mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-19 07:40:35 +05:00
ddbb0db133
EDF 1002 SMESH: Mesh groups are not published in the good study
4999 lines
215 KiB
Python
4999 lines
215 KiB
Python
# Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
#
|
|
# Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
|
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
|
#
|
|
# This library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License.
|
|
#
|
|
# This library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with this library; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
#
|
|
# File : smesh.py
|
|
# Author : Francis KLOSS, OCC
|
|
# Module : SMESH
|
|
#
|
|
"""
|
|
\namespace smesh
|
|
\brief Module smesh
|
|
"""
|
|
|
|
## @defgroup l1_auxiliary Auxiliary methods and structures
|
|
## @defgroup l1_creating Creating meshes
|
|
## @{
|
|
## @defgroup l2_impexp Importing and exporting meshes
|
|
## @defgroup l2_construct Constructing meshes
|
|
## @defgroup l2_algorithms Defining Algorithms
|
|
## @{
|
|
## @defgroup l3_algos_basic Basic meshing algorithms
|
|
## @defgroup l3_algos_proj Projection Algorithms
|
|
## @defgroup l3_algos_radialp Radial Prism
|
|
## @defgroup l3_algos_segmarv Segments around Vertex
|
|
## @defgroup l3_algos_3dextr 3D extrusion meshing algorithm
|
|
|
|
## @}
|
|
## @defgroup l2_hypotheses Defining hypotheses
|
|
## @{
|
|
## @defgroup l3_hypos_1dhyps 1D Meshing Hypotheses
|
|
## @defgroup l3_hypos_2dhyps 2D Meshing Hypotheses
|
|
## @defgroup l3_hypos_maxvol Max Element Volume hypothesis
|
|
## @defgroup l3_hypos_netgen Netgen 2D and 3D hypotheses
|
|
## @defgroup l3_hypos_ghs3dh GHS3D Parameters hypothesis
|
|
## @defgroup l3_hypos_blsurf BLSURF Parameters hypothesis
|
|
## @defgroup l3_hypos_hexotic Hexotic Parameters hypothesis
|
|
## @defgroup l3_hypos_additi Additional Hypotheses
|
|
|
|
## @}
|
|
## @defgroup l2_submeshes Constructing submeshes
|
|
## @defgroup l2_compounds Building Compounds
|
|
## @defgroup l2_editing Editing Meshes
|
|
|
|
## @}
|
|
## @defgroup l1_meshinfo Mesh Information
|
|
## @defgroup l1_controls Quality controls and Filtering
|
|
## @defgroup l1_grouping Grouping elements
|
|
## @{
|
|
## @defgroup l2_grps_create Creating groups
|
|
## @defgroup l2_grps_edit Editing groups
|
|
## @defgroup l2_grps_operon Using operations on groups
|
|
## @defgroup l2_grps_delete Deleting Groups
|
|
|
|
## @}
|
|
## @defgroup l1_modifying Modifying meshes
|
|
## @{
|
|
## @defgroup l2_modif_add Adding nodes and elements
|
|
## @defgroup l2_modif_del Removing nodes and elements
|
|
## @defgroup l2_modif_edit Modifying nodes and elements
|
|
## @defgroup l2_modif_renumber Renumbering nodes and elements
|
|
## @defgroup l2_modif_trsf Transforming meshes (Translation, Rotation, Symmetry, Sewing, Merging)
|
|
## @defgroup l2_modif_movenode Moving nodes
|
|
## @defgroup l2_modif_throughp Mesh through point
|
|
## @defgroup l2_modif_invdiag Diagonal inversion of elements
|
|
## @defgroup l2_modif_unitetri Uniting triangles
|
|
## @defgroup l2_modif_changori Changing orientation of elements
|
|
## @defgroup l2_modif_cutquadr Cutting quadrangles
|
|
## @defgroup l2_modif_smooth Smoothing
|
|
## @defgroup l2_modif_extrurev Extrusion and Revolution
|
|
## @defgroup l2_modif_patterns Pattern mapping
|
|
## @defgroup l2_modif_tofromqu Convert to/from Quadratic Mesh
|
|
|
|
## @}
|
|
|
|
import salome
|
|
import geompyDC
|
|
|
|
import SMESH # This is necessary for back compatibility
|
|
from SMESH import *
|
|
|
|
import StdMeshers
|
|
|
|
import SALOME
|
|
|
|
# import NETGENPlugin module if possible
|
|
noNETGENPlugin = 0
|
|
try:
|
|
import NETGENPlugin
|
|
except ImportError:
|
|
noNETGENPlugin = 1
|
|
pass
|
|
|
|
## @addtogroup l1_auxiliary
|
|
## @{
|
|
|
|
# Types of algorithms
|
|
REGULAR = 1
|
|
PYTHON = 2
|
|
COMPOSITE = 3
|
|
SOLE = 0
|
|
SIMPLE = 1
|
|
|
|
MEFISTO = 3
|
|
NETGEN = 4
|
|
GHS3D = 5
|
|
FULL_NETGEN = 6
|
|
NETGEN_2D = 7
|
|
NETGEN_1D2D = NETGEN
|
|
NETGEN_1D2D3D = FULL_NETGEN
|
|
NETGEN_FULL = FULL_NETGEN
|
|
Hexa = 8
|
|
Hexotic = 9
|
|
BLSURF = 10
|
|
GHS3DPRL = 11
|
|
|
|
# MirrorType enumeration
|
|
POINT = SMESH_MeshEditor.POINT
|
|
AXIS = SMESH_MeshEditor.AXIS
|
|
PLANE = SMESH_MeshEditor.PLANE
|
|
|
|
# Smooth_Method enumeration
|
|
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
|
|
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
|
|
|
|
# Fineness enumeration (for NETGEN)
|
|
VeryCoarse = 0
|
|
Coarse = 1
|
|
Moderate = 2
|
|
Fine = 3
|
|
VeryFine = 4
|
|
Custom = 5
|
|
|
|
# Optimization level of GHS3D
|
|
None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization = 0,1,2,3
|
|
|
|
# Topology treatment way of BLSURF
|
|
FromCAD, PreProcess, PreProcessPlus = 0,1,2
|
|
|
|
# Element size flag of BLSURF
|
|
DefaultSize, DefaultGeom, Custom = 0,0,1
|
|
|
|
PrecisionConfusion = 1e-07
|
|
|
|
## Converts an angle from degrees to radians
|
|
def DegreesToRadians(AngleInDegrees):
|
|
from math import pi
|
|
return AngleInDegrees * pi / 180.0
|
|
|
|
# Salome notebook variable separator
|
|
var_separator = ":"
|
|
|
|
# Parametrized substitute for PointStruct
|
|
class PointStructStr:
|
|
|
|
x = 0
|
|
y = 0
|
|
z = 0
|
|
xStr = ""
|
|
yStr = ""
|
|
zStr = ""
|
|
|
|
def __init__(self, xStr, yStr, zStr):
|
|
self.xStr = xStr
|
|
self.yStr = yStr
|
|
self.zStr = zStr
|
|
if isinstance(xStr, str) and notebook.isVariable(xStr):
|
|
self.x = notebook.get(xStr)
|
|
else:
|
|
self.x = xStr
|
|
if isinstance(yStr, str) and notebook.isVariable(yStr):
|
|
self.y = notebook.get(yStr)
|
|
else:
|
|
self.y = yStr
|
|
if isinstance(zStr, str) and notebook.isVariable(zStr):
|
|
self.z = notebook.get(zStr)
|
|
else:
|
|
self.z = zStr
|
|
|
|
# Parametrized substitute for PointStruct (with 6 parameters)
|
|
class PointStructStr6:
|
|
|
|
x1 = 0
|
|
y1 = 0
|
|
z1 = 0
|
|
x2 = 0
|
|
y2 = 0
|
|
z2 = 0
|
|
xStr1 = ""
|
|
yStr1 = ""
|
|
zStr1 = ""
|
|
xStr2 = ""
|
|
yStr2 = ""
|
|
zStr2 = ""
|
|
|
|
def __init__(self, x1Str, x2Str, y1Str, y2Str, z1Str, z2Str):
|
|
self.x1Str = x1Str
|
|
self.x2Str = x2Str
|
|
self.y1Str = y1Str
|
|
self.y2Str = y2Str
|
|
self.z1Str = z1Str
|
|
self.z2Str = z2Str
|
|
if isinstance(x1Str, str) and notebook.isVariable(x1Str):
|
|
self.x1 = notebook.get(x1Str)
|
|
else:
|
|
self.x1 = x1Str
|
|
if isinstance(x2Str, str) and notebook.isVariable(x2Str):
|
|
self.x2 = notebook.get(x2Str)
|
|
else:
|
|
self.x2 = x2Str
|
|
if isinstance(y1Str, str) and notebook.isVariable(y1Str):
|
|
self.y1 = notebook.get(y1Str)
|
|
else:
|
|
self.y1 = y1Str
|
|
if isinstance(y2Str, str) and notebook.isVariable(y2Str):
|
|
self.y2 = notebook.get(y2Str)
|
|
else:
|
|
self.y2 = y2Str
|
|
if isinstance(z1Str, str) and notebook.isVariable(z1Str):
|
|
self.z1 = notebook.get(z1Str)
|
|
else:
|
|
self.z1 = z1Str
|
|
if isinstance(z2Str, str) and notebook.isVariable(z2Str):
|
|
self.z2 = notebook.get(z2Str)
|
|
else:
|
|
self.z2 = z2Str
|
|
|
|
# Parametrized substitute for AxisStruct
|
|
class AxisStructStr:
|
|
|
|
x = 0
|
|
y = 0
|
|
z = 0
|
|
dx = 0
|
|
dy = 0
|
|
dz = 0
|
|
xStr = ""
|
|
yStr = ""
|
|
zStr = ""
|
|
dxStr = ""
|
|
dyStr = ""
|
|
dzStr = ""
|
|
|
|
def __init__(self, xStr, yStr, zStr, dxStr, dyStr, dzStr):
|
|
self.xStr = xStr
|
|
self.yStr = yStr
|
|
self.zStr = zStr
|
|
self.dxStr = dxStr
|
|
self.dyStr = dyStr
|
|
self.dzStr = dzStr
|
|
if isinstance(xStr, str) and notebook.isVariable(xStr):
|
|
self.x = notebook.get(xStr)
|
|
else:
|
|
self.x = xStr
|
|
if isinstance(yStr, str) and notebook.isVariable(yStr):
|
|
self.y = notebook.get(yStr)
|
|
else:
|
|
self.y = yStr
|
|
if isinstance(zStr, str) and notebook.isVariable(zStr):
|
|
self.z = notebook.get(zStr)
|
|
else:
|
|
self.z = zStr
|
|
if isinstance(dxStr, str) and notebook.isVariable(dxStr):
|
|
self.dx = notebook.get(dxStr)
|
|
else:
|
|
self.dx = dxStr
|
|
if isinstance(dyStr, str) and notebook.isVariable(dyStr):
|
|
self.dy = notebook.get(dyStr)
|
|
else:
|
|
self.dy = dyStr
|
|
if isinstance(dzStr, str) and notebook.isVariable(dzStr):
|
|
self.dz = notebook.get(dzStr)
|
|
else:
|
|
self.dz = dzStr
|
|
|
|
# Parametrized substitute for DirStruct
|
|
class DirStructStr:
|
|
|
|
def __init__(self, pointStruct):
|
|
self.pointStruct = pointStruct
|
|
|
|
# Returns list of variable values from salome notebook
|
|
def ParsePointStruct(Point):
|
|
Parameters = 2*var_separator
|
|
if isinstance(Point, PointStructStr):
|
|
Parameters = str(Point.xStr) + var_separator + str(Point.yStr) + var_separator + str(Point.zStr)
|
|
Point = PointStruct(Point.x, Point.y, Point.z)
|
|
return Point, Parameters
|
|
|
|
# Returns list of variable values from salome notebook
|
|
def ParseDirStruct(Dir):
|
|
Parameters = 2*var_separator
|
|
if isinstance(Dir, DirStructStr):
|
|
pntStr = Dir.pointStruct
|
|
if isinstance(pntStr, PointStructStr6):
|
|
Parameters = str(pntStr.x1Str) + var_separator + str(pntStr.x2Str) + var_separator
|
|
Parameters += str(pntStr.y1Str) + var_separator + str(pntStr.y2Str) + var_separator
|
|
Parameters += str(pntStr.z1Str) + var_separator + str(pntStr.z2Str)
|
|
Point = PointStruct(pntStr.x2 - pntStr.x1, pntStr.y2 - pntStr.y1, pntStr.z2 - pntStr.z1)
|
|
else:
|
|
Parameters = str(pntStr.xStr) + var_separator + str(pntStr.yStr) + var_separator + str(pntStr.zStr)
|
|
Point = PointStruct(pntStr.x, pntStr.y, pntStr.z)
|
|
Dir = DirStruct(Point)
|
|
return Dir, Parameters
|
|
|
|
# Returns list of variable values from salome notebook
|
|
def ParseAxisStruct(Axis):
|
|
Parameters = 5*var_separator
|
|
if isinstance(Axis, AxisStructStr):
|
|
Parameters = str(Axis.xStr) + var_separator + str(Axis.yStr) + var_separator + str(Axis.zStr) + var_separator
|
|
Parameters += str(Axis.dxStr) + var_separator + str(Axis.dyStr) + var_separator + str(Axis.dzStr)
|
|
Axis = AxisStruct(Axis.x, Axis.y, Axis.z, Axis.dx, Axis.dy, Axis.dz)
|
|
return Axis, Parameters
|
|
|
|
## Return list of variable values from salome notebook
|
|
def ParseAngles(list):
|
|
Result = []
|
|
Parameters = ""
|
|
for parameter in list:
|
|
if isinstance(parameter,str) and notebook.isVariable(parameter):
|
|
Result.append(DegreesToRadians(notebook.get(parameter)))
|
|
pass
|
|
else:
|
|
Result.append(parameter)
|
|
pass
|
|
|
|
Parameters = Parameters + str(parameter)
|
|
Parameters = Parameters + var_separator
|
|
pass
|
|
Parameters = Parameters[:len(Parameters)-1]
|
|
return Result, Parameters
|
|
|
|
def IsEqual(val1, val2, tol=PrecisionConfusion):
|
|
if abs(val1 - val2) < tol:
|
|
return True
|
|
return False
|
|
|
|
NO_NAME = "NoName"
|
|
|
|
## Gets object name
|
|
def GetName(obj):
|
|
ior = salome.orb.object_to_string(obj)
|
|
sobj = salome.myStudy.FindObjectIOR(ior)
|
|
if sobj is None:
|
|
return NO_NAME
|
|
else:
|
|
attr = sobj.FindAttribute("AttributeName")[1]
|
|
return attr.Value()
|
|
|
|
## Prints error message if a hypothesis was not assigned.
|
|
def TreatHypoStatus(status, hypName, geomName, isAlgo):
|
|
if isAlgo:
|
|
hypType = "algorithm"
|
|
else:
|
|
hypType = "hypothesis"
|
|
pass
|
|
if status == HYP_UNKNOWN_FATAL :
|
|
reason = "for unknown reason"
|
|
elif status == HYP_INCOMPATIBLE :
|
|
reason = "this hypothesis mismatches the algorithm"
|
|
elif status == HYP_NOTCONFORM :
|
|
reason = "a non-conform mesh would be built"
|
|
elif status == HYP_ALREADY_EXIST :
|
|
reason = hypType + " of the same dimension is already assigned to this shape"
|
|
elif status == HYP_BAD_DIM :
|
|
reason = hypType + " mismatches the shape"
|
|
elif status == HYP_CONCURENT :
|
|
reason = "there are concurrent hypotheses on sub-shapes"
|
|
elif status == HYP_BAD_SUBSHAPE :
|
|
reason = "the shape is neither the main one, nor its subshape, nor a valid group"
|
|
elif status == HYP_BAD_GEOMETRY:
|
|
reason = "geometry mismatches the expectation of the algorithm"
|
|
elif status == HYP_HIDDEN_ALGO:
|
|
reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions"
|
|
elif status == HYP_HIDING_ALGO:
|
|
reason = "it hides algorithms of lower dimensions by generating elements of all dimensions"
|
|
elif status == HYP_NEED_SHAPE:
|
|
reason = "Algorithm can't work without shape"
|
|
else:
|
|
return
|
|
hypName = '"' + hypName + '"'
|
|
geomName= '"' + geomName+ '"'
|
|
if status < HYP_UNKNOWN_FATAL:
|
|
print hypName, "was assigned to", geomName,"but", reason
|
|
else:
|
|
print hypName, "was not assigned to",geomName,":", reason
|
|
pass
|
|
|
|
# end of l1_auxiliary
|
|
## @}
|
|
|
|
# All methods of this class are accessible directly from the smesh.py package.
|
|
class smeshDC(SMESH._objref_SMESH_Gen):
|
|
|
|
## Sets the current study and Geometry component
|
|
# @ingroup l1_auxiliary
|
|
def init_smesh(self,theStudy,geompyD):
|
|
self.SetCurrentStudy(theStudy,geompyD)
|
|
|
|
## Creates an empty Mesh. This mesh can have an underlying geometry.
|
|
# @param obj the Geometrical object on which the mesh is built. If not defined,
|
|
# the mesh will have no underlying geometry.
|
|
# @param name the name for the new mesh.
|
|
# @return an instance of Mesh class.
|
|
# @ingroup l2_construct
|
|
def Mesh(self, obj=0, name=0):
|
|
return Mesh(self,self.geompyD,obj,name)
|
|
|
|
## Returns a long value from enumeration
|
|
# Should be used for SMESH.FunctorType enumeration
|
|
# @ingroup l1_controls
|
|
def EnumToLong(self,theItem):
|
|
return theItem._v
|
|
|
|
## Gets PointStruct from vertex
|
|
# @param theVertex a GEOM object(vertex)
|
|
# @return SMESH.PointStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetPointStruct(self,theVertex):
|
|
[x, y, z] = self.geompyD.PointCoordinates(theVertex)
|
|
return PointStruct(x,y,z)
|
|
|
|
## Gets DirStruct from vector
|
|
# @param theVector a GEOM object(vector)
|
|
# @return SMESH.DirStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetDirStruct(self,theVector):
|
|
vertices = self.geompyD.SubShapeAll( theVector, geompyDC.ShapeType["VERTEX"] )
|
|
if(len(vertices) != 2):
|
|
print "Error: vector object is incorrect."
|
|
return None
|
|
p1 = self.geompyD.PointCoordinates(vertices[0])
|
|
p2 = self.geompyD.PointCoordinates(vertices[1])
|
|
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
dirst = DirStruct(pnt)
|
|
return dirst
|
|
|
|
## Makes DirStruct from a triplet
|
|
# @param x,y,z vector components
|
|
# @return SMESH.DirStruct
|
|
# @ingroup l1_auxiliary
|
|
def MakeDirStruct(self,x,y,z):
|
|
pnt = PointStruct(x,y,z)
|
|
return DirStruct(pnt)
|
|
|
|
## Get AxisStruct from object
|
|
# @param theObj a GEOM object (line or plane)
|
|
# @return SMESH.AxisStruct
|
|
# @ingroup l1_auxiliary
|
|
def GetAxisStruct(self,theObj):
|
|
edges = self.geompyD.SubShapeAll( theObj, geompyDC.ShapeType["EDGE"] )
|
|
if len(edges) > 1:
|
|
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
|
|
vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geompyDC.ShapeType["VERTEX"] )
|
|
vertex1 = self.geompyD.PointCoordinates(vertex1)
|
|
vertex2 = self.geompyD.PointCoordinates(vertex2)
|
|
vertex3 = self.geompyD.PointCoordinates(vertex3)
|
|
vertex4 = self.geompyD.PointCoordinates(vertex4)
|
|
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
|
|
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
|
|
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
|
|
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
|
|
return axis
|
|
elif len(edges) == 1:
|
|
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
|
|
p1 = self.geompyD.PointCoordinates( vertex1 )
|
|
p2 = self.geompyD.PointCoordinates( vertex2 )
|
|
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
|
|
return axis
|
|
return None
|
|
|
|
# From SMESH_Gen interface:
|
|
# ------------------------
|
|
|
|
## Sets the given name to the object
|
|
# @param obj the object to rename
|
|
# @param name a new object name
|
|
# @ingroup l1_auxiliary
|
|
def SetName(self, obj, name):
|
|
print "obj_name = ", name
|
|
if isinstance( obj, Mesh ):
|
|
obj = obj.GetMesh()
|
|
elif isinstance( obj, Mesh_Algorithm ):
|
|
obj = obj.GetAlgorithm()
|
|
ior = salome.orb.object_to_string(obj)
|
|
SMESH._objref_SMESH_Gen.SetName(self, ior, name)
|
|
|
|
## Sets the current mode
|
|
# @ingroup l1_auxiliary
|
|
def SetEmbeddedMode( self,theMode ):
|
|
#self.SetEmbeddedMode(theMode)
|
|
SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
|
|
|
|
## Gets the current mode
|
|
# @ingroup l1_auxiliary
|
|
def IsEmbeddedMode(self):
|
|
#return self.IsEmbeddedMode()
|
|
return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
|
|
|
|
## Sets the current study
|
|
# @ingroup l1_auxiliary
|
|
def SetCurrentStudy( self, theStudy, geompyD = None ):
|
|
#self.SetCurrentStudy(theStudy)
|
|
if not geompyD:
|
|
import geompy
|
|
geompyD = geompy.geom
|
|
pass
|
|
self.geompyD=geompyD
|
|
self.SetGeomEngine(geompyD)
|
|
SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy)
|
|
|
|
## Gets the current study
|
|
# @ingroup l1_auxiliary
|
|
def GetCurrentStudy(self):
|
|
#return self.GetCurrentStudy()
|
|
return SMESH._objref_SMESH_Gen.GetCurrentStudy(self)
|
|
|
|
## Creates a Mesh object importing data from the given UNV file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromUNV( self,theFileName ):
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Creates a Mesh object(s) importing data from the given MED file
|
|
# @return a list of Mesh class instances
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromMED( self,theFileName ):
|
|
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
|
|
aMeshes = []
|
|
for iMesh in range(len(aSmeshMeshes)) :
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
|
|
aMeshes.append(aMesh)
|
|
return aMeshes, aStatus
|
|
|
|
## Creates a Mesh object importing data from the given STL file
|
|
# @return an instance of Mesh class
|
|
# @ingroup l2_impexp
|
|
def CreateMeshesFromSTL( self, theFileName ):
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## Concatenate the given meshes into one mesh.
|
|
# @return an instance of Mesh class
|
|
# @param meshes the meshes to combine into one mesh
|
|
# @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed
|
|
# @param mergeNodesAndElements if true, equal nodes and elements aremerged
|
|
# @param mergeTolerance tolerance for merging nodes
|
|
# @param allGroups forces creation of groups of all elements
|
|
def Concatenate( self, meshes, uniteIdenticalGroups,
|
|
mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False):
|
|
if allGroups:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
else:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
## From SMESH_Gen interface
|
|
# @return the list of integer values
|
|
# @ingroup l1_auxiliary
|
|
def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
|
|
return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
|
|
|
|
## From SMESH_Gen interface. Creates a pattern
|
|
# @return an instance of SMESH_Pattern
|
|
#
|
|
# <a href="../tui_modifying_meshes_page.html#tui_pattern_mapping">Example of Patterns usage</a>
|
|
# @ingroup l2_modif_patterns
|
|
def GetPattern(self):
|
|
return SMESH._objref_SMESH_Gen.GetPattern(self)
|
|
|
|
## Sets number of segments per diagonal of boundary box of geometry by which
|
|
# default segment length of appropriate 1D hypotheses is defined.
|
|
# Default value is 10
|
|
# @ingroup l1_auxiliary
|
|
def SetBoundaryBoxSegmentation(self, nbSegments):
|
|
SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
|
|
|
|
## Concatenate the given meshes into one mesh.
|
|
# @return an instance of Mesh class
|
|
# @param meshes the meshes to combine into one mesh
|
|
# @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed
|
|
# @param mergeNodesAndElements if true, equal nodes and elements aremerged
|
|
# @param mergeTolerance tolerance for merging nodes
|
|
# @param allGroups forces creation of groups of all elements
|
|
def Concatenate( self, meshes, uniteIdenticalGroups,
|
|
mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False):
|
|
mergeTolerance,Parameters = geompyDC.ParseParameters(mergeTolerance)
|
|
if allGroups:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
else:
|
|
aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
|
|
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
|
|
aSmeshMesh.SetParameters(Parameters)
|
|
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
|
|
return aMesh
|
|
|
|
# Filtering. Auxiliary functions:
|
|
# ------------------------------
|
|
|
|
## Creates an empty criterion
|
|
# @return SMESH.Filter.Criterion
|
|
# @ingroup l1_controls
|
|
def GetEmptyCriterion(self):
|
|
Type = self.EnumToLong(FT_Undefined)
|
|
Compare = self.EnumToLong(FT_Undefined)
|
|
Threshold = 0
|
|
ThresholdStr = ""
|
|
ThresholdID = ""
|
|
UnaryOp = self.EnumToLong(FT_Undefined)
|
|
BinaryOp = self.EnumToLong(FT_Undefined)
|
|
Tolerance = 1e-07
|
|
TypeOfElement = ALL
|
|
Precision = -1 ##@1e-07
|
|
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
|
|
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
|
|
|
|
## Creates a criterion by the given parameters
|
|
# @param elementType the type of elements(NODE, EDGE, FACE, VOLUME)
|
|
# @param CritType the type of criterion (FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc.)
|
|
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Treshold the threshold value (range of ids as string, shape, numeric)
|
|
# @param UnaryOp FT_LogicalNOT or FT_Undefined
|
|
# @param BinaryOp a binary logical operation FT_LogicalAND, FT_LogicalOR or
|
|
# FT_Undefined (must be for the last criterion of all criteria)
|
|
# @return SMESH.Filter.Criterion
|
|
# @ingroup l1_controls
|
|
def GetCriterion(self,elementType,
|
|
CritType,
|
|
Compare = FT_EqualTo,
|
|
Treshold="",
|
|
UnaryOp=FT_Undefined,
|
|
BinaryOp=FT_Undefined):
|
|
aCriterion = self.GetEmptyCriterion()
|
|
aCriterion.TypeOfElement = elementType
|
|
aCriterion.Type = self.EnumToLong(CritType)
|
|
|
|
aTreshold = Treshold
|
|
|
|
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
|
|
aCriterion.Compare = self.EnumToLong(Compare)
|
|
elif Compare == "=" or Compare == "==":
|
|
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
|
|
elif Compare == "<":
|
|
aCriterion.Compare = self.EnumToLong(FT_LessThan)
|
|
elif Compare == ">":
|
|
aCriterion.Compare = self.EnumToLong(FT_MoreThan)
|
|
else:
|
|
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
|
|
aTreshold = Compare
|
|
|
|
if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
|
|
FT_BelongToCylinder, FT_LyingOnGeom]:
|
|
# Checks the treshold
|
|
if isinstance(aTreshold, geompyDC.GEOM._objref_GEOM_Object):
|
|
aCriterion.ThresholdStr = GetName(aTreshold)
|
|
aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
|
|
else:
|
|
print "Error: The treshold should be a shape."
|
|
return None
|
|
elif CritType == FT_RangeOfIds:
|
|
# Checks the treshold
|
|
if isinstance(aTreshold, str):
|
|
aCriterion.ThresholdStr = aTreshold
|
|
else:
|
|
print "Error: The treshold should be a string."
|
|
return None
|
|
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume, FT_FreeNodes,
|
|
FT_FreeFaces, FT_ElemGeomType, FT_GroupColor]:
|
|
# At this point the treshold is unnecessary
|
|
if aTreshold == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
|
|
elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = aTreshold
|
|
else:
|
|
# Check treshold
|
|
try:
|
|
aTreshold = float(aTreshold)
|
|
aCriterion.Threshold = aTreshold
|
|
except:
|
|
print "Error: The treshold should be a number."
|
|
return None
|
|
|
|
if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
|
|
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
|
|
|
|
if Treshold in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(Treshold)
|
|
|
|
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(UnaryOp)
|
|
|
|
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
|
|
aCriterion.BinaryOp = self.EnumToLong(BinaryOp)
|
|
|
|
return aCriterion
|
|
|
|
## Creates a filter with the given parameters
|
|
# @param elementType the type of elements in the group
|
|
# @param CritType the type of criterion ( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
|
|
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Treshold the threshold value (range of id ids as string, shape, numeric)
|
|
# @param UnaryOp FT_LogicalNOT or FT_Undefined
|
|
# @return SMESH_Filter
|
|
# @ingroup l1_controls
|
|
def GetFilter(self,elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Treshold="",
|
|
UnaryOp=FT_Undefined):
|
|
aCriterion = self.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
|
|
aFilterMgr = self.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aCriteria = []
|
|
aCriteria.append(aCriterion)
|
|
aFilter.SetCriteria(aCriteria)
|
|
return aFilter
|
|
|
|
## Creates a numerical functor by its type
|
|
# @param theCriterion FT_...; functor type
|
|
# @return SMESH_NumericalFunctor
|
|
# @ingroup l1_controls
|
|
def GetFunctor(self,theCriterion):
|
|
aFilterMgr = self.CreateFilterManager()
|
|
if theCriterion == FT_AspectRatio:
|
|
return aFilterMgr.CreateAspectRatio()
|
|
elif theCriterion == FT_AspectRatio3D:
|
|
return aFilterMgr.CreateAspectRatio3D()
|
|
elif theCriterion == FT_Warping:
|
|
return aFilterMgr.CreateWarping()
|
|
elif theCriterion == FT_MinimumAngle:
|
|
return aFilterMgr.CreateMinimumAngle()
|
|
elif theCriterion == FT_Taper:
|
|
return aFilterMgr.CreateTaper()
|
|
elif theCriterion == FT_Skew:
|
|
return aFilterMgr.CreateSkew()
|
|
elif theCriterion == FT_Area:
|
|
return aFilterMgr.CreateArea()
|
|
elif theCriterion == FT_Volume3D:
|
|
return aFilterMgr.CreateVolume3D()
|
|
elif theCriterion == FT_MultiConnection:
|
|
return aFilterMgr.CreateMultiConnection()
|
|
elif theCriterion == FT_MultiConnection2D:
|
|
return aFilterMgr.CreateMultiConnection2D()
|
|
elif theCriterion == FT_Length:
|
|
return aFilterMgr.CreateLength()
|
|
elif theCriterion == FT_Length2D:
|
|
return aFilterMgr.CreateLength2D()
|
|
else:
|
|
print "Error: given parameter is not numerucal functor type."
|
|
|
|
## Creates hypothesis
|
|
# @param
|
|
# @param
|
|
# @return created hypothesis instance
|
|
def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"):
|
|
return SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName )
|
|
|
|
import omniORB
|
|
#Registering the new proxy for SMESH_Gen
|
|
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
|
|
|
|
|
|
# Public class: Mesh
|
|
# ==================
|
|
|
|
## This class allows defining and managing a mesh.
|
|
# It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes.
|
|
# It also has methods to define groups of mesh elements, to modify a mesh (by addition of
|
|
# new nodes and elements and by changing the existing entities), to get information
|
|
# about a mesh and to export a mesh into different formats.
|
|
class Mesh:
|
|
|
|
geom = 0
|
|
mesh = 0
|
|
editor = 0
|
|
|
|
## Constructor
|
|
#
|
|
# Creates a mesh on the shape \a obj (or an empty mesh if \a obj is equal to 0) and
|
|
# sets the GUI name of this mesh to \a name.
|
|
# @param smeshpyD an instance of smeshDC class
|
|
# @param geompyD an instance of geompyDC class
|
|
# @param obj Shape to be meshed or SMESH_Mesh object
|
|
# @param name Study name of the mesh
|
|
# @ingroup l2_construct
|
|
def __init__(self, smeshpyD, geompyD, obj=0, name=0):
|
|
self.smeshpyD=smeshpyD
|
|
self.geompyD=geompyD
|
|
if obj is None:
|
|
obj = 0
|
|
if obj != 0:
|
|
if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
|
|
self.geom = obj
|
|
self.mesh = self.smeshpyD.CreateMesh(self.geom)
|
|
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
|
|
self.SetMesh(obj)
|
|
else:
|
|
self.mesh = self.smeshpyD.CreateEmptyMesh()
|
|
if name != 0:
|
|
self.smeshpyD.SetName(self.mesh, name)
|
|
elif obj != 0:
|
|
self.smeshpyD.SetName(self.mesh, GetName(obj))
|
|
|
|
if not self.geom:
|
|
self.geom = self.mesh.GetShapeToMesh()
|
|
|
|
self.editor = self.mesh.GetMeshEditor()
|
|
|
|
## Initializes the Mesh object from an instance of SMESH_Mesh interface
|
|
# @param theMesh a SMESH_Mesh object
|
|
# @ingroup l2_construct
|
|
def SetMesh(self, theMesh):
|
|
self.mesh = theMesh
|
|
self.geom = self.mesh.GetShapeToMesh()
|
|
|
|
## Returns the mesh, that is an instance of SMESH_Mesh interface
|
|
# @return a SMESH_Mesh object
|
|
# @ingroup l2_construct
|
|
def GetMesh(self):
|
|
return self.mesh
|
|
|
|
## Gets the name of the mesh
|
|
# @return the name of the mesh as a string
|
|
# @ingroup l2_construct
|
|
def GetName(self):
|
|
name = GetName(self.GetMesh())
|
|
return name
|
|
|
|
## Sets a name to the mesh
|
|
# @param name a new name of the mesh
|
|
# @ingroup l2_construct
|
|
def SetName(self, name):
|
|
self.smeshpyD.SetName(self.GetMesh(), name)
|
|
|
|
## Gets the subMesh object associated to a \a theSubObject geometrical object.
|
|
# The subMesh object gives access to the IDs of nodes and elements.
|
|
# @param theSubObject a geometrical object (shape)
|
|
# @param theName a name for the submesh
|
|
# @return an object of type SMESH_SubMesh, representing a part of mesh, which lies on the given shape
|
|
# @ingroup l2_submeshes
|
|
def GetSubMesh(self, theSubObject, theName):
|
|
submesh = self.mesh.GetSubMesh(theSubObject, theName)
|
|
return submesh
|
|
|
|
## Returns the shape associated to the mesh
|
|
# @return a GEOM_Object
|
|
# @ingroup l2_construct
|
|
def GetShape(self):
|
|
return self.geom
|
|
|
|
## Associates the given shape to the mesh (entails the recreation of the mesh)
|
|
# @param geom the shape to be meshed (GEOM_Object)
|
|
# @ingroup l2_construct
|
|
def SetShape(self, geom):
|
|
self.mesh = self.smeshpyD.CreateMesh(geom)
|
|
|
|
## Returns true if the hypotheses are defined well
|
|
# @param theSubObject a subshape of a mesh shape
|
|
# @return True or False
|
|
# @ingroup l2_construct
|
|
def IsReadyToCompute(self, theSubObject):
|
|
return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
|
|
|
|
## Returns errors of hypotheses definition.
|
|
# The list of errors is empty if everything is OK.
|
|
# @param theSubObject a subshape of a mesh shape
|
|
# @return a list of errors
|
|
# @ingroup l2_construct
|
|
def GetAlgoState(self, theSubObject):
|
|
return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
|
|
|
|
## Returns a geometrical object on which the given element was built.
|
|
# The returned geometrical object, if not nil, is either found in the
|
|
# study or published by this method with the given name
|
|
# @param theElementID the id of the mesh element
|
|
# @param theGeomName the user-defined name of the geometrical object
|
|
# @return GEOM::GEOM_Object instance
|
|
# @ingroup l2_construct
|
|
def GetGeometryByMeshElement(self, theElementID, theGeomName):
|
|
return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
|
|
|
|
## Returns the mesh dimension depending on the dimension of the underlying shape
|
|
# @return mesh dimension as an integer value [0,3]
|
|
# @ingroup l1_auxiliary
|
|
def MeshDimension(self):
|
|
shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] )
|
|
if len( shells ) > 0 :
|
|
return 3
|
|
elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
|
|
return 2
|
|
elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
|
|
return 1
|
|
else:
|
|
return 0;
|
|
pass
|
|
|
|
## Creates a segment discretization 1D algorithm.
|
|
# If the optional \a algo parameter is not set, this algorithm is REGULAR.
|
|
# \n If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param algo the type of the required algorithm. Possible values are:
|
|
# - smesh.REGULAR,
|
|
# - smesh.PYTHON for discretization via a python function,
|
|
# - smesh.COMPOSITE for meshing a set of edges on one face side as a whole.
|
|
# @param geom If defined is the subshape to be meshed
|
|
# @return an instance of Mesh_Segment or Mesh_Segment_Python, or Mesh_CompositeSegment class
|
|
# @ingroup l3_algos_basic
|
|
def Segment(self, algo=REGULAR, geom=0):
|
|
## if Segment(geom) is called by mistake
|
|
if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object):
|
|
algo, geom = geom, algo
|
|
if not algo: algo = REGULAR
|
|
pass
|
|
if algo == REGULAR:
|
|
return Mesh_Segment(self, geom)
|
|
elif algo == PYTHON:
|
|
return Mesh_Segment_Python(self, geom)
|
|
elif algo == COMPOSITE:
|
|
return Mesh_CompositeSegment(self, geom)
|
|
else:
|
|
return Mesh_Segment(self, geom)
|
|
|
|
## Enables creation of nodes and segments usable by 2D algoritms.
|
|
# The added nodes and segments must be bound to edges and vertices by
|
|
# SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape()
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom the subshape to be manually meshed
|
|
# @return StdMeshers_UseExisting_1D algorithm that generates nothing
|
|
# @ingroup l3_algos_basic
|
|
def UseExistingSegments(self, geom=0):
|
|
algo = Mesh_UseExisting(1,self,geom)
|
|
return algo.GetAlgorithm()
|
|
|
|
## Enables creation of nodes and faces usable by 3D algoritms.
|
|
# The added nodes and faces must be bound to geom faces by SetNodeOnFace()
|
|
# and SetMeshElementOnShape()
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom the subshape to be manually meshed
|
|
# @return StdMeshers_UseExisting_2D algorithm that generates nothing
|
|
# @ingroup l3_algos_basic
|
|
def UseExistingFaces(self, geom=0):
|
|
algo = Mesh_UseExisting(2,self,geom)
|
|
return algo.GetAlgorithm()
|
|
|
|
## Creates a triangle 2D algorithm for faces.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D || smesh.BLSURF
|
|
# @param geom If defined, the subshape to be meshed (GEOM_Object)
|
|
# @return an instance of Mesh_Triangle algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Triangle(self, algo=MEFISTO, geom=0):
|
|
## if Triangle(geom) is called by mistake
|
|
if (isinstance(algo, geompyDC.GEOM._objref_GEOM_Object)):
|
|
geom = algo
|
|
algo = MEFISTO
|
|
|
|
return Mesh_Triangle(self, algo, geom)
|
|
|
|
## Creates a quadrangle 2D algorithm for faces.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed (GEOM_Object)
|
|
# @return an instance of Mesh_Quadrangle algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Quadrangle(self, geom=0):
|
|
return Mesh_Quadrangle(self, geom)
|
|
|
|
## Creates a tetrahedron 3D algorithm for solids.
|
|
# The parameter \a algo permits to choose the algorithm: NETGEN or GHS3D
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.GHS3DPRL, smesh.FULL_NETGEN
|
|
# @param geom If defined, the subshape to be meshed (GEOM_Object)
|
|
# @return an instance of Mesh_Tetrahedron algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Tetrahedron(self, algo=NETGEN, geom=0):
|
|
## if Tetrahedron(geom) is called by mistake
|
|
if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
|
|
algo, geom = geom, algo
|
|
if not algo: algo = NETGEN
|
|
pass
|
|
return Mesh_Tetrahedron(self, algo, geom)
|
|
|
|
## Creates a hexahedron 3D algorithm for solids.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param algo possible values are: smesh.Hexa, smesh.Hexotic
|
|
# @param geom If defined, the subshape to be meshed (GEOM_Object)
|
|
# @return an instance of Mesh_Hexahedron algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Hexahedron(self, algo=Hexa, geom=0):
|
|
## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
|
|
if ( isinstance(algo, geompyDC.GEOM._objref_GEOM_Object) ):
|
|
if geom in [Hexa, Hexotic]: algo, geom = geom, algo
|
|
elif geom == 0: algo, geom = Hexa, algo
|
|
return Mesh_Hexahedron(self, algo, geom)
|
|
|
|
## Deprecated, used only for compatibility!
|
|
# @return an instance of Mesh_Netgen algorithm
|
|
# @ingroup l3_algos_basic
|
|
def Netgen(self, is3D, geom=0):
|
|
return Mesh_Netgen(self, is3D, geom)
|
|
|
|
## Creates a projection 1D algorithm for edges.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Projection1D algorithm
|
|
# @ingroup l3_algos_proj
|
|
def Projection1D(self, geom=0):
|
|
return Mesh_Projection1D(self, geom)
|
|
|
|
## Creates a projection 2D algorithm for faces.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Projection2D algorithm
|
|
# @ingroup l3_algos_proj
|
|
def Projection2D(self, geom=0):
|
|
return Mesh_Projection2D(self, geom)
|
|
|
|
## Creates a projection 3D algorithm for solids.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Projection3D algorithm
|
|
# @ingroup l3_algos_proj
|
|
def Projection3D(self, geom=0):
|
|
return Mesh_Projection3D(self, geom)
|
|
|
|
## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids.
|
|
# If the optional \a geom parameter is not set, this algorithm is global.
|
|
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
|
|
# @param geom If defined, the subshape to be meshed
|
|
# @return an instance of Mesh_Prism3D or Mesh_RadialPrism3D algorithm
|
|
# @ingroup l3_algos_radialp l3_algos_3dextr
|
|
def Prism(self, geom=0):
|
|
shape = geom
|
|
if shape==0:
|
|
shape = self.geom
|
|
nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] ))
|
|
nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] ))
|
|
if nbSolids == 0 or nbSolids == nbShells:
|
|
return Mesh_Prism3D(self, geom)
|
|
return Mesh_RadialPrism3D(self, geom)
|
|
|
|
## Computes the mesh and returns the status of the computation
|
|
# @return True or False
|
|
# @ingroup l2_construct
|
|
def Compute(self, geom=0):
|
|
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
|
|
if self.geom == 0:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
else:
|
|
geom = self.geom
|
|
ok = False
|
|
try:
|
|
ok = self.smeshpyD.Compute(self.mesh, geom)
|
|
except SALOME.SALOME_Exception, ex:
|
|
print "Mesh computation failed, exception caught:"
|
|
print " ", ex.details.text
|
|
except:
|
|
import traceback
|
|
print "Mesh computation failed, exception caught:"
|
|
traceback.print_exc()
|
|
if True:#not ok:
|
|
errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
|
|
allReasons = ""
|
|
for err in errors:
|
|
if err.isGlobalAlgo:
|
|
glob = "global"
|
|
else:
|
|
glob = "local"
|
|
pass
|
|
dim = err.algoDim
|
|
name = err.algoName
|
|
if len(name) == 0:
|
|
reason = '%s %sD algorithm is missing' % (glob, dim)
|
|
elif err.state == HYP_MISSING:
|
|
reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
|
|
% (glob, dim, name, dim))
|
|
elif err.state == HYP_NOTCONFORM:
|
|
reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
|
|
elif err.state == HYP_BAD_PARAMETER:
|
|
reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
|
|
% ( glob, dim, name ))
|
|
elif err.state == HYP_BAD_GEOMETRY:
|
|
reason = ('%s %sD algorithm "%s" is assigned to mismatching'
|
|
'geometry' % ( glob, dim, name ))
|
|
else:
|
|
reason = "For unknown reason."+\
|
|
" Revise Mesh.Compute() implementation in smeshDC.py!"
|
|
pass
|
|
if allReasons != "":
|
|
allReasons += "\n"
|
|
pass
|
|
allReasons += reason
|
|
pass
|
|
if allReasons != "":
|
|
print '"' + GetName(self.mesh) + '"',"has not been computed:"
|
|
print allReasons
|
|
ok = False
|
|
elif not ok:
|
|
print '"' + GetName(self.mesh) + '"',"has not been computed."
|
|
pass
|
|
pass
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
|
|
salome.sg.updateObjBrowser(1)
|
|
pass
|
|
return ok
|
|
|
|
## Removes all nodes and elements
|
|
# @ingroup l2_construct
|
|
def Clear(self):
|
|
self.mesh.Clear()
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
|
|
salome.sg.updateObjBrowser(1)
|
|
|
|
## Removes all nodes and elements of indicated shape
|
|
# @ingroup l2_construct
|
|
def ClearSubMesh(self, geomId):
|
|
self.mesh.ClearSubMesh(geomId)
|
|
if salome.sg.hasDesktop():
|
|
smeshgui = salome.ImportComponentGUI("SMESH")
|
|
smeshgui.Init(self.mesh.GetStudyId())
|
|
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
|
|
salome.sg.updateObjBrowser(1)
|
|
|
|
## Computes a tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
|
|
# @param fineness [0,-1] defines mesh fineness
|
|
# @return True or False
|
|
# @ingroup l3_algos_basic
|
|
def AutomaticTetrahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Triangle().LengthFromEdges()
|
|
pass
|
|
if dim > 2 :
|
|
self.Tetrahedron(NETGEN)
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Computes an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
|
|
# @param fineness [0,-1] defines mesh fineness
|
|
# @return True or False
|
|
# @ingroup l3_algos_basic
|
|
def AutomaticHexahedralization(self, fineness=0):
|
|
dim = self.MeshDimension()
|
|
# assign the hypotheses
|
|
self.RemoveGlobalHypotheses()
|
|
self.Segment().AutomaticLength(fineness)
|
|
if dim > 1 :
|
|
self.Quadrangle()
|
|
pass
|
|
if dim > 2 :
|
|
self.Hexahedron()
|
|
pass
|
|
return self.Compute()
|
|
|
|
## Assigns a hypothesis
|
|
# @param hyp a hypothesis to assign
|
|
# @param geom a subhape of mesh geometry
|
|
# @return SMESH.Hypothesis_Status
|
|
# @ingroup l2_hypotheses
|
|
def AddHypothesis(self, hyp, geom=0):
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
if not geom:
|
|
geom = self.geom
|
|
if not geom:
|
|
geom = self.mesh.GetShapeToMesh()
|
|
pass
|
|
status = self.mesh.AddHypothesis(geom, hyp)
|
|
isAlgo = hyp._narrow( SMESH_Algo )
|
|
TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo )
|
|
return status
|
|
|
|
## Unassigns a hypothesis
|
|
# @param hyp a hypothesis to unassign
|
|
# @param geom a subshape of mesh geometry
|
|
# @return SMESH.Hypothesis_Status
|
|
# @ingroup l2_hypotheses
|
|
def RemoveHypothesis(self, hyp, geom=0):
|
|
if isinstance( hyp, Mesh_Algorithm ):
|
|
hyp = hyp.GetAlgorithm()
|
|
pass
|
|
if not geom:
|
|
geom = self.geom
|
|
pass
|
|
status = self.mesh.RemoveHypothesis(geom, hyp)
|
|
return status
|
|
|
|
## Gets the list of hypotheses added on a geometry
|
|
# @param geom a subshape of mesh geometry
|
|
# @return the sequence of SMESH_Hypothesis
|
|
# @ingroup l2_hypotheses
|
|
def GetHypothesisList(self, geom):
|
|
return self.mesh.GetHypothesisList( geom )
|
|
|
|
## Removes all global hypotheses
|
|
# @ingroup l2_hypotheses
|
|
def RemoveGlobalHypotheses(self):
|
|
current_hyps = self.mesh.GetHypothesisList( self.geom )
|
|
for hyp in current_hyps:
|
|
self.mesh.RemoveHypothesis( self.geom, hyp )
|
|
pass
|
|
pass
|
|
|
|
## Creates a mesh group based on the geometric object \a grp
|
|
# and gives a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometric group name \n
|
|
# Note: Works like GroupOnGeom().
|
|
# @param grp a geometric group, a vertex, an edge, a face or a solid
|
|
# @param name the name of the mesh group
|
|
# @return SMESH_GroupOnGeom
|
|
# @ingroup l2_grps_create
|
|
def Group(self, grp, name=""):
|
|
return self.GroupOnGeom(grp, name)
|
|
|
|
## Deprecated, used only for compatibility! Please, use ExportMED() method instead.
|
|
# Exports the mesh in a file in MED format and chooses the \a version of MED format
|
|
# @param f the file name
|
|
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
|
|
# @ingroup l2_impexp
|
|
def ExportToMED(self, f, version, opt=0):
|
|
self.mesh.ExportToMED(f, opt, version)
|
|
|
|
## Exports the mesh in a file in MED format
|
|
# @param f is the file name
|
|
# @param auto_groups boolean parameter for creating/not creating
|
|
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
|
|
# the typical use is auto_groups=false.
|
|
# @param version MED format version(MED_V2_1 or MED_V2_2)
|
|
# @ingroup l2_impexp
|
|
def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
|
|
self.mesh.ExportToMED(f, auto_groups, version)
|
|
|
|
## Exports the mesh in a file in DAT format
|
|
# @param f the file name
|
|
# @ingroup l2_impexp
|
|
def ExportDAT(self, f):
|
|
self.mesh.ExportDAT(f)
|
|
|
|
## Exports the mesh in a file in UNV format
|
|
# @param f the file name
|
|
# @ingroup l2_impexp
|
|
def ExportUNV(self, f):
|
|
self.mesh.ExportUNV(f)
|
|
|
|
## Export the mesh in a file in STL format
|
|
# @param f the file name
|
|
# @param ascii defines the file encoding
|
|
# @ingroup l2_impexp
|
|
def ExportSTL(self, f, ascii=1):
|
|
self.mesh.ExportSTL(f, ascii)
|
|
|
|
|
|
# Operations with groups:
|
|
# ----------------------
|
|
|
|
## Creates an empty mesh group
|
|
# @param elementType the type of elements in the group
|
|
# @param name the name of the mesh group
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def CreateEmptyGroup(self, elementType, name):
|
|
return self.mesh.CreateGroup(elementType, name)
|
|
|
|
## Creates a mesh group based on the geometrical object \a grp
|
|
# and gives a \a name, \n if this parameter is not defined
|
|
# the name is the same as the geometrical group name
|
|
# @param grp a geometrical group, a vertex, an edge, a face or a solid
|
|
# @param name the name of the mesh group
|
|
# @param typ the type of elements in the group. If not set, it is
|
|
# automatically detected by the type of the geometry
|
|
# @return SMESH_GroupOnGeom
|
|
# @ingroup l2_grps_create
|
|
def GroupOnGeom(self, grp, name="", typ=None):
|
|
if name == "":
|
|
name = grp.GetName()
|
|
|
|
if typ == None:
|
|
tgeo = str(grp.GetShapeType())
|
|
if tgeo == "VERTEX":
|
|
typ = NODE
|
|
elif tgeo == "EDGE":
|
|
typ = EDGE
|
|
elif tgeo == "FACE":
|
|
typ = FACE
|
|
elif tgeo == "SOLID":
|
|
typ = VOLUME
|
|
elif tgeo == "SHELL":
|
|
typ = VOLUME
|
|
elif tgeo == "COMPOUND":
|
|
if len( self.geompyD.GetObjectIDs( grp )) == 0:
|
|
print "Mesh.Group: empty geometric group", GetName( grp )
|
|
return 0
|
|
tgeo = self.geompyD.GetType(grp)
|
|
if tgeo == geompyDC.ShapeType["VERTEX"]:
|
|
typ = NODE
|
|
elif tgeo == geompyDC.ShapeType["EDGE"]:
|
|
typ = EDGE
|
|
elif tgeo == geompyDC.ShapeType["FACE"]:
|
|
typ = FACE
|
|
elif tgeo == geompyDC.ShapeType["SOLID"]:
|
|
typ = VOLUME
|
|
|
|
if typ == None:
|
|
print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
|
|
return 0
|
|
else:
|
|
return self.mesh.CreateGroupFromGEOM(typ, name, grp)
|
|
|
|
## Creates a mesh group by the given ids of elements
|
|
# @param groupName the name of the mesh group
|
|
# @param elementType the type of elements in the group
|
|
# @param elemIDs the list of ids
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByIds(self, groupName, elementType, elemIDs):
|
|
group = self.mesh.CreateGroup(elementType, groupName)
|
|
group.Add(elemIDs)
|
|
return group
|
|
|
|
## Creates a mesh group by the given conditions
|
|
# @param groupName the name of the mesh group
|
|
# @param elementType the type of elements in the group
|
|
# @param CritType the type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
|
|
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
|
|
# @param Treshold the threshold value (range of id ids as string, shape, numeric)
|
|
# @param UnaryOp FT_LogicalNOT or FT_Undefined
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroup(self,
|
|
groupName,
|
|
elementType,
|
|
CritType=FT_Undefined,
|
|
Compare=FT_EqualTo,
|
|
Treshold="",
|
|
UnaryOp=FT_Undefined):
|
|
aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
|
|
group = self.MakeGroupByCriterion(groupName, aCriterion)
|
|
return group
|
|
|
|
## Creates a mesh group by the given criterion
|
|
# @param groupName the name of the mesh group
|
|
# @param Criterion the instance of Criterion class
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByCriterion(self, groupName, Criterion):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aCriteria = []
|
|
aCriteria.append(Criterion)
|
|
aFilter.SetCriteria(aCriteria)
|
|
group = self.MakeGroupByFilter(groupName, aFilter)
|
|
return group
|
|
|
|
## Creates a mesh group by the given criteria (list of criteria)
|
|
# @param groupName the name of the mesh group
|
|
# @param theCriteria the list of criteria
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByCriteria(self, groupName, theCriteria):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aFilter = aFilterMgr.CreateFilter()
|
|
aFilter.SetCriteria(theCriteria)
|
|
group = self.MakeGroupByFilter(groupName, aFilter)
|
|
return group
|
|
|
|
## Creates a mesh group by the given filter
|
|
# @param groupName the name of the mesh group
|
|
# @param theFilter the instance of Filter class
|
|
# @return SMESH_Group
|
|
# @ingroup l2_grps_create
|
|
def MakeGroupByFilter(self, groupName, theFilter):
|
|
anIds = theFilter.GetElementsId(self.mesh)
|
|
anElemType = theFilter.GetElementType()
|
|
group = self.MakeGroupByIds(groupName, anElemType, anIds)
|
|
return group
|
|
|
|
## Passes mesh elements through the given filter and return IDs of fitting elements
|
|
# @param theFilter SMESH_Filter
|
|
# @return a list of ids
|
|
# @ingroup l1_controls
|
|
def GetIdsFromFilter(self, theFilter):
|
|
return theFilter.GetElementsId(self.mesh)
|
|
|
|
## Verifies whether a 2D mesh element has free edges (edges connected to one face only)\n
|
|
# Returns a list of special structures (borders).
|
|
# @return a list of SMESH.FreeEdges.Border structure: edge id and ids of two its nodes.
|
|
# @ingroup l1_controls
|
|
def GetFreeBorders(self):
|
|
aFilterMgr = self.smeshpyD.CreateFilterManager()
|
|
aPredicate = aFilterMgr.CreateFreeEdges()
|
|
aPredicate.SetMesh(self.mesh)
|
|
aBorders = aPredicate.GetBorders()
|
|
return aBorders
|
|
|
|
## Removes a group
|
|
# @ingroup l2_grps_delete
|
|
def RemoveGroup(self, group):
|
|
self.mesh.RemoveGroup(group)
|
|
|
|
## Removes a group with its contents
|
|
# @ingroup l2_grps_delete
|
|
def RemoveGroupWithContents(self, group):
|
|
self.mesh.RemoveGroupWithContents(group)
|
|
|
|
## Gets the list of groups existing in the mesh
|
|
# @return a sequence of SMESH_GroupBase
|
|
# @ingroup l2_grps_create
|
|
def GetGroups(self):
|
|
return self.mesh.GetGroups()
|
|
|
|
## Gets the number of groups existing in the mesh
|
|
# @return the quantity of groups as an integer value
|
|
# @ingroup l2_grps_create
|
|
def NbGroups(self):
|
|
return self.mesh.NbGroups()
|
|
|
|
## Gets the list of names of groups existing in the mesh
|
|
# @return list of strings
|
|
# @ingroup l2_grps_create
|
|
def GetGroupNames(self):
|
|
groups = self.GetGroups()
|
|
names = []
|
|
for group in groups:
|
|
names.append(group.GetName())
|
|
return names
|
|
|
|
## Produces a union of two groups
|
|
# A new group is created. All mesh elements that are
|
|
# present in the initial groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def UnionGroups(self, group1, group2, name):
|
|
return self.mesh.UnionGroups(group1, group2, name)
|
|
|
|
## Produces a union list of groups
|
|
# New group is created. All mesh elements that are present in
|
|
# initial groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def UnionListOfGroups(self, groups, name):
|
|
return self.mesh.UnionListOfGroups(groups, name)
|
|
|
|
## Prodices an intersection of two groups
|
|
# A new group is created. All mesh elements that are common
|
|
# for the two initial groups are added to the new one.
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def IntersectGroups(self, group1, group2, name):
|
|
return self.mesh.IntersectGroups(group1, group2, name)
|
|
|
|
## Produces an intersection of groups
|
|
# New group is created. All mesh elements that are present in all
|
|
# initial groups simultaneously are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def IntersectListOfGroups(self, groups, name):
|
|
return self.mesh.IntersectListOfGroups(groups, name)
|
|
|
|
## Produces a cut of two groups
|
|
# A new group is created. All mesh elements that are present in
|
|
# the main group but are not present in the tool group are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CutGroups(self, main_group, tool_group, name):
|
|
return self.mesh.CutGroups(main_group, tool_group, name)
|
|
|
|
## Produces a cut of groups
|
|
# A new group is created. All mesh elements that are present in main groups
|
|
# but do not present in tool groups are added to the new one
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CutListOfGroups(self, main_groups, tool_groups, name):
|
|
return self.mesh.CutListOfGroups(main_groups, tool_groups, name)
|
|
|
|
## Produces a group of elements with specified element type using list of existing groups
|
|
# A new group is created. System
|
|
# 1) extract all nodes on which groups elements are built
|
|
# 2) combine all elements of specified dimension laying on these nodes
|
|
# @return an instance of SMESH_Group
|
|
# @ingroup l2_grps_operon
|
|
def CreateDimGroup(self, groups, elem_type, name):
|
|
return self.mesh.CreateDimGroup(groups, elem_type, name)
|
|
|
|
|
|
## Convert group on geom into standalone group
|
|
# @ingroup l2_grps_delete
|
|
def ConvertToStandalone(self, group):
|
|
return self.mesh.ConvertToStandalone(group)
|
|
|
|
# Get some info about mesh:
|
|
# ------------------------
|
|
|
|
## Returns the log of nodes and elements added or removed
|
|
# since the previous clear of the log.
|
|
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
|
|
# @return list of log_block structures:
|
|
# commandType
|
|
# number
|
|
# coords
|
|
# indexes
|
|
# @ingroup l1_auxiliary
|
|
def GetLog(self, clearAfterGet):
|
|
return self.mesh.GetLog(clearAfterGet)
|
|
|
|
## Clears the log of nodes and elements added or removed since the previous
|
|
# clear. Must be used immediately after GetLog if clearAfterGet is false.
|
|
# @ingroup l1_auxiliary
|
|
def ClearLog(self):
|
|
self.mesh.ClearLog()
|
|
|
|
## Toggles auto color mode on the object.
|
|
# @param theAutoColor the flag which toggles auto color mode.
|
|
# @ingroup l1_auxiliary
|
|
def SetAutoColor(self, theAutoColor):
|
|
self.mesh.SetAutoColor(theAutoColor)
|
|
|
|
## Gets flag of object auto color mode.
|
|
# @return True or False
|
|
# @ingroup l1_auxiliary
|
|
def GetAutoColor(self):
|
|
return self.mesh.GetAutoColor()
|
|
|
|
## Gets the internal ID
|
|
# @return integer value, which is the internal Id of the mesh
|
|
# @ingroup l1_auxiliary
|
|
def GetId(self):
|
|
return self.mesh.GetId()
|
|
|
|
## Get the study Id
|
|
# @return integer value, which is the study Id of the mesh
|
|
# @ingroup l1_auxiliary
|
|
def GetStudyId(self):
|
|
return self.mesh.GetStudyId()
|
|
|
|
## Checks the group names for duplications.
|
|
# Consider the maximum group name length stored in MED file.
|
|
# @return True or False
|
|
# @ingroup l1_auxiliary
|
|
def HasDuplicatedGroupNamesMED(self):
|
|
return self.mesh.HasDuplicatedGroupNamesMED()
|
|
|
|
## Obtains the mesh editor tool
|
|
# @return an instance of SMESH_MeshEditor
|
|
# @ingroup l1_modifying
|
|
def GetMeshEditor(self):
|
|
return self.mesh.GetMeshEditor()
|
|
|
|
## Gets MED Mesh
|
|
# @return an instance of SALOME_MED::MESH
|
|
# @ingroup l1_auxiliary
|
|
def GetMEDMesh(self):
|
|
return self.mesh.GetMEDMesh()
|
|
|
|
|
|
# Get informations about mesh contents:
|
|
# ------------------------------------
|
|
|
|
## Returns the number of nodes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbNodes(self):
|
|
return self.mesh.NbNodes()
|
|
|
|
## Returns the number of elements in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbElements(self):
|
|
return self.mesh.NbElements()
|
|
|
|
## Returns the number of edges in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbEdges(self):
|
|
return self.mesh.NbEdges()
|
|
|
|
## Returns the number of edges with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbEdgesOfOrder(self, elementOrder):
|
|
return self.mesh.NbEdgesOfOrder(elementOrder)
|
|
|
|
## Returns the number of faces in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbFaces(self):
|
|
return self.mesh.NbFaces()
|
|
|
|
## Returns the number of faces with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbFacesOfOrder(self, elementOrder):
|
|
return self.mesh.NbFacesOfOrder(elementOrder)
|
|
|
|
## Returns the number of triangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTriangles(self):
|
|
return self.mesh.NbTriangles()
|
|
|
|
## Returns the number of triangles with the given order in the mesh
|
|
# @param elementOrder is the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTrianglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbTrianglesOfOrder(elementOrder)
|
|
|
|
## Returns the number of quadrangles in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbQuadrangles(self):
|
|
return self.mesh.NbQuadrangles()
|
|
|
|
## Returns the number of quadrangles with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbQuadranglesOfOrder(self, elementOrder):
|
|
return self.mesh.NbQuadranglesOfOrder(elementOrder)
|
|
|
|
## Returns the number of polygons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPolygons(self):
|
|
return self.mesh.NbPolygons()
|
|
|
|
## Returns the number of volumes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbVolumes(self):
|
|
return self.mesh.NbVolumes()
|
|
|
|
## Returns the number of volumes with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbVolumesOfOrder(self, elementOrder):
|
|
return self.mesh.NbVolumesOfOrder(elementOrder)
|
|
|
|
## Returns the number of tetrahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTetras(self):
|
|
return self.mesh.NbTetras()
|
|
|
|
## Returns the number of tetrahedrons with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbTetrasOfOrder(self, elementOrder):
|
|
return self.mesh.NbTetrasOfOrder(elementOrder)
|
|
|
|
## Returns the number of hexahedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexas(self):
|
|
return self.mesh.NbHexas()
|
|
|
|
## Returns the number of hexahedrons with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbHexasOfOrder(self, elementOrder):
|
|
return self.mesh.NbHexasOfOrder(elementOrder)
|
|
|
|
## Returns the number of pyramids in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPyramids(self):
|
|
return self.mesh.NbPyramids()
|
|
|
|
## Returns the number of pyramids with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPyramidsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPyramidsOfOrder(elementOrder)
|
|
|
|
## Returns the number of prisms in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPrisms(self):
|
|
return self.mesh.NbPrisms()
|
|
|
|
## Returns the number of prisms with the given order in the mesh
|
|
# @param elementOrder the order of elements:
|
|
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPrismsOfOrder(self, elementOrder):
|
|
return self.mesh.NbPrismsOfOrder(elementOrder)
|
|
|
|
## Returns the number of polyhedrons in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbPolyhedrons(self):
|
|
return self.mesh.NbPolyhedrons()
|
|
|
|
## Returns the number of submeshes in the mesh
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def NbSubMesh(self):
|
|
return self.mesh.NbSubMesh()
|
|
|
|
## Returns the list of mesh elements IDs
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElementsId(self):
|
|
return self.mesh.GetElementsId()
|
|
|
|
## Returns the list of IDs of mesh elements with the given type
|
|
# @param elementType the required type of elements
|
|
# @return list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElementsByType(self, elementType):
|
|
return self.mesh.GetElementsByType(elementType)
|
|
|
|
## Returns the list of mesh nodes IDs
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodesId(self):
|
|
return self.mesh.GetNodesId()
|
|
|
|
# Get the information about mesh elements:
|
|
# ------------------------------------
|
|
|
|
## Returns the type of mesh element
|
|
# @return the value from SMESH::ElementType enumeration
|
|
# @ingroup l1_meshinfo
|
|
def GetElementType(self, id, iselem):
|
|
return self.mesh.GetElementType(id, iselem)
|
|
|
|
## Returns the list of submesh elements IDs
|
|
# @param Shape a geom object(subshape) IOR
|
|
# Shape must be the subshape of a ShapeToMesh()
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshElementsId(self, Shape):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshElementsId(ShapeID)
|
|
|
|
## Returns the list of submesh nodes IDs
|
|
# @param Shape a geom object(subshape) IOR
|
|
# Shape must be the subshape of a ShapeToMesh()
|
|
# @param all If true, gives all nodes of submesh elements, otherwise gives only submesh nodes
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshNodesId(self, Shape, all):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshNodesId(ShapeID, all)
|
|
|
|
## Returns the list of IDs of submesh elements with the given type
|
|
# @param Shape a geom object(subshape) IOR
|
|
# Shape must be a subshape of a ShapeToMesh()
|
|
# @return the list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetSubMeshElementType(self, Shape):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
return self.mesh.GetSubMeshElementType(ShapeID)
|
|
|
|
## Gets the mesh description
|
|
# @return string value
|
|
# @ingroup l1_meshinfo
|
|
def Dump(self):
|
|
return self.mesh.Dump()
|
|
|
|
|
|
# Get the information about nodes and elements of a mesh by its IDs:
|
|
# -----------------------------------------------------------
|
|
|
|
## Gets XYZ coordinates of a node
|
|
# \n If there is no nodes for the given ID - returns an empty list
|
|
# @return a list of double precision values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodeXYZ(self, id):
|
|
return self.mesh.GetNodeXYZ(id)
|
|
|
|
## Returns list of IDs of inverse elements for the given node
|
|
# \n If there is no node for the given ID - returns an empty list
|
|
# @return a list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetNodeInverseElements(self, id):
|
|
return self.mesh.GetNodeInverseElements(id)
|
|
|
|
## @brief Returns the position of a node on the shape
|
|
# @return SMESH::NodePosition
|
|
# @ingroup l1_meshinfo
|
|
def GetNodePosition(self,NodeID):
|
|
return self.mesh.GetNodePosition(NodeID)
|
|
|
|
## If the given element is a node, returns the ID of shape
|
|
# \n If there is no node for the given ID - returns -1
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetShapeID(self, id):
|
|
return self.mesh.GetShapeID(id)
|
|
|
|
## Returns the ID of the result shape after
|
|
# FindShape() from SMESH_MeshEditor for the given element
|
|
# \n If there is no element for the given ID - returns -1
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetShapeIDForElem(self,id):
|
|
return self.mesh.GetShapeIDForElem(id)
|
|
|
|
## Returns the number of nodes for the given element
|
|
# \n If there is no element for the given ID - returns -1
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNbNodes(self, id):
|
|
return self.mesh.GetElemNbNodes(id)
|
|
|
|
## Returns the node ID the given index for the given element
|
|
# \n If there is no element for the given ID - returns -1
|
|
# \n If there is no node for the given index - returns -2
|
|
# @return an integer value
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNode(self, id, index):
|
|
return self.mesh.GetElemNode(id, index)
|
|
|
|
## Returns the IDs of nodes of the given element
|
|
# @return a list of integer values
|
|
# @ingroup l1_meshinfo
|
|
def GetElemNodes(self, id):
|
|
return self.mesh.GetElemNodes(id)
|
|
|
|
## Returns true if the given node is the medium node in the given quadratic element
|
|
# @ingroup l1_meshinfo
|
|
def IsMediumNode(self, elementID, nodeID):
|
|
return self.mesh.IsMediumNode(elementID, nodeID)
|
|
|
|
## Returns true if the given node is the medium node in one of quadratic elements
|
|
# @ingroup l1_meshinfo
|
|
def IsMediumNodeOfAnyElem(self, nodeID, elementType):
|
|
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
|
|
|
|
## Returns the number of edges for the given element
|
|
# @ingroup l1_meshinfo
|
|
def ElemNbEdges(self, id):
|
|
return self.mesh.ElemNbEdges(id)
|
|
|
|
## Returns the number of faces for the given element
|
|
# @ingroup l1_meshinfo
|
|
def ElemNbFaces(self, id):
|
|
return self.mesh.ElemNbFaces(id)
|
|
|
|
## Returns true if the given element is a polygon
|
|
# @ingroup l1_meshinfo
|
|
def IsPoly(self, id):
|
|
return self.mesh.IsPoly(id)
|
|
|
|
## Returns true if the given element is quadratic
|
|
# @ingroup l1_meshinfo
|
|
def IsQuadratic(self, id):
|
|
return self.mesh.IsQuadratic(id)
|
|
|
|
## Returns XYZ coordinates of the barycenter of the given element
|
|
# \n If there is no element for the given ID - returns an empty list
|
|
# @return a list of three double values
|
|
# @ingroup l1_meshinfo
|
|
def BaryCenter(self, id):
|
|
return self.mesh.BaryCenter(id)
|
|
|
|
|
|
# Mesh edition (SMESH_MeshEditor functionality):
|
|
# ---------------------------------------------
|
|
|
|
## Removes the elements from the mesh by ids
|
|
# @param IDsOfElements is a list of ids of elements to remove
|
|
# @return True or False
|
|
# @ingroup l2_modif_del
|
|
def RemoveElements(self, IDsOfElements):
|
|
return self.editor.RemoveElements(IDsOfElements)
|
|
|
|
## Removes nodes from mesh by ids
|
|
# @param IDsOfNodes is a list of ids of nodes to remove
|
|
# @return True or False
|
|
# @ingroup l2_modif_del
|
|
def RemoveNodes(self, IDsOfNodes):
|
|
return self.editor.RemoveNodes(IDsOfNodes)
|
|
|
|
## Add a node to the mesh by coordinates
|
|
# @return Id of the new node
|
|
# @ingroup l2_modif_add
|
|
def AddNode(self, x, y, z):
|
|
x,y,z,Parameters = geompyDC.ParseParameters(x,y,z)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.AddNode( x, y, z)
|
|
|
|
## Creates a linear or quadratic edge (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new edge
|
|
# @ingroup l2_modif_add
|
|
def AddEdge(self, IDsOfNodes):
|
|
return self.editor.AddEdge(IDsOfNodes)
|
|
|
|
## Creates a linear or quadratic face (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new face
|
|
# @ingroup l2_modif_add
|
|
def AddFace(self, IDsOfNodes):
|
|
return self.editor.AddFace(IDsOfNodes)
|
|
|
|
## Adds a polygonal face to the mesh by the list of node IDs
|
|
# @param IdsOfNodes the list of node IDs for creation of the element.
|
|
# @return the Id of the new face
|
|
# @ingroup l2_modif_add
|
|
def AddPolygonalFace(self, IdsOfNodes):
|
|
return self.editor.AddPolygonalFace(IdsOfNodes)
|
|
|
|
## Creates both simple and quadratic volume (this is determined
|
|
# by the number of given nodes).
|
|
# @param IDsOfNodes the list of node IDs for creation of the element.
|
|
# The order of nodes in this list should correspond to the description
|
|
# of MED. \n This description is located by the following link:
|
|
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddVolume(self, IDsOfNodes):
|
|
return self.editor.AddVolume(IDsOfNodes)
|
|
|
|
## Creates a volume of many faces, giving nodes for each face.
|
|
# @param IdsOfNodes the list of node IDs for volume creation face by face.
|
|
# @param Quantities the list of integer values, Quantities[i]
|
|
# gives the quantity of nodes in face number i.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
|
|
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
|
|
|
|
## Creates a volume of many faces, giving the IDs of the existing faces.
|
|
# @param IdsOfFaces the list of face IDs for volume creation.
|
|
#
|
|
# Note: The created volume will refer only to the nodes
|
|
# of the given faces, not to the faces themselves.
|
|
# @return the Id of the new volumic element
|
|
# @ingroup l2_modif_add
|
|
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
|
|
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
|
|
|
|
|
|
## @brief Binds a node to a vertex
|
|
# @param NodeID a node ID
|
|
# @param Vertex a vertex or vertex ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnVertex(self, NodeID, Vertex):
|
|
if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)):
|
|
VertexID = Vertex.GetSubShapeIndices()[0]
|
|
else:
|
|
VertexID = Vertex
|
|
try:
|
|
self.editor.SetNodeOnVertex(NodeID, VertexID)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
|
|
## @brief Stores the node position on an edge
|
|
# @param NodeID a node ID
|
|
# @param Edge an edge or edge ID
|
|
# @param paramOnEdge a parameter on the edge where the node is located
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
|
|
if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)):
|
|
EdgeID = Edge.GetSubShapeIndices()[0]
|
|
else:
|
|
EdgeID = Edge
|
|
try:
|
|
self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
## @brief Stores node position on a face
|
|
# @param NodeID a node ID
|
|
# @param Face a face or face ID
|
|
# @param u U parameter on the face where the node is located
|
|
# @param v V parameter on the face where the node is located
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeOnFace(self, NodeID, Face, u, v):
|
|
if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)):
|
|
FaceID = Face.GetSubShapeIndices()[0]
|
|
else:
|
|
FaceID = Face
|
|
try:
|
|
self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
## @brief Binds a node to a solid
|
|
# @param NodeID a node ID
|
|
# @param Solid a solid or solid ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetNodeInVolume(self, NodeID, Solid):
|
|
if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)):
|
|
SolidID = Solid.GetSubShapeIndices()[0]
|
|
else:
|
|
SolidID = Solid
|
|
try:
|
|
self.editor.SetNodeInVolume(NodeID, SolidID)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
## @brief Bind an element to a shape
|
|
# @param ElementID an element ID
|
|
# @param Shape a shape or shape ID
|
|
# @return True if succeed else raises an exception
|
|
# @ingroup l2_modif_add
|
|
def SetMeshElementOnShape(self, ElementID, Shape):
|
|
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
|
|
ShapeID = Shape.GetSubShapeIndices()[0]
|
|
else:
|
|
ShapeID = Shape
|
|
try:
|
|
self.editor.SetMeshElementOnShape(ElementID, ShapeID)
|
|
except SALOME.SALOME_Exception, inst:
|
|
raise ValueError, inst.details.text
|
|
return True
|
|
|
|
|
|
## Moves the node with the given id
|
|
# @param NodeID the id of the node
|
|
# @param x a new X coordinate
|
|
# @param y a new Y coordinate
|
|
# @param z a new Z coordinate
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_movenode
|
|
def MoveNode(self, NodeID, x, y, z):
|
|
x,y,z,Parameters = geompyDC.ParseParameters(x,y,z)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.MoveNode(NodeID, x, y, z)
|
|
|
|
## Finds the node closest to a point and moves it to a point location
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @return the ID of a node
|
|
# @ingroup l2_modif_throughp
|
|
def MoveClosestNodeToPoint(self, x, y, z, NodeID):
|
|
x,y,z,Parameters = geompyDC.ParseParameters(x,y,z)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.MoveClosestNodeToPoint(x, y, z, NodeID)
|
|
|
|
## Finds the node closest to a point
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @return the ID of a node
|
|
# @ingroup l2_modif_throughp
|
|
def FindNodeClosestTo(self, x, y, z):
|
|
preview = self.mesh.GetMeshEditPreviewer()
|
|
return preview.MoveClosestNodeToPoint(x, y, z, -1)
|
|
|
|
## Finds the node closest to a point and moves it to a point location
|
|
# @param x the X coordinate of a point
|
|
# @param y the Y coordinate of a point
|
|
# @param z the Z coordinate of a point
|
|
# @return the ID of a moved node
|
|
# @ingroup l2_modif_throughp
|
|
def MeshToPassThroughAPoint(self, x, y, z):
|
|
return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
|
|
|
|
## Replaces two neighbour triangles sharing Node1-Node2 link
|
|
# with the triangles built on the same 4 nodes but having other common link.
|
|
# @param NodeID1 the ID of the first node
|
|
# @param NodeID2 the ID of the second node
|
|
# @return false if proper faces were not found
|
|
# @ingroup l2_modif_invdiag
|
|
def InverseDiag(self, NodeID1, NodeID2):
|
|
return self.editor.InverseDiag(NodeID1, NodeID2)
|
|
|
|
## Replaces two neighbour triangles sharing Node1-Node2 link
|
|
# with a quadrangle built on the same 4 nodes.
|
|
# @param NodeID1 the ID of the first node
|
|
# @param NodeID2 the ID of the second node
|
|
# @return false if proper faces were not found
|
|
# @ingroup l2_modif_unitetri
|
|
def DeleteDiag(self, NodeID1, NodeID2):
|
|
return self.editor.DeleteDiag(NodeID1, NodeID2)
|
|
|
|
## Reorients elements by ids
|
|
# @param IDsOfElements if undefined reorients all mesh elements
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_changori
|
|
def Reorient(self, IDsOfElements=None):
|
|
if IDsOfElements == None:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.Reorient(IDsOfElements)
|
|
|
|
## Reorients all elements of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @return True if succeed else False
|
|
# @ingroup l2_modif_changori
|
|
def ReorientObject(self, theObject):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.ReorientObject(theObject)
|
|
|
|
## Fuses the neighbouring triangles into quadrangles.
|
|
# @param IDsOfElements The triangles to be fused,
|
|
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
|
|
# @param MaxAngle is the maximum angle between element normals at which the fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# Also it could be a name of variable which defines angle in degrees.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_unitetri
|
|
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
|
|
flag = False
|
|
if isinstance(MaxAngle,str):
|
|
flag = True
|
|
MaxAngle,Parameters = geompyDC.ParseParameters(MaxAngle)
|
|
if flag:
|
|
MaxAngle = DegreesToRadians(MaxAngle)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
self.mesh.SetParameters(Parameters)
|
|
Functor = 0
|
|
if ( isinstance( theCriterion, SMESH._objref_NumericalFunctor ) ):
|
|
Functor = theCriterion
|
|
else:
|
|
Functor = self.smeshpyD.GetFunctor(theCriterion)
|
|
return self.editor.TriToQuad(IDsOfElements, Functor, MaxAngle)
|
|
|
|
## Fuses the neighbouring triangles of the object into quadrangles
|
|
# @param theObject is mesh, submesh or group
|
|
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
|
|
# @param MaxAngle a max angle between element normals at which the fusion
|
|
# is still performed; theMaxAngle is mesured in radians.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_unitetri
|
|
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param IDsOfElements the faces to be splitted.
|
|
# @param theCriterion FT_...; used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def QuadToTri (self, IDsOfElements, theCriterion):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
|
|
# @param theCriterion FT_...; used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def QuadToTriObject (self, theObject, theCriterion):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param IDsOfElements the faces to be splitted
|
|
# @param Diag13 is used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitQuad (self, IDsOfElements, Diag13):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
return self.editor.SplitQuad(IDsOfElements, Diag13)
|
|
|
|
## Splits quadrangles into triangles.
|
|
# @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
|
|
# @param Diag13 is used to choose a diagonal for splitting.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_cutquadr
|
|
def SplitQuadObject (self, theObject, Diag13):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SplitQuadObject(theObject, Diag13)
|
|
|
|
## Finds a better splitting of the given quadrangle.
|
|
# @param IDOfQuad the ID of the quadrangle to be splitted.
|
|
# @param theCriterion FT_...; a criterion to choose a diagonal for splitting.
|
|
# @return 1 if 1-3 diagonal is better, 2 if 2-4
|
|
# diagonal is better, 0 if error occurs.
|
|
# @ingroup l2_modif_cutquadr
|
|
def BestSplit (self, IDOfQuad, theCriterion):
|
|
return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
|
|
|
|
## Splits quadrangle faces near triangular facets of volumes
|
|
#
|
|
# @ingroup l1_auxiliary
|
|
def SplitQuadsNearTriangularFacets(self):
|
|
faces_array = self.GetElementsByType(SMESH.FACE)
|
|
for face_id in faces_array:
|
|
if self.GetElemNbNodes(face_id) == 4: # quadrangle
|
|
quad_nodes = self.mesh.GetElemNodes(face_id)
|
|
node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
|
|
isVolumeFound = False
|
|
for node1_elem in node1_elems:
|
|
if not isVolumeFound:
|
|
if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
|
|
nb_nodes = self.GetElemNbNodes(node1_elem)
|
|
if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
|
|
volume_elem = node1_elem
|
|
volume_nodes = self.mesh.GetElemNodes(volume_elem)
|
|
if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
|
|
if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
|
|
isVolumeFound = True
|
|
if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
|
|
self.SplitQuad([face_id], False) # diagonal 2-4
|
|
elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
|
|
isVolumeFound = True
|
|
self.SplitQuad([face_id], True) # diagonal 1-3
|
|
elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
|
|
if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
|
|
isVolumeFound = True
|
|
self.SplitQuad([face_id], True) # diagonal 1-3
|
|
|
|
## @brief Splits hexahedrons into tetrahedrons.
|
|
#
|
|
# This operation uses pattern mapping functionality for splitting.
|
|
# @param theObject the object from which the list of hexahedrons is taken; this is mesh, submesh or group.
|
|
# @param theNode000,theNode001 within the range [0,7]; gives the orientation of the
|
|
# pattern relatively each hexahedron: the (0,0,0) key-point of the pattern
|
|
# will be mapped into <VAR>theNode000</VAR>-th node of each volume, the (0,0,1)
|
|
# key-point will be mapped into <VAR>theNode001</VAR>-th node of each volume.
|
|
# The (0,0,0) key-point of the used pattern corresponds to a non-split corner.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l1_auxiliary
|
|
def SplitHexaToTetras (self, theObject, theNode000, theNode001):
|
|
# Pattern: 5.---------.6
|
|
# /|#* /|
|
|
# / | #* / |
|
|
# / | # * / |
|
|
# / | # /* |
|
|
# (0,0,1) 4.---------.7 * |
|
|
# |#* |1 | # *|
|
|
# | # *.----|---#.2
|
|
# | #/ * | /
|
|
# | /# * | /
|
|
# | / # * | /
|
|
# |/ #*|/
|
|
# (0,0,0) 0.---------.3
|
|
pattern_tetra = "!!! Nb of points: \n 8 \n\
|
|
!!! Points: \n\
|
|
0 0 0 !- 0 \n\
|
|
0 1 0 !- 1 \n\
|
|
1 1 0 !- 2 \n\
|
|
1 0 0 !- 3 \n\
|
|
0 0 1 !- 4 \n\
|
|
0 1 1 !- 5 \n\
|
|
1 1 1 !- 6 \n\
|
|
1 0 1 !- 7 \n\
|
|
!!! Indices of points of 6 tetras: \n\
|
|
0 3 4 1 \n\
|
|
7 4 3 1 \n\
|
|
4 7 5 1 \n\
|
|
6 2 5 7 \n\
|
|
1 5 2 7 \n\
|
|
2 3 1 7 \n"
|
|
|
|
pattern = self.smeshpyD.GetPattern()
|
|
isDone = pattern.LoadFromFile(pattern_tetra)
|
|
if not isDone:
|
|
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
|
|
return isDone
|
|
|
|
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
|
|
isDone = pattern.MakeMesh(self.mesh, False, False)
|
|
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
|
|
|
|
# split quafrangle faces near triangular facets of volumes
|
|
self.SplitQuadsNearTriangularFacets()
|
|
|
|
return isDone
|
|
|
|
## @brief Split hexahedrons into prisms.
|
|
#
|
|
# Uses the pattern mapping functionality for splitting.
|
|
# @param theObject the object (mesh, submesh or group) from where the list of hexahedrons is taken;
|
|
# @param theNode000,theNode001 (within the range [0,7]) gives the orientation of the
|
|
# pattern relatively each hexahedron: keypoint (0,0,0) of the pattern
|
|
# will be mapped into the <VAR>theNode000</VAR>-th node of each volume, keypoint (0,0,1)
|
|
# will be mapped into the <VAR>theNode001</VAR>-th node of each volume.
|
|
# Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l1_auxiliary
|
|
def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
|
|
# Pattern: 5.---------.6
|
|
# /|# /|
|
|
# / | # / |
|
|
# / | # / |
|
|
# / | # / |
|
|
# (0,0,1) 4.---------.7 |
|
|
# | | | |
|
|
# | 1.----|----.2
|
|
# | / * | /
|
|
# | / * | /
|
|
# | / * | /
|
|
# |/ *|/
|
|
# (0,0,0) 0.---------.3
|
|
pattern_prism = "!!! Nb of points: \n 8 \n\
|
|
!!! Points: \n\
|
|
0 0 0 !- 0 \n\
|
|
0 1 0 !- 1 \n\
|
|
1 1 0 !- 2 \n\
|
|
1 0 0 !- 3 \n\
|
|
0 0 1 !- 4 \n\
|
|
0 1 1 !- 5 \n\
|
|
1 1 1 !- 6 \n\
|
|
1 0 1 !- 7 \n\
|
|
!!! Indices of points of 2 prisms: \n\
|
|
0 1 3 4 5 7 \n\
|
|
2 3 1 6 7 5 \n"
|
|
|
|
pattern = self.smeshpyD.GetPattern()
|
|
isDone = pattern.LoadFromFile(pattern_prism)
|
|
if not isDone:
|
|
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
|
|
return isDone
|
|
|
|
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
|
|
isDone = pattern.MakeMesh(self.mesh, False, False)
|
|
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
|
|
|
|
# Splits quafrangle faces near triangular facets of volumes
|
|
self.SplitQuadsNearTriangularFacets()
|
|
|
|
return isDone
|
|
|
|
## Smoothes elements
|
|
# @param IDsOfElements the list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
MaxNbOfIterations,MaxAspectRatio,Parameters = geompyDC.ParseParameters(MaxNbOfIterations,MaxAspectRatio)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Smoothes elements which belong to the given object
|
|
# @param theObject the object to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Parametrically smoothes the given elements
|
|
# @param IDsOfElements the list if ids of elements to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
MaxNbOfIterations,MaxAspectRatio,Parameters = geompyDC.ParseParameters(MaxNbOfIterations,MaxAspectRatio)
|
|
self.mesh.SetParameters(Parameters)
|
|
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Parametrically smoothes the elements which belong to the given object
|
|
# @param theObject the object to smooth
|
|
# @param IDsOfFixedNodes the list of ids of fixed nodes.
|
|
# Note that nodes built on edges and boundary nodes are always fixed.
|
|
# @param MaxNbOfIterations the maximum number of iterations
|
|
# @param MaxAspectRatio varies in range [1.0, inf]
|
|
# @param Method Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_smooth
|
|
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
|
|
MaxNbOfIterations, MaxAspectRatio, Method)
|
|
|
|
## Converts the mesh to quadratic, deletes old elements, replacing
|
|
# them with quadratic with the same id.
|
|
# @ingroup l2_modif_tofromqu
|
|
def ConvertToQuadratic(self, theForce3d):
|
|
self.editor.ConvertToQuadratic(theForce3d)
|
|
|
|
## Converts the mesh from quadratic to ordinary,
|
|
# deletes old quadratic elements, \n replacing
|
|
# them with ordinary mesh elements with the same id.
|
|
# @return TRUE in case of success, FALSE otherwise.
|
|
# @ingroup l2_modif_tofromqu
|
|
def ConvertFromQuadratic(self):
|
|
return self.editor.ConvertFromQuadratic()
|
|
|
|
## Renumber mesh nodes
|
|
# @ingroup l2_modif_renumber
|
|
def RenumberNodes(self):
|
|
self.editor.RenumberNodes()
|
|
|
|
## Renumber mesh elements
|
|
# @ingroup l2_modif_renumber
|
|
def RenumberElements(self):
|
|
self.editor.RenumberElements()
|
|
|
|
## Generates new elements by rotation of the elements around the axis
|
|
# @param IDsOfElements the list of ids of elements to sweep
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param NbOfSteps the number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepMakeGroups(IDsOfElements, Axis,
|
|
AngleInRadians, NbOfSteps, Tolerance)
|
|
self.editor.RotationSweep(IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepObjectMakeGroups(theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance)
|
|
self.editor.RotationSweepObject(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject1D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepObject1DMakeGroups(theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance)
|
|
self.editor.RotationSweepObject1D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by rotation of the elements of object around the axis
|
|
# @param theObject object which elements should be sweeped
|
|
# @param Axis the axis of rotation, AxisStruct or line(geom object)
|
|
# @param AngleInRadians the angle of Rotation
|
|
# @param NbOfSteps number of steps
|
|
# @param Tolerance tolerance
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
|
|
# of all steps, else - size of each step
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def RotationSweepObject2D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
|
|
MakeGroups=False, TotalAngle=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
if TotalAngle and NbOfSteps:
|
|
AngleInRadians /= NbOfSteps
|
|
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
|
|
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.RotationSweepObject2DMakeGroups(theObject, Axis, AngleInRadians,
|
|
NbOfSteps, Tolerance)
|
|
self.editor.RotationSweepObject2D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements the list of elements ids for extrusion
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
|
|
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
|
|
Parameters = StepVectorParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements with given ids
|
|
# @param IDsOfElements is ids of elements
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
# @param ExtrFlags sets flags for extrusion
|
|
# @param SewTolerance uses for comparing locations of nodes if flag
|
|
# EXTRUSION_FLAG_SEW is set
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance, MakeGroups=False):
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
if MakeGroups:
|
|
return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance)
|
|
self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
|
|
ExtrFlags, SewTolerance)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# @param theObject the object which elements should be processed
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
|
|
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
|
|
Parameters = StepVectorParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# @param theObject object which elements should be processed
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups to generate new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
|
|
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
|
|
Parameters = StepVectorParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# @param theObject object which elements should be processed
|
|
# @param StepVector vector, defining the direction and value of extrusion
|
|
# @param NbOfSteps the number of steps
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
StepVector = self.smeshpyD.GetDirStruct(StepVector)
|
|
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
|
|
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
|
|
Parameters = StepVectorParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps)
|
|
self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
|
|
return []
|
|
|
|
## Generates new elements by extrusion of the given elements
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param IDsOfElements ids of elements
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
pass
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
Parameters = AnglesParameters + var_separator + RefPointParameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint, RefPoint)
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object which elements should be processed
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
Parameters = AnglesParameters + var_separator + RefPointParameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject(theObject, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint,
|
|
RefPoint)
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object which elements should be processed
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject1D(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
Parameters = AnglesParameters + var_separator + RefPointParameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathObject1DMakeGroups(theObject, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject1D(theObject, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint,
|
|
RefPoint)
|
|
|
|
## Generates new elements by extrusion of the elements which belong to the object
|
|
# The path of extrusion must be a meshed edge.
|
|
# @param theObject the object which elements should be processed
|
|
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
|
|
# @param PathShape shape(edge) defines the sub-mesh for the path
|
|
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
|
|
# @param HasAngles allows the shape to be rotated around the path
|
|
# to get the resulting mesh in a helical fashion
|
|
# @param Angles list of angles
|
|
# @param HasRefPoint allows using the reference point
|
|
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
|
|
# The User can specify any point as the Reference Point.
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param LinearVariation forces the computation of rotation angles as linear
|
|
# variation of the given Angles along path steps
|
|
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
|
|
# only SMESH::Extrusion_Error otherwise
|
|
# @ingroup l2_modif_extrurev
|
|
def ExtrusionAlongPathObject2D(self, theObject, PathMesh, PathShape, NodeStart,
|
|
HasAngles, Angles, HasRefPoint, RefPoint,
|
|
MakeGroups=False, LinearVariation=False):
|
|
Angles,AnglesParameters = ParseAngles(Angles)
|
|
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
|
|
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
|
|
if ( isinstance( PathMesh, Mesh )):
|
|
PathMesh = PathMesh.GetMesh()
|
|
if HasAngles and Angles and LinearVariation:
|
|
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
|
|
pass
|
|
Parameters = AnglesParameters + var_separator + RefPointParameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if MakeGroups:
|
|
return self.editor.ExtrusionAlongPathObject2DMakeGroups(theObject, PathMesh,
|
|
PathShape, NodeStart, HasAngles,
|
|
Angles, HasRefPoint, RefPoint)
|
|
return self.editor.ExtrusionAlongPathObject2D(theObject, PathMesh, PathShape,
|
|
NodeStart, HasAngles, Angles, HasRefPoint,
|
|
RefPoint)
|
|
|
|
## Creates a symmetrical copy of mesh elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Mirror is AxisStruct or geom object(point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param Copy allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0)
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
Mirror,Parameters = ParseAxisStruct(Mirror)
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
|
|
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh by a symmetrical copy of mesh elements
|
|
# @param IDsOfElements the list of elements ids
|
|
# @param Mirror is AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param MakeGroups to generate new groups from existing ones
|
|
# @param NewMeshName a name of the new mesh to create
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
Mirror,Parameters = ParseAxisStruct(Mirror)
|
|
mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
|
|
MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh(self.smeshpyD,self.geompyD,mesh)
|
|
|
|
## Creates a symmetrical copy of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @param Mirror AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType is POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param Copy allows copying the element (Copy is 1) or replacing it with its mirror (Copy is 0)
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
Mirror,Parameters = ParseAxisStruct(Mirror)
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
|
|
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh by a symmetrical copy of the object
|
|
# @param theObject mesh, submesh or group
|
|
# @param Mirror AxisStruct or geom object (point, line, plane)
|
|
# @param theMirrorType POINT, AXIS or PLANE
|
|
# If the Mirror is a geom object this parameter is unnecessary
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the new mesh to create
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
|
|
Mirror,Parameters = ParseAxisStruct(Mirror)
|
|
mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
|
|
MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD,self.geompyD,mesh )
|
|
|
|
## Translates the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Vector the direction of translation (DirStruct or vector)
|
|
# @param Copy allows copying the translated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
Vector,Parameters = ParseDirStruct(Vector)
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
|
|
self.editor.Translate(IDsOfElements, Vector, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh of translated elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Vector the direction of translation (DirStruct or vector)
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
Vector,Parameters = ParseDirStruct(Vector)
|
|
mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh ( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Translates the object
|
|
# @param theObject the object to translate (mesh, submesh, or group)
|
|
# @param Vector direction of translation (DirStruct or geom vector)
|
|
# @param Copy allows copying the translated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
|
|
if ( isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
Vector,Parameters = ParseDirStruct(Vector)
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.TranslateObjectMakeGroups(theObject, Vector)
|
|
self.editor.TranslateObject(theObject, Vector, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh from the translated object
|
|
# @param theObject the object to translate (mesh, submesh, or group)
|
|
# @param Vector the direction of translation (DirStruct or geom vector)
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Vector = self.smeshpyD.GetDirStruct(Vector)
|
|
Vector,Parameters = ParseDirStruct(Vector)
|
|
mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Rotates the elements
|
|
# @param IDsOfElements list of elements ids
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param Copy allows copying the rotated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
Parameters = AxisParameters + var_separator + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
|
|
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh of rotated elements
|
|
# @param IDsOfElements list of element ids
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if IDsOfElements == []:
|
|
IDsOfElements = self.GetElementsId()
|
|
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
Parameters = AxisParameters + var_separator + Parameters
|
|
mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
|
|
MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Rotates the object
|
|
# @param theObject the object to rotate( mesh, submesh, or group)
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param Copy allows copying the rotated elements
|
|
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
|
|
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
|
|
# @ingroup l2_modif_trsf
|
|
def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if (isinstance(theObject, Mesh)):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
Parameters = AxisParameters + ":" + Parameters
|
|
self.mesh.SetParameters(Parameters)
|
|
if Copy and MakeGroups:
|
|
return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
|
|
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
|
|
return []
|
|
|
|
## Creates a new mesh from the rotated object
|
|
# @param theObject the object to rotate (mesh, submesh, or group)
|
|
# @param Axis the axis of rotation (AxisStruct or geom line)
|
|
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
|
|
# @param MakeGroups forces the generation of new groups from existing ones
|
|
# @param NewMeshName the name of the newly created mesh
|
|
# @return instance of Mesh class
|
|
# @ingroup l2_modif_trsf
|
|
def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
|
|
flag = False
|
|
if isinstance(AngleInRadians,str):
|
|
flag = True
|
|
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
|
|
if flag:
|
|
AngleInRadians = DegreesToRadians(AngleInRadians)
|
|
if (isinstance( theObject, Mesh )):
|
|
theObject = theObject.GetMesh()
|
|
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
|
|
Axis = self.smeshpyD.GetAxisStruct(Axis)
|
|
Axis,AxisParameters = ParseAxisStruct(Axis)
|
|
Parameters = AxisParameters + ":" + Parameters
|
|
mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
|
|
MakeGroups, NewMeshName)
|
|
mesh.SetParameters(Parameters)
|
|
return Mesh( self.smeshpyD, self.geompyD, mesh )
|
|
|
|
## Finds groups of ajacent nodes within Tolerance.
|
|
# @param Tolerance the value of tolerance
|
|
# @return the list of groups of nodes
|
|
# @ingroup l2_modif_trsf
|
|
def FindCoincidentNodes (self, Tolerance):
|
|
return self.editor.FindCoincidentNodes(Tolerance)
|
|
|
|
## Finds groups of ajacent nodes within Tolerance.
|
|
# @param Tolerance the value of tolerance
|
|
# @param SubMeshOrGroup SubMesh or Group
|
|
# @return the list of groups of nodes
|
|
# @ingroup l2_modif_trsf
|
|
def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
|
|
return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
|
|
|
|
## Merges nodes
|
|
# @param GroupsOfNodes the list of groups of nodes
|
|
# @ingroup l2_modif_trsf
|
|
def MergeNodes (self, GroupsOfNodes):
|
|
self.editor.MergeNodes(GroupsOfNodes)
|
|
|
|
## Finds the elements built on the same nodes.
|
|
# @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
|
|
# @return a list of groups of equal elements
|
|
# @ingroup l2_modif_trsf
|
|
def FindEqualElements (self, MeshOrSubMeshOrGroup):
|
|
return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
|
|
|
|
## Merges elements in each given group.
|
|
# @param GroupsOfElementsID groups of elements for merging
|
|
# @ingroup l2_modif_trsf
|
|
def MergeElements(self, GroupsOfElementsID):
|
|
self.editor.MergeElements(GroupsOfElementsID)
|
|
|
|
## Leaves one element and removes all other elements built on the same nodes.
|
|
# @ingroup l2_modif_trsf
|
|
def MergeEqualElements(self):
|
|
self.editor.MergeEqualElements()
|
|
|
|
## Sews free borders
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2, LastNodeID2,
|
|
CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sews conform free borders
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2):
|
|
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
|
|
FirstNodeID2, SecondNodeID2)
|
|
|
|
## Sews border to side
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
|
|
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
|
|
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
|
|
|
|
## Sews two sides of a mesh. The nodes belonging to Side1 are
|
|
# merged with the nodes of elements of Side2.
|
|
# The number of elements in theSide1 and in theSide2 must be
|
|
# equal and they should have similar nodal connectivity.
|
|
# The nodes to merge should belong to side borders and
|
|
# the first node should be linked to the second.
|
|
# @return SMESH::Sew_Error
|
|
# @ingroup l2_modif_trsf
|
|
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
|
|
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
|
|
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
|
|
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
|
|
|
|
## Sets new nodes for the given element.
|
|
# @param ide the element id
|
|
# @param newIDs nodes ids
|
|
# @return If the number of nodes does not correspond to the type of element - returns false
|
|
# @ingroup l2_modif_edit
|
|
def ChangeElemNodes(self, ide, newIDs):
|
|
return self.editor.ChangeElemNodes(ide, newIDs)
|
|
|
|
## If during the last operation of MeshEditor some nodes were
|
|
# created, this method returns the list of their IDs, \n
|
|
# if new nodes were not created - returns empty list
|
|
# @return the list of integer values (can be empty)
|
|
# @ingroup l1_auxiliary
|
|
def GetLastCreatedNodes(self):
|
|
return self.editor.GetLastCreatedNodes()
|
|
|
|
## If during the last operation of MeshEditor some elements were
|
|
# created this method returns the list of their IDs, \n
|
|
# if new elements were not created - returns empty list
|
|
# @return the list of integer values (can be empty)
|
|
# @ingroup l1_auxiliary
|
|
def GetLastCreatedElems(self):
|
|
return self.editor.GetLastCreatedElems()
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# @param theNodes identifiers of nodes to be doubled
|
|
# @param theModifiedElems identifiers of elements to be updated by the new (doubled)
|
|
# nodes. If list of element identifiers is empty then nodes are doubled but
|
|
# they not assigned to elements
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodes(self, theNodes, theModifiedElems):
|
|
return self.editor.DoubleNodes(theNodes, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodes identifiers of node to be doubled
|
|
# @param theModifiedElems identifiers of elements to be updated
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNode(self, theNodeId, theModifiedElems):
|
|
return self.editor.DoubleNode(theNodeId, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodes group of nodes to be doubled
|
|
# @param theModifiedElems group of elements to be updated.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeGroup(self, theNodes, theModifiedElems):
|
|
return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
|
|
|
|
## Creates a hole in a mesh by doubling the nodes of some particular elements
|
|
# This method provided for convenience works as DoubleNodes() described above.
|
|
# @param theNodes list of groups of nodes to be doubled
|
|
# @param theModifiedElems list of groups of elements to be updated.
|
|
# @return TRUE if operation has been completed successfully, FALSE otherwise
|
|
# @ingroup l2_modif_edit
|
|
def DoubleNodeGroups(self, theNodes, theModifiedElems):
|
|
return self.editor.DoubleNodeGroups(theNodes, theModifiedElems)
|
|
|
|
## The mother class to define algorithm, it is not recommended to use it directly.
|
|
#
|
|
# More details.
|
|
# @ingroup l2_algorithms
|
|
class Mesh_Algorithm:
|
|
# @class Mesh_Algorithm
|
|
# @brief Class Mesh_Algorithm
|
|
|
|
#def __init__(self,smesh):
|
|
# self.smesh=smesh
|
|
def __init__(self):
|
|
self.mesh = None
|
|
self.geom = None
|
|
self.subm = None
|
|
self.algo = None
|
|
|
|
## Finds a hypothesis in the study by its type name and parameters.
|
|
# Finds only the hypotheses created in smeshpyD engine.
|
|
# @return SMESH.SMESH_Hypothesis
|
|
def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD):
|
|
study = smeshpyD.GetCurrentStudy()
|
|
#to do: find component by smeshpyD object, not by its data type
|
|
scomp = study.FindComponent(smeshpyD.ComponentDataType())
|
|
if scomp is not None:
|
|
res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot)
|
|
# Check if the root label of the hypotheses exists
|
|
if res and hypRoot is not None:
|
|
iter = study.NewChildIterator(hypRoot)
|
|
# Check all published hypotheses
|
|
while iter.More():
|
|
hypo_so_i = iter.Value()
|
|
attr = hypo_so_i.FindAttribute("AttributeIOR")[1]
|
|
if attr is not None:
|
|
anIOR = attr.Value()
|
|
hypo_o_i = salome.orb.string_to_object(anIOR)
|
|
if hypo_o_i is not None:
|
|
# Check if this is a hypothesis
|
|
hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis)
|
|
if hypo_i is not None:
|
|
# Check if the hypothesis belongs to current engine
|
|
if smeshpyD.GetObjectId(hypo_i) > 0:
|
|
# Check if this is the required hypothesis
|
|
if hypo_i.GetName() == hypname:
|
|
# Check arguments
|
|
if CompareMethod(hypo_i, args):
|
|
# found!!!
|
|
return hypo_i
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
iter.Next()
|
|
pass
|
|
pass
|
|
pass
|
|
return None
|
|
|
|
## Finds the algorithm in the study by its type name.
|
|
# Finds only the algorithms, which have been created in smeshpyD engine.
|
|
# @return SMESH.SMESH_Algo
|
|
def FindAlgorithm (self, algoname, smeshpyD):
|
|
study = smeshpyD.GetCurrentStudy()
|
|
#to do: find component by smeshpyD object, not by its data type
|
|
scomp = study.FindComponent(smeshpyD.ComponentDataType())
|
|
if scomp is not None:
|
|
res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot)
|
|
# Check if the root label of the algorithms exists
|
|
if res and hypRoot is not None:
|
|
iter = study.NewChildIterator(hypRoot)
|
|
# Check all published algorithms
|
|
while iter.More():
|
|
algo_so_i = iter.Value()
|
|
attr = algo_so_i.FindAttribute("AttributeIOR")[1]
|
|
if attr is not None:
|
|
anIOR = attr.Value()
|
|
algo_o_i = salome.orb.string_to_object(anIOR)
|
|
if algo_o_i is not None:
|
|
# Check if this is an algorithm
|
|
algo_i = algo_o_i._narrow(SMESH.SMESH_Algo)
|
|
if algo_i is not None:
|
|
# Checks if the algorithm belongs to the current engine
|
|
if smeshpyD.GetObjectId(algo_i) > 0:
|
|
# Check if this is the required algorithm
|
|
if algo_i.GetName() == algoname:
|
|
# found!!!
|
|
return algo_i
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
iter.Next()
|
|
pass
|
|
pass
|
|
pass
|
|
return None
|
|
|
|
## If the algorithm is global, returns 0; \n
|
|
# else returns the submesh associated to this algorithm.
|
|
def GetSubMesh(self):
|
|
return self.subm
|
|
|
|
## Returns the wrapped mesher.
|
|
def GetAlgorithm(self):
|
|
return self.algo
|
|
|
|
## Gets the list of hypothesis that can be used with this algorithm
|
|
def GetCompatibleHypothesis(self):
|
|
mylist = []
|
|
if self.algo:
|
|
mylist = self.algo.GetCompatibleHypothesis()
|
|
return mylist
|
|
|
|
## Gets the name of the algorithm
|
|
def GetName(self):
|
|
GetName(self.algo)
|
|
|
|
## Sets the name to the algorithm
|
|
def SetName(self, name):
|
|
self.mesh.smeshpyD.SetName(self.algo, name)
|
|
|
|
## Gets the id of the algorithm
|
|
def GetId(self):
|
|
return self.algo.GetId()
|
|
|
|
## Private method.
|
|
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
|
|
if geom is None:
|
|
raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
|
|
algo = self.FindAlgorithm(hypo, mesh.smeshpyD)
|
|
if algo is None:
|
|
algo = mesh.smeshpyD.CreateHypothesis(hypo, so)
|
|
pass
|
|
self.Assign(algo, mesh, geom)
|
|
return self.algo
|
|
|
|
## Private method
|
|
def Assign(self, algo, mesh, geom):
|
|
if geom is None:
|
|
raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape"
|
|
self.mesh = mesh
|
|
piece = mesh.geom
|
|
if not geom:
|
|
self.geom = piece
|
|
else:
|
|
self.geom = geom
|
|
name = GetName(geom)
|
|
if name==NO_NAME:
|
|
name = mesh.geompyD.SubShapeName(geom, piece)
|
|
mesh.geompyD.addToStudyInFather(piece, geom, name)
|
|
self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
|
|
|
|
self.algo = algo
|
|
status = mesh.mesh.AddHypothesis(self.geom, self.algo)
|
|
TreatHypoStatus( status, algo.GetName(), GetName(self.geom), True )
|
|
|
|
def CompareHyp (self, hyp, args):
|
|
print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName()
|
|
return False
|
|
|
|
def CompareEqualHyp (self, hyp, args):
|
|
return True
|
|
|
|
## Private method
|
|
def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so",
|
|
UseExisting=0, CompareMethod=""):
|
|
hypo = None
|
|
if UseExisting:
|
|
if CompareMethod == "": CompareMethod = self.CompareHyp
|
|
hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD)
|
|
pass
|
|
if hypo is None:
|
|
hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so)
|
|
a = ""
|
|
s = "="
|
|
i = 0
|
|
n = len(args)
|
|
while i<n:
|
|
a = a + s + str(args[i])
|
|
s = ","
|
|
i = i + 1
|
|
pass
|
|
self.mesh.smeshpyD.SetName(hypo, hyp + a)
|
|
pass
|
|
status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
|
|
TreatHypoStatus( status, GetName(hypo), GetName(self.geom), 0 )
|
|
return hypo
|
|
|
|
|
|
# Public class: Mesh_Segment
|
|
# --------------------------
|
|
|
|
## Class to define a segment 1D algorithm for discretization
|
|
#
|
|
# More details.
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Segment(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Regular_1D")
|
|
|
|
## Defines "LocalLength" hypothesis to cut an edge in several segments with the same length
|
|
# @param l for the length of segments that cut an edge
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @param p precision, used for calculation of the number of segments.
|
|
# The precision should be a positive, meaningful value within the range [0,1].
|
|
# In general, the number of segments is calculated with the formula:
|
|
# nb = ceil((edge_length / l) - p)
|
|
# Function ceil rounds its argument to the higher integer.
|
|
# So, p=0 means rounding of (edge_length / l) to the higher integer,
|
|
# p=0.5 means rounding of (edge_length / l) to the nearest integer,
|
|
# p=1 means rounding of (edge_length / l) to the lower integer.
|
|
# Default value is 1e-07.
|
|
# @return an instance of StdMeshers_LocalLength hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def LocalLength(self, l, UseExisting=0, p=1e-07):
|
|
hyp = self.Hypothesis("LocalLength", [l,p], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareLocalLength)
|
|
hyp.SetLength(l)
|
|
hyp.SetPrecision(p)
|
|
return hyp
|
|
|
|
## Private method
|
|
## Checks if the given "LocalLength" hypothesis has the same parameters as the given arguments
|
|
def CompareLocalLength(self, hyp, args):
|
|
if IsEqual(hyp.GetLength(), args[0]):
|
|
return IsEqual(hyp.GetPrecision(), args[1])
|
|
return False
|
|
|
|
## Defines "MaxSize" hypothesis to cut an edge into segments not longer than given value
|
|
# @param length is optional maximal allowed length of segment, if it is omitted
|
|
# the preestimated length is used that depends on geometry size
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - create a new one
|
|
# @return an instance of StdMeshers_MaxLength hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def MaxSize(self, length=0.0, UseExisting=0):
|
|
hyp = self.Hypothesis("MaxLength", [length], UseExisting=UseExisting)
|
|
if length > 0.0:
|
|
# set given length
|
|
hyp.SetLength(length)
|
|
if not UseExisting:
|
|
# set preestimated length
|
|
gen = self.mesh.smeshpyD
|
|
initHyp = gen.GetHypothesisParameterValues("MaxLength", "libStdMeshersEngine.so",
|
|
self.mesh.GetMesh(), self.mesh.GetShape(),
|
|
False) # <- byMesh
|
|
preHyp = initHyp._narrow(StdMeshers.StdMeshers_MaxLength)
|
|
if preHyp:
|
|
hyp.SetPreestimatedLength( preHyp.GetPreestimatedLength() )
|
|
pass
|
|
pass
|
|
hyp.SetUsePreestimatedLength( length == 0.0 )
|
|
return hyp
|
|
|
|
## Defines "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments
|
|
# @param n for the number of segments that cut an edge
|
|
# @param s for the scale factor (optional)
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - create a new one
|
|
# @return an instance of StdMeshers_NumberOfSegments hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def NumberOfSegments(self, n, s=[], UseExisting=0):
|
|
if s == []:
|
|
hyp = self.Hypothesis("NumberOfSegments", [n], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareNumberOfSegments)
|
|
else:
|
|
hyp = self.Hypothesis("NumberOfSegments", [n,s], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareNumberOfSegments)
|
|
hyp.SetDistrType( 1 )
|
|
hyp.SetScaleFactor(s)
|
|
hyp.SetNumberOfSegments(n)
|
|
return hyp
|
|
|
|
## Private method
|
|
## Checks if the given "NumberOfSegments" hypothesis has the same parameters as the given arguments
|
|
def CompareNumberOfSegments(self, hyp, args):
|
|
if hyp.GetNumberOfSegments() == args[0]:
|
|
if len(args) == 1:
|
|
return True
|
|
else:
|
|
if hyp.GetDistrType() == 1:
|
|
if IsEqual(hyp.GetScaleFactor(), args[1]):
|
|
return True
|
|
return False
|
|
|
|
## Defines "Arithmetic1D" hypothesis to cut an edge in several segments with increasing arithmetic length
|
|
# @param start defines the length of the first segment
|
|
# @param end defines the length of the last segment
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @return an instance of StdMeshers_Arithmetic1D hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def Arithmetic1D(self, start, end, UseExisting=0):
|
|
hyp = self.Hypothesis("Arithmetic1D", [start, end], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareArithmetic1D)
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Private method
|
|
## Check if the given "Arithmetic1D" hypothesis has the same parameters as the given arguments
|
|
def CompareArithmetic1D(self, hyp, args):
|
|
if IsEqual(hyp.GetLength(1), args[0]):
|
|
if IsEqual(hyp.GetLength(0), args[1]):
|
|
return True
|
|
return False
|
|
|
|
## Defines "StartEndLength" hypothesis to cut an edge in several segments with increasing geometric length
|
|
# @param start defines the length of the first segment
|
|
# @param end defines the length of the last segment
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @return an instance of StdMeshers_StartEndLength hypothesis
|
|
# @ingroup l3_hypos_1dhyps
|
|
def StartEndLength(self, start, end, UseExisting=0):
|
|
hyp = self.Hypothesis("StartEndLength", [start, end], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareStartEndLength)
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Check if the given "StartEndLength" hypothesis has the same parameters as the given arguments
|
|
def CompareStartEndLength(self, hyp, args):
|
|
if IsEqual(hyp.GetLength(1), args[0]):
|
|
if IsEqual(hyp.GetLength(0), args[1]):
|
|
return True
|
|
return False
|
|
|
|
## Defines "Deflection1D" hypothesis
|
|
# @param d for the deflection
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - create a new one
|
|
# @ingroup l3_hypos_1dhyps
|
|
def Deflection1D(self, d, UseExisting=0):
|
|
hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareDeflection1D)
|
|
hyp.SetDeflection(d)
|
|
return hyp
|
|
|
|
## Check if the given "Deflection1D" hypothesis has the same parameters as the given arguments
|
|
def CompareDeflection1D(self, hyp, args):
|
|
return IsEqual(hyp.GetDeflection(), args[0])
|
|
|
|
## Defines "Propagation" hypothesis that propagates all other hypotheses on all other edges that are at
|
|
# the opposite side in case of quadrangular faces
|
|
# @ingroup l3_hypos_additi
|
|
def Propagation(self):
|
|
return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp)
|
|
|
|
## Defines "AutomaticLength" hypothesis
|
|
# @param fineness for the fineness [0-1]
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with the
|
|
# same parameters, else (default) - create a new one
|
|
# @ingroup l3_hypos_1dhyps
|
|
def AutomaticLength(self, fineness=0, UseExisting=0):
|
|
hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting,
|
|
CompareMethod=self.CompareAutomaticLength)
|
|
hyp.SetFineness( fineness )
|
|
return hyp
|
|
|
|
## Checks if the given "AutomaticLength" hypothesis has the same parameters as the given arguments
|
|
def CompareAutomaticLength(self, hyp, args):
|
|
return IsEqual(hyp.GetFineness(), args[0])
|
|
|
|
## Defines "SegmentLengthAroundVertex" hypothesis
|
|
# @param length for the segment length
|
|
# @param vertex for the length localization: the vertex index [0,1] | vertex object.
|
|
# Any other integer value means that the hypothesis will be set on the
|
|
# whole 1D shape, where Mesh_Segment algorithm is assigned.
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_algos_segmarv
|
|
def LengthNearVertex(self, length, vertex=0, UseExisting=0):
|
|
import types
|
|
store_geom = self.geom
|
|
if type(vertex) is types.IntType:
|
|
if vertex == 0 or vertex == 1:
|
|
vertex = self.mesh.geompyD.SubShapeAllSorted(self.geom, geompyDC.ShapeType["VERTEX"])[vertex]
|
|
self.geom = vertex
|
|
pass
|
|
pass
|
|
else:
|
|
self.geom = vertex
|
|
pass
|
|
### 0D algorithm
|
|
if self.geom is None:
|
|
raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape"
|
|
name = GetName(self.geom)
|
|
if name == NO_NAME:
|
|
piece = self.mesh.geom
|
|
name = self.mesh.geompyD.SubShapeName(self.geom, piece)
|
|
self.mesh.geompyD.addToStudyInFather(piece, self.geom, name)
|
|
algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD)
|
|
if algo is None:
|
|
algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so")
|
|
pass
|
|
status = self.mesh.mesh.AddHypothesis(self.geom, algo)
|
|
TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True)
|
|
###
|
|
hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareLengthNearVertex)
|
|
self.geom = store_geom
|
|
hyp.SetLength( length )
|
|
return hyp
|
|
|
|
## Checks if the given "LengthNearVertex" hypothesis has the same parameters as the given arguments
|
|
# @ingroup l3_algos_segmarv
|
|
def CompareLengthNearVertex(self, hyp, args):
|
|
return IsEqual(hyp.GetLength(), args[0])
|
|
|
|
## Defines "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
|
|
# If the 2D mesher sees that all boundary edges are quadratic,
|
|
# it generates quadratic faces, else it generates linear faces using
|
|
# medium nodes as if they are vertices.
|
|
# The 3D mesher generates quadratic volumes only if all boundary faces
|
|
# are quadratic, else it fails.
|
|
#
|
|
# @ingroup l3_hypos_additi
|
|
def QuadraticMesh(self):
|
|
hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp)
|
|
return hyp
|
|
|
|
# Public class: Mesh_CompositeSegment
|
|
# --------------------------
|
|
|
|
## Defines a segment 1D algorithm for discretization
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_CompositeSegment(Mesh_Segment):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
self.Create(mesh, geom, "CompositeSegment_1D")
|
|
|
|
|
|
# Public class: Mesh_Segment_Python
|
|
# ---------------------------------
|
|
|
|
## Defines a segment 1D algorithm for discretization with python function
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Segment_Python(Mesh_Segment):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
import Python1dPlugin
|
|
self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
|
|
|
|
## Defines "PythonSplit1D" hypothesis
|
|
# @param n for the number of segments that cut an edge
|
|
# @param func for the python function that calculates the length of all segments
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_hypos_1dhyps
|
|
def PythonSplit1D(self, n, func, UseExisting=0):
|
|
hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so",
|
|
UseExisting=UseExisting, CompareMethod=self.ComparePythonSplit1D)
|
|
hyp.SetNumberOfSegments(n)
|
|
hyp.SetPythonLog10RatioFunction(func)
|
|
return hyp
|
|
|
|
## Checks if the given "PythonSplit1D" hypothesis has the same parameters as the given arguments
|
|
def ComparePythonSplit1D(self, hyp, args):
|
|
#if hyp.GetNumberOfSegments() == args[0]:
|
|
# if hyp.GetPythonLog10RatioFunction() == args[1]:
|
|
# return True
|
|
return False
|
|
|
|
# Public class: Mesh_Triangle
|
|
# ---------------------------
|
|
|
|
## Defines a triangle 2D algorithm
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Triangle(Mesh_Algorithm):
|
|
|
|
# default values
|
|
algoType = 0
|
|
params = 0
|
|
|
|
_angleMeshS = 8
|
|
_gradation = 1.1
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, algoType, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
|
|
self.algoType = algoType
|
|
if algoType == MEFISTO:
|
|
self.Create(mesh, geom, "MEFISTO_2D")
|
|
pass
|
|
elif algoType == BLSURF:
|
|
import BLSURFPlugin
|
|
self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
|
|
#self.SetPhysicalMesh() - PAL19680
|
|
elif algoType == NETGEN:
|
|
if noNETGENPlugin:
|
|
print "Warning: NETGENPlugin module unavailable"
|
|
pass
|
|
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
|
|
pass
|
|
elif algoType == NETGEN_2D:
|
|
if noNETGENPlugin:
|
|
print "Warning: NETGENPlugin module unavailable"
|
|
pass
|
|
self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so")
|
|
pass
|
|
|
|
## Defines "MaxElementArea" hypothesis basing on the definition of the maximum area of each triangle
|
|
# @param area for the maximum area of each triangle
|
|
# @param UseExisting if ==true - searches for an existing hypothesis created with the
|
|
# same parameters, else (default) - creates a new one
|
|
#
|
|
# Only for algoType == MEFISTO || NETGEN_2D
|
|
# @ingroup l3_hypos_2dhyps
|
|
def MaxElementArea(self, area, UseExisting=0):
|
|
if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
|
|
hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareMaxElementArea)
|
|
elif self.algoType == NETGEN:
|
|
hyp = self.Parameters(SIMPLE)
|
|
hyp.SetMaxElementArea(area)
|
|
return hyp
|
|
|
|
## Checks if the given "MaxElementArea" hypothesis has the same parameters as the given arguments
|
|
def CompareMaxElementArea(self, hyp, args):
|
|
return IsEqual(hyp.GetMaxElementArea(), args[0])
|
|
|
|
## Defines "LengthFromEdges" hypothesis to build triangles
|
|
# based on the length of the edges taken from the wire
|
|
#
|
|
# Only for algoType == MEFISTO || NETGEN_2D
|
|
# @ingroup l3_hypos_2dhyps
|
|
def LengthFromEdges(self):
|
|
if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
|
|
hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp)
|
|
return hyp
|
|
elif self.algoType == NETGEN:
|
|
hyp = self.Parameters(SIMPLE)
|
|
hyp.LengthFromEdges()
|
|
return hyp
|
|
|
|
## Sets a way to define size of mesh elements to generate.
|
|
# @param thePhysicalMesh is: DefaultSize or Custom.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPhysicalMesh(self, thePhysicalMesh=DefaultSize):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetPhysicalMesh(thePhysicalMesh)
|
|
|
|
## Sets size of mesh elements to generate.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPhySize(self, theVal):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetPhySize(theVal)
|
|
|
|
## Sets lower boundary of mesh element size (PhySize).
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPhyMin(self, theVal=-1):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetPhyMin(theVal)
|
|
|
|
## Sets upper boundary of mesh element size (PhySize).
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetPhyMax(self, theVal=-1):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetPhyMax(theVal)
|
|
|
|
## Sets a way to define maximum angular deflection of mesh from CAD model.
|
|
# @param theGeometricMesh is: DefaultGeom or Custom
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetGeometricMesh(self, theGeometricMesh=0):
|
|
# Parameter of BLSURF algo
|
|
if self.Parameters().GetPhysicalMesh() == 0: theGeometricMesh = 1
|
|
self.params.SetGeometricMesh(theGeometricMesh)
|
|
|
|
## Sets angular deflection (in degrees) of a mesh face from CAD surface.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetAngleMeshS(self, theVal=_angleMeshS):
|
|
# Parameter of BLSURF algo
|
|
if self.Parameters().GetGeometricMesh() == 0: theVal = self._angleMeshS
|
|
self.params.SetAngleMeshS(theVal)
|
|
|
|
## Sets angular deflection (in degrees) of a mesh edge from CAD curve.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetAngleMeshC(self, theVal=_angleMeshS):
|
|
# Parameter of BLSURF algo
|
|
if self.Parameters().GetGeometricMesh() == 0: theVal = self._angleMeshS
|
|
self.params.SetAngleMeshC(theVal)
|
|
|
|
## Sets lower boundary of mesh element size computed to respect angular deflection.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetGeoMin(self, theVal=-1):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetGeoMin(theVal)
|
|
|
|
## Sets upper boundary of mesh element size computed to respect angular deflection.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetGeoMax(self, theVal=-1):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetGeoMax(theVal)
|
|
|
|
## Sets maximal allowed ratio between the lengths of two adjacent edges.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetGradation(self, theVal=_gradation):
|
|
# Parameter of BLSURF algo
|
|
if self.Parameters().GetGeometricMesh() == 0: theVal = self._gradation
|
|
self.params.SetGradation(theVal)
|
|
|
|
## Sets topology usage way.
|
|
# @param way defines how mesh conformity is assured <ul>
|
|
# <li>FromCAD - mesh conformity is assured by conformity of a shape</li>
|
|
# <li>PreProcess or PreProcessPlus - by pre-processing a CAD model</li></ul>
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetTopology(self, way):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetTopology(way)
|
|
|
|
## To respect geometrical edges or not.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetDecimesh(self, toIgnoreEdges=False):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetDecimesh(toIgnoreEdges)
|
|
|
|
## Sets verbosity level in the range 0 to 100.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetVerbosity(self, level):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetVerbosity(level)
|
|
|
|
## Sets advanced option value.
|
|
# @ingroup l3_hypos_blsurf
|
|
def SetOptionValue(self, optionName, level):
|
|
# Parameter of BLSURF algo
|
|
self.Parameters().SetOptionValue(optionName,level)
|
|
|
|
## Sets QuadAllowed flag.
|
|
# Only for algoType == NETGEN || NETGEN_2D || BLSURF
|
|
# @ingroup l3_hypos_netgen l3_hypos_blsurf
|
|
def SetQuadAllowed(self, toAllow=True):
|
|
if self.algoType == NETGEN_2D:
|
|
if toAllow: # add QuadranglePreference
|
|
self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
|
|
else: # remove QuadranglePreference
|
|
for hyp in self.mesh.GetHypothesisList( self.geom ):
|
|
if hyp.GetName() == "QuadranglePreference":
|
|
self.mesh.RemoveHypothesis( self.geom, hyp )
|
|
pass
|
|
pass
|
|
pass
|
|
return
|
|
if self.Parameters():
|
|
self.params.SetQuadAllowed(toAllow)
|
|
return
|
|
|
|
## Defines hypothesis having several parameters
|
|
#
|
|
# @ingroup l3_hypos_netgen
|
|
def Parameters(self, which=SOLE):
|
|
if self.params:
|
|
return self.params
|
|
if self.algoType == NETGEN:
|
|
if which == SIMPLE:
|
|
self.params = self.Hypothesis("NETGEN_SimpleParameters_2D", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
else:
|
|
self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
return self.params
|
|
elif self.algoType == MEFISTO:
|
|
print "Mefisto algo support no multi-parameter hypothesis"
|
|
return None
|
|
elif self.algoType == NETGEN_2D:
|
|
print "NETGEN_2D_ONLY algo support no multi-parameter hypothesis"
|
|
print "NETGEN_2D_ONLY uses 'MaxElementArea' and 'LengthFromEdges' ones"
|
|
return None
|
|
elif self.algoType == BLSURF:
|
|
self.params = self.Hypothesis("BLSURF_Parameters", [],
|
|
"libBLSURFEngine.so", UseExisting=0)
|
|
return self.params
|
|
else:
|
|
print "Mesh_Triangle with algo type %s does not have such a parameter, check algo type"%self.algoType
|
|
return None
|
|
|
|
## Sets MaxSize
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetMaxSize(self, theSize):
|
|
if self.Parameters():
|
|
self.params.SetMaxSize(theSize)
|
|
|
|
## Sets SecondOrder flag
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetSecondOrder(self, theVal):
|
|
if self.Parameters():
|
|
self.params.SetSecondOrder(theVal)
|
|
|
|
## Sets Optimize flag
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetOptimize(self, theVal):
|
|
if self.Parameters():
|
|
self.params.SetOptimize(theVal)
|
|
|
|
## Sets Fineness
|
|
# @param theFineness is:
|
|
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetFineness(self, theFineness):
|
|
if self.Parameters():
|
|
self.params.SetFineness(theFineness)
|
|
|
|
## Sets GrowthRate
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetGrowthRate(self, theRate):
|
|
if self.Parameters():
|
|
self.params.SetGrowthRate(theRate)
|
|
|
|
## Sets NbSegPerEdge
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNbSegPerEdge(self, theVal):
|
|
if self.Parameters():
|
|
self.params.SetNbSegPerEdge(theVal)
|
|
|
|
## Sets NbSegPerRadius
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNbSegPerRadius(self, theVal):
|
|
if self.Parameters():
|
|
self.params.SetNbSegPerRadius(theVal)
|
|
|
|
## Sets number of segments overriding value set by SetLocalLength()
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNumberOfSegments(self, theVal):
|
|
self.Parameters(SIMPLE).SetNumberOfSegments(theVal)
|
|
|
|
## Sets number of segments overriding value set by SetNumberOfSegments()
|
|
#
|
|
# Only for algoType == NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetLocalLength(self, theVal):
|
|
self.Parameters(SIMPLE).SetLocalLength(theVal)
|
|
|
|
pass
|
|
|
|
|
|
# Public class: Mesh_Quadrangle
|
|
# -----------------------------
|
|
|
|
## Defines a quadrangle 2D algorithm
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Quadrangle(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Quadrangle_2D")
|
|
|
|
## Defines "QuadranglePreference" hypothesis, forcing construction
|
|
# of quadrangles if the number of nodes on the opposite edges is not the same
|
|
# while the total number of nodes on edges is even
|
|
#
|
|
# @ingroup l3_hypos_additi
|
|
def QuadranglePreference(self):
|
|
hyp = self.Hypothesis("QuadranglePreference", UseExisting=1,
|
|
CompareMethod=self.CompareEqualHyp)
|
|
return hyp
|
|
|
|
## Defines "TrianglePreference" hypothesis, forcing construction
|
|
# of triangles in the refinement area if the number of nodes
|
|
# on the opposite edges is not the same
|
|
#
|
|
# @ingroup l3_hypos_additi
|
|
def TrianglePreference(self):
|
|
hyp = self.Hypothesis("TrianglePreference", UseExisting=1,
|
|
CompareMethod=self.CompareEqualHyp)
|
|
return hyp
|
|
|
|
# Public class: Mesh_Tetrahedron
|
|
# ------------------------------
|
|
|
|
## Defines a tetrahedron 3D algorithm
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Tetrahedron(Mesh_Algorithm):
|
|
|
|
params = 0
|
|
algoType = 0
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, algoType, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
|
|
if algoType == NETGEN:
|
|
self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
|
|
pass
|
|
|
|
elif algoType == FULL_NETGEN:
|
|
if noNETGENPlugin:
|
|
print "Warning: NETGENPlugin module has not been imported."
|
|
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
|
|
pass
|
|
|
|
elif algoType == GHS3D:
|
|
import GHS3DPlugin
|
|
self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
|
|
pass
|
|
|
|
elif algoType == GHS3DPRL:
|
|
import GHS3DPRLPlugin
|
|
self.Create(mesh, geom, "GHS3DPRL_3D" , "libGHS3DPRLEngine.so")
|
|
pass
|
|
|
|
self.algoType = algoType
|
|
|
|
## Defines "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedron
|
|
# @param vol for the maximum volume of each tetrahedron
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
# @ingroup l3_hypos_maxvol
|
|
def MaxElementVolume(self, vol, UseExisting=0):
|
|
if self.algoType == NETGEN:
|
|
hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareMaxElementVolume)
|
|
hyp.SetMaxElementVolume(vol)
|
|
return hyp
|
|
elif self.algoType == FULL_NETGEN:
|
|
self.Parameters(SIMPLE).SetMaxElementVolume(vol)
|
|
return None
|
|
|
|
## Checks if the given "MaxElementVolume" hypothesis has the same parameters as the given arguments
|
|
def CompareMaxElementVolume(self, hyp, args):
|
|
return IsEqual(hyp.GetMaxElementVolume(), args[0])
|
|
|
|
## Defines hypothesis having several parameters
|
|
#
|
|
# @ingroup l3_hypos_netgen
|
|
def Parameters(self, which=SOLE):
|
|
if self.params:
|
|
return self.params
|
|
|
|
if self.algoType == FULL_NETGEN:
|
|
if which == SIMPLE:
|
|
self.params = self.Hypothesis("NETGEN_SimpleParameters_3D", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
else:
|
|
self.params = self.Hypothesis("NETGEN_Parameters", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
return self.params
|
|
|
|
if self.algoType == GHS3D:
|
|
self.params = self.Hypothesis("GHS3D_Parameters", [],
|
|
"libGHS3DEngine.so", UseExisting=0)
|
|
return self.params
|
|
|
|
if self.algoType == GHS3DPRL:
|
|
self.params = self.Hypothesis("GHS3DPRL_Parameters", [],
|
|
"libGHS3DPRLEngine.so", UseExisting=0)
|
|
return self.params
|
|
|
|
print "Algo supports no multi-parameter hypothesis"
|
|
return None
|
|
|
|
## Sets MaxSize
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetMaxSize(self, theSize):
|
|
self.Parameters().SetMaxSize(theSize)
|
|
|
|
## Sets SecondOrder flag
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetSecondOrder(self, theVal):
|
|
self.Parameters().SetSecondOrder(theVal)
|
|
|
|
## Sets Optimize flag
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetOptimize(self, theVal):
|
|
self.Parameters().SetOptimize(theVal)
|
|
|
|
## Sets Fineness
|
|
# @param theFineness is:
|
|
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetFineness(self, theFineness):
|
|
self.Parameters().SetFineness(theFineness)
|
|
|
|
## Sets GrowthRate
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetGrowthRate(self, theRate):
|
|
self.Parameters().SetGrowthRate(theRate)
|
|
|
|
## Sets NbSegPerEdge
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNbSegPerEdge(self, theVal):
|
|
self.Parameters().SetNbSegPerEdge(theVal)
|
|
|
|
## Sets NbSegPerRadius
|
|
# Parameter of FULL_NETGEN
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNbSegPerRadius(self, theVal):
|
|
self.Parameters().SetNbSegPerRadius(theVal)
|
|
|
|
## Sets number of segments overriding value set by SetLocalLength()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def SetNumberOfSegments(self, theVal):
|
|
self.Parameters(SIMPLE).SetNumberOfSegments(theVal)
|
|
|
|
## Sets number of segments overriding value set by SetNumberOfSegments()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def SetLocalLength(self, theVal):
|
|
self.Parameters(SIMPLE).SetLocalLength(theVal)
|
|
|
|
## Defines "MaxElementArea" parameter of NETGEN_SimpleParameters_3D hypothesis.
|
|
# Overrides value set by LengthFromEdges()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def MaxElementArea(self, area):
|
|
self.Parameters(SIMPLE).SetMaxElementArea(area)
|
|
|
|
## Defines "LengthFromEdges" parameter of NETGEN_SimpleParameters_3D hypothesis
|
|
# Overrides value set by MaxElementArea()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def LengthFromEdges(self):
|
|
self.Parameters(SIMPLE).LengthFromEdges()
|
|
|
|
## Defines "LengthFromFaces" parameter of NETGEN_SimpleParameters_3D hypothesis
|
|
# Overrides value set by MaxElementVolume()
|
|
# Only for algoType == NETGEN_FULL
|
|
# @ingroup l3_hypos_netgen
|
|
def LengthFromFaces(self):
|
|
self.Parameters(SIMPLE).LengthFromFaces()
|
|
|
|
## To mesh "holes" in a solid or not. Default is to mesh.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetToMeshHoles(self, toMesh):
|
|
# Parameter of GHS3D
|
|
self.Parameters().SetToMeshHoles(toMesh)
|
|
|
|
## Set Optimization level:
|
|
# None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization.
|
|
# Default is Medium_Optimization
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetOptimizationLevel(self, level):
|
|
# Parameter of GHS3D
|
|
self.Parameters().SetOptimizationLevel(level)
|
|
|
|
## Maximal size of memory to be used by the algorithm (in Megabytes).
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetMaximumMemory(self, MB):
|
|
# Advanced parameter of GHS3D
|
|
self.Parameters().SetMaximumMemory(MB)
|
|
|
|
## Initial size of memory to be used by the algorithm (in Megabytes) in
|
|
# automatic memory adjustment mode.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetInitialMemory(self, MB):
|
|
# Advanced parameter of GHS3D
|
|
self.Parameters().SetInitialMemory(MB)
|
|
|
|
## Path to working directory.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetWorkingDirectory(self, path):
|
|
# Advanced parameter of GHS3D
|
|
self.Parameters().SetWorkingDirectory(path)
|
|
|
|
## To keep working files or remove them. Log file remains in case of errors anyway.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetKeepFiles(self, toKeep):
|
|
# Advanced parameter of GHS3D and GHS3DPRL
|
|
self.Parameters().SetKeepFiles(toKeep)
|
|
|
|
## To set verbose level [0-10]. <ul>
|
|
#<li> 0 - no standard output,
|
|
#<li> 2 - prints the data, quality statistics of the skin and final meshes and
|
|
# indicates when the final mesh is being saved. In addition the software
|
|
# gives indication regarding the CPU time.
|
|
#<li>10 - same as 2 plus the main steps in the computation, quality statistics
|
|
# histogram of the skin mesh, quality statistics histogram together with
|
|
# the characteristics of the final mesh.</ul>
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetVerboseLevel(self, level):
|
|
# Advanced parameter of GHS3D
|
|
self.Parameters().SetVerboseLevel(level)
|
|
|
|
## To create new nodes.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetToCreateNewNodes(self, toCreate):
|
|
# Advanced parameter of GHS3D
|
|
self.Parameters().SetToCreateNewNodes(toCreate)
|
|
|
|
## To use boundary recovery version which tries to create mesh on a very poor
|
|
# quality surface mesh.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetToUseBoundaryRecoveryVersion(self, toUse):
|
|
# Advanced parameter of GHS3D
|
|
self.Parameters().SetToUseBoundaryRecoveryVersion(toUse)
|
|
|
|
## Sets command line option as text.
|
|
# @ingroup l3_hypos_ghs3dh
|
|
def SetTextOption(self, option):
|
|
# Advanced parameter of GHS3D
|
|
self.Parameters().SetTextOption(option)
|
|
|
|
## Sets MED files name and path.
|
|
def SetMEDName(self, value):
|
|
self.Parameters().SetMEDName(value)
|
|
|
|
## Sets the number of partition of the initial mesh
|
|
def SetNbPart(self, value):
|
|
self.Parameters().SetNbPart(value)
|
|
|
|
## When big mesh, start tepal in background
|
|
def SetBackground(self, value):
|
|
self.Parameters().SetBackground(value)
|
|
|
|
# Public class: Mesh_Hexahedron
|
|
# ------------------------------
|
|
|
|
## Defines a hexahedron 3D algorithm
|
|
#
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Hexahedron(Mesh_Algorithm):
|
|
|
|
params = 0
|
|
algoType = 0
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, algoType=Hexa, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
|
|
self.algoType = algoType
|
|
|
|
if algoType == Hexa:
|
|
self.Create(mesh, geom, "Hexa_3D")
|
|
pass
|
|
|
|
elif algoType == Hexotic:
|
|
import HexoticPlugin
|
|
self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so")
|
|
pass
|
|
|
|
## Defines "MinMaxQuad" hypothesis to give three hexotic parameters
|
|
# @ingroup l3_hypos_hexotic
|
|
def MinMaxQuad(self, min=3, max=8, quad=True):
|
|
self.params = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so",
|
|
UseExisting=0)
|
|
self.params.SetHexesMinLevel(min)
|
|
self.params.SetHexesMaxLevel(max)
|
|
self.params.SetHexoticQuadrangles(quad)
|
|
return self.params
|
|
|
|
# Deprecated, only for compatibility!
|
|
# Public class: Mesh_Netgen
|
|
# ------------------------------
|
|
|
|
## Defines a NETGEN-based 2D or 3D algorithm
|
|
# that needs no discrete boundary (i.e. independent)
|
|
#
|
|
# This class is deprecated, only for compatibility!
|
|
#
|
|
# More details.
|
|
# @ingroup l3_algos_basic
|
|
class Mesh_Netgen(Mesh_Algorithm):
|
|
|
|
is3D = 0
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, is3D, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
|
|
if noNETGENPlugin:
|
|
print "Warning: NETGENPlugin module has not been imported."
|
|
|
|
self.is3D = is3D
|
|
if is3D:
|
|
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
|
|
pass
|
|
|
|
else:
|
|
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
|
|
pass
|
|
|
|
## Defines the hypothesis containing parameters of the algorithm
|
|
def Parameters(self):
|
|
if self.is3D:
|
|
hyp = self.Hypothesis("NETGEN_Parameters", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
else:
|
|
hyp = self.Hypothesis("NETGEN_Parameters_2D", [],
|
|
"libNETGENEngine.so", UseExisting=0)
|
|
return hyp
|
|
|
|
# Public class: Mesh_Projection1D
|
|
# ------------------------------
|
|
|
|
## Defines a projection 1D algorithm
|
|
# @ingroup l3_algos_proj
|
|
#
|
|
class Mesh_Projection1D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Projection_1D")
|
|
|
|
## Defines "Source Edge" hypothesis, specifying a meshed edge, from where
|
|
# a mesh pattern is taken, and, optionally, the association of vertices
|
|
# between the source edge and a target edge (to which a hypothesis is assigned)
|
|
# @param edge from which nodes distribution is taken
|
|
# @param mesh from which nodes distribution is taken (optional)
|
|
# @param srcV a vertex of \a edge to associate with \a tgtV (optional)
|
|
# @param tgtV a vertex of \a the edge to which the algorithm is assigned,
|
|
# to associate with \a srcV (optional)
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0):
|
|
hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV],
|
|
UseExisting=0)
|
|
#UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge)
|
|
hyp.SetSourceEdge( edge )
|
|
if not mesh is None and isinstance(mesh, Mesh):
|
|
mesh = mesh.GetMesh()
|
|
hyp.SetSourceMesh( mesh )
|
|
hyp.SetVertexAssociation( srcV, tgtV )
|
|
return hyp
|
|
|
|
## Checks if the given "SourceEdge" hypothesis has the same parameters as the given arguments
|
|
#def CompareSourceEdge(self, hyp, args):
|
|
# # it does not seem to be useful to reuse the existing "SourceEdge" hypothesis
|
|
# return False
|
|
|
|
|
|
# Public class: Mesh_Projection2D
|
|
# ------------------------------
|
|
|
|
## Defines a projection 2D algorithm
|
|
# @ingroup l3_algos_proj
|
|
#
|
|
class Mesh_Projection2D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Projection_2D")
|
|
|
|
## Defines "Source Face" hypothesis, specifying a meshed face, from where
|
|
# a mesh pattern is taken, and, optionally, the association of vertices
|
|
# between the source face and the target face (to which a hypothesis is assigned)
|
|
# @param face from which the mesh pattern is taken
|
|
# @param mesh from which the mesh pattern is taken (optional)
|
|
# @param srcV1 a vertex of \a face to associate with \a tgtV1 (optional)
|
|
# @param tgtV1 a vertex of \a the face to which the algorithm is assigned,
|
|
# to associate with \a srcV1 (optional)
|
|
# @param srcV2 a vertex of \a face to associate with \a tgtV1 (optional)
|
|
# @param tgtV2 a vertex of \a the face to which the algorithm is assigned,
|
|
# to associate with \a srcV2 (optional)
|
|
# @param UseExisting if ==true - forces the search for the existing hypothesis created with
|
|
# the same parameters, else (default) - forces the creation a new one
|
|
#
|
|
# Note: all association vertices must belong to one edge of a face
|
|
def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None,
|
|
srcV2=None, tgtV2=None, UseExisting=0):
|
|
hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2],
|
|
UseExisting=0)
|
|
#UseExisting=UseExisting, CompareMethod=self.CompareSourceFace)
|
|
hyp.SetSourceFace( face )
|
|
if not mesh is None and isinstance(mesh, Mesh):
|
|
mesh = mesh.GetMesh()
|
|
hyp.SetSourceMesh( mesh )
|
|
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
|
|
return hyp
|
|
|
|
## Checks if the given "SourceFace" hypothesis has the same parameters as the given arguments
|
|
#def CompareSourceFace(self, hyp, args):
|
|
# # it does not seem to be useful to reuse the existing "SourceFace" hypothesis
|
|
# return False
|
|
|
|
# Public class: Mesh_Projection3D
|
|
# ------------------------------
|
|
|
|
## Defines a projection 3D algorithm
|
|
# @ingroup l3_algos_proj
|
|
#
|
|
class Mesh_Projection3D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Projection_3D")
|
|
|
|
## Defines the "Source Shape 3D" hypothesis, specifying a meshed solid, from where
|
|
# the mesh pattern is taken, and, optionally, the association of vertices
|
|
# between the source and the target solid (to which a hipothesis is assigned)
|
|
# @param solid from where the mesh pattern is taken
|
|
# @param mesh from where the mesh pattern is taken (optional)
|
|
# @param srcV1 a vertex of \a solid to associate with \a tgtV1 (optional)
|
|
# @param tgtV1 a vertex of \a the solid where the algorithm is assigned,
|
|
# to associate with \a srcV1 (optional)
|
|
# @param srcV2 a vertex of \a solid to associate with \a tgtV1 (optional)
|
|
# @param tgtV2 a vertex of \a the solid to which the algorithm is assigned,
|
|
# to associate with \a srcV2 (optional)
|
|
# @param UseExisting - if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
#
|
|
# Note: association vertices must belong to one edge of a solid
|
|
def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0,
|
|
srcV2=0, tgtV2=0, UseExisting=0):
|
|
hyp = self.Hypothesis("ProjectionSource3D",
|
|
[solid,mesh,srcV1,tgtV1,srcV2,tgtV2],
|
|
UseExisting=0)
|
|
#UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D)
|
|
hyp.SetSource3DShape( solid )
|
|
if not mesh is None and isinstance(mesh, Mesh):
|
|
mesh = mesh.GetMesh()
|
|
hyp.SetSourceMesh( mesh )
|
|
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
|
|
return hyp
|
|
|
|
## Checks if the given "SourceShape3D" hypothesis has the same parameters as given arguments
|
|
#def CompareSourceShape3D(self, hyp, args):
|
|
# # seems to be not really useful to reuse existing "SourceShape3D" hypothesis
|
|
# return False
|
|
|
|
|
|
# Public class: Mesh_Prism
|
|
# ------------------------
|
|
|
|
## Defines a 3D extrusion algorithm
|
|
# @ingroup l3_algos_3dextr
|
|
#
|
|
class Mesh_Prism3D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "Prism_3D")
|
|
|
|
# Public class: Mesh_RadialPrism
|
|
# -------------------------------
|
|
|
|
## Defines a Radial Prism 3D algorithm
|
|
# @ingroup l3_algos_radialp
|
|
#
|
|
class Mesh_RadialPrism3D(Mesh_Algorithm):
|
|
|
|
## Private constructor.
|
|
def __init__(self, mesh, geom=0):
|
|
Mesh_Algorithm.__init__(self)
|
|
self.Create(mesh, geom, "RadialPrism_3D")
|
|
|
|
self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0)
|
|
self.nbLayers = None
|
|
|
|
## Return 3D hypothesis holding the 1D one
|
|
def Get3DHypothesis(self):
|
|
return self.distribHyp
|
|
|
|
## Private method creating a 1D hypothesis and storing it in the LayerDistribution
|
|
# hypothesis. Returns the created hypothesis
|
|
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
|
|
#print "OwnHypothesis",hypType
|
|
if not self.nbLayers is None:
|
|
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
|
|
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
|
|
study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
|
|
hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
|
|
self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
|
|
self.distribHyp.SetLayerDistribution( hyp )
|
|
return hyp
|
|
|
|
## Defines "NumberOfLayers" hypothesis, specifying the number of layers of
|
|
# prisms to build between the inner and outer shells
|
|
# @param n number of layers
|
|
# @param UseExisting if ==true - searches for the existing hypothesis created with
|
|
# the same parameters, else (default) - creates a new one
|
|
def NumberOfLayers(self, n, UseExisting=0):
|
|
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
|
|
self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting,
|
|
CompareMethod=self.CompareNumberOfLayers)
|
|
self.nbLayers.SetNumberOfLayers( n )
|
|
return self.nbLayers
|
|
|
|
## Checks if the given "NumberOfLayers" hypothesis has the same parameters as the given arguments
|
|
def CompareNumberOfLayers(self, hyp, args):
|
|
return IsEqual(hyp.GetNumberOfLayers(), args[0])
|
|
|
|
## Defines "LocalLength" hypothesis, specifying the segment length
|
|
# to build between the inner and the outer shells
|
|
# @param l the length of segments
|
|
# @param p the precision of rounding
|
|
def LocalLength(self, l, p=1e-07):
|
|
hyp = self.OwnHypothesis("LocalLength", [l,p])
|
|
hyp.SetLength(l)
|
|
hyp.SetPrecision(p)
|
|
return hyp
|
|
|
|
## Defines "NumberOfSegments" hypothesis, specifying the number of layers of
|
|
# prisms to build between the inner and the outer shells.
|
|
# @param n the number of layers
|
|
# @param s the scale factor (optional)
|
|
def NumberOfSegments(self, n, s=[]):
|
|
if s == []:
|
|
hyp = self.OwnHypothesis("NumberOfSegments", [n])
|
|
else:
|
|
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
|
|
hyp.SetDistrType( 1 )
|
|
hyp.SetScaleFactor(s)
|
|
hyp.SetNumberOfSegments(n)
|
|
return hyp
|
|
|
|
## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments
|
|
# to build between the inner and the outer shells with a length that changes in arithmetic progression
|
|
# @param start the length of the first segment
|
|
# @param end the length of the last segment
|
|
def Arithmetic1D(self, start, end ):
|
|
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Defines "StartEndLength" hypothesis, specifying distribution of segments
|
|
# to build between the inner and the outer shells as geometric length increasing
|
|
# @param start for the length of the first segment
|
|
# @param end for the length of the last segment
|
|
def StartEndLength(self, start, end):
|
|
hyp = self.OwnHypothesis("StartEndLength", [start, end])
|
|
hyp.SetLength(start, 1)
|
|
hyp.SetLength(end , 0)
|
|
return hyp
|
|
|
|
## Defines "AutomaticLength" hypothesis, specifying the number of segments
|
|
# to build between the inner and outer shells
|
|
# @param fineness defines the quality of the mesh within the range [0-1]
|
|
def AutomaticLength(self, fineness=0):
|
|
hyp = self.OwnHypothesis("AutomaticLength")
|
|
hyp.SetFineness( fineness )
|
|
return hyp
|
|
|
|
# Private class: Mesh_UseExisting
|
|
# -------------------------------
|
|
class Mesh_UseExisting(Mesh_Algorithm):
|
|
|
|
def __init__(self, dim, mesh, geom=0):
|
|
if dim == 1:
|
|
self.Create(mesh, geom, "UseExisting_1D")
|
|
else:
|
|
self.Create(mesh, geom, "UseExisting_2D")
|
|
|
|
|
|
import salome_notebook
|
|
notebook = salome_notebook.notebook
|
|
|
|
##Return values of the notebook variables
|
|
def ParseParameters(last, nbParams,nbParam, value):
|
|
result = None
|
|
strResult = ""
|
|
counter = 0
|
|
listSize = len(last)
|
|
for n in range(0,nbParams):
|
|
if n+1 != nbParam:
|
|
if counter < listSize:
|
|
strResult = strResult + last[counter]
|
|
else:
|
|
strResult = strResult + ""
|
|
else:
|
|
if isinstance(value, str):
|
|
if notebook.isVariable(value):
|
|
result = notebook.get(value)
|
|
strResult=strResult+value
|
|
else:
|
|
raise RuntimeError, "Variable with name '" + value + "' doesn't exist!!!"
|
|
else:
|
|
strResult=strResult+str(value)
|
|
result = value
|
|
if nbParams - 1 != counter:
|
|
strResult=strResult+var_separator #":"
|
|
counter = counter+1
|
|
return result, strResult
|
|
|
|
#Wrapper class for StdMeshers_LocalLength hypothesis
|
|
class LocalLength(StdMeshers._objref_StdMeshers_LocalLength):
|
|
|
|
## Set Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
def SetLength(self, length):
|
|
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_LocalLength.GetLastParameters(self),2,1,length)
|
|
StdMeshers._objref_StdMeshers_LocalLength.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_LocalLength.SetLength(self,length)
|
|
|
|
## Set Precision parameter value
|
|
# @param precision numerical value or name of variable from notebook
|
|
def SetPrecision(self, precision):
|
|
precision,parameters = ParseParameters(StdMeshers._objref_StdMeshers_LocalLength.GetLastParameters(self),2,2,precision)
|
|
StdMeshers._objref_StdMeshers_LocalLength.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_LocalLength.SetPrecision(self, precision)
|
|
|
|
#Registering the new proxy for LocalLength
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_LocalLength._NP_RepositoryId, LocalLength)
|
|
|
|
|
|
#Wrapper class for StdMeshers_LayerDistribution hypothesis
|
|
class LayerDistribution(StdMeshers._objref_StdMeshers_LayerDistribution):
|
|
|
|
def SetLayerDistribution(self, hypo):
|
|
StdMeshers._objref_StdMeshers_LayerDistribution.SetParameters(self,hypo.GetParameters())
|
|
hypo.ClearParameters();
|
|
StdMeshers._objref_StdMeshers_LayerDistribution.SetLayerDistribution(self,hypo)
|
|
|
|
#Registering the new proxy for LayerDistribution
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_LayerDistribution._NP_RepositoryId, LayerDistribution)
|
|
|
|
#Wrapper class for StdMeshers_SegmentLengthAroundVertex hypothesis
|
|
class SegmentLengthAroundVertex(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex):
|
|
|
|
## Set Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
def SetLength(self, length):
|
|
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.GetLastParameters(self),1,1,length)
|
|
StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.SetLength(self,length)
|
|
|
|
#Registering the new proxy for SegmentLengthAroundVertex
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex._NP_RepositoryId, SegmentLengthAroundVertex)
|
|
|
|
|
|
#Wrapper class for StdMeshers_Arithmetic1D hypothesis
|
|
class Arithmetic1D(StdMeshers._objref_StdMeshers_Arithmetic1D):
|
|
|
|
## Set Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
# @param isStart true is length is Start Length, otherwise false
|
|
def SetLength(self, length, isStart):
|
|
nb = 2
|
|
if isStart:
|
|
nb = 1
|
|
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_Arithmetic1D.GetLastParameters(self),2,nb,length)
|
|
StdMeshers._objref_StdMeshers_Arithmetic1D.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_Arithmetic1D.SetLength(self,length,isStart)
|
|
|
|
#Registering the new proxy for Arithmetic1D
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_Arithmetic1D._NP_RepositoryId, Arithmetic1D)
|
|
|
|
#Wrapper class for StdMeshers_Deflection1D hypothesis
|
|
class Deflection1D(StdMeshers._objref_StdMeshers_Deflection1D):
|
|
|
|
## Set Deflection parameter value
|
|
# @param deflection numerical value or name of variable from notebook
|
|
def SetDeflection(self, deflection):
|
|
deflection,parameters = ParseParameters(StdMeshers._objref_StdMeshers_Deflection1D.GetLastParameters(self),1,1,deflection)
|
|
StdMeshers._objref_StdMeshers_Deflection1D.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_Deflection1D.SetDeflection(self,deflection)
|
|
|
|
#Registering the new proxy for Deflection1D
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_Deflection1D._NP_RepositoryId, Deflection1D)
|
|
|
|
#Wrapper class for StdMeshers_StartEndLength hypothesis
|
|
class StartEndLength(StdMeshers._objref_StdMeshers_StartEndLength):
|
|
|
|
## Set Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
# @param isStart true is length is Start Length, otherwise false
|
|
def SetLength(self, length, isStart):
|
|
nb = 2
|
|
if isStart:
|
|
nb = 1
|
|
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_StartEndLength.GetLastParameters(self),2,nb,length)
|
|
StdMeshers._objref_StdMeshers_StartEndLength.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_StartEndLength.SetLength(self,length,isStart)
|
|
|
|
#Registering the new proxy for StartEndLength
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_StartEndLength._NP_RepositoryId, StartEndLength)
|
|
|
|
#Wrapper class for StdMeshers_MaxElementArea hypothesis
|
|
class MaxElementArea(StdMeshers._objref_StdMeshers_MaxElementArea):
|
|
|
|
## Set Max Element Area parameter value
|
|
# @param area numerical value or name of variable from notebook
|
|
def SetMaxElementArea(self, area):
|
|
area ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_MaxElementArea.GetLastParameters(self),1,1,area)
|
|
StdMeshers._objref_StdMeshers_MaxElementArea.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_MaxElementArea.SetMaxElementArea(self,area)
|
|
|
|
#Registering the new proxy for MaxElementArea
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_MaxElementArea._NP_RepositoryId, MaxElementArea)
|
|
|
|
|
|
#Wrapper class for StdMeshers_MaxElementVolume hypothesis
|
|
class MaxElementVolume(StdMeshers._objref_StdMeshers_MaxElementVolume):
|
|
|
|
## Set Max Element Volume parameter value
|
|
# @param area numerical value or name of variable from notebook
|
|
def SetMaxElementVolume(self, volume):
|
|
volume ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_MaxElementVolume.GetLastParameters(self),1,1,volume)
|
|
StdMeshers._objref_StdMeshers_MaxElementVolume.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_MaxElementVolume.SetMaxElementVolume(self,volume)
|
|
|
|
#Registering the new proxy for MaxElementVolume
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_MaxElementVolume._NP_RepositoryId, MaxElementVolume)
|
|
|
|
|
|
#Wrapper class for StdMeshers_NumberOfLayers hypothesis
|
|
class NumberOfLayers(StdMeshers._objref_StdMeshers_NumberOfLayers):
|
|
|
|
## Set Number Of Layers parameter value
|
|
# @param nbLayers numerical value or name of variable from notebook
|
|
def SetNumberOfLayers(self, nbLayers):
|
|
nbLayers ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_NumberOfLayers.GetLastParameters(self),1,1,nbLayers)
|
|
StdMeshers._objref_StdMeshers_NumberOfLayers.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_NumberOfLayers.SetNumberOfLayers(self,nbLayers)
|
|
|
|
#Registering the new proxy for NumberOfLayers
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_NumberOfLayers._NP_RepositoryId, NumberOfLayers)
|
|
|
|
#Wrapper class for StdMeshers_NumberOfSegments hypothesis
|
|
class NumberOfSegments(StdMeshers._objref_StdMeshers_NumberOfSegments):
|
|
|
|
## Set Number Of Segments parameter value
|
|
# @param nbSeg numerical value or name of variable from notebook
|
|
def SetNumberOfSegments(self, nbSeg):
|
|
lastParameters = StdMeshers._objref_StdMeshers_NumberOfSegments.GetLastParameters(self)
|
|
nbSeg , parameters = ParseParameters(lastParameters,1,1,nbSeg)
|
|
StdMeshers._objref_StdMeshers_NumberOfSegments.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_NumberOfSegments.SetNumberOfSegments(self,nbSeg)
|
|
|
|
## Set Scale Factor parameter value
|
|
# @param factor numerical value or name of variable from notebook
|
|
def SetScaleFactor(self, factor):
|
|
factor, parameters = ParseParameters(StdMeshers._objref_StdMeshers_NumberOfSegments.GetLastParameters(self),2,2,factor)
|
|
StdMeshers._objref_StdMeshers_NumberOfSegments.SetParameters(self,parameters)
|
|
StdMeshers._objref_StdMeshers_NumberOfSegments.SetScaleFactor(self,factor)
|
|
|
|
#Registering the new proxy for NumberOfSegments
|
|
omniORB.registerObjref(StdMeshers._objref_StdMeshers_NumberOfSegments._NP_RepositoryId, NumberOfSegments)
|
|
|
|
|
|
#Wrapper class for NETGENPlugin_Hypothesis hypothesis
|
|
class NETGENPlugin_Hypothesis(NETGENPlugin._objref_NETGENPlugin_Hypothesis):
|
|
|
|
## Set Max Size parameter value
|
|
# @param maxsize numerical value or name of variable from notebook
|
|
def SetMaxSize(self, maxsize):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
|
|
maxsize, parameters = ParseParameters(lastParameters,4,1,maxsize)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetMaxSize(self,maxsize)
|
|
|
|
## Set Growth Rate parameter value
|
|
# @param value numerical value or name of variable from notebook
|
|
def SetGrowthRate(self, value):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
|
|
value, parameters = ParseParameters(lastParameters,4,2,value)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetGrowthRate(self,value)
|
|
|
|
## Set Number of Segments per Edge parameter value
|
|
# @param value numerical value or name of variable from notebook
|
|
def SetNbSegPerEdge(self, value):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
|
|
value, parameters = ParseParameters(lastParameters,4,3,value)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerEdge(self,value)
|
|
|
|
## Set Number of Segments per Radius parameter value
|
|
# @param value numerical value or name of variable from notebook
|
|
def SetNbSegPerRadius(self, value):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
|
|
value, parameters = ParseParameters(lastParameters,4,4,value)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerRadius(self,value)
|
|
|
|
#Registering the new proxy for NETGENPlugin_Hypothesis
|
|
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis._NP_RepositoryId, NETGENPlugin_Hypothesis)
|
|
|
|
|
|
#Wrapper class for NETGENPlugin_Hypothesis_2D hypothesis
|
|
class NETGENPlugin_Hypothesis_2D(NETGENPlugin_Hypothesis,NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D):
|
|
pass
|
|
|
|
#Registering the new proxy for NETGENPlugin_Hypothesis_2D
|
|
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D._NP_RepositoryId, NETGENPlugin_Hypothesis_2D)
|
|
|
|
#Wrapper class for NETGENPlugin_SimpleHypothesis_2D hypothesis
|
|
class NETGEN_SimpleParameters_2D(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D):
|
|
|
|
## Set Number of Segments parameter value
|
|
# @param nbSeg numerical value or name of variable from notebook
|
|
def SetNumberOfSegments(self, nbSeg):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
|
|
nbSeg, parameters = ParseParameters(lastParameters,2,1,nbSeg)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetNumberOfSegments(self, nbSeg)
|
|
|
|
## Set Local Length parameter value
|
|
# @param length numerical value or name of variable from notebook
|
|
def SetLocalLength(self, length):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
|
|
length, parameters = ParseParameters(lastParameters,2,1,length)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetLocalLength(self, length)
|
|
|
|
## Set Max Element Area parameter value
|
|
# @param area numerical value or name of variable from notebook
|
|
def SetMaxElementArea(self, area):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
|
|
area, parameters = ParseParameters(lastParameters,2,2,area)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetMaxElementArea(self, area)
|
|
|
|
def LengthFromEdges(self):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
|
|
value = 0;
|
|
value, parameters = ParseParameters(lastParameters,2,2,value)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.LengthFromEdges(self)
|
|
|
|
#Registering the new proxy for NETGEN_SimpleParameters_2D
|
|
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D._NP_RepositoryId, NETGEN_SimpleParameters_2D)
|
|
|
|
|
|
#Wrapper class for NETGENPlugin_SimpleHypothesis_3D hypothesis
|
|
class NETGEN_SimpleParameters_3D(NETGEN_SimpleParameters_2D,NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D):
|
|
## Set Max Element Volume parameter value
|
|
# @param volume numerical value or name of variable from notebook
|
|
def SetMaxElementVolume(self, volume):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
|
|
volume, parameters = ParseParameters(lastParameters,3,3,volume)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetMaxElementVolume(self, volume)
|
|
|
|
def LengthFromFaces(self):
|
|
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
|
|
value = 0;
|
|
value, parameters = ParseParameters(lastParameters,3,3,value)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
|
|
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.LengthFromFaces(self)
|
|
|
|
#Registering the new proxy for NETGEN_SimpleParameters_3D
|
|
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D._NP_RepositoryId, NETGEN_SimpleParameters_3D)
|
|
|
|
class Pattern(SMESH._objref_SMESH_Pattern):
|
|
|
|
def ApplyToMeshFaces(self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse):
|
|
flag = False
|
|
if isinstance(theNodeIndexOnKeyPoint1,str):
|
|
flag = True
|
|
theNodeIndexOnKeyPoint1,Parameters = geompyDC.ParseParameters(theNodeIndexOnKeyPoint1)
|
|
if flag:
|
|
theNodeIndexOnKeyPoint1 -= 1
|
|
theMesh.SetParameters(Parameters)
|
|
return SMESH._objref_SMESH_Pattern.ApplyToMeshFaces( self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse )
|
|
|
|
def ApplyToHexahedrons(self, theMesh, theVolumesIDs, theNode000Index, theNode001Index):
|
|
flag0 = False
|
|
flag1 = False
|
|
if isinstance(theNode000Index,str):
|
|
flag0 = True
|
|
if isinstance(theNode001Index,str):
|
|
flag1 = True
|
|
theNode000Index,theNode001Index,Parameters = geompyDC.ParseParameters(theNode000Index,theNode001Index)
|
|
if flag0:
|
|
theNode000Index -= 1
|
|
if flag1:
|
|
theNode001Index -= 1
|
|
theMesh.SetParameters(Parameters)
|
|
return SMESH._objref_SMESH_Pattern.ApplyToHexahedrons( self, theMesh, theVolumesIDs, theNode000Index, theNode001Index )
|
|
|
|
#Registering the new proxy for Pattern
|
|
omniORB.registerObjref(SMESH._objref_SMESH_Pattern._NP_RepositoryId, Pattern)
|