDSource( theElements, SMESH.ALL )
unRegister.set( theElements )
return self.editor.DoubleElements(theElements, theGroupName)
def DoubleNodes(self, theNodes, theModifiedElems):
"""
Create a hole in a mesh by doubling the nodes of some particular elements
Parameters:
theNodes: IDs of nodes to be doubled
theModifiedElems: IDs of elements to be updated by the new (doubled)
nodes. If list of element identifiers is empty then nodes are doubled but
they not assigned to elements
Returns:
True if operation has been completed successfully, False otherwise
"""
return self.editor.DoubleNodes(theNodes, theModifiedElems)
def DoubleNode(self, theNodeId, theModifiedElems):
"""
Create a hole in a mesh by doubling the nodes of some particular elements.
This method provided for convenience works as :meth:`DoubleNodes`.
Parameters:
theNodeId: IDs of node to double
theModifiedElems: IDs of elements to update
Returns:
True if operation has been completed successfully, False otherwise
"""
return self.editor.DoubleNode(theNodeId, theModifiedElems)
def DoubleNodeGroup(self, theNodes, theModifiedElems, theMakeGroup=False):
"""
Create a hole in a mesh by doubling the nodes of some particular elements.
This method provided for convenience works as :meth:`DoubleNodes`.
Parameters:
theNodes: group of nodes to double.
theModifiedElems: group of elements to update.
theMakeGroup: forces the generation of a group containing new nodes.
Returns:
True or a created group if operation has been completed successfully,
False or None otherwise
"""
if theMakeGroup:
return self.editor.DoubleNodeGroupNew(theNodes, theModifiedElems)
return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
def DoubleNodeGroups(self, theNodes, theModifiedElems, theMakeGroup=False):
"""
Create a hole in a mesh by doubling the nodes of some particular elements.
This method provided for convenience works as :meth:`DoubleNodes`.
Parameters:
theNodes: list of groups of nodes to double.
theModifiedElems: list of groups of elements to update.
theMakeGroup: forces the generation of a group containing new nodes.
Returns:
True if operation has been completed successfully, False otherwise
"""
if theMakeGroup:
return self.editor.DoubleNodeGroupsNew(theNodes, theModifiedElems)
return self.editor.DoubleNodeGroups(theNodes, theModifiedElems)
def DoubleNodeElem(self, theElems, theNodesNot, theAffectedElems):
"""
Create a hole in a mesh by doubling the nodes of some particular elements
Parameters:
theElems: the list of elements (edges or faces) to replicate.
The nodes for duplication could be found from these elements
theNodesNot: list of nodes NOT to replicate
theAffectedElems: the list of elements (cells and edges) to which the
replicated nodes should be associated to
Returns:
True if operation has been completed successfully, False otherwise
"""
return self.editor.DoubleNodeElem(theElems, theNodesNot, theAffectedElems)
def DoubleNodeElemInRegion(self, theElems, theNodesNot, theShape):
"""
Create a hole in a mesh by doubling the nodes of some particular elements
Parameters:
theElems: the list of elements (edges or faces) to replicate.
The nodes for duplication could be found from these elements
theNodesNot: list of nodes NOT to replicate
theShape: shape to detect affected elements (element which geometric center
located on or inside shape).
The replicated nodes should be associated to affected elements.
Returns:
True if operation has been completed successfully, False otherwise
"""
return self.editor.DoubleNodeElemInRegion(theElems, theNodesNot, theShape)
def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems,
theMakeGroup=False, theMakeNodeGroup=False):
"""
Create a hole in a mesh by doubling the nodes of some particular elements.
This method provided for convenience works as :meth:`DoubleNodes`.
Parameters:
theElems: group of of elements (edges or faces) to replicate.
theNodesNot: group of nodes NOT to replicate.
theAffectedElems: group of elements to which the replicated nodes
should be associated to.
theMakeGroup: forces the generation of a group containing new elements.
theMakeNodeGroup: forces the generation of a group containing new nodes.
Returns:
True or created groups (one or two) if operation has been completed successfully,
False or None otherwise
"""
if theMakeGroup or theMakeNodeGroup:
twoGroups = self.editor.DoubleNodeElemGroup2New(theElems, theNodesNot,
theAffectedElems,
theMakeGroup, theMakeNodeGroup)
if theMakeGroup and theMakeNodeGroup:
return twoGroups
else:
return twoGroups[ int(theMakeNodeGroup) ]
return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems)
def DoubleNodeElemGroupInRegion(self, theElems, theNodesNot, theShape):
"""
Create a hole in a mesh by doubling the nodes of some particular elements.
This method provided for convenience works as :meth:`DoubleNodes`.
Parameters:
theElems: group of of elements (edges or faces) to replicate
theNodesNot: group of nodes not to replicate
theShape: shape to detect affected elements (element which geometric center
located on or inside shape).
The replicated nodes should be associated to affected elements
"""
return self.editor.DoubleNodeElemGroupInRegion(theElems, theNodesNot, theShape)
def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems,
theMakeGroup=False, theMakeNodeGroup=False):
"""
Create a hole in a mesh by doubling the nodes of some particular elements.
This method provided for convenience works as :meth:`DoubleNodes`.
Parameters:
theElems: list of groups of elements (edges or faces) to replicate
theNodesNot: list of groups of nodes NOT to replicate
theAffectedElems: group of elements to which the replicated nodes
should be associated to
theMakeGroup: forces generation of a group containing new elements.
theMakeNodeGroup: forces generation of a group containing new nodes
Returns:
True or created groups (one or two) if operation has been completed successfully,
False or None otherwise
"""
if theMakeGroup or theMakeNodeGroup:
twoGroups = self.editor.DoubleNodeElemGroups2New(theElems, theNodesNot,
theAffectedElems,
theMakeGroup, theMakeNodeGroup)
if theMakeGroup and theMakeNodeGroup:
return twoGroups
else:
return twoGroups[ int(theMakeNodeGroup) ]
return self.editor.DoubleNodeElemGroups(theElems, theNodesNot, theAffectedElems)
def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape):
"""
Create a hole in a mesh by doubling the nodes of some particular elements.
This method provided for convenience works as :meth:`DoubleNodes`.
Parameters:
theElems: list of groups of elements (edges or faces) to replicate
theNodesNot: list of groups of nodes NOT to replicate
theShape: shape to detect affected elements (element which geometric center
located on or inside shape).
The replicated nodes should be associated to affected elements
Returns:
True if operation has been completed successfully, False otherwise
"""
return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape)
def AffectedElemGroupsInRegion(self, theElems, theNodesNot, theShape):
"""
Identify the elements that will be affected by node duplication (actual duplication is not performed).
This method is the first step of :meth:`DoubleNodeElemGroupsInRegion`.
Parameters:
theElems: list of groups of nodes or elements (edges or faces) to replicate
theNodesNot: list of groups of nodes NOT to replicate
theShape: shape to detect affected elements (element which geometric center
located on or inside shape).
The replicated nodes should be associated to affected elements
Returns:
groups of affected elements in order: volumes, faces, edges
"""
return self.editor.AffectedElemGroupsInRegion(theElems, theNodesNot, theShape)
def DoubleNodesOnGroupBoundaries(self, theDomains, createJointElems, onAllBoundaries=False ):
"""
Double nodes on shared faces between groups of volumes and create flat elements on demand.
The list of groups must describe a partition of the mesh volumes.
The nodes of the internal faces at the boundaries of the groups are doubled.
In option, the internal faces are replaced by flat elements.
Triangles are transformed to prisms, and quadrangles to hexahedrons.
Parameters:
theDomains: list of groups of volumes
createJointElems: if True, create the elements
onAllBoundaries: if True, the nodes and elements are also created on
the boundary between *theDomains* and the rest mesh
Returns:
True if operation has been completed successfully, False otherwise
"""
return self.editor.DoubleNodesOnGroupBoundaries( theDomains, createJointElems, onAllBoundaries )
def CreateFlatElementsOnFacesGroups(self, theGroupsOfFaces ):
"""
Double nodes on some external faces and create flat elements.
Flat elements are mainly used by some types of mechanic calculations.
Each group of the list must be constituted of faces.
Triangles are transformed in prisms, and quadrangles in hexahedrons.
Parameters:
theGroupsOfFaces: list of groups of faces
Returns:
True if operation has been completed successfully, False otherwise
"""
return self.editor.CreateFlatElementsOnFacesGroups( theGroupsOfFaces )
def CreateHoleSkin(self, radius, theShape, groupName, theNodesCoords):
"""
Identify all the elements around a geom shape, get the faces delimiting the hole
"""
return self.editor.CreateHoleSkin( radius, theShape, groupName, theNodesCoords )
def MakePolyLine(self, segments, groupName='', isPreview=False ):
"""
Create a polyline consisting of 1D mesh elements each lying on a 2D element of
the initial mesh. Positions of new nodes are found by cutting the mesh by the
plane passing through pairs of points specified by each :class:`SMESH.PolySegment` structure.
If there are several paths connecting a pair of points, the shortest path is
selected by the module. Position of the cutting plane is defined by the two
points and an optional vector lying on the plane specified by a PolySegment.
By default the vector is defined by Mesh module as following. A middle point
of the two given points is computed. The middle point is projected to the mesh.
The vector goes from the middle point to the projection point. In case of planar
mesh, the vector is normal to the mesh.
*segments* [i].vector returns the used vector which goes from the middle point to its projection.
Parameters:
segments: list of :class:`SMESH.PolySegment` defining positions of cutting planes.
groupName: optional name of a group where created mesh segments will be added.
"""
editor = self.editor
if isPreview:
editor = self.mesh.GetMeshEditPreviewer()
segmentsRes = editor.MakePolyLine( segments, groupName )
for i, seg in enumerate( segmentsRes ):
segments[i].vector = seg.vector
if isPreview:
return editor.GetPreviewData()
return None
def GetFunctor(self, funcType ):
"""
Return a cached numerical functor by its type.
Parameters:
funcType: functor type: an item of :class:`SMESH.FunctorType` enumeration.
Note that not all items correspond to numerical functors.
Returns:
:class:`SMESH.NumericalFunctor`. The functor is already initialized with a mesh
"""
fn = self.functors[ funcType._v ]
if not fn:
fn = self.smeshpyD.GetFunctor(funcType)
fn.SetMesh(self.mesh)
self.functors[ funcType._v ] = fn
return fn
def FunctorValue(self, funcType, elemId, isElem=True):
"""
Return value of a functor for a given element
Parameters:
funcType: an item of :class:`SMESH.FunctorType` enum.
elemId: element or node ID
isElem: *elemId* is ID of element or node
Returns:
the functor value or zero in case of invalid arguments
"""
fn = self.GetFunctor( funcType )
if fn.GetElementType() == self.GetElementType(elemId, isElem):
val = fn.GetValue(elemId)
else:
val = 0
return val
def GetLength(self, elemId=None):
"""
Get length of 1D element or sum of lengths of all 1D mesh elements
Parameters:
elemId: mesh element ID (if not defined - sum of length of all 1D elements will be calculated)
Returns:
element's length value if *elemId* is specified or sum of all 1D mesh elements' lengths otherwise
"""
length = 0
if elemId == None:
length = self.smeshpyD.GetLength(self)
else:
length = self.FunctorValue(SMESH.FT_Length, elemId)
return length
def GetArea(self, elemId=None):
"""
Get area of 2D element or sum of areas of all 2D mesh elements
elemId mesh element ID (if not defined - sum of areas of all 2D elements will be calculated)
Returns:
element's area value if *elemId* is specified or sum of all 2D mesh elements' areas otherwise
"""
area = 0
if elemId == None:
area = self.smeshpyD.GetArea(self)
else:
area = self.FunctorValue(SMESH.FT_Area, elemId)
return area
def GetVolume(self, elemId=None):
"""
Get volume of 3D element or sum of volumes of all 3D mesh elements
Parameters:
elemId: mesh element ID (if not defined - sum of volumes of all 3D elements will be calculated)
Returns:
element's volume value if *elemId* is specified or sum of all 3D mesh elements' volumes otherwise
"""
volume = 0
if elemId == None:
volume = self.smeshpyD.GetVolume(self)
else:
volume = self.FunctorValue(SMESH.FT_Volume3D, elemId)
return volume
def GetMaxElementLength(self, elemId):
"""
Get maximum element length.
Parameters:
elemId: mesh element ID
Returns:
element's maximum length value
"""
if self.GetElementType(elemId, True) == SMESH.VOLUME:
ftype = SMESH.FT_MaxElementLength3D
else:
ftype = SMESH.FT_MaxElementLength2D
return self.FunctorValue(ftype, elemId)
def GetAspectRatio(self, elemId):
"""
Get aspect ratio of 2D or 3D element.
Parameters:
elemId: mesh element ID
Returns:
element's aspect ratio value
"""
if self.GetElementType(elemId, True) == SMESH.VOLUME:
ftype = SMESH.FT_AspectRatio3D
else:
ftype = SMESH.FT_AspectRatio
return self.FunctorValue(ftype, elemId)
def GetWarping(self, elemId):
"""
Get warping angle of 2D element.
Parameters:
elemId: mesh element ID
Returns:
element's warping angle value
"""
return self.FunctorValue(SMESH.FT_Warping, elemId)
def GetMinimumAngle(self, elemId):
"""
Get minimum angle of 2D element.
Parameters:
elemId: mesh element ID
Returns:
element's minimum angle value
"""
return self.FunctorValue(SMESH.FT_MinimumAngle, elemId)
def GetTaper(self, elemId):
"""
Get taper of 2D element.
Parameters:
elemId: mesh element ID
Returns:
element's taper value
"""
return self.FunctorValue(SMESH.FT_Taper, elemId)
def GetSkew(self, elemId):
"""
Get skew of 2D element.
Parameters:
elemId: mesh element ID
Returns:
element's skew value
"""
return self.FunctorValue(SMESH.FT_Skew, elemId)
def GetMinMax(self, funType, meshPart=None):
"""
Return minimal and maximal value of a given functor.
Parameters:
funType (SMESH.FunctorType): a functor type.
Note that not all items of :class:`SMESH.FunctorType` corresponds
to numerical functors.
meshPart: a part of mesh (:class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`) to treat
Returns:
tuple (min,max)
"""
unRegister = genObjUnRegister()
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
unRegister.set( meshPart )
if isinstance( meshPart, Mesh ):
meshPart = meshPart.mesh
fun = self.GetFunctor( funType )
if fun:
if meshPart:
if hasattr( meshPart, "SetMesh" ):
meshPart.SetMesh( self.mesh ) # set mesh to filter
hist = fun.GetLocalHistogram( 1, False, meshPart )
else:
hist = fun.GetHistogram( 1, False )
if hist:
return hist[0].min, hist[0].max
return None
pass # end of Mesh class
class meshProxy(SMESH._objref_SMESH_Mesh):
"""
Private class used to compensate change of CORBA API of SMESH_Mesh for backward compatibility
with old dump scripts which call SMESH_Mesh directly and not via smeshBuilder.Mesh
"""
def __init__(self,*args):
SMESH._objref_SMESH_Mesh.__init__(self,*args)
def __deepcopy__(self, memo=None):
new = self.__class__(self)
return new
def CreateDimGroup(self,*args): # 2 args added: nbCommonNodes, underlyingOnly
if len( args ) == 3:
args += SMESH.ALL_NODES, True
return SMESH._objref_SMESH_Mesh.CreateDimGroup(self, *args)
def ExportToMEDX(self, *args): # function removed
print("WARNING: ExportToMEDX() is deprecated, use ExportMED() instead")
args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]]
SMESH._objref_SMESH_Mesh.ExportMED(self, *args)
def ExportToMED(self, *args): # function removed
print("WARNING: ExportToMED() is deprecated, use ExportMED() instead")
args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]]
while len(args) < 4: # !!!! nb of parameters for ExportToMED IDL's method
args.append(True)
SMESH._objref_SMESH_Mesh.ExportMED(self, *args)
def ExportPartToMED(self, *args): # 'version' parameter removed
args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]]
SMESH._objref_SMESH_Mesh.ExportPartToMED(self, *args)
def ExportMED(self, *args): # signature of method changed
args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]]
while len(args) < 4: # !!!! nb of parameters for ExportToMED IDL's method
args.append(True)
SMESH._objref_SMESH_Mesh.ExportMED(self, *args)
pass
omniORB.registerObjref(SMESH._objref_SMESH_Mesh._NP_RepositoryId, meshProxy)
class submeshProxy(SMESH._objref_SMESH_subMesh):
"""
Private class wrapping SMESH.SMESH_SubMesh in order to add Compute()
"""
def __init__(self,*args):
SMESH._objref_SMESH_subMesh.__init__(self,*args)
self.mesh = None
def __deepcopy__(self, memo=None):
new = self.__class__(self)
return new
def Compute(self,refresh=False):
"""
Compute the sub-mesh and return the status of the computation
Parameters:
refresh: if *True*, Object Browser is automatically updated (when running in GUI)
Returns:
True or False
This is a method of SMESH.SMESH_submesh that can be obtained via Mesh.GetSubMesh() or
:meth:`smeshBuilder.Mesh.GetSubMesh`.
"""
if not self.mesh:
self.mesh = Mesh( smeshBuilder(), None, self.GetMesh())
ok = self.mesh.Compute( self.GetSubShape(),refresh=[] )
if salome.sg.hasDesktop():
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init()
smeshgui.SetMeshIcon( salome.ObjectToID( self ), ok, (self.GetNumberOfElements()==0) )
if refresh: salome.sg.updateObjBrowser()
pass
return ok
pass
omniORB.registerObjref(SMESH._objref_SMESH_subMesh._NP_RepositoryId, submeshProxy)
class meshEditor(SMESH._objref_SMESH_MeshEditor):
"""
Private class used to compensate change of CORBA API of SMESH_MeshEditor for backward
compatibility with old dump scripts which call SMESH_MeshEditor directly and not via
smeshBuilder.Mesh
"""
def __init__(self,*args):
SMESH._objref_SMESH_MeshEditor.__init__( self, *args)
self.mesh = None
def __getattr__(self, name ): # method called if an attribute not found
if not self.mesh: # look for name() method in Mesh class
self.mesh = Mesh( None, None, SMESH._objref_SMESH_MeshEditor.GetMesh(self))
if hasattr( self.mesh, name ):
return getattr( self.mesh, name )
if name == "ExtrusionAlongPathObjX":
return getattr( self.mesh, "ExtrusionAlongPathX" ) # other method name
print("meshEditor: attribute '%s' NOT FOUND" % name)
return None
def __deepcopy__(self, memo=None):
new = self.__class__(self)
return new
def FindCoincidentNodes(self,*args): # a 2nd arg added (SeparateCornerAndMediumNodes)
if len( args ) == 1: args += False,
return SMESH._objref_SMESH_MeshEditor.FindCoincidentNodes( self, *args )
def FindCoincidentNodesOnPart(self,*args): # a 3d arg added (SeparateCornerAndMediumNodes)
if len( args ) == 2: args += False,
return SMESH._objref_SMESH_MeshEditor.FindCoincidentNodesOnPart( self, *args )
def MergeNodes(self,*args): # 2 args added (NodesToKeep,AvoidMakingHoles)
if len( args ) == 1:
return SMESH._objref_SMESH_MeshEditor.MergeNodes( self, args[0], [], False )
NodesToKeep = args[1]
AvoidMakingHoles = args[2] if len( args ) == 3 else False
unRegister = genObjUnRegister()
if NodesToKeep:
if isinstance( NodesToKeep, list ) and isinstance( NodesToKeep[0], int ):
NodesToKeep = self.MakeIDSource( NodesToKeep, SMESH.NODE )
if not isinstance( NodesToKeep, list ):
NodesToKeep = [ NodesToKeep ]
return SMESH._objref_SMESH_MeshEditor.MergeNodes( self, args[0], NodesToKeep, AvoidMakingHoles )
pass
omniORB.registerObjref(SMESH._objref_SMESH_MeshEditor._NP_RepositoryId, meshEditor)
class Pattern(SMESH._objref_SMESH_Pattern):
"""
Private class wrapping SMESH.SMESH_Pattern CORBA class in order to treat Notebook
variables in some methods
"""
def LoadFromFile(self, patternTextOrFile ):
text = patternTextOrFile
if os.path.exists( text ):
text = open( patternTextOrFile ).read()
pass
return SMESH._objref_SMESH_Pattern.LoadFromFile( self, text )
def ApplyToMeshFaces(self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse):
decrFun = lambda i: i-1
theNodeIndexOnKeyPoint1,Parameters,hasVars = ParseParameters(theNodeIndexOnKeyPoint1, decrFun)
theMesh.SetParameters(Parameters)
return SMESH._objref_SMESH_Pattern.ApplyToMeshFaces( self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse )
def ApplyToHexahedrons(self, theMesh, theVolumesIDs, theNode000Index, theNode001Index):
decrFun = lambda i: i-1
theNode000Index,theNode001Index,Parameters,hasVars = ParseParameters(theNode000Index,theNode001Index, decrFun)
theMesh.SetParameters(Parameters)
return SMESH._objref_SMESH_Pattern.ApplyToHexahedrons( self, theMesh, theVolumesIDs, theNode000Index, theNode001Index )
def MakeMesh(self, mesh, CreatePolygons=False, CreatePolyhedra=False):
if isinstance( mesh, Mesh ):
mesh = mesh.GetMesh()
return SMESH._objref_SMESH_Pattern.MakeMesh( self, mesh, CreatePolygons, CreatePolyhedra )
omniORB.registerObjref(SMESH._objref_SMESH_Pattern._NP_RepositoryId, Pattern)
"""
Registering the new proxy for Pattern
"""
class algoCreator:
"""
Private class used to bind methods creating algorithms to the class Mesh
"""
def __init__(self, method):
self.mesh = None
self.defaultAlgoType = ""
self.algoTypeToClass = {}
self.method = method
def add(self, algoClass):
"""
Store a python class of algorithm
"""
if inspect.isclass(algoClass) and \
hasattr( algoClass, "algoType"):
self.algoTypeToClass[ algoClass.algoType ] = algoClass
if not self.defaultAlgoType and \
hasattr( algoClass, "isDefault") and algoClass.isDefault:
self.defaultAlgoType = algoClass.algoType
#print("Add",algoClass.algoType, "dflt",self.defaultAlgoType)
def copy(self, mesh):
"""
Create a copy of self and assign mesh to the copy
"""
other = algoCreator( self.method )
other.defaultAlgoType = self.defaultAlgoType
other.algoTypeToClass = self.algoTypeToClass
other.mesh = mesh
return other
def __call__(self,algo="",geom=0,*args):
"""
Create an instance of algorithm
"""
algoType = ""
shape = 0
if isinstance( algo, str ):
algoType = algo
elif ( isinstance( algo, geomBuilder.GEOM._objref_GEOM_Object ) and \
not isinstance( geom, geomBuilder.GEOM._objref_GEOM_Object )):
shape = algo
elif algo:
args += (algo,)
if isinstance( geom, geomBuilder.GEOM._objref_GEOM_Object ):
shape = geom
elif not algoType and isinstance( geom, str ):
algoType = geom
elif geom:
args += (geom,)
for arg in args:
if isinstance( arg, geomBuilder.GEOM._objref_GEOM_Object ) and not shape:
shape = arg
elif isinstance( arg, str ) and not algoType:
algoType = arg
else:
import traceback, sys
msg = "Warning. Unexpected argument in mesh.%s() ---> %s" % ( self.method, arg )
sys.stderr.write( msg + '\n' )
tb = traceback.extract_stack(None,2)
traceback.print_list( [tb[0]] )
if not algoType:
algoType = self.defaultAlgoType
if not algoType and self.algoTypeToClass:
algoType = sorted( self.algoTypeToClass.keys() )[0]
if algoType in self.algoTypeToClass:
#print("Create algo",algoType)
return self.algoTypeToClass[ algoType ]( self.mesh, shape )
raise RuntimeError( "No class found for algo type %s" % algoType)
return None
class hypMethodWrapper:
"""
Private class used to substitute and store variable parameters of hypotheses.
"""
def __init__(self, hyp, method):
self.hyp = hyp
self.method = method
#print("REBIND:", method.__name__)
return
def __call__(self,*args):
"""
call a method of hypothesis with calling SetVarParameter() before
"""
if not args:
return self.method( self.hyp, *args ) # hypothesis method with no args
#print("MethWrapper.__call__", self.method.__name__, args)
try:
parsed = ParseParameters(*args) # replace variables with their values
self.hyp.SetVarParameter( parsed[-2], self.method.__name__ )
result = self.method( self.hyp, *parsed[:-2] ) # call hypothesis method
except omniORB.CORBA.BAD_PARAM: # raised by hypothesis method call
# maybe there is a replaced string arg which is not variable
result = self.method( self.hyp, *args )
except ValueError as detail: # raised by ParseParameters()
try:
result = self.method( self.hyp, *args )
except omniORB.CORBA.BAD_PARAM:
raise ValueError(detail) # wrong variable name
return result
pass
class genObjUnRegister:
"""
A helper class that calls UnRegister() of SALOME.GenericObj'es stored in it
"""
def __init__(self, genObj=None):
self.genObjList = []
self.set( genObj )
return
def set(self, genObj):
"Store one or a list of of SALOME.GenericObj'es"
if isinstance( genObj, list ):
self.genObjList.extend( genObj )
else:
self.genObjList.append( genObj )
return
def __del__(self):
for genObj in self.genObjList:
if genObj and hasattr( genObj, "UnRegister" ):
genObj.UnRegister()
for pluginName in os.environ[ "SMESH_MeshersList" ].split( ":" ):
"""
Bind methods creating mesher plug-ins to the Mesh class
"""
# print("pluginName: ", pluginName)
pluginBuilderName = pluginName + "Builder"
try:
exec( "from salome.%s.%s import *" % (pluginName, pluginBuilderName))
except Exception as e:
from salome_utils import verbose
if verbose(): print("Exception while loading %s: %s" % ( pluginBuilderName, e ))
continue
exec( "from salome.%s import %s" % (pluginName, pluginBuilderName))
plugin = eval( pluginBuilderName )
# print(" plugin:" , str(plugin))
# add methods creating algorithms to Mesh
for k in dir( plugin ):
if k[0] == '_': continue
algo = getattr( plugin, k )
#print(" algo:", str(algo))
if inspect.isclass(algo) and hasattr(algo, "meshMethod"):
#print(" meshMethod:" , str(algo.meshMethod))
if not hasattr( Mesh, algo.meshMethod ):
setattr( Mesh, algo.meshMethod, algoCreator( algo.meshMethod ))
pass
_mmethod = getattr( Mesh, algo.meshMethod )
if hasattr( _mmethod, "add" ):
_mmethod.add(algo)
pass
pass
pass
del pluginName