smesh/src/StdMeshers/StdMeshers_Regular_1D.cxx

878 lines
25 KiB
C++

// SMESH SMESH : implementaion of SMESH idl descriptions
//
// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
//
//
//
// File : StdMeshers_Regular_1D.cxx
// Moved here from SMESH_Regular_1D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
// $Header$
using namespace std;
#include "StdMeshers_Regular_1D.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "StdMeshers_LocalLength.hxx"
#include "StdMeshers_NumberOfSegments.hxx"
#include "StdMeshers_Arithmetic1D.hxx"
#include "StdMeshers_StartEndLength.hxx"
#include "StdMeshers_Deflection1D.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMESH_subMesh.hxx"
#include "Utils_SALOME_Exception.hxx"
#include "utilities.h"
#include <BRep_Tool.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Shape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GCPnts_UniformAbscissa.hxx>
#include <GCPnts_UniformDeflection.hxx>
#include <Standard_ErrorHandler.hxx>
#include <Precision.hxx>
#include <Expr_GeneralExpression.hxx>
#include <Expr_NamedUnknown.hxx>
#include <Expr_Array1OfNamedUnknown.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <ExprIntrp_GenExp.hxx>
#include <string>
#include <math.h>
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, int studyId,
SMESH_Gen * gen):SMESH_1D_Algo(hypId, studyId, gen)
{
MESSAGE("StdMeshers_Regular_1D::StdMeshers_Regular_1D");
_name = "Regular_1D";
_shapeType = (1 << TopAbs_EDGE);
_compatibleHypothesis.push_back("LocalLength");
_compatibleHypothesis.push_back("NumberOfSegments");
_compatibleHypothesis.push_back("StartEndLength");
_compatibleHypothesis.push_back("Deflection1D");
_compatibleHypothesis.push_back("Arithmetic1D");
}
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Regular_1D::~StdMeshers_Regular_1D()
{
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Regular_1D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
_hypType = NONE;
const list <const SMESHDS_Hypothesis * >&hyps = GetUsedHypothesis(aMesh, aShape);
if (hyps.size() == 0)
{
aStatus = SMESH_Hypothesis::HYP_MISSING;
return false; // can't work without a hypothesis
}
// use only the first hypothesis
const SMESHDS_Hypothesis *theHyp = hyps.front();
string hypName = theHyp->GetName();
if (hypName == "LocalLength")
{
const StdMeshers_LocalLength * hyp =
dynamic_cast <const StdMeshers_LocalLength * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength();
ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
_hypType = LOCAL_LENGTH;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "NumberOfSegments")
{
const StdMeshers_NumberOfSegments * hyp =
dynamic_cast <const StdMeshers_NumberOfSegments * >(theHyp);
ASSERT(hyp);
_ivalue[ NB_SEGMENTS_IND ] = hyp->GetNumberOfSegments();
ASSERT( _ivalue[ NB_SEGMENTS_IND ] > 0 );
_ivalue[ DISTR_TYPE_IND ] = (int) hyp->GetDistrType();
switch (_ivalue[ DISTR_TYPE_IND ])
{
case StdMeshers_NumberOfSegments::DT_Scale:
_value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor();
break;
case StdMeshers_NumberOfSegments::DT_TabFunc:
_vvalue[ TAB_FUNC_IND ] = hyp->GetTableFunction();
break;
case StdMeshers_NumberOfSegments::DT_ExprFunc:
_svalue[ EXPR_FUNC_IND ] = hyp->GetExpressionFunction();
break;
case StdMeshers_NumberOfSegments::DT_Regular:
break;
default:
ASSERT(0);
break;
}
if (_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_TabFunc ||
_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_ExprFunc)
_ivalue[ EXP_MODE_IND ] = (int) hyp->IsExponentMode();
_hypType = NB_SEGMENTS;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "Arithmetic1D")
{
const StdMeshers_Arithmetic1D * hyp =
dynamic_cast <const StdMeshers_Arithmetic1D * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
_value[ END_LENGTH_IND ] = hyp->GetLength( false );
ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
_hypType = ARITHMETIC_1D;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "StartEndLength")
{
const StdMeshers_StartEndLength * hyp =
dynamic_cast <const StdMeshers_StartEndLength * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
_value[ END_LENGTH_IND ] = hyp->GetLength( false );
ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
_hypType = BEG_END_LENGTH;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "Deflection1D")
{
const StdMeshers_Deflection1D * hyp =
dynamic_cast <const StdMeshers_Deflection1D * >(theHyp);
ASSERT(hyp);
_value[ DEFLECTION_IND ] = hyp->GetDeflection();
ASSERT( _value[ DEFLECTION_IND ] > 0 );
_hypType = DEFLECTION;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else
aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE;
return ( _hypType != NONE );
}
//=======================================================================
//function : compensateError
//purpose : adjust theParams so that the last segment length == an
//=======================================================================
static void compensateError(double a1, double an,
double U1, double Un,
double length,
GeomAdaptor_Curve& C3d,
list<double> & theParams)
{
int i, nPar = theParams.size();
if ( a1 + an < length && nPar > 1 )
{
list<double>::reverse_iterator itU = theParams.rbegin();
double Ul = *itU++;
// dist from the last point to the edge end <Un>, it should be equal <an>
double Ln = GCPnts_AbscissaPoint::Length( C3d, Ul, Un );
double dLn = an - Ln; // error of <an>
if ( Abs( dLn ) <= Precision::Confusion() )
return;
double dU = Abs( Ul - *itU ); // parametric length of the last but one segment
double dUn = dLn * Abs( Un - U1 ) / length; // parametric error of <an>
if ( dUn < 0.5 * dU ) { // last segment is a bit shorter than it should
dUn = -dUn; // move the last parameter to the edge beginning
}
else { // last segment is much shorter than it should -> remove the last param and
theParams.pop_back(); nPar--; // move the rest points toward the edge end
Ln = GCPnts_AbscissaPoint::Length( C3d, theParams.back(), Un );
dUn = ( an - Ln ) * Abs( Un - U1 ) / length;
if ( dUn < 0.5 * dU )
dUn = -dUn;
}
if ( U1 > Un )
dUn = -dUn;
double q = dUn / ( nPar - 1 );
for ( itU = theParams.rbegin(), i = 1; i < nPar; itU++, i++ ) {
(*itU) += dUn;
dUn -= q;
}
}
}
/*!
* \brief This class provides interface for a density function
*/
class Function
{
public:
Function(bool expMode) : _expMode(expMode) {}
double operator() (double t) const;
virtual bool IsReady() const = 0;
protected:
virtual double compute(double t) const = 0;
private:
bool _expMode;
};
/*!
* \brief This class provides computation of density function given by a table
*/
class TabFunction: public Function
{
public:
TabFunction(const vector<double>& table, bool expMode);
virtual bool IsReady() const;
protected:
virtual double compute(double t) const;
private:
const vector<double>& _table;
};
/*!
* \brief This class provides computation of density function given by an expression
*/
class ExprFunction: public Function
{
public:
ExprFunction(const char* expr, bool expMode);
virtual bool IsReady() const;
protected:
virtual double compute(double t) const;
private:
Handle(Expr_GeneralExpression) _expression;
Expr_Array1OfNamedUnknown _var;
mutable TColStd_Array1OfReal _val;
};
double Function::operator() (double t) const
{
double res = compute(t);
if (_expMode)
res = pow(10, res);
return res;
}
TabFunction::TabFunction(const vector<double>& table, bool expMode)
: Function(expMode),
_table(table)
{
}
bool TabFunction::IsReady() const
{
return true;
}
double TabFunction::compute (double t) const
{
//find place of <t> in table
int i;
for (i=0; i < _table.size()/2; i++)
if (_table[i*2] > t)
break;
if (i >= _table.size()/2)
i = _table.size()/2 - 1;
if (i == 0)
return _table[1];
// interpolate function value on found interval
// (t - x[i-1]) / (x[i] - x[i-1]) = (y - f[i-1]) / (f[i] - f[i-1])
// => y = f[i-1] + (f[i] - f[i-1]) * (t - x[i-1]) / (x[i] - x[i-1])
double x1 = _table[(i-1)*2];
double x2 = _table[i*2];
double y1 = _table[(i-1)*2+1];
double y2 = _table[i*2+1];
if (x2 - x1 < Precision::Confusion())
throw SALOME_Exception("TabFunction::compute : confused points");
return y1 + (y2 - y1) * ((t - x1) / (x2 - x1));
}
ExprFunction::ExprFunction(const char* expr, bool expMode)
: Function(expMode),
_var(1,1),
_val(1,1)
{
Handle( ExprIntrp_GenExp ) gen = ExprIntrp_GenExp::Create();
gen->Process(TCollection_AsciiString((char*)expr));
if (gen->IsDone())
{
_expression = gen->Expression();
_var(1) = new Expr_NamedUnknown("t");
}
}
bool ExprFunction::IsReady() const
{
return !_expression.IsNull();
}
double ExprFunction::compute (double t) const
{
ASSERT(!_expression.IsNull());
_val(1) = t;
return _expression->Evaluate(_var, _val);
}
//================================================================================
/*!
* \brief Compute next abscissa when two previous ones are given
* \param sm2 - before previous abscissa
* \param sm1 - previous abscissa
* \param func - function of density
* \param reverse - the direction of next abscissa, increase (0) or decrease (1)
* \retval double - the new abscissa
*
* The abscissa s is given by the formulae
*
* ....|--------|----------------|.....
* sm2 sm1 s
*
* func(sm2) / func(sm1) = (sm1-sm2) / (s-sm1)
* => (s-sm1) * func(sm2) = (sm1-sm2) * func(sm1)
* => s = sm1 + (sm1-sm2) * func(sm1) / func(sm2)
*/
//================================================================================
static double nextAbscissa(double sm2, double sm1, const Function& func, int reverse)
{
if (reverse)
{
sm1 = 1.0 - sm1;
sm2 = 1.0 - sm2;
}
return sm1 + (sm1-sm2) * func(sm1) / func(sm2);
}
//================================================================================
/*!
* \brief Compute distribution of points on a curve following the law of a function
* \param C3d - the curve to discretize
* \param first - the first parameter on the curve
* \param last - the last parameter on the curve
* \param theReverse - flag indicating that the curve must be reversed
* \param nbSeg - number of output segments
* \param func - the function f(t)
* \param theParams - output points
* \retval bool - true if success
*/
//================================================================================
static bool computeParamByFunc(Adaptor3d_Curve& C3d, double first, double last,
double length, bool theReverse,
int nbSeg, const Function& func,
list<double>& theParams)
{
if (!func.IsReady())
return false;
vector<double> xxx[2];
int nbPnt = 1 + nbSeg;
int rev, i;
for (rev=0; rev < 2; rev++)
{
// curv abscisses initialisation
vector<double> x(nbPnt, 0.);
// the first abscissa is 0.0
// The aim of the algorithm is to find a second abscisse x[1] such as the last
// one x[nbSeg] is very close to 1.0 with the epsilon precision
double x1_too_small = 0.0;
double x1_too_large = RealLast();
double x1 = 1.0/nbSeg;
while (1)
{
x[1] = x1;
// Check if the abscissa of the point 2 to N-1
// are in the segment ...
bool ok = true;
for (i=2; i <= nbSeg; i++)
{
x[i] = nextAbscissa(x[i-2], x[i-1], func, rev);
if (x[i] - 1.0 > Precision::Confusion())
{
x[nbSeg] = x[i];
ok = false;
break;
}
}
if (!ok)
{
// The segments are to large
// Decrease x1 ...
x1_too_large = x1;
x1 = (x1_too_small+x1_too_large)/2;
continue;
}
// Look at the abscissa of the point N
// which is to be close to 1.0
// break condition --> algo converged !!
if (1.0 - x[nbSeg] < Precision::Confusion())
break;
// not ok ...
x1_too_small = x1;
// Modify x1 value
if (x1_too_large > 1e100)
x1 = 2*x1;
else
x1 = (x1_too_small+x1_too_large)/2;
}
xxx[rev] = x;
}
// average
vector<double> x(nbPnt, 0.);
for (i=0; i < nbPnt; i++)
x[i] = (xxx[0][i] + (1.0 - xxx[1][nbPnt-i])) / 2;
// apply parameters in range [0,1] to the space of the curve
double prevU = first;
double sign = 1.;
if (theReverse)
{
prevU = last;
sign = -1.;
}
for (i = 1; i < nbSeg; i++)
{
double curvLength = length * (x[i] - x[i-1]) * sign;
GCPnts_AbscissaPoint Discret( C3d, curvLength, prevU );
if ( !Discret.IsDone() )
return false;
double U = Discret.Parameter();
if ( U > first && U < last )
theParams.push_back( U );
else
return false;
prevU = U;
}
return false;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge,
list<double> & theParams,
const bool theReverse) const
{
theParams.clear();
double f, l;
Handle(Geom_Curve) Curve = BRep_Tool::Curve(theEdge, f, l);
GeomAdaptor_Curve C3d(Curve);
double length = EdgeLength(theEdge);
switch( _hypType )
{
case LOCAL_LENGTH:
case NB_SEGMENTS: {
double eltSize = 1;
if ( _hypType == LOCAL_LENGTH )
{
// Local Length hypothesis
double nbseg = ceil(length / _value[ BEG_LENGTH_IND ]); // integer sup
if (nbseg <= 0)
nbseg = 1; // degenerated edge
eltSize = length / nbseg;
}
else
{
// Number Of Segments hypothesis
switch (_ivalue[ DISTR_TYPE_IND ])
{
case StdMeshers_NumberOfSegments::DT_Scale:
{
double scale = _value[ SCALE_FACTOR_IND ];
if ( theReverse )
scale = 1. / scale;
double alpha = pow( scale , 1.0 / (_ivalue[ NB_SEGMENTS_IND ] - 1));
double factor = (l - f) / (1 - pow( alpha,_ivalue[ NB_SEGMENTS_IND ]));
int i, NbPoints = 1 + _ivalue[ NB_SEGMENTS_IND ];
for ( i = 2; i < NbPoints; i++ )
{
double param = f + factor * (1 - pow(alpha, i - 1));
theParams.push_back( param );
}
return true;
}
break;
case StdMeshers_NumberOfSegments::DT_TabFunc:
{
TabFunction func(_vvalue[ TAB_FUNC_IND ], (bool)_ivalue[ EXP_MODE_IND ]);
return computeParamByFunc(C3d, f, l, length, theReverse,
_ivalue[ NB_SEGMENTS_IND ], func,
theParams);
}
break;
case StdMeshers_NumberOfSegments::DT_ExprFunc:
{
ExprFunction func(_svalue[ EXPR_FUNC_IND ].c_str(), (bool)_ivalue[ EXP_MODE_IND ]);
return computeParamByFunc(C3d, f, l, length, theReverse,
_ivalue[ NB_SEGMENTS_IND ], func,
theParams);
}
break;
case StdMeshers_NumberOfSegments::DT_Regular:
eltSize = length / _ivalue[ NB_SEGMENTS_IND ];
break;
default:
return false;
}
}
GCPnts_UniformAbscissa Discret(C3d, eltSize, f, l);
if ( !Discret.IsDone() )
return false;
int NbPoints = Discret.NbPoints();
for ( int i = 2; i < NbPoints; i++ )
{
double param = Discret.Parameter(i);
theParams.push_back( param );
}
return true;
}
case BEG_END_LENGTH: {
// geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = length
double a1 = _value[ BEG_LENGTH_IND ];
double an = _value[ END_LENGTH_IND ];
double q = ( length - a1 ) / ( length - an );
double U1 = theReverse ? l : f;
double Un = theReverse ? f : l;
double param = U1;
double eltSize = theReverse ? -a1 : a1;
while ( 1 ) {
// computes a point on a curve <C3d> at the distance <eltSize>
// from the point of parameter <param>.
GCPnts_AbscissaPoint Discret( C3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( param > f && param < l )
theParams.push_back( param );
else
break;
eltSize *= q;
}
compensateError( a1, an, U1, Un, length, C3d, theParams );
return true;
}
case ARITHMETIC_1D: {
// arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = length
double a1 = _value[ BEG_LENGTH_IND ];
double an = _value[ END_LENGTH_IND ];
double q = ( an - a1 ) / ( 2 *length/( a1 + an ) - 1 );
int n = int( 1 + ( an - a1 ) / q );
double U1 = theReverse ? l : f;
double Un = theReverse ? f : l;
double param = U1;
double eltSize = a1;
if ( theReverse ) {
eltSize = -eltSize;
q = -q;
}
while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) {
// computes a point on a curve <C3d> at the distance <eltSize>
// from the point of parameter <param>.
GCPnts_AbscissaPoint Discret( C3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( param > f && param < l )
theParams.push_back( param );
else
break;
eltSize += q;
}
compensateError( a1, an, U1, Un, length, C3d, theParams );
return true;
}
case DEFLECTION: {
GCPnts_UniformDeflection Discret(C3d, _value[ DEFLECTION_IND ], true);
if ( !Discret.IsDone() )
return false;
int NbPoints = Discret.NbPoints();
for ( int i = 2; i < NbPoints; i++ )
{
double param = Discret.Parameter(i);
theParams.push_back( param );
}
return true;
}
default:;
}
return false;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape)
{
MESSAGE("StdMeshers_Regular_1D::Compute");
if ( _hypType == NONE )
return false;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
aMesh.GetSubMesh(aShape);
const TopoDS_Edge & EE = TopoDS::Edge(aShape);
TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD));
int shapeID = meshDS->ShapeToIndex( E );
double f, l;
Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l);
TopoDS_Vertex VFirst, VLast;
TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l
ASSERT(!VFirst.IsNull());
SMDS_NodeIteratorPtr lid= aMesh.GetSubMesh(VFirst)->GetSubMeshDS()->GetNodes();
if (!lid->more())
{
MESSAGE (" NO NODE BUILT ON VERTEX ");
return false;
}
const SMDS_MeshNode * idFirst = lid->next();
ASSERT(!VLast.IsNull());
lid=aMesh.GetSubMesh(VLast)->GetSubMeshDS()->GetNodes();
if (!lid->more())
{
MESSAGE (" NO NODE BUILT ON VERTEX ");
return false;
}
const SMDS_MeshNode * idLast = lid->next();
if (!Curve.IsNull())
{
list< double > params;
bool reversed = false;
if ( !_mainEdge.IsNull() )
reversed = aMesh.IsReversedInChain( EE, _mainEdge );
try {
if ( ! computeInternalParameters( E, params, reversed ))
return false;
}
catch ( Standard_Failure ) {
return false;
}
// edge extrema (indexes : 1 & NbPoints) already in SMDS (TopoDS_Vertex)
// only internal nodes receive an edge position with param on curve
const SMDS_MeshNode * idPrev = idFirst;
for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++)
{
double param = *itU;
gp_Pnt P = Curve->Value(param);
//Add the Node in the DataStructure
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnEdge(node, shapeID, param);
SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node);
meshDS->SetMeshElementOnShape(edge, shapeID);
idPrev = node;
}
SMDS_MeshEdge* edge = meshDS->AddEdge(idPrev, idLast);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
else
{
// Edge is a degenerated Edge : We put n = 5 points on the edge.
int NbPoints = 5;
BRep_Tool::Range(E, f, l);
double du = (l - f) / (NbPoints - 1);
//MESSAGE("************* Degenerated edge! *****************");
TopoDS_Vertex V1, V2;
TopExp::Vertices(E, V1, V2);
gp_Pnt P = BRep_Tool::Pnt(V1);
const SMDS_MeshNode * idPrev = idFirst;
for (int i = 2; i < NbPoints; i++)
{
double param = f + (i - 1) * du;
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnEdge(node, shapeID, param);
SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node);
meshDS->SetMeshElementOnShape(edge, shapeID);
idPrev = node;
}
SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast);
meshDS->SetMeshElementOnShape(edge, shapeID);
}
return true;
}
//=============================================================================
/*!
* See comments in SMESH_Algo.cxx
*/
//=============================================================================
const list <const SMESHDS_Hypothesis *> & StdMeshers_Regular_1D::GetUsedHypothesis(
SMESH_Mesh & aMesh, const TopoDS_Shape & aShape)
{
_usedHypList.clear();
_usedHypList = GetAppliedHypothesis(aMesh, aShape); // copy
int nbHyp = _usedHypList.size();
_mainEdge.Nullify();
if (nbHyp == 0)
{
// Check, if propagated from some other edge
if (aShape.ShapeType() == TopAbs_EDGE &&
aMesh.IsPropagatedHypothesis(aShape, _mainEdge))
{
// Propagation of 1D hypothesis from <aMainEdge> on this edge
//_usedHypList = GetAppliedHypothesis(aMesh, _mainEdge); // copy
// use a general method in order not to nullify _mainEdge
_usedHypList = SMESH_Algo::GetUsedHypothesis(aMesh, _mainEdge); // copy
nbHyp = _usedHypList.size();
}
}
if (nbHyp == 0)
{
TopTools_ListIteratorOfListOfShape ancIt( aMesh.GetAncestors( aShape ));
for (; ancIt.More(); ancIt.Next())
{
const TopoDS_Shape& ancestor = ancIt.Value();
_usedHypList = GetAppliedHypothesis(aMesh, ancestor); // copy
nbHyp = _usedHypList.size();
if (nbHyp == 1)
break;
}
}
if (nbHyp > 1)
_usedHypList.clear(); //only one compatible hypothesis allowed
return _usedHypList;
}
//=============================================================================
/*!
*
*/
//=============================================================================
ostream & StdMeshers_Regular_1D::SaveTo(ostream & save)
{
return save;
}
//=============================================================================
/*!
*
*/
//=============================================================================
istream & StdMeshers_Regular_1D::LoadFrom(istream & load)
{
return load;
}
//=============================================================================
/*!
*
*/
//=============================================================================
ostream & operator <<(ostream & save, StdMeshers_Regular_1D & hyp)
{
return hyp.SaveTo( save );
}
//=============================================================================
/*!
*
*/
//=============================================================================
istream & operator >>(istream & load, StdMeshers_Regular_1D & hyp)
{
return hyp.LoadFrom( load );
}