mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-04 05:40:34 +05:00
636 lines
16 KiB
Plaintext
636 lines
16 KiB
Plaintext
/*!
|
|
|
|
\page tui_defining_hypotheses_page Defining Hypotheses and Algorithms
|
|
|
|
<h2>Defining 1D Hypotheses</h2>
|
|
|
|
<br>
|
|
\anchor tui_1d_arithmetic
|
|
<h3>1D Arithmetic</h3>
|
|
|
|
\code
|
|
import geompy
|
|
import smesh
|
|
|
|
# create a box
|
|
box = geompy.MakeBoxDXDYDZ(10., 10., 10.)
|
|
geompy.addToStudy(box, "Box")
|
|
|
|
# create a hexahedral mesh on the box
|
|
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
|
|
|
|
# create a Regular 1D algorithm for edges
|
|
algo1D = hexa.Segment()
|
|
|
|
# optionally reverse node distribution on certain edges
|
|
allEdges = geompy.SubShapeAllSortedIDs( box, geompy.ShapeType["EDGE"])
|
|
reversedEdges = [ allEdges[0], allEdges[4] ]
|
|
|
|
# define "Arithmetic1D" hypothesis to cut all edges in several segments with increasing arithmetic length
|
|
algo1D.Arithmetic1D(1, 4, reversedEdges)
|
|
|
|
# create a quadrangle 2D algorithm for faces
|
|
hexa.Quadrangle()
|
|
|
|
# create a hexahedron 3D algorithm for solids
|
|
hexa.Hexahedron()
|
|
|
|
# compute the mesh
|
|
hexa.Compute()
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_deflection_1d
|
|
<h3>Deflection 1D and Number of Segments</h3>
|
|
|
|
\code
|
|
import geompy
|
|
import smesh
|
|
|
|
# create a face from arc and straight segment
|
|
px = geompy.MakeVertex(100., 0. , 0. )
|
|
py = geompy.MakeVertex(0. , 100., 0. )
|
|
pz = geompy.MakeVertex(0. , 0. , 100.)
|
|
|
|
exy = geompy.MakeEdge(px, py)
|
|
arc = geompy.MakeArc(py, pz, px)
|
|
|
|
wire = geompy.MakeWire([exy, arc])
|
|
|
|
isPlanarFace = 1
|
|
face1 = geompy.MakeFace(wire, isPlanarFace)
|
|
geompy.addToStudy(face1,"Face1")
|
|
|
|
# get edges from the face
|
|
e_straight,e_arc = geompy.SubShapeAll(face1, geompy.ShapeType["EDGE"])
|
|
geompy.addToStudyInFather(face1, e_arc, "Arc Edge")
|
|
|
|
# create hexahedral mesh
|
|
hexa = smesh.Mesh(face1, "Face : triangle mesh")
|
|
|
|
# define "NumberOfSegments" hypothesis to cut a straight edge in a fixed number of segments
|
|
algo1D = hexa.Segment()
|
|
algo1D.NumberOfSegments(6)
|
|
|
|
# define "MaxElementArea" hypothesis
|
|
algo2D = hexa.Triangle()
|
|
algo2D.MaxElementArea(70.0)
|
|
|
|
# define a local "Deflection1D" hypothesis on the arc
|
|
algo_local = hexa.Segment(e_arc)
|
|
algo_local.Deflection1D(1.0)
|
|
|
|
# compute the mesh
|
|
hexa.Compute()
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_start_and_end_length
|
|
<h3>Start and End Length</h3>
|
|
|
|
\code
|
|
from geompy import *
|
|
import smesh
|
|
|
|
# create a box
|
|
box = MakeBoxDXDYDZ(10., 10., 10.)
|
|
addToStudy(box, "Box")
|
|
|
|
# get one edge of the box to put local hypothesis on
|
|
p5 = MakeVertex(5., 0., 0.)
|
|
EdgeX = GetEdgeNearPoint(box, p5)
|
|
addToStudyInFather(box, EdgeX, "Edge [0,0,0 - 10,0,0]")
|
|
|
|
# create a hexahedral mesh on the box
|
|
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
|
|
|
|
# set algorithms
|
|
algo1D = hexa.Segment()
|
|
hexa.Quadrangle()
|
|
hexa.Hexahedron()
|
|
|
|
# define "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments
|
|
algo1D.NumberOfSegments(4)
|
|
|
|
# create a local hypothesis
|
|
algo_local = hexa.Segment(EdgeX)
|
|
|
|
# define "StartEndLength" hypothesis to cut an edge in several segments with increasing geometric length
|
|
algo_local.StartEndLength(1, 6)
|
|
|
|
# define "Propagation" hypothesis that propagates all other hypothesis
|
|
# on all edges on the opposite side in case of quadrangular faces
|
|
algo_local.Propagation()
|
|
|
|
# compute the mesh
|
|
hexa.Compute()
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_average_length
|
|
<h3>Average Length</h3>
|
|
|
|
\code
|
|
from geompy import *
|
|
import smesh
|
|
|
|
# create a box
|
|
box = MakeBoxDXDYDZ(10., 10., 10.)
|
|
addToStudy(box, "Box")
|
|
|
|
# get one edge of the box to put local hypothesis on
|
|
p5 = MakeVertex(5., 0., 0.)
|
|
EdgeX = GetEdgeNearPoint(box, p5)
|
|
addToStudyInFather(box, EdgeX, "Edge [0,0,0 - 10,0,0]")
|
|
|
|
# create a hexahedral mesh on the box
|
|
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
|
|
|
|
# set algorithms
|
|
algo1D = hexa.Segment()
|
|
hexa.Quadrangle()
|
|
hexa.Hexahedron()
|
|
|
|
# define "NumberOfSegments" hypothesis to cut all edges in a fixed number of segments
|
|
algo1D.NumberOfSegments(4)
|
|
|
|
# create a sub-mesh
|
|
algo_local = hexa.Segment(EdgeX)
|
|
|
|
# define "LocalLength" hypothesis to cut an edge in several segments with the same length
|
|
algo_local.LocalLength(2.)
|
|
|
|
# define "Propagation" hypothesis that propagates all other hypothesis
|
|
# on all edges on the opposite side in case of quadrangular faces
|
|
algo_local.Propagation()
|
|
|
|
# compute the mesh
|
|
hexa.Compute()
|
|
\endcode
|
|
|
|
<br><h2>Defining 2D and 3D hypotheses</h2>
|
|
|
|
<br>
|
|
\anchor tui_max_element_area
|
|
<h3>Maximum Element Area</h3>
|
|
|
|
\code
|
|
import geompy
|
|
import smesh
|
|
import salome
|
|
|
|
# create a face
|
|
px = geompy.MakeVertex(100., 0. , 0. )
|
|
py = geompy.MakeVertex(0. , 100., 0. )
|
|
pz = geompy.MakeVertex(0. , 0. , 100.)
|
|
|
|
vxy = geompy.MakeVector(px, py)
|
|
arc = geompy.MakeArc(py, pz, px)
|
|
wire = geompy.MakeWire([vxy, arc])
|
|
|
|
isPlanarFace = 1
|
|
face = geompy.MakeFace(wire, isPlanarFace)
|
|
|
|
# add the face in the study
|
|
id_face = geompy.addToStudy(face, "Face to be meshed")
|
|
|
|
# create a mesh
|
|
tria_mesh = smesh.Mesh(face, "Face : triangulation")
|
|
|
|
# define 1D meshing:
|
|
algo = tria_mesh.Segment()
|
|
algo.NumberOfSegments(20)
|
|
|
|
# define 2D meshing:
|
|
|
|
# assign triangulation algorithm
|
|
algo = tria_mesh.Triangle()
|
|
|
|
# apply "Max Element Area" hypothesis to each triangle
|
|
algo.MaxElementArea(100)
|
|
|
|
# compute the mesh
|
|
tria_mesh.Compute()
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_max_element_volume
|
|
<h3>Maximum Element Volume</h3>
|
|
|
|
\code
|
|
import geompy
|
|
import smesh
|
|
|
|
# create a cylinder
|
|
cyl = geompy.MakeCylinderRH(30., 50.)
|
|
geompy.addToStudy(cyl, "cyl")
|
|
|
|
# create a mesh on the cylinder
|
|
tetra = smesh.Mesh(cyl, "Cylinder : tetrahedrical mesh")
|
|
|
|
# assign algorithms
|
|
algo1D = tetra.Segment()
|
|
algo2D = tetra.Triangle()
|
|
algo3D = tetra.Tetrahedron(smesh.NETGEN)
|
|
|
|
# assign 1D and 2D hypotheses
|
|
algo1D.NumberOfSegments(7)
|
|
algo2D.MaxElementArea(150.)
|
|
|
|
# assign Max Element Volume hypothesis
|
|
algo3D.MaxElementVolume(200.)
|
|
|
|
# compute the mesh
|
|
ret = tetra.Compute()
|
|
if ret == 0:
|
|
print "probleme when computing the mesh"
|
|
else:
|
|
print "Computation succeded"
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_length_from_edges
|
|
<h3>Length from Edges</h3>
|
|
|
|
\code
|
|
import geompy
|
|
import smesh
|
|
|
|
# create sketchers
|
|
sketcher1 = geompy.MakeSketcher("Sketcher:F 0 0:TT 70 0:TT 70 70:TT 0 70:WW")
|
|
sketcher2 = geompy.MakeSketcher("Sketcher:F 20 20:TT 50 20:TT 50 50:TT 20 50:WW")
|
|
|
|
# create a face from two wires
|
|
isPlanarFace = 1
|
|
face1 = geompy.MakeFaces([sketcher1, sketcher2], isPlanarFace)
|
|
geompy.addToStudy(face1, "Face1")
|
|
|
|
# create a mesh
|
|
tria = smesh.Mesh(face1, "Face : triangle 2D mesh")
|
|
|
|
# Define 1D meshing
|
|
algo1D = tria.Segment()
|
|
algo1D.NumberOfSegments(2)
|
|
|
|
# create and assign the algorithm for 2D meshing with triangles
|
|
algo2D = tria.Triangle()
|
|
|
|
# create and assign "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire
|
|
algo2D.LengthFromEdges()
|
|
|
|
# compute the mesh
|
|
tria.Compute()
|
|
\endcode
|
|
|
|
<br><h2>Defining Additional Hypotheses</h2>
|
|
|
|
<br>
|
|
\anchor tui_propagation
|
|
<h3>Propagation</h3>
|
|
|
|
\code
|
|
from geompy import *
|
|
import smesh
|
|
|
|
# create a box
|
|
box = MakeBoxDXDYDZ(10., 10., 10.)
|
|
addToStudy(box, "Box")
|
|
|
|
# get one edge of the box to put local hypothesis on
|
|
p5 = MakeVertex(5., 0., 0.)
|
|
EdgeX = GetEdgeNearPoint(box, p5)
|
|
addToStudyInFather(box, EdgeX, "Edge [0,0,0 - 10,0,0]")
|
|
|
|
# create a hexahedral mesh on the box
|
|
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
|
|
|
|
# set global algorithms and hypotheses
|
|
algo1D = hexa.Segment()
|
|
hexa.Quadrangle()
|
|
hexa.Hexahedron()
|
|
algo1D.NumberOfSegments(4)
|
|
|
|
# create a sub-mesh with local 1D hypothesis and propagation
|
|
algo_local = hexa.Segment(EdgeX)
|
|
|
|
# define "Arithmetic1D" hypothesis to cut an edge in several segments with increasing length
|
|
algo_local.Arithmetic1D(1, 4)
|
|
|
|
# define "Propagation" hypothesis that propagates all other 1D hypotheses
|
|
# from all edges on the opposite side of a face in case of quadrangular faces
|
|
algo_local.Propagation()
|
|
|
|
# compute the mesh
|
|
hexa.Compute()
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_defining_meshing_algos
|
|
<h2>Defining Meshing Algorithms</h2>
|
|
|
|
\code
|
|
import geompy
|
|
import smesh
|
|
|
|
# create a box
|
|
box = geompy.MakeBoxDXDYDZ(10., 10., 10.)
|
|
geompy.addToStudy(box, "Box")
|
|
|
|
# 1. Create a hexahedral mesh on the box
|
|
hexa = smesh.Mesh(box, "Box : hexahedrical mesh")
|
|
|
|
# create a Regular 1D algorithm for edges
|
|
algo1D = hexa.Segment()
|
|
|
|
# create a quadrangle 2D algorithm for faces
|
|
algo2D = hexa.Quadrangle()
|
|
|
|
# create a hexahedron 3D algorithm for solids
|
|
algo3D = hexa.Hexahedron()
|
|
|
|
# define hypotheses
|
|
algo1D.Arithmetic1D(1, 4)
|
|
|
|
# compute the mesh
|
|
hexa.Compute()
|
|
|
|
# 2. Create a tetrahedral mesh on the box
|
|
tetra = smesh.Mesh(box, "Box : tetrahedrical mesh")
|
|
|
|
# create a Regular 1D algorithm for edges
|
|
algo1D = tetra.Segment()
|
|
|
|
# create a Mefisto 2D algorithm for faces
|
|
algo2D = tetra.Triangle()
|
|
|
|
# create a Netgen 3D algorithm for solids
|
|
algo3D = tetra.Tetrahedron(smesh.NETGEN)
|
|
|
|
# define hypotheses
|
|
algo1D.Arithmetic1D(1, 4)
|
|
algo2D.LengthFromEdges()
|
|
|
|
# compute the mesh
|
|
tetra.Compute()
|
|
|
|
# 3. Create a tetrahedral mesh on the box with NETGEN_2D3D algorithm
|
|
tetraN = smesh.Mesh(box, "Box : tetrahedrical mesh by NETGEN_2D3D")
|
|
|
|
# create a Netgen_2D3D algorithm for solids
|
|
algo3D = tetraN.Tetrahedron(smesh.FULL_NETGEN)
|
|
|
|
# define hypotheses
|
|
n23_params = algo3D.Parameters()
|
|
|
|
# compute the mesh
|
|
tetraN.Compute()
|
|
\endcode
|
|
|
|
<br>
|
|
\anchor tui_projection
|
|
<h3>Projection Algorithms</h3>
|
|
|
|
\code
|
|
# Project prisms from one meshed box to another mesh on the same box
|
|
|
|
from smesh import *
|
|
|
|
# Prepare geometry
|
|
|
|
# Create a parallelepiped
|
|
box = geompy.MakeBoxDXDYDZ(200, 100, 70)
|
|
geompy.addToStudy( box, "box" )
|
|
|
|
# Get geom faces to mesh with triangles in the 1ts and 2nd meshes
|
|
faces = geompy.SubShapeAll(box, geompy.ShapeType["FACE"])
|
|
# 2 adjacent faces of the box
|
|
f1 = faces[2]
|
|
f2 = faces[0]
|
|
# face opposite to f2
|
|
f2opp = faces[1]
|
|
|
|
# Get vertices used to specify how to associate sides of faces at projection
|
|
[v1F1, v2F1] = geompy.SubShapeAll(f1, geompy.ShapeType["VERTEX"])[:2]
|
|
[v1F2, v2F2] = geompy.SubShapeAll(f2, geompy.ShapeType["VERTEX"])[:2]
|
|
geompy.addToStudyInFather( box, v1F1, "v1F1" )
|
|
geompy.addToStudyInFather( box, v2F1, "v2F1" )
|
|
geompy.addToStudyInFather( box, v1F2, "v1F2" )
|
|
geompy.addToStudyInFather( box, v2F2, "v2F2" )
|
|
|
|
# Make group of 3 edges of f1 and f2
|
|
edgesF1 = geompy.CreateGroup(f1, geompy.ShapeType["EDGE"])
|
|
geompy.UnionList( edgesF1, geompy.SubShapeAll(f1, geompy.ShapeType["EDGE"])[:3])
|
|
edgesF2 = geompy.CreateGroup(f2, geompy.ShapeType["EDGE"])
|
|
geompy.UnionList( edgesF2, geompy.SubShapeAll(f2, geompy.ShapeType["EDGE"])[:3])
|
|
geompy.addToStudyInFather( box, edgesF1, "edgesF1" )
|
|
geompy.addToStudyInFather( box, edgesF2, "edgesF2" )
|
|
|
|
|
|
# Make the source mesh with prisms
|
|
src_mesh = Mesh(box, "Source mesh")
|
|
src_mesh.Segment().NumberOfSegments(9,10)
|
|
src_mesh.Quadrangle()
|
|
src_mesh.Hexahedron()
|
|
src_mesh.Triangle(f1) # triangular sumbesh
|
|
src_mesh.Compute()
|
|
|
|
|
|
# Mesh the box using projection algoritms
|
|
|
|
# Define the same global 1D and 2D hypotheses
|
|
tgt_mesh = Mesh(box, "Target mesh")
|
|
tgt_mesh.Segment().NumberOfSegments(9,10,UseExisting=True)
|
|
tgt_mesh.Quadrangle()
|
|
|
|
# Define Projection 1D algorithm to project 1d mesh elements from group edgesF2 to edgesF1
|
|
# It is actually not needed, just a demonstration
|
|
proj1D = tgt_mesh.Projection1D( edgesF1 )
|
|
# each vertex must be at the end of a connected group of edges (or a sole edge)
|
|
proj1D.SourceEdge( edgesF2, src_mesh, v2F1, v2F2 )
|
|
|
|
# Define 2D hypotheses to project triangles from f1 face of the source mesh to
|
|
# f2 face in the target mesh. Vertices specify how to associate sides of faces
|
|
proj2D = tgt_mesh.Projection2D( f2 )
|
|
proj2D.SourceFace( f1, src_mesh, v1F1, v1F2, v2F1, v2F2 )
|
|
|
|
# 2D hypotheses to project triangles from f2 of target mesh to the face opposite to f2.
|
|
# Association of face sides is default
|
|
proj2D = tgt_mesh.Projection2D( f2opp )
|
|
proj2D.SourceFace( f2 )
|
|
|
|
# 3D hypotheses to project prisms from the source to the target mesh
|
|
proj3D = tgt_mesh.Projection3D()
|
|
proj3D.SourceShape3D( box, src_mesh, v1F1, v1F2, v2F1, v2F2 )
|
|
tgt_mesh.Compute()
|
|
|
|
# Move the source mesh to visualy compare the two meshes
|
|
src_mesh.TranslateObject( src_mesh, MakeDirStruct( 210, 0, 0 ), Copy=False)
|
|
|
|
\endcode
|
|
|
|
<br>
|
|
|
|
\anchor tui_fixed_points
|
|
|
|
<h2>1D Mesh with Fixed Points example</h2>
|
|
|
|
\code
|
|
import salome
|
|
import geompy
|
|
import smesh
|
|
import StdMeshers
|
|
|
|
# Create face and explode it on edges
|
|
face = geompy.MakeFaceHW(100, 100, 1)
|
|
edges = geompy.SubShapeAllSorted(face, geompy.ShapeType["EDGE"])
|
|
geompy.addToStudy( face, "Face" )
|
|
|
|
# get the first edge from exploded result
|
|
edge1 = geompy.GetSubShapeID(face, edges[0])
|
|
|
|
# Define Mesh on previously created face
|
|
Mesh_1 = smesh.Mesh(face)
|
|
|
|
# Create Fixed Point 1D hypothesis and define parameters.
|
|
# Note: values greater than 1.0 and less than 0.0 are not taken into account;
|
|
# duplicated values are removed. Also, if not specified explicitly, values 0.0 and 1.0
|
|
# add added automatically.
|
|
# The number of segments should correspond to the number of points (NbSeg = NbPnt-1);
|
|
# extra values of segments splitting parameter are not taken into account,
|
|
# while missing values are considered to be equal to 1.
|
|
Fixed_points_1D_1 = smesh.CreateHypothesis('FixedPoints1D')
|
|
Fixed_points_1D_1.SetPoints( [ 1.1, 0.9, 0.5, 0.0, 0.5, -0.3 ] )
|
|
Fixed_points_1D_1.SetNbSegments( [ 3, 1, 2 ] )
|
|
Fixed_points_1D_1.SetReversedEdges( [edge1] )
|
|
|
|
# Add hypothesis to mesh and define 2D parameters
|
|
Mesh_1.AddHypothesis(Fixed_points_1D_1)
|
|
Regular_1D = Mesh_1.Segment()
|
|
Quadrangle_2D = Mesh_1.Quadrangle()
|
|
# Compute mesh
|
|
Mesh_1.Compute()
|
|
\endcode
|
|
|
|
\anchor tui_radial_quadrangle
|
|
<h2> Radial Quadrangle 1D2D example </h2>
|
|
\code
|
|
from smesh import *
|
|
|
|
SetCurrentStudy(salome.myStudy)
|
|
|
|
# Create face from the wire and add to study
|
|
Face = geompy.MakeSketcher("Sketcher:F 0 0:TT 20 0:R 90:C 20 90:WF", [0, 0, 0, 1, 0, 0, 0, 0, 1])
|
|
geompy.addToStudy(Face,"Face")
|
|
edges = geompy.SubShapeAllSorted(Face, geompy.ShapeType["EDGE"])
|
|
circle, radius1, radius2 = edges
|
|
geompy.addToStudyInFather(Face, radius1,"radius1")
|
|
geompy.addToStudyInFather(Face, radius2,"radius2")
|
|
geompy.addToStudyInFather(Face, circle,"circle")
|
|
|
|
|
|
# Define geometry for mesh, and Radial Quadrange algorithm
|
|
mesh = smesh.Mesh(Face)
|
|
radial_Quad_algo = mesh.Quadrangle(algo=RADIAL_QUAD)
|
|
|
|
# The Radial Quadrange algorithm can work without any hypothesis
|
|
# In this case it uses "Default Nb of Segments" preferences parameter to discretize edges
|
|
mesh.Compute()
|
|
|
|
# The Radial Quadrange uses global or local 1d hypotheses if it does
|
|
# not have its own hypotheses.
|
|
# Define global hypotheses to discretize radial edges and a local one for circular edge
|
|
global_Nb_Segments = mesh.Segment().NumberOfSegments(5)
|
|
local_Nb_Segments = mesh.Segment(circle).NumberOfSegments(10)
|
|
mesh.Compute()
|
|
|
|
# Define own parameters of Radial Quadrange algorithm
|
|
radial_Quad_algo.NumberOfLayers( 4 )
|
|
mesh.Compute()
|
|
\endcode
|
|
|
|
\anchor tui_quadrangle_parameters
|
|
<h2>Quadrangle Parameters example </h2>
|
|
\code
|
|
from smesh import *
|
|
SetCurrentStudy(salome.myStudy)
|
|
|
|
# Get 1/4 part from the disk face.
|
|
Box_1 = geompy.MakeBoxDXDYDZ(100, 100, 100)
|
|
Disk_1 = geompy.MakeDiskR(100, 1)
|
|
Common_1 = geompy.MakeCommon(Disk_1, Box_1)
|
|
geompy.addToStudy( Disk_1, "Disk_1" )
|
|
geompy.addToStudy( Box_1, "Box_1" )
|
|
geompy.addToStudy( Common_1, "Common_1" )
|
|
|
|
# Set the Geometry for meshing
|
|
Mesh_1 = smesh.Mesh(Common_1)
|
|
|
|
|
|
# Define 1D hypothesis and cmpute the mesh
|
|
Regular_1D = Mesh_1.Segment()
|
|
Nb_Segments_1 = Regular_1D.NumberOfSegments(10)
|
|
Nb_Segments_1.SetDistrType( 0 )
|
|
|
|
# Create Quadrangle parameters and define the Base Vertex.
|
|
Quadrangle_2D = Mesh_1.Quadrangle().TriangleVertex( 8 )
|
|
|
|
Mesh_1.Compute()
|
|
\endcode
|
|
|
|
|
|
\anchor tui_import
|
|
<h2>"Use Existing Elements" example </h2>
|
|
\code
|
|
|
|
from smesh import *
|
|
SetCurrentStudy(salome.myStudy)
|
|
|
|
# Make a patritioned box
|
|
|
|
box = geompy.MakeBoxDXDYDZ(100,100,100)
|
|
|
|
N = geompy.MakeVectorDXDYDZ( 1,0,0 )
|
|
O = geompy.MakeVertex( 50,0,0 )
|
|
plane = geompy.MakePlane( O, N, 200 ) # plane YOZ
|
|
|
|
shape2boxes = geompy.MakeHalfPartition( box, plane )
|
|
boxes = geompy.SubShapeAllSorted(shape2boxes, geompy.ShapeType["SOLID"])
|
|
|
|
geompy.addToStudy( boxes[0], "boxes[0]")
|
|
geompy.addToStudy( boxes[1], "boxes[1]")
|
|
midFace0 = geompy.SubShapeAllSorted(boxes[0], geompy.ShapeType["FACE"])[5]
|
|
geompy.addToStudyInFather( boxes[0], midFace0, "middle Face")
|
|
midFace1 = geompy.SubShapeAllSorted(boxes[1], geompy.ShapeType["FACE"])[0]
|
|
geompy.addToStudyInFather( boxes[1], midFace1, "middle Face")
|
|
|
|
# Mesh one of boxes with quadrangles. It is a source mesh
|
|
|
|
srcMesh = Mesh(boxes[0], "source mesh") # box coloser to CS origin
|
|
nSeg1 = srcMesh.Segment().NumberOfSegments(4)
|
|
srcMesh.Quadrangle()
|
|
srcMesh.Compute()
|
|
srcFaceGroup = srcMesh.GroupOnGeom( midFace0, "src faces", FACE )
|
|
|
|
# Import faces from midFace0 to the target mesh
|
|
|
|
tgtMesh = Mesh(boxes[1], "target mesh")
|
|
importAlgo = tgtMesh.UseExisting2DElements(midFace1)
|
|
import2hyp = importAlgo.SourceFaces( [srcFaceGroup] )
|
|
tgtMesh.Segment().NumberOfSegments(3)
|
|
tgtMesh.Quadrangle()
|
|
tgtMesh.Compute()
|
|
|
|
# Import the whole source mesh with groups
|
|
import2hyp.SetCopySourceMesh(True,True)
|
|
tgtMesh.Compute()
|
|
\endcode
|
|
|
|
|
|
\n Other meshing algorithms:
|
|
|
|
<ul>
|
|
<li>\subpage tui_defining_blsurf_hypotheses_page</li>
|
|
<li>\subpage tui_defining_ghs3d_hypotheses_page</li>
|
|
</ul>
|
|
*/
|