smesh/src/SMESH/SMESH_Pattern.cxx

3902 lines
137 KiB
C++

// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
// File : SMESH_Pattern.hxx
// Created : Mon Aug 2 10:30:00 2004
// Author : Edward AGAPOV (eap)
#include "SMESH_Pattern.hxx"
#include <BRepTools.hxx>
#include <BRepTools_WireExplorer.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_Box.hxx>
#include <Bnd_Box2d.hxx>
#include <ElSLib.hxx>
#include <Extrema_GenExtPS.hxx>
#include <Extrema_POnSurf.hxx>
#include <Geom2d_Curve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <IntAna2d_AnaIntersection.hxx>
#include <TopAbs_ShapeEnum.hxx>
#include <TopExp.hxx>
#include <TopLoc_Location.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Iterator.hxx>
#include <TopoDS_Shell.hxx>
#include <TopoDS_Vertex.hxx>
#include <TopoDS_Wire.hxx>
#include <gp_Ax2.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Trsf.hxx>
#include <gp_XY.hxx>
#include <gp_XYZ.hxx>
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshFace.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESHDS_Group.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESHDS_SubMesh.hxx"
#include "SMESH_Block.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MeshEditor.hxx"
#include "SMESH_subMesh.hxx"
#include "utilities.h"
using namespace std;
typedef map< const SMDS_MeshElement*, int > TNodePointIDMap;
//=======================================================================
//function : SMESH_Pattern
//purpose :
//=======================================================================
SMESH_Pattern::SMESH_Pattern ()
{
}
//=======================================================================
//function : getInt
//purpose :
//=======================================================================
static inline int getInt( const char * theSring )
{
if ( *theSring < '0' || *theSring > '9' )
return -1;
char *ptr;
int val = strtol( theSring, &ptr, 10 );
if ( ptr == theSring ||
// there must not be neither '.' nor ',' nor 'E' ...
(*ptr != ' ' && *ptr != '\n' && *ptr != '\0'))
return -1;
return val;
}
//=======================================================================
//function : getDouble
//purpose :
//=======================================================================
static inline double getDouble( const char * theSring )
{
char *ptr;
return strtod( theSring, &ptr );
}
//=======================================================================
//function : readLine
//purpose : Put token starting positions in theFields until '\n' or '\0'
// Return the number of the found tokens
//=======================================================================
static int readLine (list <const char*> & theFields,
const char* & theLineBeg,
const bool theClearFields )
{
if ( theClearFields )
theFields.clear();
// algo:
/* loop */
/* switch ( symbol ) { */
/* case white-space: */
/* look for a non-space symbol; */
/* case string-end: */
/* case line-end: */
/* exit; */
/* case comment beginning: */
/* skip all till a line-end; */
/* case a number */
/* put its position in theFields, skip till a white-space;*/
/* default: */
/* abort; */
/* till line-end */
int nbRead = 0;
bool stopReading = false;
do {
bool goOn = true;
bool isNumber = false;
switch ( *theLineBeg )
{
case ' ': // white space
case '\t': // tab
case 13: // ^M
break;
case '\n': // a line ends
stopReading = ( nbRead > 0 );
break;
case '!': // comment
do theLineBeg++;
while ( *theLineBeg != '\n' && *theLineBeg != '\0' );
goOn = false;
break;
case '\0': // file ends
return nbRead;
case '-': // real number
case '+':
case '.':
isNumber = true;
default: // data
isNumber = isNumber || ( *theLineBeg >= '0' && *theLineBeg <= '9' );
if ( isNumber ) {
theFields.push_back( theLineBeg );
nbRead++;
do theLineBeg++;
while (*theLineBeg != ' ' &&
*theLineBeg != '\n' &&
*theLineBeg != '\0');
goOn = false;
}
else
return 0; // incorrect file format
}
if ( goOn )
theLineBeg++;
} while ( !stopReading );
return nbRead;
}
//=======================================================================
//function : Load
//purpose : Load a pattern from <theFile>
//=======================================================================
bool SMESH_Pattern::Load (const char* theFileContents)
{
MESSAGE("Load( file ) ");
// file structure:
// ! This is a comment
// NB_POINTS ! 1 integer - the number of points in the pattern.
// X1 Y1 [Z1] ! 2 or 3 reals - nodes coordinates within 2D or 3D domain:
// X2 Y2 [Z2] ! the pattern dimention is defined by the number of coordinates
// ...
// [ ID1 ID2 ... IDn ] ! Indices of key-points for a 2D pattern (only).
// ! elements description goes after all
// ID1 ID2 ... IDn ! 2-4 or 4-8 integers - nodal connectivity of a 2D or 3D element.
// ...
Clear();
const char* lineBeg = theFileContents;
list <const char*> fields;
const bool clearFields = true;
// NB_POINTS ! 1 integer - the number of points in the pattern.
if ( readLine( fields, lineBeg, clearFields ) != 1 ) {
MESSAGE("Error reading NB_POINTS");
return setErrorCode( ERR_READ_NB_POINTS );
}
int nbPoints = getInt( fields.front() );
// X1 Y1 [Z1] ! 2 or 3 reals - nodes coordinates within 2D or 3D domain:
// read the first point coordinates to define pattern dimention
int dim = readLine( fields, lineBeg, clearFields );
if ( dim == 2 )
myIs2D = true;
else if ( dim == 3 )
myIs2D = false;
else {
MESSAGE("Error reading points: wrong nb of coordinates");
return setErrorCode( ERR_READ_POINT_COORDS );
}
if ( nbPoints <= dim ) {
MESSAGE(" Too few points ");
return setErrorCode( ERR_READ_TOO_FEW_POINTS );
}
// read the rest points
int iPoint;
for ( iPoint = 1; iPoint < nbPoints; iPoint++ )
if ( readLine( fields, lineBeg, !clearFields ) != dim ) {
MESSAGE("Error reading points : wrong nb of coordinates ");
return setErrorCode( ERR_READ_POINT_COORDS );
}
// store point coordinates
myPoints.resize( nbPoints );
list <const char*>::iterator fIt = fields.begin();
for ( iPoint = 0; iPoint < nbPoints; iPoint++ )
{
TPoint & p = myPoints[ iPoint ];
for ( int iCoord = 1; iCoord <= dim; iCoord++, fIt++ )
{
double coord = getDouble( *fIt );
if ( !myIs2D && ( coord < 0.0 || coord > 1.0 )) {
MESSAGE("Error reading 3D points, value should be in [0,1]: " << coord);
Clear();
return setErrorCode( ERR_READ_3D_COORD );
}
p.myInitXYZ.SetCoord( iCoord, coord );
if ( myIs2D )
p.myInitUV.SetCoord( iCoord, coord );
}
}
// [ ID1 ID2 ... IDn ] ! Indices of key-points for a 2D pattern (only).
if ( myIs2D )
{
if ( readLine( fields, lineBeg, clearFields ) == 0 ) {
MESSAGE("Error: missing key-points");
Clear();
return setErrorCode( ERR_READ_NO_KEYPOINT );
}
set<int> idSet;
for ( fIt = fields.begin(); fIt != fields.end(); fIt++ )
{
int pointIndex = getInt( *fIt );
if ( pointIndex >= nbPoints || pointIndex < 0 ) {
MESSAGE("Error: invalid point index " << pointIndex );
Clear();
return setErrorCode( ERR_READ_BAD_INDEX );
}
if ( idSet.insert( pointIndex ).second ) // unique?
myKeyPointIDs.push_back( pointIndex );
}
}
// ID1 ID2 ... IDn ! 2-4 or 4-8 integers - nodal connectivity of a 2D or 3D element.
while ( readLine( fields, lineBeg, clearFields ))
{
myElemPointIDs.push_back( list< int >() );
list< int >& elemPoints = myElemPointIDs.back();
for ( fIt = fields.begin(); fIt != fields.end(); fIt++ )
{
int pointIndex = getInt( *fIt );
if ( pointIndex >= nbPoints || pointIndex < 0 ) {
MESSAGE("Error: invalid point index " << pointIndex );
Clear();
return setErrorCode( ERR_READ_BAD_INDEX );
}
elemPoints.push_back( pointIndex );
}
// check the nb of nodes in element
bool Ok = true;
switch ( elemPoints.size() ) {
case 3: if ( !myIs2D ) Ok = false; break;
case 4: break;
case 5:
case 6:
case 8: if ( myIs2D ) Ok = false; break;
default: Ok = false;
}
if ( !Ok ) {
MESSAGE("Error: wrong nb of nodes in element " << elemPoints.size() );
Clear();
return setErrorCode( ERR_READ_ELEM_POINTS );
}
}
if ( myElemPointIDs.empty() ) {
MESSAGE("Error: no elements");
Clear();
return setErrorCode( ERR_READ_NO_ELEMS );
}
findBoundaryPoints(); // sort key-points
return setErrorCode( ERR_OK );
}
//=======================================================================
//function : Save
//purpose : Save the loaded pattern into the file <theFileName>
//=======================================================================
bool SMESH_Pattern::Save (ostream& theFile)
{
MESSAGE(" ::Save(file) " );
if ( !IsLoaded() ) {
MESSAGE(" Pattern not loaded ");
return setErrorCode( ERR_SAVE_NOT_LOADED );
}
theFile << "!!! SALOME Mesh Pattern file" << endl;
theFile << "!!!" << endl;
theFile << "!!! Nb of points:" << endl;
theFile << myPoints.size() << endl;
// point coordinates
const int width = 8;
// theFile.width( 8 );
// theFile.setf(ios::fixed);// use 123.45 floating notation
// theFile.setf(ios::right);
// theFile.flags( theFile.flags() & ~ios::showpoint); // do not show trailing zeros
// theFile.setf(ios::showpoint); // do not show trailing zeros
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
for ( int i = 0; pVecIt != myPoints.end(); pVecIt++, i++ ) {
const gp_XYZ & xyz = (*pVecIt).myInitXYZ;
theFile << " " << setw( width ) << xyz.X() << " " << setw( width ) << xyz.Y();
if ( !myIs2D ) theFile << " " << setw( width ) << xyz.Z();
theFile << " !- " << i << endl; // point id to ease reading by a human being
}
// key-points
if ( myIs2D ) {
theFile << "!!! Indices of " << myKeyPointIDs.size() << " key-points:" << endl;
list< int >::const_iterator kpIt = myKeyPointIDs.begin();
for ( ; kpIt != myKeyPointIDs.end(); kpIt++ )
theFile << " " << *kpIt;
if ( !myKeyPointIDs.empty() )
theFile << endl;
}
// elements
theFile << "!!! Indices of points of " << myElemPointIDs.size() << " elements:" << endl;
list<list< int > >::const_iterator epIt = myElemPointIDs.begin();
for ( ; epIt != myElemPointIDs.end(); epIt++ )
{
const list< int > & elemPoints = *epIt;
list< int >::const_iterator iIt = elemPoints.begin();
for ( ; iIt != elemPoints.end(); iIt++ )
theFile << " " << *iIt;
theFile << endl;
}
theFile << endl;
return setErrorCode( ERR_OK );
}
//=======================================================================
//function : sortBySize
//purpose : sort theListOfList by size
//=======================================================================
template<typename T> struct TSizeCmp {
bool operator ()( const list < T > & l1, const list < T > & l2 )
const { return l1.size() < l2.size(); }
};
template<typename T> void sortBySize( list< list < T > > & theListOfList )
{
if ( theListOfList.size() > 2 ) {
TSizeCmp< T > SizeCmp;
theListOfList.sort( SizeCmp );
}
}
//=======================================================================
//function : getOrderedEdges
//purpose : return nb wires and a list of oredered edges
//=======================================================================
static int getOrderedEdges (const TopoDS_Face& theFace,
const TopoDS_Vertex& theFirstVertex,
list< TopoDS_Edge >& theEdges,
list< int > & theNbVertexInWires)
{
// put wires in a list, so that an outer wire comes first
list<TopoDS_Wire> aWireList;
TopoDS_Wire anOuterWire = BRepTools::OuterWire( theFace );
aWireList.push_back( anOuterWire );
for ( TopoDS_Iterator wIt (theFace); wIt.More(); wIt.Next() )
if ( !anOuterWire.IsSame( wIt.Value() ))
aWireList.push_back( TopoDS::Wire( wIt.Value() ));
// loop on edges of wires
theNbVertexInWires.clear();
list<TopoDS_Wire>::iterator wlIt = aWireList.begin();
for ( ; wlIt != aWireList.end(); wlIt++ )
{
int iE;
BRepTools_WireExplorer wExp( *wlIt, theFace );
for ( iE = 0; wExp.More(); wExp.Next(), iE++ )
{
TopoDS_Edge edge = wExp.Current();
edge = TopoDS::Edge( edge.Oriented( wExp.Orientation() ));
theEdges.push_back( edge );
}
theNbVertexInWires.push_back( iE );
iE = 0;
if ( wlIt == aWireList.begin() && theEdges.size() > 1 ) { // the outer wire
// orient closed edges
list< TopoDS_Edge >::iterator eIt, eIt2;
for ( eIt = theEdges.begin(); eIt != theEdges.end(); eIt++ )
{
TopoDS_Edge& edge = *eIt;
if ( TopExp::FirstVertex( edge ).IsSame( TopExp::LastVertex( edge ) ))
{
eIt2 = eIt;
bool isNext = ( eIt2 == theEdges.begin() );
TopoDS_Edge edge2 = isNext ? *(++eIt2) : *(--eIt2);
double f1,l1,f2,l2;
Handle(Geom2d_Curve) c1 = BRep_Tool::CurveOnSurface( edge, theFace, f1,l1 );
Handle(Geom2d_Curve) c2 = BRep_Tool::CurveOnSurface( edge2, theFace, f2,l2 );
gp_Pnt2d pf = c1->Value( edge.Orientation() == TopAbs_FORWARD ? f1 : l1 );
gp_Pnt2d pl = c1->Value( edge.Orientation() == TopAbs_FORWARD ? l1 : f1 );
bool isFirst = ( edge2.Orientation() == TopAbs_FORWARD ? isNext : !isNext );
gp_Pnt2d p2 = c2->Value( isFirst ? f2 : l2 );
isFirst = ( p2.SquareDistance( pf ) < p2.SquareDistance( pl ));
if ( isNext ? isFirst : !isFirst )
edge.Reverse();
}
}
// rotate theEdges until it begins from theFirstVertex
if ( ! theFirstVertex.IsNull() )
while ( !theFirstVertex.IsSame( TopExp::FirstVertex( theEdges.front(), true )))
{
theEdges.splice(theEdges.end(), theEdges,
theEdges.begin(), ++ theEdges.begin());
if ( iE++ > theNbVertexInWires.back() )
break; // break infinite loop
}
}
}
return aWireList.size();
}
//=======================================================================
//function : project
//purpose :
//=======================================================================
static gp_XY project (const SMDS_MeshNode* theNode,
Extrema_GenExtPS & theProjectorPS)
{
gp_Pnt P( theNode->X(), theNode->Y(), theNode->Z() );
theProjectorPS.Perform( P );
if ( !theProjectorPS.IsDone() ) {
MESSAGE( "SMESH_Pattern: point projection FAILED");
return gp_XY(0.,0.);
}
double u, v, minVal = DBL_MAX;
for ( int i = theProjectorPS.NbExt(); i > 0; i-- )
if ( theProjectorPS.Value( i ) < minVal ) {
minVal = theProjectorPS.Value( i );
theProjectorPS.Point( i ).Parameter( u, v );
}
return gp_XY( u, v );
}
//=======================================================================
//function : isMeshBoundToShape
//purpose : return true if all 2d elements are bound to shape
//=======================================================================
static bool isMeshBoundToShape(SMESH_Mesh* theMesh)
{
// check faces binding
SMESHDS_Mesh * aMeshDS = theMesh->GetMeshDS();
SMESHDS_SubMesh * aMainSubMesh = aMeshDS->MeshElements( aMeshDS->ShapeToMesh() );
if ( aMeshDS->NbFaces() != aMainSubMesh->NbElements() )
return false;
// check face nodes binding
SMDS_FaceIteratorPtr fIt = aMeshDS->facesIterator();
while ( fIt->more() )
{
SMDS_ElemIteratorPtr nIt = fIt->next()->nodesIterator();
while ( nIt->more() )
{
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nIt->next() );
SMDS_PositionPtr pos = node->GetPosition();
if ( !pos || !pos->GetShapeId() )
return false;
}
}
return true;
}
//=======================================================================
//function : Load
//purpose : Create a pattern from the mesh built on <theFace>.
// <theProject>==true makes override nodes positions
// on <theFace> computed by mesher
//=======================================================================
bool SMESH_Pattern::Load (SMESH_Mesh* theMesh,
const TopoDS_Face& theFace,
bool theProject)
{
MESSAGE(" ::Load(face) " );
Clear();
myIs2D = true;
SMESHDS_Mesh * aMeshDS = theMesh->GetMeshDS();
SMESHDS_SubMesh * fSubMesh = aMeshDS->MeshElements( theFace );
int nbNodes = ( !fSubMesh ? 0 : fSubMesh->NbNodes() );
int nbElems = ( !fSubMesh ? 0 : fSubMesh->NbElements() );
if ( nbElems == 0 && aMeshDS->NbFaces() == 0 )
{
MESSAGE( "No elements bound to the face");
return setErrorCode( ERR_LOAD_EMPTY_SUBMESH );
}
// check that face is not closed
TopoDS_Vertex bidon;
list<TopoDS_Edge> eList;
getOrderedEdges( theFace, bidon, eList, myNbKeyPntInBoundary );
list<TopoDS_Edge>::iterator elIt = eList.begin();
for ( ; elIt != eList.end() ; elIt++ )
if ( BRep_Tool::IsClosed( *elIt , theFace ))
return setErrorCode( ERR_LOADF_CLOSED_FACE );
Extrema_GenExtPS projector;
GeomAdaptor_Surface aSurface( BRep_Tool::Surface( theFace ));
if ( theProject || nbElems == 0 )
projector.Initialize( aSurface, 20,20, 1e-5,1e-5 );
int iPoint = 0;
TNodePointIDMap nodePointIDMap;
if ( nbElems == 0 || (theProject &&
theMesh->IsMainShape( theFace ) &&
!isMeshBoundToShape( theMesh )))
{
MESSAGE("Project the whole mesh");
// ---------------------------------------------------------------
// The case where the whole mesh is projected to theFace
// ---------------------------------------------------------------
// put nodes of all faces in the nodePointIDMap and fill myElemPointIDs
SMDS_FaceIteratorPtr fIt = aMeshDS->facesIterator();
while ( fIt->more() )
{
myElemPointIDs.push_back( list< int >() );
list< int >& elemPoints = myElemPointIDs.back();
SMDS_ElemIteratorPtr nIt = fIt->next()->nodesIterator();
while ( nIt->more() )
{
const SMDS_MeshElement* node = nIt->next();
TNodePointIDMap::iterator nIdIt = nodePointIDMap.find( node );
if ( nIdIt == nodePointIDMap.end() )
{
elemPoints.push_back( iPoint );
nodePointIDMap.insert( make_pair( node, iPoint++ ));
}
else
elemPoints.push_back( (*nIdIt).second );
}
}
myPoints.resize( iPoint );
// project all nodes of 2d elements to theFace
TNodePointIDMap::iterator nIdIt = nodePointIDMap.begin();
for ( ; nIdIt != nodePointIDMap.end(); nIdIt++ )
{
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( (*nIdIt).first );
TPoint * p = & myPoints[ (*nIdIt).second ];
p->myInitUV = project( node, projector );
p->myInitXYZ.SetCoord( p->myInitUV.X(), p->myInitUV.Y(), 0 );
}
// find key-points: the points most close to UV of vertices
TopExp_Explorer vExp( theFace, TopAbs_VERTEX );
set<int> foundIndices;
for ( ; vExp.More(); vExp.Next() ) {
const TopoDS_Vertex v = TopoDS::Vertex( vExp.Current() );
gp_Pnt2d uv = BRep_Tool::Parameters( v, theFace );
double minDist = DBL_MAX;
int index;
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
for ( iPoint = 0; pVecIt != myPoints.end(); pVecIt++, iPoint++ ) {
double dist = uv.SquareDistance( (*pVecIt).myInitUV );
if ( dist < minDist ) {
minDist = dist;
index = iPoint;
}
}
if ( foundIndices.insert( index ).second ) // unique?
myKeyPointIDs.push_back( index );
}
myIsBoundaryPointsFound = false;
}
else
{
// ---------------------------------------------------------------------
// The case where a pattern is being made from the mesh built by mesher
// ---------------------------------------------------------------------
// Load shapes in the consequent order and count nb of points
// vertices
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ ) {
myShapeIDMap.Add( TopExp::FirstVertex( *elIt, true ));
SMESHDS_SubMesh * eSubMesh = aMeshDS->MeshElements( *elIt );
if ( eSubMesh )
nbNodes += eSubMesh->NbNodes() + 1;
}
// edges
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
myShapeIDMap.Add( *elIt );
// the face
myShapeIDMap.Add( theFace );
myPoints.resize( nbNodes );
// Load U of points on edges
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
{
TopoDS_Edge & edge = *elIt;
list< TPoint* > & ePoints = getShapePoints( edge );
double f, l;
Handle(Geom2d_Curve) C2d;
if ( !theProject )
C2d = BRep_Tool::CurveOnSurface( edge, theFace, f, l );
bool isForward = ( edge.Orientation() == TopAbs_FORWARD );
// the forward key-point
TopoDS_Shape v = TopExp::FirstVertex( edge, true );
list< TPoint* > & vPoint = getShapePoints( v );
if ( vPoint.empty() )
{
SMESHDS_SubMesh * vSubMesh = aMeshDS->MeshElements( v );
if ( vSubMesh && vSubMesh->NbNodes() ) {
myKeyPointIDs.push_back( iPoint );
SMDS_NodeIteratorPtr nIt = vSubMesh->GetNodes();
const SMDS_MeshNode* node = nIt->next();
nodePointIDMap.insert( make_pair( node, iPoint ));
TPoint* keyPoint = &myPoints[ iPoint++ ];
vPoint.push_back( keyPoint );
if ( theProject )
keyPoint->myInitUV = project( node, projector );
else
keyPoint->myInitUV = C2d->Value( isForward ? f : l ).XY();
keyPoint->myInitXYZ.SetCoord (keyPoint->myInitUV.X(), keyPoint->myInitUV.Y(), 0);
}
}
if ( !vPoint.empty() )
ePoints.push_back( vPoint.front() );
// on-edge points
SMESHDS_SubMesh * eSubMesh = aMeshDS->MeshElements( edge );
if ( eSubMesh && eSubMesh->NbNodes() )
{
// loop on nodes of an edge: sort them by param on edge
typedef map < double, const SMDS_MeshNode* > TParamNodeMap;
TParamNodeMap paramNodeMap;
SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( nIt->next() );
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(node->GetPosition().get());
double u = epos->GetUParameter();
paramNodeMap.insert( TParamNodeMap::value_type( u, node ));
}
// put U in [0,1] so that the first key-point has U==0
double du = l - f;
TParamNodeMap::iterator unIt = paramNodeMap.begin();
TParamNodeMap::reverse_iterator unRIt = paramNodeMap.rbegin();
while ( unIt != paramNodeMap.end() )
{
TPoint* p = & myPoints[ iPoint ];
ePoints.push_back( p );
const SMDS_MeshNode* node = isForward ? (*unIt).second : (*unRIt).second;
nodePointIDMap.insert ( make_pair( node, iPoint ));
if ( theProject )
p->myInitUV = project( node, projector );
else {
double u = isForward ? (*unIt).first : (*unRIt).first;
p->myInitU = isForward ? (( u - f ) / du ) : ( 1.0 - ( u - f ) / du );
p->myInitUV = C2d->Value( u ).XY();
}
p->myInitXYZ.SetCoord( p->myInitUV.X(), p->myInitUV.Y(), 0 );
unIt++; unRIt++;
iPoint++;
}
}
// the reverse key-point
v = TopExp::LastVertex( edge, true ).Reversed();
list< TPoint* > & vPoint2 = getShapePoints( v );
if ( vPoint2.empty() )
{
SMESHDS_SubMesh * vSubMesh = aMeshDS->MeshElements( v );
if ( vSubMesh && vSubMesh->NbNodes() ) {
myKeyPointIDs.push_back( iPoint );
SMDS_NodeIteratorPtr nIt = vSubMesh->GetNodes();
const SMDS_MeshNode* node = nIt->next();
nodePointIDMap.insert( make_pair( node, iPoint ));
TPoint* keyPoint = &myPoints[ iPoint++ ];
vPoint2.push_back( keyPoint );
if ( theProject )
keyPoint->myInitUV = project( node, projector );
else
keyPoint->myInitUV = C2d->Value( isForward ? l : f ).XY();
keyPoint->myInitXYZ.SetCoord( keyPoint->myInitUV.X(), keyPoint->myInitUV.Y(), 0 );
}
}
if ( !vPoint2.empty() )
ePoints.push_back( vPoint2.front() );
// compute U of edge-points
if ( theProject )
{
double totalDist = 0;
list< TPoint* >::iterator pIt = ePoints.begin();
TPoint* prevP = *pIt;
prevP->myInitU = totalDist;
for ( pIt++; pIt != ePoints.end(); pIt++ ) {
TPoint* p = *pIt;
totalDist += ( p->myInitUV - prevP->myInitUV ).Modulus();
p->myInitU = totalDist;
prevP = p;
}
if ( totalDist > DBL_MIN)
for ( pIt = ePoints.begin(); pIt != ePoints.end(); pIt++ ) {
TPoint* p = *pIt;
p->myInitU /= totalDist;
}
}
} // loop on edges of a wire
// Load in-face points and elements
if ( fSubMesh && fSubMesh->NbElements() )
{
list< TPoint* > & fPoints = getShapePoints( theFace );
SMDS_NodeIteratorPtr nIt = fSubMesh->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( nIt->next() );
nodePointIDMap.insert( make_pair( node, iPoint ));
TPoint* p = &myPoints[ iPoint++ ];
fPoints.push_back( p );
if ( theProject )
p->myInitUV = project( node, projector );
else {
const SMDS_FacePosition* pos =
static_cast<const SMDS_FacePosition*>(node->GetPosition().get());
p->myInitUV.SetCoord( pos->GetUParameter(), pos->GetVParameter() );
}
p->myInitXYZ.SetCoord( p->myInitUV.X(), p->myInitUV.Y(), 0 );
}
// load elements
SMDS_ElemIteratorPtr elemIt = fSubMesh->GetElements();
while ( elemIt->more() ) {
SMDS_ElemIteratorPtr nIt = elemIt->next()->nodesIterator();
myElemPointIDs.push_back( list< int >() );
list< int >& elemPoints = myElemPointIDs.back();
while ( nIt->more() )
elemPoints.push_back( nodePointIDMap[ nIt->next() ]);
}
}
myIsBoundaryPointsFound = true;
}
// Assure that U range is proportional to V range
Bnd_Box2d bndBox;
vector< TPoint >::iterator pVecIt = myPoints.begin();
for ( ; pVecIt != myPoints.end(); pVecIt++ )
bndBox.Add( gp_Pnt2d( (*pVecIt).myInitUV ));
double minU, minV, maxU, maxV;
bndBox.Get( minU, minV, maxU, maxV );
double dU = maxU - minU, dV = maxV - minV;
if ( dU <= DBL_MIN || dV <= DBL_MIN ) {
Clear();
return setErrorCode( ERR_LOADF_NARROW_FACE );
}
double ratio = dU / dV, maxratio = 3, scale;
int iCoord = 0;
if ( ratio > maxratio ) {
scale = ratio / maxratio;
iCoord = 2;
}
else if ( ratio < 1./maxratio ) {
scale = maxratio / ratio;
iCoord = 1;
}
if ( iCoord ) {
SCRUTE( scale );
for ( pVecIt = myPoints.begin(); pVecIt != myPoints.end(); pVecIt++ ) {
TPoint & p = *pVecIt;
p.myInitUV.SetCoord( iCoord, p.myInitUV.Coord( iCoord ) * scale );
p.myInitXYZ.SetCoord( p.myInitUV.X(), p.myInitUV.Y(), 0 );
}
}
if ( myElemPointIDs.empty() ) {
MESSAGE( "No elements bound to the face");
return setErrorCode( ERR_LOAD_EMPTY_SUBMESH );
}
return setErrorCode( ERR_OK );
}
//=======================================================================
//function : computeUVOnEdge
//purpose : compute coordinates of points on theEdge
//=======================================================================
void SMESH_Pattern::computeUVOnEdge (const TopoDS_Edge& theEdge,
const list< TPoint* > & ePoints )
{
bool isForward = ( theEdge.Orientation() == TopAbs_FORWARD );
double f, l;
Handle(Geom2d_Curve) C2d =
BRep_Tool::CurveOnSurface( theEdge, TopoDS::Face( myShape ), f, l );
ePoints.back()->myInitU = 1.0;
list< TPoint* >::const_iterator pIt = ePoints.begin();
for ( pIt++; pIt != ePoints.end(); pIt++ )
{
TPoint* point = *pIt;
// U
double du = ( isForward ? point->myInitU : 1 - point->myInitU );
point->myU = ( f * ( 1 - du ) + l * du );
// UV
point->myUV = C2d->Value( point->myU ).XY();
}
}
//=======================================================================
//function : intersectIsolines
//purpose :
//=======================================================================
static bool intersectIsolines(const gp_XY& uv11, const gp_XY& uv12, const double r1,
const gp_XY& uv21, const gp_XY& uv22, const double r2,
gp_XY& resUV,
bool& isDeformed)
{
gp_XY loc1 = uv11 * ( 1 - r1 ) + uv12 * r1;
gp_XY loc2 = uv21 * ( 1 - r2 ) + uv22 * r2;
resUV = 0.5 * ( loc1 + loc2 );
isDeformed = ( loc1 - loc2 ).SquareModulus() > 1e-8;
// double len1 = ( uv11 - uv12 ).Modulus();
// double len2 = ( uv21 - uv22 ).Modulus();
// resUV = loc1 * len2 / ( len1 + len2 ) + loc2 * len1 / ( len1 + len2 );
// return true;
// gp_Lin2d line1( uv11, uv12 - uv11 );
// gp_Lin2d line2( uv21, uv22 - uv21 );
// double angle = Abs( line1.Angle( line2 ) );
// IntAna2d_AnaIntersection inter;
// inter.Perform( line1.Normal( loc1 ), line2.Normal( loc2 ) );
// if ( inter.IsDone() && inter.NbPoints() == 1 )
// {
// gp_Pnt2d interUV = inter.Point(1).Value();
// resUV += interUV.XY();
// inter.Perform( line1, line2 );
// interUV = inter.Point(1).Value();
// resUV += interUV.XY();
// resUV /= 2.;
// }
return true;
}
//=======================================================================
//function : compUVByIsoIntersection
//purpose :
//=======================================================================
bool SMESH_Pattern::compUVByIsoIntersection (const list< list< TPoint* > >& theBndPoints,
const gp_XY& theInitUV,
gp_XY& theUV,
bool & theIsDeformed )
{
// compute UV by intersection of 2 iso lines
//gp_Lin2d isoLine[2];
gp_XY uv1[2], uv2[2];
double ratio[2];
const double zero = DBL_MIN;
for ( int iIso = 0; iIso < 2; iIso++ )
{
// to build an iso line:
// find 2 pairs of consequent edge-points such that the range of their
// initial parameters encloses the in-face point initial parameter
gp_XY UV[2], initUV[2];
int nbUV = 0, iCoord = iIso + 1;
double initParam = theInitUV.Coord( iCoord );
list< list< TPoint* > >::const_iterator bndIt = theBndPoints.begin();
for ( ; bndIt != theBndPoints.end(); bndIt++ )
{
const list< TPoint* > & bndPoints = * bndIt;
TPoint* prevP = bndPoints.back(); // this is the first point
list< TPoint* >::const_iterator pIt = bndPoints.begin();
bool coincPrev = false;
// loop on the edge-points
for ( ; pIt != bndPoints.end(); pIt++ )
{
double paramDiff = initParam - (*pIt)->myInitUV.Coord( iCoord );
double prevParamDiff = initParam - prevP->myInitUV.Coord( iCoord );
double sumOfDiff = Abs(prevParamDiff) + Abs(paramDiff);
if (!coincPrev && // ignore if initParam coincides with prev point param
sumOfDiff > zero && // ignore if both points coincide with initParam
prevParamDiff * paramDiff <= zero )
{
// find UV in parametric space of theFace
double r = Abs(prevParamDiff) / sumOfDiff;
gp_XY uvInit = (*pIt)->myInitUV * r + prevP->myInitUV * ( 1 - r );
int i = nbUV++;
if ( i >= 2 ) {
// throw away uv most distant from <theInitUV>
gp_XY vec0 = initUV[0] - theInitUV;
gp_XY vec1 = initUV[1] - theInitUV;
gp_XY vec = uvInit - theInitUV;
bool isBetween = ( vec0 * vec1 < 0 ); // is theInitUV between initUV[0] and initUV[1]
double dist0 = vec0.SquareModulus();
double dist1 = vec1.SquareModulus();
double dist = vec .SquareModulus();
if ( !isBetween || dist < dist0 || dist < dist1 ) {
i = ( dist0 < dist1 ? 1 : 0 );
if ( isBetween && vec.Dot( i ? vec1 : vec0 ) < 0 )
i = 3; // theInitUV must remain between
}
}
if ( i < 2 ) {
initUV[ i ] = uvInit;
UV[ i ] = (*pIt)->myUV * r + prevP->myUV * ( 1 - r );
}
coincPrev = ( Abs(paramDiff) <= zero );
}
else
coincPrev = false;
prevP = *pIt;
}
}
if ( nbUV < 2 || (UV[0]-UV[1]).SquareModulus() <= DBL_MIN*DBL_MIN ) {
MESSAGE(" consequent edge-points not found, nb UV found: " << nbUV <<
", for point: " << theInitUV.X() <<" " << theInitUV.Y() );
return setErrorCode( ERR_APPLF_BAD_TOPOLOGY );
}
// an iso line should be normal to UV[0] - UV[1] direction
// and be located at the same relative distance as from initial ends
//gp_Lin2d iso( UV[0], UV[0] - UV[1] );
double r =
(initUV[0]-theInitUV).Modulus() / (initUV[0]-initUV[1]).Modulus();
//gp_Pnt2d isoLoc = UV[0] * ( 1 - r ) + UV[1] * r;
//isoLine[ iIso ] = iso.Normal( isoLoc );
uv1[ iIso ] = UV[0];
uv2[ iIso ] = UV[1];
ratio[ iIso ] = r;
}
if ( !intersectIsolines( uv1[0], uv2[0], ratio[0],
uv1[1], uv2[1], ratio[1], theUV, theIsDeformed )) {
MESSAGE(" Cant intersect isolines for a point "<<theInitUV.X()<<", "<<theInitUV.Y());
return setErrorCode( ERR_APPLF_BAD_TOPOLOGY );
}
return true;
}
// ==========================================================
// structure representing a node of a grid of iso-poly-lines
// ==========================================================
struct TIsoNode {
bool myIsMovable;
gp_XY myInitUV;
gp_XY myUV;
double myRatio[2];
gp_Dir2d myDir[2]; // boundary tangent dir for boundary nodes, iso dir for internal ones
TIsoNode* myNext[4]; // order: (iDir=0,isForward=0), (1,0), (0,1), (1,1)
TIsoNode* myBndNodes[4]; // order: (iDir=0,i=0), (1,0), (0,1), (1,1)
TIsoNode(double initU, double initV):
myInitUV( initU, initV ), myUV( 1e100, 1e100 ), myIsMovable(true)
{ myNext[0] = myNext[1] = myNext[2] = myNext[3] = 0; }
bool IsUVComputed() const
{ return myUV.X() != 1e100; }
bool IsMovable() const
{ return myIsMovable && myNext[0] && myNext[1] && myNext[2] && myNext[3]; }
void SetNotMovable()
{ myIsMovable = false; }
void SetBoundaryNode(TIsoNode* node, int iDir, int i)
{ myBndNodes[ iDir + i * 2 ] = node; }
TIsoNode* GetBoundaryNode(int iDir, int i)
{ return myBndNodes[ iDir + i * 2 ]; }
void SetNext(TIsoNode* node, int iDir, int isForward)
{ myNext[ iDir + isForward * 2 ] = node; }
TIsoNode* GetNext(int iDir, int isForward)
{ return myNext[ iDir + isForward * 2 ]; }
};
//=======================================================================
//function : getNextNode
//purpose :
//=======================================================================
static inline TIsoNode* getNextNode(const TIsoNode* node, int dir )
{
TIsoNode* n = node->myNext[ dir ];
if ( n && !n->IsUVComputed()/* && node->IsMovable()*/ ) {
n = 0;//node->myBndNodes[ dir ];
// MESSAGE("getNextNode: use bnd for node "<<
// node->myInitUV.X()<<" "<<node->myInitUV.Y());
}
return n;
}
//=======================================================================
//function : checkQuads
//purpose : check if newUV destortes quadrangles around node,
// and if ( crit == FIX_OLD ) fix newUV in this case
//=======================================================================
enum { CHECK_NEW_IN, CHECK_NEW_OK, FIX_OLD };
static bool checkQuads (const TIsoNode* node,
gp_XY& newUV,
const bool reversed,
const int crit = FIX_OLD,
double fixSize = 0.)
{
gp_XY oldUV = node->myUV, oldUVFixed[4], oldUVImpr[4];
int nbOldFix = 0, nbOldImpr = 0;
double newBadRate = 0, oldBadRate = 0;
bool newIsOk = true, newIsIn = true, oldIsIn = true, oldIsOk = true;
int i, dir1 = 0, dir2 = 3;
for ( ; dir1 < 4; dir1++, dir2++ ) // loop on 4 quadrangles around <node>
{
if ( dir2 > 3 ) dir2 = 0;
TIsoNode* n[3];
// walking counterclockwise around a quad,
// nodes are in the order: node, n[0], n[1], n[2]
n[0] = getNextNode( node, dir1 );
n[2] = getNextNode( node, dir2 );
if ( !n[0] || !n[2] ) continue;
n[1] = getNextNode( n[0], dir2 );
if ( !n[1] ) n[1] = getNextNode( n[2], dir1 );
bool isTriangle = ( !n[1] );
if ( reversed ) {
TIsoNode* tmp = n[0]; n[0] = n[2]; n[2] = tmp;
}
// if ( fixSize != 0 ) {
// cout<<"NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<" UV: "<<node->myUV.X()<<" "<<node->myUV.Y()<<endl;
// cout<<"\t0: "<<n[0]->myInitUV.X()<<" "<<n[0]->myInitUV.Y()<<" UV: "<<n[0]->myUV.X()<<" "<<n[0]->myUV.Y()<<endl;
// cout<<"\t1: "<<n[1]->myInitUV.X()<<" "<<n[1]->myInitUV.Y()<<" UV: "<<n[1]->myUV.X()<<" "<<n[1]->myUV.Y()<<endl;
// cout<<"\t2: "<<n[2]->myInitUV.X()<<" "<<n[2]->myInitUV.Y()<<" UV: "<<n[2]->myUV.X()<<" "<<n[2]->myUV.Y()<<endl;
// }
// check if a quadrangle is degenerated
if ( !isTriangle &&
((( n[0]->myUV - n[1]->myUV ).SquareModulus() <= DBL_MIN ) ||
(( n[2]->myUV - n[1]->myUV ).SquareModulus() <= DBL_MIN )))
isTriangle = true;
if ( isTriangle &&
( n[0]->myUV - n[2]->myUV ).SquareModulus() <= DBL_MIN )
continue;
// find min size of the diagonal node-n[1]
double minDiag = fixSize;
if ( minDiag == 0. ) {
double maxLen2 = ( node->myUV - n[0]->myUV ).SquareModulus();
if ( !isTriangle ) {
maxLen2 = Max( maxLen2, ( n[0]->myUV - n[1]->myUV ).SquareModulus() );
maxLen2 = Max( maxLen2, ( n[1]->myUV - n[2]->myUV ).SquareModulus() );
}
maxLen2 = Max( maxLen2, ( n[2]->myUV - node->myUV ).SquareModulus() );
minDiag = sqrt( maxLen2 ) * PI / 60.; // ~ maxLen * Sin( 3 deg )
}
// check if newUV is behind 3 dirs: n[0]-n[1], n[1]-n[2] and n[0]-n[2]
// ( behind means "to the right of")
// it is OK if
// 1. newUV is not behind 01 and 12 dirs
// 2. or newUV is not behind 02 dir and n[2] is convex
bool newIn[3] = { true, true, true }, newOk[3] = { true, true, true };
bool wasIn[3] = { true, true, true }, wasOk[3] = { true, true, true };
gp_Vec2d moveVec[3], outVec[3];
for ( i = isTriangle ? 2 : 0; i < 3; i++ )
{
bool isDiag = ( i == 2 );
if ( isDiag && newOk[0] && newOk[1] && !isTriangle )
break;
gp_Vec2d sideDir;
if ( isDiag )
sideDir = gp_Vec2d( n[0]->myUV, n[2]->myUV );
else
sideDir = gp_Vec2d( n[i]->myUV, n[i+1]->myUV );
gp_Vec2d outDir( sideDir.Y(), -sideDir.X() ); // to the right
outDir.Normalize();
gp_Vec2d newDir( n[i]->myUV, newUV );
gp_Vec2d oldDir( n[i]->myUV, oldUV );
outVec[i] = outDir;
if ( newIsOk ) newOk[i] = ( outDir * newDir < -minDiag );
if ( newIsIn ) newIn[i] = ( outDir * newDir < 0 );
if ( crit == FIX_OLD ) {
wasIn[i] = ( outDir * oldDir < 0 );
wasOk[i] = ( outDir * oldDir < -minDiag );
if ( !newOk[i] )
newBadRate += outDir * newDir;
if ( !wasOk[i] )
oldBadRate += outDir * oldDir;
// push node inside
if ( !wasOk[i] ) {
double oldDist = - outDir * oldDir;//, l2 = outDir * newDir;
// double r = ( l1 - minDiag ) / ( l1 + l2 );
// moveVec[i] = r * gp_Vec2d( node->myUV, newUV );
moveVec[i] = ( oldDist - minDiag ) * outDir;
}
}
}
// check if n[2] is convex
bool convex = true;
if ( !isTriangle )
convex = ( outVec[0] * gp_Vec2d( n[1]->myUV, n[2]->myUV ) < 0 );
bool isNewOk = ( newOk[0] && newOk[1] ) || ( newOk[2] && convex );
bool isNewIn = ( newIn[0] && newIn[1] ) || ( newIn[2] && convex );
newIsOk = ( newIsOk && isNewOk );
newIsIn = ( newIsIn && isNewIn );
if ( crit != FIX_OLD ) {
if ( crit == CHECK_NEW_OK && !newIsOk ) break;
if ( crit == CHECK_NEW_IN && !newIsIn ) break;
continue;
}
bool isOldIn = ( wasIn[0] && wasIn[1] ) || ( wasIn[2] && convex );
bool isOldOk = ( wasOk[0] && wasOk[1] ) || ( wasOk[2] && convex );
oldIsIn = ( oldIsIn && isOldIn );
oldIsOk = ( oldIsOk && isOldIn );
if ( !isOldIn ) { // node is outside a quadrangle
// move newUV inside a quadrangle
//MESSAGE("Quad "<< dir1 << " WAS IN " << wasIn[0]<<" "<<wasIn[1]<<" "<<wasIn[2]);
// node and newUV are outside: push newUV inside
gp_XY uv;
if ( convex || isTriangle ) {
uv = 0.5 * ( n[0]->myUV + n[2]->myUV ) - minDiag * outVec[2].XY();
}
else {
gp_Vec2d out = outVec[0].Normalized() + outVec[1].Normalized();
double outSize = out.Magnitude();
if ( outSize > DBL_MIN )
out /= outSize;
else
out.SetCoord( -outVec[1].Y(), outVec[1].X() );
uv = n[1]->myUV - minDiag * out.XY();
}
oldUVFixed[ nbOldFix++ ] = uv;
//node->myUV = newUV;
}
else if ( !isOldOk ) {
// try to fix old UV: move node inside as less as possible
//MESSAGE("Quad "<< dir1 << " old is BAD, try to fix old, minDiag: "<< minDiag);
gp_XY uv1, uv2 = node->myUV;
for ( i = isTriangle ? 2 : 0; i < 3; i++ ) // mark not computed vectors
if ( wasOk[i] )
moveVec[ i ].SetCoord( 1, 2e100); // not use this vector
while ( !isOldOk ) {
// find the least moveVec
int i, iMin = 4;
double minMove2 = 1e100;
for ( i = isTriangle ? 2 : 0; i < 3; i++ )
{
if ( moveVec[i].Coord(1) < 1e100 ) {
double move2 = moveVec[i].SquareMagnitude();
if ( move2 < minMove2 ) {
minMove2 = move2;
iMin = i;
}
}
}
if ( iMin == 4 ) {
break;
}
// move node to newUV
uv1 = node->myUV + moveVec[ iMin ].XY();
uv2 += moveVec[ iMin ].XY();
moveVec[ iMin ].SetCoord( 1, 2e100); // not use this vector more
// check if uv1 is ok
for ( i = isTriangle ? 2 : 0; i < 3; i++ )
wasOk[i] = ( outVec[i] * gp_Vec2d( n[i]->myUV, uv1 ) < -minDiag );
isOldOk = ( wasOk[0] && wasOk[1] ) || ( wasOk[2] && convex );
if ( isOldOk )
oldUVImpr[ nbOldImpr++ ] = uv1;
else {
// check if uv2 is ok
for ( i = isTriangle ? 2 : 0; i < 3; i++ )
wasOk[i] = ( outVec[i] * gp_Vec2d( n[i]->myUV, uv2 ) < -minDiag );
isOldOk = ( wasOk[0] && wasOk[1] ) || ( wasOk[2] && convex );
if ( isOldOk )
oldUVImpr[ nbOldImpr++ ] = uv2;
}
}
}
} // loop on 4 quadrangles around <node>
if ( crit == CHECK_NEW_OK )
return newIsOk;
if ( crit == CHECK_NEW_IN )
return newIsIn;
if ( newIsOk )
return true;
if ( oldIsOk )
newUV = oldUV;
else {
if ( oldIsIn && nbOldImpr ) {
// MESSAGE(" Try to improve UV, init: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<
// " uv: "<<oldUV.X()<<" "<<oldUV.Y() );
gp_XY uv = oldUVImpr[ 0 ];
for ( int i = 1; i < nbOldImpr; i++ )
uv += oldUVImpr[ i ];
uv /= nbOldImpr;
if ( checkQuads( node, uv, reversed, CHECK_NEW_OK )) {
newUV = uv;
return false;
}
else {
//MESSAGE(" Cant improve UV, uv: "<<uv.X()<<" "<<uv.Y());
}
}
if ( !oldIsIn && nbOldFix ) {
// MESSAGE(" Try to fix UV, init: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<
// " uv: "<<oldUV.X()<<" "<<oldUV.Y() );
gp_XY uv = oldUVFixed[ 0 ];
for ( int i = 1; i < nbOldFix; i++ )
uv += oldUVFixed[ i ];
uv /= nbOldFix;
if ( checkQuads( node, uv, reversed, CHECK_NEW_IN )) {
newUV = uv;
return false;
}
else {
//MESSAGE(" Cant fix UV, uv: "<<uv.X()<<" "<<uv.Y());
}
}
if ( newIsIn && oldIsIn )
newUV = ( newBadRate < oldBadRate ) ? newUV : oldUV;
else if ( !newIsIn )
newUV = oldUV;
}
return false;
}
//=======================================================================
//function : compUVByElasticIsolines
//purpose : compute UV as nodes of iso-poly-lines consisting of
// segments keeping relative size as in the pattern
//=======================================================================
//#define DEB_COMPUVBYELASTICISOLINES
bool SMESH_Pattern::
compUVByElasticIsolines(const list< list< TPoint* > >& theBndPoints,
const list< TPoint* >& thePntToCompute)
{
//cout << "============================== KEY POINTS =============================="<<endl;
// list< int >::iterator kpIt = myKeyPointIDs.begin();
// for ( ; kpIt != myKeyPointIDs.end(); kpIt++ ) {
// TPoint& p = myPoints[ *kpIt ];
// cout << "INIT: " << p.myInitUV.X() << " " << p.myInitUV.Y() <<
// " UV: " << p.myUV.X() << " " << p.myUV.Y() << endl;
// }
//cout << "=============================="<<endl;
// Define parameters of iso-grid nodes in U and V dir
set< double > paramSet[ 2 ];
list< list< TPoint* > >::const_iterator pListIt;
list< TPoint* >::const_iterator pIt;
for ( pListIt = theBndPoints.begin(); pListIt != theBndPoints.end(); pListIt++ ) {
const list< TPoint* > & pList = * pListIt;
for ( pIt = pList.begin(); pIt != pList.end(); pIt++ ) {
paramSet[0].insert( (*pIt)->myInitUV.X() );
paramSet[1].insert( (*pIt)->myInitUV.Y() );
}
}
for ( pIt = thePntToCompute.begin(); pIt != thePntToCompute.end(); pIt++ ) {
paramSet[0].insert( (*pIt)->myInitUV.X() );
paramSet[1].insert( (*pIt)->myInitUV.Y() );
}
// unite close parameters and split too long segments
int iDir;
double tol[ 2 ];
for ( iDir = 0; iDir < 2; iDir++ )
{
set< double > & params = paramSet[ iDir ];
double range = ( *params.rbegin() - *params.begin() );
double toler = range / 1e6;
tol[ iDir ] = toler;
// double maxSegment = range / params.size() / 2.;
//
// set< double >::iterator parIt = params.begin();
// double prevPar = *parIt;
// for ( parIt++; parIt != params.end(); parIt++ )
// {
// double segLen = (*parIt) - prevPar;
// if ( segLen < toler )
// ;//params.erase( prevPar ); // unite
// else if ( segLen > maxSegment )
// params.insert( prevPar + 0.5 * segLen ); // split
// prevPar = (*parIt);
// }
}
// Make nodes of a grid of iso-poly-lines
list < TIsoNode > nodes;
typedef list < TIsoNode *> TIsoLine;
map < double, TIsoLine > isoMap[ 2 ];
set< double > & params0 = paramSet[ 0 ];
set< double >::iterator par0It = params0.begin();
for ( ; par0It != params0.end(); par0It++ )
{
TIsoLine & isoLine0 = isoMap[0][ *par0It ]; // vertical isoline with const U
set< double > & params1 = paramSet[ 1 ];
set< double >::iterator par1It = params1.begin();
for ( ; par1It != params1.end(); par1It++ )
{
nodes.push_back( TIsoNode( *par0It, *par1It ) );
isoLine0.push_back( & nodes.back() );
isoMap[1][ *par1It ].push_back( & nodes.back() );
}
}
// Compute intersections of boundaries with iso-lines:
// only boundary nodes will have computed UV so far
Bnd_Box2d uvBnd;
list< list< TPoint* > >::const_iterator bndIt = theBndPoints.begin();
list< TIsoNode* > bndNodes; // nodes corresponding to outer theBndPoints
for ( ; bndIt != theBndPoints.end(); bndIt++ )
{
const list< TPoint* > & bndPoints = * bndIt;
TPoint* prevP = bndPoints.back(); // this is the first point
list< TPoint* >::const_iterator pIt = bndPoints.begin();
// loop on the edge-points
for ( ; pIt != bndPoints.end(); pIt++ )
{
TPoint* point = *pIt;
for ( iDir = 0; iDir < 2; iDir++ )
{
const int iCoord = iDir + 1;
const int iOtherCoord = 2 - iDir;
double par1 = prevP->myInitUV.Coord( iCoord );
double par2 = point->myInitUV.Coord( iCoord );
double parDif = par2 - par1;
if ( Abs( parDif ) <= DBL_MIN )
continue;
// find iso-lines intersecting a bounadry
double toler = tol[ 1 - iDir ];
double minPar = Min ( par1, par2 );
double maxPar = Max ( par1, par2 );
map < double, TIsoLine >& isos = isoMap[ iDir ];
map < double, TIsoLine >::iterator isoIt = isos.begin();
for ( ; isoIt != isos.end(); isoIt++ )
{
double isoParam = (*isoIt).first;
if ( isoParam < minPar || isoParam > maxPar )
continue;
double r = ( isoParam - par1 ) / parDif;
gp_XY uv = ( 1 - r ) * prevP->myUV + r * point->myUV;
gp_XY initUV = ( 1 - r ) * prevP->myInitUV + r * point->myInitUV;
double otherPar = initUV.Coord( iOtherCoord ); // along isoline
// find existing node with otherPar or insert a new one
TIsoLine & isoLine = (*isoIt).second;
double nodePar;
TIsoLine::iterator nIt = isoLine.begin();
for ( ; nIt != isoLine.end(); nIt++ ) {
nodePar = (*nIt)->myInitUV.Coord( iOtherCoord );
if ( nodePar >= otherPar )
break;
}
TIsoNode * node;
if ( Abs( nodePar - otherPar ) <= toler )
node = ( nIt == isoLine.end() ) ? isoLine.back() : (*nIt);
else {
nodes.push_back( TIsoNode( initUV.X(), initUV.Y() ) );
node = & nodes.back();
isoLine.insert( nIt, node );
}
node->SetNotMovable();
node->myUV = uv;
uvBnd.Add( gp_Pnt2d( uv ));
// cout << "bnd: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<" UV: "<<node->myUV.X()<<" "<<node->myUV.Y()<<endl;
// tangent dir
gp_XY tgt( point->myUV - prevP->myUV );
if ( ::IsEqual( r, 1. ))
node->myDir[ 0 ] = tgt;
else if ( ::IsEqual( r, 0. ))
node->myDir[ 1 ] = tgt;
else
node->myDir[ 1 ] = node->myDir[ 0 ] = tgt;
// keep boundary nodes corresponding to boundary points
if ( bndIt == theBndPoints.begin() && ::IsEqual( r, 1. ))
if ( bndNodes.empty() || bndNodes.back() != node )
bndNodes.push_back( node );
} // loop on isolines
} // loop on 2 directions
prevP = point;
} // loop on boundary points
} // loop on boundaries
// Define orientation
// find the point with the least X
double leastX = DBL_MAX;
TIsoNode * leftNode;
list < TIsoNode >::iterator nodeIt = nodes.begin();
for ( ; nodeIt != nodes.end(); nodeIt++ ) {
TIsoNode & node = *nodeIt;
if ( node.IsUVComputed() && node.myUV.X() < leastX ) {
leastX = node.myUV.X();
leftNode = &node;
}
// if ( node.IsUVComputed() ) {
// cout << "bndNode INIT: " << node.myInitUV.X()<<" "<<node.myInitUV.Y()<<" UV: "<<
// node.myUV.X()<<" "<<node.myUV.Y()<<endl<<
// " dir0: "<<node.myDir[0].X()<<" "<<node.myDir[0].Y() <<
// " dir1: "<<node.myDir[1].X()<<" "<<node.myDir[1].Y() << endl;
// }
}
bool reversed = ( leftNode->myDir[0].Y() + leftNode->myDir[1].Y() > 0 );
//SCRUTE( reversed );
// Prepare internal nodes:
// 1. connect nodes
// 2. compute ratios
// 3. find boundary nodes for each node
// 4. remove nodes out of the boundary
for ( iDir = 0; iDir < 2; iDir++ )
{
const int iCoord = 2 - iDir; // coord changing along an isoline
map < double, TIsoLine >& isos = isoMap[ iDir ];
map < double, TIsoLine >::iterator isoIt = isos.begin();
for ( ; isoIt != isos.end(); isoIt++ )
{
TIsoLine & isoLine = (*isoIt).second;
bool firstCompNodeFound = false;
TIsoLine::iterator lastCompNodePos, nPrevIt, nIt, nNextIt, nIt2;
nPrevIt = nIt = nNextIt = isoLine.begin();
nIt++;
nNextIt++; nNextIt++;
while ( nIt != isoLine.end() )
{
// 1. connect prev - cur
TIsoNode* node = *nIt, * prevNode = *nPrevIt;
if ( !firstCompNodeFound && prevNode->IsUVComputed() ) {
firstCompNodeFound = true;
lastCompNodePos = nPrevIt;
}
if ( firstCompNodeFound ) {
node->SetNext( prevNode, iDir, 0 );
prevNode->SetNext( node, iDir, 1 );
}
// 2. compute ratio
if ( nNextIt != isoLine.end() ) {
double par1 = prevNode->myInitUV.Coord( iCoord );
double par2 = node->myInitUV.Coord( iCoord );
double par3 = (*nNextIt)->myInitUV.Coord( iCoord );
node->myRatio[ iDir ] = ( par2 - par1 ) / ( par3 - par1 );
}
// 3. find boundary nodes
if ( node->IsUVComputed() )
lastCompNodePos = nIt;
else if ( firstCompNodeFound && nNextIt != isoLine.end() ) {
TIsoNode* bndNode1 = *lastCompNodePos, *bndNode2 = 0;
for ( nIt2 = nNextIt; nIt2 != isoLine.end(); nIt2++ )
if ( (*nIt2)->IsUVComputed() )
break;
if ( nIt2 != isoLine.end() ) {
bndNode2 = *nIt2;
node->SetBoundaryNode( bndNode1, iDir, 0 );
node->SetBoundaryNode( bndNode2, iDir, 1 );
// cout << "--------------------------------------------------"<<endl;
// cout << "bndNode1: " << bndNode1->myUV.X()<<" "<<bndNode1->myUV.Y()<<endl<<
// " dir0: "<<bndNode1->myDir[0].X()<<" "<<bndNode1->myDir[0].Y() <<
// " dir1: "<<bndNode1->myDir[1].X()<<" "<<bndNode1->myDir[1].Y() << endl;
// cout << "bndNode2: " << bndNode2->myUV.X()<<" "<<bndNode2->myUV.Y()<<endl<<
// " dir0: "<<bndNode2->myDir[0].X()<<" "<<bndNode2->myDir[0].Y() <<
// " dir1: "<<bndNode2->myDir[1].X()<<" "<<bndNode2->myDir[1].Y() << endl;
}
}
nIt++; nPrevIt++;
if ( nNextIt != isoLine.end() ) nNextIt++;
// 4. remove nodes out of the boundary
if ( !firstCompNodeFound )
isoLine.pop_front();
} // loop on isoLine nodes
// remove nodes after the boundary
// for ( nIt = ++lastCompNodePos; nIt != isoLine.end(); nIt++ )
// (*nIt)->SetNotMovable();
isoLine.erase( ++lastCompNodePos, isoLine.end() );
} // loop on isolines
} // loop on 2 directions
// Compute local isoline direction for internal nodes
/*
map < double, TIsoLine >& isos = isoMap[ 0 ]; // vertical isolines with const U
map < double, TIsoLine >::iterator isoIt = isos.begin();
for ( ; isoIt != isos.end(); isoIt++ )
{
TIsoLine & isoLine = (*isoIt).second;
TIsoLine::iterator nIt = isoLine.begin();
for ( ; nIt != isoLine.end(); nIt++ )
{
TIsoNode* node = *nIt;
if ( node->IsUVComputed() || !node->IsMovable() )
continue;
gp_Vec2d aTgt[2], aNorm[2];
double ratio[2];
bool OK = true;
for ( iDir = 0; iDir < 2; iDir++ )
{
TIsoNode* bndNode1 = node->GetBoundaryNode( iDir, 0 );
TIsoNode* bndNode2 = node->GetBoundaryNode( iDir, 1 );
if ( !bndNode1 || !bndNode2 ) {
OK = false;
break;
}
const int iCoord = 2 - iDir; // coord changing along an isoline
double par1 = bndNode1->myInitUV.Coord( iCoord );
double par2 = node->myInitUV.Coord( iCoord );
double par3 = bndNode2->myInitUV.Coord( iCoord );
ratio[ iDir ] = ( par2 - par1 ) / ( par3 - par1 );
gp_Vec2d tgt1( bndNode1->myDir[0].XY() + bndNode1->myDir[1].XY() );
gp_Vec2d tgt2( bndNode2->myDir[0].XY() + bndNode2->myDir[1].XY() );
if ( bool( iDir ) == reversed ) tgt2.Reverse(); // along perpend. isoline
else tgt1.Reverse();
//cout<<" tgt: " << tgt1.X()<<" "<<tgt1.Y()<<" | "<< tgt2.X()<<" "<<tgt2.Y()<<endl;
if ( ratio[ iDir ] < 0.5 )
aNorm[ iDir ] = gp_Vec2d( -tgt1.Y(), tgt1.X() ); // rotate tgt to the left
else
aNorm[ iDir ] = gp_Vec2d( -tgt2.Y(), tgt2.X() );
if ( iDir == 1 )
aNorm[ iDir ].Reverse(); // along iDir isoline
double angle = tgt1.Angle( tgt2 ); // [-PI, PI]
// maybe angle is more than |PI|
if ( Abs( angle ) > PI / 2. ) {
// check direction of the last but one perpendicular isoline
TIsoNode* prevNode = bndNode2->GetNext( iDir, 0 );
bndNode1 = prevNode->GetBoundaryNode( 1 - iDir, 0 );
bndNode2 = prevNode->GetBoundaryNode( 1 - iDir, 1 );
gp_Vec2d isoDir( bndNode1->myUV, bndNode2->myUV );
if ( isoDir * tgt2 < 0 )
isoDir.Reverse();
double angle2 = tgt1.Angle( isoDir );
//cout << " isoDir: "<< isoDir.X() <<" "<<isoDir.Y() << " ANGLE: "<< angle << " "<<angle2<<endl;
if (angle2 * angle < 0 && // check the sign of an angle close to PI
Abs ( Abs ( angle ) - PI ) <= PI / 180. ) {
//MESSAGE("REVERSE ANGLE");
angle = -angle;
}
if ( Abs( angle2 ) > Abs( angle ) ||
( angle2 * angle < 0 && Abs( angle2 ) > Abs( angle - angle2 ))) {
//MESSAGE("Add PI");
// cout << "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
// cout <<"ISO: " << isoParam << " " << (*iso2It).first << endl;
// cout << "bndNode1: " << bndNode1->myUV.X()<<" "<<bndNode1->myUV.Y()<< endl;
// cout << "bndNode2: " << bndNode2->myUV.X()<<" "<<bndNode2->myUV.Y()<<endl;
// cout <<" tgt: " << tgt1.X()<<" "<<tgt1.Y()<<" "<< tgt2.X()<<" "<<tgt2.Y()<<endl;
angle += ( angle < 0 ) ? 2. * PI : -2. * PI;
}
}
aTgt[ iDir ] = tgt1.Rotated( angle * ratio[ iDir ] ).XY();
} // loop on 2 dir
if ( OK ) {
for ( iDir = 0; iDir < 2; iDir++ )
{
aTgt[iDir].Normalize();
aNorm[1-iDir].Normalize();
double r = Abs ( ratio[iDir] - 0.5 ) * 2.0; // [0,1] - distance from the middle
r *= r;
node->myDir[iDir] = //aTgt[iDir];
aNorm[1-iDir] * r + aTgt[iDir] * ( 1. - r );
}
// cout << "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
// cout <<" tgt: " << tgt1.X()<<" "<<tgt1.Y()<<" - "<< tgt2.X()<<" "<<tgt2.Y()<<endl;
// cout << " isoDir: "<< node->myDir[0].X() <<" "<<node->myDir[0].Y()<<" | "
// << node->myDir[1].X() <<" "<<node->myDir[1].Y()<<endl;
}
} // loop on iso nodes
} // loop on isolines
*/
// Find nodes to start computing UV from
list< TIsoNode* > startNodes;
list< TIsoNode* >::iterator nIt = bndNodes.end();
TIsoNode* node = *(--nIt);
TIsoNode* prevNode = *(--nIt);
for ( nIt = bndNodes.begin(); nIt != bndNodes.end(); nIt++ )
{
TIsoNode* nextNode = *nIt;
gp_Vec2d initTgt1( prevNode->myInitUV, node->myInitUV );
gp_Vec2d initTgt2( node->myInitUV, nextNode->myInitUV );
double initAngle = initTgt1.Angle( initTgt2 );
double angle = node->myDir[0].Angle( node->myDir[1] );
if ( reversed ) angle = -angle;
if ( initAngle > angle && initAngle - angle > PI / 2.1 ) {
// find a close internal node
TIsoNode* nClose = 0;
list< TIsoNode* > testNodes;
testNodes.push_back( node );
list< TIsoNode* >::iterator it = testNodes.begin();
for ( ; !nClose && it != testNodes.end(); it++ )
{
for (int i = 0; i < 4; i++ )
{
nClose = (*it)->myNext[ i ];
if ( nClose ) {
if ( !nClose->IsUVComputed() )
break;
else {
testNodes.push_back( nClose );
nClose = 0;
}
}
}
}
startNodes.push_back( nClose );
// cout << "START: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<" UV: "<<
// node->myUV.X()<<" "<<node->myUV.Y()<<endl<<
// "initAngle: " << initAngle << " angle: " << angle << endl;
// cout <<" init tgt: " << initTgt1.X()<<" "<<initTgt1.Y()<<" | "<< initTgt2.X()<<" "<<initTgt2.Y()<<endl;
// cout << " tgt: "<< node->myDir[ 0 ].X() <<" "<<node->myDir[ 0 ].Y()<<" | "<<
// node->myDir[ 1 ].X() <<" "<<node->myDir[ 1 ].Y()<<endl;
// cout << "CLOSE: "<<nClose->myInitUV.X()<<" "<<nClose->myInitUV.Y()<<endl;
}
prevNode = node;
node = nextNode;
}
// Compute starting UV of internal nodes
list < TIsoNode* > internNodes;
bool needIteration = true;
if ( startNodes.empty() ) {
MESSAGE( " Starting UV by compUVByIsoIntersection()");
needIteration = false;
map < double, TIsoLine >& isos = isoMap[ 0 ];
map < double, TIsoLine >::iterator isoIt = isos.begin();
for ( ; isoIt != isos.end(); isoIt++ )
{
TIsoLine & isoLine = (*isoIt).second;
TIsoLine::iterator nIt = isoLine.begin();
for ( ; !needIteration && nIt != isoLine.end(); nIt++ )
{
TIsoNode* node = *nIt;
if ( !node->IsUVComputed() && node->IsMovable() ) {
internNodes.push_back( node );
//bool isDeformed;
if ( !compUVByIsoIntersection(theBndPoints, node->myInitUV,
node->myUV, needIteration ))
node->myUV = node->myInitUV;
}
}
}
if ( needIteration )
for ( nIt = bndNodes.begin(); nIt != bndNodes.end(); nIt++ )
{
TIsoNode* node = *nIt, *nClose = 0;
list< TIsoNode* > testNodes;
testNodes.push_back( node );
list< TIsoNode* >::iterator it = testNodes.begin();
for ( ; !nClose && it != testNodes.end(); it++ )
{
for (int i = 0; i < 4; i++ )
{
nClose = (*it)->myNext[ i ];
if ( nClose ) {
if ( !nClose->IsUVComputed() && nClose->IsMovable() )
break;
else {
testNodes.push_back( nClose );
nClose = 0;
}
}
}
}
startNodes.push_back( nClose );
}
}
double aMin[2], aMax[2], step[2];
uvBnd.Get( aMin[0], aMin[1], aMax[0], aMax[1] );
double minUvSize = Min ( aMax[0]-aMin[0], aMax[1]-aMin[1] );
step[0] = minUvSize / paramSet[ 0 ].size() / 10;
step[1] = minUvSize / paramSet[ 1 ].size() / 10;
//cout << "STEPS: " << step[0] << " " << step[1]<< endl;
for ( nIt = startNodes.begin(); nIt != startNodes.end(); nIt++ )
{
TIsoNode* prevN[2], *node = *nIt;
if ( node->IsUVComputed() || !node->IsMovable() )
continue;
gp_XY newUV( 0, 0 ), sumDir( 0, 0 );
int nbComp = 0, nbPrev = 0;
for ( iDir = 0; iDir < 2; iDir++ )
{
TIsoNode* prevNode1 = 0, *prevNode2 = 0;
TIsoNode* n = node->GetNext( iDir, 0 );
if ( n->IsUVComputed() )
prevNode1 = n;
else
startNodes.push_back( n );
n = node->GetNext( iDir, 1 );
if ( n->IsUVComputed() )
prevNode2 = n;
else
startNodes.push_back( n );
if ( !prevNode1 ) {
prevNode1 = prevNode2;
prevNode2 = 0;
}
if ( prevNode1 ) nbPrev++;
if ( prevNode2 ) nbPrev++;
if ( prevNode1 ) {
gp_XY dir;
double prevPar = prevNode1->myInitUV.Coord( 2 - iDir );
double par = node->myInitUV.Coord( 2 - iDir );
bool isEnd = ( prevPar > par );
// dir = node->myDir[ 1 - iDir ].XY() * ( isEnd ? -1. : 1. );
//cout << "__________"<<endl<< "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
TIsoNode* bndNode = node->GetBoundaryNode( iDir, isEnd );
gp_XY tgt( bndNode->myDir[0].XY() + bndNode->myDir[1].XY() );
dir.SetCoord( 1, tgt.Y() * ( reversed ? 1 : -1 ));
dir.SetCoord( 2, tgt.X() * ( reversed ? -1 : 1 ));
//cout << "bndNode UV: " << bndNode->myUV.X()<<" "<<bndNode->myUV.Y()<< endl;
// cout << " tgt: "<< bndNode->myDir[ 0 ].X() <<" "<<bndNode->myDir[ 0 ].Y()<<" | "<<
// bndNode->myDir[ 1 ].X() <<" "<<bndNode->myDir[ 1 ].Y()<<endl;
//cout << "prevNode UV: " << prevNode1->myUV.X()<<" "<<prevNode1->myUV.Y()<<
//" par: " << prevPar << endl;
// cout <<" tgt: " << tgt.X()<<" "<<tgt.Y()<<endl;
//cout << " DIR: "<< dir.X() <<" "<<dir.Y()<<endl;
if ( prevNode2 ) {
//cout << "____2next______"<<endl<< "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
gp_XY & uv1 = prevNode1->myUV;
gp_XY & uv2 = prevNode2->myUV;
// dir = ( uv2 - uv1 );
// double len = dir.Modulus();
// if ( len > DBL_MIN )
// dir /= len * 0.5;
double r = node->myRatio[ iDir ];
newUV += uv1 * ( 1 - r ) + uv2 * r;
}
else {
newUV += prevNode1->myUV + dir * step[ iDir ];
}
sumDir += dir;
prevN[ iDir ] = prevNode1;
nbComp++;
}
}
newUV /= nbComp;
node->myUV = newUV;
//cout << "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
// check if a quadrangle is not distorted
if ( nbPrev > 1 ) {
//int crit = ( nbPrev == 4 ) ? FIX_OLD : CHECK_NEW_IN;
if ( !checkQuads( node, newUV, reversed, FIX_OLD, step[0] + step[1] )) {
//cout <<" newUV: " << node->myUV.X() << " "<<node->myUV.Y() << " nbPrev: "<<nbPrev<< endl;
// cout << "_FIX_INIT_ fixedUV: " << newUV.X() << " "<<newUV.Y() << endl;
node->myUV = newUV;
}
}
internNodes.push_back( node );
}
// Move nodes
static int maxNbIter = 100;
#ifdef DEB_COMPUVBYELASTICISOLINES
// maxNbIter++;
bool useNbMoveNode = 0;
static int maxNbNodeMove = 100;
maxNbNodeMove++;
int nbNodeMove = 0;
if ( !useNbMoveNode )
maxNbIter = ( maxNbIter < 0 ) ? 100 : -1;
#endif
double maxMove;
int nbIter = 0;
do {
if ( !needIteration) break;
#ifdef DEB_COMPUVBYELASTICISOLINES
if ( nbIter >= maxNbIter ) break;
#endif
maxMove = 0.0;
list < TIsoNode* >::iterator nIt = internNodes.begin();
for ( ; nIt != internNodes.end(); nIt++ ) {
#ifdef DEB_COMPUVBYELASTICISOLINES
if (useNbMoveNode )
cout << nbNodeMove <<" =================================================="<<endl;
#endif
TIsoNode * node = *nIt;
// make lines
//gp_Lin2d line[2];
gp_XY loc[2];
for ( iDir = 0; iDir < 2; iDir++ )
{
gp_XY & uv1 = node->GetNext( iDir, 0 )->myUV;
gp_XY & uv2 = node->GetNext( iDir, 1 )->myUV;
double r = node->myRatio[ iDir ];
loc[ iDir ] = uv1 * ( 1 - r ) + uv2 * r;
// line[ iDir ].SetLocation( loc[ iDir ] );
// line[ iDir ].SetDirection( node->myDir[ iDir ] );
}
// define ratio
double locR[2] = { 0, 0 };
for ( iDir = 0; iDir < 2; iDir++ )
{
const int iCoord = 2 - iDir; // coord changing along an isoline
TIsoNode* bndNode1 = node->GetBoundaryNode( iDir, 0 );
TIsoNode* bndNode2 = node->GetBoundaryNode( iDir, 1 );
double par1 = bndNode1->myInitUV.Coord( iCoord );
double par2 = node->myInitUV.Coord( iCoord );
double par3 = bndNode2->myInitUV.Coord( iCoord );
double r = ( par2 - par1 ) / ( par3 - par1 );
r = Abs ( r - 0.5 ) * 2.0; // [0,1] - distance from the middle
locR[ iDir ] = ( 1 - r * r ) * 0.25;
}
//locR[0] = locR[1] = 0.25;
// intersect the 2 lines and move a node
//IntAna2d_AnaIntersection inter( line[0], line[1] );
if ( /*inter.IsDone() && inter.NbPoints() ==*/ 1 )
{
// double intR = 1 - locR[0] - locR[1];
// gp_XY newUV = inter.Point(1).Value().XY();
// if ( !checkQuads( node, newUV, reversed, CHECK_NEW_IN ))
// newUV = ( locR[0] * loc[0] + locR[1] * loc[1] ) / ( 1 - intR );
// else
// newUV = intR * newUV + locR[0] * loc[0] + locR[1] * loc[1];
gp_XY newUV = 0.5 * ( loc[0] + loc[1] );
// avoid parallel isolines intersection
checkQuads( node, newUV, reversed );
maxMove = Max( maxMove, ( newUV - node->myUV ).SquareModulus());
node->myUV = newUV;
} // intersection found
#ifdef DEB_COMPUVBYELASTICISOLINES
if (useNbMoveNode && ++nbNodeMove >= maxNbNodeMove ) break;
#endif
} // loop on internal nodes
#ifdef DEB_COMPUVBYELASTICISOLINES
if (useNbMoveNode && nbNodeMove >= maxNbNodeMove ) break;
#endif
} while ( maxMove > 1e-8 && nbIter++ < maxNbIter );
MESSAGE( "compUVByElasticIsolines(): Nb iterations " << nbIter << " dist: " << sqrt( maxMove ));
if ( nbIter >= maxNbIter && sqrt(maxMove) > minUvSize * 0.05 ) {
MESSAGE( "compUVByElasticIsolines() failed: "<<sqrt(maxMove)<<">"<<minUvSize * 0.05);
#ifndef DEB_COMPUVBYELASTICISOLINES
return false;
#endif
}
// Set computed UV to points
for ( pIt = thePntToCompute.begin(); pIt != thePntToCompute.end(); pIt++ ) {
TPoint* point = *pIt;
//gp_XY oldUV = point->myUV;
double minDist = DBL_MAX;
list < TIsoNode >::iterator nIt = nodes.begin();
for ( ; nIt != nodes.end(); nIt++ ) {
double dist = ( (*nIt).myInitUV - point->myInitUV ).SquareModulus();
if ( dist < minDist ) {
minDist = dist;
point->myUV = (*nIt).myUV;
}
}
}
return true;
}
//=======================================================================
//function : setFirstEdge
//purpose : choose the best first edge of theWire; return the summary distance
// between point UV computed by isolines intersection and
// eventual UV got from edge p-curves
//=======================================================================
//#define DBG_SETFIRSTEDGE
double SMESH_Pattern::setFirstEdge (list< TopoDS_Edge > & theWire, int theFirstEdgeID)
{
int iE, nbEdges = theWire.size();
if ( nbEdges == 1 )
return 0;
// Transform UVs computed by iso to fit bnd box of a wire
// max nb of points on an edge
int maxNbPnt = 0;
int eID = theFirstEdgeID;
for ( iE = 0; iE < nbEdges; iE++ )
maxNbPnt = Max ( maxNbPnt, getShapePoints( eID++ ).size() );
// compute bnd boxes
TopoDS_Face face = TopoDS::Face( myShape );
Bnd_Box2d bndBox, eBndBox;
eID = theFirstEdgeID;
list< TopoDS_Edge >::iterator eIt;
list< TPoint* >::iterator pIt;
for ( eIt = theWire.begin(); eIt != theWire.end(); eIt++ )
{
// UV by isos stored in TPoint.myXYZ
list< TPoint* > & ePoints = getShapePoints( eID++ );
for ( pIt = ePoints.begin(); pIt != ePoints.end(); pIt++ ) {
TPoint* p = (*pIt);
bndBox.Add( gp_Pnt2d( p->myXYZ.X(), p->myXYZ.Y() ));
}
// UV by an edge p-curve
double f, l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface( *eIt, face, f, l );
double dU = ( l - f ) / ( maxNbPnt - 1 );
for ( int i = 0; i < maxNbPnt; i++ )
eBndBox.Add( C2d->Value( f + i * dU ));
}
// transform UVs by isos
double minPar[2], maxPar[2], eMinPar[2], eMaxPar[2];
bndBox.Get( minPar[0], minPar[1], maxPar[0], maxPar[1] );
eBndBox.Get( eMinPar[0], eMinPar[1], eMaxPar[0], eMaxPar[1] );
#ifdef DBG_SETFIRSTEDGE
cout << "EDGES: X: " << eMinPar[0] << " - " << eMaxPar[0] << " Y: "
<< eMinPar[1] << " - " << eMaxPar[1] << endl;
#endif
for ( int iC = 1, i = 0; i < 2; iC++, i++ ) // loop on 2 coordinates
{
double dMin = eMinPar[i] - minPar[i];
double dMax = eMaxPar[i] - maxPar[i];
double dPar = maxPar[i] - minPar[i];
eID = theFirstEdgeID;
for ( iE = 0; iE < nbEdges; iE++ ) // loop on edges of a boundary
{
list< TPoint* > & ePoints = getShapePoints( eID++ );
for ( pIt = ++ePoints.begin(); pIt != ePoints.end(); pIt++ ) // loop on edge points
{
double par = (*pIt)->myXYZ.Coord( iC );
double r = ( par - minPar[i] ) / dPar;
par += ( 1 - r ) * dMin + r * dMax;
(*pIt)->myXYZ.SetCoord( iC, par );
}
}
}
TopoDS_Edge eBest;
double minDist = DBL_MAX;
for ( iE = 0 ; iE < nbEdges; iE++ )
{
#ifdef DBG_SETFIRSTEDGE
cout << " VARIANT " << iE << endl;
#endif
// evaluate the distance between UV computed by the 2 methods:
// by isos intersection ( myXYZ ) and by edge p-curves ( myUV )
double dist = 0;
int eID = theFirstEdgeID;
for ( eIt = theWire.begin(); eIt != theWire.end(); eIt++ )
{
list< TPoint* > & ePoints = getShapePoints( eID++ );
computeUVOnEdge( *eIt, ePoints );
for ( pIt = ++ePoints.begin(); pIt != ePoints.end(); pIt++ ) {
TPoint* p = (*pIt);
dist += ( p->myUV - gp_XY( p->myXYZ.X(), p->myXYZ.Y() )).SquareModulus();
#ifdef DBG_SETFIRSTEDGE
cout << " ISO : ( " << p->myXYZ.X() << ", "<< p->myXYZ.Y() << " ) PCURVE : ( " <<
p->myUV.X() << ", " << p->myUV.Y() << ") " << endl;
#endif
}
}
#ifdef DBG_SETFIRSTEDGE
cout << "dist -- " << dist << endl;
#endif
if ( dist < minDist ) {
minDist = dist;
eBest = theWire.front();
}
// check variant with another first edge
theWire.splice( theWire.begin(), theWire, --theWire.end(), theWire.end() );
}
// put the best first edge to the theWire front
if ( eBest != theWire.front() ) {
eIt = find ( theWire.begin(), theWire.end(), eBest );
theWire.splice( theWire.begin(), theWire, eIt, theWire.end() );
}
return minDist;
}
//=======================================================================
//function : sortSameSizeWires
//purpose : sort wires in theWireList from theFromWire until theToWire,
// the wires are set in the order to correspond to the order
// of boundaries; after sorting, edges in the wires are put
// in a good order, point UVs on edges are computed and points
// are appended to theEdgesPointsList
//=======================================================================
bool SMESH_Pattern::sortSameSizeWires (TListOfEdgesList & theWireList,
const TListOfEdgesList::iterator& theFromWire,
const TListOfEdgesList::iterator& theToWire,
const int theFirstEdgeID,
list< list< TPoint* > >& theEdgesPointsList )
{
TopoDS_Face F = TopoDS::Face( myShape );
int iW, nbWires = 0;
TListOfEdgesList::iterator wlIt = theFromWire;
while ( wlIt++ != theToWire )
nbWires++;
// Recompute key-point UVs by isolines intersection,
// compute CG of key-points for each wire and bnd boxes of GCs
bool aBool;
gp_XY orig( gp::Origin2d().XY() );
vector< gp_XY > vGcVec( nbWires, orig ), gcVec( nbWires, orig );
Bnd_Box2d bndBox, vBndBox;
int eID = theFirstEdgeID;
list< TopoDS_Edge >::iterator eIt;
for ( iW = 0, wlIt = theFromWire; wlIt != theToWire; wlIt++, iW++ )
{
list< TopoDS_Edge > & wire = *wlIt;
for ( eIt = wire.begin(); eIt != wire.end(); eIt++ )
{
list< TPoint* > & ePoints = getShapePoints( eID++ );
TPoint* p = ePoints.front();
if ( !compUVByIsoIntersection( theEdgesPointsList, p->myInitUV, p->myUV, aBool )) {
MESSAGE("cant sortSameSizeWires()");
return false;
}
gcVec[iW] += p->myUV;
bndBox.Add( gp_Pnt2d( p->myUV ));
TopoDS_Vertex V = TopExp::FirstVertex( *eIt, true );
gp_Pnt2d vXY = BRep_Tool::Parameters( V, F );
vGcVec[iW] += vXY.XY();
vBndBox.Add( vXY );
// keep the computed UV to compare against by setFirstEdge()
p->myXYZ.SetCoord( p->myUV.X(), p->myUV.Y(), 0. );
}
gcVec[iW] /= nbWires;
vGcVec[iW] /= nbWires;
// cout << " Wire " << iW << " iso: " << gcVec[iW].X() << " " << gcVec[iW].Y() << endl <<
// " \t vertex: " << vGcVec[iW].X() << " " << vGcVec[iW].Y() << endl;
}
// Transform GCs computed by isos to fit in bnd box of GCs by vertices
double minPar[2], maxPar[2], vMinPar[2], vMaxPar[2];
bndBox.Get( minPar[0], minPar[1], maxPar[0], maxPar[1] );
vBndBox.Get( vMinPar[0], vMinPar[1], vMaxPar[0], vMaxPar[1] );
for ( int iC = 1, i = 0; i < 2; iC++, i++ ) // loop on 2 coordinates
{
double dMin = vMinPar[i] - minPar[i];
double dMax = vMaxPar[i] - maxPar[i];
double dPar = maxPar[i] - minPar[i];
if ( Abs( dPar ) <= DBL_MIN )
continue;
for ( iW = 0; iW < nbWires; iW++ ) { // loop on GCs of wires
double par = gcVec[iW].Coord( iC );
double r = ( par - minPar[i] ) / dPar;
par += ( 1 - r ) * dMin + r * dMax;
gcVec[iW].SetCoord( iC, par );
}
}
// Define boundary - wire correspondence by GC closeness
TListOfEdgesList tmpWList;
tmpWList.splice( tmpWList.end(), theWireList, theFromWire, theToWire );
typedef map< int, TListOfEdgesList::iterator > TIntWirePosMap;
TIntWirePosMap bndIndWirePosMap;
vector< bool > bndFound( nbWires, false );
for ( iW = 0, wlIt = tmpWList.begin(); iW < nbWires; iW++, wlIt++ )
{
// cout << " TRSF Wire " << iW << " iso: " << gcVec[iW].X() << " " << gcVec[iW].Y() << endl <<
// " \t vertex: " << vGcVec[iW].X() << " " << vGcVec[iW].Y() << endl;
double minDist = DBL_MAX;
gp_XY & wGc = vGcVec[ iW ];
int bIndex;
for ( int iB = 0; iB < nbWires; iB++ ) {
if ( bndFound[ iB ] ) continue;
double dist = ( wGc - gcVec[ iB ] ).SquareModulus();
if ( dist < minDist ) {
minDist = dist;
bIndex = iB;
}
}
bndFound[ bIndex ] = true;
bndIndWirePosMap.insert( TIntWirePosMap::value_type( bIndex, wlIt ));
}
// Treat each wire
TIntWirePosMap::iterator bIndWPosIt = bndIndWirePosMap.begin();
eID = theFirstEdgeID;
for ( ; bIndWPosIt != bndIndWirePosMap.end(); bIndWPosIt++ )
{
TListOfEdgesList::iterator wirePos = (*bIndWPosIt).second;
list < TopoDS_Edge > & wire = ( *wirePos );
// choose the best first edge of a wire
setFirstEdge( wire, eID );
// compute eventual UV and fill theEdgesPointsList
theEdgesPointsList.push_back( list< TPoint* >() );
list< TPoint* > & edgesPoints = theEdgesPointsList.back();
for ( eIt = wire.begin(); eIt != wire.end(); eIt++ )
{
list< TPoint* > & ePoints = getShapePoints( eID++ );
computeUVOnEdge( *eIt, ePoints );
edgesPoints.insert( edgesPoints.end(), ePoints.begin(), (--ePoints.end()));
}
// put wire back to theWireList
wlIt = wirePos++;
theWireList.splice( theToWire, tmpWList, wlIt, wirePos );
}
return true;
}
//=======================================================================
//function : Apply
//purpose : Compute nodes coordinates applying
// the loaded pattern to <theFace>. The first key-point
// will be mapped into <theVertexOnKeyPoint1>
//=======================================================================
bool SMESH_Pattern::Apply (const TopoDS_Face& theFace,
const TopoDS_Vertex& theVertexOnKeyPoint1,
const bool theReverse)
{
MESSAGE(" ::Apply(face) " );
TopoDS_Face face = theReverse ? TopoDS::Face( theFace.Reversed() ) : theFace;
if ( !setShapeToMesh( face ))
return false;
// find points on edges, it fills myNbKeyPntInBoundary
if ( !findBoundaryPoints() )
return false;
// Define the edges order so that the first edge starts at
// theVertexOnKeyPoint1
list< TopoDS_Edge > eList;
list< int > nbVertexInWires;
int nbWires = getOrderedEdges( face, theVertexOnKeyPoint1, eList, nbVertexInWires);
if ( !theVertexOnKeyPoint1.IsSame( TopExp::FirstVertex( eList.front(), true )))
{
MESSAGE( " theVertexOnKeyPoint1 not found in the outer wire ");
return setErrorCode( ERR_APPLF_BAD_VERTEX );
}
// check nb wires and edges
list< int > l1 = myNbKeyPntInBoundary, l2 = nbVertexInWires;
l1.sort(); l2.sort();
if ( l1 != l2 )
{
MESSAGE( "Wrong nb vertices in wires" );
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
}
// here shapes get IDs, for the outer wire IDs are OK
list<TopoDS_Edge>::iterator elIt = eList.begin();
for ( ; elIt != eList.end(); elIt++ ) {
myShapeIDMap.Add( TopExp::FirstVertex( *elIt, true ));
if ( BRep_Tool::IsClosed( *elIt, theFace ) )
myShapeIDMap.Add( TopExp::LastVertex( *elIt, true ));
}
int nbVertices = myShapeIDMap.Extent();
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
myShapeIDMap.Add( *elIt );
myShapeIDMap.Add( face );
if ( myShapeIDToPointsMap.size() != myShapeIDMap.Extent()/* + nbSeamShapes*/ ) {
MESSAGE( myShapeIDToPointsMap.size() <<" != " << myShapeIDMap.Extent());
return setErrorCode( ERR_APPLF_INTERNAL_EEROR );
}
// points on edges to be used for UV computation of in-face points
list< list< TPoint* > > edgesPointsList;
edgesPointsList.push_back( list< TPoint* >() );
list< TPoint* > * edgesPoints = & edgesPointsList.back();
list< TPoint* >::iterator pIt;
// compute UV of points on the outer wire
int iE, nbEdgesInOuterWire = nbVertexInWires.front();
for (iE = 0, elIt = eList.begin();
iE < nbEdgesInOuterWire && elIt != eList.end();
iE++, elIt++ )
{
list< TPoint* > & ePoints = getShapePoints( *elIt );
// compute UV
computeUVOnEdge( *elIt, ePoints );
// collect on-edge points (excluding the last one)
edgesPoints->insert( edgesPoints->end(), ePoints.begin(), --ePoints.end());
}
// If there are several wires, define the order of edges of inner wires:
// compute UV of inner edge-points using 2 methods: the one for in-face points
// and the one for on-edge points and then choose the best edge order
// by the best correspondance of the 2 results
if ( nbWires > 1 )
{
// compute UV of inner edge-points using the method for in-face points
// and devide eList into a list of separate wires
bool aBool;
list< list< TopoDS_Edge > > wireList;
list<TopoDS_Edge>::iterator eIt = elIt;
list<int>::iterator nbEIt = nbVertexInWires.begin();
for ( nbEIt++; nbEIt != nbVertexInWires.end(); nbEIt++ )
{
int nbEdges = *nbEIt;
wireList.push_back( list< TopoDS_Edge >() );
list< TopoDS_Edge > & wire = wireList.back();
for ( iE = 0 ; iE < nbEdges; eIt++, iE++ )
{
list< TPoint* > & ePoints = getShapePoints( *eIt );
pIt = ePoints.begin();
for ( pIt++; pIt != ePoints.end(); pIt++ ) {
TPoint* p = (*pIt);
if ( !compUVByIsoIntersection( edgesPointsList, p->myInitUV, p->myUV, aBool )) {
MESSAGE("cant Apply(face)");
return false;
}
// keep the computed UV to compare against by setFirstEdge()
p->myXYZ.SetCoord( p->myUV.X(), p->myUV.Y(), 0. );
}
wire.push_back( *eIt );
}
}
// remove inner edges from eList
eList.erase( elIt, eList.end() );
// sort wireList by nb edges in a wire
sortBySize< TopoDS_Edge > ( wireList );
// an ID of the first edge of a boundary
int id1 = nbVertices + nbEdgesInOuterWire + 1;
// if ( nbSeamShapes > 0 )
// id1 += 2; // 2 vertices more
// find points - edge correspondence for wires of unique size,
// edge order within a wire should be defined only
list< list< TopoDS_Edge > >::iterator wlIt = wireList.begin();
while ( wlIt != wireList.end() )
{
list< TopoDS_Edge >& wire = (*wlIt);
int nbEdges = wire.size();
wlIt++;
if ( wlIt == wireList.end() || (*wlIt).size() != nbEdges ) // a unique size wire
{
// choose the best first edge of a wire
setFirstEdge( wire, id1 );
// compute eventual UV and collect on-edge points
edgesPointsList.push_back( list< TPoint* >() );
edgesPoints = & edgesPointsList.back();
int eID = id1;
for ( eIt = wire.begin(); eIt != wire.end(); eIt++ )
{
list< TPoint* > & ePoints = getShapePoints( eID++ );
computeUVOnEdge( *eIt, ePoints );
edgesPoints->insert( edgesPoints->end(), ePoints.begin(), (--ePoints.end()));
}
}
id1 += nbEdges;
}
// find boundary - wire correspondence for several wires of same size
id1 = nbVertices + nbEdgesInOuterWire + 1;
wlIt = wireList.begin();
while ( wlIt != wireList.end() )
{
int nbSameSize = 0, nbEdges = (*wlIt).size();
list< list< TopoDS_Edge > >::iterator wlIt2 = wlIt;
wlIt2++;
while ( wlIt2 != wireList.end() && (*wlIt2).size() == nbEdges ) { // a same size wire
nbSameSize++;
wlIt2++;
}
if ( nbSameSize > 0 )
if (!sortSameSizeWires(wireList, wlIt, wlIt2, id1, edgesPointsList))
return false;
wlIt = wlIt2;
id1 += nbEdges * ( nbSameSize + 1 );
}
// add well-ordered edges to eList
for ( wlIt = wireList.begin(); wlIt != wireList.end(); wlIt++ )
{
list< TopoDS_Edge >& wire = (*wlIt);
eList.splice( eList.end(), wire, wire.begin(), wire.end() );
}
// re-fill myShapeIDMap - all shapes get good IDs
myShapeIDMap.Clear();
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
myShapeIDMap.Add( TopExp::FirstVertex( *elIt, true ));
for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
myShapeIDMap.Add( *elIt );
myShapeIDMap.Add( face );
} // there are inner wires
// Compute XYZ of on-edge points
TopLoc_Location loc;
for ( iE = nbVertices + 1, elIt = eList.begin(); elIt != eList.end(); elIt++ )
{
double f,l;
Handle(Geom_Curve) C3d = BRep_Tool::Curve( *elIt, loc, f, l );
const gp_Trsf & aTrsf = loc.Transformation();
list< TPoint* > & ePoints = getShapePoints( iE++ );
pIt = ePoints.begin();
for ( pIt++; pIt != ePoints.end(); pIt++ )
{
TPoint* point = *pIt;
point->myXYZ = C3d->Value( point->myU );
if ( !loc.IsIdentity() )
aTrsf.Transforms( point->myXYZ.ChangeCoord() );
}
}
// Compute UV and XYZ of in-face points
// try to use a simple algo
list< TPoint* > & fPoints = getShapePoints( face );
bool isDeformed = false;
for ( pIt = fPoints.begin(); !isDeformed && pIt != fPoints.end(); pIt++ )
if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
(*pIt)->myUV, isDeformed )) {
MESSAGE("cant Apply(face)");
return false;
}
// try to use a complex algo if it is a difficult case
if ( isDeformed && !compUVByElasticIsolines( edgesPointsList, fPoints ))
{
for ( ; pIt != fPoints.end(); pIt++ ) // continue with the simple algo
if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
(*pIt)->myUV, isDeformed )) {
MESSAGE("cant Apply(face)");
return false;
}
}
Handle(Geom_Surface) aSurface = BRep_Tool::Surface( face, loc );
const gp_Trsf & aTrsf = loc.Transformation();
for ( pIt = fPoints.begin(); pIt != fPoints.end(); pIt++ )
{
TPoint * point = *pIt;
point->myXYZ = aSurface->Value( point->myUV.X(), point->myUV.Y() );
if ( !loc.IsIdentity() )
aTrsf.Transforms( point->myXYZ.ChangeCoord() );
}
myIsComputed = true;
return setErrorCode( ERR_OK );
}
//=======================================================================
//function : Apply
//purpose : Compute nodes coordinates applying
// the loaded pattern to <theFace>. The first key-point
// will be mapped into <theNodeIndexOnKeyPoint1>-th node
//=======================================================================
bool SMESH_Pattern::Apply (const SMDS_MeshFace* theFace,
const int theNodeIndexOnKeyPoint1,
const bool theReverse)
{
MESSAGE(" ::Apply(MeshFace) " );
if ( !IsLoaded() ) {
MESSAGE( "Pattern not loaded" );
return setErrorCode( ERR_APPL_NOT_LOADED );
}
// check nb of nodes
if (theFace->NbNodes() != myNbKeyPntInBoundary.front() ) {
MESSAGE( myKeyPointIDs.size() << " != " << theFace->NbNodes() );
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
}
// find points on edges, it fills myNbKeyPntInBoundary
if ( !findBoundaryPoints() )
return false;
// check that there are no holes in a pattern
if (myNbKeyPntInBoundary.size() > 1 ) {
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
}
// Define the nodes order
list< const SMDS_MeshNode* > nodes;
list< const SMDS_MeshNode* >::iterator n = nodes.end();
SMDS_ElemIteratorPtr noIt = theFace->nodesIterator();
int iSub = 0;
while ( noIt->more() ) {
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( noIt->next() );
nodes.push_back( node );
if ( iSub++ == theNodeIndexOnKeyPoint1 )
n = --nodes.end();
}
if ( n != nodes.end() ) {
if ( theReverse ) {
if ( n != --nodes.end() )
nodes.splice( nodes.begin(), nodes, ++n, nodes.end() );
nodes.reverse();
}
else if ( n != nodes.begin() )
nodes.splice( nodes.end(), nodes, nodes.begin(), n );
}
list< gp_XYZ > xyzList;
myOrderedNodes.resize( theFace->NbNodes() );
for ( iSub = 0, n = nodes.begin(); n != nodes.end(); ++n ) {
xyzList.push_back( gp_XYZ( (*n)->X(), (*n)->Y(), (*n)->Z() ));
myOrderedNodes[ iSub++] = *n;
}
// Define a face plane
list< gp_XYZ >::iterator xyzIt = xyzList.begin();
gp_Pnt P ( *xyzIt++ );
gp_Vec Vx( P, *xyzIt++ ), N;
do {
N = Vx ^ gp_Vec( P, *xyzIt++ );
} while ( N.SquareMagnitude() <= DBL_MIN && xyzIt != xyzList.end() );
if ( N.SquareMagnitude() <= DBL_MIN )
return setErrorCode( ERR_APPLF_BAD_FACE_GEOM );
gp_Ax2 pos( P, N, Vx );
// Compute UV of key-points on a plane
for ( xyzIt = xyzList.begin(), iSub = 1; xyzIt != xyzList.end(); xyzIt++, iSub++ )
{
gp_Vec vec ( pos.Location(), *xyzIt );
TPoint* p = getShapePoints( iSub ).front();
p->myUV.SetX( vec * pos.XDirection() );
p->myUV.SetY( vec * pos.YDirection() );
p->myXYZ = *xyzIt;
}
// points on edges to be used for UV computation of in-face points
list< list< TPoint* > > edgesPointsList;
edgesPointsList.push_back( list< TPoint* >() );
list< TPoint* > * edgesPoints = & edgesPointsList.back();
list< TPoint* >::iterator pIt;
// compute UV and XYZ of points on edges
for ( xyzIt = xyzList.begin(); xyzIt != xyzList.end(); iSub++ )
{
gp_XYZ& xyz1 = *xyzIt++;
gp_XYZ& xyz2 = ( xyzIt != xyzList.end() ) ? *xyzIt : xyzList.front();
list< TPoint* > & ePoints = getShapePoints( iSub );
ePoints.back()->myInitU = 1.0;
list< TPoint* >::const_iterator pIt = ++ePoints.begin();
while ( *pIt != ePoints.back() )
{
TPoint* p = *pIt++;
p->myXYZ = xyz1 * ( 1 - p->myInitU ) + xyz2 * p->myInitU;
gp_Vec vec ( pos.Location(), p->myXYZ );
p->myUV.SetX( vec * pos.XDirection() );
p->myUV.SetY( vec * pos.YDirection() );
}
// collect on-edge points (excluding the last one)
edgesPoints->insert( edgesPoints->end(), ePoints.begin(), --ePoints.end());
}
// Compute UV and XYZ of in-face points
// try to use a simple algo to compute UV
list< TPoint* > & fPoints = getShapePoints( iSub );
bool isDeformed = false;
for ( pIt = fPoints.begin(); !isDeformed && pIt != fPoints.end(); pIt++ )
if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
(*pIt)->myUV, isDeformed )) {
MESSAGE("cant Apply(face)");
return false;
}
// try to use a complex algo if it is a difficult case
if ( isDeformed && !compUVByElasticIsolines( edgesPointsList, fPoints ))
{
for ( ; pIt != fPoints.end(); pIt++ ) // continue with the simple algo
if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
(*pIt)->myUV, isDeformed )) {
MESSAGE("cant Apply(face)");
return false;
}
}
for ( pIt = fPoints.begin(); pIt != fPoints.end(); pIt++ )
{
(*pIt)->myXYZ = ElSLib::PlaneValue( (*pIt)->myUV.X(), (*pIt)->myUV.Y(), pos );
}
myIsComputed = true;
return setErrorCode( ERR_OK );
}
//=======================================================================
//function : undefinedXYZ
//purpose :
//=======================================================================
static const gp_XYZ& undefinedXYZ()
{
static gp_XYZ xyz( 1.e100, 0., 0. );
return xyz;
}
//=======================================================================
//function : isDefined
//purpose :
//=======================================================================
inline static bool isDefined(const gp_XYZ& theXYZ)
{
return theXYZ.X() < 1.e100;
}
//=======================================================================
//function : mergePoints
//purpose : Look for coincident points between myXYZs indexed with
// list<int> of each element of xyzIndGroups. Coincident indices
// are merged in myElemXYZIDs.
//=======================================================================
void SMESH_Pattern::mergePoints (map<TNodeSet, list<list<int> > >& indGroups,
map< int, list< list< int >* > > & reverseConnectivity)
{
map< TNodeSet, list< list< int > > >::iterator indListIt;
for ( indListIt = indGroups.begin(); indListIt != indGroups.end(); indListIt++ )
{
list<list< int > > groups = indListIt->second;
if ( groups.size() < 2 )
continue;
// const TNodeSet & nodes = indListIt->first;
// TNodeSet::const_iterator n = nodes.begin();
// for ( ; n != nodes.end(); n++ )
// cout << *n ;
// find tolerance
Bnd_Box box;
list< int >& indices = groups.front();
list< int >::iterator ind, ind1, ind2;
for ( ind = indices.begin(); ind != indices.end(); ind++ )
box.Add( gp_Pnt( myXYZ[ *ind ]));
double x, y, z, X, Y, Z;
box.Get( x, y, z, X, Y, Z );
gp_Pnt p( x, y, z ), P( X, Y, Z );
double tol2 = 1.e-4 * p.SquareDistance( P );
// compare points, replace indices
list< list< int > >::iterator grpIt1, grpIt2;
for ( grpIt1 = groups.begin(); grpIt1 != groups.end(); grpIt1++ )
{
list< int >& indices1 = *grpIt1;
grpIt2 = grpIt1;
for ( grpIt2++; grpIt2 != groups.end(); grpIt2++ )
{
list< int >& indices2 = *grpIt2;
for ( ind1 = indices1.begin(); ind1 != indices1.end(); ind1++ )
{
gp_XYZ& p1 = myXYZ[ *ind1 ];
ind2 = indices2.begin();
while ( ind2 != indices2.end() )
{
gp_XYZ& p2 = myXYZ[ *ind2 ];
//MESSAGE("COMP: " << *ind1 << " " << *ind2 << " X: " << p2.X() << " tol2: " << tol2);
if ( ( p1 - p2 ).SquareModulus() <= tol2 )
{
ASSERT( reverseConnectivity.find( *ind2 ) != reverseConnectivity.end() );
list< list< int >* > & elemXYZIDsList = reverseConnectivity[ *ind2 ];
list< list< int >* >::iterator elemXYZIDs = elemXYZIDsList.begin();
for ( ; elemXYZIDs != elemXYZIDsList.end(); elemXYZIDs++ )
{
ind = find( (*elemXYZIDs)->begin(), (*elemXYZIDs)->end(), *ind2 );
//MESSAGE( " Replace " << *ind << " with " << *ind1 );
myXYZ[ *ind ] = undefinedXYZ();
*ind = *ind1;
}
ind2 = indices2.erase( ind2 );
}
else
ind2++;
}
}
}
}
}
}
//=======================================================================
//function : Apply
//purpose : Compute nodes coordinates applying
// the loaded pattern to <theFaces>. The first key-point
// will be mapped into <theNodeIndexOnKeyPoint1>-th node
//=======================================================================
bool SMESH_Pattern::Apply (std::set<const SMDS_MeshFace*> theFaces,
const int theNodeIndexOnKeyPoint1,
const bool theReverse)
{
MESSAGE(" ::Apply(set<MeshFace>) " );
if ( !IsLoaded() ) {
MESSAGE( "Pattern not loaded" );
return setErrorCode( ERR_APPL_NOT_LOADED );
}
// find points on edges, it fills myNbKeyPntInBoundary
if ( !findBoundaryPoints() )
return false;
// check that there are no holes in a pattern
if (myNbKeyPntInBoundary.size() > 1 ) {
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
}
myXYZ.clear();
myElemXYZIDs.clear();
myXYZIdToNodeMap.clear();
myElements.clear();
myXYZ.resize( myPoints.size() * theFaces.size(), undefinedXYZ() );
myElements.reserve( theFaces.size() );
// to find point index
map< TPoint*, int > pointIndex;
for ( int i = 0; i < myPoints.size(); i++ )
pointIndex.insert( make_pair( & myPoints[ i ], i ));
// to merge nodes on edges of the elements being refined
typedef set<const SMDS_MeshNode*> TLink;
map< TLink, list< list< int > > > linkPointIndListMap;
map< int, list< list< int >* > > reverseConnectivity;
int ind1 = 0; // lowest point index for a face
// apply to each face in theFaces set
set<const SMDS_MeshFace*>::iterator face = theFaces.begin();
for ( ; face != theFaces.end(); ++face )
{
if ( !Apply( *face, theNodeIndexOnKeyPoint1, theReverse )) {
MESSAGE( "Failed on " << *face );
continue;
}
myElements.push_back( *face );
// store computed points belonging to elements
list< list< int > >::iterator ll = myElemPointIDs.begin();
for ( ; ll != myElemPointIDs.end(); ++ll )
{
myElemXYZIDs.push_back();
list< int >& xyzIds = myElemXYZIDs.back();
list< int >& pIds = *ll;
for ( list<int>::iterator id = pIds.begin(); id != pIds.end(); id++ ) {
int pIndex = *id + ind1;
xyzIds.push_back( pIndex );
myXYZ[ pIndex ] = myPoints[ *id ].myXYZ.XYZ();
reverseConnectivity[ pIndex ].push_back( & xyzIds );
}
}
// put points on links to linkPointIndListMap
int nbNodes = (*face)->NbNodes(), eID = nbNodes + 1;
for ( int i = 0; i < nbNodes; i++ )
{
const SMDS_MeshNode* n1 = myOrderedNodes[ i ];
const SMDS_MeshNode* n2 = myOrderedNodes[ i + 1 == nbNodes ? 0 : i + 1 ];
// make a link of node pointers
TLink link;
link.insert( n1 );
link.insert( n2 );
// add the link to the map
list< list< int > >& groups = linkPointIndListMap[ link ];
groups.push_back();
list< int >& indList = groups.back();
list< TPoint* > & linkPoints = getShapePoints( eID++ );
list< TPoint* >::iterator p = linkPoints.begin();
// map the first link point to n1
myXYZIdToNodeMap[ pointIndex[ *p ] + ind1 ] = n1;
// add points to the map excluding the end points
for ( p++; *p != linkPoints.back(); p++ )
indList.push_back( pointIndex[ *p ] + ind1 );
}
ind1 += myPoints.size();
}
mergePoints( linkPointIndListMap, reverseConnectivity );
return !myElemXYZIDs.empty();
}
//=======================================================================
//function : Apply
//purpose : Compute nodes coordinates applying
// the loaded pattern to <theVolumes>. The (0,0,0) key-point
// will be mapped into <theNode000Index>-th node. The
// (0,0,1) key-point will be mapped into <theNode000Index>-th
// node.
//=======================================================================
bool SMESH_Pattern::Apply (std::set<const SMDS_MeshVolume*> theVolumes,
const int theNode000Index,
const int theNode001Index)
{
MESSAGE(" ::Apply(set<MeshVolumes>) " );
if ( !IsLoaded() ) {
MESSAGE( "Pattern not loaded" );
return setErrorCode( ERR_APPL_NOT_LOADED );
}
// bind ID to points
if ( !findBoundaryPoints() )
return false;
// check that there are no holes in a pattern
if (myNbKeyPntInBoundary.size() > 1 ) {
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
}
myXYZ.clear();
myElemXYZIDs.clear();
myXYZIdToNodeMap.clear();
myElements.clear();
myXYZ.resize( myPoints.size() * theVolumes.size(), undefinedXYZ() );
myElements.reserve( theVolumes.size() );
// to find point index
map< TPoint*, int > pointIndex;
for ( int i = 0; i < myPoints.size(); i++ )
pointIndex.insert( make_pair( & myPoints[ i ], i ));
// to merge nodes on edges and faces of the elements being refined
map< TNodeSet, list< list< int > > > subPointIndListMap;
map< int, list< list< int >* > > reverseConnectivity;
int ind1 = 0; // lowest point index for an element
// apply to each element in theVolumes set
set<const SMDS_MeshVolume*>::iterator vol = theVolumes.begin();
for ( ; vol != theVolumes.end(); ++vol )
{
if ( !Apply( *vol, theNode000Index, theNode001Index )) {
MESSAGE( "Failed on " << *vol );
continue;
}
myElements.push_back( *vol );
// store computed points belonging to elements
list< list< int > >::iterator ll = myElemPointIDs.begin();
for ( ; ll != myElemPointIDs.end(); ++ll )
{
myElemXYZIDs.push_back();
list< int >& xyzIds = myElemXYZIDs.back();
list< int >& pIds = *ll;
for ( list<int>::iterator id = pIds.begin(); id != pIds.end(); id++ ) {
int pIndex = *id + ind1;
xyzIds.push_back( pIndex );
myXYZ[ pIndex ] = myPoints[ *id ].myXYZ.XYZ();
reverseConnectivity[ pIndex ].push_back( & xyzIds );
}
}
// put points on edges and faces to subPointIndListMap
for ( int Id = SMESH_Block::ID_V000; Id <= SMESH_Block::ID_F1yz; Id++ )
{
// make a set of sub-points
TNodeSet subNodes;
vector< int > subIDs;
if ( SMESH_Block::IsVertexID( Id )) {
// use nodes of refined volumes for merge
}
else if ( SMESH_Block::IsEdgeID( Id )) {
SMESH_Block::GetEdgeVertexIDs( Id, subIDs );
subNodes.insert( myOrderedNodes[ subIDs.front() - 1 ]);
subNodes.insert( myOrderedNodes[ subIDs.back() - 1 ]);
}
else {
SMESH_Block::GetFaceEdgesIDs( Id, subIDs );
int e1 = subIDs[ 0 ], e2 = subIDs[ 1 ];
SMESH_Block::GetEdgeVertexIDs( e1, subIDs );
subNodes.insert( myOrderedNodes[ subIDs.front() - 1 ]);
subNodes.insert( myOrderedNodes[ subIDs.back() - 1 ]);
SMESH_Block::GetEdgeVertexIDs( e2, subIDs );
subNodes.insert( myOrderedNodes[ subIDs.front() - 1 ]);
subNodes.insert( myOrderedNodes[ subIDs.back() - 1 ]);
}
list< list< int > >& groups = subPointIndListMap[ subNodes ];
groups.push_back();
list< int >& indList = groups.back();
// add points
list< TPoint* > & points = getShapePoints( Id );
list< TPoint* >::iterator p = points.begin();
if ( subNodes.empty() ) // vertex case
myXYZIdToNodeMap[ pointIndex[ *p ] + ind1 ] = myOrderedNodes[ Id - 1 ];
else
for ( ; p != points.end(); p++ )
indList.push_back( pointIndex[ *p ] + ind1 );
}
ind1 += myPoints.size();
}
mergePoints( subPointIndListMap, reverseConnectivity );
return !myElemXYZIDs.empty();
}
//=======================================================================
//function : Load
//purpose : Create a pattern from the mesh built on <theBlock>
//=======================================================================
bool SMESH_Pattern::Load (SMESH_Mesh* theMesh,
const TopoDS_Shell& theBlock)
{
MESSAGE(" ::Load(volume) " );
Clear();
myIs2D = false;
SMESHDS_Mesh * aMeshDS = theMesh->GetMeshDS();
// load shapes in myShapeIDMap
SMESH_Block block;
TopoDS_Vertex v1, v2;
if ( !block.LoadBlockShapes( theBlock, v1, v2, myShapeIDMap ))
return setErrorCode( ERR_LOADV_BAD_SHAPE );
// count nodes
int nbNodes = 0, shapeID;
for ( shapeID = 1; shapeID <= myShapeIDMap.Extent(); shapeID++ )
{
const TopoDS_Shape& S = myShapeIDMap( shapeID );
SMESHDS_SubMesh * aSubMesh = aMeshDS->MeshElements( S );
if ( aSubMesh )
nbNodes += aSubMesh->NbNodes();
}
myPoints.resize( nbNodes );
// load U of points on edges
TNodePointIDMap nodePointIDMap;
int iPoint = 0;
for ( shapeID = 1; shapeID <= myShapeIDMap.Extent(); shapeID++ )
{
const TopoDS_Shape& S = myShapeIDMap( shapeID );
list< TPoint* > & shapePoints = getShapePoints( shapeID );
SMESHDS_SubMesh * aSubMesh = aMeshDS->MeshElements( S );
if ( ! aSubMesh ) continue;
SMDS_NodeIteratorPtr nIt = aSubMesh->GetNodes();
if ( !nIt->more() ) continue;
// store a node and a point
while ( nIt->more() ) {
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nIt->next() );
nodePointIDMap.insert( make_pair( node, iPoint ));
if ( block.IsVertexID( shapeID ))
myKeyPointIDs.push_back( iPoint );
TPoint* p = & myPoints[ iPoint++ ];
shapePoints.push_back( p );
p->myXYZ.SetCoord( node->X(), node->Y(), node->Z() );
p->myInitXYZ.SetCoord( 0,0,0 );
}
list< TPoint* >::iterator pIt = shapePoints.begin();
// compute init XYZ
switch ( S.ShapeType() )
{
case TopAbs_VERTEX:
case TopAbs_EDGE: {
for ( ; pIt != shapePoints.end(); pIt++ ) {
double * coef = block.GetShapeCoef( shapeID );
for ( int iCoord = 1; iCoord <= 3; iCoord++ )
if ( coef[ iCoord - 1] > 0 )
(*pIt)->myInitXYZ.SetCoord( iCoord, 1. );
}
if ( S.ShapeType() == TopAbs_VERTEX )
break;
const TopoDS_Edge& edge = TopoDS::Edge( S );
double f,l;
BRep_Tool::Range( edge, f, l );
int iCoord = SMESH_Block::GetCoordIndOnEdge( shapeID );
bool isForward = SMESH_Block::IsForwardEdge( edge, myShapeIDMap );
pIt = shapePoints.begin();
nIt = aSubMesh->GetNodes();
for ( ; nIt->more(); pIt++ )
{
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( nIt->next() );
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(node->GetPosition().get());
double u = ( epos->GetUParameter() - f ) / ( l - f );
(*pIt)->myInitXYZ.SetCoord( iCoord, isForward ? u : 1 - u );
}
break;
}
default:
for ( ; pIt != shapePoints.end(); pIt++ )
{
if ( !block.ComputeParameters( (*pIt)->myXYZ, (*pIt)->myInitXYZ, shapeID )) {
MESSAGE( "!block.ComputeParameters()" );
return setErrorCode( ERR_LOADV_COMPUTE_PARAMS );
}
}
}
} // loop on block sub-shapes
// load elements
SMESHDS_SubMesh * aSubMesh = aMeshDS->MeshElements( theBlock );
if ( aSubMesh )
{
SMDS_ElemIteratorPtr elemIt = aSubMesh->GetElements();
while ( elemIt->more() ) {
SMDS_ElemIteratorPtr nIt = elemIt->next()->nodesIterator();
myElemPointIDs.push_back( list< int >() );
list< int >& elemPoints = myElemPointIDs.back();
while ( nIt->more() )
elemPoints.push_back( nodePointIDMap[ nIt->next() ]);
}
}
myIsBoundaryPointsFound = true;
return setErrorCode( ERR_OK );
}
//=======================================================================
//function : Apply
//purpose : Compute nodes coordinates applying
// the loaded pattern to <theBlock>. The (0,0,0) key-point
// will be mapped into <theVertex000>. The (0,0,1)
// fifth key-point will be mapped into <theVertex001>.
//=======================================================================
bool SMESH_Pattern::Apply (const TopoDS_Shell& theBlock,
const TopoDS_Vertex& theVertex000,
const TopoDS_Vertex& theVertex001)
{
MESSAGE(" ::Apply(volume) " );
if (!findBoundaryPoints() || // bind ID to points
!setShapeToMesh( theBlock )) // check theBlock is a suitable shape
return false;
SMESH_Block block; // bind ID to shape
if (!block.LoadBlockShapes( theBlock, theVertex000, theVertex001, myShapeIDMap ))
return setErrorCode( ERR_APPLV_BAD_SHAPE );
// compute XYZ of points on shapes
for ( int shapeID = 1; shapeID <= myShapeIDMap.Extent(); shapeID++ )
{
list< TPoint* > & shapePoints = getShapePoints( shapeID );
list< TPoint* >::iterator pIt = shapePoints.begin();
const TopoDS_Shape& S = myShapeIDMap( shapeID );
switch ( S.ShapeType() )
{
case TopAbs_VERTEX: {
for ( ; pIt != shapePoints.end(); pIt++ )
block.VertexPoint( shapeID, (*pIt)->myXYZ.ChangeCoord() );
break;
}
case TopAbs_EDGE: {
for ( ; pIt != shapePoints.end(); pIt++ )
block.EdgePoint( shapeID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
break;
}
case TopAbs_FACE: {
for ( ; pIt != shapePoints.end(); pIt++ )
block.FacePoint( shapeID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
break;
}
default:
for ( ; pIt != shapePoints.end(); pIt++ )
block.ShellPoint( (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
}
} // loop on block sub-shapes
myIsComputed = true;
return setErrorCode( ERR_OK );
}
//=======================================================================
//function : Apply
//purpose : Compute nodes coordinates applying
// the loaded pattern to <theVolume>. The (0,0,0) key-point
// will be mapped into <theNode000Index>-th node. The
// (0,0,1) key-point will be mapped into <theNode000Index>-th
// node.
//=======================================================================
bool SMESH_Pattern::Apply (const SMDS_MeshVolume* theVolume,
const int theNode000Index,
const int theNode001Index)
{
MESSAGE(" ::Apply(MeshVolume) " );
if (!findBoundaryPoints()) // bind ID to points
return false;
SMESH_Block block; // bind ID to shape
if (!block.LoadMeshBlock( theVolume, theNode000Index, theNode001Index, myOrderedNodes ))
return setErrorCode( ERR_APPLV_BAD_SHAPE );
// compute XYZ of points on shapes
for ( int ID = SMESH_Block::ID_V000; ID <= SMESH_Block::ID_Shell; ID++ )
{
list< TPoint* > & shapePoints = getShapePoints( ID );
list< TPoint* >::iterator pIt = shapePoints.begin();
if ( block.IsVertexID( ID ))
for ( ; pIt != shapePoints.end(); pIt++ ) {
block.VertexPoint( ID, (*pIt)->myXYZ.ChangeCoord() );
}
else if ( block.IsEdgeID( ID ))
for ( ; pIt != shapePoints.end(); pIt++ ) {
block.EdgePoint( ID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
}
else if ( block.IsFaceID( ID ))
for ( ; pIt != shapePoints.end(); pIt++ ) {
block.FacePoint( ID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
}
else
for ( ; pIt != shapePoints.end(); pIt++ )
block.ShellPoint( (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
} // loop on block sub-shapes
myIsComputed = true;
return setErrorCode( ERR_OK );
}
//=======================================================================
//function : MakeMesh
//purpose : Create nodes and elements in <theMesh> using nodes
// coordinates computed by either of Apply...() methods
//=======================================================================
bool SMESH_Pattern::MakeMesh(SMESH_Mesh* theMesh)
{
MESSAGE(" ::MakeMesh() " );
if ( !myIsComputed )
return setErrorCode( ERR_MAKEM_NOT_COMPUTED );
SMESHDS_Mesh* aMeshDS = theMesh->GetMeshDS();
SMESH_MeshEditor editor( theMesh );
// clear elements and nodes existing on myShape
if ( !myShape.IsNull() )
{
SMESH_subMesh * aSubMesh = theMesh->GetSubMeshContaining( myShape );
SMESHDS_SubMesh * aSubMeshDS = aMeshDS->MeshElements( myShape );
if ( aSubMesh )
aSubMesh->ComputeStateEngine( SMESH_subMesh::CLEAN );
else if ( aSubMeshDS )
{
SMDS_ElemIteratorPtr eIt = aSubMeshDS->GetElements();
while ( eIt->more() )
aMeshDS->RemoveElement( eIt->next() );
SMDS_NodeIteratorPtr nIt = aSubMeshDS->GetNodes();
while ( nIt->more() )
aMeshDS->RemoveNode( static_cast<const SMDS_MeshNode*>( nIt->next() ));
}
}
bool onMeshElements = ( !myElements.empty() );
// loop on sub-shapes of myShape: create nodes and build point-node map
vector< const SMDS_MeshNode* > nodesVector;
map< TPoint*, const SMDS_MeshNode* > pointNodeMap;
if ( onMeshElements )
{
nodesVector.resize( myXYZ.size() );
for ( int i = 0; i < myXYZ.size(); ++i ) {
map< int, const SMDS_MeshNode*>::iterator idNode = myXYZIdToNodeMap.find( i );
if ( idNode != myXYZIdToNodeMap.end() )
nodesVector[ i ] = idNode->second;
else if ( isDefined( myXYZ[ i ] ))
nodesVector[ i ] = aMeshDS->AddNode (myXYZ[ i ].X(),
myXYZ[ i ].Y(),
myXYZ[ i ].Z());
}
}
else
{
map< int, list< TPoint* > >::iterator idPointIt = myShapeIDToPointsMap.begin();
for ( ; idPointIt != myShapeIDToPointsMap.end(); idPointIt++ )
{
TopoDS_Shape S;
SMESHDS_SubMesh * subMeshDS = 0;
if ( !myShapeIDMap.IsEmpty() ) {
S = myShapeIDMap( idPointIt->first );
subMeshDS = aMeshDS->MeshElements( S );
}
list< TPoint* > & points = idPointIt->second;
list< TPoint* >::iterator pIt = points.begin();
for ( ; pIt != points.end(); pIt++ )
{
TPoint* point = *pIt;
if ( pointNodeMap.find( point ) != pointNodeMap.end() )
continue;
SMDS_MeshNode* node = aMeshDS->AddNode (point->myXYZ.X(),
point->myXYZ.Y(),
point->myXYZ.Z());
pointNodeMap.insert( make_pair( point, node ));
if ( subMeshDS ) {
switch ( S.ShapeType() ) {
case TopAbs_VERTEX: {
aMeshDS->SetNodeOnVertex( node, TopoDS::Vertex( S ));
break;
}
case TopAbs_EDGE: {
aMeshDS->SetNodeOnEdge( node, TopoDS::Edge( S ));
SMDS_EdgePosition* epos =
dynamic_cast<SMDS_EdgePosition *>(node->GetPosition().get());
epos->SetUParameter( point->myU );
break;
}
case TopAbs_FACE: {
aMeshDS->SetNodeOnFace( node, TopoDS::Face( S ));
SMDS_FacePosition* pos =
dynamic_cast<SMDS_FacePosition *>(node->GetPosition().get());
pos->SetUParameter( point->myUV.X() );
pos->SetVParameter( point->myUV.Y() );
break;
}
default:
aMeshDS->SetNodeInVolume( node, TopoDS::Shell( S ));
}
}
}
}
}
// create elements
// shapes and groups myElements are on
vector< int > shapeIDs;
vector< list< SMESHDS_Group* > > groups;
if ( onMeshElements )
{
shapeIDs.resize( myElements.size() );
groups.resize( myElements.size() );
const set<SMESHDS_GroupBase*>& allGroups = aMeshDS->GetGroups();
set<SMESHDS_GroupBase*>::const_iterator grIt;
for ( int i = 0; i < myElements.size(); i++ )
{
shapeIDs[ i ] = editor.FindShape( myElements[ i ] );
for ( grIt = allGroups.begin(); grIt != allGroups.end(); grIt++ ) {
SMESHDS_Group* group = dynamic_cast<SMESHDS_Group*>( *grIt );
if ( group && group->SMDSGroup().Contains( myElements[ i ] ))
groups[ i ].push_back( group );
}
}
}
int nbElems = myElemPointIDs.size(); // nb elements in a pattern
list<list< int > >::iterator epIt, epEnd;
if ( onMeshElements ) {
epIt = myElemXYZIDs.begin();
epEnd = myElemXYZIDs.end();
}
else {
epIt = myElemPointIDs.begin();
epEnd = myElemPointIDs.end();
}
for ( int iElem = 0; epIt != epEnd; epIt++, iElem++ )
{
list< int > & elemPoints = *epIt;
// retrieve nodes
const SMDS_MeshNode* nodes[ 8 ];
list< int >::iterator iIt = elemPoints.begin();
int nbNodes;
for ( nbNodes = 0; iIt != elemPoints.end(); iIt++ ) {
if ( onMeshElements )
nodes[ nbNodes++ ] = nodesVector[ *iIt ];
else
nodes[ nbNodes++ ] = pointNodeMap[ & myPoints[ *iIt ]];
}
// add an element
const SMDS_MeshElement* elem = 0;
if ( myIs2D ) {
switch ( nbNodes ) {
case 3:
elem = aMeshDS->AddFace( nodes[0], nodes[1], nodes[2] ); break;
case 4:
elem = aMeshDS->AddFace( nodes[0], nodes[1], nodes[2], nodes[3] ); break;
default:
ASSERT( nbNodes < 8 );
}
}
else {
switch ( nbNodes ) {
case 4:
elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3] ); break;
case 5:
elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3],
nodes[4] ); break;
case 6:
elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3],
nodes[4], nodes[5] ); break;
case 8:
elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3],
nodes[4], nodes[5], nodes[6], nodes[7] ); break;
default:
ASSERT( nbNodes < 8 );
}
}
// set element on a shape
if ( elem && onMeshElements ) // applied to mesh elements
{
int elemIndex = iElem / nbElems;
int shapeID = shapeIDs[ elemIndex ];
if ( shapeID > 0 ) {
aMeshDS->SetMeshElementOnShape( elem, shapeID );
// set nodes on a shape
TopoDS_Shape S = aMeshDS->IndexToShape( shapeID );
if ( S.ShapeType() == TopAbs_SOLID ) {
TopoDS_Iterator shellIt( S );
if ( shellIt.More() )
shapeID = aMeshDS->ShapeToIndex( shellIt.Value() );
}
SMDS_ElemIteratorPtr noIt = elem->nodesIterator();
while ( noIt->more() ) {
SMDS_MeshNode* node = const_cast<SMDS_MeshNode*>
( static_cast<const SMDS_MeshNode*>( noIt->next() ));
if ( !node->GetPosition() || !node->GetPosition()->GetShapeId() ) {
if ( S.ShapeType() == TopAbs_FACE )
aMeshDS->SetNodeOnFace( node, shapeID );
else
aMeshDS->SetNodeInVolume( node, shapeID );
}
}
}
// add elem in groups
list< SMESHDS_Group* >::iterator g = groups[ elemIndex ].begin();
for ( ; g != groups[ elemIndex ].end(); ++g )
(*g)->SMDSGroup().Add( elem );
}
if ( elem && !myShape.IsNull() ) // applied to shape
aMeshDS->SetMeshElementOnShape( elem, myShape );
}
// make that SMESH_subMesh::_computeState = COMPUTE_OK
// so that operations with hypotheses will erase the mesh being built
SMESH_subMesh * subMesh;
if ( !myShape.IsNull() ) {
subMesh = theMesh->GetSubMeshContaining( myShape );
if ( subMesh )
subMesh->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
if ( onMeshElements ) {
list< int > elemIDs;
for ( int i = 0; i < myElements.size(); i++ )
{
int shapeID = shapeIDs[ i ];
if ( shapeID > 0 ) {
TopoDS_Shape S = aMeshDS->IndexToShape( shapeID );
subMesh = theMesh->GetSubMeshContaining( S );
if ( subMesh )
subMesh->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
elemIDs.push_back( myElements[ i ]->GetID() );
}
// remove refined elements
editor.Remove( elemIDs, false );
}
return setErrorCode( ERR_OK );
}
//=======================================================================
//function : arrangeBoundaries
//purpose : if there are several wires, arrange boundaryPoints so that
// the outer wire goes first and fix inner wires orientation
// update myKeyPointIDs to correspond to the order of key-points
// in boundaries; sort internal boundaries by the nb of key-points
//=======================================================================
void SMESH_Pattern::arrangeBoundaries (list< list< TPoint* > >& boundaryList)
{
typedef list< list< TPoint* > >::iterator TListOfListIt;
TListOfListIt bndIt;
list< TPoint* >::iterator pIt;
int nbBoundaries = boundaryList.size();
if ( nbBoundaries > 1 )
{
// sort boundaries by nb of key-points
if ( nbBoundaries > 2 )
{
// move boundaries in tmp list
list< list< TPoint* > > tmpList;
tmpList.splice( tmpList.begin(), boundaryList, boundaryList.begin(), boundaryList.end());
// make a map nb-key-points to boundary-position-in-tmpList,
// boundary-positions get ordered in it
typedef map< int, TListOfListIt > TNbKpBndPosMap;
TNbKpBndPosMap nbKpBndPosMap;
bndIt = tmpList.begin();
list< int >::iterator nbKpIt = myNbKeyPntInBoundary.begin();
for ( ; nbKpIt != myNbKeyPntInBoundary.end(); nbKpIt++, bndIt++ ) {
int nb = *nbKpIt * nbBoundaries;
while ( nbKpBndPosMap.find ( nb ) != nbKpBndPosMap.end() )
nb++;
nbKpBndPosMap.insert( TNbKpBndPosMap::value_type( nb, bndIt ));
}
// move boundaries back to boundaryList
TNbKpBndPosMap::iterator nbKpBndPosIt = nbKpBndPosMap.begin();
for ( ; nbKpBndPosIt != nbKpBndPosMap.end(); nbKpBndPosIt++ ) {
TListOfListIt & bndPos2 = (*nbKpBndPosIt).second;
TListOfListIt bndPos1 = bndPos2++;
boundaryList.splice( boundaryList.end(), tmpList, bndPos1, bndPos2 );
}
}
// Look for the outer boundary: the one with the point with the least X
double leastX = DBL_MAX;
TListOfListIt outerBndPos;
for ( bndIt = boundaryList.begin(); bndIt != boundaryList.end(); bndIt++ )
{
list< TPoint* >& boundary = (*bndIt);
for ( pIt = boundary.begin(); pIt != boundary.end(); pIt++)
{
TPoint* point = *pIt;
if ( point->myInitXYZ.X() < leastX ) {
leastX = point->myInitXYZ.X();
outerBndPos = bndIt;
}
}
}
if ( outerBndPos != boundaryList.begin() )
boundaryList.splice( boundaryList.begin(), boundaryList, outerBndPos, ++outerBndPos );
} // if nbBoundaries > 1
// Check boundaries orientation and re-fill myKeyPointIDs
set< TPoint* > keyPointSet;
list< int >::iterator kpIt = myKeyPointIDs.begin();
for ( ; kpIt != myKeyPointIDs.end(); kpIt++ )
keyPointSet.insert( & myPoints[ *kpIt ]);
myKeyPointIDs.clear();
// update myNbKeyPntInBoundary also
list< int >::iterator nbKpIt = myNbKeyPntInBoundary.begin();
for ( bndIt = boundaryList.begin(); bndIt != boundaryList.end(); bndIt++, nbKpIt++ )
{
// find the point with the least X
double leastX = DBL_MAX;
list< TPoint* >::iterator xpIt;
list< TPoint* >& boundary = (*bndIt);
for ( pIt = boundary.begin(); pIt != boundary.end(); pIt++)
{
TPoint* point = *pIt;
if ( point->myInitXYZ.X() < leastX ) {
leastX = point->myInitXYZ.X();
xpIt = pIt;
}
}
// find points next to the point with the least X
TPoint* p = *xpIt, *pPrev, *pNext;
if ( p == boundary.front() )
pPrev = *(++boundary.rbegin());
else {
xpIt--;
pPrev = *xpIt;
xpIt++;
}
if ( p == boundary.back() )
pNext = *(++boundary.begin());
else {
xpIt++;
pNext = *xpIt;
}
// vectors of boundary direction near <p>
gp_Vec2d v1( pPrev->myInitUV, p->myInitUV ), v2( p->myInitUV, pNext->myInitUV );
double sqMag1 = v1.SquareMagnitude(), sqMag2 = v2.SquareMagnitude();
if ( sqMag1 > DBL_MIN && sqMag2 > DBL_MIN ) {
double yPrev = v1.Y() / sqrt( sqMag1 );
double yNext = v2.Y() / sqrt( sqMag2 );
double sumY = yPrev + yNext;
bool reverse;
if ( bndIt == boundaryList.begin() ) // outer boundary
reverse = sumY > 0;
else
reverse = sumY < 0;
if ( reverse )
boundary.reverse();
}
// Put key-point IDs of a well-oriented boundary in myKeyPointIDs
(*nbKpIt) = 0; // count nb of key-points again
pIt = boundary.begin();
for ( ; pIt != boundary.end(); pIt++)
{
TPoint* point = *pIt;
if ( keyPointSet.find( point ) == keyPointSet.end() )
continue;
// find an index of a keypoint
int index = 0;
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
for ( ; pVecIt != myPoints.end(); pVecIt++, index++ )
if ( &(*pVecIt) == point )
break;
myKeyPointIDs.push_back( index );
(*nbKpIt)++;
}
myKeyPointIDs.pop_back(); // remove the first key-point from the back
(*nbKpIt)--;
} // loop on a list of boundaries
ASSERT( myKeyPointIDs.size() == keyPointSet.size() );
}
//=======================================================================
//function : findBoundaryPoints
//purpose : if loaded from file, find points to map on edges and faces and
// compute their parameters
//=======================================================================
bool SMESH_Pattern::findBoundaryPoints()
{
if ( myIsBoundaryPointsFound ) return true;
MESSAGE(" findBoundaryPoints() ");
if ( myIs2D )
{
set< TPoint* > pointsInElems;
// Find free links of elements:
// put links of all elements in a set and remove links encountered twice
typedef pair< TPoint*, TPoint*> TLink;
set< TLink > linkSet;
list<list< int > >::iterator epIt = myElemPointIDs.begin();
for ( ; epIt != myElemPointIDs.end(); epIt++ )
{
list< int > & elemPoints = *epIt;
list< int >::iterator pIt = elemPoints.begin();
int prevP = elemPoints.back();
for ( ; pIt != elemPoints.end(); pIt++ ) {
TPoint* p1 = & myPoints[ prevP ];
TPoint* p2 = & myPoints[ *pIt ];
TLink link(( p1 < p2 ? p1 : p2 ), ( p1 < p2 ? p2 : p1 ));
ASSERT( link.first != link.second );
pair<set< TLink >::iterator,bool> itUniq = linkSet.insert( link );
if ( !itUniq.second )
linkSet.erase( itUniq.first );
prevP = *pIt;
pointsInElems.insert( p1 );
}
}
// Now linkSet contains only free links,
// find the points order that they have in boundaries
// 1. make a map of key-points
set< TPoint* > keyPointSet;
list< int >::iterator kpIt = myKeyPointIDs.begin();
for ( ; kpIt != myKeyPointIDs.end(); kpIt++ )
keyPointSet.insert( & myPoints[ *kpIt ]);
// 2. chain up boundary points
list< list< TPoint* > > boundaryList;
boundaryList.push_back( list< TPoint* >() );
list< TPoint* > * boundary = & boundaryList.back();
TPoint *point1, *point2, *keypoint1;
kpIt = myKeyPointIDs.begin();
point1 = keypoint1 = & myPoints[ *kpIt++ ];
// loop on free links: look for the next point
int iKeyPoint = 0;
set< TLink >::iterator lIt = linkSet.begin();
while ( lIt != linkSet.end() )
{
if ( (*lIt).first == point1 )
point2 = (*lIt).second;
else if ( (*lIt).second == point1 )
point2 = (*lIt).first;
else {
lIt++;
continue;
}
linkSet.erase( lIt );
lIt = linkSet.begin();
if ( keyPointSet.find( point2 ) == keyPointSet.end() ) // not a key-point
{
boundary->push_back( point2 );
}
else // a key-point found
{
keyPointSet.erase( point2 ); // keyPointSet contains not found key-points only
iKeyPoint++;
if ( point2 != keypoint1 ) // its not the boundary end
{
boundary->push_back( point2 );
}
else // the boundary end reached
{
boundary->push_front( keypoint1 );
boundary->push_back( keypoint1 );
myNbKeyPntInBoundary.push_back( iKeyPoint );
if ( keyPointSet.empty() )
break; // all boundaries containing key-points are found
// prepare to search for the next boundary
boundaryList.push_back( list< TPoint* >() );
boundary = & boundaryList.back();
point2 = keypoint1 = (*keyPointSet.begin());
}
}
point1 = point2;
} // loop on the free links set
if ( boundary->empty() ) {
MESSAGE(" a separate key-point");
return setErrorCode( ERR_READ_BAD_KEY_POINT );
}
// if there are several wires, arrange boundaryPoints so that
// the outer wire goes first and fix inner wires orientation;
// sort myKeyPointIDs to correspond to the order of key-points
// in boundaries
arrangeBoundaries( boundaryList );
// Find correspondence shape ID - points,
// compute points parameter on edge
keyPointSet.clear();
for ( kpIt = myKeyPointIDs.begin(); kpIt != myKeyPointIDs.end(); kpIt++ )
keyPointSet.insert( & myPoints[ *kpIt ]);
set< TPoint* > edgePointSet; // to find in-face points
int vertexID = 1; // the first index in TopTools_IndexedMapOfShape
int edgeID = myKeyPointIDs.size() + 1;
list< list< TPoint* > >::iterator bndIt = boundaryList.begin();
for ( ; bndIt != boundaryList.end(); bndIt++ )
{
boundary = & (*bndIt);
double edgeLength = 0;
list< TPoint* >::iterator pIt = boundary->begin();
getShapePoints( edgeID ).push_back( *pIt );
getShapePoints( vertexID++ ).push_back( *pIt );
for ( pIt++; pIt != boundary->end(); pIt++)
{
list< TPoint* > & edgePoints = getShapePoints( edgeID );
TPoint* prevP = edgePoints.empty() ? 0 : edgePoints.back();
TPoint* point = *pIt;
edgePointSet.insert( point );
if ( keyPointSet.find( point ) == keyPointSet.end() ) // inside-edge point
{
edgePoints.push_back( point );
edgeLength += ( point->myInitUV - prevP->myInitUV ).Modulus();
point->myInitU = edgeLength;
}
else // a key-point
{
// treat points on the edge which ends up: compute U [0,1]
edgePoints.push_back( point );
if ( edgePoints.size() > 2 ) {
edgeLength += ( point->myInitUV - prevP->myInitUV ).Modulus();
list< TPoint* >::iterator epIt = edgePoints.begin();
for ( ; epIt != edgePoints.end(); epIt++ )
(*epIt)->myInitU /= edgeLength;
}
// begin the next edge treatment
edgeLength = 0;
edgeID++;
if ( point != boundary->front() ) { // not the first key-point again
getShapePoints( edgeID ).push_back( point );
getShapePoints( vertexID++ ).push_back( point );
}
}
}
}
// find in-face points
list< TPoint* > & facePoints = getShapePoints( edgeID );
vector< TPoint >::iterator pVecIt = myPoints.begin();
for ( ; pVecIt != myPoints.end(); pVecIt++ ) {
TPoint* point = &(*pVecIt);
if ( edgePointSet.find( point ) == edgePointSet.end() &&
pointsInElems.find( point ) != pointsInElems.end())
facePoints.push_back( point );
}
} // 2D case
else // 3D case
{
// bind points to shapes according to point parameters
vector< TPoint >::iterator pVecIt = myPoints.begin();
for ( int i = 0; pVecIt != myPoints.end(); pVecIt++, i++ ) {
TPoint* point = &(*pVecIt);
int shapeID = SMESH_Block::GetShapeIDByParams( point->myInitXYZ );
getShapePoints( shapeID ).push_back( point );
// detect key-points
if ( SMESH_Block::IsVertexID( shapeID ))
myKeyPointIDs.push_back( i );
}
}
myIsBoundaryPointsFound = true;
return myIsBoundaryPointsFound;
}
//=======================================================================
//function : Clear
//purpose : clear fields
//=======================================================================
void SMESH_Pattern::Clear()
{
myIsComputed = myIsBoundaryPointsFound = false;
myPoints.clear();
myKeyPointIDs.clear();
myElemPointIDs.clear();
myShapeIDToPointsMap.clear();
myShapeIDMap.Clear();
myShape.Nullify();
myNbKeyPntInBoundary.clear();
}
//=======================================================================
//function : setShapeToMesh
//purpose : set a shape to be meshed. Return True if meshing is possible
//=======================================================================
bool SMESH_Pattern::setShapeToMesh(const TopoDS_Shape& theShape)
{
if ( !IsLoaded() ) {
MESSAGE( "Pattern not loaded" );
return setErrorCode( ERR_APPL_NOT_LOADED );
}
TopAbs_ShapeEnum aType = theShape.ShapeType();
bool dimOk = ( myIs2D ? aType == TopAbs_FACE : aType == TopAbs_SHELL );
if ( !dimOk ) {
MESSAGE( "Pattern dimention mismatch" );
return setErrorCode( ERR_APPL_BAD_DIMENTION );
}
// check if a face is closed
int nbNodeOnSeamEdge = 0;
if ( myIs2D ) {
TopoDS_Face face = TopoDS::Face( theShape );
TopExp_Explorer eExp( theShape, TopAbs_EDGE );
for ( ; eExp.More() && nbNodeOnSeamEdge == 0; eExp.Next() )
if ( BRep_Tool::IsClosed( TopoDS::Edge( eExp.Current() ), face ))
nbNodeOnSeamEdge = 2;
}
// check nb of vertices
TopTools_IndexedMapOfShape vMap;
TopExp::MapShapes( theShape, TopAbs_VERTEX, vMap );
if ( vMap.Extent() + nbNodeOnSeamEdge != myKeyPointIDs.size() ) {
MESSAGE( myKeyPointIDs.size() << " != " << vMap.Extent() );
return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
}
myShapeIDMap.Clear();
myShape = theShape;
return true;
}
//=======================================================================
//function : GetMappedPoints
//purpose : Return nodes coordinates computed by Apply() method
//=======================================================================
bool SMESH_Pattern::GetMappedPoints ( list< const gp_XYZ * > & thePoints ) const
{
thePoints.clear();
if ( !myIsComputed )
return false;
if ( myElements.empty() ) { // applied to shape
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
for ( ; pVecIt != myPoints.end(); pVecIt++ )
thePoints.push_back( & (*pVecIt).myXYZ.XYZ() );
}
else { // applied to mesh elements
const gp_XYZ * definedXYZ = & myPoints[ myKeyPointIDs.front() ].myXYZ.XYZ();
vector<gp_XYZ>::const_iterator xyz = myXYZ.begin();
for ( ; xyz != myXYZ.end(); ++xyz )
if ( !isDefined( *xyz ))
thePoints.push_back( definedXYZ );
else
thePoints.push_back( & (*xyz) );
}
return !thePoints.empty();
}
//=======================================================================
//function : GetPoints
//purpose : Return nodes coordinates of the pattern
//=======================================================================
bool SMESH_Pattern::GetPoints ( list< const gp_XYZ * > & thePoints ) const
{
thePoints.clear();
if ( !IsLoaded() )
return false;
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
for ( ; pVecIt != myPoints.end(); pVecIt++ )
thePoints.push_back( & (*pVecIt).myInitXYZ );
return ( thePoints.size() > 0 );
}
//=======================================================================
//function : getShapePoints
//purpose : return list of points located on theShape
//=======================================================================
list< SMESH_Pattern::TPoint* > &
SMESH_Pattern::getShapePoints(const TopoDS_Shape& theShape)
{
int aShapeID;
if ( !myShapeIDMap.Contains( theShape ))
aShapeID = myShapeIDMap.Add( theShape );
else
aShapeID = myShapeIDMap.FindIndex( theShape );
return myShapeIDToPointsMap[ aShapeID ];
}
//=======================================================================
//function : getShapePoints
//purpose : return list of points located on the shape
//=======================================================================
list< SMESH_Pattern::TPoint* > & SMESH_Pattern::getShapePoints(const int theShapeID)
{
return myShapeIDToPointsMap[ theShapeID ];
}
//=======================================================================
//function : DumpPoints
//purpose : Debug
//=======================================================================
void SMESH_Pattern::DumpPoints() const
{
#ifdef _DEBUG_
vector< TPoint >::const_iterator pVecIt = myPoints.begin();
for ( int i = 0; pVecIt != myPoints.end(); pVecIt++, i++ )
cout << i << ": " << *pVecIt;
#endif
}
//=======================================================================
//function : TPoint()
//purpose :
//=======================================================================
SMESH_Pattern::TPoint::TPoint()
{
#ifdef _DEBUG_
myInitXYZ.SetCoord(0,0,0);
myInitUV.SetCoord(0.,0.);
myInitU = 0;
myXYZ.SetCoord(0,0,0);
myUV.SetCoord(0.,0.);
myU = 0;
#endif
}
//=======================================================================
//function : operator <<
//purpose :
//=======================================================================
ostream & operator <<(ostream & OS, const SMESH_Pattern::TPoint& p)
{
gp_XYZ xyz = p.myInitXYZ;
OS << "\tinit( xyz( " << xyz.X() << " " << xyz.Y() << " " << xyz.Z() << " )";
gp_XY xy = p.myInitUV;
OS << " uv( " << xy.X() << " " << xy.Y() << " )";
double u = p.myInitU;
OS << " u( " << u << " )) " << &p << endl;
xyz = p.myXYZ.XYZ();
OS << "\t ( xyz( " << xyz.X() << " " << xyz.Y() << " " << xyz.Z() << " )";
xy = p.myUV;
OS << " uv( " << xy.X() << " " << xy.Y() << " )";
u = p.myU;
OS << " u( " << u << " ))" << endl;
return OS;
}