smesh/src/StdMeshers/StdMeshers_Hexa_3D.cxx

1082 lines
32 KiB
C++
Raw Blame History

// SMESH SMESH : implementaion of SMESH idl descriptions
//
// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
//
//
//
// File : StdMeshers_Hexa_3D.cxx
// Moved here from SMESH_Hexa_3D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
// $Header$
using namespace std;
#include "StdMeshers_Hexa_3D.hxx"
#include "StdMeshers_Quadrangle_2D.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_subMesh.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_VolumeTool.hxx"
#include "SMDS_VolumeOfNodes.hxx"
#include <TopExp.hxx>
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TColStd_ListIteratorOfListOfInteger.hxx>
#include <BRep_Tool.hxx>
#include <Geom_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom2d_Curve.hxx>
#include <Handle_Geom2d_Curve.hxx>
#include <Handle_Geom_Curve.hxx>
#include <gp_Pnt2d.hxx>
#include "utilities.h"
#include "Utils_ExceptHandlers.hxx"
//modified by NIZNHY-PKV Wed Nov 17 15:31:58 2004 f
#include "StdMeshers_Penta_3D.hxx"
static bool ComputePentahedralMesh(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape);
//modified by NIZNHY-PKV Wed Nov 17 15:32:00 2004 t
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Hexa_3D::StdMeshers_Hexa_3D(int hypId, int studyId,
SMESH_Gen * gen):SMESH_3D_Algo(hypId, studyId, gen)
{
MESSAGE("StdMeshers_Hexa_3D::StdMeshers_Hexa_3D");
_name = "Hexa_3D";
// _shapeType = TopAbs_SOLID;
_shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type
// MESSAGE("_shapeType octal " << oct << _shapeType);
for (int i = 0; i < 6; i++)
_quads[i] = 0;
}
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D()
{
MESSAGE("StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D");
for (int i = 0; i < 6; i++)
StdMeshers_Quadrangle_2D::QuadDelete(_quads[i]);
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Hexa_3D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
//MESSAGE("StdMeshers_Hexa_3D::CheckHypothesis");
bool isOk = true;
aStatus = SMESH_Hypothesis::HYP_OK;
// nothing to check
return isOk;
}
//=======================================================================
//function : findIJ
//purpose : return i,j of the node
//=======================================================================
static bool findIJ (const SMDS_MeshNode* node, const FaceQuadStruct * quad, int& I, int& J)
{
I = J = 0;
const SMDS_FacePosition* fpos =
static_cast<const SMDS_FacePosition*>(node->GetPosition().get());
if ( ! fpos ) return false;
gp_Pnt2d uv( fpos->GetUParameter(), fpos->GetVParameter() );
double minDist = DBL_MAX;
int nbhoriz = Min(quad->nbPts[0], quad->nbPts[2]);
int nbvertic = Min(quad->nbPts[1], quad->nbPts[3]);
for (int i = 1; i < nbhoriz - 1; i++) {
for (int j = 1; j < nbvertic - 1; j++) {
int ij = j * nbhoriz + i;
gp_Pnt2d uv2( quad->uv_grid[ij].u, quad->uv_grid[ij].v );
double dist = uv.SquareDistance( uv2 );
if ( dist < minDist ) {
minDist = dist;
I = i;
J = j;
}
}
}
return true;
}
//=============================================================================
/*!
* Hexahedron mesh on hexaedron like form
* -0. - shape and face mesh verification
* -1. - identify faces and vertices of the "cube"
* -2. - Algorithm from:
* "Application de l'interpolation transfinie <20> la cr<63>ation de maillages
* C0 ou G1 continus sur des triangles, quadrangles, tetraedres, pentaedres
* et hexaedres d<>form<72>s."
* Alain PERONNET - 8 janvier 1999
*/
//=============================================================================
bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape)throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
MESSAGE("StdMeshers_Hexa_3D::Compute");
//bool isOk = false;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
//SMESH_subMesh *theSubMesh = aMesh.GetSubMesh(aShape);
//const SMESHDS_SubMesh *& subMeshDS = theSubMesh->GetSubMeshDS();
// 0. - shape and face mesh verification
// 0.1 - shape must be a solid (or a shell) with 6 faces
//MESSAGE("---");
vector < SMESH_subMesh * >meshFaces;
for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next())
{
SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
ASSERT(aSubMesh);
meshFaces.push_back(aSubMesh);
}
if (meshFaces.size() != 6)
{
SCRUTE(meshFaces.size());
// ASSERT(0);
return false;
}
// 0.2 - is each face meshed with Quadrangle_2D? (so, with a wire of 4 edges)
//MESSAGE("---");
for (int i = 0; i < 6; i++)
{
TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
string algoName = algo->GetName();
bool isAllQuad = false;
if (algoName == "Quadrangle_2D") {
SMESHDS_SubMesh * sm = meshDS->MeshElements( aFace );
if ( sm ) {
isAllQuad = true;
SMDS_ElemIteratorPtr eIt = sm->GetElements();
while ( isAllQuad && eIt->more() )
isAllQuad = ( eIt->next()->NbNodes() == 4 );
}
}
if ( ! isAllQuad ) {
//modified by NIZNHY-PKV Wed Nov 17 15:31:37 2004 f
bool bIsOk;
//
bIsOk=ComputePentahedralMesh(aMesh, aShape);
if (bIsOk) {
return true;
}
//modified by NIZNHY-PKV Wed Nov 17 15:31:42 2004 t
SCRUTE(algoName);
// ASSERT(0);
return false;
}
StdMeshers_Quadrangle_2D *quadAlgo =
dynamic_cast < StdMeshers_Quadrangle_2D * >(algo);
ASSERT(quadAlgo);
try
{
_quads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aFace);
// *** to delete after usage
}
catch(SALOME_Exception & S_ex)
{
// *** delete _quads
// *** throw exception
// ASSERT(0);
return false;
}
// 0.2.1 - number of points on the opposite edges must be the same
if (_quads[i]->nbPts[0] != _quads[i]->nbPts[2] ||
_quads[i]->nbPts[1] != _quads[i]->nbPts[3])
{
MESSAGE("different number of points on the opposite edges of face " << i);
// ASSERT(0);
return false;
}
}
// 1. - identify faces and vertices of the "cube"
// 1.1 - ancestor maps vertex->edges in the cube
//MESSAGE("---");
TopTools_IndexedDataMapOfShapeListOfShape MS;
TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, MS);
// 1.2 - first face is choosen as face Y=0 of the unit cube
//MESSAGE("---");
const TopoDS_Shape & aFace = meshFaces[0]->GetSubShape();
const TopoDS_Face & F = TopoDS::Face(aFace);
// 1.3 - identify the 4 vertices of the face Y=0: V000, V100, V101, V001
//MESSAGE("---");
int i = 0;
TopoDS_Edge E = _quads[0]->edge[i]; //edge will be Y=0,Z=0 on unit cube
double f, l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
TopoDS_Vertex VFirst, VLast;
TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l
bool isForward =
(((l - f) * (_quads[0]->last[i] - _quads[0]->first[i])) > 0);
if (isForward)
{
_cube.V000 = VFirst; // will be (0,0,0) on the unit cube
_cube.V100 = VLast; // will be (1,0,0) on the unit cube
}
else
{
_cube.V000 = VLast;
_cube.V100 = VFirst;
}
i = 1;
E = _quads[0]->edge[i];
C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
TopExp::Vertices(E, VFirst, VLast);
isForward = (((l - f) * (_quads[0]->last[i] - _quads[0]->first[i])) > 0);
if (isForward)
_cube.V101 = VLast; // will be (1,0,1) on the unit cube
else
_cube.V101 = VFirst;
i = 2;
E = _quads[0]->edge[i];
C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
TopExp::Vertices(E, VFirst, VLast);
isForward = (((l - f) * (_quads[0]->last[i] - _quads[0]->first[i])) > 0);
if (isForward)
_cube.V001 = VLast; // will be (0,0,1) on the unit cube
else
_cube.V001 = VFirst;
// 1.4 - find edge X=0, Z=0 (ancestor of V000 not in face Y=0)
// - find edge X=1, Z=0 (ancestor of V100 not in face Y=0)
// - find edge X=1, Z=1 (ancestor of V101 not in face Y=0)
// - find edge X=0, Z=1 (ancestor of V001 not in face Y=0)
//MESSAGE("---");
TopoDS_Edge E_0Y0 = EdgeNotInFace(aMesh, aShape, F, _cube.V000, MS);
ASSERT(!E_0Y0.IsNull());
TopoDS_Edge E_1Y0 = EdgeNotInFace(aMesh, aShape, F, _cube.V100, MS);
ASSERT(!E_1Y0.IsNull());
TopoDS_Edge E_1Y1 = EdgeNotInFace(aMesh, aShape, F, _cube.V101, MS);
ASSERT(!E_1Y1.IsNull());
TopoDS_Edge E_0Y1 = EdgeNotInFace(aMesh, aShape, F, _cube.V001, MS);
ASSERT(!E_0Y1.IsNull());
// 1.5 - identify the 4 vertices in face Y=1: V010, V110, V111, V011
//MESSAGE("---");
TopExp::Vertices(E_0Y0, VFirst, VLast);
if (VFirst.IsSame(_cube.V000))
_cube.V010 = VLast;
else
_cube.V010 = VFirst;
TopExp::Vertices(E_1Y0, VFirst, VLast);
if (VFirst.IsSame(_cube.V100))
_cube.V110 = VLast;
else
_cube.V110 = VFirst;
TopExp::Vertices(E_1Y1, VFirst, VLast);
if (VFirst.IsSame(_cube.V101))
_cube.V111 = VLast;
else
_cube.V111 = VFirst;
TopExp::Vertices(E_0Y1, VFirst, VLast);
if (VFirst.IsSame(_cube.V001))
_cube.V011 = VLast;
else
_cube.V011 = VFirst;
// 1.6 - find remaining faces given 4 vertices
//MESSAGE("---");
_indY0 = 0;
_cube.quad_Y0 = _quads[_indY0];
_indY1 = GetFaceIndex(aMesh, aShape, meshFaces,
_cube.V010, _cube.V011, _cube.V110, _cube.V111);
_cube.quad_Y1 = _quads[_indY1];
_indZ0 = GetFaceIndex(aMesh, aShape, meshFaces,
_cube.V000, _cube.V010, _cube.V100, _cube.V110);
_cube.quad_Z0 = _quads[_indZ0];
_indZ1 = GetFaceIndex(aMesh, aShape, meshFaces,
_cube.V001, _cube.V011, _cube.V101, _cube.V111);
_cube.quad_Z1 = _quads[_indZ1];
_indX0 = GetFaceIndex(aMesh, aShape, meshFaces,
_cube.V000, _cube.V001, _cube.V010, _cube.V011);
_cube.quad_X0 = _quads[_indX0];
_indX1 = GetFaceIndex(aMesh, aShape, meshFaces,
_cube.V100, _cube.V101, _cube.V110, _cube.V111);
_cube.quad_X1 = _quads[_indX1];
//MESSAGE("---");
// 1.7 - get convertion coefs from face 2D normalized to 3D normalized
Conv2DStruct cx0; // for face X=0
Conv2DStruct cx1; // for face X=1
Conv2DStruct cy0;
Conv2DStruct cy1;
Conv2DStruct cz0;
Conv2DStruct cz1;
GetConv2DCoefs(*_cube.quad_X0, meshFaces[_indX0]->GetSubShape(),
_cube.V000, _cube.V010, _cube.V011, _cube.V001, cx0);
GetConv2DCoefs(*_cube.quad_X1, meshFaces[_indX1]->GetSubShape(),
_cube.V100, _cube.V110, _cube.V111, _cube.V101, cx1);
GetConv2DCoefs(*_cube.quad_Y0, meshFaces[_indY0]->GetSubShape(),
_cube.V000, _cube.V100, _cube.V101, _cube.V001, cy0);
GetConv2DCoefs(*_cube.quad_Y1, meshFaces[_indY1]->GetSubShape(),
_cube.V010, _cube.V110, _cube.V111, _cube.V011, cy1);
GetConv2DCoefs(*_cube.quad_Z0, meshFaces[_indZ0]->GetSubShape(),
_cube.V000, _cube.V100, _cube.V110, _cube.V010, cz0);
GetConv2DCoefs(*_cube.quad_Z1, meshFaces[_indZ1]->GetSubShape(),
_cube.V001, _cube.V101, _cube.V111, _cube.V011, cz1);
// 1.8 - create a 3D structure for normalized values
//MESSAGE("---");
int nbx = _cube.quad_Z0->nbPts[0];
if (cz0.a1 == 0.) nbx = _cube.quad_Z0->nbPts[1];
int nby = _cube.quad_X0->nbPts[0];
if (cx0.a1 == 0.) nby = _cube.quad_X0->nbPts[1];
int nbz = _cube.quad_Y0->nbPts[0];
if (cy0.a1 != 0.) nbz = _cube.quad_Y0->nbPts[1];
int i1, j1, nbxyz = nbx * nby * nbz;
Point3DStruct *np = new Point3DStruct[nbxyz];
// 1.9 - store node indexes of faces
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX0]->GetSubShape());
faceQuadStruct *quad = _cube.quad_X0;
int i = 0; // j = x/face , k = y/face
int nbdown = quad->nbPts[0];
int nbright = quad->nbPts[1];
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
while(itf->more())
{
const SMDS_MeshNode * node = itf->next();
findIJ( node, quad, i1, j1 );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++)
{
int ij1 = j1 * nbdown + i1;
int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic; // j = x/face
int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX1]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = _cube.quad_X1;
int i = nbx - 1; // j = x/face , k = y/face
int nbdown = quad->nbPts[0];
int nbright = quad->nbPts[1];
while(itf->more())
{
const SMDS_MeshNode * node = itf->next();
findIJ( node, quad, i1, j1 );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++)
{
int ij1 = j1 * nbdown + i1;
int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic; // j = x/face
int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY0]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = _cube.quad_Y0;
int j = 0; // i = x/face , k = y/face
int nbdown = quad->nbPts[0];
int nbright = quad->nbPts[1];
while(itf->more())
{
const SMDS_MeshNode * node = itf->next();
findIJ( node, quad, i1, j1 );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++)
{
int ij1 = j1 * nbdown + i1;
int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic; // i = x/face
int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY1]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = _cube.quad_Y1;
int j = nby - 1; // i = x/face , k = y/face
int nbdown = quad->nbPts[0];
int nbright = quad->nbPts[1];
while(itf->more())
{
const SMDS_MeshNode * node = itf->next();
findIJ( node, quad, i1, j1 );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++)
{
int ij1 = j1 * nbdown + i1;
int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic; // i = x/face
int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ0]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = _cube.quad_Z0;
int k = 0; // i = x/face , j = y/face
int nbdown = quad->nbPts[0];
int nbright = quad->nbPts[1];
while(itf->more())
{
const SMDS_MeshNode * node = itf->next();
findIJ( node, quad, i1, j1 );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++)
{
int ij1 = j1 * nbdown + i1;
int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic; // i = x/face
int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc; // j = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
{
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ1]->GetSubShape());
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = _cube.quad_Z1;
int k = nbz - 1; // i = x/face , j = y/face
int nbdown = quad->nbPts[0];
int nbright = quad->nbPts[1];
while(itf->more())
{
const SMDS_MeshNode * node = itf->next();
findIJ( node, quad, i1, j1 );
int ij1 = j1 * nbdown + i1;
quad->uv_grid[ij1].node = node;
}
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++)
{
int ij1 = j1 * nbdown + i1;
int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic; // i = x/face
int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc; // j = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
//SCRUTE(np[ijk].nodeId);
}
}
// 2.0 - for each node of the cube:
// - get the 8 points 3D = 8 vertices of the cube
// - get the 12 points 3D on the 12 edges of the cube
// - get the 6 points 3D on the 6 faces with their ID
// - compute the point 3D
// - store the point 3D in SMESHDS, store its ID in 3D structure
TopoDS_Shell aShell;
TopExp_Explorer exp(aShape, TopAbs_SHELL);
if (exp.More())
{
aShell = TopoDS::Shell(exp.Current());
}
else
{
MESSAGE("no shell...");
ASSERT(0);
}
Pt3 p000, p001, p010, p011, p100, p101, p110, p111;
Pt3 px00, px01, px10, px11;
Pt3 p0y0, p0y1, p1y0, p1y1;
Pt3 p00z, p01z, p10z, p11z;
Pt3 pxy0, pxy1, px0z, px1z, p0yz, p1yz;
GetPoint(p000, 0, 0, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p001, 0, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p010, 0, nby - 1, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p011, 0, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p100, nbx - 1, 0, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p101, nbx - 1, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p110, nbx - 1, nby - 1, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p111, nbx - 1, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
for (int i = 1; i < nbx - 1; i++)
{
for (int j = 1; j < nby - 1; j++)
{
for (int k = 1; k < nbz - 1; k++)
{
// *** seulement maillage regulier
// 12 points on edges
GetPoint(px00, i, 0, 0, nbx, nby, nbz, np, meshDS);
GetPoint(px01, i, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(px10, i, nby - 1, 0, nbx, nby, nbz, np, meshDS);
GetPoint(px11, i, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p0y0, 0, j, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p0y1, 0, j, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p1y0, nbx - 1, j, 0, nbx, nby, nbz, np, meshDS);
GetPoint(p1y1, nbx - 1, j, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(p00z, 0, 0, k, nbx, nby, nbz, np, meshDS);
GetPoint(p01z, 0, nby - 1, k, nbx, nby, nbz, np, meshDS);
GetPoint(p10z, nbx - 1, 0, k, nbx, nby, nbz, np, meshDS);
GetPoint(p11z, nbx - 1, nby - 1, k, nbx, nby, nbz, np, meshDS);
// 12 points on faces
GetPoint(pxy0, i, j, 0, nbx, nby, nbz, np, meshDS);
GetPoint(pxy1, i, j, nbz - 1, nbx, nby, nbz, np, meshDS);
GetPoint(px0z, i, 0, k, nbx, nby, nbz, np, meshDS);
GetPoint(px1z, i, nby - 1, k, nbx, nby, nbz, np, meshDS);
GetPoint(p0yz, 0, j, k, nbx, nby, nbz, np, meshDS);
GetPoint(p1yz, nbx - 1, j, k, nbx, nby, nbz, np, meshDS);
int ijk = k * nbx * nby + j * nbx + i;
double x = double (i) / double (nbx - 1); // *** seulement
double y = double (j) / double (nby - 1); // *** maillage
double z = double (k) / double (nbz - 1); // *** regulier
Pt3 X;
for (int i = 0; i < 3; i++)
{
X[i] =
(1 - x) * p0yz[i] + x * p1yz[i]
+ (1 - y) * px0z[i] + y * px1z[i]
+ (1 - z) * pxy0[i] + z * pxy1[i]
- (1 - x) * ((1 - y) * p00z[i] + y * p01z[i])
- x * ((1 - y) * p10z[i] + y * p11z[i])
- (1 - y) * ((1 - z) * px00[i] + z * px01[i])
- y * ((1 - z) * px10[i] + z * px11[i])
- (1 - z) * ((1 - x) * p0y0[i] + x * p1y0[i])
- z * ((1 - x) * p0y1[i] + x * p1y1[i])
+ (1 - x) * ((1 - y) * ((1 - z) * p000[i] + z * p001[i])
+ y * ((1 - z) * p010[i] + z * p011[i]))
+ x * ((1 - y) * ((1 - z) * p100[i] + z * p101[i])
+ y * ((1 - z) * p110[i] + z * p111[i]));
}
SMDS_MeshNode * node = meshDS->AddNode(X[0], X[1], X[2]);
np[ijk].node = node;
//meshDS->SetNodeInVolume(node, TopoDS::Solid(aShape));
meshDS->SetNodeInVolume(node, aShell);
}
}
}
// find orientation of furute volumes according to MED convention
vector< bool > forward( nbx * nby );
SMDS_VolumeTool vTool;
for (int i = 0; i < nbx - 1; i++)
for (int j = 0; j < nby - 1; j++)
{
int n1 = j * nbx + i;
int n2 = j * nbx + i + 1;
int n3 = (j + 1) * nbx + i + 1;
int n4 = (j + 1) * nbx + i;
int n5 = nbx * nby + j * nbx + i;
int n6 = nbx * nby + j * nbx + i + 1;
int n7 = nbx * nby + (j + 1) * nbx + i + 1;
int n8 = nbx * nby + (j + 1) * nbx + i;
SMDS_VolumeOfNodes tmpVol (np[n1].node,np[n2].node,np[n3].node,np[n4].node,
np[n5].node,np[n6].node,np[n7].node,np[n8].node);
vTool.Set( &tmpVol );
forward[ n1 ] = vTool.IsForward();
}
//2.1 - for each node of the cube (less 3 *1 Faces):
// - store hexahedron in SMESHDS
MESSAGE("Storing hexahedron into the DS");
for (int i = 0; i < nbx - 1; i++)
for (int j = 0; j < nby - 1; j++)
{
bool isForw = forward.at( j * nbx + i );
for (int k = 0; k < nbz - 1; k++)
{
int n1 = k * nbx * nby + j * nbx + i;
int n2 = k * nbx * nby + j * nbx + i + 1;
int n3 = k * nbx * nby + (j + 1) * nbx + i + 1;
int n4 = k * nbx * nby + (j + 1) * nbx + i;
int n5 = (k + 1) * nbx * nby + j * nbx + i;
int n6 = (k + 1) * nbx * nby + j * nbx + i + 1;
int n7 = (k + 1) * nbx * nby + (j + 1) * nbx + i + 1;
int n8 = (k + 1) * nbx * nby + (j + 1) * nbx + i;
SMDS_MeshVolume * elt;
if ( isForw )
elt = meshDS->AddVolume(np[n1].node,
np[n2].node,
np[n3].node,
np[n4].node,
np[n5].node,
np[n6].node,
np[n7].node,
np[n8].node);
else
elt = meshDS->AddVolume(np[n1].node,
np[n4].node,
np[n3].node,
np[n2].node,
np[n5].node,
np[n8].node,
np[n7].node,
np[n6].node);
meshDS->SetMeshElementOnShape(elt, aShell);
}
}
if ( np ) delete [] np;
//MESSAGE("End of StdMeshers_Hexa_3D::Compute()");
return true;
}
//=============================================================================
/*!
*
*/
//=============================================================================
void StdMeshers_Hexa_3D::GetPoint(Pt3 p, int i, int j, int k, int nbx, int nby,
int nbz, Point3DStruct * np, const SMESHDS_Mesh * meshDS)
{
int ijk = k * nbx * nby + j * nbx + i;
const SMDS_MeshNode * node = np[ijk].node;
p[0] = node->X();
p[1] = node->Y();
p[2] = node->Z();
//MESSAGE(" "<<i<<" "<<j<<" "<<k<<" "<<p[0]<<" "<<p[1]<<" "<<p[2]);
}
//=============================================================================
/*!
*
*/
//=============================================================================
int StdMeshers_Hexa_3D::GetFaceIndex(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const vector < SMESH_subMesh * >&meshFaces,
const TopoDS_Vertex & V0,
const TopoDS_Vertex & V1,
const TopoDS_Vertex & V2, const TopoDS_Vertex & V3)
{
//MESSAGE("StdMeshers_Hexa_3D::GetFaceIndex");
int faceIndex = -1;
for (int i = 1; i < 6; i++)
{
const TopoDS_Shape & aFace = meshFaces[i]->GetSubShape();
//const TopoDS_Face& F = TopoDS::Face(aFace);
TopTools_IndexedMapOfShape M;
TopExp::MapShapes(aFace, TopAbs_VERTEX, M);
bool verticesInShape = false;
if (M.Contains(V0))
if (M.Contains(V1))
if (M.Contains(V2))
if (M.Contains(V3))
verticesInShape = true;
if (verticesInShape)
{
faceIndex = i;
break;
}
}
ASSERT(faceIndex > 0);
//SCRUTE(faceIndex);
return faceIndex;
}
//=============================================================================
/*!
*
*/
//=============================================================================
TopoDS_Edge
StdMeshers_Hexa_3D::EdgeNotInFace(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const TopoDS_Face & aFace,
const TopoDS_Vertex & aVertex,
const TopTools_IndexedDataMapOfShapeListOfShape & MS)
{
//MESSAGE("StdMeshers_Hexa_3D::EdgeNotInFace");
TopTools_IndexedDataMapOfShapeListOfShape MF;
TopExp::MapShapesAndAncestors(aFace, TopAbs_VERTEX, TopAbs_EDGE, MF);
const TopTools_ListOfShape & ancestorsInSolid = MS.FindFromKey(aVertex);
const TopTools_ListOfShape & ancestorsInFace = MF.FindFromKey(aVertex);
// SCRUTE(ancestorsInSolid.Extent());
// SCRUTE(ancestorsInFace.Extent());
ASSERT(ancestorsInSolid.Extent() == 6); // 6 (edges doublees)
ASSERT(ancestorsInFace.Extent() == 2);
TopoDS_Edge E;
E.Nullify();
TopTools_ListIteratorOfListOfShape its(ancestorsInSolid);
for (; its.More(); its.Next())
{
TopoDS_Shape ancestor = its.Value();
TopTools_ListIteratorOfListOfShape itf(ancestorsInFace);
bool isInFace = false;
for (; itf.More(); itf.Next())
{
TopoDS_Shape ancestorInFace = itf.Value();
if (ancestorInFace.IsSame(ancestor))
{
isInFace = true;
break;
}
}
if (!isInFace)
{
E = TopoDS::Edge(ancestor);
break;
}
}
return E;
}
//=============================================================================
/*!
*
*/
//=============================================================================
void StdMeshers_Hexa_3D::GetConv2DCoefs(const faceQuadStruct & quad,
const TopoDS_Shape & aShape,
const TopoDS_Vertex & V0,
const TopoDS_Vertex & V1,
const TopoDS_Vertex & V2, const TopoDS_Vertex & V3, Conv2DStruct & conv)
{
// MESSAGE("StdMeshers_Hexa_3D::GetConv2DCoefs");
const TopoDS_Face & F = TopoDS::Face(aShape);
TopoDS_Edge E = quad.edge[0];
double f, l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
TopoDS_Vertex VFirst, VLast;
TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l
bool isForward = (((l - f) * (quad.last[0] - quad.first[0])) > 0);
TopoDS_Vertex VA, VB;
if (isForward)
{
VA = VFirst;
VB = VLast;
}
else
{
VA = VLast;
VB = VFirst;
}
int a1, b1, c1, a2, b2, c2;
if (VA.IsSame(V0))
if (VB.IsSame(V1))
{
a1 = 1;
b1 = 0;
c1 = 0; // x
a2 = 0;
b2 = 1;
c2 = 0; // y
}
else
{
ASSERT(VB.IsSame(V3));
a1 = 0;
b1 = 1;
c1 = 0; // y
a2 = 1;
b2 = 0;
c2 = 0; // x
}
if (VA.IsSame(V1))
if (VB.IsSame(V2))
{
a1 = 0;
b1 = -1;
c1 = 1; // 1-y
a2 = 1;
b2 = 0;
c2 = 0; // x
}
else
{
ASSERT(VB.IsSame(V0));
a1 = -1;
b1 = 0;
c1 = 1; // 1-x
a2 = 0;
b2 = 1;
c2 = 0; // y
}
if (VA.IsSame(V2))
if (VB.IsSame(V3))
{
a1 = -1;
b1 = 0;
c1 = 1; // 1-x
a2 = 0;
b2 = -1;
c2 = 1; // 1-y
}
else
{
ASSERT(VB.IsSame(V1));
a1 = 0;
b1 = -1;
c1 = 1; // 1-y
a2 = -1;
b2 = 0;
c2 = 1; // 1-x
}
if (VA.IsSame(V3))
if (VB.IsSame(V0))
{
a1 = 0;
b1 = 1;
c1 = 0; // y
a2 = -1;
b2 = 0;
c2 = 1; // 1-x
}
else
{
ASSERT(VB.IsSame(V2));
a1 = 1;
b1 = 0;
c1 = 0; // x
a2 = 0;
b2 = -1;
c2 = 1; // 1-y
}
// MESSAGE("X = " << c1 << "+ " << a1 << "*x + " << b1 << "*y");
// MESSAGE("Y = " << c2 << "+ " << a2 << "*x + " << b2 << "*y");
conv.a1 = a1;
conv.b1 = b1;
conv.c1 = c1;
conv.a2 = a2;
conv.b2 = b2;
conv.c2 = c2;
int nbdown = quad.nbPts[0];
int nbright = quad.nbPts[1];
conv.ia = int (a1);
conv.ib = int (b1);
conv.ic =
int (c1 * a1 * a1) * (nbdown - 1) + int (c1 * b1 * b1) * (nbright - 1);
conv.ja = int (a2);
conv.jb = int (b2);
conv.jc =
int (c2 * a2 * a2) * (nbdown - 1) + int (c2 * b2 * b2) * (nbright - 1);
// MESSAGE("I " << conv.ia << " " << conv.ib << " " << conv.ic);
// MESSAGE("J " << conv.ja << " " << conv.jb << " " << conv.jc);
}
//=============================================================================
/*!
*
*/
//=============================================================================
ostream & StdMeshers_Hexa_3D::SaveTo(ostream & save)
{
return save;
}
//=============================================================================
/*!
*
*/
//=============================================================================
istream & StdMeshers_Hexa_3D::LoadFrom(istream & load)
{
return load;
}
//=============================================================================
/*!
*
*/
//=============================================================================
ostream & operator <<(ostream & save, StdMeshers_Hexa_3D & hyp)
{
return hyp.SaveTo( save );
}
//=============================================================================
/*!
*
*/
//=============================================================================
istream & operator >>(istream & load, StdMeshers_Hexa_3D & hyp)
{
return hyp.LoadFrom( load );
}
//modified by NIZNHY-PKV Wed Nov 17 15:34:13 2004 f
///////////////////////////////////////////////////////////////////////////////
//ZZ
//#include <stdio.h>
//=======================================================================
//function : ComputePentahedralMesh
//purpose :
//=======================================================================
bool ComputePentahedralMesh(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape)
{
//printf(" ComputePentahedralMesh HERE\n");
//
bool bOK;
int iErr;
StdMeshers_Penta_3D anAlgo;
//
bOK=anAlgo.Compute(aMesh, aShape);
/*
iErr=anAlgo.ErrorStatus();
if (iErr) {
printf(" *** Error# %d\n", iErr);
}
else {
printf(" *** No errors# %d\n", iErr);
}
*/
return bOK;
}