mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2024-11-14 09:38:33 +05:00
187 lines
5.8 KiB
Python
187 lines
5.8 KiB
Python
# -*- coding: iso-8859-1 -*-
|
||
# Copyright (C) 2007-2023 CEA, EDF, OPEN CASCADE
|
||
#
|
||
# Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
||
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
||
#
|
||
# This library is free software; you can redistribute it and/or
|
||
# modify it under the terms of the GNU Lesser General Public
|
||
# License as published by the Free Software Foundation; either
|
||
# version 2.1 of the License, or (at your option) any later version.
|
||
#
|
||
# This library is distributed in the hope that it will be useful,
|
||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
# Lesser General Public License for more details.
|
||
#
|
||
# You should have received a copy of the GNU Lesser General Public
|
||
# License along with this library; if not, write to the Free Software
|
||
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
#
|
||
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
||
#
|
||
|
||
# Tetrahedrization of the geometry generated by the Python script GEOM_Partition1.py
|
||
# Hypothesis and algorithms for the mesh generation are global
|
||
# -- Rayon de la bariere
|
||
#
|
||
import salome
|
||
salome.salome_init()
|
||
import GEOM
|
||
from salome.geom import geomBuilder
|
||
geompy = geomBuilder.New()
|
||
|
||
import SMESH, SALOMEDS
|
||
from salome.smesh import smeshBuilder
|
||
smesh = smeshBuilder.New()
|
||
|
||
from math import sqrt
|
||
|
||
|
||
#---------------------------------------------------------------
|
||
|
||
barier_height = 7.0
|
||
barier_radius = 5.6 / 2 # Rayon de la bariere
|
||
colis_radius = 1.0 / 2 # Rayon du colis
|
||
colis_step = 2.0 # Distance s<>parant deux colis
|
||
cc_width = 0.11 # Epaisseur du complement de colisage
|
||
|
||
# --
|
||
|
||
cc_radius = colis_radius + cc_width
|
||
colis_center = sqrt(2.0)*colis_step/2
|
||
|
||
# --
|
||
|
||
boolean_common = 1
|
||
boolean_cut = 2
|
||
boolean_fuse = 3
|
||
boolean_section = 4
|
||
|
||
# --
|
||
|
||
p0 = geompy.MakeVertex(0.,0.,0.)
|
||
vz = geompy.MakeVectorDXDYDZ(0.,0.,1.)
|
||
|
||
# --
|
||
|
||
barier = geompy.MakeCylinder(p0, vz, barier_radius, barier_height)
|
||
|
||
# --
|
||
|
||
colis = geompy.MakeCylinder(p0, vz, colis_radius, barier_height)
|
||
cc = geompy.MakeCylinder(p0, vz, cc_radius, barier_height)
|
||
|
||
colis_cc = geompy.MakeCompound([colis, cc])
|
||
colis_cc = geompy.MakeTranslation(colis_cc, colis_center, 0.0, 0.0)
|
||
|
||
colis_cc_multi = geompy.MultiRotate1D(colis_cc, vz, 4)
|
||
|
||
# --
|
||
|
||
Compound1 = geompy.MakeCompound([colis_cc_multi, barier])
|
||
SubShape_theShape = geompy.SubShapeAll(Compound1,geompy.ShapeType["SOLID"])
|
||
alveole = geompy.MakePartition(SubShape_theShape)
|
||
|
||
print("Analysis of the geometry to mesh (right after the Partition) :")
|
||
|
||
subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"])
|
||
subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"])
|
||
subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"])
|
||
|
||
print("number of Shells in alveole : ", len(subShellList))
|
||
print("number of Faces in alveole : ", len(subFaceList))
|
||
print("number of Edges in alveole : ", len(subEdgeList))
|
||
|
||
subshapes = geompy.SubShapeAll(alveole, geompy.ShapeType["SHAPE"])
|
||
|
||
## there are 9 sub-shapes
|
||
|
||
comp1 = geompy.MakeCompound( [ subshapes[0], subshapes[1] ] )
|
||
comp2 = geompy.MakeCompound( [ subshapes[2], subshapes[3] ] )
|
||
comp3 = geompy.MakeCompound( [ subshapes[4], subshapes[5] ] )
|
||
comp4 = geompy.MakeCompound( [ subshapes[6], subshapes[7] ] )
|
||
|
||
compGOs = []
|
||
compGOs.append( comp1 )
|
||
compGOs.append( comp2 )
|
||
compGOs.append( comp3 )
|
||
compGOs.append( comp4 )
|
||
comp = geompy.MakeCompound( compGOs )
|
||
|
||
alveole = geompy.MakeCompound( [ comp, subshapes[8] ])
|
||
|
||
idalveole = geompy.addToStudy(alveole, "alveole")
|
||
|
||
print("Analysis of the geometry to mesh (right after the MakeCompound) :")
|
||
|
||
subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"])
|
||
subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"])
|
||
subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"])
|
||
|
||
print("number of Shells in alveole : ", len(subShellList))
|
||
print("number of Faces in alveole : ", len(subFaceList))
|
||
print("number of Edges in alveole : ", len(subEdgeList))
|
||
|
||
status = geompy.CheckShape(alveole)
|
||
print(" check status ", status)
|
||
|
||
|
||
# ---- init a Mesh with the alveole
|
||
shape_mesh = salome.IDToObject( idalveole )
|
||
|
||
mesh = smesh.Mesh(shape_mesh, "MeshAlveole")
|
||
|
||
print("-------------------------- create Hypothesis (In this case global hypothesis are used)")
|
||
|
||
print("-------------------------- NumberOfSegments")
|
||
|
||
numberOfSegments = 10
|
||
|
||
regular1D = mesh.Segment()
|
||
hypNbSeg = regular1D.NumberOfSegments(numberOfSegments)
|
||
print(hypNbSeg.GetName())
|
||
print(hypNbSeg.GetId())
|
||
print(hypNbSeg.GetNumberOfSegments())
|
||
smesh.SetName(hypNbSeg, "NumberOfSegments_" + str(numberOfSegments))
|
||
|
||
print("-------------------------- MaxElementArea")
|
||
|
||
maxElementArea = 0.1
|
||
|
||
triangle = mesh.Triangle()
|
||
hypArea = triangle.MaxElementArea(maxElementArea)
|
||
print(hypArea.GetName())
|
||
print(hypArea.GetId())
|
||
print(hypArea.GetMaxElementArea())
|
||
smesh.SetName(hypArea, "MaxElementArea_" + str(maxElementArea))
|
||
|
||
print("-------------------------- MaxElementVolume")
|
||
|
||
maxElementVolume = 0.5
|
||
|
||
netgen3D = mesh.Tetrahedron(smeshBuilder.NETGEN)
|
||
hypVolume = netgen3D.MaxElementVolume(maxElementVolume)
|
||
print(hypVolume.GetName())
|
||
print(hypVolume.GetId())
|
||
print(hypVolume.GetMaxElementVolume())
|
||
smesh.SetName(hypVolume, "MaxElementVolume_" + str(maxElementVolume))
|
||
|
||
print("-------------------------- compute the mesh of alveole ")
|
||
ret = mesh.Compute()
|
||
if not ret:
|
||
raise Exception("Error when computing Mesh")
|
||
|
||
log = mesh.GetLog(0) # no erase trace
|
||
# for linelog in log:
|
||
# print(linelog)
|
||
print("Information about the Mesh_mechanic:")
|
||
print("Number of nodes : ", mesh.NbNodes())
|
||
print("Number of edges : ", mesh.NbEdges())
|
||
print("Number of faces : ", mesh.NbFaces())
|
||
print("Number of triangles : ", mesh.NbTriangles())
|
||
print("Number of volumes : ", mesh.NbVolumes())
|
||
print("Number of tetrahedrons: ", mesh.NbTetras())
|
||
|
||
salome.sg.updateObjBrowser()
|