smesh/src/StdMeshers/StdMeshers_ViscousLayers.cxx
2024-01-20 14:16:41 +00:00

13021 lines
456 KiB
C++

// Copyright (C) 2007-2024 CEA, EDF, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_ViscousLayers.cxx
// Created : Wed Dec 1 15:15:34 2010
// Author : Edward AGAPOV (eap)
#include "StdMeshers_ViscousLayers.hxx"
#include "ObjectPool.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FaceOfNodes.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_PolygonalFaceOfNodes.hxx"
#include "SMDS_SetIterator.hxx"
#include "SMESHDS_Group.hxx"
#include "SMESHDS_Hypothesis.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_Algo.hxx"
#include "SMESH_Block.hxx"
#include "SMESH_ComputeError.hxx"
#include "SMESH_ControlsDef.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Group.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MeshAlgos.hxx"
#include "SMESH_MeshEditor.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_ProxyMesh.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "StdMeshers_ProjectionUtils.hxx"
#include "StdMeshers_Quadrangle_2D.hxx"
#include "StdMeshers_ViscousLayers2D.hxx"
#include <Basics_OCCTVersion.hxx>
#if OCC_VERSION_LARGE < 0x07070000
#include <Adaptor3d_HSurface.hxx>
#else
#include <Adaptor3d_Surface.hxx>
#endif
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Curve2d.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <BRepLProp_SLProps.hxx>
#include <BRepOffsetAPI_MakeOffsetShape.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_B2d.hxx>
#include <Bnd_B3d.hxx>
#include <ElCLib.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GCPnts_TangentialDeflection.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomLib.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Precision.hxx>
#include <Standard_ErrorHandler.hxx>
#include <Standard_Failure.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_MapIteratorOfMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Vertex.hxx>
#include <gp_Ax1.hxx>
#include <gp_Cone.hxx>
#include <gp_Sphere.hxx>
#include <gp_Vec.hxx>
#include <gp_XY.hxx>
#include <cmath>
#include <limits>
#include <list>
#include <queue>
#include <string>
#include <unordered_map>
#ifdef _DEBUG_
#ifndef WIN32
#define __myDEBUG
#endif
//#define __NOT_INVALIDATE_BAD_SMOOTH
//#define __NODES_AT_POS
#endif
#define INCREMENTAL_SMOOTH // smooth only if min angle is too small
#define BLOCK_INFLATION // of individual _LayerEdge's
#define OLD_NEF_POLYGON
using namespace std;
//================================================================================
namespace VISCOUS_3D
{
typedef int TGeomID;
enum UIndex { U_TGT = 1, U_SRC, LEN_TGT };
const double theMinSmoothCosin = 0.1;
const double theSmoothThickToElemSizeRatio = 0.6;
const double theMinSmoothTriaAngle = 30;
const double theMinSmoothQuadAngle = 45;
// what part of thickness is allowed till intersection
// (defined by SALOME_TESTS/Grids/smesh/viscous_layers_00/A5)
const double theThickToIntersection = 1.5;
bool needSmoothing( double cosin, double tgtThick, double elemSize )
{
return cosin * tgtThick > theSmoothThickToElemSizeRatio * elemSize;
}
double getSmoothingThickness( double cosin, double elemSize )
{
return theSmoothThickToElemSizeRatio * elemSize / cosin;
}
/*!
* \brief SMESH_ProxyMesh computed by _ViscousBuilder for a SOLID.
* It is stored in a SMESH_subMesh of the SOLID as SMESH_subMeshEventListenerData
*/
struct _MeshOfSolid : public SMESH_ProxyMesh,
public SMESH_subMeshEventListenerData
{
bool _n2nMapComputed;
SMESH_ComputeErrorPtr _warning;
_MeshOfSolid( SMESH_Mesh* mesh)
:SMESH_subMeshEventListenerData( /*isDeletable=*/true),_n2nMapComputed(false)
{
SMESH_ProxyMesh::setMesh( *mesh );
}
// returns submesh for a geom face
SMESH_ProxyMesh::SubMesh* getFaceSubM(const TopoDS_Face& F, bool create=false)
{
TGeomID i = SMESH_ProxyMesh::shapeIndex(F);
return create ? SMESH_ProxyMesh::getProxySubMesh(i) : findProxySubMesh(i);
}
void setNode2Node(const SMDS_MeshNode* srcNode,
const SMDS_MeshNode* proxyNode,
const SMESH_ProxyMesh::SubMesh* subMesh)
{
SMESH_ProxyMesh::setNode2Node( srcNode,proxyNode,subMesh);
}
};
//--------------------------------------------------------------------------------
/*!
* \brief Listener of events of 3D sub-meshes computed with viscous layers.
* It is used to clear an inferior dim sub-meshes modified by viscous layers
*/
class _ShrinkShapeListener : SMESH_subMeshEventListener
{
_ShrinkShapeListener()
: SMESH_subMeshEventListener(/*isDeletable=*/false,
"StdMeshers_ViscousLayers::_ShrinkShapeListener") {}
public:
static SMESH_subMeshEventListener* Get() { static _ShrinkShapeListener l; return &l; }
virtual void ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* solidSM,
SMESH_subMeshEventListenerData* data,
const SMESH_Hypothesis* hyp)
{
if ( SMESH_subMesh::COMPUTE_EVENT == eventType && solidSM->IsEmpty() && data )
{
SMESH_subMeshEventListener::ProcessEvent(event,eventType,solidSM,data,hyp);
}
}
};
//--------------------------------------------------------------------------------
/*!
* \brief Listener of events of 3D sub-meshes computed with viscous layers.
* It is used to store data computed by _ViscousBuilder for a sub-mesh and to
* delete the data as soon as it has been used
*/
class _ViscousListener : SMESH_subMeshEventListener
{
_ViscousListener():
SMESH_subMeshEventListener(/*isDeletable=*/false,
"StdMeshers_ViscousLayers::_ViscousListener") {}
static SMESH_subMeshEventListener* Get() { static _ViscousListener l; return &l; }
public:
virtual void ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* subMesh,
SMESH_subMeshEventListenerData* /*data*/,
const SMESH_Hypothesis* /*hyp*/)
{
if (( SMESH_subMesh::COMPUTE_EVENT == eventType ) &&
( SMESH_subMesh::CHECK_COMPUTE_STATE != event &&
SMESH_subMesh::SUBMESH_COMPUTED != event ))
{
// delete SMESH_ProxyMesh containing temporary faces
subMesh->DeleteEventListener( this );
}
}
// Finds or creates proxy mesh of the solid
static _MeshOfSolid* GetSolidMesh(SMESH_Mesh* mesh,
const TopoDS_Shape& solid,
bool toCreate=false)
{
if ( !mesh ) return 0;
SMESH_subMesh* sm = mesh->GetSubMesh(solid);
_MeshOfSolid* data = (_MeshOfSolid*) sm->GetEventListenerData( Get() );
if ( !data && toCreate )
{
data = new _MeshOfSolid(mesh);
data->mySubMeshes.push_back( sm ); // to find SOLID by _MeshOfSolid
sm->SetEventListener( Get(), data, sm );
}
return data;
}
// Removes proxy mesh of the solid
static void RemoveSolidMesh(SMESH_Mesh* mesh, const TopoDS_Shape& solid)
{
mesh->GetSubMesh(solid)->DeleteEventListener( _ViscousListener::Get() );
}
};
//================================================================================
/*!
* \brief sets a sub-mesh event listener to clear sub-meshes of sub-shapes of
* the main shape when sub-mesh of the main shape is cleared,
* for example to clear sub-meshes of FACEs when sub-mesh of a SOLID
* is cleared
*/
//================================================================================
void ToClearSubWithMain( SMESH_subMesh* sub, const TopoDS_Shape& main)
{
SMESH_subMesh* mainSM = sub->GetFather()->GetSubMesh( main );
SMESH_subMeshEventListenerData* data =
mainSM->GetEventListenerData( _ShrinkShapeListener::Get());
if ( data )
{
if ( find( data->mySubMeshes.begin(), data->mySubMeshes.end(), sub ) ==
data->mySubMeshes.end())
data->mySubMeshes.push_back( sub );
}
else
{
data = SMESH_subMeshEventListenerData::MakeData( /*dependent=*/sub );
sub->SetEventListener( _ShrinkShapeListener::Get(), data, /*whereToListenTo=*/mainSM );
}
}
struct _SolidData;
//--------------------------------------------------------------------------------
/*!
* \brief Simplex (triangle or tetrahedron) based on 1 (tria) or 2 (tet) nodes of
* _LayerEdge and 2 nodes of the mesh surface beening smoothed.
* The class is used to check validity of face or volumes around a smoothed node;
* it stores only 2 nodes as the other nodes are stored by _LayerEdge.
*/
struct _Simplex
{
const SMDS_MeshNode *_nPrev, *_nNext; // nodes on a smoothed mesh surface
const SMDS_MeshNode *_nOpp; // in 2D case, a node opposite to a smoothed node in QUAD
_Simplex(const SMDS_MeshNode* nPrev=0,
const SMDS_MeshNode* nNext=0,
const SMDS_MeshNode* nOpp=0)
: _nPrev(nPrev), _nNext(nNext), _nOpp(nOpp) {}
bool IsForward(const gp_XYZ* pntSrc, const gp_XYZ* pntTgt, double& vol) const
{
const double M[3][3] =
{{ _nNext->X() - pntSrc->X(), _nNext->Y() - pntSrc->Y(), _nNext->Z() - pntSrc->Z() },
{ pntTgt->X() - pntSrc->X(), pntTgt->Y() - pntSrc->Y(), pntTgt->Z() - pntSrc->Z() },
{ _nPrev->X() - pntSrc->X(), _nPrev->Y() - pntSrc->Y(), _nPrev->Z() - pntSrc->Z() }};
vol = ( + M[0][0] * M[1][1] * M[2][2]
+ M[0][1] * M[1][2] * M[2][0]
+ M[0][2] * M[1][0] * M[2][1]
- M[0][0] * M[1][2] * M[2][1]
- M[0][1] * M[1][0] * M[2][2]
- M[0][2] * M[1][1] * M[2][0]);
return vol > 1e-100;
}
bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ& pTgt, double& vol) const
{
SMESH_TNodeXYZ pSrc( nSrc );
return IsForward( &pSrc, &pTgt, vol );
}
bool IsForward(const gp_XY& tgtUV,
const SMDS_MeshNode* smoothedNode,
const TopoDS_Face& face,
SMESH_MesherHelper& helper,
const double refSign) const
{
gp_XY prevUV = helper.GetNodeUV( face, _nPrev, smoothedNode );
gp_XY nextUV = helper.GetNodeUV( face, _nNext, smoothedNode );
gp_Vec2d v1( tgtUV, prevUV ), v2( tgtUV, nextUV );
double d = v1 ^ v2;
return d*refSign > 1e-100;
}
bool IsMinAngleOK( const gp_XYZ& pTgt, double& minAngle ) const
{
SMESH_TNodeXYZ pPrev( _nPrev ), pNext( _nNext );
if ( !_nOpp ) // triangle
{
gp_Vec tp( pPrev - pTgt ), pn( pNext - pPrev ), nt( pTgt - pNext );
double tp2 = tp.SquareMagnitude();
double pn2 = pn.SquareMagnitude();
double nt2 = nt.SquareMagnitude();
if ( tp2 < pn2 && tp2 < nt2 )
minAngle = ( nt * -pn ) * ( nt * -pn ) / nt2 / pn2;
else if ( pn2 < nt2 )
minAngle = ( tp * -nt ) * ( tp * -nt ) / tp2 / nt2;
else
minAngle = ( pn * -tp ) * ( pn * -tp ) / pn2 / tp2;
static double theMaxCos2 = ( Cos( theMinSmoothTriaAngle * M_PI / 180. ) *
Cos( theMinSmoothTriaAngle * M_PI / 180. ));
return minAngle < theMaxCos2;
}
else // quadrangle
{
SMESH_TNodeXYZ pOpp( _nOpp );
gp_Vec tp( pPrev - pTgt ), po( pOpp - pPrev ), on( pNext - pOpp), nt( pTgt - pNext );
double tp2 = tp.SquareMagnitude();
double po2 = po.SquareMagnitude();
double on2 = on.SquareMagnitude();
double nt2 = nt.SquareMagnitude();
minAngle = Max( Max((( tp * -nt ) * ( tp * -nt ) / tp2 / nt2 ),
(( po * -tp ) * ( po * -tp ) / po2 / tp2 )),
Max((( on * -po ) * ( on * -po ) / on2 / po2 ),
(( nt * -on ) * ( nt * -on ) / nt2 / on2 )));
static double theMaxCos2 = ( Cos( theMinSmoothQuadAngle * M_PI / 180. ) *
Cos( theMinSmoothQuadAngle * M_PI / 180. ));
return minAngle < theMaxCos2;
}
}
bool IsNeighbour(const _Simplex& other) const
{
return _nPrev == other._nNext || _nNext == other._nPrev;
}
bool Includes( const SMDS_MeshNode* node ) const { return _nPrev == node || _nNext == node; }
static void GetSimplices( const SMDS_MeshNode* node,
vector<_Simplex>& simplices,
const set<TGeomID>& ingnoreShapes,
const _SolidData* dataToCheckOri = 0,
const bool toSort = false);
static void SortSimplices(vector<_Simplex>& simplices);
};
//--------------------------------------------------------------------------------
/*!
* Structure used to take into account surface curvature while smoothing
*/
struct _Curvature
{
double _r; // radius
double _k; // factor to correct node smoothed position
double _h2lenRatio; // avgNormProj / (2*avgDist)
gp_Pnt2d _uv; // UV used in putOnOffsetSurface()
public:
static _Curvature* New( double avgNormProj, double avgDist );
double lenDelta(double len) const { return _k * ( _r + len ); }
double lenDeltaByDist(double dist) const { return dist * _h2lenRatio; }
};
//--------------------------------------------------------------------------------
struct _2NearEdges;
struct _LayerEdge;
struct _EdgesOnShape;
struct _Smoother1D;
struct _Mapper2D;
typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge;
//--------------------------------------------------------------------------------
/*!
* \brief Edge normal to surface, connecting a node on solid surface (_nodes[0])
* and a node of the most internal layer (_nodes.back())
*/
struct _LayerEdge
{
typedef gp_XYZ (_LayerEdge::*PSmooFun)();
vector< const SMDS_MeshNode*> _nodes;
gp_XYZ _normal; // to boundary of solid
vector<gp_XYZ> _pos; // points computed during inflation
double _len; // length achieved with the last inflation step
double _maxLen; // maximal possible length
double _cosin; // of angle (_normal ^ surface)
double _minAngle; // of _simplices
double _lenFactor; // to compute _len taking _cosin into account
int _flags;
// simplices connected to the source node (_nodes[0]);
// used for smoothing and quality check of _LayerEdge's based on the FACE
vector<_Simplex> _simplices;
vector<_LayerEdge*> _neibors; // all surrounding _LayerEdge's
PSmooFun _smooFunction; // smoothing function
_Curvature* _curvature;
// data for smoothing of _LayerEdge's based on the EDGE
_2NearEdges* _2neibors;
enum EFlags { TO_SMOOTH = 0x0000001,
MOVED = 0x0000002, // set by _neibors[i]->SetNewLength()
SMOOTHED = 0x0000004, // set by _LayerEdge::Smooth()
DIFFICULT = 0x0000008, // near concave VERTEX
ON_CONCAVE_FACE = 0x0000010,
BLOCKED = 0x0000020, // not to inflate any more
INTERSECTED = 0x0000040, // close intersection with a face found
NORMAL_UPDATED = 0x0000080,
UPD_NORMAL_CONV = 0x0000100, // to update normal on boundary of concave FACE
MARKED = 0x0000200, // local usage
MULTI_NORMAL = 0x0000400, // a normal is invisible by some of surrounding faces
NEAR_BOUNDARY = 0x0000800, // is near FACE boundary forcing smooth
SMOOTHED_C1 = 0x0001000, // is on _eosC1
DISTORTED = 0x0002000, // was bad before smoothing
RISKY_SWOL = 0x0004000, // SWOL is parallel to a source FACE
SHRUNK = 0x0008000, // target node reached a tgt position while shrink()
UNUSED_FLAG = 0x0100000 // to add user flags after
};
bool Is ( int flag ) const { return _flags & flag; }
void Set ( int flag ) { _flags |= flag; }
void Unset( int flag ) { _flags &= ~flag; }
std::string DumpFlags() const; // debug
void SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper );
bool SetNewLength2d( Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper );
bool UpdatePositionOnSWOL( SMDS_MeshNode* n,
double tol,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper );
void SetDataByNeighbors( const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const _EdgesOnShape& eos,
SMESH_MesherHelper& helper);
void Block( _SolidData& data );
void InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength=false );
void ChooseSmooFunction(const set< TGeomID >& concaveVertices,
const TNode2Edge& n2eMap);
void SmoothPos( const vector< double >& segLen, const double tol );
int GetSmoothedPos( const double tol );
int Smooth(const int step, const bool isConcaveFace, bool findBest);
int Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth );
int CheckNeiborsOnBoundary(vector< _LayerEdge* >* badNeibors = 0, bool * needSmooth = 0 );
void SmoothWoCheck();
bool SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper);
void MoveNearConcaVer( const _EdgesOnShape* eov,
const _EdgesOnShape* eos,
const int step,
vector< _LayerEdge* > & badSmooEdges);
bool FindIntersection( SMESH_ElementSearcher& searcher,
double & distance,
const double& epsilon,
_EdgesOnShape& eos,
const SMDS_MeshElement** face = 0);
bool SegTriaInter( const gp_Ax1& lastSegment,
const gp_XYZ& p0,
const gp_XYZ& p1,
const gp_XYZ& p2,
double& dist,
const double& epsilon) const;
bool SegTriaInter( const gp_Ax1& lastSegment,
const SMDS_MeshNode* n0,
const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
double& dist,
const double& epsilon) const
{ return SegTriaInter( lastSegment,
SMESH_TNodeXYZ( n0 ), SMESH_TNodeXYZ( n1 ), SMESH_TNodeXYZ( n2 ),
dist, epsilon );
}
const gp_XYZ& PrevPos() const { return _pos[ _pos.size() - 2 ]; }
gp_XYZ PrevCheckPos( _EdgesOnShape* eos=0 ) const;
gp_Ax1 LastSegment(double& segLen, _EdgesOnShape& eos) const;
gp_XY LastUV( const TopoDS_Face& F, _EdgesOnShape& eos, int which=-1 ) const;
bool IsOnEdge() const { return _2neibors; }
bool IsOnFace() const { return ( _nodes[0]->GetPosition()->GetDim() == 2 ); }
int BaseShapeDim() const { return _nodes[0]->GetPosition()->GetDim(); }
gp_XYZ Copy( _LayerEdge& other, _EdgesOnShape& eos, SMESH_MesherHelper& helper );
double SetCosin( double cosin );
void SetNormal( const gp_XYZ& n ) { _normal = n; }
void SetMaxLen( double l ) { _maxLen = l; }
int NbSteps() const { return _pos.size() - 1; } // nb inlation steps
bool IsNeiborOnEdge( const _LayerEdge* edge ) const;
void SetSmooLen( double len ) { // set _len at which smoothing is needed
_cosin = len; // as for _LayerEdge's on FACE _cosin is not used
}
double GetSmooLen() { return _cosin; } // for _LayerEdge's on FACE _cosin is not used
gp_XYZ smoothLaplacian();
gp_XYZ smoothAngular();
gp_XYZ smoothLengthWeighted();
gp_XYZ smoothCentroidal();
gp_XYZ smoothNefPolygon();
enum { FUN_LAPLACIAN, FUN_LENWEIGHTED, FUN_CENTROIDAL, FUN_NEFPOLY, FUN_ANGULAR, FUN_NB };
static const int theNbSmooFuns = FUN_NB;
static PSmooFun _funs[theNbSmooFuns];
static const char* _funNames[theNbSmooFuns+1];
int smooFunID( PSmooFun fun=0) const;
};
_LayerEdge::PSmooFun _LayerEdge::_funs[theNbSmooFuns] = { &_LayerEdge::smoothLaplacian,
&_LayerEdge::smoothLengthWeighted,
&_LayerEdge::smoothCentroidal,
&_LayerEdge::smoothNefPolygon,
&_LayerEdge::smoothAngular };
const char* _LayerEdge::_funNames[theNbSmooFuns+1] = { "Laplacian",
"LengthWeighted",
"Centroidal",
"NefPolygon",
"Angular",
"None"};
struct _LayerEdgeCmp
{
bool operator () (const _LayerEdge* e1, const _LayerEdge* e2) const
{
const bool cmpNodes = ( e1 && e2 && e1->_nodes.size() && e2->_nodes.size() );
return cmpNodes ? ( e1->_nodes[0]->GetID() < e2->_nodes[0]->GetID()) : ( e1 < e2 );
}
};
//--------------------------------------------------------------------------------
/*!
* A 2D half plane used by _LayerEdge::smoothNefPolygon()
*/
struct _halfPlane
{
gp_XY _pos, _dir, _inNorm;
bool IsOut( const gp_XY p, const double tol ) const
{
return _inNorm * ( p - _pos ) < -tol;
}
bool FindIntersection( const _halfPlane& hp, gp_XY & intPnt )
{
//const double eps = 1e-10;
double D = _dir.Crossed( hp._dir );
if ( fabs(D) < std::numeric_limits<double>::min())
return false;
gp_XY vec21 = _pos - hp._pos;
double u = hp._dir.Crossed( vec21 ) / D;
intPnt = _pos + _dir * u;
return true;
}
};
//--------------------------------------------------------------------------------
/*!
* Structure used to smooth a _LayerEdge based on an EDGE.
*/
struct _2NearEdges
{
double _wgt [2]; // weights of _nodes
_LayerEdge* _edges[2];
// normal to plane passing through _LayerEdge._normal and tangent of EDGE
gp_XYZ* _plnNorm;
_2NearEdges() { _edges[0]=_edges[1]=0; _plnNorm = 0; }
~_2NearEdges(){ delete _plnNorm; }
const SMDS_MeshNode* tgtNode(bool is2nd) {
return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0;
}
const SMDS_MeshNode* srcNode(bool is2nd) {
return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0;
}
void reverse() {
std::swap( _wgt [0], _wgt [1] );
std::swap( _edges[0], _edges[1] );
}
void set( _LayerEdge* e1, _LayerEdge* e2, double w1, double w2 ) {
_edges[0] = e1; _edges[1] = e2; _wgt[0] = w1; _wgt[1] = w2;
}
bool include( const _LayerEdge* e ) {
return ( _edges[0] == e || _edges[1] == e );
}
};
//--------------------------------------------------------------------------------
/*!
* \brief Layers parameters got by averaging several hypotheses
*/
struct AverageHyp
{
AverageHyp( const StdMeshers_ViscousLayers* hyp = 0 )
:_nbLayers(0), _nbHyps(0), _method(0), _thickness(0), _stretchFactor(0)
{
Add( hyp );
}
void Add( const StdMeshers_ViscousLayers* hyp )
{
if ( hyp )
{
_nbHyps++;
_nbLayers = hyp->GetNumberLayers();
//_thickness += hyp->GetTotalThickness();
_thickness = Max( _thickness, hyp->GetTotalThickness() );
_stretchFactor += hyp->GetStretchFactor();
_method = hyp->GetMethod();
if ( _groupName.empty() )
_groupName = hyp->GetGroupName();
}
}
double GetTotalThickness() const { return _thickness; /*_nbHyps ? _thickness / _nbHyps : 0;*/ }
double GetStretchFactor() const { return _nbHyps ? _stretchFactor / _nbHyps : 0; }
int GetNumberLayers() const { return _nbLayers; }
int GetMethod() const { return _method; }
bool ToCreateGroup() const { return !_groupName.empty(); }
const std::string& GetGroupName() const { return _groupName; }
double Get1stLayerThickness( double realThickness = 0.) const
{
const double T = ( realThickness > 0 ) ? realThickness : GetTotalThickness();
const double f = GetStretchFactor();
const int N = GetNumberLayers();
return StdMeshers_ViscousLayers::Get1stLayerThickness( T, f, N );
}
bool UseSurfaceNormal() const
{ return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; }
bool ToSmooth() const
{ return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; }
bool IsOffsetMethod() const
{ return _method == StdMeshers_ViscousLayers::FACE_OFFSET; }
bool operator==( const AverageHyp& other ) const
{
return ( _nbLayers == other._nbLayers &&
_method == other._method &&
Equals( GetTotalThickness(), other.GetTotalThickness() ) &&
Equals( GetStretchFactor(), other.GetStretchFactor() ));
}
static bool Equals( double v1, double v2 ) { return Abs( v1 - v2 ) < 0.01 * ( v1 + v2 ); }
private:
int _nbLayers, _nbHyps, _method;
double _thickness, _stretchFactor;
std::string _groupName;
};
//--------------------------------------------------------------------------------
/*!
* \brief _LayerEdge's on a shape and other shape data
*/
struct _EdgesOnShape
{
vector< _LayerEdge* > _edges;
TopoDS_Shape _shape;
TGeomID _shapeID;
SMESH_subMesh * _subMesh;
// face or edge w/o layer along or near which _edges are inflated
TopoDS_Shape _sWOL;
bool _isRegularSWOL; // w/o singularities
// averaged StdMeshers_ViscousLayers parameters
AverageHyp _hyp;
bool _toSmooth;
_Smoother1D* _edgeSmoother;
vector< _EdgesOnShape* > _eosConcaVer; // edges at concave VERTEXes of a FACE
vector< _EdgesOnShape* > _eosC1; // to smooth together several C1 continues shapes
typedef std::unordered_map< const SMDS_MeshElement*, gp_XYZ > TFace2NormMap;
TFace2NormMap _faceNormals; // if _shape is FACE
vector< _EdgesOnShape* > _faceEOS; // to get _faceNormals of adjacent FACEs
Handle(ShapeAnalysis_Surface) _offsetSurf;
_LayerEdge* _edgeForOffset;
double _offsetValue;
_Mapper2D* _mapper2D;
_SolidData* _data; // parent SOLID
_LayerEdge* operator[](size_t i) const { return (_LayerEdge*) _edges[i]; }
size_t size() const { return _edges.size(); }
TopAbs_ShapeEnum ShapeType() const
{ return _shape.IsNull() ? TopAbs_SHAPE : _shape.ShapeType(); }
TopAbs_ShapeEnum SWOLType() const
{ return _sWOL.IsNull() ? TopAbs_SHAPE : _sWOL.ShapeType(); }
bool HasC1( const _EdgesOnShape* other ) const
{ return std::find( _eosC1.begin(), _eosC1.end(), other ) != _eosC1.end(); }
bool GetNormal( const SMDS_MeshElement* face, gp_Vec& norm );
_SolidData& GetData() const { return *_data; }
char ShapeTypeLetter() const
{ switch ( ShapeType() ) { case TopAbs_FACE: return 'F'; case TopAbs_EDGE: return 'E';
case TopAbs_VERTEX: return 'V'; default: return 'S'; }}
_EdgesOnShape(): _shapeID(-1), _subMesh(0), _toSmooth(false), _edgeSmoother(0), _mapper2D(0) {}
~_EdgesOnShape();
};
//--------------------------------------------------------------------------------
/*!
* \brief Convex FACE whose radius of curvature is less than the thickness of
* layers. It is used to detect distortion of prisms based on a convex
* FACE and to update normals to enable further increasing the thickness
*/
struct _ConvexFace
{
TopoDS_Face _face;
// edges whose _simplices are used to detect prism distortion
vector< _LayerEdge* > _simplexTestEdges;
// map a sub-shape to _SolidData::_edgesOnShape
map< TGeomID, _EdgesOnShape* > _subIdToEOS;
bool _isTooCurved;
bool _normalsFixed;
bool _normalsFixedOnBorders; // used in putOnOffsetSurface()
double GetMaxCurvature( _SolidData& data,
_EdgesOnShape& eof,
BRepLProp_SLProps& surfProp,
SMESH_MesherHelper& helper);
bool GetCenterOfCurvature( _LayerEdge* ledge,
BRepLProp_SLProps& surfProp,
SMESH_MesherHelper& helper,
gp_Pnt & center ) const;
bool CheckPrisms() const;
};
//--------------------------------------------------------------------------------
/*!
* \brief Structure holding _LayerEdge's based on EDGEs that will collide
* at inflation up to the full thickness. A detected collision
* is fixed in updateNormals()
*/
struct _CollisionEdges
{
_LayerEdge* _edge;
vector< _LayerEdge* > _intEdges; // each pair forms an intersected quadrangle
const SMDS_MeshNode* nSrc(int i) const { return _intEdges[i]->_nodes[0]; }
const SMDS_MeshNode* nTgt(int i) const { return _intEdges[i]->_nodes.back(); }
};
//--------------------------------------------------------------------------------
/*!
* \brief Data of a SOLID
*/
struct _SolidData
{
typedef const StdMeshers_ViscousLayers* THyp;
TopoDS_Shape _solid;
TopTools_MapOfShape _before; // SOLIDs to be computed before _solid
TGeomID _index; // SOLID id
_MeshOfSolid* _proxyMesh;
bool _done;
list< THyp > _hyps;
list< TopoDS_Shape > _hypShapes;
map< TGeomID, THyp > _face2hyp; // filled if _hyps.size() > 1
set< TGeomID > _reversedFaceIds;
set< TGeomID > _ignoreFaceIds; // WOL FACEs and FACEs of other SOLIDs
double _stepSize, _stepSizeCoeff, _geomSize;
const SMDS_MeshNode* _stepSizeNodes[2];
TNode2Edge _n2eMap; // nodes and _LayerEdge's based on them
// map to find _n2eMap of another _SolidData by a shrink shape shared by two _SolidData's
map< TGeomID, TNode2Edge* > _s2neMap;
// _LayerEdge's with underlying shapes
vector< _EdgesOnShape > _edgesOnShape;
// key: an ID of shape (EDGE or VERTEX) shared by a FACE with
// layers and a FACE w/o layers
// value: the shape (FACE or EDGE) to shrink mesh on.
// _LayerEdge's basing on nodes on key shape are inflated along the value shape
map< TGeomID, TopoDS_Shape > _shrinkShape2Shape;
// Convex FACEs whose radius of curvature is less than the thickness of layers
map< TGeomID, _ConvexFace > _convexFaces;
// shapes (EDGEs and VERTEXes) shrink from which is forbidden due to collisions with
// the adjacent SOLID
set< TGeomID > _noShrinkShapes;
int _nbShapesToSmooth;
vector< _CollisionEdges > _collisionEdges;
set< TGeomID > _concaveFaces;
double _maxThickness; // of all _hyps
double _minThickness; // of all _hyps
double _epsilon; // precision for SegTriaInter()
SMESH_MesherHelper* _helper;
_SolidData(const TopoDS_Shape& s=TopoDS_Shape(),
_MeshOfSolid* m=0)
:_solid(s), _proxyMesh(m), _done(false),_helper(0) {}
~_SolidData() { delete _helper; _helper = 0; }
void SortOnEdge( const TopoDS_Edge& E, vector< _LayerEdge* >& edges);
void Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges );
_ConvexFace* GetConvexFace( const TGeomID faceID ) {
map< TGeomID, _ConvexFace >::iterator id2face = _convexFaces.find( faceID );
return id2face == _convexFaces.end() ? 0 : & id2face->second;
}
_EdgesOnShape* GetShapeEdges(const TGeomID shapeID );
_EdgesOnShape* GetShapeEdges(const TopoDS_Shape& shape );
_EdgesOnShape* GetShapeEdges(const _LayerEdge* edge )
{ return GetShapeEdges( edge->_nodes[0]->getshapeId() ); }
SMESH_MesherHelper& GetHelper() const { return *_helper; }
void UnmarkEdges( int flag = _LayerEdge::MARKED ) {
for ( size_t i = 0; i < _edgesOnShape.size(); ++i )
for ( size_t j = 0; j < _edgesOnShape[i]._edges.size(); ++j )
_edgesOnShape[i]._edges[j]->Unset( flag );
}
void AddShapesToSmooth( const set< _EdgesOnShape* >& shape,
const set< _EdgesOnShape* >* edgesNoAnaSmooth=0 );
void PrepareEdgesToSmoothOnFace( _EdgesOnShape* eof, bool substituteSrcNodes );
};
//--------------------------------------------------------------------------------
/*!
* \brief Offset plane used in getNormalByOffset()
*/
struct _OffsetPlane
{
gp_Pln _plane;
int _faceIndex;
int _faceIndexNext[2];
gp_Lin _lines[2]; // line of intersection with neighbor _OffsetPlane's
bool _isLineOK[2];
_OffsetPlane() {
_isLineOK[0] = _isLineOK[1] = false; _faceIndexNext[0] = _faceIndexNext[1] = -1;
}
void ComputeIntersectionLine( _OffsetPlane& pln,
const TopoDS_Edge& E,
const TopoDS_Vertex& V );
gp_XYZ GetCommonPoint(bool& isFound, const TopoDS_Vertex& V) const;
int NbLines() const { return _isLineOK[0] + _isLineOK[1]; }
};
//--------------------------------------------------------------------------------
/*!
* \brief Container of centers of curvature at nodes on an EDGE bounding _ConvexFace
*/
struct _CentralCurveOnEdge
{
bool _isDegenerated;
vector< gp_Pnt > _curvaCenters;
vector< _LayerEdge* > _ledges;
vector< gp_XYZ > _normals; // new normal for each of _ledges
vector< double > _segLength2;
TopoDS_Edge _edge;
TopoDS_Face _adjFace;
bool _adjFaceToSmooth;
void Append( const gp_Pnt& center, _LayerEdge* ledge )
{
if ( ledge->Is( _LayerEdge::MULTI_NORMAL ))
return;
if ( _curvaCenters.size() > 0 )
_segLength2.push_back( center.SquareDistance( _curvaCenters.back() ));
_curvaCenters.push_back( center );
_ledges.push_back( ledge );
_normals.push_back( ledge->_normal );
}
bool FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal );
void SetShapes( const TopoDS_Edge& edge,
const _ConvexFace& convFace,
_SolidData& data,
SMESH_MesherHelper& helper);
};
//--------------------------------------------------------------------------------
/*!
* \brief Data of node on a shrinked FACE
*/
struct _SmoothNode
{
const SMDS_MeshNode* _node;
vector<_Simplex> _simplices; // for quality check
enum SmoothType { LAPLACIAN, CENTROIDAL, ANGULAR, TFI };
bool Smooth(int& badNb,
Handle(Geom_Surface)& surface,
SMESH_MesherHelper& helper,
const double refSign,
SmoothType how,
bool set3D);
gp_XY computeAngularPos(vector<gp_XY>& uv,
const gp_XY& uvToFix,
const double refSign );
};
struct PyDump;
struct Periodicity;
//--------------------------------------------------------------------------------
/*!
* \brief Builder of viscous layers
*/
class _ViscousBuilder
{
public:
_ViscousBuilder();
// does it's job
SMESH_ComputeErrorPtr Compute(SMESH_Mesh& mesh,
const TopoDS_Shape& shape);
// check validity of hypotheses
SMESH_ComputeErrorPtr CheckHypotheses( SMESH_Mesh& mesh,
const TopoDS_Shape& shape );
// restore event listeners used to clear an inferior dim sub-mesh modified by viscous layers
void RestoreListeners();
// computes SMESH_ProxyMesh::SubMesh::_n2n;
bool MakeN2NMap( _MeshOfSolid* pm );
private:
bool findSolidsWithLayers(const bool checkFaceMesh=true);
bool setBefore( _SolidData& solidBefore, _SolidData& solidAfter );
bool findFacesWithLayers(const bool onlyWith=false);
void findPeriodicFaces();
void getIgnoreFaces(const TopoDS_Shape& solid,
const StdMeshers_ViscousLayers* hyp,
const TopoDS_Shape& hypShape,
set<TGeomID>& ignoreFaces);
int makeEdgesOnShape();
bool makeLayer(_SolidData& data);
void setShapeData( _EdgesOnShape& eos, SMESH_subMesh* sm, _SolidData& data );
bool setEdgeData( _LayerEdge& edge, _EdgesOnShape& eos,
SMESH_MesherHelper& helper, _SolidData& data);
gp_XYZ getFaceNormal(const SMDS_MeshNode* n,
const TopoDS_Face& face,
SMESH_MesherHelper& helper,
bool& isOK,
bool shiftInside=false);
bool getFaceNormalAtSingularity(const gp_XY& uv,
const TopoDS_Face& face,
SMESH_MesherHelper& helper,
gp_Dir& normal );
gp_XYZ getWeigthedNormal( const _LayerEdge* edge );
gp_XYZ getNormalByOffset( _LayerEdge* edge,
std::pair< TopoDS_Face, gp_XYZ > fId2Normal[],
int nbFaces,
bool lastNoOffset = false);
bool findNeiborsOnEdge(const _LayerEdge* edge,
const SMDS_MeshNode*& n1,
const SMDS_MeshNode*& n2,
_EdgesOnShape& eos,
_SolidData& data);
void findSimplexTestEdges( _SolidData& data,
vector< vector<_LayerEdge*> >& edgesByGeom);
void computeGeomSize( _SolidData& data );
bool findShapesToSmooth( _SolidData& data);
void limitStepSizeByCurvature( _SolidData& data );
void limitStepSize( _SolidData& data,
const SMDS_MeshElement* face,
const _LayerEdge* maxCosinEdge );
void limitStepSize( _SolidData& data, const double minSize);
bool inflate(_SolidData& data);
bool smoothAndCheck(_SolidData& data, const int nbSteps, double & distToIntersection);
int invalidateBadSmooth( _SolidData& data,
SMESH_MesherHelper& helper,
vector< _LayerEdge* >& badSmooEdges,
vector< _EdgesOnShape* >& eosC1,
const int infStep );
void makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& );
void putOnOffsetSurface( _EdgesOnShape& eos, int infStep,
vector< _EdgesOnShape* >& eosC1,
int smooStep=0, int moveAll=false );
void findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper );
void findEdgesToUpdateNormalNearConvexFace( _ConvexFace & convFace,
_SolidData& data,
SMESH_MesherHelper& helper );
void limitMaxLenByCurvature( _SolidData& data, SMESH_MesherHelper& helper );
void limitMaxLenByCurvature( _LayerEdge* e1, _LayerEdge* e2,
_EdgesOnShape& eos1, _EdgesOnShape& eos2,
const bool isSmoothable );
bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb, double stepSize );
bool updateNormalsOfConvexFaces( _SolidData& data,
SMESH_MesherHelper& helper,
int stepNb );
void updateNormalsOfC1Vertices( _SolidData& data );
bool updateNormalsOfSmoothed( _SolidData& data,
SMESH_MesherHelper& helper,
const int nbSteps,
const double stepSize );
bool isNewNormalOk( _SolidData& data,
_LayerEdge& edge,
const gp_XYZ& newNormal);
bool refine(_SolidData& data);
bool shrink(_SolidData& data);
bool prepareEdgeToShrink( _LayerEdge& edge, _EdgesOnShape& eos,
SMESH_MesherHelper& helper,
const SMESHDS_SubMesh* faceSubMesh );
void restoreNoShrink( _LayerEdge& edge ) const;
void fixBadFaces(const TopoDS_Face& F,
SMESH_MesherHelper& helper,
const bool is2D,
const int step,
set<const SMDS_MeshNode*> * involvedNodes=NULL);
bool addBoundaryElements(_SolidData& data);
bool error( const string& text, int solidID=-1 );
SMESHDS_Mesh* getMeshDS() const { return _mesh->GetMeshDS(); }
// debug
void makeGroupOfLE();
SMESH_Mesh* _mesh;
SMESH_ComputeErrorPtr _error;
vector< _SolidData > _sdVec;
TopTools_IndexedMapOfShape _solids; // to find _SolidData by a solid
TopTools_MapOfShape _shrunkFaces;
std::unique_ptr<Periodicity> _periodicity;
int _tmpFaceID;
PyDump* _pyDump;
};
//--------------------------------------------------------------------------------
/*!
* \brief Shrinker of nodes on the EDGE
*/
class _Shrinker1D
{
TopoDS_Edge _geomEdge;
vector<double> _initU;
vector<double> _normPar;
vector<const SMDS_MeshNode*> _nodes;
const _LayerEdge* _edges[2];
bool _done;
public:
void AddEdge( const _LayerEdge* e, _EdgesOnShape& eos, SMESH_MesherHelper& helper );
void Compute(bool set3D, SMESH_MesherHelper& helper);
void RestoreParams();
void SwapSrcTgtNodes(SMESHDS_Mesh* mesh);
const TopoDS_Edge& GeomEdge() const { return _geomEdge; }
const SMDS_MeshNode* TgtNode( bool is2nd ) const
{ return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0; }
const SMDS_MeshNode* SrcNode( bool is2nd ) const
{ return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0; }
};
//--------------------------------------------------------------------------------
/*!
* \brief Smoother of _LayerEdge's on EDGE.
*/
struct _Smoother1D
{
struct OffPnt // point of the offsetted EDGE
{
gp_XYZ _xyz; // coord of a point inflated from EDGE w/o smooth
double _len; // length reached at previous inflation step
double _param; // on EDGE
_2NearEdges _2edges; // 2 neighbor _LayerEdge's
gp_XYZ _edgeDir;// EDGE tangent at _param
double Distance( const OffPnt& p ) const { return ( _xyz - p._xyz ).Modulus(); }
};
vector< OffPnt > _offPoints;
vector< double > _leParams; // normalized param of _eos._edges on EDGE
Handle(Geom_Curve) _anaCurve; // for analytic smooth
_LayerEdge _leOnV[2]; // _LayerEdge's holding normal to the EDGE at VERTEXes
gp_XYZ _edgeDir[2]; // tangent at VERTEXes
size_t _iSeg[2]; // index of segment where extreme tgt node is projected
_EdgesOnShape& _eos;
double _curveLen; // length of the EDGE
std::pair<int,int> _eToSmooth[2]; // <from,to> indices of _LayerEdge's in _eos
static Handle(Geom_Curve) CurveForSmooth( const TopoDS_Edge& E,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper);
_Smoother1D( Handle(Geom_Curve) curveForSmooth,
_EdgesOnShape& eos )
: _anaCurve( curveForSmooth ), _eos( eos )
{
}
bool Perform(_SolidData& data,
Handle(ShapeAnalysis_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper );
void prepare(_SolidData& data );
void findEdgesToSmooth();
bool isToSmooth( int iE );
bool smoothAnalyticEdge( _SolidData& data,
Handle(ShapeAnalysis_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper);
bool smoothComplexEdge( _SolidData& data,
Handle(ShapeAnalysis_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper);
gp_XYZ getNormalNormal( const gp_XYZ & normal,
const gp_XYZ& edgeDir);
_LayerEdge* getLEdgeOnV( bool is2nd )
{
return _eos._edges[ is2nd ? _eos._edges.size()-1 : 0 ]->_2neibors->_edges[ is2nd ];
}
bool isAnalytic() const { return !_anaCurve.IsNull(); }
void offPointsToPython() const; // debug
};
//--------------------------------------------------------------------------------
/*!
* \brief Compute positions of nodes of 2D structured mesh using TFI
*/
class _Mapper2D
{
FaceQuadStruct _quadPoints;
UVPtStruct& uvPnt( size_t i, size_t j ) { return _quadPoints.UVPt( i, j ); }
public:
_Mapper2D( const TParam2ColumnMap & param2ColumnMap, const TNode2Edge& n2eMap );
bool ComputeNodePositions();
};
//--------------------------------------------------------------------------------
/*!
* \brief Class of temporary mesh face.
* We can't use SMDS_FaceOfNodes since it's impossible to set it's ID which is
* needed because SMESH_ElementSearcher internally uses set of elements sorted by ID
*/
struct _TmpMeshFace : public SMDS_PolygonalFaceOfNodes
{
const SMDS_MeshElement* _srcFace;
_TmpMeshFace( const vector<const SMDS_MeshNode*>& nodes,
int ID,
int faceID=-1,
const SMDS_MeshElement* srcFace=0 ):
SMDS_PolygonalFaceOfNodes(nodes), _srcFace( srcFace ) { setID( ID ); setShapeID( faceID ); }
virtual SMDSAbs_EntityType GetEntityType() const
{ return _srcFace ? _srcFace->GetEntityType() : SMDSEntity_Quadrangle; }
virtual SMDSAbs_GeometryType GetGeomType() const
{ return _srcFace ? _srcFace->GetGeomType() : SMDSGeom_QUADRANGLE; }
};
//--------------------------------------------------------------------------------
/*!
* \brief Class of temporary mesh quadrangle face storing _LayerEdge it's based on
*/
struct _TmpMeshFaceOnEdge : public _TmpMeshFace
{
_LayerEdge *_le1, *_le2;
_TmpMeshFaceOnEdge( _LayerEdge* le1, _LayerEdge* le2, int ID ):
_TmpMeshFace( vector<const SMDS_MeshNode*>(4), ID ), _le1(le1), _le2(le2)
{
myNodes[0]=_le1->_nodes[0];
myNodes[1]=_le1->_nodes.back();
myNodes[2]=_le2->_nodes.back();
myNodes[3]=_le2->_nodes[0];
}
const SMDS_MeshNode* n( size_t i ) const
{
return myNodes[ i ];
}
gp_XYZ GetDir() const // return average direction of _LayerEdge's, normal to EDGE
{
SMESH_TNodeXYZ p0s( myNodes[0] );
SMESH_TNodeXYZ p0t( myNodes[1] );
SMESH_TNodeXYZ p1t( myNodes[2] );
SMESH_TNodeXYZ p1s( myNodes[3] );
gp_XYZ v0 = p0t - p0s;
gp_XYZ v1 = p1t - p1s;
gp_XYZ v01 = p1s - p0s;
gp_XYZ n = ( v0 ^ v01 ) + ( v1 ^ v01 );
gp_XYZ d = v01 ^ n;
d.Normalize();
return d;
}
gp_XYZ GetDir(_LayerEdge* le1, _LayerEdge* le2) // return average direction of _LayerEdge's
{
myNodes[0]=le1->_nodes[0];
myNodes[1]=le1->_nodes.back();
myNodes[2]=le2->_nodes.back();
myNodes[3]=le2->_nodes[0];
return GetDir();
}
};
//--------------------------------------------------------------------------------
/*!
* \brief Retriever of node coordinates either directly or from a surface by node UV.
* \warning Location of a surface is ignored
*/
struct _NodeCoordHelper
{
SMESH_MesherHelper& _helper;
const TopoDS_Face& _face;
Handle(Geom_Surface) _surface;
gp_XYZ (_NodeCoordHelper::* _fun)(const SMDS_MeshNode* n) const;
_NodeCoordHelper(const TopoDS_Face& F, SMESH_MesherHelper& helper, bool is2D)
: _helper( helper ), _face( F )
{
if ( is2D )
{
TopLoc_Location loc;
_surface = BRep_Tool::Surface( _face, loc );
}
if ( _surface.IsNull() )
_fun = & _NodeCoordHelper::direct;
else
_fun = & _NodeCoordHelper::byUV;
}
gp_XYZ operator()(const SMDS_MeshNode* n) const { return (this->*_fun)( n ); }
private:
gp_XYZ direct(const SMDS_MeshNode* n) const
{
return SMESH_TNodeXYZ( n );
}
gp_XYZ byUV (const SMDS_MeshNode* n) const
{
gp_XY uv = _helper.GetNodeUV( _face, n );
return _surface->Value( uv.X(), uv.Y() ).XYZ();
}
};
//================================================================================
/*!
* \brief Check angle between vectors
*/
//================================================================================
inline bool isLessAngle( const gp_Vec& v1, const gp_Vec& v2, const double cos )
{
double dot = v1 * v2; // cos * |v1| * |v2|
double l1 = v1.SquareMagnitude();
double l2 = v2.SquareMagnitude();
return (( dot * cos >= 0 ) &&
( dot * dot ) / l1 / l2 >= ( cos * cos ));
}
class _Factory
{
ObjectPool< _LayerEdge > _edgePool;
ObjectPool< _Curvature > _curvaturePool;
ObjectPool< _2NearEdges > _nearEdgesPool;
static _Factory* & me()
{
static _Factory* theFactory = 0;
return theFactory;
}
public:
_Factory() { me() = this; }
~_Factory() { me() = 0; }
static _LayerEdge* NewLayerEdge() { return me()->_edgePool.getNew(); }
static _Curvature * NewCurvature() { return me()->_curvaturePool.getNew(); }
static _2NearEdges* NewNearEdges() { return me()->_nearEdgesPool.getNew(); }
};
} // namespace VISCOUS_3D
//================================================================================
// StdMeshers_ViscousLayers hypothesis
//
StdMeshers_ViscousLayers::StdMeshers_ViscousLayers(int hypId, SMESH_Gen* gen)
:SMESH_Hypothesis(hypId, gen),
_isToIgnoreShapes(1), _nbLayers(1), _thickness(1), _stretchFactor(1),
_method( SURF_OFFSET_SMOOTH ),
_groupName("")
{
_name = StdMeshers_ViscousLayers::GetHypType();
_param_algo_dim = -3; // auxiliary hyp used by 3D algos
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetBndShapes(const std::vector<int>& faceIds, bool toIgnore)
{
if ( faceIds != _shapeIds )
_shapeIds = faceIds, NotifySubMeshesHypothesisModification();
if ( _isToIgnoreShapes != toIgnore )
_isToIgnoreShapes = toIgnore, NotifySubMeshesHypothesisModification();
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetTotalThickness(double thickness)
{
if ( thickness != _thickness )
_thickness = thickness, NotifySubMeshesHypothesisModification();
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetNumberLayers(int nb)
{
if ( _nbLayers != nb )
_nbLayers = nb, NotifySubMeshesHypothesisModification();
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetStretchFactor(double factor)
{
if ( _stretchFactor != factor )
_stretchFactor = factor, NotifySubMeshesHypothesisModification();
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetMethod( ExtrusionMethod method )
{
if ( _method != method )
_method = method, NotifySubMeshesHypothesisModification();
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetGroupName(const std::string& name)
{
if ( _groupName != name )
{
_groupName = name;
if ( !_groupName.empty() )
NotifySubMeshesHypothesisModification();
}
} // --------------------------------------------------------------------------------
SMESH_ProxyMesh::Ptr
StdMeshers_ViscousLayers::Compute(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape,
const bool toMakeN2NMap) const
{
using namespace VISCOUS_3D;
_ViscousBuilder builder;
SMESH_ComputeErrorPtr err = builder.Compute( theMesh, theShape );
if ( err && !err->IsOK() )
return SMESH_ProxyMesh::Ptr();
vector<SMESH_ProxyMesh::Ptr> components;
TopExp_Explorer exp( theShape, TopAbs_SOLID );
for ( ; exp.More(); exp.Next() )
{
if ( _MeshOfSolid* pm =
_ViscousListener::GetSolidMesh( &theMesh, exp.Current(), /*toCreate=*/false))
{
if ( toMakeN2NMap && !pm->_n2nMapComputed )
if ( !builder.MakeN2NMap( pm ))
return SMESH_ProxyMesh::Ptr();
components.push_back( SMESH_ProxyMesh::Ptr( pm ));
pm->myIsDeletable = false; // it will de deleted by boost::shared_ptr
if ( pm->_warning && !pm->_warning->IsOK() )
{
SMESH_subMesh* sm = theMesh.GetSubMesh( exp.Current() );
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
if ( !smError || smError->IsOK() )
smError = pm->_warning;
}
}
_ViscousListener::RemoveSolidMesh ( &theMesh, exp.Current() );
}
switch ( components.size() )
{
case 0: break;
case 1: return components[0];
default: return SMESH_ProxyMesh::Ptr( new SMESH_ProxyMesh( components ));
}
return SMESH_ProxyMesh::Ptr();
} // --------------------------------------------------------------------------------
std::ostream & StdMeshers_ViscousLayers::SaveTo(std::ostream & save)
{
save << " " << _nbLayers
<< " " << _thickness
<< " " << _stretchFactor
<< " " << _shapeIds.size();
for ( size_t i = 0; i < _shapeIds.size(); ++i )
save << " " << _shapeIds[i];
save << " " << !_isToIgnoreShapes; // negate to keep the behavior in old studies.
save << " " << _method;
save << " " << _groupName.size();
if ( !_groupName.empty() )
save << " " << _groupName;
return save;
} // --------------------------------------------------------------------------------
std::istream & StdMeshers_ViscousLayers::LoadFrom(std::istream & load)
{
int nbFaces, faceID, shapeToTreat, method;
load >> _nbLayers >> _thickness >> _stretchFactor >> nbFaces;
while ( (int) _shapeIds.size() < nbFaces && load >> faceID )
_shapeIds.push_back( faceID );
if ( load >> shapeToTreat ) {
_isToIgnoreShapes = !shapeToTreat;
if ( load >> method )
_method = (ExtrusionMethod) method;
int nameSize = 0;
if ( load >> nameSize && nameSize > 0 )
{
_groupName.resize( nameSize );
load.get( _groupName[0] ); // remove a white-space
load.getline( &_groupName[0], nameSize + 1 );
}
}
else {
_isToIgnoreShapes = true; // old behavior
}
return load;
} // --------------------------------------------------------------------------------
bool StdMeshers_ViscousLayers::SetParametersByMesh(const SMESH_Mesh* /*theMesh*/,
const TopoDS_Shape& /*theShape*/)
{
// TODO
return false;
} // --------------------------------------------------------------------------------
SMESH_ComputeErrorPtr
StdMeshers_ViscousLayers::CheckHypothesis(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape,
SMESH_Hypothesis::Hypothesis_Status& theStatus)
{
VISCOUS_3D::_ViscousBuilder builder;
SMESH_ComputeErrorPtr err = builder.CheckHypotheses( theMesh, theShape );
if ( err && !err->IsOK() )
theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS;
else
theStatus = SMESH_Hypothesis::HYP_OK;
return err;
}
// --------------------------------------------------------------------------------
bool StdMeshers_ViscousLayers::IsShapeWithLayers(int shapeIndex) const
{
bool isIn =
( std::find( _shapeIds.begin(), _shapeIds.end(), shapeIndex ) != _shapeIds.end() );
return IsToIgnoreShapes() ? !isIn : isIn;
}
// --------------------------------------------------------------------------------
double StdMeshers_ViscousLayers::Get1stLayerThickness( double T, double f, int N )
{
const double fPowN = pow( f, N );
double h0;
if ( fPowN - 1 <= numeric_limits<double>::min() )
h0 = T / N;
else
h0 = T * ( f - 1 )/( fPowN - 1 );
return h0;
}
// --------------------------------------------------------------------------------
SMDS_MeshGroup* StdMeshers_ViscousLayers::CreateGroup( const std::string& theName,
SMESH_Mesh& theMesh,
SMDSAbs_ElementType theType)
{
SMESH_Group* group = 0;
SMDS_MeshGroup* groupDS = 0;
if ( theName.empty() )
return groupDS;
if ( SMESH_Mesh::GroupIteratorPtr grIt = theMesh.GetGroups() )
while( grIt->more() && !group )
{
group = grIt->next();
if ( !group ||
group->GetGroupDS()->GetType() != theType ||
group->GetName() != theName ||
!dynamic_cast< SMESHDS_Group* >( group->GetGroupDS() ))
group = 0;
}
if ( !group )
group = theMesh.AddGroup( theType, theName.c_str() );
groupDS = & dynamic_cast< SMESHDS_Group* >( group->GetGroupDS() )->SMDSGroup();
return groupDS;
}
// END StdMeshers_ViscousLayers hypothesis
//================================================================================
namespace VISCOUS_3D
{
gp_XYZ getEdgeDir( const TopoDS_Edge& E, const TopoDS_Vertex& fromV,
const double h0, bool* isRegularEdge = nullptr )
{
gp_Vec dir;
double f,l;
Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l );
if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 );
gp_Pnt p = BRep_Tool::Pnt( fromV );
gp_Pnt pf = c->Value( f ), pl = c->Value( l );
double distF = p.SquareDistance( pf );
double distL = p.SquareDistance( pl );
c->D1(( distF < distL ? f : l), p, dir );
if ( distL < distF ) dir.Reverse();
bool isDifficult = false;
if ( dir.SquareMagnitude() < h0 * h0 ) // check dir orientation
{
gp_Pnt& pClose = distF < distL ? pf : pl;
gp_Pnt& pFar = distF < distL ? pl : pf;
gp_Pnt pMid = 0.9 * pClose.XYZ() + 0.1 * pFar.XYZ();
gp_Vec vMid( p, pMid );
double dot = vMid * dir;
double cos2 = dot * dot / dir.SquareMagnitude() / vMid.SquareMagnitude();
if ( cos2 < 0.7 * 0.7 || dot < 0 ) // large angle between dir and vMid
{
double uClose = distF < distL ? f : l;
double uFar = distF < distL ? l : f;
double r = h0 / SMESH_Algo::EdgeLength( E );
double uMid = ( 1 - r ) * uClose + r * uFar;
pMid = c->Value( uMid );
dir = gp_Vec( p, pMid );
isDifficult = true;
}
}
if ( isRegularEdge )
*isRegularEdge = !isDifficult;
return dir.XYZ();
}
//--------------------------------------------------------------------------------
gp_XYZ getEdgeDir( const TopoDS_Edge& E, const SMDS_MeshNode* atNode,
SMESH_MesherHelper& helper)
{
gp_Vec dir;
double f,l; gp_Pnt p;
Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l );
if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 );
double u = helper.GetNodeU( E, atNode );
c->D1( u, p, dir );
return dir.XYZ();
}
//--------------------------------------------------------------------------------
gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV,
const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok/*,
double* cosin=0*/);
//--------------------------------------------------------------------------------
gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Edge& fromE,
const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok)
{
double f,l;
Handle(Geom_Curve) c = BRep_Tool::Curve( fromE, f, l );
if ( c.IsNull() )
{
TopoDS_Vertex v = helper.IthVertex( 0, fromE );
return getFaceDir( F, v, node, helper, ok );
}
gp_XY uv = helper.GetNodeUV( F, node, 0, &ok );
Handle(Geom_Surface) surface = BRep_Tool::Surface( F );
gp_Pnt p; gp_Vec du, dv, norm;
surface->D1( uv.X(),uv.Y(), p, du,dv );
norm = du ^ dv;
double u = helper.GetNodeU( fromE, node, 0, &ok );
c->D1( u, p, du );
TopAbs_Orientation o = helper.GetSubShapeOri( F.Oriented(TopAbs_FORWARD), fromE);
if ( o == TopAbs_REVERSED )
du.Reverse();
gp_Vec dir = norm ^ du;
if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX &&
helper.IsClosedEdge( fromE ))
{
if ( fabs(u-f) < fabs(u-l)) c->D1( l, p, dv );
else c->D1( f, p, dv );
if ( o == TopAbs_REVERSED )
dv.Reverse();
gp_Vec dir2 = norm ^ dv;
dir = dir.Normalized() + dir2.Normalized();
}
return dir.XYZ();
}
//--------------------------------------------------------------------------------
gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV,
const SMDS_MeshNode* node, SMESH_MesherHelper& helper,
bool& ok/*, double* cosin*/)
{
TopoDS_Face faceFrw = F;
faceFrw.Orientation( TopAbs_FORWARD );
//double f,l; TopLoc_Location loc;
TopoDS_Edge edges[2]; // sharing a vertex
size_t nbEdges = 0;
{
TopoDS_Vertex VV[2];
TopExp_Explorer exp( faceFrw, TopAbs_EDGE );
for ( ; exp.More() && nbEdges < 2; exp.Next() )
{
const TopoDS_Edge& e = TopoDS::Edge( exp.Current() );
if ( SMESH_Algo::isDegenerated( e )) continue;
TopExp::Vertices( e, VV[0], VV[1], /*CumOri=*/true );
if ( VV[1].IsSame( fromV )) {
nbEdges += edges[ 0 ].IsNull();
edges[ 0 ] = e;
}
else if ( VV[0].IsSame( fromV )) {
nbEdges += edges[ 1 ].IsNull();
edges[ 1 ] = e;
}
}
}
gp_XYZ dir(0,0,0), edgeDir[2];
if ( nbEdges == 2 )
{
// get dirs of edges going fromV
ok = true;
for ( size_t i = 0; i < nbEdges && ok; ++i )
{
edgeDir[i] = getEdgeDir( edges[i], fromV, 0.1 * SMESH_Algo::EdgeLength( edges[i] ));
double size2 = edgeDir[i].SquareModulus();
if (( ok = size2 > numeric_limits<double>::min() ))
edgeDir[i] /= sqrt( size2 );
}
if ( !ok ) return dir;
// get angle between the 2 edges
gp_Vec faceNormal;
double angle = helper.GetAngle( edges[0], edges[1], faceFrw, fromV, &faceNormal );
if ( Abs( angle ) < 5 * M_PI/180 )
{
dir = ( faceNormal.XYZ() ^ edgeDir[0].Reversed()) + ( faceNormal.XYZ() ^ edgeDir[1] );
}
else
{
dir = edgeDir[0] + edgeDir[1];
if ( angle < 0 )
dir.Reverse();
}
// if ( cosin ) {
// double angle = faceNormal.Angle( dir );
// *cosin = Cos( angle );
// }
}
else if ( nbEdges == 1 )
{
dir = getFaceDir( faceFrw, edges[ edges[0].IsNull() ], node, helper, ok );
//if ( cosin ) *cosin = 1.;
}
else
{
ok = false;
}
return dir;
}
//================================================================================
/*!
* \brief Finds concave VERTEXes of a FACE
*/
//================================================================================
bool getConcaveVertices( const TopoDS_Face& F,
SMESH_MesherHelper& helper,
set< TGeomID >* vertices = 0)
{
// check angles at VERTEXes
TError error;
TSideVector wires = StdMeshers_FaceSide::GetFaceWires( F, *helper.GetMesh(), 0, error );
for ( size_t iW = 0; iW < wires.size(); ++iW )
{
const int nbEdges = wires[iW]->NbEdges();
if ( nbEdges < 2 && SMESH_Algo::isDegenerated( wires[iW]->Edge(0)))
continue;
for ( int iE1 = 0; iE1 < nbEdges; ++iE1 )
{
if ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE1 ))) continue;
int iE2 = ( iE1 + 1 ) % nbEdges;
while ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE2 )))
iE2 = ( iE2 + 1 ) % nbEdges;
TopoDS_Vertex V = wires[iW]->FirstVertex( iE2 );
double angle = helper.GetAngle( wires[iW]->Edge( iE1 ),
wires[iW]->Edge( iE2 ), F, V );
if ( angle < -5. * M_PI / 180. )
{
if ( !vertices )
return true;
vertices->insert( helper.GetMeshDS()->ShapeToIndex( V ));
}
}
}
return vertices ? !vertices->empty() : false;
}
//================================================================================
/*!
* \brief Returns true if a FACE is bound by a concave EDGE
*/
//================================================================================
bool isConcave( const TopoDS_Face& F,
SMESH_MesherHelper& helper,
set< TGeomID >* vertices = 0 )
{
bool isConcv = false;
// if ( helper.Count( F, TopAbs_WIRE, /*useMap=*/false) > 1 )
// return true;
gp_Vec2d drv1, drv2;
gp_Pnt2d p;
TopExp_Explorer eExp( F.Oriented( TopAbs_FORWARD ), TopAbs_EDGE );
for ( ; eExp.More(); eExp.Next() )
{
const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() );
if ( SMESH_Algo::isDegenerated( E )) continue;
// check if 2D curve is concave
BRepAdaptor_Curve2d curve( E, F );
const int nbIntervals = curve.NbIntervals( GeomAbs_C2 );
TColStd_Array1OfReal intervals(1, nbIntervals + 1 );
curve.Intervals( intervals, GeomAbs_C2 );
bool isConvex = true;
for ( int i = 1; i <= nbIntervals && isConvex; ++i )
{
double u1 = intervals( i );
double u2 = intervals( i+1 );
curve.D2( 0.5*( u1+u2 ), p, drv1, drv2 );
double cross = drv1 ^ drv2;
if ( E.Orientation() == TopAbs_REVERSED )
cross = -cross;
isConvex = ( cross > -1e-9 ); // 0.1 );
}
if ( !isConvex )
{
//cout << "Concave FACE " << helper.GetMeshDS()->ShapeToIndex( F ) << endl;
isConcv = true;
if ( vertices )
break;
else
return true;
}
}
// check angles at VERTEXes
if ( getConcaveVertices( F, helper, vertices ))
isConcv = true;
return isConcv;
}
//================================================================================
/*!
* \brief Computes minimal distance of face in-FACE nodes from an EDGE
* \param [in] face - the mesh face to treat
* \param [in] nodeOnEdge - a node on the EDGE
* \param [out] faceSize - the computed distance
* \return bool - true if faceSize computed
*/
//================================================================================
bool getDistFromEdge( const SMDS_MeshElement* face,
const SMDS_MeshNode* nodeOnEdge,
double & faceSize )
{
faceSize = Precision::Infinite();
bool done = false;
int nbN = face->NbCornerNodes();
int iOnE = face->GetNodeIndex( nodeOnEdge );
int iNext[2] = { SMESH_MesherHelper::WrapIndex( iOnE+1, nbN ),
SMESH_MesherHelper::WrapIndex( iOnE-1, nbN ) };
const SMDS_MeshNode* nNext[2] = { face->GetNode( iNext[0] ),
face->GetNode( iNext[1] ) };
gp_XYZ segVec, segEnd = SMESH_TNodeXYZ( nodeOnEdge ); // segment on EDGE
double segLen = -1.;
// look for two neighbor not in-FACE nodes of face
for ( int i = 0; i < 2; ++i )
{
if (( nNext[i]->GetPosition()->GetDim() != 2 ) &&
( nodeOnEdge->GetPosition()->GetDim() == 0 || nNext[i]->GetID() < nodeOnEdge->GetID() ))
{
// look for an in-FACE node
for ( int iN = 0; iN < nbN; ++iN )
{
if ( iN == iOnE || iN == iNext[i] )
continue;
SMESH_TNodeXYZ pInFace = face->GetNode( iN );
gp_XYZ v = pInFace - segEnd;
if ( segLen < 0 )
{
segVec = SMESH_TNodeXYZ( nNext[i] ) - segEnd;
segLen = segVec.Modulus();
}
double distToSeg = v.Crossed( segVec ).Modulus() / segLen;
faceSize = Min( faceSize, distToSeg );
done = true;
}
segLen = -1;
}
}
return done;
}
//================================================================================
/*!
* \brief Return direction of axis or revolution of a surface
*/
//================================================================================
bool getRovolutionAxis( const Adaptor3d_Surface& surface,
gp_Dir & axis )
{
switch ( surface.GetType() ) {
case GeomAbs_Cone:
{
gp_Cone cone = surface.Cone();
axis = cone.Axis().Direction();
break;
}
case GeomAbs_Sphere:
{
gp_Sphere sphere = surface.Sphere();
axis = sphere.Position().Direction();
break;
}
case GeomAbs_SurfaceOfRevolution:
{
axis = surface.AxeOfRevolution().Direction();
break;
}
//case GeomAbs_SurfaceOfExtrusion:
case GeomAbs_OffsetSurface:
{
#if OCC_VERSION_LARGE < 0x07070000
Handle(Adaptor3d_HSurface) base = surface.BasisSurface();
return getRovolutionAxis( base->Surface(), axis );
#else
Handle(Adaptor3d_Surface) base = surface.BasisSurface();
return getRovolutionAxis( *base, axis );
#endif
}
default: return false;
}
return true;
}
//--------------------------------------------------------------------------------
// DEBUG. Dump intermediate node positions into a python script
// HOWTO use: run python commands written in a console and defined in /tmp/viscous.py
// to see construction steps of viscous layers
#ifdef __myDEBUG
ostream* py;
int theNbPyFunc;
struct PyDump
{
PyDump(SMESH_Mesh& m) {
int tag = 3 + m.GetId();
const char* fname = "/tmp/viscous.py";
cout << "exec(open('"<<fname<<"','rb').read() )"<<endl;
py = _pyStream = new ofstream(fname);
*py << "import SMESH" << endl
<< "from salome.smesh import smeshBuilder" << endl
<< "smesh = smeshBuilder.New()" << endl
<< "meshSO = salome.myStudy.FindObjectID('0:1:2:" << tag <<"')" << endl
<< "mesh = smesh.Mesh( meshSO.GetObject() )"<<endl;
theNbPyFunc = 0;
}
void Finish() {
if (py) {
*py << "mesh.GroupOnFilter(SMESH.VOLUME,'Viscous Prisms',"
"smesh.GetFilter(SMESH.VOLUME,SMESH.FT_ElemGeomType,'=',SMESH.Geom_PENTA))"<<endl;
*py << "mesh.GroupOnFilter(SMESH.VOLUME,'Neg Volumes',"
"smesh.GetFilter(SMESH.VOLUME,SMESH.FT_Volume3D,'<',0))"<<endl;
}
delete py; py=0;
}
~PyDump() { Finish(); cout << "NB FUNCTIONS: " << theNbPyFunc << endl; }
struct MyStream : public ostream
{
template <class T> ostream & operator<<( const T &anything ) { return *this ; }
};
void Pause() { py = &_mystream; }
void Resume() { py = _pyStream; }
MyStream _mystream;
ostream* _pyStream;
};
#define dumpFunction(f) { _dumpFunction(f, __LINE__);}
#define dumpMove(n) { _dumpMove(n, __LINE__);}
#define dumpMoveComm(n,txt) { _dumpMove(n, __LINE__, txt);}
#define dumpCmd(txt) { _dumpCmd(txt, __LINE__);}
void _dumpFunction(const string& fun, int ln)
{ if (py) *py<< "def "<<fun<<"(): # "<< ln <<endl; cout<<fun<<"()"<<endl; ++theNbPyFunc; }
void _dumpMove(const SMDS_MeshNode* n, int ln, const char* txt="")
{ if (py) *py<< " mesh.MoveNode( "<<n->GetID()<< ", "<< n->X()
<< ", "<<n->Y()<<", "<< n->Z()<< ")\t\t # "<< ln <<" "<< txt << endl; }
void _dumpCmd(const string& txt, int ln)
{ if (py) *py<< " "<<txt<<" # "<< ln <<endl; }
void dumpFunctionEnd()
{ if (py) *py<< " return"<< endl; }
void dumpChangeNodes( const SMDS_MeshElement* f )
{ if (py) { *py<< " mesh.ChangeElemNodes( " << f->GetID()<<", [";
for ( int i=1; i < f->NbNodes(); ++i ) *py << f->GetNode(i-1)->GetID()<<", ";
*py << f->GetNode( f->NbNodes()-1 )->GetID() << " ])"<< endl; }}
#define debugMsg( txt ) { cout << "# "<< txt << " (line: " << __LINE__ << ")" << endl; }
#else
struct PyDump { PyDump(SMESH_Mesh&) {} void Finish() {} void Pause() {} void Resume() {} };
#define dumpFunction(f) f
#define dumpMove(n)
#define dumpMoveComm(n,txt)
#define dumpCmd(txt)
#define dumpFunctionEnd()
#define dumpChangeNodes(f) { if(f) {} } // prevent "unused variable 'f'" warning
#define debugMsg( txt ) {}
#endif
}
using namespace VISCOUS_3D;
//================================================================================
/*!
* \brief Constructor of _ViscousBuilder
*/
//================================================================================
_ViscousBuilder::_ViscousBuilder()
{
_error = SMESH_ComputeError::New(COMPERR_OK);
_tmpFaceID = 0;
}
//================================================================================
/*!
* \brief Stores error description and returns false
*/
//================================================================================
bool _ViscousBuilder::error(const string& text, int solidId )
{
const string prefix = string("Viscous layers builder: ");
_error->myName = COMPERR_ALGO_FAILED;
_error->myComment = prefix + text;
if ( _mesh )
{
SMESH_subMesh* sm = _mesh->GetSubMeshContaining( solidId );
if ( !sm && !_sdVec.empty() )
sm = _mesh->GetSubMeshContaining( solidId = _sdVec[0]._index );
if ( sm && sm->GetSubShape().ShapeType() == TopAbs_SOLID )
{
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
if ( smError && smError->myAlgo )
_error->myAlgo = smError->myAlgo;
smError = _error;
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
// set KO to all solids
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
if ( _sdVec[i]._index == solidId )
continue;
sm = _mesh->GetSubMesh( _sdVec[i]._solid );
if ( !sm->IsEmpty() )
continue;
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
if ( !smError || smError->IsOK() )
{
smError = SMESH_ComputeError::New( COMPERR_ALGO_FAILED, prefix + "failed");
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
}
}
makeGroupOfLE(); // debug
return false;
}
//================================================================================
/*!
* \brief At study restoration, restore event listeners used to clear an inferior
* dim sub-mesh modified by viscous layers
*/
//================================================================================
void _ViscousBuilder::RestoreListeners()
{
// TODO
}
//================================================================================
/*!
* \brief computes SMESH_ProxyMesh::SubMesh::_n2n
*/
//================================================================================
bool _ViscousBuilder::MakeN2NMap( _MeshOfSolid* pm )
{
SMESH_subMesh* solidSM = pm->mySubMeshes.front();
TopExp_Explorer fExp( solidSM->GetSubShape(), TopAbs_FACE );
for ( ; fExp.More(); fExp.Next() )
{
SMESHDS_SubMesh* srcSmDS = pm->GetMeshDS()->MeshElements( fExp.Current() );
const SMESH_ProxyMesh::SubMesh* prxSmDS = pm->GetProxySubMesh( fExp.Current() );
if ( !srcSmDS || !prxSmDS || !srcSmDS->NbElements() || !prxSmDS->NbElements() )
continue;
if ( srcSmDS->GetElements()->next() == prxSmDS->GetElements()->next())
continue;
if ( srcSmDS->NbElements() != prxSmDS->NbElements() )
return error( "Different nb elements in a source and a proxy sub-mesh", solidSM->GetId());
SMDS_ElemIteratorPtr srcIt = srcSmDS->GetElements();
SMDS_ElemIteratorPtr prxIt = prxSmDS->GetElements();
while( prxIt->more() )
{
const SMDS_MeshElement* fSrc = srcIt->next();
const SMDS_MeshElement* fPrx = prxIt->next();
if ( fSrc->NbNodes() != fPrx->NbNodes())
return error( "Different elements in a source and a proxy sub-mesh", solidSM->GetId());
for ( int i = 0 ; i < fPrx->NbNodes(); ++i )
pm->setNode2Node( fSrc->GetNode(i), fPrx->GetNode(i), prxSmDS );
}
}
pm->_n2nMapComputed = true;
return true;
}
//================================================================================
/*!
* \brief Does its job
*/
//================================================================================
SMESH_ComputeErrorPtr _ViscousBuilder::Compute(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape)
{
_mesh = & theMesh;
_Factory factory;
// check if proxy mesh already computed
TopExp_Explorer exp( theShape, TopAbs_SOLID );
if ( !exp.More() )
return error("No SOLID's in theShape"), _error;
if ( _ViscousListener::GetSolidMesh( _mesh, exp.Current(), /*toCreate=*/false))
return SMESH_ComputeErrorPtr(); // everything already computed
// TODO: ignore already computed SOLIDs
if ( !findSolidsWithLayers())
return _error;
if ( !findFacesWithLayers() )
return _error;
if ( !makeEdgesOnShape() )
return _error;
findPeriodicFaces();
PyDump debugDump( theMesh );
_pyDump = &debugDump;
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
size_t iSD = 0;
for ( iSD = 0; iSD < _sdVec.size(); ++iSD ) // find next SOLID to compute
if ( _sdVec[iSD]._before.IsEmpty() &&
!_sdVec[iSD]._solid.IsNull() &&
!_sdVec[iSD]._done )
break;
if ( iSD == _sdVec.size() )
break; // all done
if ( ! makeLayer(_sdVec[iSD]) ) // create _LayerEdge's
return _error;
if ( _sdVec[iSD]._n2eMap.size() == 0 ) // no layers in a SOLID
{
_sdVec[iSD]._solid.Nullify();
continue;
}
if ( ! inflate(_sdVec[iSD]) ) // increase length of _LayerEdge's
return _error;
if ( ! refine(_sdVec[iSD]) ) // create nodes and prisms
return _error;
if ( ! shrink(_sdVec[iSD]) ) // shrink 2D mesh on FACEs w/o layer
return _error;
addBoundaryElements(_sdVec[iSD]); // create quadrangles on prism bare sides
_sdVec[iSD]._done = true;
const TopoDS_Shape& solid = _sdVec[iSD]._solid;
for ( iSD = 0; iSD < _sdVec.size(); ++iSD )
_sdVec[iSD]._before.Remove( solid );
}
makeGroupOfLE(); // debug
debugDump.Finish();
return _error;
}
//================================================================================
/*!
* \brief Check validity of hypotheses
*/
//================================================================================
SMESH_ComputeErrorPtr _ViscousBuilder::CheckHypotheses( SMESH_Mesh& mesh,
const TopoDS_Shape& shape )
{
_mesh = & mesh;
if ( _ViscousListener::GetSolidMesh( _mesh, shape, /*toCreate=*/false))
return SMESH_ComputeErrorPtr(); // everything already computed
findSolidsWithLayers( /*checkFaceMesh=*/false );
bool ok = findFacesWithLayers( true );
// remove _MeshOfSolid's of _SolidData's
for ( size_t i = 0; i < _sdVec.size(); ++i )
_ViscousListener::RemoveSolidMesh( _mesh, _sdVec[i]._solid );
if ( !ok )
return _error;
return SMESH_ComputeErrorPtr();
}
//================================================================================
/*!
* \brief Finds SOLIDs to compute using viscous layers. Fills _sdVec
*/
//================================================================================
bool _ViscousBuilder::findSolidsWithLayers(const bool checkFaceMesh)
{
// get all solids
TopTools_IndexedMapOfShape allSolids;
TopExp::MapShapes( _mesh->GetShapeToMesh(), TopAbs_SOLID, allSolids );
_sdVec.reserve( allSolids.Extent());
SMESH_HypoFilter filter;
for ( int i = 1; i <= allSolids.Extent(); ++i )
{
SMESH_subMesh* sm = _mesh->GetSubMesh( allSolids(i) );
if ( sm->GetSubMeshDS() && sm->GetSubMeshDS()->NbElements() > 0 )
continue; // solid is already meshed
// TODO: check if algo is hidden
SMESH_Algo* algo = sm->GetAlgo();
if ( !algo ) continue;
// check if all FACEs are meshed, which can be false if Compute() a sub-shape
if ( checkFaceMesh )
{
bool facesMeshed = true;
SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(false,true);
while ( smIt->more() && facesMeshed )
{
SMESH_subMesh * faceSM = smIt->next();
if ( faceSM->GetSubShape().ShapeType() != TopAbs_FACE )
break;
facesMeshed = faceSM->IsMeshComputed();
}
if ( !facesMeshed )
continue;
}
// find StdMeshers_ViscousLayers hyp assigned to the i-th solid
const list <const SMESHDS_Hypothesis *> & allHyps =
algo->GetUsedHypothesis(*_mesh, allSolids(i), /*ignoreAuxiliary=*/false);
_SolidData* soData = 0;
list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin();
const StdMeshers_ViscousLayers* viscHyp = 0;
for ( ; hyp != allHyps.end(); ++hyp )
if (( viscHyp = dynamic_cast<const StdMeshers_ViscousLayers*>( *hyp )))
{
TopoDS_Shape hypShape;
filter.Init( filter.Is( viscHyp ));
_mesh->GetHypothesis( allSolids(i), filter, true, &hypShape );
if ( !soData )
{
_MeshOfSolid* proxyMesh = _ViscousListener::GetSolidMesh( _mesh,
allSolids(i),
/*toCreate=*/true);
_sdVec.push_back( _SolidData( allSolids(i), proxyMesh ));
soData = & _sdVec.back();
soData->_index = getMeshDS()->ShapeToIndex( allSolids(i));
soData->_helper = new SMESH_MesherHelper( *_mesh );
soData->_helper->SetSubShape( allSolids(i) );
_solids.Add( allSolids(i) );
}
soData->_hyps.push_back( viscHyp );
soData->_hypShapes.push_back( hypShape );
}
}
if ( _sdVec.empty() )
return error
( SMESH_Comment(StdMeshers_ViscousLayers::GetHypType()) << " hypothesis not found",0);
return true;
}
//================================================================================
/*!
* \brief Set a _SolidData to be computed before another
*/
//================================================================================
bool _ViscousBuilder::setBefore( _SolidData& solidBefore, _SolidData& solidAfter )
{
// check possibility to set this order; get all solids before solidBefore
TopTools_IndexedMapOfShape allSolidsBefore;
allSolidsBefore.Add( solidBefore._solid );
for ( int i = 1; i <= allSolidsBefore.Extent(); ++i )
{
int iSD = _solids.FindIndex( allSolidsBefore(i) );
if ( iSD )
{
TopTools_MapIteratorOfMapOfShape soIt( _sdVec[ iSD-1 ]._before );
for ( ; soIt.More(); soIt.Next() )
allSolidsBefore.Add( soIt.Value() );
}
}
if ( allSolidsBefore.Contains( solidAfter._solid ))
return false;
for ( int i = 1; i <= allSolidsBefore.Extent(); ++i )
solidAfter._before.Add( allSolidsBefore(i) );
return true;
}
//================================================================================
/*!
* \brief
*/
//================================================================================
bool _ViscousBuilder::findFacesWithLayers(const bool onlyWith)
{
SMESH_MesherHelper helper( *_mesh );
TopExp_Explorer exp;
// collect all faces-to-ignore defined by hyp
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
// get faces-to-ignore defined by each hyp
typedef const StdMeshers_ViscousLayers* THyp;
typedef std::pair< set<TGeomID>, THyp > TFacesOfHyp;
list< TFacesOfHyp > ignoreFacesOfHyps;
list< THyp >::iterator hyp = _sdVec[i]._hyps.begin();
list< TopoDS_Shape >::iterator hypShape = _sdVec[i]._hypShapes.begin();
for ( ; hyp != _sdVec[i]._hyps.end(); ++hyp, ++hypShape )
{
ignoreFacesOfHyps.push_back( TFacesOfHyp( set<TGeomID>(), *hyp ));
getIgnoreFaces( _sdVec[i]._solid, *hyp, *hypShape, ignoreFacesOfHyps.back().first );
}
// fill _SolidData::_face2hyp and check compatibility of hypotheses
const int nbHyps = _sdVec[i]._hyps.size();
if ( nbHyps > 1 )
{
// check if two hypotheses define different parameters for the same FACE
list< TFacesOfHyp >::iterator igFacesOfHyp;
for ( exp.Init( _sdVec[i]._solid, TopAbs_FACE ); exp.More(); exp.Next() )
{
const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() );
THyp hyp = 0;
igFacesOfHyp = ignoreFacesOfHyps.begin();
for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp )
if ( ! igFacesOfHyp->first.count( faceID ))
{
if ( hyp )
return error(SMESH_Comment("Several hypotheses define "
"Viscous Layers on the face #") << faceID );
hyp = igFacesOfHyp->second;
}
if ( hyp )
_sdVec[i]._face2hyp.insert( make_pair( faceID, hyp ));
else
_sdVec[i]._ignoreFaceIds.insert( faceID );
}
// check if two hypotheses define different number of viscous layers for
// adjacent faces of a solid
set< int > nbLayersSet;
igFacesOfHyp = ignoreFacesOfHyps.begin();
for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp )
{
nbLayersSet.insert( igFacesOfHyp->second->GetNumberLayers() );
}
if ( nbLayersSet.size() > 1 )
{
for ( exp.Init( _sdVec[i]._solid, TopAbs_EDGE ); exp.More(); exp.Next() )
{
PShapeIteratorPtr fIt = helper.GetAncestors( exp.Current(), *_mesh, TopAbs_FACE );
THyp hyp1 = 0, hyp2 = 0;
while( const TopoDS_Shape* face = fIt->next() )
{
const TGeomID faceID = getMeshDS()->ShapeToIndex( *face );
map< TGeomID, THyp >::iterator f2h = _sdVec[i]._face2hyp.find( faceID );
if ( f2h != _sdVec[i]._face2hyp.end() )
{
( hyp1 ? hyp2 : hyp1 ) = f2h->second;
}
}
if ( hyp1 && hyp2 &&
hyp1->GetNumberLayers() != hyp2->GetNumberLayers() )
{
return error("Two hypotheses define different number of "
"viscous layers on adjacent faces");
}
}
}
} // if ( nbHyps > 1 )
else
{
_sdVec[i]._ignoreFaceIds.swap( ignoreFacesOfHyps.back().first );
}
} // loop on _sdVec
if ( onlyWith ) // is called to check hypotheses compatibility only
return true;
// fill _SolidData::_reversedFaceIds
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
exp.Init( _sdVec[i]._solid.Oriented( TopAbs_FORWARD ), TopAbs_FACE );
for ( ; exp.More(); exp.Next() )
{
const TopoDS_Face& face = TopoDS::Face( exp.Current() );
const TGeomID faceID = getMeshDS()->ShapeToIndex( face );
if ( //!sdVec[i]._ignoreFaceIds.count( faceID ) &&
helper.NbAncestors( face, *_mesh, TopAbs_SOLID ) > 1 &&
helper.IsReversedSubMesh( face ))
{
_sdVec[i]._reversedFaceIds.insert( faceID );
}
}
}
// Find FACEs to shrink mesh on (solution 2 in issue 0020832): fill in _shrinkShape2Shape
TopTools_IndexedMapOfShape shapes;
std::string structAlgoName = "Hexa_3D";
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
shapes.Clear();
TopExp::MapShapes(_sdVec[i]._solid, TopAbs_EDGE, shapes);
for ( int iE = 1; iE <= shapes.Extent(); ++iE )
{
const TopoDS_Shape& edge = shapes(iE);
// find 2 FACEs sharing an EDGE
TopoDS_Shape FF[2];
PShapeIteratorPtr fIt = helper.GetAncestors(edge, *_mesh, TopAbs_FACE, &_sdVec[i]._solid);
while ( fIt->more())
{
const TopoDS_Shape* f = fIt->next();
FF[ int( !FF[0].IsNull()) ] = *f;
}
if( FF[1].IsNull() ) continue; // seam edge can be shared by 1 FACE only
// check presence of layers on them
int ignore[2];
for ( int j = 0; j < 2; ++j )
ignore[j] = _sdVec[i]._ignoreFaceIds.count( getMeshDS()->ShapeToIndex( FF[j] ));
if ( ignore[0] == ignore[1] )
continue; // nothing interesting
TopoDS_Shape fWOL = FF[ ignore[0] ? 0 : 1 ]; // FACE w/o layers
// add EDGE to maps
if ( !fWOL.IsNull())
{
TGeomID edgeInd = getMeshDS()->ShapeToIndex( edge );
_sdVec[i]._shrinkShape2Shape.insert( make_pair( edgeInd, fWOL ));
}
}
}
// Find the SHAPE along which to inflate _LayerEdge based on VERTEX
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
shapes.Clear();
TopExp::MapShapes(_sdVec[i]._solid, TopAbs_VERTEX, shapes);
for ( int iV = 1; iV <= shapes.Extent(); ++iV )
{
const TopoDS_Shape& vertex = shapes(iV);
// find faces WOL sharing the vertex
vector< TopoDS_Shape > facesWOL;
size_t totalNbFaces = 0;
PShapeIteratorPtr fIt = helper.GetAncestors(vertex, *_mesh, TopAbs_FACE, &_sdVec[i]._solid );
while ( fIt->more())
{
const TopoDS_Shape* f = fIt->next();
totalNbFaces++;
const int fID = getMeshDS()->ShapeToIndex( *f );
if ( _sdVec[i]._ignoreFaceIds.count ( fID ) /*&& !_sdVec[i]._noShrinkShapes.count( fID )*/)
facesWOL.push_back( *f );
}
if ( facesWOL.size() == totalNbFaces || facesWOL.empty() )
continue; // no layers at this vertex or no WOL
TGeomID vInd = getMeshDS()->ShapeToIndex( vertex );
switch ( facesWOL.size() )
{
case 1:
{
helper.SetSubShape( facesWOL[0] );
if ( helper.IsRealSeam( vInd )) // inflate along a seam edge?
{
TopoDS_Shape seamEdge;
PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE);
while ( eIt->more() && seamEdge.IsNull() )
{
const TopoDS_Shape* e = eIt->next();
if ( helper.IsRealSeam( *e ) )
seamEdge = *e;
}
if ( !seamEdge.IsNull() )
{
_sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, seamEdge ));
break;
}
}
_sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, facesWOL[0] ));
break;
}
case 2:
{
// find an edge shared by 2 faces
PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE);
while ( eIt->more())
{
const TopoDS_Shape* e = eIt->next();
if ( helper.IsSubShape( *e, facesWOL[0]) &&
helper.IsSubShape( *e, facesWOL[1]))
{
_sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, *e )); break;
}
}
break;
}
default:
std::ostringstream msg;
msg << "Not yet supported case: vertex bounded by ";
msg << facesWOL.size();
msg << " faces without layer at coordinates (";
TopoDS_Vertex v = TopoDS::Vertex(vertex);
gp_Pnt p = BRep_Tool::Pnt(v);
msg << p.X() << ", " << p.Y() << ", " << p.Z() << ")";
return error(msg.str().c_str(), _sdVec[i]._index);
}
}
}
// Add to _noShrinkShapes sub-shapes of FACE's that can't be shrunk since
// the algo of the SOLID sharing the FACE does not support it or for other reasons
set< string > notSupportAlgos; notSupportAlgos.insert( structAlgoName );
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
map< TGeomID, TopoDS_Shape >::iterator e2f = _sdVec[i]._shrinkShape2Shape.begin();
for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ++e2f )
{
const TopoDS_Shape& fWOL = e2f->second;
const TGeomID edgeID = e2f->first;
TGeomID faceID = getMeshDS()->ShapeToIndex( fWOL );
TopoDS_Shape edge = getMeshDS()->IndexToShape( edgeID );
if ( edge.ShapeType() != TopAbs_EDGE )
continue; // shrink shape is VERTEX
TopoDS_Shape solid;
PShapeIteratorPtr soIt = helper.GetAncestors(fWOL, *_mesh, TopAbs_SOLID);
while ( soIt->more() && solid.IsNull() )
{
const TopoDS_Shape* so = soIt->next();
if ( !so->IsSame( _sdVec[i]._solid ))
solid = *so;
}
if ( solid.IsNull() )
continue;
bool noShrinkE = false;
SMESH_Algo* algo = _mesh->GetSubMesh( solid )->GetAlgo();
bool isStructured = ( algo && algo->GetName() == structAlgoName );
size_t iSolid = _solids.FindIndex( solid ) - 1;
if ( iSolid < _sdVec.size() && _sdVec[ iSolid ]._ignoreFaceIds.count( faceID ))
{
// the adjacent SOLID has NO layers on fWOL;
// shrink allowed if
// - there are layers on the EDGE in the adjacent SOLID
// - there are NO layers in the adjacent SOLID && algo is unstructured and computed later
bool hasWLAdj = (_sdVec[iSolid]._shrinkShape2Shape.count( edgeID ));
bool shrinkAllowed = (( hasWLAdj ) ||
( !isStructured && setBefore( _sdVec[ i ], _sdVec[ iSolid ] )));
noShrinkE = !shrinkAllowed;
}
else if ( iSolid < _sdVec.size() )
{
// the adjacent SOLID has layers on fWOL;
// check if SOLID's mesh is unstructured and then try to set it
// to be computed after the i-th solid
if ( isStructured || !setBefore( _sdVec[ i ], _sdVec[ iSolid ] ))
noShrinkE = true; // don't shrink fWOL
}
else
{
// the adjacent SOLID has NO layers at all
noShrinkE = isStructured;
}
if ( noShrinkE )
{
_sdVec[i]._noShrinkShapes.insert( edgeID );
// check if there is a collision with to-shrink-from EDGEs in iSolid
// if ( iSolid < _sdVec.size() )
// {
// shapes.Clear();
// TopExp::MapShapes( fWOL, TopAbs_EDGE, shapes);
// for ( int iE = 1; iE <= shapes.Extent(); ++iE )
// {
// const TopoDS_Edge& E = TopoDS::Edge( shapes( iE ));
// const TGeomID eID = getMeshDS()->ShapeToIndex( E );
// if ( eID == edgeID ||
// !_sdVec[iSolid]._shrinkShape2Shape.count( eID ) ||
// _sdVec[i]._noShrinkShapes.count( eID ))
// continue;
// for ( int is1st = 0; is1st < 2; ++is1st )
// {
// TopoDS_Vertex V = helper.IthVertex( is1st, E );
// if ( _sdVec[i]._noShrinkShapes.count( getMeshDS()->ShapeToIndex( V ) ))
// {
// return error("No way to make a conformal mesh with "
// "the given set of faces with layers", _sdVec[i]._index);
// }
// }
// }
// }
}
// add VERTEXes of the edge in _noShrinkShapes, which is necessary if
// _shrinkShape2Shape is different in the adjacent SOLID
for ( TopoDS_Iterator vIt( edge ); vIt.More(); vIt.Next() )
{
TGeomID vID = getMeshDS()->ShapeToIndex( vIt.Value() );
bool noShrinkV = false, noShrinkIfAdjMeshed = false;
if ( iSolid < _sdVec.size() )
{
if ( _sdVec[ iSolid ]._ignoreFaceIds.count( faceID ))
{
map< TGeomID, TopoDS_Shape >::iterator i2S, i2SAdj;
i2S = _sdVec[i ]._shrinkShape2Shape.find( vID );
i2SAdj = _sdVec[iSolid]._shrinkShape2Shape.find( vID );
if ( i2SAdj == _sdVec[iSolid]._shrinkShape2Shape.end() )
noShrinkV = (( isStructured ) ||
( noShrinkIfAdjMeshed = i2S->second.ShapeType() == TopAbs_EDGE ));
else
noShrinkV = ( ! i2S->second.IsSame( i2SAdj->second ));
}
else
{
noShrinkV = noShrinkE;
}
}
else
{
// the adjacent SOLID has NO layers at all
if ( isStructured )
{
noShrinkV = true;
}
else
{
noShrinkV = noShrinkIfAdjMeshed =
( _sdVec[i]._shrinkShape2Shape[ vID ].ShapeType() == TopAbs_EDGE );
}
}
if ( noShrinkV && noShrinkIfAdjMeshed )
{
// noShrinkV if FACEs in the adjacent SOLID are meshed
PShapeIteratorPtr fIt = helper.GetAncestors( _sdVec[i]._shrinkShape2Shape[ vID ],
*_mesh, TopAbs_FACE, &solid );
while ( fIt->more() )
{
const TopoDS_Shape* f = fIt->next();
if ( !f->IsSame( fWOL ))
{
noShrinkV = ! _mesh->GetSubMesh( *f )->IsEmpty();
break;
}
}
}
if ( noShrinkV )
_sdVec[i]._noShrinkShapes.insert( vID );
}
} // loop on _sdVec[i]._shrinkShape2Shape
} // loop on _sdVec to fill in _SolidData::_noShrinkShapes
// add FACEs of other SOLIDs to _ignoreFaceIds
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
shapes.Clear();
TopExp::MapShapes(_sdVec[i]._solid, TopAbs_FACE, shapes);
for ( exp.Init( _mesh->GetShapeToMesh(), TopAbs_FACE ); exp.More(); exp.Next() )
{
if ( !shapes.Contains( exp.Current() ))
_sdVec[i]._ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( exp.Current() ));
}
}
return true;
}
//================================================================================
/*!
* \brief Finds FACEs w/o layers for a given SOLID by an hypothesis
*/
//================================================================================
void _ViscousBuilder::getIgnoreFaces(const TopoDS_Shape& solid,
const StdMeshers_ViscousLayers* hyp,
const TopoDS_Shape& hypShape,
set<TGeomID>& ignoreFaceIds)
{
TopExp_Explorer exp;
vector<TGeomID> ids = hyp->GetBndShapes();
if ( hyp->IsToIgnoreShapes() ) // FACEs to ignore are given
{
for ( size_t ii = 0; ii < ids.size(); ++ii )
{
const TopoDS_Shape& s = getMeshDS()->IndexToShape( ids[ii] );
if ( !s.IsNull() && s.ShapeType() == TopAbs_FACE )
ignoreFaceIds.insert( ids[ii] );
}
}
else // FACEs with layers are given
{
exp.Init( solid, TopAbs_FACE );
for ( ; exp.More(); exp.Next() )
{
TGeomID faceInd = getMeshDS()->ShapeToIndex( exp.Current() );
if ( find( ids.begin(), ids.end(), faceInd ) == ids.end() )
ignoreFaceIds.insert( faceInd );
}
}
// ignore internal FACEs if inlets and outlets are specified
if ( hyp->IsToIgnoreShapes() )
{
TopTools_IndexedDataMapOfShapeListOfShape solidsOfFace;
TopExp::MapShapesAndAncestors( hypShape,
TopAbs_FACE, TopAbs_SOLID, solidsOfFace);
for ( exp.Init( solid, TopAbs_FACE ); exp.More(); exp.Next() )
{
const TopoDS_Face& face = TopoDS::Face( exp.Current() );
if ( SMESH_MesherHelper::NbAncestors( face, *_mesh, TopAbs_SOLID ) < 2 )
continue;
int nbSolids = solidsOfFace.FindFromKey( face ).Extent();
if ( nbSolids > 1 )
ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( face ));
}
}
}
//================================================================================
/*!
* \brief Create the inner surface of the viscous layer and prepare data for infation
*/
//================================================================================
bool _ViscousBuilder::makeLayer(_SolidData& data)
{
// make a map to find new nodes on sub-shapes shared with other SOLID
map< TGeomID, TNode2Edge* >::iterator s2ne;
map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin();
for (; s2s != data._shrinkShape2Shape.end(); ++s2s )
{
TGeomID shapeInd = s2s->first;
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
if ( _sdVec[i]._index == data._index ) continue;
map< TGeomID, TopoDS_Shape >::iterator s2s2 = _sdVec[i]._shrinkShape2Shape.find( shapeInd );
if ( s2s2 != _sdVec[i]._shrinkShape2Shape.end() &&
*s2s == *s2s2 && !_sdVec[i]._n2eMap.empty() )
{
data._s2neMap.insert( make_pair( shapeInd, &_sdVec[i]._n2eMap ));
break;
}
}
}
// Create temporary faces and _LayerEdge's
debugMsg( "######################" );
dumpFunction(SMESH_Comment("makeLayers_")<<data._index);
vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape;
data._stepSize = Precision::Infinite();
data._stepSizeNodes[0] = 0;
SMESH_MesherHelper helper( *_mesh );
helper.SetSubShape( data._solid );
helper.SetElementsOnShape( true );
vector< const SMDS_MeshNode*> newNodes; // of a mesh face
TNode2Edge::iterator n2e2;
// make _LayerEdge's
for ( TopExp_Explorer exp( data._solid, TopAbs_FACE ); exp.More(); exp.Next() )
{
const TopoDS_Face& F = TopoDS::Face( exp.Current() );
SMESH_subMesh* sm = _mesh->GetSubMesh( F );
const TGeomID id = sm->GetId();
if ( edgesByGeom[ id ]._shape.IsNull() )
continue; // no layers
SMESH_ProxyMesh::SubMesh* proxySub =
data._proxyMesh->getFaceSubM( F, /*create=*/true);
SMESHDS_SubMesh* smDS = sm->GetSubMeshDS();
if ( !smDS ) return error(SMESH_Comment("Not meshed face ") << id, data._index );
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
while ( eIt->more() )
{
const SMDS_MeshElement* face = eIt->next();
double faceMaxCosin = -1;
_LayerEdge* maxCosinEdge = 0;
int nbDegenNodes = 0;
newNodes.resize( face->NbCornerNodes() );
for ( size_t i = 0 ; i < newNodes.size(); ++i )
{
const SMDS_MeshNode* n = face->GetNode( i );
const int shapeID = n->getshapeId();
const bool onDegenShap = helper.IsDegenShape( shapeID );
const bool onDegenEdge = ( onDegenShap && n->GetPosition()->GetDim() == 1 );
if ( onDegenShap )
{
if ( onDegenEdge )
{
// substitute n on a degenerated EDGE with a node on a corresponding VERTEX
const TopoDS_Shape& E = getMeshDS()->IndexToShape( shapeID );
TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( E ));
if ( const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() )) {
n = vN;
nbDegenNodes++;
}
}
else
{
nbDegenNodes++;
}
}
TNode2Edge::iterator n2e = data._n2eMap.insert({ n, nullptr }).first;
if ( !(*n2e).second )
{
// add a _LayerEdge
_LayerEdge* edge = _Factory::NewLayerEdge();
edge->_nodes.push_back( n );
n2e->second = edge;
edgesByGeom[ shapeID ]._edges.push_back( edge );
const bool noShrink = data._noShrinkShapes.count( shapeID );
SMESH_TNodeXYZ xyz( n );
// set edge data or find already refined _LayerEdge and get data from it
if (( !noShrink ) &&
( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE ) &&
(( s2ne = data._s2neMap.find( shapeID )) != data._s2neMap.end() ) &&
(( n2e2 = (*s2ne).second->find( n )) != s2ne->second->end() ))
{
_LayerEdge* foundEdge = (*n2e2).second;
gp_XYZ lastPos = edge->Copy( *foundEdge, edgesByGeom[ shapeID ], helper );
foundEdge->_pos.push_back( lastPos );
// location of the last node is modified and we restore it by foundEdge->_pos.back()
const_cast< SMDS_MeshNode* >
( edge->_nodes.back() )->setXYZ( xyz.X(), xyz.Y(), xyz.Z() );
}
else
{
if ( !noShrink )
{
edge->_nodes.push_back( helper.AddNode( xyz.X(), xyz.Y(), xyz.Z() ));
}
if ( !setEdgeData( *edge, edgesByGeom[ shapeID ], helper, data ))
return false;
if ( edge->_nodes.size() < 2 && !noShrink )
edge->Block( data ); // a sole node is moved only if noShrink
}
dumpMove(edge->_nodes.back());
if ( edge->_cosin > faceMaxCosin && edge->_nodes.size() > 1 )
{
faceMaxCosin = edge->_cosin;
maxCosinEdge = edge;
}
}
newNodes[ i ] = n2e->second->_nodes.back();
if ( onDegenEdge )
data._n2eMap.insert( make_pair( face->GetNode( i ), n2e->second ));
}
if ( newNodes.size() - nbDegenNodes < 2 )
continue;
// create a temporary face
const SMDS_MeshElement* newFace =
new _TmpMeshFace( newNodes, --_tmpFaceID, face->GetShapeID(), face );
proxySub->AddElement( newFace );
// compute inflation step size by min size of element on a convex surface
if ( faceMaxCosin > theMinSmoothCosin )
limitStepSize( data, face, maxCosinEdge );
} // loop on 2D elements on a FACE
} // loop on FACEs of a SOLID to create _LayerEdge's
// Set _LayerEdge::_neibors
TNode2Edge::iterator n2e;
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* edge = eos._edges[i];
TIDSortedNodeSet nearNodes;
SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
if ( !data._ignoreFaceIds.count( f->getshapeId() ))
nearNodes.insert( f->begin_nodes(), f->end_nodes() );
}
nearNodes.erase( edge->_nodes[0] );
edge->_neibors.reserve( nearNodes.size() );
TIDSortedNodeSet::iterator node = nearNodes.begin();
for ( ; node != nearNodes.end(); ++node )
if (( n2e = data._n2eMap.find( *node )) != data._n2eMap.end() )
edge->_neibors.push_back( n2e->second );
}
// Fix uv of nodes on periodic FACEs (bos #20643)
if ( eos.ShapeType() != TopAbs_EDGE ||
eos.SWOLType() != TopAbs_FACE ||
eos.size() == 0 )
continue;
const TopoDS_Face& F = TopoDS::Face( eos._sWOL );
SMESH_MesherHelper faceHelper( *_mesh );
faceHelper.SetSubShape( F );
faceHelper.ToFixNodeParameters( true );
if ( faceHelper.GetPeriodicIndex() == 0 )
continue;
SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( F );
if ( !smDS || smDS->GetNodes() == 0 )
continue;
bool toCheck = true;
const double tol = 2 * helper.MaxTolerance( F );
for ( SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); nIt->more(); )
{
const SMDS_MeshNode* node = nIt->next();
gp_XY uvNew( Precision::Infinite(), 0 );
if ( toCheck )
{
toCheck = false;
gp_XY uv = faceHelper.GetNodeUV( F, node );
if ( ! faceHelper.CheckNodeUV( F, node, uvNew, tol, /*force=*/true ))
break; // projection on F failed
if (( uv - uvNew ).Modulus() < Precision::Confusion() )
break; // current uv is OK
}
faceHelper.CheckNodeUV( F, node, uvNew, tol, /*force=*/true );
}
}
data._epsilon = 1e-7;
if ( data._stepSize < 1. )
data._epsilon *= data._stepSize;
if ( !findShapesToSmooth( data )) // _LayerEdge::_maxLen is computed here
return false;
// limit data._stepSize depending on surface curvature and fill data._convexFaces
limitStepSizeByCurvature( data ); // !!! it must be before node substitution in _Simplex
// Set target nodes into _Simplex and _LayerEdge's to _2NearEdges
const SMDS_MeshNode* nn[2];
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* edge = eos._edges[i];
if ( edge->IsOnEdge() )
{
// get neighbor nodes
bool hasData = ( edge->_2neibors->_edges[0] );
if ( hasData ) // _LayerEdge is a copy of another one
{
nn[0] = edge->_2neibors->srcNode(0);
nn[1] = edge->_2neibors->srcNode(1);
}
else if ( !findNeiborsOnEdge( edge, nn[0],nn[1], eos, data ))
{
return false;
}
// set neighbor _LayerEdge's
for ( int j = 0; j < 2; ++j )
{
if (( n2e = data._n2eMap.find( nn[j] )) == data._n2eMap.end() )
return error("_LayerEdge not found by src node", data._index);
edge->_2neibors->_edges[j] = n2e->second;
}
if ( !hasData )
edge->SetDataByNeighbors( nn[0], nn[1], eos, helper );
}
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
{
_Simplex& s = edge->_simplices[j];
s._nNext = data._n2eMap[ s._nNext ]->_nodes.back();
s._nPrev = data._n2eMap[ s._nPrev ]->_nodes.back();
}
// For an _LayerEdge on a degenerated EDGE, copy some data from
// a corresponding _LayerEdge on a VERTEX
// (issue 52453, pb on a downloaded SampleCase2-Tet-netgen-mephisto.hdf)
if ( helper.IsDegenShape( edge->_nodes[0]->getshapeId() ))
{
// Generally we should not get here
if ( eos.ShapeType() != TopAbs_EDGE )
continue;
TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( eos._shape ));
const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() );
if (( n2e = data._n2eMap.find( vN )) == data._n2eMap.end() )
continue;
const _LayerEdge* vEdge = n2e->second;
edge->_normal = vEdge->_normal;
edge->_lenFactor = vEdge->_lenFactor;
edge->_cosin = vEdge->_cosin;
}
} // loop on data._edgesOnShape._edges
} // loop on data._edgesOnShape
// fix _LayerEdge::_2neibors on EDGEs to smooth
// map< TGeomID,Handle(Geom_Curve)>::iterator e2c = data._edge2curve.begin();
// for ( ; e2c != data._edge2curve.end(); ++e2c )
// if ( !e2c->second.IsNull() )
// {
// if ( _EdgesOnShape* eos = data.GetShapeEdges( e2c->first ))
// data.Sort2NeiborsOnEdge( eos->_edges );
// }
dumpFunctionEnd();
return true;
}
//================================================================================
/*!
* \brief Compute inflation step size by min size of element on a convex surface
*/
//================================================================================
void _ViscousBuilder::limitStepSize( _SolidData& data,
const SMDS_MeshElement* face,
const _LayerEdge* maxCosinEdge )
{
int iN = 0;
double minSize = 10 * data._stepSize;
const int nbNodes = face->NbCornerNodes();
for ( int i = 0; i < nbNodes; ++i )
{
const SMDS_MeshNode* nextN = face->GetNode( SMESH_MesherHelper::WrapIndex( i+1, nbNodes ));
const SMDS_MeshNode* curN = face->GetNode( i );
if ( nextN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ||
curN-> GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE )
{
double dist = SMESH_TNodeXYZ( curN ).Distance( nextN );
if ( dist < minSize )
minSize = dist, iN = i;
}
}
double newStep = 0.8 * minSize / maxCosinEdge->_lenFactor;
if ( newStep < data._stepSize )
{
data._stepSize = newStep;
data._stepSizeCoeff = 0.8 / maxCosinEdge->_lenFactor;
data._stepSizeNodes[0] = face->GetNode( iN );
data._stepSizeNodes[1] = face->GetNode( SMESH_MesherHelper::WrapIndex( iN+1, nbNodes ));
}
}
//================================================================================
/*!
* \brief Compute inflation step size by min size of element on a convex surface
*/
//================================================================================
void _ViscousBuilder::limitStepSize( _SolidData& data, const double minSize )
{
if ( minSize < data._stepSize )
{
data._stepSize = minSize;
if ( data._stepSizeNodes[0] )
{
double dist =
SMESH_TNodeXYZ(data._stepSizeNodes[0]).Distance(data._stepSizeNodes[1]);
data._stepSizeCoeff = data._stepSize / dist;
}
}
}
//================================================================================
/*!
* \brief Limit data._stepSize by evaluating curvature of shapes and fill data._convexFaces
*/
//================================================================================
void _ViscousBuilder::limitStepSizeByCurvature( _SolidData& data )
{
SMESH_MesherHelper helper( *_mesh );
BRepLProp_SLProps surfProp( 2, 1e-6 );
data._convexFaces.clear();
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eof = data._edgesOnShape[iS];
if ( eof.ShapeType() != TopAbs_FACE ||
data._ignoreFaceIds.count( eof._shapeID ))
continue;
TopoDS_Face F = TopoDS::Face( eof._shape );
const TGeomID faceID = eof._shapeID;
BRepAdaptor_Surface surface( F, false );
surfProp.SetSurface( surface );
_ConvexFace cnvFace;
cnvFace._face = F;
cnvFace._normalsFixed = false;
cnvFace._isTooCurved = false;
cnvFace._normalsFixedOnBorders = false;
double maxCurvature = cnvFace.GetMaxCurvature( data, eof, surfProp, helper );
if ( maxCurvature > 0 )
{
limitStepSize( data, 0.9 / maxCurvature );
findEdgesToUpdateNormalNearConvexFace( cnvFace, data, helper );
}
if ( !cnvFace._isTooCurved ) continue;
_ConvexFace & convFace =
data._convexFaces.insert( make_pair( faceID, cnvFace )).first->second;
// skip a closed surface (data._convexFaces is useful anyway)
bool isClosedF = false;
helper.SetSubShape( F );
if ( helper.HasRealSeam() )
{
// in the closed surface there must be a closed EDGE
for ( TopExp_Explorer eIt( F, TopAbs_EDGE ); eIt.More() && !isClosedF; eIt.Next() )
isClosedF = helper.IsClosedEdge( TopoDS::Edge( eIt.Current() ));
}
if ( isClosedF )
{
// limit _LayerEdge::_maxLen on the FACE
const double oriFactor = ( F.Orientation() == TopAbs_REVERSED ? +1. : -1. );
const double minCurvature =
1. / ( eof._hyp.GetTotalThickness() * ( 1 + theThickToIntersection ));
map< TGeomID, _EdgesOnShape* >::iterator id2eos = cnvFace._subIdToEOS.find( faceID );
if ( id2eos != cnvFace._subIdToEOS.end() )
{
_EdgesOnShape& eos = * id2eos->second;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* ledge = eos._edges[ i ];
gp_XY uv = helper.GetNodeUV( F, ledge->_nodes[0] );
surfProp.SetParameters( uv.X(), uv.Y() );
if ( surfProp.IsCurvatureDefined() )
{
double curvature = Max( surfProp.MaxCurvature() * oriFactor,
surfProp.MinCurvature() * oriFactor );
if ( curvature > minCurvature )
ledge->SetMaxLen( Min( ledge->_maxLen, 1. / curvature ));
}
}
}
continue;
}
// Fill _ConvexFace::_simplexTestEdges. These _LayerEdge's are used to detect
// prism distortion.
map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.find( faceID );
if ( id2eos != convFace._subIdToEOS.end() && !id2eos->second->_edges.empty() )
{
// there are _LayerEdge's on the FACE it-self;
// select _LayerEdge's near EDGEs
_EdgesOnShape& eos = * id2eos->second;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* ledge = eos._edges[ i ];
for ( size_t j = 0; j < ledge->_simplices.size(); ++j )
if ( ledge->_simplices[j]._nNext->GetPosition()->GetDim() < 2 )
{
// do not select _LayerEdge's neighboring sharp EDGEs
bool sharpNbr = false;
for ( size_t iN = 0; iN < ledge->_neibors.size() && !sharpNbr; ++iN )
sharpNbr = ( ledge->_neibors[iN]->_cosin > theMinSmoothCosin );
if ( !sharpNbr )
convFace._simplexTestEdges.push_back( ledge );
break;
}
}
}
else
{
// where there are no _LayerEdge's on a _ConvexFace,
// as e.g. on a fillet surface with no internal nodes - issue 22580,
// so that collision of viscous internal faces is not detected by check of
// intersection of _LayerEdge's with the viscous internal faces.
set< const SMDS_MeshNode* > usedNodes;
// look for _LayerEdge's with null _sWOL
id2eos = convFace._subIdToEOS.begin();
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
{
_EdgesOnShape& eos = * id2eos->second;
if ( !eos._sWOL.IsNull() )
continue;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* ledge = eos._edges[ i ];
const SMDS_MeshNode* srcNode = ledge->_nodes[0];
if ( !usedNodes.insert( srcNode ).second ) continue;
for ( size_t i = 0; i < ledge->_simplices.size(); ++i )
{
usedNodes.insert( ledge->_simplices[i]._nPrev );
usedNodes.insert( ledge->_simplices[i]._nNext );
}
convFace._simplexTestEdges.push_back( ledge );
}
}
}
} // loop on FACEs of data._solid
}
//================================================================================
/*!
* \brief Detect shapes (and _LayerEdge's on them) to smooth
*/
//================================================================================
bool _ViscousBuilder::findShapesToSmooth( _SolidData& data )
{
// define allowed thickness
computeGeomSize( data ); // compute data._geomSize and _LayerEdge::_maxLen
// Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's
// boundary inclined to the shape at a sharp angle
TopTools_MapOfShape edgesOfSmooFaces;
SMESH_MesherHelper helper( *_mesh );
bool ok = true;
vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape;
data._nbShapesToSmooth = 0;
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs
{
_EdgesOnShape& eos = edgesByGeom[iS];
eos._toSmooth = false;
if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE )
continue;
double tgtThick = eos._hyp.GetTotalThickness();
SMESH_subMeshIteratorPtr subIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false );
while ( subIt->more() && !eos._toSmooth )
{
TGeomID iSub = subIt->next()->GetId();
const vector<_LayerEdge*>& eSub = edgesByGeom[ iSub ]._edges;
if ( eSub.empty() ) continue;
double faceSize;
for ( size_t i = 0; i < eSub.size() && !eos._toSmooth; ++i )
if ( eSub[i]->_cosin > theMinSmoothCosin )
{
SMDS_ElemIteratorPtr fIt = eSub[i]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() && !eos._toSmooth )
{
const SMDS_MeshElement* face = fIt->next();
if ( face->getshapeId() == eos._shapeID &&
getDistFromEdge( face, eSub[i]->_nodes[0], faceSize ))
{
eos._toSmooth = needSmoothing( eSub[i]->_cosin,
tgtThick * eSub[i]->_lenFactor,
faceSize);
}
}
}
}
if ( eos._toSmooth )
{
for ( TopExp_Explorer eExp( edgesByGeom[iS]._shape, TopAbs_EDGE ); eExp.More(); eExp.Next() )
edgesOfSmooFaces.Add( eExp.Current() );
data.PrepareEdgesToSmoothOnFace( &edgesByGeom[iS], /*substituteSrcNodes=*/false );
}
data._nbShapesToSmooth += eos._toSmooth;
} // check FACEs
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check EDGEs
{
_EdgesOnShape& eos = edgesByGeom[iS];
eos._edgeSmoother = NULL;
if ( eos._edges.empty() || eos.ShapeType() != TopAbs_EDGE ) continue;
if ( !eos._hyp.ToSmooth() ) continue;
const TopoDS_Edge& E = TopoDS::Edge( edgesByGeom[iS]._shape );
if ( SMESH_Algo::isDegenerated( E ) || !edgesOfSmooFaces.Contains( E ))
continue;
double tgtThick = eos._hyp.GetTotalThickness(), h0 = eos._hyp.Get1stLayerThickness();
for ( TopoDS_Iterator vIt( E ); vIt.More() && !eos._toSmooth; vIt.Next() )
{
TGeomID iV = getMeshDS()->ShapeToIndex( vIt.Value() );
vector<_LayerEdge*>& eV = edgesByGeom[ iV ]._edges;
if ( eV.empty() || eV[0]->Is( _LayerEdge::MULTI_NORMAL )) continue;
gp_Vec eDir = getEdgeDir( E, TopoDS::Vertex( vIt.Value() ), h0 );
double angle = eDir.Angle( eV[0]->_normal );
double cosin = Cos( angle );
double cosinAbs = Abs( cosin );
if ( cosinAbs > theMinSmoothCosin )
{
// always smooth analytic EDGEs
Handle(Geom_Curve) curve = _Smoother1D::CurveForSmooth( E, eos, helper );
eos._toSmooth = ! curve.IsNull();
// compare tgtThick with the length of an end segment
SMDS_ElemIteratorPtr eIt = eV[0]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge);
while ( eIt->more() && !eos._toSmooth )
{
const SMDS_MeshElement* endSeg = eIt->next();
if ( endSeg->getshapeId() == (int) iS )
{
double segLen =
SMESH_TNodeXYZ( endSeg->GetNode( 0 )).Distance( endSeg->GetNode( 1 ));
eos._toSmooth = needSmoothing( cosinAbs, tgtThick * eV[0]->_lenFactor, segLen );
}
}
if ( eos._toSmooth )
{
eos._edgeSmoother = new _Smoother1D( curve, eos );
// for ( size_t i = 0; i < eos._edges.size(); ++i )
// eos._edges[i]->Set( _LayerEdge::TO_SMOOTH );
}
}
}
data._nbShapesToSmooth += eos._toSmooth;
} // check EDGEs
// Reset _cosin if no smooth is allowed by the user
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS )
{
_EdgesOnShape& eos = edgesByGeom[iS];
if ( eos._edges.empty() ) continue;
if ( !eos._hyp.ToSmooth() )
for ( size_t i = 0; i < eos._edges.size(); ++i )
//eos._edges[i]->SetCosin( 0 ); // keep _cosin to use in limitMaxLenByCurvature()
eos._edges[i]->_lenFactor = 1;
}
// Fill _eosC1 to make that C1 FACEs and EDGEs between them to be smoothed as a whole
TopTools_MapOfShape c1VV;
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs
{
_EdgesOnShape& eos = edgesByGeom[iS];
if ( eos._edges.empty() ||
eos.ShapeType() != TopAbs_FACE ||
!eos._toSmooth )
continue;
// check EDGEs of a FACE
TopTools_MapOfShape checkedEE, allVV;
list< SMESH_subMesh* > smQueue( 1, eos._subMesh ); // sm of FACEs
while ( !smQueue.empty() )
{
SMESH_subMesh* sm = smQueue.front();
smQueue.pop_front();
SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false);
while ( smIt->more() )
{
sm = smIt->next();
if ( sm->GetSubShape().ShapeType() == TopAbs_VERTEX )
allVV.Add( sm->GetSubShape() );
if ( sm->GetSubShape().ShapeType() != TopAbs_EDGE ||
!checkedEE.Add( sm->GetSubShape() ))
continue;
_EdgesOnShape* eoe = data.GetShapeEdges( sm->GetId() );
vector<_LayerEdge*>& eE = eoe->_edges;
if ( eE.empty() || !eoe->_sWOL.IsNull() )
continue;
bool isC1 = true; // check continuity along an EDGE
for ( size_t i = 0; i < eE.size() && isC1; ++i )
isC1 = ( Abs( eE[i]->_cosin ) < theMinSmoothCosin );
if ( !isC1 )
continue;
// check that mesh faces are C1 as well
{
gp_XYZ norm1, norm2;
const SMDS_MeshNode* n = eE[ eE.size() / 2 ]->_nodes[0];
SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator(SMDSAbs_Face);
if ( !SMESH_MeshAlgos::FaceNormal( fIt->next(), norm1, /*normalized=*/true ))
continue;
while ( fIt->more() && isC1 )
isC1 = ( SMESH_MeshAlgos::FaceNormal( fIt->next(), norm2, /*normalized=*/true ) &&
Abs( norm1 * norm2 ) >= ( 1. - theMinSmoothCosin ));
if ( !isC1 )
continue;
}
// add the EDGE and an adjacent FACE to _eosC1
PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE );
while ( const TopoDS_Shape* face = fIt->next() )
{
_EdgesOnShape* eof = data.GetShapeEdges( *face );
if ( !eof ) continue; // other solid
if ( eos._shapeID == eof->_shapeID ) continue;
if ( !eos.HasC1( eof ))
{
// check the FACEs
eos._eosC1.push_back( eof );
eof->_toSmooth = false;
data.PrepareEdgesToSmoothOnFace( eof, /*substituteSrcNodes=*/false );
smQueue.push_back( eof->_subMesh );
}
if ( !eos.HasC1( eoe ))
{
eos._eosC1.push_back( eoe );
eoe->_toSmooth = false;
data.PrepareEdgesToSmoothOnFace( eoe, /*substituteSrcNodes=*/false );
}
}
}
}
if ( eos._eosC1.empty() )
continue;
// check VERTEXes of C1 FACEs
TopTools_MapIteratorOfMapOfShape vIt( allVV );
for ( ; vIt.More(); vIt.Next() )
{
_EdgesOnShape* eov = data.GetShapeEdges( vIt.Key() );
if ( !eov || eov->_edges.empty() || !eov->_sWOL.IsNull() )
continue;
bool isC1 = true; // check if all adjacent FACEs are in eos._eosC1
PShapeIteratorPtr fIt = helper.GetAncestors( vIt.Key(), *_mesh, TopAbs_FACE );
while ( const TopoDS_Shape* face = fIt->next() )
{
_EdgesOnShape* eof = data.GetShapeEdges( *face );
if ( !eof ) continue; // other solid
isC1 = ( face->IsSame( eos._shape ) || eos.HasC1( eof ));
if ( !isC1 )
break;
}
if ( isC1 )
{
eos._eosC1.push_back( eov );
data.PrepareEdgesToSmoothOnFace( eov, /*substituteSrcNodes=*/false );
c1VV.Add( eov->_shape );
}
}
} // fill _eosC1 of FACEs
// Find C1 EDGEs
vector< pair< _EdgesOnShape*, gp_XYZ > > dirOfEdges;
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check VERTEXes
{
_EdgesOnShape& eov = edgesByGeom[iS];
if ( eov._edges.empty() ||
eov.ShapeType() != TopAbs_VERTEX ||
c1VV.Contains( eov._shape ))
continue;
const TopoDS_Vertex& V = TopoDS::Vertex( eov._shape );
// get directions of surrounding EDGEs
dirOfEdges.clear();
PShapeIteratorPtr fIt = helper.GetAncestors( eov._shape, *_mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* e = fIt->next() )
{
_EdgesOnShape* eoe = data.GetShapeEdges( *e );
if ( !eoe ) continue; // other solid
gp_XYZ eDir = getEdgeDir( TopoDS::Edge( *e ), V, eoe->_hyp.Get1stLayerThickness() );
if ( !Precision::IsInfinite( eDir.X() ))
dirOfEdges.push_back( make_pair( eoe, eDir.Normalized() ));
}
// find EDGEs with C1 directions
for ( size_t i = 0; i < dirOfEdges.size(); ++i )
for ( size_t j = i+1; j < dirOfEdges.size(); ++j )
if ( dirOfEdges[i].first && dirOfEdges[j].first )
{
double dot = dirOfEdges[i].second * dirOfEdges[j].second;
bool isC1 = ( dot < - ( 1. - theMinSmoothCosin ));
if ( isC1 )
{
double maxEdgeLen = 3 * Min( eov._edges[0]->_maxLen, eov._hyp.GetTotalThickness() );
for ( int isJ = 0; isJ < 2; ++isJ ) // loop on [i,j]
{
size_t k = isJ ? j : i;
const TopoDS_Edge& e = TopoDS::Edge( dirOfEdges[k].first->_shape );
double eLen = SMESH_Algo::EdgeLength( e );
if ( eLen < maxEdgeLen )
{
TopoDS_Shape oppV = SMESH_MesherHelper::IthVertex( 0, e );
if ( oppV.IsSame( V ))
oppV = SMESH_MesherHelper::IthVertex( 1, e );
_EdgesOnShape* eovOpp = data.GetShapeEdges( oppV );
if ( dirOfEdges[k].second * eovOpp->_edges[0]->_normal < 0 )
eov._eosC1.push_back( dirOfEdges[k].first );
}
dirOfEdges[k].first = 0;
}
}
}
} // fill _eosC1 of VERTEXes
return ok;
}
//================================================================================
/*!
* \brief Set up _SolidData::_edgesOnShape
*/
//================================================================================
int _ViscousBuilder::makeEdgesOnShape()
{
const int nbShapes = getMeshDS()->MaxShapeIndex();
int nbSolidsWL = 0;
for ( size_t i = 0; i < _sdVec.size(); ++i )
{
_SolidData& data = _sdVec[ i ];
vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape;
edgesByGeom.resize( nbShapes+1 );
// set data of _EdgesOnShape's
int nbShapesWL = 0;
if ( SMESH_subMesh* sm = _mesh->GetSubMesh( data._solid ))
{
SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false);
while ( smIt->more() )
{
sm = smIt->next();
if ( sm->GetSubShape().ShapeType() == TopAbs_FACE &&
data._ignoreFaceIds.count( sm->GetId() ))
continue;
setShapeData( edgesByGeom[ sm->GetId() ], sm, data );
nbShapesWL += ( sm->GetSubShape().ShapeType() == TopAbs_FACE );
}
}
if ( nbShapesWL == 0 ) // no shapes with layers in a SOLID
{
data._done = true;
SMESHUtils::FreeVector( edgesByGeom );
}
else
{
++nbSolidsWL;
}
}
return nbSolidsWL;
}
//================================================================================
/*!
* \brief initialize data of _EdgesOnShape
*/
//================================================================================
void _ViscousBuilder::setShapeData( _EdgesOnShape& eos,
SMESH_subMesh* sm,
_SolidData& data )
{
if ( !eos._shape.IsNull() ||
sm->GetSubShape().ShapeType() == TopAbs_WIRE )
return;
SMESH_MesherHelper helper( *_mesh );
eos._subMesh = sm;
eos._shapeID = sm->GetId();
eos._shape = sm->GetSubShape();
if ( eos.ShapeType() == TopAbs_FACE )
eos._shape.Orientation( helper.GetSubShapeOri( data._solid, eos._shape ));
eos._toSmooth = false;
eos._data = &data;
eos._mapper2D = nullptr;
// set _SWOL
map< TGeomID, TopoDS_Shape >::const_iterator s2s =
data._shrinkShape2Shape.find( eos._shapeID );
if ( s2s != data._shrinkShape2Shape.end() )
eos._sWOL = s2s->second;
eos._isRegularSWOL = true;
if ( eos.SWOLType() == TopAbs_FACE )
{
const TopoDS_Face& F = TopoDS::Face( eos._sWOL );
Handle(ShapeAnalysis_Surface) surface = helper.GetSurface( F );
eos._isRegularSWOL = ( ! surface->HasSingularities( 1e-7 ));
}
// set _hyp
if ( data._hyps.size() == 1 )
{
eos._hyp = data._hyps.back();
}
else
{
// compute average StdMeshers_ViscousLayers parameters
map< TGeomID, const StdMeshers_ViscousLayers* >::iterator f2hyp;
if ( eos.ShapeType() == TopAbs_FACE )
{
if (( f2hyp = data._face2hyp.find( eos._shapeID )) != data._face2hyp.end() )
eos._hyp = f2hyp->second;
}
else
{
PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE );
while ( const TopoDS_Shape* face = fIt->next() )
{
TGeomID faceID = getMeshDS()->ShapeToIndex( *face );
if (( f2hyp = data._face2hyp.find( faceID )) != data._face2hyp.end() )
eos._hyp.Add( f2hyp->second );
}
}
}
// set _faceNormals
if ( ! eos._hyp.UseSurfaceNormal() )
{
if ( eos.ShapeType() == TopAbs_FACE ) // get normals to elements on a FACE
{
SMESHDS_SubMesh* smDS = sm->GetSubMeshDS();
if ( !smDS ) return;
eos._faceNormals.reserve( smDS->NbElements() );
double oriFactor = helper.IsReversedSubMesh( TopoDS::Face( eos._shape )) ? 1.: -1.;
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
for ( ; eIt->more(); )
{
const SMDS_MeshElement* face = eIt->next();
gp_XYZ& norm = eos._faceNormals[face];
if ( !SMESH_MeshAlgos::FaceNormal( face, norm, /*normalized=*/true ))
norm.SetCoord( 0,0,0 );
norm *= oriFactor;
}
}
else // find EOS of adjacent FACEs
{
PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE );
while ( const TopoDS_Shape* face = fIt->next() )
{
TGeomID faceID = getMeshDS()->ShapeToIndex( *face );
eos._faceEOS.push_back( & data._edgesOnShape[ faceID ]);
if ( eos._faceEOS.back()->_shape.IsNull() )
// avoid using uninitialised _shapeID in GetNormal()
eos._faceEOS.back()->_shapeID = faceID;
}
}
}
}
//================================================================================
/*!
* \brief Returns normal of a face
*/
//================================================================================
bool _EdgesOnShape::GetNormal( const SMDS_MeshElement* face, gp_Vec& norm )
{
bool ok = false;
_EdgesOnShape* eos = 0;
if ( face->getshapeId() == _shapeID )
{
eos = this;
}
else
{
for ( size_t iF = 0; iF < _faceEOS.size() && !eos; ++iF )
if ( face->getshapeId() == _faceEOS[ iF ]->_shapeID )
eos = _faceEOS[ iF ];
}
if (( eos ) &&
( ok = ( eos->_faceNormals.count( face ) )))
{
norm = eos->_faceNormals[ face ];
}
else if ( !eos )
{
debugMsg( "_EdgesOnShape::Normal() failed for face "<<face->GetID()
<< " on _shape #" << _shapeID );
}
return ok;
}
//================================================================================
/*!
* \brief EdgesOnShape destructor
*/
//================================================================================
_EdgesOnShape::~_EdgesOnShape()
{
delete _edgeSmoother;
delete _mapper2D;
}
//================================================================================
/*!
* \brief Set data of _LayerEdge needed for smoothing
*/
//================================================================================
bool _ViscousBuilder::setEdgeData(_LayerEdge& edge,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper,
_SolidData& data)
{
const SMDS_MeshNode* node = edge._nodes[0]; // source node
edge._len = 0;
edge._maxLen = Precision::Infinite();
edge._minAngle = 0;
edge._2neibors = 0;
edge._curvature = 0;
edge._flags = 0;
edge._smooFunction = 0;
// --------------------------
// Compute _normal and _cosin
// --------------------------
edge._cosin = 0;
edge._lenFactor = 1.;
edge._normal.SetCoord(0,0,0);
_Simplex::GetSimplices( node, edge._simplices, data._ignoreFaceIds, &data );
int totalNbFaces = 0;
TopoDS_Face F;
std::pair< TopoDS_Face, gp_XYZ > face2Norm[20];
gp_Vec geomNorm;
bool normOK = true;
const bool onShrinkShape = !eos._sWOL.IsNull();
const bool useGeometry = (( eos._hyp.UseSurfaceNormal() ) ||
( eos.ShapeType() != TopAbs_FACE /*&& !onShrinkShape*/ ));
// get geom FACEs the node lies on
//if ( useGeometry )
{
set<TGeomID> faceIds;
if ( eos.ShapeType() == TopAbs_FACE )
{
faceIds.insert( eos._shapeID );
}
else
{
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
faceIds.insert( fIt->next()->getshapeId() );
}
set<TGeomID>::iterator id = faceIds.begin();
for ( ; id != faceIds.end(); ++id )
{
const TopoDS_Shape& s = getMeshDS()->IndexToShape( *id );
if ( s.IsNull() || s.ShapeType() != TopAbs_FACE || data._ignoreFaceIds.count( *id ))
continue;
F = TopoDS::Face( s );
face2Norm[ totalNbFaces ].first = F;
totalNbFaces++;
}
}
// find _normal
bool fromVonF = false;
if ( useGeometry )
{
fromVonF = ( eos.ShapeType() == TopAbs_VERTEX &&
eos.SWOLType() == TopAbs_FACE &&
totalNbFaces > 1 );
if ( onShrinkShape && !fromVonF ) // one of faces the node is on has no layers
{
if ( eos.SWOLType() == TopAbs_EDGE )
{
// inflate from VERTEX along EDGE
edge._normal = getEdgeDir( TopoDS::Edge( eos._sWOL ), TopoDS::Vertex( eos._shape ),
eos._hyp.Get1stLayerThickness(), &eos._isRegularSWOL );
}
else if ( eos.ShapeType() == TopAbs_VERTEX )
{
// inflate from VERTEX along FACE
edge._normal = getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Vertex( eos._shape ),
node, helper, normOK/*, &edge._cosin*/);
}
else
{
// inflate from EDGE along FACE
edge._normal = getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Edge( eos._shape ),
node, helper, normOK);
}
}
else // layers are on all FACEs of SOLID the node is on (or fromVonF)
{
if ( fromVonF )
face2Norm[ totalNbFaces++ ].first = TopoDS::Face( eos._sWOL );
int nbOkNorms = 0;
for ( int iF = totalNbFaces - 1; iF >= 0; --iF )
{
F = face2Norm[ iF ].first;
geomNorm = getFaceNormal( node, F, helper, normOK );
if ( !normOK ) continue;
nbOkNorms++;
if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED )
geomNorm.Reverse();
face2Norm[ iF ].second = geomNorm.XYZ();
edge._normal += geomNorm.XYZ();
}
if ( nbOkNorms == 0 )
return error(SMESH_Comment("Can't get normal to node ") << node->GetID(), data._index);
if ( totalNbFaces >= 3 )
{
edge._normal = getNormalByOffset( &edge, face2Norm, totalNbFaces, fromVonF );
}
if ( edge._normal.Modulus() < 1e-3 && nbOkNorms > 1 )
{
// opposite normals, re-get normals at shifted positions (IPAL 52426)
edge._normal.SetCoord( 0,0,0 );
for ( int iF = 0; iF < totalNbFaces - fromVonF; ++iF )
{
const TopoDS_Face& F = face2Norm[iF].first;
geomNorm = getFaceNormal( node, F, helper, normOK, /*shiftInside=*/true );
if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED )
geomNorm.Reverse();
if ( normOK )
face2Norm[ iF ].second = geomNorm.XYZ();
edge._normal += face2Norm[ iF ].second;
}
}
}
}
else // !useGeometry - get _normal using surrounding mesh faces
{
edge._normal = getWeigthedNormal( &edge );
// set<TGeomID> faceIds;
//
// SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
// while ( fIt->more() )
// {
// const SMDS_MeshElement* face = fIt->next();
// if ( eos.GetNormal( face, geomNorm ))
// {
// if ( onShrinkShape && !faceIds.insert( face->getshapeId() ).second )
// continue; // use only one mesh face on FACE
// edge._normal += geomNorm.XYZ();
// totalNbFaces++;
// }
// }
}
// compute _cosin
//if ( eos._hyp.UseSurfaceNormal() )
{
switch ( eos.ShapeType() )
{
case TopAbs_FACE: {
edge._cosin = 0;
break;
}
case TopAbs_EDGE: {
TopoDS_Edge E = TopoDS::Edge( eos._shape );
gp_Vec inFaceDir = getFaceDir( F, E, node, helper, normOK );
double angle = inFaceDir.Angle( edge._normal ); // [0,PI]
edge._cosin = Cos( angle );
break;
}
case TopAbs_VERTEX: {
TopoDS_Vertex V = TopoDS::Vertex( eos._shape );
gp_Vec inFaceDir = getFaceDir( face2Norm[0].first , V, node, helper, normOK );
double angle = inFaceDir.Angle( edge._normal ); // [0,PI]
edge._cosin = Cos( angle );
if ( fromVonF )
totalNbFaces--;
if ( totalNbFaces > 1 || helper.IsSeamShape( node->getshapeId() ))
for ( int iF = 1; iF < totalNbFaces; ++iF )
{
F = face2Norm[ iF ].first;
inFaceDir = getFaceDir( F, V, node, helper, normOK=true );
if ( normOK ) {
if ( onShrinkShape )
{
gp_Vec faceNorm = getFaceNormal( node, F, helper, normOK );
if ( !normOK ) continue;
if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED )
faceNorm.Reverse();
angle = 0.5 * M_PI - faceNorm.Angle( edge._normal );
if ( inFaceDir * edge._normal < 0 )
angle = M_PI - angle;
}
else
{
angle = inFaceDir.Angle( edge._normal );
}
double cosin = Cos( angle );
if ( Abs( cosin ) > Abs( edge._cosin ))
edge._cosin = cosin;
}
}
break;
}
default:
return error(SMESH_Comment("Invalid shape position of node ")<<node, data._index);
}
}
double normSize = edge._normal.SquareModulus();
if ( normSize < numeric_limits<double>::min() )
return error(SMESH_Comment("Bad normal at node ")<< node->GetID(), data._index );
edge._normal /= sqrt( normSize );
if ( edge.Is( _LayerEdge::MULTI_NORMAL ) && edge._nodes.size() == 2 )
{
getMeshDS()->RemoveFreeNode( edge._nodes.back(), 0, /*fromGroups=*/false );
edge._nodes.resize( 1 );
edge._normal.SetCoord( 0,0,0 );
edge.SetMaxLen( 0 );
}
// Set the rest data
// --------------------
double realLenFactor = edge.SetCosin( edge._cosin ); // to update edge._lenFactor
// if ( realLenFactor > 3 )
// {
// edge._cosin = 1;
// if ( onShrinkShape )
// {
// edge.Set( _LayerEdge::RISKY_SWOL );
// edge._lenFactor = 2;
// }
// else
// {
// edge._lenFactor = 1;
// }
// }
if ( onShrinkShape )
{
const SMDS_MeshNode* tgtNode = edge._nodes.back();
if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( data._solid ))
sm->RemoveNode( tgtNode );
// set initial position which is parameters on _sWOL in this case
if ( eos.SWOLType() == TopAbs_EDGE )
{
double u = helper.GetNodeU( TopoDS::Edge( eos._sWOL ), node, 0, &normOK );
edge._pos.push_back( gp_XYZ( u, 0, 0 ));
if ( edge._nodes.size() > 1 )
getMeshDS()->SetNodeOnEdge( tgtNode, TopoDS::Edge( eos._sWOL ), u );
}
else // eos.SWOLType() == TopAbs_FACE
{
gp_XY uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), node, 0, &normOK );
edge._pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0));
if ( edge._nodes.size() > 1 )
getMeshDS()->SetNodeOnFace( tgtNode, TopoDS::Face( eos._sWOL ), uv.X(), uv.Y() );
}
//if ( edge._nodes.size() > 1 ) -- allow RISKY_SWOL on noShrink shape
{
// check if an angle between a FACE with layers and SWOL is sharp,
// else the edge should not inflate
F.Nullify();
for ( int iF = 0; iF < totalNbFaces && F.IsNull(); ++iF ) // find a FACE with VL
if ( ! helper.IsSubShape( eos._sWOL, face2Norm[iF].first ))
F = face2Norm[iF].first;
if ( !F.IsNull())
{
geomNorm = getFaceNormal( node, F, helper, normOK );
if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED )
geomNorm.Reverse(); // inside the SOLID
if ( geomNorm * edge._normal < -0.001 )
{
if ( edge._nodes.size() > 1 )
{
getMeshDS()->RemoveFreeNode( tgtNode, 0, /*fromGroups=*/false );
edge._nodes.resize( 1 );
}
}
else if ( realLenFactor > 3 ) /// -- moved to SetCosin()
//else if ( edge._lenFactor > 3 )
{
edge._lenFactor = 2;
edge.Set( _LayerEdge::RISKY_SWOL );
}
}
}
}
else
{
edge._pos.push_back( SMESH_TNodeXYZ( node ));
if ( eos.ShapeType() == TopAbs_FACE )
{
double angle;
for ( size_t i = 0; i < edge._simplices.size(); ++i )
{
edge._simplices[i].IsMinAngleOK( edge._pos.back(), angle );
edge._minAngle = Max( edge._minAngle, angle ); // "angle" is actually cosine
}
}
}
// Set neighbor nodes for a _LayerEdge based on EDGE
if ( eos.ShapeType() == TopAbs_EDGE /*||
( onShrinkShape && posType == SMDS_TOP_VERTEX && fabs( edge._cosin ) < 1e-10 )*/)
{
edge._2neibors = _Factory::NewNearEdges();
// target nodes instead of source ones will be set later
}
return true;
}
//================================================================================
/*!
* \brief Return normal to a FACE at a node
* \param [in] n - node
* \param [in] face - FACE
* \param [in] helper - helper
* \param [out] isOK - true or false
* \param [in] shiftInside - to find normal at a position shifted inside the face
* \return gp_XYZ - normal
*/
//================================================================================
gp_XYZ _ViscousBuilder::getFaceNormal(const SMDS_MeshNode* node,
const TopoDS_Face& face,
SMESH_MesherHelper& helper,
bool& isOK,
bool shiftInside)
{
gp_XY uv;
if ( shiftInside )
{
// get a shifted position
gp_Pnt p = SMESH_TNodeXYZ( node );
gp_XYZ shift( 0,0,0 );
TopoDS_Shape S = helper.GetSubShapeByNode( node, helper.GetMeshDS() );
switch ( S.ShapeType() ) {
case TopAbs_VERTEX:
{
shift = getFaceDir( face, TopoDS::Vertex( S ), node, helper, isOK );
break;
}
case TopAbs_EDGE:
{
shift = getFaceDir( face, TopoDS::Edge( S ), node, helper, isOK );
break;
}
default:
isOK = false;
}
if ( isOK )
shift.Normalize();
p.Translate( shift * 1e-5 );
TopLoc_Location loc;
GeomAPI_ProjectPointOnSurf& projector = helper.GetProjector( face, loc, 1e-7 );
if ( !loc.IsIdentity() ) p.Transform( loc.Transformation().Inverted() );
projector.Perform( p );
if ( !projector.IsDone() || projector.NbPoints() < 1 )
{
isOK = false;
return p.XYZ();
}
Standard_Real U,V;
projector.LowerDistanceParameters(U,V);
uv.SetCoord( U,V );
}
else
{
uv = helper.GetNodeUV( face, node, 0, &isOK );
}
gp_Dir normal;
isOK = false;
Handle(Geom_Surface) surface = BRep_Tool::Surface( face );
if ( !shiftInside &&
helper.IsDegenShape( node->getshapeId() ) &&
getFaceNormalAtSingularity( uv, face, helper, normal ))
{
isOK = true;
return normal.XYZ();
}
int pointKind = GeomLib::NormEstim( surface, uv, 1e-5, normal );
enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE };
if ( pointKind == IMPOSSIBLE &&
node->GetPosition()->GetDim() == 2 ) // node inside the FACE
{
// probably NormEstim() failed due to a too high tolerance
pointKind = GeomLib::NormEstim( surface, uv, 1e-20, normal );
isOK = ( pointKind < IMPOSSIBLE );
}
if ( pointKind < IMPOSSIBLE )
{
if ( pointKind != REGULAR &&
!shiftInside &&
node->GetPosition()->GetDim() < 2 ) // FACE boundary
{
gp_XYZ normShift = getFaceNormal( node, face, helper, isOK, /*shiftInside=*/true );
if ( normShift * normal.XYZ() < 0. )
normal = normShift;
}
isOK = true;
}
if ( !isOK ) // hard singularity, to call with shiftInside=true ?
{
const TGeomID faceID = helper.GetMeshDS()->ShapeToIndex( face );
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
if ( f->getshapeId() == faceID )
{
isOK = SMESH_MeshAlgos::FaceNormal( f, (gp_XYZ&) normal.XYZ(), /*normalized=*/true );
if ( isOK )
{
TopoDS_Face ff = face;
ff.Orientation( TopAbs_FORWARD );
if ( helper.IsReversedSubMesh( ff ))
normal.Reverse();
break;
}
}
}
}
return normal.XYZ();
}
//================================================================================
/*!
* \brief Try to get normal at a singularity of a surface basing on it's nature
*/
//================================================================================
bool _ViscousBuilder::getFaceNormalAtSingularity( const gp_XY& uv,
const TopoDS_Face& face,
SMESH_MesherHelper& /*helper*/,
gp_Dir& normal )
{
BRepAdaptor_Surface surface( face );
gp_Dir axis;
if ( !getRovolutionAxis( surface, axis ))
return false;
double f,l, d, du, dv;
f = surface.FirstUParameter();
l = surface.LastUParameter();
d = ( uv.X() - f ) / ( l - f );
du = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f );
f = surface.FirstVParameter();
l = surface.LastVParameter();
d = ( uv.Y() - f ) / ( l - f );
dv = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f );
gp_Dir refDir;
gp_Pnt2d testUV = uv;
enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE };
double tol = 1e-5;
Handle(Geom_Surface) geomsurf = surface.Surface().Surface();
for ( int iLoop = 0; true ; ++iLoop )
{
testUV.SetCoord( testUV.X() + du, testUV.Y() + dv );
if ( GeomLib::NormEstim( geomsurf, testUV, tol, refDir ) == REGULAR )
break;
if ( iLoop > 20 )
return false;
tol /= 10.;
}
if ( axis * refDir < 0. )
axis.Reverse();
normal = axis;
return true;
}
//================================================================================
/*!
* \brief Return a normal at a node weighted with angles taken by faces
*/
//================================================================================
gp_XYZ _ViscousBuilder::getWeigthedNormal( const _LayerEdge* edge )
{
const SMDS_MeshNode* n = edge->_nodes[0];
gp_XYZ resNorm(0,0,0);
SMESH_TNodeXYZ p0( n ), pP, pN;
for ( size_t i = 0; i < edge->_simplices.size(); ++i )
{
pP.Set( edge->_simplices[i]._nPrev );
pN.Set( edge->_simplices[i]._nNext );
gp_Vec v0P( p0, pP ), v0N( p0, pN ), vPN( pP, pN ), norm = v0P ^ v0N;
double l0P = v0P.SquareMagnitude();
double l0N = v0N.SquareMagnitude();
double lPN = vPN.SquareMagnitude();
if ( l0P < std::numeric_limits<double>::min() ||
l0N < std::numeric_limits<double>::min() ||
lPN < std::numeric_limits<double>::min() )
continue;
double lNorm = norm.SquareMagnitude();
double sin2 = lNorm / l0P / l0N;
double angle = ACos(( v0P * v0N ) / Sqrt( l0P ) / Sqrt( l0N ));
double weight = sin2 * angle / lPN;
resNorm += weight * norm.XYZ() / Sqrt( lNorm );
}
return resNorm;
}
//================================================================================
/*!
* \brief Return a normal at a node by getting a common point of offset planes
* defined by the FACE normals
*/
//================================================================================
gp_XYZ _ViscousBuilder::getNormalByOffset( _LayerEdge* edge,
std::pair< TopoDS_Face, gp_XYZ > f2Normal[],
int nbFaces,
bool lastNoOffset)
{
SMESH_TNodeXYZ p0 = edge->_nodes[0];
gp_XYZ resNorm(0,0,0);
TopoDS_Shape V = SMESH_MesherHelper::GetSubShapeByNode( p0._node, getMeshDS() );
if ( V.ShapeType() != TopAbs_VERTEX || nbFaces < 3 )
{
for ( int i = 0; i < nbFaces; ++i )
resNorm += f2Normal[i].second;
return resNorm;
}
// prepare _OffsetPlane's
vector< _OffsetPlane > pln( nbFaces );
for ( int i = 0; i < nbFaces - lastNoOffset; ++i )
{
pln[i]._faceIndex = i;
pln[i]._plane = gp_Pln( p0 + f2Normal[i].second, f2Normal[i].second );
}
if ( lastNoOffset )
{
pln[ nbFaces - 1 ]._faceIndex = nbFaces - 1;
pln[ nbFaces - 1 ]._plane = gp_Pln( p0, f2Normal[ nbFaces - 1 ].second );
}
// intersect neighboring OffsetPlane's
PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( V, *_mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* edge = edgeIt->next() )
{
int f1 = -1, f2 = -1;
for ( int i = 0; i < nbFaces && f2 < 0; ++i )
if ( SMESH_MesherHelper::IsSubShape( *edge, f2Normal[i].first ))
(( f1 < 0 ) ? f1 : f2 ) = i;
if ( f2 >= 0 )
pln[ f1 ].ComputeIntersectionLine( pln[ f2 ], TopoDS::Edge( *edge ), TopoDS::Vertex( V ));
}
// get a common point
gp_XYZ commonPnt( 0, 0, 0 );
int nbPoints = 0;
bool isPointFound;
for ( int i = 0; i < nbFaces; ++i )
{
commonPnt += pln[ i ].GetCommonPoint( isPointFound, TopoDS::Vertex( V ));
nbPoints += isPointFound;
}
gp_XYZ wgtNorm = getWeigthedNormal( edge );
if ( nbPoints == 0 )
return wgtNorm;
commonPnt /= nbPoints;
resNorm = commonPnt - p0;
if ( lastNoOffset )
return resNorm;
// choose the best among resNorm and wgtNorm
resNorm.Normalize();
wgtNorm.Normalize();
double resMinDot = std::numeric_limits<double>::max();
double wgtMinDot = std::numeric_limits<double>::max();
for ( int i = 0; i < nbFaces - lastNoOffset; ++i )
{
resMinDot = Min( resMinDot, resNorm * f2Normal[i].second );
wgtMinDot = Min( wgtMinDot, wgtNorm * f2Normal[i].second );
}
if ( Max( resMinDot, wgtMinDot ) < theMinSmoothCosin )
{
edge->Set( _LayerEdge::MULTI_NORMAL );
}
return ( resMinDot > wgtMinDot ) ? resNorm : wgtNorm;
}
//================================================================================
/*!
* \brief Compute line of intersection of 2 planes
*/
//================================================================================
void _OffsetPlane::ComputeIntersectionLine( _OffsetPlane& pln,
const TopoDS_Edge& E,
const TopoDS_Vertex& V )
{
int iNext = bool( _faceIndexNext[0] >= 0 );
_faceIndexNext[ iNext ] = pln._faceIndex;
gp_XYZ n1 = _plane.Axis().Direction().XYZ();
gp_XYZ n2 = pln._plane.Axis().Direction().XYZ();
gp_XYZ lineDir = n1 ^ n2;
double x = Abs( lineDir.X() );
double y = Abs( lineDir.Y() );
double z = Abs( lineDir.Z() );
int cooMax; // max coordinate
if (x > y) {
if (x > z) cooMax = 1;
else cooMax = 3;
}
else {
if (y > z) cooMax = 2;
else cooMax = 3;
}
gp_Pnt linePos;
if ( Abs( lineDir.Coord( cooMax )) < 0.05 )
{
// parallel planes - intersection is an offset of the common EDGE
gp_Pnt p = BRep_Tool::Pnt( V );
linePos = 0.5 * (( p.XYZ() + n1 ) + ( p.XYZ() + n2 ));
lineDir = getEdgeDir( E, V, 0.1 * SMESH_Algo::EdgeLength( E ));
}
else
{
// the constants in the 2 plane equations
double d1 = - ( _plane.Axis().Direction().XYZ() * _plane.Location().XYZ() );
double d2 = - ( pln._plane.Axis().Direction().XYZ() * pln._plane.Location().XYZ() );
switch ( cooMax ) {
case 1:
linePos.SetX( 0 );
linePos.SetY(( d2*n1.Z() - d1*n2.Z()) / lineDir.X() );
linePos.SetZ(( d1*n2.Y() - d2*n1.Y()) / lineDir.X() );
break;
case 2:
linePos.SetX(( d1*n2.Z() - d2*n1.Z()) / lineDir.Y() );
linePos.SetY( 0 );
linePos.SetZ(( d2*n1.X() - d1*n2.X()) / lineDir.Y() );
break;
case 3:
linePos.SetX(( d2*n1.Y() - d1*n2.Y()) / lineDir.Z() );
linePos.SetY(( d1*n2.X() - d2*n1.X()) / lineDir.Z() );
linePos.SetZ( 0 );
}
}
gp_Lin& line = _lines[ iNext ];
line.SetDirection( lineDir );
line.SetLocation ( linePos );
_isLineOK[ iNext ] = true;
iNext = bool( pln._faceIndexNext[0] >= 0 );
pln._lines [ iNext ] = line;
pln._faceIndexNext[ iNext ] = this->_faceIndex;
pln._isLineOK [ iNext ] = true;
}
//================================================================================
/*!
* \brief Computes intersection point of two _lines
*/
//================================================================================
gp_XYZ _OffsetPlane::GetCommonPoint(bool& isFound,
const TopoDS_Vertex & V) const
{
gp_XYZ p( 0,0,0 );
isFound = false;
if ( NbLines() == 2 )
{
gp_Vec lPerp0 = _lines[0].Direction().XYZ() ^ _plane.Axis().Direction().XYZ();
double dot01 = lPerp0 * _lines[1].Direction().XYZ();
if ( Abs( dot01 ) > 0.05 )
{
gp_Vec l0l1 = _lines[1].Location().XYZ() - _lines[0].Location().XYZ();
double u1 = - ( lPerp0 * l0l1 ) / dot01;
p = ( _lines[1].Location().XYZ() + _lines[1].Direction().XYZ() * u1 );
isFound = true;
}
else
{
gp_Pnt pV ( BRep_Tool::Pnt( V ));
gp_Vec lv0( _lines[0].Location(), pV ), lv1(_lines[1].Location(), pV );
double dot0( lv0 * _lines[0].Direction() ), dot1( lv1 * _lines[1].Direction() );
p += 0.5 * ( _lines[0].Location().XYZ() + _lines[0].Direction().XYZ() * dot0 );
p += 0.5 * ( _lines[1].Location().XYZ() + _lines[1].Direction().XYZ() * dot1 );
isFound = true;
}
}
return p;
}
//================================================================================
/*!
* \brief Find 2 neighbor nodes of a node on EDGE
*/
//================================================================================
bool _ViscousBuilder::findNeiborsOnEdge(const _LayerEdge* edge,
const SMDS_MeshNode*& n1,
const SMDS_MeshNode*& n2,
_EdgesOnShape& eos,
_SolidData& data)
{
const SMDS_MeshNode* node = edge->_nodes[0];
const int shapeInd = eos._shapeID;
SMESHDS_SubMesh* edgeSM = 0;
if ( eos.ShapeType() == TopAbs_EDGE )
{
edgeSM = eos._subMesh->GetSubMeshDS();
if ( !edgeSM || edgeSM->NbElements() == 0 )
return error(SMESH_Comment("Not meshed EDGE ") << shapeInd, data._index);
}
int iN = 0;
n2 = 0;
SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Edge);
while ( eIt->more() && !n2 )
{
const SMDS_MeshElement* e = eIt->next();
const SMDS_MeshNode* nNeibor = e->GetNode( 0 );
if ( nNeibor == node ) nNeibor = e->GetNode( 1 );
if ( edgeSM )
{
if (!edgeSM->Contains(e)) continue;
}
else
{
TopoDS_Shape s = SMESH_MesherHelper::GetSubShapeByNode( nNeibor, getMeshDS() );
if ( !SMESH_MesherHelper::IsSubShape( s, eos._sWOL )) continue;
}
( iN++ ? n2 : n1 ) = nNeibor;
}
if ( !n2 )
return error(SMESH_Comment("Wrongly meshed EDGE ") << shapeInd, data._index);
return true;
}
//================================================================================
/*!
* \brief Create _Curvature
*/
//================================================================================
_Curvature* _Curvature::New( double avgNormProj, double avgDist )
{
// double _r; // radius
// double _k; // factor to correct node smoothed position
// double _h2lenRatio; // avgNormProj / (2*avgDist)
// gp_Pnt2d _uv; // UV used in putOnOffsetSurface()
_Curvature* c = 0;
if ( fabs( avgNormProj / avgDist ) > 1./200 )
{
c = _Factory::NewCurvature();
c->_r = avgDist * avgDist / avgNormProj;
c->_k = avgDist * avgDist / c->_r / c->_r;
//c->_k = avgNormProj / c->_r;
c->_k *= ( c->_r < 0 ? 1/1.1 : 1.1 ); // not to be too restrictive
c->_h2lenRatio = avgNormProj / ( avgDist + avgDist );
c->_uv.SetCoord( 0., 0. );
}
return c;
}
//================================================================================
/*!
* \brief Set _curvature and _2neibors->_plnNorm by 2 neighbor nodes residing the same EDGE
*/
//================================================================================
void _LayerEdge::SetDataByNeighbors( const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const _EdgesOnShape& eos,
SMESH_MesherHelper& helper)
{
if ( eos.ShapeType() != TopAbs_EDGE )
return;
if ( _curvature && Is( SMOOTHED_C1 ))
return;
gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] );
gp_XYZ vec1 = pos - SMESH_TNodeXYZ( n1 );
gp_XYZ vec2 = pos - SMESH_TNodeXYZ( n2 );
// Set _curvature
double sumLen = vec1.Modulus() + vec2.Modulus();
_2neibors->_wgt[0] = 1 - vec1.Modulus() / sumLen;
_2neibors->_wgt[1] = 1 - vec2.Modulus() / sumLen;
double avgNormProj = 0.5 * ( _normal * vec1 + _normal * vec2 );
double avgLen = 0.5 * ( vec1.Modulus() + vec2.Modulus() );
_curvature = _Curvature::New( avgNormProj, avgLen );
// if ( _curvature )
// debugMsg( _nodes[0]->GetID()
// << " CURV r,k: " << _curvature->_r<<","<<_curvature->_k
// << " proj = "<<avgNormProj<< " len = " << avgLen << "| lenDelta(0) = "
// << _curvature->lenDelta(0) );
// Set _plnNorm
if ( eos._sWOL.IsNull() )
{
TopoDS_Edge E = TopoDS::Edge( eos._shape );
// if ( SMESH_Algo::isDegenerated( E ))
// return;
gp_XYZ dirE = getEdgeDir( E, _nodes[0], helper );
gp_XYZ plnNorm = dirE ^ _normal;
double proj0 = plnNorm * vec1;
double proj1 = plnNorm * vec2;
if ( fabs( proj0 ) > 1e-10 || fabs( proj1 ) > 1e-10 )
{
if ( _2neibors->_plnNorm ) delete _2neibors->_plnNorm;
_2neibors->_plnNorm = new gp_XYZ( plnNorm.Normalized() );
}
}
}
//================================================================================
/*!
* \brief Copy data from a _LayerEdge of other SOLID and based on the same node;
* this and the other _LayerEdge are inflated along a FACE or an EDGE
*/
//================================================================================
gp_XYZ _LayerEdge::Copy( _LayerEdge& other,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper )
{
_nodes = other._nodes;
_normal = other._normal;
_len = 0;
_lenFactor = other._lenFactor;
_cosin = other._cosin;
_2neibors = other._2neibors;
_curvature = other._curvature;
_2neibors = other._2neibors;
_maxLen = Precision::Infinite();//other._maxLen;
_flags = 0;
_smooFunction = 0;
gp_XYZ lastPos( 0,0,0 );
if ( eos.SWOLType() == TopAbs_EDGE )
{
double u = helper.GetNodeU( TopoDS::Edge( eos._sWOL ), _nodes[0] );
_pos.push_back( gp_XYZ( u, 0, 0));
u = helper.GetNodeU( TopoDS::Edge( eos._sWOL ), _nodes.back() );
lastPos.SetX( u );
}
else // TopAbs_FACE
{
gp_XY uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), _nodes[0]);
_pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0));
uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), _nodes.back() );
lastPos.SetX( uv.X() );
lastPos.SetY( uv.Y() );
}
return lastPos;
}
//================================================================================
/*!
* \brief Set _cosin and _lenFactor
*/
//================================================================================
double _LayerEdge::SetCosin( double cosin )
{
_cosin = cosin;
cosin = Abs( _cosin );
//_lenFactor = ( cosin < 1.-1e-12 ) ? 1./sqrt(1-cosin*cosin ) : 1.0;
double realLenFactor;
if ( cosin < 1.-1e-12 )
{
_lenFactor = realLenFactor = 1./sqrt(1-cosin*cosin );
}
else
{
_lenFactor = 1;
realLenFactor = Precision::Infinite();
}
return realLenFactor;
}
//================================================================================
/*!
* \brief Check if another _LayerEdge is a neighbor on EDGE
*/
//================================================================================
bool _LayerEdge::IsNeiborOnEdge( const _LayerEdge* edge ) const
{
return (( this->_2neibors && this->_2neibors->include( edge )) ||
( edge->_2neibors && edge->_2neibors->include( this )));
}
//================================================================================
/*!
* \brief Fills a vector<_Simplex >
*/
//================================================================================
void _Simplex::GetSimplices( const SMDS_MeshNode* node,
vector<_Simplex>& simplices,
const set<TGeomID>& ingnoreShapes,
const _SolidData* dataToCheckOri,
const bool toSort)
{
simplices.clear();
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
const TGeomID shapeInd = f->getshapeId();
if ( ingnoreShapes.count( shapeInd )) continue;
const int nbNodes = f->NbCornerNodes();
const int srcInd = f->GetNodeIndex( node );
const SMDS_MeshNode* nPrev = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd-1, nbNodes ));
const SMDS_MeshNode* nNext = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd+1, nbNodes ));
const SMDS_MeshNode* nOpp = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd+2, nbNodes ));
if ( dataToCheckOri && dataToCheckOri->_reversedFaceIds.count( shapeInd ))
std::swap( nPrev, nNext );
simplices.push_back( _Simplex( nPrev, nNext, ( nbNodes == 3 ? 0 : nOpp )));
}
if ( toSort )
SortSimplices( simplices );
}
//================================================================================
/*!
* \brief Set neighbor simplices side by side
*/
//================================================================================
void _Simplex::SortSimplices(vector<_Simplex>& simplices)
{
vector<_Simplex> sortedSimplices( simplices.size() );
sortedSimplices[0] = simplices[0];
size_t nbFound = 0;
for ( size_t i = 1; i < simplices.size(); ++i )
{
for ( size_t j = 1; j < simplices.size(); ++j )
if ( sortedSimplices[i-1]._nNext == simplices[j]._nPrev )
{
sortedSimplices[i] = simplices[j];
nbFound++;
break;
}
}
if ( nbFound == simplices.size() - 1 )
simplices.swap( sortedSimplices );
}
//================================================================================
/*!
* \brief DEBUG. Create groups containing temporary data of _LayerEdge's
*/
//================================================================================
void _ViscousBuilder::makeGroupOfLE()
{
if (!SALOME::VerbosityActivated())
return;
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
{
if ( _sdVec[i]._n2eMap.empty() ) continue;
dumpFunction( SMESH_Comment("make_LayerEdge_") << i );
TNode2Edge::iterator n2e;
for ( n2e = _sdVec[i]._n2eMap.begin(); n2e != _sdVec[i]._n2eMap.end(); ++n2e )
{
_LayerEdge* le = n2e->second;
// for ( size_t iN = 1; iN < le->_nodes.size(); ++iN )
// dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <<le->_nodes[iN-1]->GetID()
// << ", " << le->_nodes[iN]->GetID() <<"])");
if ( le ) {
dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <<le->_nodes[0]->GetID()
<< ", " << le->_nodes.back()->GetID() <<"]) # " << le->_flags );
}
}
dumpFunctionEnd();
dumpFunction( SMESH_Comment("makeNormals") << i );
for ( n2e = _sdVec[i]._n2eMap.begin(); n2e != _sdVec[i]._n2eMap.end(); ++n2e )
{
_LayerEdge* edge = n2e->second;
SMESH_TNodeXYZ nXYZ( edge->_nodes[0] );
nXYZ += edge->_normal * _sdVec[i]._stepSize;
dumpCmd(SMESH_Comment("mesh.AddEdge([ ") << edge->_nodes[0]->GetID()
<< ", mesh.AddNode( "<< nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])");
}
dumpFunctionEnd();
dumpFunction( SMESH_Comment("makeTmpFaces_") << i );
dumpCmd( "faceId1 = mesh.NbElements()" );
TopExp_Explorer fExp( _sdVec[i]._solid, TopAbs_FACE );
for ( ; fExp.More(); fExp.Next() )
{
if ( const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current() ))
{
if ( sm->NbElements() == 0 ) continue;
SMDS_ElemIteratorPtr fIt = sm->GetElements();
while ( fIt->more())
{
const SMDS_MeshElement* e = fIt->next();
SMESH_Comment cmd("mesh.AddFace([");
for ( int j = 0; j < e->NbCornerNodes(); ++j )
cmd << e->GetNode(j)->GetID() << (j+1 < e->NbCornerNodes() ? ",": "])");
dumpCmd( cmd );
}
}
}
dumpCmd( "faceId2 = mesh.NbElements()" );
dumpCmd( SMESH_Comment( "mesh.MakeGroup( 'tmpFaces_" ) << i << "',"
<< "SMESH.FACE, SMESH.FT_RangeOfIds,'=',"
<< "'%s-%s' % (faceId1+1, faceId2))");
dumpFunctionEnd();
}
}
//================================================================================
/*!
* \brief Find maximal _LayerEdge length (layer thickness) limited by geometry
*/
//================================================================================
void _ViscousBuilder::computeGeomSize( _SolidData& data )
{
data._geomSize = Precision::Infinite();
double intersecDist;
const SMDS_MeshElement* face;
SMESH_MesherHelper helper( *_mesh );
SMESHUtils::Deleter<SMESH_ElementSearcher> searcher
( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(),
data._proxyMesh->GetFaces( data._solid )));
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( eos._edges.empty() )
continue;
// get neighbor faces, intersection with which should not be considered since
// collisions are avoided by means of smoothing
set< TGeomID > neighborFaces;
if ( eos._hyp.ToSmooth() )
{
SMESH_subMeshIteratorPtr subIt =
eos._subMesh->getDependsOnIterator(/*includeSelf=*/eos.ShapeType() != TopAbs_FACE );
while ( subIt->more() )
{
SMESH_subMesh* sm = subIt->next();
PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE );
while ( const TopoDS_Shape* face = fIt->next() )
neighborFaces.insert( getMeshDS()->ShapeToIndex( *face ));
}
}
// find intersections
double thinkness = eos._hyp.GetTotalThickness();
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
if ( eos._edges[i]->_nodes.size() < 2 ) continue;
eos._edges[i]->SetMaxLen( thinkness );
eos._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon, eos, &face );
if ( intersecDist > 0 && face )
{
data._geomSize = Min( data._geomSize, intersecDist );
if ( !neighborFaces.count( face->getshapeId() ))
eos[i]->SetMaxLen( Min( thinkness, intersecDist / ( face->GetID() < 0 ? 3. : 2. )));
}
}
}
data._maxThickness = 0;
data._minThickness = 1e100;
list< const StdMeshers_ViscousLayers* >::iterator hyp = data._hyps.begin();
for ( ; hyp != data._hyps.end(); ++hyp )
{
data._maxThickness = Max( data._maxThickness, (*hyp)->GetTotalThickness() );
data._minThickness = Min( data._minThickness, (*hyp)->GetTotalThickness() );
}
// Limit inflation step size by geometry size found by intersecting
// normals of _LayerEdge's with mesh faces
if ( data._stepSize > 0.3 * data._geomSize )
limitStepSize( data, 0.3 * data._geomSize );
if ( data._stepSize > data._minThickness )
limitStepSize( data, data._minThickness );
// -------------------------------------------------------------------------
// Detect _LayerEdge which can't intersect with opposite or neighbor layer,
// so no need in detecting intersection at each inflation step
// -------------------------------------------------------------------------
int nbSteps = data._maxThickness / data._stepSize;
if ( nbSteps < 3 || nbSteps * data._n2eMap.size() < 100000 )
return;
vector< const SMDS_MeshElement* > closeFaces;
int nbDetected = 0;
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE )
continue;
for ( size_t i = 0; i < eos.size(); ++i )
{
SMESH_NodeXYZ p( eos[i]->_nodes[0] );
double radius = data._maxThickness + 2 * eos[i]->_maxLen;
closeFaces.clear();
searcher->GetElementsInSphere( p, radius, SMDSAbs_Face, closeFaces );
bool toIgnore = true;
for ( size_t iF = 0; iF < closeFaces.size() && toIgnore; ++iF )
if ( !( toIgnore = ( closeFaces[ iF ]->getshapeId() == eos._shapeID ||
data._ignoreFaceIds.count( closeFaces[ iF ]->getshapeId() ))))
{
// check if a _LayerEdge will inflate in a direction opposite to a direction
// toward a close face
bool allBehind = true;
for ( int iN = 0; iN < closeFaces[ iF ]->NbCornerNodes() && allBehind; ++iN )
{
SMESH_NodeXYZ pi( closeFaces[ iF ]->GetNode( iN ));
allBehind = (( pi - p ) * eos[i]->_normal < 0.1 * data._stepSize );
}
toIgnore = allBehind;
}
if ( toIgnore ) // no need to detect intersection
{
eos[i]->Set( _LayerEdge::INTERSECTED );
++nbDetected;
}
}
}
debugMsg( "Nb LE to intersect " << data._n2eMap.size()-nbDetected << ", ignore " << nbDetected );
return;
}
//================================================================================
/*!
* \brief Increase length of _LayerEdge's to reach the required thickness of layers
*/
//================================================================================
bool _ViscousBuilder::inflate(_SolidData& data)
{
SMESH_MesherHelper helper( *_mesh );
const double tgtThick = data._maxThickness;
if ( data._stepSize < 1. )
data._epsilon = data._stepSize * 1e-7;
debugMsg( "-- geomSize = " << data._geomSize << ", stepSize = " << data._stepSize );
_pyDump->Pause();
findCollisionEdges( data, helper );
limitMaxLenByCurvature( data, helper );
_pyDump->Resume();
// limit length of _LayerEdge's around MULTI_NORMAL _LayerEdge's
for ( size_t i = 0; i < data._edgesOnShape.size(); ++i )
if ( data._edgesOnShape[i].ShapeType() == TopAbs_VERTEX &&
data._edgesOnShape[i]._edges.size() > 0 &&
data._edgesOnShape[i]._edges[0]->Is( _LayerEdge::MULTI_NORMAL ))
{
data._edgesOnShape[i]._edges[0]->Unset( _LayerEdge::BLOCKED );
data._edgesOnShape[i]._edges[0]->Block( data );
}
const double safeFactor = ( 2*data._maxThickness < data._geomSize ) ? 1 : theThickToIntersection;
double avgThick = 0, curThick = 0, distToIntersection = Precision::Infinite();
int nbSteps = 0, nbRepeats = 0;
while ( avgThick < 0.99 )
{
// new target length
double prevThick = curThick;
curThick += data._stepSize;
if ( curThick > tgtThick )
{
curThick = tgtThick + tgtThick*( 1.-avgThick ) * nbRepeats;
nbRepeats++;
}
double stepSize = curThick - prevThick;
updateNormalsOfSmoothed( data, helper, nbSteps, stepSize ); // to ease smoothing
// Elongate _LayerEdge's
dumpFunction(SMESH_Comment("inflate")<<data._index<<"_step"<<nbSteps); // debug
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
if ( eos._edges.empty() ) continue;
const double shapeCurThick = Min( curThick, eos._hyp.GetTotalThickness() );
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
eos._edges[i]->SetNewLength( shapeCurThick, eos, helper );
}
}
dumpFunctionEnd();
if ( !updateNormals( data, helper, nbSteps, stepSize )) // to avoid collisions
return false;
// Improve and check quality
if ( !smoothAndCheck( data, nbSteps, distToIntersection ))
{
if ( nbSteps > 0 )
{
#ifdef __NOT_INVALIDATE_BAD_SMOOTH
debugMsg("NOT INVALIDATED STEP!");
return error("Smoothing failed", data._index);
#endif
dumpFunction(SMESH_Comment("invalidate")<<data._index<<"_step"<<nbSteps); // debug
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
for ( size_t i = 0; i < eos._edges.size(); ++i )
eos._edges[i]->InvalidateStep( nbSteps+1, eos );
}
dumpFunctionEnd();
}
break; // no more inflating possible
}
nbSteps++;
// Evaluate achieved thickness
avgThick = 0;
int nbActiveEdges = 0;
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
if ( eos._edges.empty() ) continue;
const double shapeTgtThick = eos._hyp.GetTotalThickness();
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
if ( eos._edges[i]->_nodes.size() > 1 )
avgThick += Min( 1., eos._edges[i]->_len / shapeTgtThick );
else
avgThick += 1;
nbActiveEdges += ( ! eos._edges[i]->Is( _LayerEdge::BLOCKED ));
}
}
avgThick /= data._n2eMap.size();
debugMsg( "-- Thickness " << curThick << " ("<< avgThick*100 << "%) reached" );
#ifdef BLOCK_INFLATION
if ( nbActiveEdges == 0 )
{
debugMsg( "-- Stop inflation since all _LayerEdge's BLOCKED " );
break;
}
#else
if ( distToIntersection < tgtThick * avgThick * safeFactor && avgThick < 0.9 )
{
debugMsg( "-- Stop inflation since "
<< " distToIntersection( "<<distToIntersection<<" ) < avgThick( "
<< tgtThick * avgThick << " ) * " << safeFactor );
break;
}
#endif
// new step size
limitStepSize( data, 0.25 * distToIntersection );
if ( data._stepSizeNodes[0] )
data._stepSize = data._stepSizeCoeff *
SMESH_TNodeXYZ(data._stepSizeNodes[0]).Distance(data._stepSizeNodes[1]);
} // while ( avgThick < 0.99 )
if ( nbSteps == 0 )
return error("failed at the very first inflation step", data._index);
if ( avgThick < 0.99 )
{
if ( !data._proxyMesh->_warning || data._proxyMesh->_warning->IsOK() )
{
data._proxyMesh->_warning.reset
( new SMESH_ComputeError (COMPERR_WARNING,
SMESH_Comment("Thickness ") << tgtThick <<
" of viscous layers not reached,"
" average reached thickness is " << avgThick*tgtThick));
}
}
// Restore position of src nodes moved by inflation on _noShrinkShapes
dumpFunction(SMESH_Comment("restoNoShrink_So")<<data._index); // debug
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
if ( !eos._edges.empty() && eos._edges[0]->_nodes.size() == 1 )
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
restoreNoShrink( *eos._edges[ i ] );
}
}
dumpFunctionEnd();
return safeFactor > 0; // == true (avoid warning: unused variable 'safeFactor')
}
//================================================================================
/*!
* \brief Improve quality of layer inner surface and check intersection
*/
//================================================================================
bool _ViscousBuilder::smoothAndCheck(_SolidData& data,
const int infStep,
double & distToIntersection)
{
if ( data._nbShapesToSmooth == 0 )
return true; // no shapes needing smoothing
bool moved, improved;
double vol;
vector< _LayerEdge* > movedEdges, badEdges;
vector< _EdgesOnShape* > eosC1; // C1 continues shapes
vector< bool > isConcaveFace;
SMESH_MesherHelper helper(*_mesh);
Handle(ShapeAnalysis_Surface) surface;
TopoDS_Face F;
for ( int isFace = 0; isFace < 2; ++isFace ) // smooth on [ EDGEs, FACEs ]
{
const TopAbs_ShapeEnum shapeType = isFace ? TopAbs_FACE : TopAbs_EDGE;
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( !eos._toSmooth ||
eos.ShapeType() != shapeType ||
eos._edges.empty() )
continue;
// already smoothed?
// bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= infStep+1 );
// if ( !toSmooth ) continue;
if ( !eos._hyp.ToSmooth() )
{
// smooth disabled by the user; check validy only
if ( !isFace ) continue;
badEdges.clear();
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* edge = eos._edges[i];
for ( size_t iF = 0; iF < edge->_simplices.size(); ++iF )
if ( !edge->_simplices[iF].IsForward( edge->_nodes[0], edge->_pos.back(), vol ))
{
// debugMsg( "-- Stop inflation. Bad simplex ("
// << " "<< edge->_nodes[0]->GetID()
// << " "<< edge->_nodes.back()->GetID()
// << " "<< edge->_simplices[iF]._nPrev->GetID()
// << " "<< edge->_simplices[iF]._nNext->GetID() << " ) ");
// return false;
badEdges.push_back( edge );
}
}
if ( !badEdges.empty() )
{
eosC1.resize(1);
eosC1[0] = &eos;
int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
if ( nbBad > 0 )
return false;
}
continue; // goto the next EDGE or FACE
}
// prepare data
if ( eos.SWOLType() == TopAbs_FACE )
{
if ( !F.IsSame( eos._sWOL )) {
F = TopoDS::Face( eos._sWOL );
helper.SetSubShape( F );
surface = helper.GetSurface( F );
}
}
else
{
F.Nullify(); surface.Nullify();
}
const TGeomID sInd = eos._shapeID;
// perform smoothing
if ( eos.ShapeType() == TopAbs_EDGE )
{
dumpFunction(SMESH_Comment("smooth")<<data._index << "_Ed"<<sInd <<"_InfStep"<<infStep);
if ( !eos._edgeSmoother->Perform( data, surface, F, helper ))
{
// smooth on EDGE's (normally we should not get here)
int step = 0;
do {
moved = false;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
moved |= eos._edges[i]->SmoothOnEdge( surface, F, helper );
}
dumpCmd( SMESH_Comment("# end step ")<<step);
}
while ( moved && step++ < 5 );
}
dumpFunctionEnd();
}
else // smooth on FACE
{
eosC1.clear();
eosC1.push_back( & eos );
eosC1.insert( eosC1.end(), eos._eosC1.begin(), eos._eosC1.end() );
movedEdges.clear();
isConcaveFace.resize( eosC1.size() );
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
{
isConcaveFace[ iEOS ] = data._concaveFaces.count( eosC1[ iEOS ]->_shapeID );
if ( eosC1[ iEOS ]->_mapper2D )
{
// compute node position by boundary node position in structured mesh
dumpFunction(SMESH_Comment("map2dS")<<data._index<<"_Fa"<<eos._shapeID
<<"_InfStep"<<infStep);
eosC1[ iEOS ]->_mapper2D->ComputeNodePositions();
for ( _LayerEdge* le : eosC1[ iEOS ]->_edges )
le->_pos.back() = SMESH_NodeXYZ( le->_nodes.back() );
dumpFunctionEnd();
}
else
{
for ( _LayerEdge* le : eosC1[ iEOS ]->_edges )
if ( le->Is( _LayerEdge::MOVED ) ||
le->Is( _LayerEdge::NEAR_BOUNDARY ))
movedEdges.push_back( le );
}
makeOffsetSurface( *eosC1[ iEOS ], helper );
}
int step = 0, stepLimit = 5, nbBad = 0;
while (( ++step <= stepLimit ) || improved )
{
int oldBadNb = nbBad;
badEdges.clear();
#ifdef INCREMENTAL_SMOOTH
// smooth moved only
if ( !movedEdges.empty() )
dumpFunction(SMESH_Comment("smooth")<<data._index<<"_Fa"<<sInd
<<"_InfStep"<<infStep<<"_"<<step); // debug
bool findBest = false; // ( step == stepLimit );
for ( size_t i = 0; i < movedEdges.size(); ++i )
{
movedEdges[i]->Unset( _LayerEdge::SMOOTHED );
if ( movedEdges[i]->Smooth( step, findBest, movedEdges ) > 0 )
badEdges.push_back( movedEdges[i] );
}
#else
// smooth all
dumpFunction(SMESH_Comment("smooth")<<data._index<<"_Fa"<<sInd
<<"_InfStep"<<infStep<<"_"<<step); // debug
bool findBest = ( step == stepLimit || isConcaveFace[ iEOS ]);
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
{
if ( eosC1[ iEOS ]->_mapper2D )
continue;
vector< _LayerEdge* > & edges = eosC1[ iEOS ]->_edges;
for ( size_t i = 0; i < edges.size(); ++i )
{
edges[i]->Unset( _LayerEdge::SMOOTHED );
if ( edges[i]->Smooth( step, findBest, false ) > 0 )
badEdges.push_back( eos._edges[i] );
}
}
#endif
nbBad = badEdges.size();
if ( nbBad > 0 )
debugMsg(SMESH_Comment("nbBad = ") << nbBad );
if ( !badEdges.empty() && step >= stepLimit / 2 )
{
if ( badEdges[0]->Is( _LayerEdge::ON_CONCAVE_FACE ))
stepLimit = 9;
// resolve hard smoothing situation around concave VERTEXes
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
{
vector< _EdgesOnShape* > & eosCoVe = eosC1[ iEOS ]->_eosConcaVer;
for ( size_t i = 0; i < eosCoVe.size(); ++i )
eosCoVe[i]->_edges[0]->MoveNearConcaVer( eosCoVe[i], eosC1[ iEOS ],
step, badEdges );
}
// look for the best smooth of _LayerEdge's neighboring badEdges
nbBad = 0;
for ( size_t i = 0; i < badEdges.size(); ++i )
{
_LayerEdge* ledge = badEdges[i];
for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN )
{
ledge->_neibors[iN]->Unset( _LayerEdge::SMOOTHED );
nbBad += ledge->_neibors[iN]->Smooth( step, true, /*findBest=*/true );
}
ledge->Unset( _LayerEdge::SMOOTHED );
nbBad += ledge->Smooth( step, true, /*findBest=*/true );
}
debugMsg(SMESH_Comment("nbBad = ") << nbBad );
}
if ( nbBad == oldBadNb &&
nbBad > 0 &&
step < stepLimit ) // smooth w/o check of validity
{
dumpFunctionEnd();
dumpFunction(SMESH_Comment("smoothWoCheck")<<data._index<<"_Fa"<<sInd
<<"_InfStep"<<infStep<<"_"<<step); // debug
for ( size_t i = 0; i < movedEdges.size(); ++i )
{
movedEdges[i]->SmoothWoCheck();
}
if ( stepLimit < 9 )
stepLimit++;
}
improved = ( nbBad < oldBadNb );
dumpFunctionEnd();
if (( step % 3 == 1 ) || ( nbBad > 0 && step >= stepLimit / 2 ))
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
{
putOnOffsetSurface( *eosC1[ iEOS ], infStep, eosC1, step, /*moveAll=*/step == 1 );
}
} // smoothing steps
// project -- to prevent intersections or to fix bad simplices
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
{
if ( ! eosC1[ iEOS ]->_eosConcaVer.empty() || nbBad > 0 )
putOnOffsetSurface( *eosC1[ iEOS ], -infStep, eosC1 );
}
//if ( !badEdges.empty() )
{
badEdges.clear();
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
{
for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i )
{
if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue;
_LayerEdge* edge = eosC1[ iEOS ]->_edges[i];
edge->CheckNeiborsOnBoundary( & badEdges );
if (( nbBad > 0 ) ||
( edge->Is( _LayerEdge::BLOCKED ) && edge->Is( _LayerEdge::NEAR_BOUNDARY )))
{
SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
gp_XYZ prevXYZ = edge->PrevCheckPos();
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
{
debugMsg("Bad simplex ( " << edge->_nodes[0]->GetID()
<< " "<< tgtXYZ._node->GetID()
<< " "<< edge->_simplices[j]._nPrev->GetID()
<< " "<< edge->_simplices[j]._nNext->GetID() << " )" );
badEdges.push_back( edge );
break;
}
}
}
}
// try to fix bad simplices by removing the last inflation step of some _LayerEdge's
nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
if ( nbBad > 0 )
return false;
}
} // // smooth on FACE's
} // loop on shapes
} // smooth on [ EDGEs, FACEs ]
// Check orientation of simplices of _LayerEdge's on EDGEs and VERTEXes
eosC1.resize(1);
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( eos.ShapeType() == TopAbs_FACE ||
eos._edges.empty() ||
!eos._sWOL.IsNull() )
continue;
badEdges.clear();
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* edge = eos._edges[i];
if ( edge->_nodes.size() < 2 ) continue;
SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
//SMESH_TNodeXYZ prevXYZ = edge->_nodes[0];
gp_XYZ prevXYZ = edge->PrevCheckPos( &eos );
//const gp_XYZ& prevXYZ = edge->PrevPos();
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
{
debugMsg("Bad simplex on bnd ( " << edge->_nodes[0]->GetID()
<< " "<< tgtXYZ._node->GetID()
<< " "<< edge->_simplices[j]._nPrev->GetID()
<< " "<< edge->_simplices[j]._nNext->GetID() << " )" );
badEdges.push_back( edge );
break;
}
}
// try to fix bad simplices by removing the last inflation step of some _LayerEdge's
eosC1[0] = &eos;
int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
if ( nbBad > 0 )
return false;
}
// Check if the last segments of _LayerEdge intersects 2D elements;
// checked elements are either temporary faces or faces on surfaces w/o the layers
SMESHUtils::Deleter<SMESH_ElementSearcher> searcher
( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(),
data._proxyMesh->GetFaces( data._solid )) );
#ifdef BLOCK_INFLATION
const bool toBlockInfaltion = true;
#else
const bool toBlockInfaltion = false;
#endif
distToIntersection = Precision::Infinite();
double dist;
const SMDS_MeshElement* intFace = 0;
const SMDS_MeshElement* closestFace = 0;
_LayerEdge* le = 0;
bool is1stBlocked = true; // dbg
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( eos._edges.empty() || !eos._sWOL.IsNull() )
continue;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
if ( eos._edges[i]->Is( _LayerEdge::INTERSECTED ) ||
eos._edges[i]->Is( _LayerEdge::MULTI_NORMAL ))
continue;
if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace ))
{
return false;
// commented due to "Illegal hash-positionPosition" error in NETGEN
// on Debian60 on viscous_layers_01/B2 case
// Collision; try to deflate _LayerEdge's causing it
// badEdges.clear();
// badEdges.push_back( eos._edges[i] );
// eosC1[0] = & eos;
// int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
// if ( nbBad > 0 )
// return false;
// badEdges.clear();
// if ( _EdgesOnShape* eof = data.GetShapeEdges( intFace->getshapeId() ))
// {
// if ( const _TmpMeshFace* f = dynamic_cast< const _TmpMeshFace*>( intFace ))
// {
// const SMDS_MeshElement* srcFace =
// eof->_subMesh->GetSubMeshDS()->GetElement( f->getIdInShape() );
// SMDS_ElemIteratorPtr nIt = srcFace->nodesIterator();
// while ( nIt->more() )
// {
// const SMDS_MeshNode* srcNode = static_cast<const SMDS_MeshNode*>( nIt->next() );
// TNode2Edge::iterator n2e = data._n2eMap.find( srcNode );
// if ( n2e != data._n2eMap.end() )
// badEdges.push_back( n2e->second );
// }
// eosC1[0] = eof;
// nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep );
// if ( nbBad > 0 )
// return false;
// }
// }
// if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace ))
// return false;
// else
// continue;
}
if ( !intFace )
{
SMESH_Comment msg("Invalid? normal at node "); msg << eos._edges[i]->_nodes[0]->GetID();
debugMsg( msg );
continue;
}
const bool isShorterDist = ( distToIntersection > dist );
if ( toBlockInfaltion || isShorterDist )
{
// ignore intersection of a _LayerEdge based on a _ConvexFace with a face
// lying on this _ConvexFace
if ( _ConvexFace* convFace = data.GetConvexFace( intFace->getshapeId() ))
if ( convFace->_isTooCurved && convFace->_subIdToEOS.count ( eos._shapeID ))
continue;
// ignore intersection of a _LayerEdge based on a FACE with an element on this FACE
// ( avoid limiting the thickness on the case of issue 22576)
if ( intFace->getshapeId() == eos._shapeID )
continue;
// ignore intersection with intFace of an adjacent FACE
if ( dist > 0.01 * eos._edges[i]->_len )
{
bool toIgnore = false;
if ( eos._toSmooth )
{
const TopoDS_Shape& S = getMeshDS()->IndexToShape( intFace->getshapeId() );
if ( !S.IsNull() && S.ShapeType() == TopAbs_FACE )
{
TopExp_Explorer sub( eos._shape,
eos.ShapeType() == TopAbs_FACE ? TopAbs_EDGE : TopAbs_VERTEX );
for ( ; !toIgnore && sub.More(); sub.Next() )
// is adjacent - has a common EDGE or VERTEX
toIgnore = ( helper.IsSubShape( sub.Current(), S ));
if ( toIgnore ) // check angle between normals
{
gp_XYZ normal;
if ( SMESH_MeshAlgos::FaceNormal( intFace, normal, /*normalized=*/true ))
toIgnore = ( normal * eos._edges[i]->_normal > -0.5 );
}
}
}
if ( !toIgnore ) // check if the edge is a neighbor of intFace
{
for ( size_t iN = 0; !toIgnore && iN < eos._edges[i]->_neibors.size(); ++iN )
{
int nInd = intFace->GetNodeIndex( eos._edges[i]->_neibors[ iN ]->_nodes.back() );
toIgnore = ( nInd >= 0 );
}
}
if ( toIgnore )
continue;
}
// intersection not ignored
double minDist = 0;
if ( eos._edges[i]->_maxLen < 0.99 * eos._hyp.GetTotalThickness() ) // limited length
minDist = eos._edges[i]->_len * theThickToIntersection;
if ( toBlockInfaltion && dist < minDist )
{
if ( is1stBlocked ) { is1stBlocked = false; // debug
dumpFunction(SMESH_Comment("blockIntersected") <<data._index<<"_InfStep"<<infStep);
}
eos._edges[i]->Set( _LayerEdge::INTERSECTED ); // not to intersect
eos._edges[i]->Block( data ); // not to inflate
//if ( _EdgesOnShape* eof = data.GetShapeEdges( intFace->getshapeId() ))
{
// block _LayerEdge's, on top of which intFace is
if ( const _TmpMeshFace* f = dynamic_cast< const _TmpMeshFace*>( intFace ))
{
const SMDS_MeshElement* srcFace = f->_srcFace;
SMDS_ElemIteratorPtr nIt = srcFace->nodesIterator();
while ( nIt->more() )
{
const SMDS_MeshNode* srcNode = static_cast<const SMDS_MeshNode*>( nIt->next() );
TNode2Edge::iterator n2e = data._n2eMap.find( srcNode );
if ( n2e != data._n2eMap.end() )
n2e->second->Block( data );
}
}
}
}
if ( isShorterDist )
{
distToIntersection = dist;
le = eos._edges[i];
closestFace = intFace;
}
} // if ( toBlockInfaltion || isShorterDist )
} // loop on eos._edges
} // loop on data._edgesOnShape
if ( !is1stBlocked )
{
dumpFunctionEnd();
}
if ( closestFace && le )
{
#ifdef __myDEBUG
SMDS_MeshElement::iterator nIt = closestFace->begin_nodes();
cout << "#Shortest distance: _LayerEdge nodes: tgt " << le->_nodes.back()->GetID()
<< " src " << le->_nodes[0]->GetID()<< ", intersection with face ("
<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()
<< ") distance = " << distToIntersection<< endl;
#endif
}
return true;
}
//================================================================================
/*!
* \brief try to fix bad simplices by removing the last inflation step of some _LayerEdge's
* \param [in,out] badSmooEdges - _LayerEdge's to fix
* \return int - resulting nb of bad _LayerEdge's
*/
//================================================================================
int _ViscousBuilder::invalidateBadSmooth( _SolidData& data,
SMESH_MesherHelper& helper,
vector< _LayerEdge* >& badSmooEdges,
vector< _EdgesOnShape* >& eosC1,
const int infStep )
{
if ( badSmooEdges.empty() || infStep == 0 ) return 0;
dumpFunction(SMESH_Comment("invalidateBadSmooth")<<"_S"<<eosC1[0]->_shapeID<<"_InfStep"<<infStep);
enum {
INVALIDATED = _LayerEdge::UNUSED_FLAG,
TO_INVALIDATE = _LayerEdge::UNUSED_FLAG * 2,
ADDED = _LayerEdge::UNUSED_FLAG * 4
};
data.UnmarkEdges( TO_INVALIDATE & INVALIDATED & ADDED );
double vol;
bool haveInvalidated = true;
while ( haveInvalidated )
{
haveInvalidated = false;
for ( size_t i = 0; i < badSmooEdges.size(); ++i )
{
_LayerEdge* edge = badSmooEdges[i];
_EdgesOnShape* eos = data.GetShapeEdges( edge );
edge->Set( ADDED );
bool invalidated = false;
if ( edge->Is( TO_INVALIDATE ) && edge->NbSteps() > 1 )
{
edge->InvalidateStep( edge->NbSteps(), *eos, /*restoreLength=*/true );
edge->Block( data );
edge->Set( INVALIDATED );
edge->Unset( TO_INVALIDATE );
invalidated = true;
haveInvalidated = true;
}
// look for _LayerEdge's of bad _simplices
int nbBad = 0;
SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
gp_XYZ prevXYZ1 = edge->PrevCheckPos( eos );
//const gp_XYZ& prevXYZ2 = edge->PrevPos();
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
{
if (( edge->_simplices[j].IsForward( &prevXYZ1, &tgtXYZ, vol ))/* &&
( &prevXYZ1 == &prevXYZ2 || edge->_simplices[j].IsForward( &prevXYZ2, &tgtXYZ, vol ))*/)
continue;
bool isBad = true;
_LayerEdge* ee[2] = { 0,0 };
for ( size_t iN = 0; iN < edge->_neibors.size() && !ee[1] ; ++iN )
if ( edge->_simplices[j].Includes( edge->_neibors[iN]->_nodes.back() ))
ee[ ee[0] != 0 ] = edge->_neibors[iN];
int maxNbSteps = Max( ee[0]->NbSteps(), ee[1]->NbSteps() );
while ( maxNbSteps > edge->NbSteps() && isBad )
{
--maxNbSteps;
for ( int iE = 0; iE < 2; ++iE )
{
if ( ee[ iE ]->NbSteps() > maxNbSteps &&
ee[ iE ]->NbSteps() > 1 )
{
_EdgesOnShape* eos = data.GetShapeEdges( ee[ iE ] );
ee[ iE ]->InvalidateStep( ee[ iE ]->NbSteps(), *eos, /*restoreLength=*/true );
ee[ iE ]->Block( data );
ee[ iE ]->Set( INVALIDATED );
haveInvalidated = true;
}
}
if (( edge->_simplices[j].IsForward( &prevXYZ1, &tgtXYZ, vol )) /*&&
( &prevXYZ1 == &prevXYZ2 || edge->_simplices[j].IsForward( &prevXYZ2, &tgtXYZ, vol ))*/)
isBad = false;
}
nbBad += isBad;
if ( !ee[0]->Is( ADDED )) badSmooEdges.push_back( ee[0] );
if ( !ee[1]->Is( ADDED )) badSmooEdges.push_back( ee[1] );
ee[0]->Set( ADDED );
ee[1]->Set( ADDED );
if ( isBad )
{
ee[0]->Set( TO_INVALIDATE );
ee[1]->Set( TO_INVALIDATE );
}
}
if ( !invalidated && nbBad > 0 && edge->NbSteps() > 1 )
{
_EdgesOnShape* eos = data.GetShapeEdges( edge );
edge->InvalidateStep( edge->NbSteps(), *eos, /*restoreLength=*/true );
edge->Block( data );
edge->Set( INVALIDATED );
edge->Unset( TO_INVALIDATE );
haveInvalidated = true;
}
} // loop on badSmooEdges
} // while ( haveInvalidated )
// re-smooth on analytical EDGEs
for ( size_t i = 0; i < badSmooEdges.size(); ++i )
{
_LayerEdge* edge = badSmooEdges[i];
if ( !edge->Is( INVALIDATED )) continue;
_EdgesOnShape* eos = data.GetShapeEdges( edge );
if ( eos->ShapeType() == TopAbs_VERTEX )
{
PShapeIteratorPtr eIt = helper.GetAncestors( eos->_shape, *_mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* e = eIt->next() )
if ( _EdgesOnShape* eoe = data.GetShapeEdges( *e ))
if ( eoe->_edgeSmoother && eoe->_edgeSmoother->isAnalytic() )
{
// TopoDS_Face F; Handle(ShapeAnalysis_Surface) surface;
// if ( eoe->SWOLType() == TopAbs_FACE ) {
// F = TopoDS::Face( eoe->_sWOL );
// surface = helper.GetSurface( F );
// }
// eoe->_edgeSmoother->Perform( data, surface, F, helper );
eoe->_edgeSmoother->_anaCurve.Nullify();
}
}
}
// check result of invalidation
int nbBad = 0;
for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
{
for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i )
{
if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue;
_LayerEdge* edge = eosC1[ iEOS ]->_edges[i];
SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
gp_XYZ prevXYZ = edge->PrevCheckPos( eosC1[ iEOS ]);
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
{
++nbBad;
debugMsg("Bad simplex remains ( " << edge->_nodes[0]->GetID()
<< " "<< tgtXYZ._node->GetID()
<< " "<< edge->_simplices[j]._nPrev->GetID()
<< " "<< edge->_simplices[j]._nNext->GetID() << " )" );
}
}
}
dumpFunctionEnd();
return nbBad;
}
//================================================================================
/*!
* \brief Create an offset surface
*/
//================================================================================
void _ViscousBuilder::makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& helper )
{
if ( eos._offsetSurf.IsNull() ||
eos._edgeForOffset == 0 ||
eos._edgeForOffset->Is( _LayerEdge::BLOCKED ))
return;
Handle(ShapeAnalysis_Surface) baseSurface = helper.GetSurface( TopoDS::Face( eos._shape ));
// find offset
gp_Pnt tgtP = SMESH_TNodeXYZ( eos._edgeForOffset->_nodes.back() );
/*gp_Pnt2d uv=*/baseSurface->ValueOfUV( tgtP, Precision::Confusion() );
eos._offsetValue = baseSurface->Gap();
eos._offsetSurf.Nullify();
try
{
BRepOffsetAPI_MakeOffsetShape offsetMaker;
offsetMaker.PerformByJoin( eos._shape, -eos._offsetValue, Precision::Confusion() );
if ( !offsetMaker.IsDone() ) return;
TopExp_Explorer fExp( offsetMaker.Shape(), TopAbs_FACE );
if ( !fExp.More() ) return;
TopoDS_Face F = TopoDS::Face( fExp.Current() );
Handle(Geom_Surface) surf = BRep_Tool::Surface( F );
if ( surf.IsNull() ) return;
eos._offsetSurf = new ShapeAnalysis_Surface( surf );
}
catch ( Standard_Failure& )
{
}
}
//================================================================================
/*!
* \brief Put nodes of a curved FACE to its offset surface
*/
//================================================================================
void _ViscousBuilder::putOnOffsetSurface( _EdgesOnShape& eos,
int infStep,
vector< _EdgesOnShape* >& eosC1,
int smooStep,
int moveAll )
{
_EdgesOnShape * eof = & eos;
if ( eos.ShapeType() != TopAbs_FACE ) // eos is a boundary of C1 FACE, look for the FACE eos
{
eof = 0;
for ( size_t i = 0; i < eosC1.size() && !eof; ++i )
{
if ( eosC1[i]->_offsetSurf.IsNull() ||
eosC1[i]->ShapeType() != TopAbs_FACE ||
eosC1[i]->_edgeForOffset == 0 ||
eosC1[i]->_edgeForOffset->Is( _LayerEdge::BLOCKED ))
continue;
if ( SMESH_MesherHelper::IsSubShape( eos._shape, eosC1[i]->_shape ))
eof = eosC1[i];
}
}
if ( !eof ||
eof->_offsetSurf.IsNull() ||
eof->ShapeType() != TopAbs_FACE ||
eof->_edgeForOffset == 0 ||
eof->_edgeForOffset->Is( _LayerEdge::BLOCKED ))
return;
double preci = BRep_Tool::Tolerance( TopoDS::Face( eof->_shape )), vol;
bool neighborHasRiskySWOL = false;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* edge = eos._edges[i];
edge->Unset( _LayerEdge::MARKED );
if ( edge->Is( _LayerEdge::BLOCKED ) || !edge->_curvature )
continue;
if ( moveAll == _LayerEdge::UPD_NORMAL_CONV )
{
if ( !edge->Is( _LayerEdge::UPD_NORMAL_CONV ))
continue;
}
else if ( moveAll == _LayerEdge::RISKY_SWOL )
{
if ( !edge->Is( _LayerEdge::RISKY_SWOL ) ||
edge->_cosin < 0 )
continue;
}
else if ( !moveAll && !edge->Is( _LayerEdge::MOVED ))
continue;
int nbBlockedAround = 0;
for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN )
{
nbBlockedAround += edge->_neibors[iN]->Is( _LayerEdge::BLOCKED );
if ( edge->_neibors[iN]->Is( _LayerEdge::RISKY_SWOL ) &&
edge->_neibors[iN]->_cosin > 0 )
neighborHasRiskySWOL = true;
}
if ( nbBlockedAround > 1 )
continue;
gp_Pnt tgtP = SMESH_TNodeXYZ( edge->_nodes.back() );
gp_Pnt2d uv = eof->_offsetSurf->NextValueOfUV( edge->_curvature->_uv, tgtP, preci );
if ( eof->_offsetSurf->Gap() > edge->_len ) continue; // NextValueOfUV() bug
edge->_curvature->_uv = uv;
if ( eof->_offsetSurf->Gap() < 10 * preci ) continue; // same pos
gp_XYZ newP = eof->_offsetSurf->Value( uv ).XYZ();
gp_XYZ prevP = edge->PrevCheckPos();
bool ok = true;
if ( !moveAll )
for ( size_t iS = 0; iS < edge->_simplices.size() && ok; ++iS )
{
ok = edge->_simplices[iS].IsForward( &prevP, &newP, vol );
}
if ( ok )
{
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( edge->_nodes.back() );
n->setXYZ( newP.X(), newP.Y(), newP.Z());
edge->_pos.back() = newP;
edge->Set( _LayerEdge::MARKED );
if ( moveAll == _LayerEdge::UPD_NORMAL_CONV )
{
edge->_normal = ( newP - prevP ).Normalized();
}
// if ( edge->_len < eof->_offsetValue )
// edge->_len = eof->_offsetValue;
if ( !eos._sWOL.IsNull() ) // RISKY_SWOL
{
double change = eof->_offsetSurf->Gap() / eof->_offsetValue;
if (( newP - tgtP.XYZ() ) * edge->_normal < 0 )
change = 1 - change;
else
change = 1 + change;
gp_XYZ shitfVec = tgtP.XYZ() - SMESH_NodeXYZ( edge->_nodes[0] );
gp_XYZ newShiftVec = shitfVec * change;
double shift = edge->_normal * shitfVec;
double newShift = edge->_normal * newShiftVec;
newP = tgtP.XYZ() + edge->_normal * ( newShift - shift );
uv = eof->_offsetSurf->NextValueOfUV( edge->_curvature->_uv, newP, preci );
if ( eof->_offsetSurf->Gap() < edge->_len )
{
edge->_curvature->_uv = uv;
newP = eof->_offsetSurf->Value( uv ).XYZ();
}
n->setXYZ( newP.X(), newP.Y(), newP.Z());
if ( !edge->UpdatePositionOnSWOL( n, /*tol=*/10 * edge->_len / ( edge->NbSteps() + 1 ),
eos, eos.GetData().GetHelper() ))
{
debugMsg("UpdatePositionOnSWOL fails in putOnOffsetSurface()" );
}
}
}
}
if (SALOME::VerbosityActivated())
{
// dumpMove() for debug
size_t i = 0;
for ( ; i < eos._edges.size(); ++i )
if ( eos._edges[i]->Is( _LayerEdge::MARKED ))
break;
if ( i < eos._edges.size() )
{
dumpFunction(SMESH_Comment("putOnOffsetSurface_") << eos.ShapeTypeLetter() << eos._shapeID
<< "_InfStep" << infStep << "_" << Abs( smooStep ));
for ( ; i < eos._edges.size(); ++i )
{
if ( eos._edges[i]->Is( _LayerEdge::MARKED )) {
dumpMove( eos._edges[i]->_nodes.back() );
}
}
dumpFunctionEnd();
}
}
_ConvexFace* cnvFace;
if ( moveAll != _LayerEdge::UPD_NORMAL_CONV &&
eos.ShapeType() == TopAbs_FACE &&
(cnvFace = eos.GetData().GetConvexFace( eos._shapeID )) &&
!cnvFace->_normalsFixedOnBorders )
{
// put on the surface nodes built on FACE boundaries
SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false);
while ( smIt->more() )
{
SMESH_subMesh* sm = smIt->next();
_EdgesOnShape* subEOS = eos.GetData().GetShapeEdges( sm->GetId() );
if ( !subEOS->_sWOL.IsNull() ) continue;
if ( std::find( eosC1.begin(), eosC1.end(), subEOS ) != eosC1.end() ) continue;
putOnOffsetSurface( *subEOS, infStep, eosC1, smooStep, _LayerEdge::UPD_NORMAL_CONV );
}
cnvFace->_normalsFixedOnBorders = true;
}
// bos #20643
// negative smooStep means "final step", where we don't treat RISKY_SWOL edges
// as edges based on FACE are a bit late comparing with them
if ( smooStep >= 0 &&
neighborHasRiskySWOL &&
moveAll != _LayerEdge::RISKY_SWOL &&
eos.ShapeType() == TopAbs_FACE )
{
// put on the surface nodes built on FACE boundaries
SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false);
while ( smIt->more() )
{
SMESH_subMesh* sm = smIt->next();
_EdgesOnShape* subEOS = eos.GetData().GetShapeEdges( sm->GetId() );
if ( subEOS->_sWOL.IsNull() ) continue;
if ( std::find( eosC1.begin(), eosC1.end(), subEOS ) != eosC1.end() ) continue;
putOnOffsetSurface( *subEOS, infStep, eosC1, smooStep, _LayerEdge::RISKY_SWOL );
}
}
}
//================================================================================
/*!
* \brief Return a curve of the EDGE to be used for smoothing and arrange
* _LayerEdge's to be in a consequent order
*/
//================================================================================
Handle(Geom_Curve) _Smoother1D::CurveForSmooth( const TopoDS_Edge& E,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper)
{
SMESHDS_SubMesh* smDS = eos._subMesh->GetSubMeshDS();
TopLoc_Location loc; double f,l;
Handle(Geom_Line) line;
Handle(Geom_Circle) circle;
bool isLine, isCirc;
if ( eos._sWOL.IsNull() ) /////////////////////////////////////////// 3D case
{
// check if the EDGE is a line
Handle(Geom_Curve) curve = BRep_Tool::Curve( E, f, l);
if ( curve->IsKind( STANDARD_TYPE( Geom_TrimmedCurve )))
curve = Handle(Geom_TrimmedCurve)::DownCast( curve )->BasisCurve();
line = Handle(Geom_Line)::DownCast( curve );
circle = Handle(Geom_Circle)::DownCast( curve );
isLine = (!line.IsNull());
isCirc = (!circle.IsNull());
if ( !isLine && !isCirc ) // Check if the EDGE is close to a line
{
isLine = SMESH_Algo::IsStraight( E );
if ( isLine )
line = new Geom_Line( gp::OX() ); // only type does matter
}
if ( !isLine && !isCirc && eos._edges.size() > 2) // Check if the EDGE is close to a circle
{
// TODO
}
}
else //////////////////////////////////////////////////////////////////////// 2D case
{
if ( !eos._isRegularSWOL ) // 23190
return NULL;
const TopoDS_Face& F = TopoDS::Face( eos._sWOL );
// check if the EDGE is a line
Handle(Geom2d_Curve) curve = BRep_Tool::CurveOnSurface( E, F, f, l );
if ( curve->IsKind( STANDARD_TYPE( Geom2d_TrimmedCurve )))
curve = Handle(Geom2d_TrimmedCurve)::DownCast( curve )->BasisCurve();
Handle(Geom2d_Line) line2d = Handle(Geom2d_Line)::DownCast( curve );
Handle(Geom2d_Circle) circle2d = Handle(Geom2d_Circle)::DownCast( curve );
isLine = (!line2d.IsNull());
isCirc = (!circle2d.IsNull());
if ( !isLine && !isCirc ) // Check if the EDGE is close to a line
{
Bnd_B2d bndBox;
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
while ( nIt->more() )
bndBox.Add( helper.GetNodeUV( F, nIt->next() ));
gp_XY size = bndBox.CornerMax() - bndBox.CornerMin();
const double lineTol = 1e-2 * sqrt( bndBox.SquareExtent() );
for ( int i = 0; i < 2 && !isLine; ++i )
isLine = ( size.Coord( i+1 ) <= lineTol );
}
if ( !isLine && !isCirc && eos._edges.size() > 2 ) // Check if the EDGE is close to a circle
{
// TODO
}
if ( isLine )
{
line = new Geom_Line( gp::OX() ); // only type does matter
}
else if ( isCirc )
{
gp_Pnt2d p = circle2d->Location();
gp_Ax2 ax( gp_Pnt( p.X(), p.Y(), 0), gp::DX());
circle = new Geom_Circle( ax, 1.); // only center position does matter
}
}
if ( isLine )
return line;
if ( isCirc )
return circle;
return Handle(Geom_Curve)();
}
//================================================================================
/*!
* \brief Smooth edges on EDGE
*/
//================================================================================
bool _Smoother1D::Perform(_SolidData& data,
Handle(ShapeAnalysis_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper )
{
if ( _leParams.empty() || ( !isAnalytic() && _offPoints.empty() ))
prepare( data );
findEdgesToSmooth();
if ( isAnalytic() )
return smoothAnalyticEdge( data, surface, F, helper );
else
return smoothComplexEdge ( data, surface, F, helper );
}
//================================================================================
/*!
* \brief Find edges to smooth
*/
//================================================================================
void _Smoother1D::findEdgesToSmooth()
{
_LayerEdge* leOnV[2] = { getLEdgeOnV(0), getLEdgeOnV(1) };
for ( int iEnd = 0; iEnd < 2; ++iEnd )
if ( leOnV[iEnd]->Is( _LayerEdge::NORMAL_UPDATED ))
_leOnV[iEnd]._cosin = Abs( _edgeDir[iEnd].Normalized() * leOnV[iEnd]->_normal );
_eToSmooth[0].first = _eToSmooth[0].second = 0;
for ( size_t i = 0; i < _eos.size(); ++i )
{
if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH ))
{
if ( needSmoothing( _leOnV[0]._cosin,
_eos[i]->_len * leOnV[0]->_lenFactor, _curveLen * _leParams[i] ) ||
isToSmooth( i )
)
_eos[i]->Set( _LayerEdge::TO_SMOOTH );
else
break;
}
_eToSmooth[0].second = i+1;
}
_eToSmooth[1].first = _eToSmooth[1].second = _eos.size();
for ( int i = _eos.size() - 1; i >= _eToSmooth[0].second; --i )
{
if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH ))
{
if ( needSmoothing( _leOnV[1]._cosin,
_eos[i]->_len * leOnV[1]->_lenFactor, _curveLen * ( 1.-_leParams[i] )) ||
isToSmooth( i ))
_eos[i]->Set( _LayerEdge::TO_SMOOTH );
else
break;
}
_eToSmooth[1].first = i;
}
}
//================================================================================
/*!
* \brief Check if iE-th _LayerEdge needs smoothing
*/
//================================================================================
bool _Smoother1D::isToSmooth( int iE )
{
SMESH_NodeXYZ pi( _eos[iE]->_nodes[0] );
SMESH_NodeXYZ p0( _eos[iE]->_2neibors->srcNode(0) );
SMESH_NodeXYZ p1( _eos[iE]->_2neibors->srcNode(1) );
gp_XYZ seg0 = pi - p0;
gp_XYZ seg1 = p1 - pi;
gp_XYZ tangent = seg0 + seg1;
double tangentLen = tangent.Modulus();
double segMinLen = Min( seg0.Modulus(), seg1.Modulus() );
if ( tangentLen < std::numeric_limits<double>::min() )
return false;
tangent /= tangentLen;
for ( size_t i = 0; i < _eos[iE]->_neibors.size(); ++i )
{
_LayerEdge* ne = _eos[iE]->_neibors[i];
if ( !ne->Is( _LayerEdge::TO_SMOOTH ) ||
ne->_nodes.size() < 2 ||
ne->_nodes[0]->GetPosition()->GetDim() != 2 )
continue;
gp_XYZ edgeVec = SMESH_NodeXYZ( ne->_nodes.back() ) - SMESH_NodeXYZ( ne->_nodes[0] );
double proj = edgeVec * tangent;
if ( needSmoothing( 1., proj, segMinLen ))
return true;
}
return false;
}
//================================================================================
/*!
* \brief smooth _LayerEdge's on a staight EDGE or circular EDGE
*/
//================================================================================
bool _Smoother1D::smoothAnalyticEdge( _SolidData& data,
Handle(ShapeAnalysis_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper)
{
if ( !isAnalytic() ) return false;
size_t iFrom = 0, iTo = _eos._edges.size();
if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Line )))
{
if ( F.IsNull() ) // 3D
{
SMESH_TNodeXYZ pSrc0( _eos._edges[iFrom]->_2neibors->srcNode(0) );
SMESH_TNodeXYZ pSrc1( _eos._edges[iTo-1]->_2neibors->srcNode(1) );
//const gp_XYZ lineDir = pSrc1 - pSrc0;
//_LayerEdge* vLE0 = getLEdgeOnV( 0 );
//_LayerEdge* vLE1 = getLEdgeOnV( 1 );
// bool shiftOnly = ( vLE0->Is( _LayerEdge::NORMAL_UPDATED ) ||
// vLE0->Is( _LayerEdge::BLOCKED ) ||
// vLE1->Is( _LayerEdge::NORMAL_UPDATED ) ||
// vLE1->Is( _LayerEdge::BLOCKED ));
for ( int iEnd = 0; iEnd < 2; ++iEnd )
{
iFrom = _eToSmooth[ iEnd ].first, iTo = _eToSmooth[ iEnd ].second;
if ( iFrom >= iTo ) continue;
SMESH_TNodeXYZ p0( _eos[iFrom]->_2neibors->tgtNode(0) );
SMESH_TNodeXYZ p1( _eos[iTo-1]->_2neibors->tgtNode(1) );
double param0 = ( iFrom == 0 ) ? 0. : _leParams[ iFrom-1 ];
double param1 = _leParams[ iTo ];
for ( size_t i = iFrom; i < iTo; ++i )
{
_LayerEdge* edge = _eos[i];
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edge->_nodes.back() );
double param = ( _leParams[i] - param0 ) / ( param1 - param0 );
gp_XYZ newPos = p0 * ( 1. - param ) + p1 * param;
// if ( shiftOnly || edge->Is( _LayerEdge::NORMAL_UPDATED ))
// {
// gp_XYZ curPos = SMESH_TNodeXYZ ( tgtNode );
// double shift = ( lineDir * ( newPos - pSrc0 ) -
// lineDir * ( curPos - pSrc0 ));
// newPos = curPos + lineDir * shift / lineDir.SquareModulus();
// }
if ( edge->Is( _LayerEdge::BLOCKED ))
{
SMESH_TNodeXYZ pSrc( edge->_nodes[0] );
double curThick = pSrc.SquareDistance( tgtNode );
double newThink = ( pSrc - newPos ).SquareModulus();
if ( newThink > curThick )
continue;
}
edge->_pos.back() = newPos;
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
dumpMove( tgtNode );
}
}
}
else // 2D
{
_LayerEdge* eV0 = getLEdgeOnV( 0 );
_LayerEdge* eV1 = getLEdgeOnV( 1 );
gp_XY uvV0 = eV0->LastUV( F, *data.GetShapeEdges( eV0 ));
gp_XY uvV1 = eV1->LastUV( F, *data.GetShapeEdges( eV1 ));
if ( eV0->_nodes.back() == eV1->_nodes.back() ) // closed edge
{
int iPeriodic = helper.GetPeriodicIndex();
if ( iPeriodic == 1 || iPeriodic == 2 )
{
uvV1.SetCoord( iPeriodic, helper.GetOtherParam( uvV1.Coord( iPeriodic )));
if ( uvV0.Coord( iPeriodic ) > uvV1.Coord( iPeriodic ))
std::swap( uvV0, uvV1 );
}
}
for ( int iEnd = 0; iEnd < 2; ++iEnd )
{
iFrom = _eToSmooth[ iEnd ].first, iTo = _eToSmooth[ iEnd ].second;
if ( iFrom >= iTo ) continue;
_LayerEdge* e0 = _eos[iFrom]->_2neibors->_edges[0];
_LayerEdge* e1 = _eos[iTo-1]->_2neibors->_edges[1];
gp_XY uv0 = ( e0 == eV0 ) ? uvV0 : e0->LastUV( F, _eos );
gp_XY uv1 = ( e1 == eV1 ) ? uvV1 : e1->LastUV( F, _eos );
double param0 = ( iFrom == 0 ) ? 0. : _leParams[ iFrom-1 ];
double param1 = _leParams[ iTo ];
gp_XY rangeUV = uv1 - uv0;
for ( size_t i = iFrom; i < iTo; ++i )
{
if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue;
double param = ( _leParams[i] - param0 ) / ( param1 - param0 );
gp_XY newUV = uv0 + param * rangeUV;
gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos[i]->_nodes.back() );
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
dumpMove( tgtNode );
if ( SMDS_FacePositionPtr pos = tgtNode->GetPosition() ) // NULL if F is noShrink
{
pos->SetUParameter( newUV.X() );
pos->SetVParameter( newUV.Y() );
}
gp_XYZ newUV0( newUV.X(), newUV.Y(), 0 );
if ( !_eos[i]->Is( _LayerEdge::SMOOTHED ))
{
_eos[i]->Set( _LayerEdge::SMOOTHED ); // to check in refine() (IPAL54237)
if ( _eos[i]->_pos.size() > 2 )
{
// modify previous positions to make _LayerEdge less sharply bent
vector<gp_XYZ>& uvVec = _eos[i]->_pos;
const gp_XYZ uvShift = newUV0 - uvVec.back();
const double len2 = ( uvVec.back() - uvVec[ 0 ] ).SquareModulus();
int iPrev = uvVec.size() - 2;
while ( iPrev > 0 )
{
double r = ( uvVec[ iPrev ] - uvVec[0] ).SquareModulus() / len2;
uvVec[ iPrev ] += uvShift * r;
--iPrev;
}
}
}
_eos[i]->_pos.back() = newUV0;
}
}
}
return true;
}
if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Circle )))
{
Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast( _anaCurve );
gp_Pnt center3D = circle->Location();
if ( F.IsNull() ) // 3D
{
if ( getLEdgeOnV( 0 )->_nodes.back() == getLEdgeOnV( 1 )->_nodes.back() )
return true; // closed EDGE - nothing to do
// circle is a real curve of EDGE
gp_Circ circ = circle->Circ();
// new center is shifted along its axis
const gp_Dir& axis = circ.Axis().Direction();
_LayerEdge* e0 = getLEdgeOnV(0);
_LayerEdge* e1 = getLEdgeOnV(1);
SMESH_TNodeXYZ p0 = e0->_nodes.back();
SMESH_TNodeXYZ p1 = e1->_nodes.back();
double shift1 = axis.XYZ() * ( p0 - center3D.XYZ() );
double shift2 = axis.XYZ() * ( p1 - center3D.XYZ() );
gp_Pnt newCenter = center3D.XYZ() + axis.XYZ() * 0.5 * ( shift1 + shift2 );
double newRadius = 0.5 * ( newCenter.Distance( p0 ) + newCenter.Distance( p1 ));
gp_Ax2 newAxis( newCenter, axis, gp_Vec( newCenter, p0 ));
gp_Circ newCirc( newAxis, newRadius );
gp_Vec vecC1 ( newCenter, p1 );
double uLast = newAxis.XDirection().AngleWithRef( vecC1, newAxis.Direction() ); // -PI - +PI
if ( uLast < 0 )
uLast += 2 * M_PI;
for ( size_t i = 0; i < _eos.size(); ++i )
{
if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue;
//if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue;
double u = uLast * _leParams[i];
gp_Pnt p = ElCLib::Value( u, newCirc );
_eos._edges[i]->_pos.back() = p.XYZ();
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos._edges[i]->_nodes.back() );
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( tgtNode );
}
return true;
}
else // 2D
{
const gp_XY center( center3D.X(), center3D.Y() );
_LayerEdge* e0 = getLEdgeOnV(0);
_LayerEdge* eM = _eos._edges[ 0 ];
_LayerEdge* e1 = getLEdgeOnV(1);
gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 ) );
gp_XY uvM = eM->LastUV( F, *data.GetShapeEdges( eM ) );
gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 ) );
gp_Vec2d vec0( center, uv0 );
gp_Vec2d vecM( center, uvM );
gp_Vec2d vec1( center, uv1 );
double uLast = vec0.Angle( vec1 ); // -PI - +PI
double uMidl = vec0.Angle( vecM );
if ( uLast * uMidl <= 0. )
uLast += ( uMidl > 0 ? +2. : -2. ) * M_PI;
const double radius = 0.5 * ( vec0.Magnitude() + vec1.Magnitude() );
gp_Ax2d axis( center, vec0 );
gp_Circ2d circ( axis, radius );
for ( size_t i = 0; i < _eos.size(); ++i )
{
if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue;
//if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue;
double newU = uLast * _leParams[i];
gp_Pnt2d newUV = ElCLib::Value( newU, circ );
_eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 );
gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos._edges[i]->_nodes.back() );
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
dumpMove( tgtNode );
if ( SMDS_FacePositionPtr pos = tgtNode->GetPosition() ) // NULL if F is noShrink
{
pos->SetUParameter( newUV.X() );
pos->SetVParameter( newUV.Y() );
}
_eos[i]->Set( _LayerEdge::SMOOTHED ); // to check in refine() (IPAL54237)
}
}
return true;
}
return false;
}
//================================================================================
/*!
* \brief smooth _LayerEdge's on a an EDGE
*/
//================================================================================
bool _Smoother1D::smoothComplexEdge( _SolidData& /*data*/,
Handle(ShapeAnalysis_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& /*helper*/)
{
if ( _offPoints.empty() )
return false;
// ----------------------------------------------
// move _offPoints along normals of _LayerEdge's
// ----------------------------------------------
_LayerEdge* e[2] = { getLEdgeOnV(0), getLEdgeOnV(1) };
if ( e[0]->Is( _LayerEdge::NORMAL_UPDATED ))
_leOnV[0]._normal = getNormalNormal( e[0]->_normal, _edgeDir[0] );
if ( e[1]->Is( _LayerEdge::NORMAL_UPDATED ))
_leOnV[1]._normal = getNormalNormal( e[1]->_normal, _edgeDir[1] );
_leOnV[0]._len = e[0]->_len;
_leOnV[1]._len = e[1]->_len;
for ( size_t i = 0; i < _offPoints.size(); i++ )
{
_LayerEdge* e0 = _offPoints[i]._2edges._edges[0];
_LayerEdge* e1 = _offPoints[i]._2edges._edges[1];
const double w0 = _offPoints[i]._2edges._wgt[0];
const double w1 = _offPoints[i]._2edges._wgt[1];
gp_XYZ avgNorm = ( e0->_normal * w0 + e1->_normal * w1 ).Normalized();
double avgLen = ( e0->_len * w0 + e1->_len * w1 );
double avgFact = ( e0->_lenFactor * w0 + e1->_lenFactor * w1 );
if ( e0->Is( _LayerEdge::NORMAL_UPDATED ) ||
e1->Is( _LayerEdge::NORMAL_UPDATED ))
avgNorm = getNormalNormal( avgNorm, _offPoints[i]._edgeDir );
_offPoints[i]._xyz += avgNorm * ( avgLen - _offPoints[i]._len ) * avgFact;
_offPoints[i]._len = avgLen;
}
double fTol = 0;
if ( !surface.IsNull() ) // project _offPoints to the FACE
{
fTol = 100 * BRep_Tool::Tolerance( F );
//const double segLen = _offPoints[0].Distance( _offPoints[1] );
gp_Pnt2d uv = surface->ValueOfUV( _offPoints[0]._xyz, fTol );
//if ( surface->Gap() < 0.5 * segLen )
_offPoints[0]._xyz = surface->Value( uv ).XYZ();
for ( size_t i = 1; i < _offPoints.size(); ++i )
{
uv = surface->NextValueOfUV( uv, _offPoints[i]._xyz, fTol );
//if ( surface->Gap() < 0.5 * segLen )
_offPoints[i]._xyz = surface->Value( uv ).XYZ();
}
}
// -----------------------------------------------------------------
// project tgt nodes of extreme _LayerEdge's to the offset segments
// -----------------------------------------------------------------
const int updatedOrBlocked = _LayerEdge::NORMAL_UPDATED | _LayerEdge::BLOCKED;
if ( e[0]->Is( updatedOrBlocked )) _iSeg[0] = 0;
if ( e[1]->Is( updatedOrBlocked )) _iSeg[1] = _offPoints.size()-2;
gp_Pnt pExtreme[2], pProj[2];
bool isProjected[2];
for ( int is2nd = 0; is2nd < 2; ++is2nd )
{
pExtreme[ is2nd ] = SMESH_TNodeXYZ( e[is2nd]->_nodes.back() );
int i = _iSeg[ is2nd ];
int di = is2nd ? -1 : +1;
bool & projected = isProjected[ is2nd ];
projected = false;
double uOnSeg, distMin = Precision::Infinite(), dist, distPrev = 0;
int nbWorse = 0;
do {
gp_Vec v0p( _offPoints[i]._xyz, pExtreme[ is2nd ] );
gp_Vec v01( _offPoints[i]._xyz, _offPoints[i+1]._xyz );
uOnSeg = ( v0p * v01 ) / v01.SquareMagnitude(); // param [0,1] along v01
projected = ( Abs( uOnSeg - 0.5 ) <= 0.5 );
dist = pExtreme[ is2nd ].SquareDistance( _offPoints[ i + ( uOnSeg > 0.5 )]._xyz );
if ( dist < distMin || projected )
{
_iSeg[ is2nd ] = i;
pProj[ is2nd ] = _offPoints[i]._xyz + ( v01 * uOnSeg ).XYZ();
distMin = dist;
}
else if ( dist > distPrev )
{
if ( ++nbWorse > 3 ) // avoid projection to the middle of a closed EDGE
break;
}
distPrev = dist;
i += di;
}
while ( !projected &&
i >= 0 && i+1 < (int)_offPoints.size() );
if ( !projected )
{
if (( is2nd && _iSeg[1] != _offPoints.size()-2 ) || ( !is2nd && _iSeg[0] != 0 ))
{
_iSeg[0] = 0;
_iSeg[1] = _offPoints.size()-2;
debugMsg( "smoothComplexEdge() failed to project nodes of extreme _LayerEdge's" );
return false;
}
}
}
if ( _iSeg[0] > _iSeg[1] )
{
debugMsg( "smoothComplexEdge() incorrectly projected nodes of extreme _LayerEdge's" );
return false;
}
// adjust length of extreme LE (test viscous_layers_01/B7)
gp_Vec vDiv0( pExtreme[0], pProj[0] );
gp_Vec vDiv1( pExtreme[1], pProj[1] );
double d0 = vDiv0.Magnitude();
double d1 = isProjected[1] ? vDiv1.Magnitude() : 0;
if ( e[0]->Is( _LayerEdge::BLOCKED )) {
if ( e[0]->_normal * vDiv0.XYZ() < 0 ) e[0]->_len += d0;
else e[0]->_len -= d0;
}
if ( e[1]->Is( _LayerEdge::BLOCKED )) {
if ( e[1]->_normal * vDiv1.XYZ() < 0 ) e[1]->_len += d1;
else e[1]->_len -= d1;
}
// ---------------------------------------------------------------------------------
// compute normalized length of the offset segments located between the projections
// ---------------------------------------------------------------------------------
// temporary replace extreme _offPoints by pExtreme
gp_XYZ opXYZ[2] = { _offPoints[ _iSeg[0] ]._xyz,
_offPoints[ _iSeg[1]+1 ]._xyz };
_offPoints[ _iSeg[0] ]._xyz = pExtreme[0].XYZ();
_offPoints[ _iSeg[1]+ 1]._xyz = pExtreme[1].XYZ();
size_t iSeg = 0, nbSeg = _iSeg[1] - _iSeg[0] + 1;
vector< double > len( nbSeg + 1 );
len[ iSeg++ ] = 0;
len[ iSeg++ ] = pProj[ 0 ].Distance( _offPoints[ _iSeg[0]+1 ]._xyz );
for ( size_t i = _iSeg[0]+1; i <= _iSeg[1]; ++i, ++iSeg )
{
len[ iSeg ] = len[ iSeg-1 ] + _offPoints[i].Distance( _offPoints[i+1] );
}
// if ( isProjected[ 1 ])
// len[ nbSeg ] -= pProj[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz );
// else
// len[ nbSeg ] += pExtreme[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz );
double fullLen = len.back() - d0 - d1;
for ( iSeg = 0; iSeg < len.size(); ++iSeg )
len[iSeg] = ( len[iSeg] - d0 ) / fullLen;
// -------------------------------------------------------------
// distribute tgt nodes of _LayerEdge's between the projections
// -------------------------------------------------------------
iSeg = 0;
for ( size_t i = 0; i < _eos.size(); ++i )
{
if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue;
//if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue;
while ( iSeg+2 < len.size() && _leParams[i] > len[ iSeg+1 ] )
iSeg++;
double r = ( _leParams[i] - len[ iSeg ]) / ( len[ iSeg+1 ] - len[ iSeg ]);
gp_XYZ p = ( _offPoints[ iSeg + _iSeg[0] ]._xyz * ( 1 - r ) +
_offPoints[ iSeg + _iSeg[0] + 1 ]._xyz * r );
if ( surface.IsNull() )
{
_eos[i]->_pos.back() = p;
}
else // project a new node position to a FACE
{
gp_Pnt2d uv ( _eos[i]->_pos.back().X(), _eos[i]->_pos.back().Y() );
gp_Pnt2d uv2( surface->NextValueOfUV( uv, p, fTol ));
p = surface->Value( uv2 ).XYZ();
_eos[i]->_pos.back().SetCoord( uv2.X(), uv2.Y(), 0 );
}
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos[i]->_nodes.back() );
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( tgtNode );
}
_offPoints[ _iSeg[0] ]._xyz = opXYZ[0];
_offPoints[ _iSeg[1]+1 ]._xyz = opXYZ[1];
return true;
}
//================================================================================
/*!
* \brief Prepare for smoothing
*/
//================================================================================
void _Smoother1D::prepare(_SolidData& data)
{
const TopoDS_Edge& E = TopoDS::Edge( _eos._shape );
_curveLen = SMESH_Algo::EdgeLength( E );
// sort _LayerEdge's by position on the EDGE
data.SortOnEdge( E, _eos._edges );
// compute normalized param of _eos._edges on EDGE
_leParams.resize( _eos._edges.size() + 1 );
{
double curLen;
gp_Pnt pPrev = SMESH_TNodeXYZ( getLEdgeOnV( 0 )->_nodes[0] );
_leParams[0] = 0;
for ( size_t i = 0; i < _eos._edges.size(); ++i )
{
gp_Pnt p = SMESH_TNodeXYZ( _eos._edges[i]->_nodes[0] );
curLen = p.Distance( pPrev );
_leParams[i+1] = _leParams[i] + curLen;
pPrev = p;
}
double fullLen = _leParams.back() + pPrev.Distance( SMESH_TNodeXYZ( getLEdgeOnV(1)->_nodes[0]));
for ( size_t i = 0; i < _leParams.size()-1; ++i )
_leParams[i] = _leParams[i+1] / fullLen;
_leParams.back() = 1.;
}
_LayerEdge* leOnV[2] = { getLEdgeOnV(0), getLEdgeOnV(1) };
// get cosin to use in findEdgesToSmooth()
_edgeDir[0] = getEdgeDir( E, leOnV[0]->_nodes[0], data.GetHelper() );
_edgeDir[1] = getEdgeDir( E, leOnV[1]->_nodes[0], data.GetHelper() );
_leOnV[0]._cosin = Abs( leOnV[0]->_cosin );
_leOnV[1]._cosin = Abs( leOnV[1]->_cosin );
_leOnV[0]._flags = _leOnV[1]._flags = 0;
if ( _eos._sWOL.IsNull() ) // 3D
for ( int iEnd = 0; iEnd < 2; ++iEnd )
_leOnV[iEnd]._cosin = Abs( _edgeDir[iEnd].Normalized() * leOnV[iEnd]->_normal );
if ( isAnalytic() )
return;
// divide E to have offset segments with low deflection
BRepAdaptor_Curve c3dAdaptor( E );
const double curDeflect = 0.1; //0.01; // Curvature deflection == |p1p2|*sin(p1p2,p1pM)
const double angDeflect = 0.1; //0.09; // Angular deflection == sin(p1pM,pMp2)
GCPnts_TangentialDeflection discret(c3dAdaptor, angDeflect, curDeflect);
if ( discret.NbPoints() <= 2 )
{
_anaCurve = new Geom_Line( gp::OX() ); // only type does matter
return;
}
const double u0 = c3dAdaptor.FirstParameter();
gp_Pnt p; gp_Vec tangent;
if ( discret.NbPoints() >= (int) _eos.size() + 2 )
{
_offPoints.resize( discret.NbPoints() );
for ( size_t i = 0; i < _offPoints.size(); i++ )
{
double u = discret.Parameter( i+1 );
c3dAdaptor.D1( u, p, tangent );
_offPoints[i]._xyz = p.XYZ();
_offPoints[i]._edgeDir = tangent.XYZ();
_offPoints[i]._param = GCPnts_AbscissaPoint::Length( c3dAdaptor, u0, u ) / _curveLen;
}
}
else
{
std::vector< double > params( _eos.size() + 2 );
params[0] = data.GetHelper().GetNodeU( E, leOnV[0]->_nodes[0] );
params.back() = data.GetHelper().GetNodeU( E, leOnV[1]->_nodes[0] );
for ( size_t i = 0; i < _eos.size(); i++ )
params[i+1] = data.GetHelper().GetNodeU( E, _eos[i]->_nodes[0] );
if ( params[1] > params[ _eos.size() ] )
std::reverse( params.begin() + 1, params.end() - 1 );
_offPoints.resize( _eos.size() + 2 );
for ( size_t i = 0; i < _offPoints.size(); i++ )
{
const double u = params[i];
c3dAdaptor.D1( u, p, tangent );
_offPoints[i]._xyz = p.XYZ();
_offPoints[i]._edgeDir = tangent.XYZ();
_offPoints[i]._param = GCPnts_AbscissaPoint::Length( c3dAdaptor, u0, u ) / _curveLen;
}
}
// set _2edges
_offPoints [0]._2edges.set( &_leOnV[0], &_leOnV[0], 0.5, 0.5 );
_offPoints.back()._2edges.set( &_leOnV[1], &_leOnV[1], 0.5, 0.5 );
_2NearEdges tmp2edges;
tmp2edges._edges[1] = _eos._edges[0];
_leOnV[0]._2neibors = & tmp2edges;
_leOnV[0]._nodes = leOnV[0]->_nodes;
_leOnV[1]._nodes = leOnV[1]->_nodes;
_LayerEdge* eNext, *ePrev = & _leOnV[0];
for ( size_t iLE = 0, i = 1; i < _offPoints.size()-1; i++ )
{
// find _LayerEdge's located before and after an offset point
// (_eos._edges[ iLE ] is next after ePrev)
while ( iLE < _eos._edges.size() && _offPoints[i]._param > _leParams[ iLE ] )
ePrev = _eos._edges[ iLE++ ];
eNext = ePrev->_2neibors->_edges[1];
gp_Pnt p0 = SMESH_TNodeXYZ( ePrev->_nodes[0] );
gp_Pnt p1 = SMESH_TNodeXYZ( eNext->_nodes[0] );
double r = p0.Distance( _offPoints[i]._xyz ) / p0.Distance( p1 );
_offPoints[i]._2edges.set( ePrev, eNext, 1-r, r );
}
// replace _LayerEdge's on VERTEX by _leOnV in _offPoints._2edges
for ( size_t i = 0; i < _offPoints.size(); i++ )
if ( _offPoints[i]._2edges._edges[0] == leOnV[0] )
_offPoints[i]._2edges._edges[0] = & _leOnV[0];
else break;
for ( size_t i = _offPoints.size()-1; i > 0; i-- )
if ( _offPoints[i]._2edges._edges[1] == leOnV[1] )
_offPoints[i]._2edges._edges[1] = & _leOnV[1];
else break;
// set _normal of _leOnV[0] and _leOnV[1] to be normal to the EDGE
int iLBO = _offPoints.size() - 2; // last but one
if ( leOnV[ 0 ]->Is( _LayerEdge::MULTI_NORMAL ))
_leOnV[ 0 ]._normal = getNormalNormal( _eos._edges[1]->_normal, _edgeDir[0] );
else
_leOnV[ 0 ]._normal = getNormalNormal( leOnV[0]->_normal, _edgeDir[0] );
if ( leOnV[ 1 ]->Is( _LayerEdge::MULTI_NORMAL ))
_leOnV[ 1 ]._normal = getNormalNormal( _eos._edges.back()->_normal, _edgeDir[1] );
else
_leOnV[ 1 ]._normal = getNormalNormal( leOnV[1]->_normal, _edgeDir[1] );
_leOnV[ 0 ]._len = 0;
_leOnV[ 1 ]._len = 0;
_leOnV[ 0 ]._lenFactor = _offPoints[1 ]._2edges._edges[1]->_lenFactor;
_leOnV[ 1 ]._lenFactor = _offPoints[iLBO]._2edges._edges[0]->_lenFactor;
_iSeg[0] = 0;
_iSeg[1] = _offPoints.size()-2;
// initialize OffPnt::_len
for ( size_t i = 0; i < _offPoints.size(); ++i )
_offPoints[i]._len = 0;
if ( _eos._edges[0]->NbSteps() > 1 ) // already inflated several times, init _xyz
{
_leOnV[0]._len = leOnV[0]->_len;
_leOnV[1]._len = leOnV[1]->_len;
for ( size_t i = 0; i < _offPoints.size(); i++ )
{
_LayerEdge* e0 = _offPoints[i]._2edges._edges[0];
_LayerEdge* e1 = _offPoints[i]._2edges._edges[1];
const double w0 = _offPoints[i]._2edges._wgt[0];
const double w1 = _offPoints[i]._2edges._wgt[1];
double avgLen = ( e0->_len * w0 + e1->_len * w1 );
gp_XYZ avgXYZ = ( SMESH_TNodeXYZ( e0->_nodes.back() ) * w0 +
SMESH_TNodeXYZ( e1->_nodes.back() ) * w1 );
_offPoints[i]._xyz = avgXYZ;
_offPoints[i]._len = avgLen;
}
}
}
//================================================================================
/*!
* \brief return _normal of _leOnV[is2nd] normal to the EDGE
*/
//================================================================================
gp_XYZ _Smoother1D::getNormalNormal( const gp_XYZ & normal,
const gp_XYZ& edgeDir)
{
gp_XYZ cross = normal ^ edgeDir;
gp_XYZ norm = edgeDir ^ cross;
double size = norm.Modulus();
// if ( size == 0 ) // MULTI_NORMAL _LayerEdge
// return gp_XYZ( 1e-100, 1e-100, 1e-100 );
if ( size < 1e-5 ) // normal || edgeDir (almost) at inflation along EDGE (bos #20643)
{
const _LayerEdge* le = _eos._edges[ _eos._edges.size() / 2 ];
const gp_XYZ& leNorm = le->_normal;
cross = leNorm ^ edgeDir;
norm = edgeDir ^ cross;
size = norm.Modulus();
}
return norm / size;
}
//================================================================================
/*!
* \brief Writes a script creating a mesh composed of _offPoints
*/
//================================================================================
void _Smoother1D::offPointsToPython() const
{
const char* fname = "/tmp/offPoints.py";
cout << "exec(open('"<<fname<<"','rb').read() )"<<endl;
ofstream py(fname);
py << "import SMESH" << endl
<< "from salome.smesh import smeshBuilder" << endl
<< "smesh = smeshBuilder.New(salome.myStudy)" << endl
<< "mesh = smesh.Mesh( 'offPoints' )"<<endl;
for ( size_t i = 0; i < _offPoints.size(); i++ )
{
py << "mesh.AddNode( "
<< _offPoints[i]._xyz.X() << ", "
<< _offPoints[i]._xyz.Y() << ", "
<< _offPoints[i]._xyz.Z() << " )" << endl;
}
}
//================================================================================
/*!
* \brief Sort _LayerEdge's by a parameter on a given EDGE
*/
//================================================================================
void _SolidData::SortOnEdge( const TopoDS_Edge& E,
vector< _LayerEdge* >& edges)
{
map< double, _LayerEdge* > u2edge;
for ( size_t i = 0; i < edges.size(); ++i )
u2edge.insert( u2edge.end(),
make_pair( _helper->GetNodeU( E, edges[i]->_nodes[0] ), edges[i] ));
ASSERT( u2edge.size() == edges.size() );
map< double, _LayerEdge* >::iterator u2e = u2edge.begin();
for ( size_t i = 0; i < edges.size(); ++i, ++u2e )
edges[i] = u2e->second;
Sort2NeiborsOnEdge( edges );
}
//================================================================================
/*!
* \brief Set _2neibors according to the order of _LayerEdge on EDGE
*/
//================================================================================
void _SolidData::Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges )
{
if ( edges.size() < 2 || !edges[0]->_2neibors ) return;
for ( size_t i = 0; i < edges.size()-1; ++i )
if ( edges[i]->_2neibors->tgtNode(1) != edges[i+1]->_nodes.back() )
edges[i]->_2neibors->reverse();
const size_t iLast = edges.size() - 1;
if ( edges.size() > 1 &&
edges[iLast]->_2neibors->tgtNode(0) != edges[iLast-1]->_nodes.back() )
edges[iLast]->_2neibors->reverse();
}
//================================================================================
/*!
* \brief Return _EdgesOnShape* corresponding to the shape
*/
//================================================================================
_EdgesOnShape* _SolidData::GetShapeEdges(const TGeomID shapeID )
{
if ( shapeID < (int)_edgesOnShape.size() &&
_edgesOnShape[ shapeID ]._shapeID == shapeID )
return _edgesOnShape[ shapeID ]._subMesh ? & _edgesOnShape[ shapeID ] : 0;
for ( size_t i = 0; i < _edgesOnShape.size(); ++i )
if ( _edgesOnShape[i]._shapeID == shapeID )
return _edgesOnShape[i]._subMesh ? & _edgesOnShape[i] : 0;
return 0;
}
//================================================================================
/*!
* \brief Return _EdgesOnShape* corresponding to the shape
*/
//================================================================================
_EdgesOnShape* _SolidData::GetShapeEdges(const TopoDS_Shape& shape )
{
SMESHDS_Mesh* meshDS = _proxyMesh->GetMesh()->GetMeshDS();
return GetShapeEdges( meshDS->ShapeToIndex( shape ));
}
//================================================================================
/*!
* \brief Prepare data of the _LayerEdge for smoothing on FACE
*/
//================================================================================
void _SolidData::PrepareEdgesToSmoothOnFace( _EdgesOnShape* eos, bool substituteSrcNodes )
{
SMESH_MesherHelper helper( *_proxyMesh->GetMesh() );
set< TGeomID > vertices;
TopoDS_Face F;
if ( eos->ShapeType() == TopAbs_FACE )
{
// check FACE concavity and get concave VERTEXes
F = TopoDS::Face( eos->_shape );
if ( isConcave( F, helper, &vertices ))
_concaveFaces.insert( eos->_shapeID );
// set eos._eosConcaVer
eos->_eosConcaVer.clear();
eos->_eosConcaVer.reserve( vertices.size() );
for ( set< TGeomID >::iterator v = vertices.begin(); v != vertices.end(); ++v )
{
_EdgesOnShape* eov = GetShapeEdges( *v );
if ( eov && eov->_edges.size() == 1 )
{
eos->_eosConcaVer.push_back( eov );
for ( size_t i = 0; i < eov->_edges[0]->_neibors.size(); ++i )
eov->_edges[0]->_neibors[i]->Set( _LayerEdge::DIFFICULT );
}
}
// SetSmooLen() to _LayerEdge's on FACE
// for ( size_t i = 0; i < eos->_edges.size(); ++i )
// {
// eos->_edges[i]->SetSmooLen( Precision::Infinite() );
// }
// SMESH_subMeshIteratorPtr smIt = eos->_subMesh->getDependsOnIterator(/*includeSelf=*/false);
// while ( smIt->more() ) // loop on sub-shapes of the FACE
// {
// _EdgesOnShape* eoe = GetShapeEdges( smIt->next()->GetId() );
// if ( !eoe ) continue;
// vector<_LayerEdge*>& eE = eoe->_edges;
// for ( size_t iE = 0; iE < eE.size(); ++iE ) // loop on _LayerEdge's on EDGE or VERTEX
// {
// if ( eE[iE]->_cosin <= theMinSmoothCosin )
// continue;
// SMDS_ElemIteratorPtr segIt = eE[iE]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge);
// while ( segIt->more() )
// {
// const SMDS_MeshElement* seg = segIt->next();
// if ( !eos->_subMesh->DependsOn( seg->getshapeId() ))
// continue;
// if ( seg->GetNode(0) != eE[iE]->_nodes[0] )
// continue; // not to check a seg twice
// for ( size_t iN = 0; iN < eE[iE]->_neibors.size(); ++iN )
// {
// _LayerEdge* eN = eE[iE]->_neibors[iN];
// if ( eN->_nodes[0]->getshapeId() != eos->_shapeID )
// continue;
// double dist = SMESH_MeshAlgos::GetDistance( seg, SMESH_TNodeXYZ( eN->_nodes[0] ));
// double smooLen = getSmoothingThickness( eE[iE]->_cosin, dist );
// eN->SetSmooLen( Min( smooLen, eN->GetSmooLen() ));
// eN->Set( _LayerEdge::NEAR_BOUNDARY );
// }
// }
// }
// }
} // if ( eos->ShapeType() == TopAbs_FACE )
for ( size_t i = 0; i < eos->_edges.size(); ++i )
{
eos->_edges[i]->_smooFunction = 0;
eos->_edges[i]->Set( _LayerEdge::TO_SMOOTH );
}
bool isCurved = false;
for ( size_t i = 0; i < eos->_edges.size(); ++i )
{
_LayerEdge* edge = eos->_edges[i];
// get simplices sorted
_Simplex::SortSimplices( edge->_simplices );
// smoothing function
edge->ChooseSmooFunction( vertices, _n2eMap );
// set _curvature
double avgNormProj = 0, avgLen = 0;
for ( size_t iS = 0; iS < edge->_simplices.size(); ++iS )
{
_Simplex& s = edge->_simplices[iS];
gp_XYZ vec = edge->_pos.back() - SMESH_TNodeXYZ( s._nPrev );
avgNormProj += edge->_normal * vec;
avgLen += vec.Modulus();
if ( substituteSrcNodes )
{
s._nNext = _n2eMap[ s._nNext ]->_nodes.back();
s._nPrev = _n2eMap[ s._nPrev ]->_nodes.back();
}
}
avgNormProj /= edge->_simplices.size();
avgLen /= edge->_simplices.size();
if (( edge->_curvature = _Curvature::New( avgNormProj, avgLen )))
{
edge->Set( _LayerEdge::SMOOTHED_C1 );
isCurved = true;
SMDS_FacePositionPtr fPos = edge->_nodes[0]->GetPosition();
if ( !fPos )
for ( size_t iS = 0; iS < edge->_simplices.size() && !fPos; ++iS )
fPos = edge->_simplices[iS]._nPrev->GetPosition();
if ( fPos )
edge->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() );
}
}
// prepare for putOnOffsetSurface()
if (( eos->ShapeType() == TopAbs_FACE ) &&
( isCurved || !eos->_eosConcaVer.empty() ))
{
eos->_offsetSurf = helper.GetSurface( TopoDS::Face( eos->_shape ));
eos->_edgeForOffset = 0;
double maxCosin = -1;
//bool hasNoShrink = false;
for ( TopExp_Explorer eExp( eos->_shape, TopAbs_EDGE ); eExp.More(); eExp.Next() )
{
_EdgesOnShape* eoe = GetShapeEdges( eExp.Current() );
if ( !eoe || eoe->_edges.empty() ) continue;
// if ( eos->GetData()._noShrinkShapes.count( eoe->_shapeID ))
// hasNoShrink = true;
vector<_LayerEdge*>& eE = eoe->_edges;
_LayerEdge* e = eE[ eE.size() / 2 ];
if ( !e->Is( _LayerEdge::RISKY_SWOL ) && e->_cosin > maxCosin )
{
eos->_edgeForOffset = e;
maxCosin = e->_cosin;
}
if ( !eoe->_sWOL.IsNull() )
for ( _LayerEdge* le : eoe->_edges )
if ( le->Is( _LayerEdge::RISKY_SWOL ) && e->_cosin > 0 )
{
// make _neibors on FACE be smoothed after le->Is( BLOCKED )
for ( _LayerEdge* neibor : le->_neibors )
{
int shapeDim = neibor->BaseShapeDim();
if ( shapeDim == 2 )
neibor->Set( _LayerEdge::NEAR_BOUNDARY ); // on FACE
else if ( shapeDim == 0 )
neibor->Set( _LayerEdge::RISKY_SWOL ); // on VERTEX
if ( !neibor->_curvature )
{
gp_XY uv = helper.GetNodeUV( F, neibor->_nodes[0] );
neibor->_curvature = _Factory::NewCurvature();
neibor->_curvature->_r = 0;
neibor->_curvature->_k = 0;
neibor->_curvature->_h2lenRatio = 0;
neibor->_curvature->_uv = uv;
}
}
}
} // loop on EDGEs
// Try to initialize _Mapper2D
// if ( hasNoShrink )
// return;
SMDS_ElemIteratorPtr fIt = eos->_subMesh->GetSubMeshDS()->GetElements();
if ( !fIt->more() || fIt->next()->NbCornerNodes() != 4 )
return;
// get EDGEs of quadrangle bottom
std::list< TopoDS_Edge > edges;
std::list< int > nbEdgesInWire;
int nbWire = SMESH_Block::GetOrderedEdges( F, edges, nbEdgesInWire );
if ( nbWire != 1 || nbEdgesInWire.front() < 4 )
return;
const SMDS_MeshNode* node;
while ( true ) // make edges start at a corner VERTEX
{
node = SMESH_Algo::VertexNode( helper.IthVertex( 0, edges.front() ), helper.GetMeshDS() );
if ( node && helper.IsCornerOfStructure( node, eos->_subMesh->GetSubMeshDS(), helper ))
break;
edges.pop_front();
if ( edges.empty() )
return;
}
std::list< TopoDS_Edge >::iterator edgeIt = edges.begin();
while ( true ) // make edges finish at a corner VERTEX
{
node = SMESH_Algo::VertexNode( helper.IthVertex( 1, *edgeIt ), helper.GetMeshDS() );
++edgeIt;
if ( node && helper.IsCornerOfStructure( node, eos->_subMesh->GetSubMeshDS(), helper ))
{
edges.erase( edgeIt, edges.end() );
break;
}
if ( edgeIt == edges.end() )
return;
}
// get structure of nodes
TParam2ColumnMap param2ColumnMap;
if ( !helper.LoadNodeColumns( param2ColumnMap, F, edges, helper.GetMeshDS() ))
return;
eos->_mapper2D = new _Mapper2D( param2ColumnMap, eos->GetData()._n2eMap );
} // if eos is of curved FACE
return;
}
//================================================================================
/*!
* \brief Add faces for smoothing
*/
//================================================================================
void _SolidData::AddShapesToSmooth( const set< _EdgesOnShape* >& eosToSmooth,
const set< _EdgesOnShape* >* edgesNoAnaSmooth )
{
set< _EdgesOnShape * >::const_iterator eos = eosToSmooth.begin();
for ( ; eos != eosToSmooth.end(); ++eos )
{
if ( !*eos || (*eos)->_toSmooth ) continue;
(*eos)->_toSmooth = true;
if ( (*eos)->ShapeType() == TopAbs_FACE )
{
PrepareEdgesToSmoothOnFace( *eos, /*substituteSrcNodes=*/false );
(*eos)->_toSmooth = true;
}
}
// avoid _Smoother1D::smoothAnalyticEdge() of edgesNoAnaSmooth
if ( edgesNoAnaSmooth )
for ( eos = edgesNoAnaSmooth->begin(); eos != edgesNoAnaSmooth->end(); ++eos )
{
if ( (*eos)->_edgeSmoother )
(*eos)->_edgeSmoother->_anaCurve.Nullify();
}
}
//================================================================================
/*!
* \brief Limit _LayerEdge::_maxLen according to local curvature
*/
//================================================================================
void _ViscousBuilder::limitMaxLenByCurvature( _SolidData& data, SMESH_MesherHelper& /*helper*/ )
{
// find intersection of neighbor _LayerEdge's to limit _maxLen
// according to local curvature (IPAL52648)
// This method must be called after findCollisionEdges() where _LayerEdge's
// get _lenFactor initialized in the case of eos._hyp.IsOffsetMethod()
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eosI = data._edgesOnShape[iS];
if ( eosI._edges.empty() ) continue;
if ( !eosI._hyp.ToSmooth() )
{
for ( size_t i = 0; i < eosI._edges.size(); ++i )
{
_LayerEdge* eI = eosI._edges[i];
for ( size_t iN = 0; iN < eI->_neibors.size(); ++iN )
{
_LayerEdge* eN = eI->_neibors[iN];
if ( eI->_nodes[0]->GetID() < eN->_nodes[0]->GetID() ) // treat this pair once
{
_EdgesOnShape* eosN = data.GetShapeEdges( eN );
limitMaxLenByCurvature( eI, eN, eosI, *eosN, eosI._hyp.ToSmooth() );
}
}
}
}
else if ( eosI.ShapeType() == TopAbs_EDGE )
{
const TopoDS_Edge& E = TopoDS::Edge( eosI._shape );
if ( SMESH_Algo::IsStraight( E, /*degenResult=*/true )) continue;
_LayerEdge* e0 = eosI._edges[0];
for ( size_t i = 1; i < eosI._edges.size(); ++i )
{
_LayerEdge* eI = eosI._edges[i];
limitMaxLenByCurvature( eI, e0, eosI, eosI, eosI._hyp.ToSmooth() );
e0 = eI;
}
}
}
}
//================================================================================
/*!
* \brief Limit _LayerEdge::_maxLen according to local curvature
*/
//================================================================================
void _ViscousBuilder::limitMaxLenByCurvature( _LayerEdge* e1,
_LayerEdge* e2,
_EdgesOnShape& /*eos1*/,
_EdgesOnShape& /*eos2*/,
const bool /*isSmoothable*/ )
{
if (( e1->_nodes[0]->GetPosition()->GetDim() !=
e2->_nodes[0]->GetPosition()->GetDim() ) &&
( e1->_cosin < 0.75 ))
return; // angle > 90 deg at e1
gp_XYZ plnNorm = e1->_normal ^ e2->_normal;
double norSize = plnNorm.SquareModulus();
if ( norSize < std::numeric_limits<double>::min() )
return; // parallel normals
// find closest points of skew _LayerEdge's
SMESH_TNodeXYZ src1( e1->_nodes[0] ), src2( e2->_nodes[0] );
gp_XYZ dir12 = src2 - src1;
gp_XYZ perp1 = e1->_normal ^ plnNorm;
gp_XYZ perp2 = e2->_normal ^ plnNorm;
double dot1 = perp2 * e1->_normal;
double dot2 = perp1 * e2->_normal;
double u1 = ( perp2 * dir12 ) / dot1;
double u2 = - ( perp1 * dir12 ) / dot2;
if ( u1 > 0 && u2 > 0 )
{
double ovl = ( u1 * e1->_normal * dir12 -
u2 * e2->_normal * dir12 ) / dir12.SquareModulus();
if ( ovl > theSmoothThickToElemSizeRatio )
{
const double coef = 0.75;
e1->SetMaxLen( Min( e1->_maxLen, coef * u1 / e1->_lenFactor ));
e2->SetMaxLen( Min( e2->_maxLen, coef * u2 / e2->_lenFactor ));
}
}
}
//================================================================================
/*!
* \brief Fill data._collisionEdges
*/
//================================================================================
void _ViscousBuilder::findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper )
{
data._collisionEdges.clear();
// set the full thickness of the layers to LEs
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
if ( eos._edges.empty() ) continue;
if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue;
if ( !eos._sWOL.IsNull() ) continue; // PAL23566
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
double maxLen = eos._edges[i]->_maxLen;
eos._edges[i]->_maxLen = Precision::Infinite(); // avoid blocking
eos._edges[i]->SetNewLength( 1.5 * maxLen, eos, helper );
eos._edges[i]->_maxLen = maxLen;
}
}
// make temporary quadrangles got by extrusion of
// mesh edges along _LayerEdge._normal's
vector< const SMDS_MeshElement* > tmpFaces;
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( eos.ShapeType() != TopAbs_EDGE )
continue;
if ( eos._edges.empty() )
{
_LayerEdge* edge[2] = { 0, 0 }; // LE of 2 VERTEX'es
SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false);
while ( smIt->more() )
if ( _EdgesOnShape* eov = data.GetShapeEdges( smIt->next()->GetId() ))
if ( eov->_edges.size() == 1 )
edge[ bool( edge[0]) ] = eov->_edges[0];
if ( edge[1] )
{
_TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge[0], edge[1], --_tmpFaceID );
tmpFaces.push_back( f );
}
}
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* edge = eos._edges[i];
for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges
{
const SMDS_MeshNode* src2 = edge->_2neibors->srcNode(j);
if ( src2->GetPosition()->GetDim() > 0 &&
src2->GetID() < edge->_nodes[0]->GetID() )
continue; // avoid using same segment twice
// a _LayerEdge containing tgt2
_LayerEdge* neiborEdge = edge->_2neibors->_edges[j];
_TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID );
tmpFaces.push_back( f );
}
}
}
// Find _LayerEdge's intersecting tmpFaces.
SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(),
tmpFaces.end()));
SMESHUtils::Deleter<SMESH_ElementSearcher> searcher
( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), fIt ));
double dist1, dist2, segLen, eps = 0.5;
_CollisionEdges collEdges;
vector< const SMDS_MeshElement* > suspectFaces;
const double angle45 = Cos( 45. * M_PI / 180. );
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( eos.ShapeType() == TopAbs_FACE || !eos._sWOL.IsNull() )
continue;
// find sub-shapes whose VL can influence VL on eos
set< TGeomID > neighborShapes;
PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE );
while ( const TopoDS_Shape* face = fIt->next() )
{
TGeomID faceID = getMeshDS()->ShapeToIndex( *face );
if ( _EdgesOnShape* eof = data.GetShapeEdges( faceID ))
{
SMESH_subMeshIteratorPtr subIt = eof->_subMesh->getDependsOnIterator(/*includeSelf=*/false);
while ( subIt->more() )
neighborShapes.insert( subIt->next()->GetId() );
}
}
if ( eos.ShapeType() == TopAbs_VERTEX )
{
PShapeIteratorPtr eIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* edge = eIt->next() )
neighborShapes.erase( getMeshDS()->ShapeToIndex( *edge ));
}
// find intersecting _LayerEdge's
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
if ( eos._edges[i]->Is( _LayerEdge::MULTI_NORMAL )) continue;
_LayerEdge* edge = eos._edges[i];
gp_Ax1 lastSegment = edge->LastSegment( segLen, eos );
segLen *= 1.2;
gp_Vec eSegDir0, eSegDir1;
if ( edge->IsOnEdge() )
{
SMESH_TNodeXYZ eP( edge->_nodes[0] );
eSegDir0 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(0) ) - eP;
eSegDir1 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(1) ) - eP;
}
suspectFaces.clear();
searcher->GetElementsInSphere( SMESH_TNodeXYZ( edge->_nodes.back()), edge->_len * 2,
SMDSAbs_Face, suspectFaces );
collEdges._intEdges.clear();
for ( size_t j = 0 ; j < suspectFaces.size(); ++j )
{
const _TmpMeshFaceOnEdge* f = (const _TmpMeshFaceOnEdge*) suspectFaces[j];
if ( f->_le1 == edge || f->_le2 == edge ) continue;
if ( !neighborShapes.count( f->_le1->_nodes[0]->getshapeId() )) continue;
if ( !neighborShapes.count( f->_le2->_nodes[0]->getshapeId() )) continue;
if ( edge->IsOnEdge() ) {
if ( edge->_2neibors->include( f->_le1 ) ||
edge->_2neibors->include( f->_le2 )) continue;
}
else {
if (( f->_le1->IsOnEdge() && f->_le1->_2neibors->include( edge )) ||
( f->_le2->IsOnEdge() && f->_le2->_2neibors->include( edge ))) continue;
}
dist1 = dist2 = Precision::Infinite();
if ( !edge->SegTriaInter( lastSegment, f->n(0), f->n(1), f->n(2), dist1, eps ))
dist1 = Precision::Infinite();
if ( !edge->SegTriaInter( lastSegment, f->n(3), f->n(2), f->n(0), dist2, eps ))
dist2 = Precision::Infinite();
if (( dist1 > segLen ) && ( dist2 > segLen ))
continue;
if ( edge->IsOnEdge() )
{
// skip perpendicular EDGEs
gp_Vec fSegDir = SMESH_TNodeXYZ( f->n(0) ) - SMESH_TNodeXYZ( f->n(3) );
bool isParallel = ( isLessAngle( eSegDir0, fSegDir, angle45 ) ||
isLessAngle( eSegDir1, fSegDir, angle45 ) ||
isLessAngle( eSegDir0, fSegDir.Reversed(), angle45 ) ||
isLessAngle( eSegDir1, fSegDir.Reversed(), angle45 ));
if ( !isParallel )
continue;
}
// either limit inflation of edges or remember them for updating _normal
// double dot = edge->_normal * f->GetDir();
// if ( dot > 0.1 )
{
collEdges._intEdges.push_back( f->_le1 );
collEdges._intEdges.push_back( f->_le2 );
}
// else
// {
// double shortLen = 0.75 * ( Min( dist1, dist2 ) / edge->_lenFactor );
// edge->SetMaxLen( Min( shortLen, edge->_maxLen ));
// }
}
if ( !collEdges._intEdges.empty() )
{
collEdges._edge = edge;
data._collisionEdges.push_back( collEdges );
}
}
}
for ( size_t i = 0 ; i < tmpFaces.size(); ++i )
delete tmpFaces[i];
// restore the zero thickness
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
if ( eos._edges.empty() ) continue;
if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
eos._edges[i]->InvalidateStep( 1, eos );
eos._edges[i]->_len = 0;
}
}
}
//================================================================================
/*!
* \brief Find _LayerEdge's located on boundary of a convex FACE whose normal
* will be updated at each inflation step
*/
//================================================================================
void _ViscousBuilder::findEdgesToUpdateNormalNearConvexFace( _ConvexFace & convFace,
_SolidData& data,
SMESH_MesherHelper& helper )
{
const TGeomID convFaceID = getMeshDS()->ShapeToIndex( convFace._face );
const double preci = BRep_Tool::Tolerance( convFace._face );
Handle(ShapeAnalysis_Surface) surface = helper.GetSurface( convFace._face );
bool edgesToUpdateFound = false;
map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.begin();
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
{
_EdgesOnShape& eos = * id2eos->second;
if ( !eos._sWOL.IsNull() ) continue;
if ( !eos._hyp.ToSmooth() ) continue;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* ledge = eos._edges[ i ];
if ( ledge->Is( _LayerEdge::UPD_NORMAL_CONV )) continue; // already checked
if ( ledge->Is( _LayerEdge::MULTI_NORMAL )) continue; // not inflatable
gp_XYZ tgtPos = ( SMESH_NodeXYZ( ledge->_nodes[0] ) +
ledge->_normal * ledge->_lenFactor * ledge->_maxLen );
// the normal must be updated if distance from tgtPos to surface is less than
// target thickness
// find an initial UV for search of a projection of tgtPos to surface
const SMDS_MeshNode* nodeInFace = 0;
SMDS_ElemIteratorPtr fIt = ledge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() && !nodeInFace )
{
const SMDS_MeshElement* f = fIt->next();
if ( convFaceID != f->getshapeId() ) continue;
SMDS_ElemIteratorPtr nIt = f->nodesIterator();
while ( nIt->more() && !nodeInFace )
{
const SMDS_MeshElement* n = nIt->next();
if ( n->getshapeId() == convFaceID )
nodeInFace = static_cast< const SMDS_MeshNode* >( n );
}
}
if ( !nodeInFace )
continue;
gp_XY uv = helper.GetNodeUV( convFace._face, nodeInFace );
// projection
surface->NextValueOfUV( uv, tgtPos, preci );
double dist = surface->Gap();
if ( dist < 0.95 * ledge->_maxLen )
{
ledge->Set( _LayerEdge::UPD_NORMAL_CONV );
if ( !ledge->_curvature ) ledge->_curvature = _Factory::NewCurvature();
ledge->_curvature->_uv.SetCoord( uv.X(), uv.Y() );
edgesToUpdateFound = true;
}
}
}
if ( !convFace._isTooCurved && edgesToUpdateFound )
{
data._convexFaces.insert( make_pair( convFaceID, convFace )).first->second;
}
}
//================================================================================
/*!
* \brief Modify normals of _LayerEdge's on EDGE's to avoid intersection with
* _LayerEdge's on neighbor EDGE's
*/
//================================================================================
bool _ViscousBuilder::updateNormals( _SolidData& data,
SMESH_MesherHelper& helper,
int stepNb,
double /*stepSize*/)
{
updateNormalsOfC1Vertices( data );
if ( stepNb > 0 && !updateNormalsOfConvexFaces( data, helper, stepNb ))
return false;
// map to store new _normal and _cosin for each intersected edge
map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp > edge2newEdge;
map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp >::iterator e2neIt;
_LayerEdge zeroEdge;
zeroEdge._normal.SetCoord( 0,0,0 );
zeroEdge._maxLen = Precision::Infinite();
zeroEdge._nodes.resize(1); // to init _TmpMeshFaceOnEdge
set< _EdgesOnShape* > shapesToSmooth, edgesNoAnaSmooth;
double segLen, dist1, dist2, dist;
vector< pair< _LayerEdge*, double > > intEdgesDist;
_TmpMeshFaceOnEdge quad( &zeroEdge, &zeroEdge, 0 );
for ( int iter = 0; iter < 5; ++iter )
{
edge2newEdge.clear();
for ( size_t iE = 0; iE < data._collisionEdges.size(); ++iE )
{
_CollisionEdges& ce = data._collisionEdges[iE];
_LayerEdge* edge1 = ce._edge;
if ( !edge1 /*|| edge1->Is( _LayerEdge::BLOCKED )*/) continue;
_EdgesOnShape* eos1 = data.GetShapeEdges( edge1 );
if ( !eos1 ) continue;
// detect intersections
gp_Ax1 lastSeg = edge1->LastSegment( segLen, *eos1 );
double testLen = 1.5 * edge1->_maxLen * edge1->_lenFactor;
double eps = 0.5;
intEdgesDist.clear();
double minIntDist = Precision::Infinite();
for ( size_t i = 0; i < ce._intEdges.size(); i += 2 )
{
if ( edge1->Is( _LayerEdge::BLOCKED ) &&
ce._intEdges[i ]->Is( _LayerEdge::BLOCKED ) &&
ce._intEdges[i+1]->Is( _LayerEdge::BLOCKED ))
continue;
double dot = edge1->_normal * quad.GetDir( ce._intEdges[i], ce._intEdges[i+1] );
double fact = ( 1.1 + dot * dot );
SMESH_TNodeXYZ pSrc0( ce.nSrc(i) ), pSrc1( ce.nSrc(i+1) );
SMESH_TNodeXYZ pTgt0( ce.nTgt(i) ), pTgt1( ce.nTgt(i+1) );
gp_XYZ pLast0 = pSrc0 + ( pTgt0 - pSrc0 ) * fact;
gp_XYZ pLast1 = pSrc1 + ( pTgt1 - pSrc1 ) * fact;
dist1 = dist2 = Precision::Infinite();
if ( !edge1->SegTriaInter( lastSeg, pSrc0, pLast0, pSrc1, dist1, eps ) &&
!edge1->SegTriaInter( lastSeg, pSrc1, pLast1, pLast0, dist2, eps ))
continue;
dist = dist1;
if ( dist > testLen || dist <= 0 )
{
dist = dist2;
if ( dist > testLen || dist <= 0 )
continue;
}
// choose a closest edge
gp_Pnt intP( lastSeg.Location().XYZ() + lastSeg.Direction().XYZ() * ( dist + segLen ));
double d1 = intP.SquareDistance( pSrc0 );
double d2 = intP.SquareDistance( pSrc1 );
int iClose = i + ( d2 < d1 );
_LayerEdge* edge2 = ce._intEdges[iClose];
edge2->Unset( _LayerEdge::MARKED );
// choose a closest edge among neighbors
gp_Pnt srcP( SMESH_TNodeXYZ( edge1->_nodes[0] ));
d1 = srcP.SquareDistance( SMESH_TNodeXYZ( edge2->_nodes[0] ));
for ( size_t j = 0; j < intEdgesDist.size(); ++j )
{
_LayerEdge * edgeJ = intEdgesDist[j].first;
if ( edge2->IsNeiborOnEdge( edgeJ ))
{
d2 = srcP.SquareDistance( SMESH_TNodeXYZ( edgeJ->_nodes[0] ));
( d1 < d2 ? edgeJ : edge2 )->Set( _LayerEdge::MARKED );
}
}
intEdgesDist.push_back( make_pair( edge2, dist ));
// if ( Abs( d2 - d1 ) / Max( d2, d1 ) < 0.5 )
// {
// iClose = i + !( d2 < d1 );
// intEdges.push_back( ce._intEdges[iClose] );
// ce._intEdges[iClose]->Unset( _LayerEdge::MARKED );
// }
minIntDist = Min( edge1->_len * edge1->_lenFactor - segLen + dist, minIntDist );
}
//ce._edge = 0;
// compute new _normals
for ( size_t i = 0; i < intEdgesDist.size(); ++i )
{
_LayerEdge* edge2 = intEdgesDist[i].first;
double distWgt = edge1->_len / intEdgesDist[i].second;
// if ( edge1->Is( _LayerEdge::BLOCKED ) &&
// edge2->Is( _LayerEdge::BLOCKED )) continue;
if ( edge2->Is( _LayerEdge::MARKED )) continue;
edge2->Set( _LayerEdge::MARKED );
// get a new normal
gp_XYZ dir1 = edge1->_normal, dir2 = edge2->_normal;
double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin );
double wgt1 = ( cos1 + 0.001 ) / ( cos1 + cos2 + 0.002 );
double wgt2 = ( cos2 + 0.001 ) / ( cos1 + cos2 + 0.002 );
// double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin );
// double sgn1 = 0.1 * ( 1 + edge1->_cosin ), sgn2 = 0.1 * ( 1 + edge2->_cosin );
// double wgt1 = ( cos1 + sgn1 ) / ( cos1 + cos2 + sgn1 + sgn2 );
// double wgt2 = ( cos2 + sgn2 ) / ( cos1 + cos2 + sgn1 + sgn2 );
gp_XYZ newNormal = wgt1 * dir1 + wgt2 * dir2;
newNormal.Normalize();
// get new cosin
double newCos;
double sgn1 = edge1->_cosin / cos1, sgn2 = edge2->_cosin / cos2;
if ( cos1 < theMinSmoothCosin )
{
newCos = cos2 * sgn1;
}
else if ( cos2 > theMinSmoothCosin ) // both cos1 and cos2 > theMinSmoothCosin
{
newCos = ( wgt1 * cos1 + wgt2 * cos2 ) * edge1->_cosin / cos1;
}
else
{
newCos = edge1->_cosin;
}
e2neIt = edge2newEdge.insert( make_pair( edge1, zeroEdge )).first;
e2neIt->second._normal += distWgt * newNormal;
e2neIt->second._cosin = newCos;
e2neIt->second.SetMaxLen( 0.7 * minIntDist / edge1->_lenFactor );
if ( iter > 0 && sgn1 * sgn2 < 0 && edge1->_cosin < 0 )
e2neIt->second._normal += dir2;
e2neIt = edge2newEdge.insert( make_pair( edge2, zeroEdge )).first;
e2neIt->second._normal += distWgt * newNormal;
if ( Precision::IsInfinite( zeroEdge._maxLen ))
{
e2neIt->second._cosin = edge2->_cosin;
e2neIt->second.SetMaxLen( 1.3 * minIntDist / edge1->_lenFactor );
}
if ( iter > 0 && sgn1 * sgn2 < 0 && edge2->_cosin < 0 )
e2neIt->second._normal += dir1;
}
}
if ( edge2newEdge.empty() )
break; //return true;
dumpFunction(SMESH_Comment("updateNormals")<< data._index << "_" << stepNb << "_it" << iter);
// Update data of edges depending on a new _normal
data.UnmarkEdges();
for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt )
{
_LayerEdge* edge = e2neIt->first;
_LayerEdge& newEdge = e2neIt->second;
_EdgesOnShape* eos = data.GetShapeEdges( edge );
if ( edge->Is( _LayerEdge::BLOCKED ) && newEdge._maxLen > edge->_len )
continue;
// Check if a new _normal is OK:
newEdge._normal.Normalize();
if ( !isNewNormalOk( data, *edge, newEdge._normal ))
{
if ( newEdge._maxLen < edge->_len && iter > 0 ) // limit _maxLen
{
edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
edge->SetMaxLen( newEdge._maxLen );
edge->SetNewLength( newEdge._maxLen, *eos, helper );
}
continue; // the new _normal is bad
}
// the new _normal is OK
// find shapes that need smoothing due to change of _normal
if ( edge->_cosin < theMinSmoothCosin &&
newEdge._cosin > theMinSmoothCosin )
{
if ( eos->_sWOL.IsNull() )
{
SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
shapesToSmooth.insert( data.GetShapeEdges( fIt->next()->getshapeId() ));
}
else // edge inflates along a FACE
{
TopoDS_Shape V = helper.GetSubShapeByNode( edge->_nodes[0], getMeshDS() );
PShapeIteratorPtr eIt = helper.GetAncestors( V, *_mesh, TopAbs_EDGE, &eos->_sWOL );
while ( const TopoDS_Shape* E = eIt->next() )
{
gp_Vec edgeDir = getEdgeDir( TopoDS::Edge( *E ), TopoDS::Vertex( V ),
eos->_hyp.Get1stLayerThickness() );
double angle = edgeDir.Angle( newEdge._normal ); // [0,PI]
if ( angle < M_PI / 2 )
shapesToSmooth.insert( data.GetShapeEdges( *E ));
}
}
}
double len = edge->_len;
edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
edge->SetNormal( newEdge._normal );
edge->SetCosin( newEdge._cosin );
edge->SetNewLength( len, *eos, helper );
edge->Set( _LayerEdge::MARKED );
edge->Set( _LayerEdge::NORMAL_UPDATED );
edgesNoAnaSmooth.insert( eos );
}
// Update normals and other dependent data of not intersecting _LayerEdge's
// neighboring the intersecting ones
for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt )
{
_LayerEdge* edge1 = e2neIt->first;
_EdgesOnShape* eos1 = data.GetShapeEdges( edge1 );
if ( !edge1->Is( _LayerEdge::MARKED ))
continue;
if ( edge1->IsOnEdge() )
{
const SMDS_MeshNode * n1 = edge1->_2neibors->srcNode(0);
const SMDS_MeshNode * n2 = edge1->_2neibors->srcNode(1);
edge1->SetDataByNeighbors( n1, n2, *eos1, helper );
}
if ( !edge1->_2neibors || !eos1->_sWOL.IsNull() )
continue;
for ( int j = 0; j < 2; ++j ) // loop on 2 neighbors
{
_LayerEdge* neighbor = edge1->_2neibors->_edges[j];
if ( neighbor->Is( _LayerEdge::MARKED ) /*edge2newEdge.count ( neighbor )*/)
continue; // j-th neighbor is also intersected
_LayerEdge* prevEdge = edge1;
const int nbSteps = 10;
for ( int step = nbSteps; step; --step ) // step from edge1 in j-th direction
{
if ( neighbor->Is( _LayerEdge::BLOCKED ) ||
neighbor->Is( _LayerEdge::MARKED ))
break;
_EdgesOnShape* eos = data.GetShapeEdges( neighbor );
if ( !eos ) continue;
_LayerEdge* nextEdge = neighbor;
if ( neighbor->_2neibors )
{
int iNext = 0;
nextEdge = neighbor->_2neibors->_edges[iNext];
if ( nextEdge == prevEdge )
nextEdge = neighbor->_2neibors->_edges[ ++iNext ];
}
double r = double(step-1)/nbSteps/(iter+1);
if ( !nextEdge->_2neibors )
r = Min( r, 0.5 );
gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r);
newNorm.Normalize();
if ( !isNewNormalOk( data, *neighbor, newNorm ))
break;
double len = neighbor->_len;
neighbor->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
neighbor->SetNormal( newNorm );
neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) );
if ( neighbor->_2neibors )
neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], *eos, helper );
neighbor->SetNewLength( len, *eos, helper );
neighbor->Set( _LayerEdge::MARKED );
neighbor->Set( _LayerEdge::NORMAL_UPDATED );
edgesNoAnaSmooth.insert( eos );
if ( !neighbor->_2neibors )
break; // neighbor is on VERTEX
// goto the next neighbor
prevEdge = neighbor;
neighbor = nextEdge;
}
}
}
dumpFunctionEnd();
} // iterations
data.AddShapesToSmooth( shapesToSmooth, &edgesNoAnaSmooth );
return true;
}
//================================================================================
/*!
* \brief Check if a new normal is OK
*/
//================================================================================
bool _ViscousBuilder::isNewNormalOk( _SolidData& data,
_LayerEdge& edge,
const gp_XYZ& newNormal)
{
// check a min angle between the newNormal and surrounding faces
vector<_Simplex> simplices;
SMESH_TNodeXYZ n0( edge._nodes[0] ), n1, n2;
_Simplex::GetSimplices( n0._node, simplices, data._ignoreFaceIds, &data );
double newMinDot = 1, curMinDot = 1;
for ( size_t i = 0; i < simplices.size(); ++i )
{
n1.Set( simplices[i]._nPrev );
n2.Set( simplices[i]._nNext );
gp_XYZ normFace = ( n1 - n0 ) ^ ( n2 - n0 );
double normLen2 = normFace.SquareModulus();
if ( normLen2 < std::numeric_limits<double>::min() )
continue;
normFace /= Sqrt( normLen2 );
newMinDot = Min( newNormal * normFace, newMinDot );
curMinDot = Min( edge._normal * normFace, curMinDot );
}
bool ok = true;
if ( newMinDot < 0.5 )
{
ok = ( newMinDot >= curMinDot * 0.9 );
//return ( newMinDot >= ( curMinDot * ( 0.8 + 0.1 * edge.NbSteps() )));
// double initMinDot2 = 1. - edge._cosin * edge._cosin;
// return ( newMinDot * newMinDot ) >= ( 0.8 * initMinDot2 );
}
return ok;
}
//================================================================================
/*!
* \brief Modify normals of _LayerEdge's on FACE to reflex smoothing
*/
//================================================================================
bool _ViscousBuilder::updateNormalsOfSmoothed( _SolidData& data,
SMESH_MesherHelper& /*helper*/,
const int nbSteps,
const double stepSize )
{
if ( data._nbShapesToSmooth == 0 || nbSteps == 0 )
return true; // no shapes needing smoothing
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( //!eos._toSmooth || _eosC1 have _toSmooth == false
!eos._hyp.ToSmooth() ||
eos.ShapeType() != TopAbs_FACE ||
eos._edges.empty() )
continue;
bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= nbSteps+1 );
if ( !toSmooth ) continue;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* edge = eos._edges[i];
if ( !edge->Is( _LayerEdge::SMOOTHED ))
continue;
if ( edge->Is( _LayerEdge::DIFFICULT ) && nbSteps != 1 )
continue;
const gp_XYZ& pPrev = edge->PrevPos();
const gp_XYZ& pLast = edge->_pos.back();
gp_XYZ stepVec = pLast - pPrev;
double realStepSize = stepVec.Modulus();
if ( realStepSize < numeric_limits<double>::min() )
continue;
edge->_lenFactor = realStepSize / stepSize;
edge->_normal = stepVec / realStepSize;
edge->Set( _LayerEdge::NORMAL_UPDATED );
}
}
return true;
}
//================================================================================
/*!
* \brief Modify normals of _LayerEdge's on C1 VERTEXes
*/
//================================================================================
void _ViscousBuilder::updateNormalsOfC1Vertices( _SolidData& data )
{
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eov = data._edgesOnShape[ iS ];
if ( eov._eosC1.empty() ||
eov.ShapeType() != TopAbs_VERTEX ||
eov._edges.empty() )
continue;
gp_XYZ newNorm = eov._edges[0]->_normal;
double curThick = eov._edges[0]->_len * eov._edges[0]->_lenFactor;
bool normChanged = false;
for ( size_t i = 0; i < eov._eosC1.size(); ++i )
{
_EdgesOnShape* eoe = eov._eosC1[i];
const TopoDS_Edge& e = TopoDS::Edge( eoe->_shape );
const double eLen = SMESH_Algo::EdgeLength( e );
TopoDS_Shape oppV = SMESH_MesherHelper::IthVertex( 0, e );
if ( oppV.IsSame( eov._shape ))
oppV = SMESH_MesherHelper::IthVertex( 1, e );
_EdgesOnShape* eovOpp = data.GetShapeEdges( oppV );
if ( !eovOpp || eovOpp->_edges.empty() ) continue;
if ( eov._edges[0]->Is( _LayerEdge::BLOCKED )) continue;
double curThickOpp = eovOpp->_edges[0]->_len * eovOpp->_edges[0]->_lenFactor;
if ( curThickOpp + curThick < eLen )
continue;
double wgt = 2. * curThick / eLen;
newNorm += wgt * eovOpp->_edges[0]->_normal;
normChanged = true;
}
if ( normChanged )
{
eov._edges[0]->SetNormal( newNorm.Normalized() );
eov._edges[0]->Set( _LayerEdge::NORMAL_UPDATED );
}
}
}
//================================================================================
/*!
* \brief Modify normals of _LayerEdge's on _ConvexFace's
*/
//================================================================================
bool _ViscousBuilder::updateNormalsOfConvexFaces( _SolidData& data,
SMESH_MesherHelper& helper,
int stepNb )
{
SMESHDS_Mesh* meshDS = helper.GetMeshDS();
bool isOK;
map< TGeomID, _ConvexFace >::iterator id2face = data._convexFaces.begin();
for ( ; id2face != data._convexFaces.end(); ++id2face )
{
_ConvexFace & convFace = (*id2face).second;
convFace._normalsFixedOnBorders = false; // to update at each inflation step
if ( convFace._normalsFixed )
continue; // already fixed
if ( convFace.CheckPrisms() )
continue; // nothing to fix
convFace._normalsFixed = true;
BRepAdaptor_Surface surface ( convFace._face, false );
BRepLProp_SLProps surfProp( surface, 2, 1e-6 );
// check if the convex FACE is of spherical shape
Bnd_B3d centersBox; // bbox of centers of curvature of _LayerEdge's on VERTEXes
Bnd_B3d nodesBox;
gp_Pnt center;
map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.begin();
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
{
_EdgesOnShape& eos = *(id2eos->second);
if ( eos.ShapeType() == TopAbs_VERTEX )
{
_LayerEdge* ledge = eos._edges[ 0 ];
if ( convFace.GetCenterOfCurvature( ledge, surfProp, helper, center ))
centersBox.Add( center );
}
for ( size_t i = 0; i < eos._edges.size(); ++i )
nodesBox.Add( SMESH_TNodeXYZ( eos._edges[ i ]->_nodes[0] ));
}
if ( centersBox.IsVoid() )
{
debugMsg( "Error: centersBox.IsVoid()" );
return false;
}
const bool isSpherical =
( centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() );
int nbEdges = helper.Count( convFace._face, TopAbs_EDGE, /*ignoreSame=*/false );
vector < _CentralCurveOnEdge > centerCurves( nbEdges );
if ( isSpherical )
{
// set _LayerEdge::_normal as average of all normals
// WARNING: different density of nodes on EDGEs is not taken into account that
// can lead to an improper new normal
gp_XYZ avgNormal( 0,0,0 );
nbEdges = 0;
id2eos = convFace._subIdToEOS.begin();
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
{
_EdgesOnShape& eos = *(id2eos->second);
// set data of _CentralCurveOnEdge
if ( eos.ShapeType() == TopAbs_EDGE )
{
_CentralCurveOnEdge& ceCurve = centerCurves[ nbEdges++ ];
ceCurve.SetShapes( TopoDS::Edge( eos._shape ), convFace, data, helper );
if ( !eos._sWOL.IsNull() )
ceCurve._adjFace.Nullify();
else
ceCurve._ledges.insert( ceCurve._ledges.end(),
eos._edges.begin(), eos._edges.end());
}
// summarize normals
for ( size_t i = 0; i < eos._edges.size(); ++i )
avgNormal += eos._edges[ i ]->_normal;
}
double normSize = avgNormal.SquareModulus();
if ( normSize < 1e-200 )
{
debugMsg( "updateNormalsOfConvexFaces(): zero avgNormal" );
return false;
}
avgNormal /= Sqrt( normSize );
// compute new _LayerEdge::_cosin on EDGEs
double avgCosin = 0;
int nbCosin = 0;
gp_Vec inFaceDir;
for ( size_t iE = 0; iE < centerCurves.size(); ++iE )
{
_CentralCurveOnEdge& ceCurve = centerCurves[ iE ];
if ( ceCurve._adjFace.IsNull() )
continue;
for ( size_t iLE = 0; iLE < ceCurve._ledges.size(); ++iLE )
{
const SMDS_MeshNode* node = ceCurve._ledges[ iLE ]->_nodes[0];
inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK );
if ( isOK )
{
double angle = inFaceDir.Angle( avgNormal ); // [0,PI]
ceCurve._ledges[ iLE ]->_cosin = Cos( angle );
avgCosin += ceCurve._ledges[ iLE ]->_cosin;
nbCosin++;
}
}
}
if ( nbCosin > 0 )
avgCosin /= nbCosin;
// set _LayerEdge::_normal = avgNormal
id2eos = convFace._subIdToEOS.begin();
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
{
_EdgesOnShape& eos = *(id2eos->second);
if ( eos.ShapeType() != TopAbs_EDGE )
for ( size_t i = 0; i < eos._edges.size(); ++i )
eos._edges[ i ]->_cosin = avgCosin;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
eos._edges[ i ]->SetNormal( avgNormal );
eos._edges[ i ]->Set( _LayerEdge::NORMAL_UPDATED );
}
}
}
else // if ( isSpherical )
{
// We suppose that centers of curvature at all points of the FACE
// lie on some curve, let's call it "central curve". For all _LayerEdge's
// having a common center of curvature we define the same new normal
// as a sum of normals of _LayerEdge's on EDGEs among them.
// get all centers of curvature for each EDGE
helper.SetSubShape( convFace._face );
_LayerEdge* vertexLEdges[2], **edgeLEdge, **edgeLEdgeEnd;
TopExp_Explorer edgeExp( convFace._face, TopAbs_EDGE );
for ( int iE = 0; edgeExp.More(); edgeExp.Next(), ++iE )
{
const TopoDS_Edge& edge = TopoDS::Edge( edgeExp.Current() );
// set adjacent FACE
centerCurves[ iE ].SetShapes( edge, convFace, data, helper );
// get _LayerEdge's of the EDGE
TGeomID edgeID = meshDS->ShapeToIndex( edge );
_EdgesOnShape* eos = data.GetShapeEdges( edgeID );
if ( !eos || eos->_edges.empty() )
{
// no _LayerEdge's on EDGE, use _LayerEdge's on VERTEXes
for ( int iV = 0; iV < 2; ++iV )
{
TopoDS_Vertex v = helper.IthVertex( iV, edge );
TGeomID vID = meshDS->ShapeToIndex( v );
eos = data.GetShapeEdges( vID );
vertexLEdges[ iV ] = eos->_edges[ 0 ];
}
edgeLEdge = &vertexLEdges[0];
edgeLEdgeEnd = edgeLEdge + 2;
centerCurves[ iE ]._adjFace.Nullify();
}
else
{
if ( ! eos->_toSmooth )
data.SortOnEdge( edge, eos->_edges );
edgeLEdge = &eos->_edges[ 0 ];
edgeLEdgeEnd = edgeLEdge + eos->_edges.size();
vertexLEdges[0] = eos->_edges.front()->_2neibors->_edges[0];
vertexLEdges[1] = eos->_edges.back() ->_2neibors->_edges[1];
if ( ! eos->_sWOL.IsNull() )
centerCurves[ iE ]._adjFace.Nullify();
}
// Get curvature centers
centersBox.Clear();
if ( edgeLEdge[0]->IsOnEdge() &&
convFace.GetCenterOfCurvature( vertexLEdges[0], surfProp, helper, center ))
{ // 1st VERTEX
centerCurves[ iE ].Append( center, vertexLEdges[0] );
centersBox.Add( center );
}
for ( ; edgeLEdge < edgeLEdgeEnd; ++edgeLEdge )
if ( convFace.GetCenterOfCurvature( *edgeLEdge, surfProp, helper, center ))
{ // EDGE or VERTEXes
centerCurves[ iE ].Append( center, *edgeLEdge );
centersBox.Add( center );
}
if ( edgeLEdge[-1]->IsOnEdge() &&
convFace.GetCenterOfCurvature( vertexLEdges[1], surfProp, helper, center ))
{ // 2nd VERTEX
centerCurves[ iE ].Append( center, vertexLEdges[1] );
centersBox.Add( center );
}
centerCurves[ iE ]._isDegenerated =
( centersBox.IsVoid() || centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() );
} // loop on EDGES of convFace._face to set up data of centerCurves
// Compute new normals for _LayerEdge's on EDGEs
double avgCosin = 0;
int nbCosin = 0;
gp_Vec inFaceDir;
for ( size_t iE1 = 0; iE1 < centerCurves.size(); ++iE1 )
{
_CentralCurveOnEdge& ceCurve = centerCurves[ iE1 ];
if ( ceCurve._isDegenerated )
continue;
const vector< gp_Pnt >& centers = ceCurve._curvaCenters;
vector< gp_XYZ > & newNormals = ceCurve._normals;
for ( size_t iC1 = 0; iC1 < centers.size(); ++iC1 )
{
isOK = false;
for ( size_t iE2 = 0; iE2 < centerCurves.size() && !isOK; ++iE2 )
{
if ( iE1 != iE2 )
isOK = centerCurves[ iE2 ].FindNewNormal( centers[ iC1 ], newNormals[ iC1 ]);
}
if ( isOK && !ceCurve._adjFace.IsNull() )
{
// compute new _LayerEdge::_cosin
const SMDS_MeshNode* node = ceCurve._ledges[ iC1 ]->_nodes[0];
inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK );
if ( isOK )
{
double angle = inFaceDir.Angle( newNormals[ iC1 ] ); // [0,PI]
ceCurve._ledges[ iC1 ]->_cosin = Cos( angle );
avgCosin += ceCurve._ledges[ iC1 ]->_cosin;
nbCosin++;
}
}
}
}
// set new normals to _LayerEdge's of NOT degenerated central curves
for ( size_t iE = 0; iE < centerCurves.size(); ++iE )
{
if ( centerCurves[ iE ]._isDegenerated )
continue;
for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE )
{
centerCurves[ iE ]._ledges[ iLE ]->SetNormal( centerCurves[ iE ]._normals[ iLE ]);
centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED );
}
}
// set new normals to _LayerEdge's of degenerated central curves
for ( size_t iE = 0; iE < centerCurves.size(); ++iE )
{
if ( !centerCurves[ iE ]._isDegenerated ||
centerCurves[ iE ]._ledges.size() < 3 )
continue;
// new normal is an average of new normals at VERTEXes that
// was computed on non-degenerated _CentralCurveOnEdge's
gp_XYZ newNorm = ( centerCurves[ iE ]._ledges.front()->_normal +
centerCurves[ iE ]._ledges.back ()->_normal );
double sz = newNorm.Modulus();
if ( sz < 1e-200 )
continue;
newNorm /= sz;
double newCosin = ( 0.5 * centerCurves[ iE ]._ledges.front()->_cosin +
0.5 * centerCurves[ iE ]._ledges.back ()->_cosin );
for ( size_t iLE = 1, nb = centerCurves[ iE ]._ledges.size() - 1; iLE < nb; ++iLE )
{
centerCurves[ iE ]._ledges[ iLE ]->SetNormal( newNorm );
centerCurves[ iE ]._ledges[ iLE ]->_cosin = newCosin;
centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED );
}
}
// Find new normals for _LayerEdge's based on FACE
if ( nbCosin > 0 )
avgCosin /= nbCosin;
const TGeomID faceID = meshDS->ShapeToIndex( convFace._face );
map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.find( faceID );
if ( id2eos != convFace._subIdToEOS.end() )
{
int iE = 0;
gp_XYZ newNorm;
_EdgesOnShape& eos = * ( id2eos->second );
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* ledge = eos._edges[ i ];
if ( !convFace.GetCenterOfCurvature( ledge, surfProp, helper, center ))
continue;
for ( size_t i = 0; i < centerCurves.size(); ++i, ++iE )
{
iE = iE % centerCurves.size();
if ( centerCurves[ iE ]._isDegenerated )
continue;
newNorm.SetCoord( 0,0,0 );
if ( centerCurves[ iE ].FindNewNormal( center, newNorm ))
{
ledge->SetNormal( newNorm );
ledge->_cosin = avgCosin;
ledge->Set( _LayerEdge::NORMAL_UPDATED );
break;
}
}
}
}
} // not a quasi-spherical FACE
// Update _LayerEdge's data according to a new normal
dumpFunction(SMESH_Comment("updateNormalsOfConvexFaces")<<data._index
<<"_F"<<meshDS->ShapeToIndex( convFace._face ));
id2eos = convFace._subIdToEOS.begin();
for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos )
{
_EdgesOnShape& eos = * ( id2eos->second );
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* & ledge = eos._edges[ i ];
double len = ledge->_len;
ledge->InvalidateStep( stepNb + 1, eos, /*restoreLength=*/true );
ledge->SetCosin( ledge->_cosin );
ledge->SetNewLength( len, eos, helper );
}
if ( eos.ShapeType() != TopAbs_FACE )
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* ledge = eos._edges[ i ];
for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN )
{
_LayerEdge* neibor = ledge->_neibors[iN];
if ( neibor->_nodes[0]->GetPosition()->GetDim() == 2 )
{
neibor->Set( _LayerEdge::NEAR_BOUNDARY );
neibor->Set( _LayerEdge::MOVED );
neibor->SetSmooLen( neibor->_len );
}
}
}
} // loop on sub-shapes of convFace._face
// Find FACEs adjacent to convFace._face that got necessity to smooth
// as a result of normals modification
set< _EdgesOnShape* > adjFacesToSmooth;
for ( size_t iE = 0; iE < centerCurves.size(); ++iE )
{
if ( centerCurves[ iE ]._adjFace.IsNull() ||
centerCurves[ iE ]._adjFaceToSmooth )
continue;
for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE )
{
if ( centerCurves[ iE ]._ledges[ iLE ]->_cosin > theMinSmoothCosin )
{
adjFacesToSmooth.insert( data.GetShapeEdges( centerCurves[ iE ]._adjFace ));
break;
}
}
}
data.AddShapesToSmooth( adjFacesToSmooth );
dumpFunctionEnd();
} // loop on data._convexFaces
return true;
}
//================================================================================
/*!
* \brief Return max curvature of a FACE
*/
//================================================================================
double _ConvexFace::GetMaxCurvature( _SolidData& data,
_EdgesOnShape& eof,
BRepLProp_SLProps& surfProp,
SMESH_MesherHelper& helper)
{
double maxCurvature = 0;
TopoDS_Face F = TopoDS::Face( eof._shape );
const int nbTestPnt = 5;
const double oriFactor = ( F.Orientation() == TopAbs_REVERSED ? +1. : -1. );
SMESH_subMeshIteratorPtr smIt = eof._subMesh->getDependsOnIterator(/*includeSelf=*/true);
while ( smIt->more() )
{
SMESH_subMesh* sm = smIt->next();
const TGeomID subID = sm->GetId();
// find _LayerEdge's of a sub-shape
_EdgesOnShape* eos;
if (( eos = data.GetShapeEdges( subID )))
this->_subIdToEOS.insert( make_pair( subID, eos ));
else
continue;
// check concavity and curvature and limit data._stepSize
const double minCurvature =
1. / ( eos->_hyp.GetTotalThickness() * ( 1 + theThickToIntersection ));
size_t iStep = Max( 1, eos->_edges.size() / nbTestPnt );
for ( size_t i = 0; i < eos->_edges.size(); i += iStep )
{
gp_XY uv = helper.GetNodeUV( F, eos->_edges[ i ]->_nodes[0] );
surfProp.SetParameters( uv.X(), uv.Y() );
if ( surfProp.IsCurvatureDefined() )
{
double curvature = Max( surfProp.MaxCurvature() * oriFactor,
surfProp.MinCurvature() * oriFactor );
maxCurvature = Max( maxCurvature, curvature );
if ( curvature > minCurvature )
this->_isTooCurved = true;
}
}
} // loop on sub-shapes of the FACE
return maxCurvature;
}
//================================================================================
/*!
* \brief Finds a center of curvature of a surface at a _LayerEdge
*/
//================================================================================
bool _ConvexFace::GetCenterOfCurvature( _LayerEdge* ledge,
BRepLProp_SLProps& surfProp,
SMESH_MesherHelper& helper,
gp_Pnt & center ) const
{
gp_XY uv = helper.GetNodeUV( _face, ledge->_nodes[0] );
surfProp.SetParameters( uv.X(), uv.Y() );
if ( !surfProp.IsCurvatureDefined() )
return false;
const double oriFactor = ( _face.Orientation() == TopAbs_REVERSED ? +1. : -1. );
double surfCurvatureMax = surfProp.MaxCurvature() * oriFactor;
double surfCurvatureMin = surfProp.MinCurvature() * oriFactor;
if ( surfCurvatureMin > surfCurvatureMax )
center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMin * oriFactor );
else
center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMax * oriFactor );
return true;
}
//================================================================================
/*!
* \brief Check that prisms are not distorted
*/
//================================================================================
bool _ConvexFace::CheckPrisms() const
{
double vol = 0;
for ( size_t i = 0; i < _simplexTestEdges.size(); ++i )
{
const _LayerEdge* edge = _simplexTestEdges[i];
SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() );
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
if ( !edge->_simplices[j].IsForward( edge->_nodes[0], tgtXYZ, vol ))
{
debugMsg( "Bad simplex of _simplexTestEdges ("
<< " "<< edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID()
<< " "<< edge->_simplices[j]._nPrev->GetID()
<< " "<< edge->_simplices[j]._nNext->GetID() << " )" );
return false;
}
}
return true;
}
//================================================================================
/*!
* \brief Try to compute a new normal by interpolating normals of _LayerEdge's
* stored in this _CentralCurveOnEdge.
* \param [in] center - curvature center of a point of another _CentralCurveOnEdge.
* \param [in,out] newNormal - current normal at this point, to be redefined
* \return bool - true if succeeded.
*/
//================================================================================
bool _CentralCurveOnEdge::FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal )
{
if ( this->_isDegenerated )
return false;
// find two centers the given one lies between
for ( size_t i = 0, nb = _curvaCenters.size()-1; i < nb; ++i )
{
double sl2 = 1.001 * _segLength2[ i ];
double d1 = center.SquareDistance( _curvaCenters[ i ]);
if ( d1 > sl2 )
continue;
double d2 = center.SquareDistance( _curvaCenters[ i+1 ]);
if ( d2 > sl2 || d2 + d1 < 1e-100 )
continue;
d1 = Sqrt( d1 );
d2 = Sqrt( d2 );
double r = d1 / ( d1 + d2 );
gp_XYZ norm = (( 1. - r ) * _ledges[ i ]->_normal +
( r ) * _ledges[ i+1 ]->_normal );
norm.Normalize();
newNormal += norm;
double sz = newNormal.Modulus();
if ( sz < 1e-200 )
break;
newNormal /= sz;
return true;
}
return false;
}
//================================================================================
/*!
* \brief Set shape members
*/
//================================================================================
void _CentralCurveOnEdge::SetShapes( const TopoDS_Edge& edge,
const _ConvexFace& convFace,
_SolidData& data,
SMESH_MesherHelper& helper)
{
_edge = edge;
PShapeIteratorPtr fIt = helper.GetAncestors( edge, *helper.GetMesh(), TopAbs_FACE );
while ( const TopoDS_Shape* F = fIt->next())
if ( !convFace._face.IsSame( *F ))
{
_adjFace = TopoDS::Face( *F );
_adjFaceToSmooth = false;
// _adjFace already in a smoothing queue ?
if ( _EdgesOnShape* eos = data.GetShapeEdges( _adjFace ))
_adjFaceToSmooth = eos->_toSmooth;
break;
}
}
//================================================================================
/*!
* \brief Looks for intersection of it's last segment with faces
* \param distance - returns shortest distance from the last node to intersection
*/
//================================================================================
bool _LayerEdge::FindIntersection( SMESH_ElementSearcher& searcher,
double & distance,
const double& epsilon,
_EdgesOnShape& eos,
const SMDS_MeshElement** intFace)
{
vector< const SMDS_MeshElement* > suspectFaces;
double segLen;
gp_Ax1 lastSegment = LastSegment( segLen, eos );
searcher.GetElementsNearLine( lastSegment, SMDSAbs_Face, suspectFaces );
bool segmentIntersected = false;
distance = Precision::Infinite();
int iFace = -1; // intersected face
for ( size_t j = 0 ; j < suspectFaces.size() /*&& !segmentIntersected*/; ++j )
{
const SMDS_MeshElement* face = suspectFaces[j];
if ( face->GetNodeIndex( _nodes.back() ) >= 0 ||
face->GetNodeIndex( _nodes[0] ) >= 0 )
continue; // face sharing _LayerEdge node
const int nbNodes = face->NbCornerNodes();
bool intFound = false;
double dist;
SMDS_MeshElement::iterator nIt = face->begin_nodes();
if ( nbNodes == 3 )
{
intFound = SegTriaInter( lastSegment, *nIt++, *nIt++, *nIt++, dist, epsilon );
}
else
{
const SMDS_MeshNode* tria[3];
tria[0] = *nIt++;
tria[1] = *nIt++;
for ( int n2 = 2; n2 < nbNodes && !intFound; ++n2 )
{
tria[2] = *nIt++;
intFound = SegTriaInter(lastSegment, tria[0], tria[1], tria[2], dist, epsilon );
tria[1] = tria[2];
}
}
if ( intFound )
{
if ( dist < segLen*(1.01) && dist > -(_len*_lenFactor-segLen) )
segmentIntersected = true;
if ( distance > dist )
distance = dist, iFace = j;
}
}
if ( intFace ) *intFace = ( iFace != -1 ) ? suspectFaces[iFace] : 0;
distance -= segLen;
if ( segmentIntersected )
{
#ifdef __myDEBUG
SMDS_MeshElement::iterator nIt = suspectFaces[iFace]->begin_nodes();
gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * ( distance+segLen ));
cout << "nodes: tgt " << _nodes.back()->GetID() << " src " << _nodes[0]->GetID()
<< ", intersection with face ("
<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()
<< ") at point (" << intP.X() << ", " << intP.Y() << ", " << intP.Z()
<< ") distance = " << distance << endl;
#endif
}
return segmentIntersected;
}
//================================================================================
/*!
* \brief Returns a point used to check orientation of _simplices
*/
//================================================================================
gp_XYZ _LayerEdge::PrevCheckPos( _EdgesOnShape* eos ) const
{
size_t i = Is( NORMAL_UPDATED ) && IsOnFace() ? _pos.size()-2 : 0;
if ( !eos || eos->_sWOL.IsNull() )
return _pos[ i ];
if ( eos->SWOLType() == TopAbs_EDGE )
{
return BRepAdaptor_Curve( TopoDS::Edge( eos->_sWOL )).Value( _pos[i].X() ).XYZ();
}
//else // TopAbs_FACE
return BRepAdaptor_Surface( TopoDS::Face( eos->_sWOL )).Value(_pos[i].X(), _pos[i].Y() ).XYZ();
}
//================================================================================
/*!
* \brief Returns size and direction of the last segment
*/
//================================================================================
gp_Ax1 _LayerEdge::LastSegment(double& segLen, _EdgesOnShape& eos) const
{
// find two non-coincident positions
gp_XYZ orig = _pos.back();
gp_XYZ vec;
int iPrev = _pos.size() - 2;
//const double tol = ( _len > 0 ) ? 0.3*_len : 1e-100; // adjusted for IPAL52478 + PAL22576
const double tol = ( _len > 0 ) ? ( 1e-6 * _len ) : 1e-100;
while ( iPrev >= 0 )
{
vec = orig - _pos[iPrev];
if ( vec.SquareModulus() > tol*tol )
break;
else
iPrev--;
}
// make gp_Ax1
gp_Ax1 segDir;
if ( iPrev < 0 )
{
segDir.SetLocation( SMESH_TNodeXYZ( _nodes[0] ));
segDir.SetDirection( _normal );
segLen = 0;
}
else
{
gp_Pnt pPrev = _pos[ iPrev ];
if ( !eos._sWOL.IsNull() )
{
TopLoc_Location loc;
if ( eos.SWOLType() == TopAbs_EDGE )
{
double f,l;
Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l);
pPrev = curve->Value( pPrev.X() ).Transformed( loc );
}
else
{
Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face( eos._sWOL ), loc );
pPrev = surface->Value( pPrev.X(), pPrev.Y() ).Transformed( loc );
}
vec = SMESH_TNodeXYZ( _nodes.back() ) - pPrev.XYZ();
}
segDir.SetLocation( pPrev );
segDir.SetDirection( vec );
segLen = vec.Modulus();
}
return segDir;
}
//================================================================================
/*!
* \brief Return the last (or \a which) position of the target node on a FACE.
* \param [in] F - the FACE this _LayerEdge is inflated along
* \param [in] which - index of position
* \return gp_XY - result UV
*/
//================================================================================
gp_XY _LayerEdge::LastUV( const TopoDS_Face& F, _EdgesOnShape& eos, int which ) const
{
if ( F.IsSame( eos._sWOL )) // F is my FACE
return gp_XY( _pos.back().X(), _pos.back().Y() );
if ( eos.SWOLType() != TopAbs_EDGE ) // wrong call
return gp_XY( 1e100, 1e100 );
// _sWOL is EDGE of F; _pos.back().X() is the last U on the EDGE
double f, l, u = _pos[ which < 0 ? _pos.size()-1 : which ].X();
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface( TopoDS::Edge(eos._sWOL), F, f,l);
if ( !C2d.IsNull() && f <= u && u <= l )
return C2d->Value( u ).XY();
return gp_XY( 1e100, 1e100 );
}
//================================================================================
/*!
* \brief Test intersection of the last segment with a given triangle
* using Moller-Trumbore algorithm
* Intersection is detected if distance to intersection is less than _LayerEdge._len
*/
//================================================================================
bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment,
const gp_XYZ& vert0,
const gp_XYZ& vert1,
const gp_XYZ& vert2,
double& t,
const double& EPSILON) const
{
const gp_Pnt& orig = lastSegment.Location();
const gp_Dir& dir = lastSegment.Direction();
/* calculate distance from vert0 to ray origin */
//gp_XYZ tvec = orig.XYZ() - vert0;
//if ( tvec * dir > EPSILON )
// intersected face is at back side of the temporary face this _LayerEdge belongs to
//return false;
gp_XYZ edge1 = vert1 - vert0;
gp_XYZ edge2 = vert2 - vert0;
/* begin calculating determinant - also used to calculate U parameter */
gp_XYZ pvec = dir.XYZ() ^ edge2;
/* if determinant is near zero, ray lies in plane of triangle */
double det = edge1 * pvec;
const double ANGL_EPSILON = 1e-12;
if ( det > -ANGL_EPSILON && det < ANGL_EPSILON )
return false;
/* calculate distance from vert0 to ray origin */
gp_XYZ tvec = orig.XYZ() - vert0;
/* calculate U parameter and test bounds */
double u = ( tvec * pvec ) / det;
//if (u < 0.0 || u > 1.0)
if ( u < -EPSILON || u > 1.0 + EPSILON )
return false;
/* prepare to test V parameter */
gp_XYZ qvec = tvec ^ edge1;
/* calculate V parameter and test bounds */
double v = (dir.XYZ() * qvec) / det;
//if ( v < 0.0 || u + v > 1.0 )
if ( v < -EPSILON || u + v > 1.0 + EPSILON )
return false;
/* calculate t, ray intersects triangle */
t = (edge2 * qvec) / det;
//return true;
return t > 0.;
}
//================================================================================
/*!
* \brief _LayerEdge, located at a concave VERTEX of a FACE, moves target nodes of
* neighbor _LayerEdge's by it's own inflation vector.
* \param [in] eov - EOS of the VERTEX
* \param [in] eos - EOS of the FACE
* \param [in] step - inflation step
* \param [in,out] badSmooEdges - tangled _LayerEdge's
*/
//================================================================================
void _LayerEdge::MoveNearConcaVer( const _EdgesOnShape* eov,
const _EdgesOnShape* eos,
const int step,
vector< _LayerEdge* > & badSmooEdges )
{
// check if any of _neibors is in badSmooEdges
if ( std::find_first_of( _neibors.begin(), _neibors.end(),
badSmooEdges.begin(), badSmooEdges.end() ) == _neibors.end() )
return;
// get all edges to move
set< _LayerEdge* > edges;
// find a distance between _LayerEdge on VERTEX and its neighbors
gp_XYZ curPosV = SMESH_TNodeXYZ( _nodes.back() );
double dist2 = 0;
for ( size_t i = 0; i < _neibors.size(); ++i )
{
_LayerEdge* nEdge = _neibors[i];
if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID )
{
edges.insert( nEdge );
dist2 = Max( dist2, ( curPosV - nEdge->_pos.back() ).SquareModulus() );
}
}
// add _LayerEdge's close to curPosV
size_t nbE;
do {
nbE = edges.size();
for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
{
_LayerEdge* edgeF = *e;
for ( size_t i = 0; i < edgeF->_neibors.size(); ++i )
{
_LayerEdge* nEdge = edgeF->_neibors[i];
if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID &&
dist2 > ( curPosV - nEdge->_pos.back() ).SquareModulus() )
edges.insert( nEdge );
}
}
}
while ( nbE < edges.size() );
// move the target node of the got edges
gp_XYZ prevPosV = PrevPos();
if ( eov->SWOLType() == TopAbs_EDGE )
{
BRepAdaptor_Curve curve ( TopoDS::Edge( eov->_sWOL ));
prevPosV = curve.Value( prevPosV.X() ).XYZ();
}
else if ( eov->SWOLType() == TopAbs_FACE )
{
BRepAdaptor_Surface surface( TopoDS::Face( eov->_sWOL ));
prevPosV = surface.Value( prevPosV.X(), prevPosV.Y() ).XYZ();
}
SMDS_FacePositionPtr fPos;
//double r = 1. - Min( 0.9, step / 10. );
for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
{
_LayerEdge* edgeF = *e;
const gp_XYZ prevVF = edgeF->PrevPos() - prevPosV;
const gp_XYZ newPosF = curPosV + prevVF;
SMDS_MeshNode* tgtNodeF = const_cast<SMDS_MeshNode*>( edgeF->_nodes.back() );
tgtNodeF->setXYZ( newPosF.X(), newPosF.Y(), newPosF.Z() );
edgeF->_pos.back() = newPosF;
dumpMoveComm( tgtNodeF, "MoveNearConcaVer" ); // debug
// set _curvature to make edgeF updated by putOnOffsetSurface()
if ( !edgeF->_curvature )
if (( fPos = edgeF->_nodes[0]->GetPosition() ))
{
edgeF->_curvature = _Factory::NewCurvature();
edgeF->_curvature->_r = 0;
edgeF->_curvature->_k = 0;
edgeF->_curvature->_h2lenRatio = 0;
edgeF->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() );
}
}
// gp_XYZ inflationVec( SMESH_TNodeXYZ( _nodes.back() ) -
// SMESH_TNodeXYZ( _nodes[0] ));
// for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
// {
// _LayerEdge* edgeF = *e;
// gp_XYZ newPos = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec;
// SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edgeF->_nodes.back() );
// tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
// edgeF->_pos.back() = newPosF;
// dumpMoveComm( tgtNode, "MoveNearConcaVer" ); // debug
// }
// smooth _LayerEdge's around moved nodes
//size_t nbBadBefore = badSmooEdges.size();
for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
{
_LayerEdge* edgeF = *e;
for ( size_t j = 0; j < edgeF->_neibors.size(); ++j )
if ( edgeF->_neibors[j]->_nodes[0]->getshapeId() == eos->_shapeID )
//&& !edges.count( edgeF->_neibors[j] ))
{
_LayerEdge* edgeFN = edgeF->_neibors[j];
edgeFN->Unset( SMOOTHED );
int nbBad = edgeFN->Smooth( step, /*isConcaFace=*/true, /*findBest=*/true );
// if ( nbBad > 0 )
// {
// gp_XYZ newPos = SMESH_TNodeXYZ( edgeFN->_nodes[0] ) + inflationVec;
// const gp_XYZ& prevPos = edgeFN->_pos[ edgeFN->_pos.size()-2 ];
// int nbBadAfter = edgeFN->_simplices.size();
// double vol;
// for ( size_t iS = 0; iS < edgeFN->_simplices.size(); ++iS )
// {
// nbBadAfter -= edgeFN->_simplices[iS].IsForward( &prevPos, &newPos, vol );
// }
// if ( nbBadAfter <= nbBad )
// {
// SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edgeFN->_nodes.back() );
// tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
// edgeF->_pos.back() = newPosF;
// dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug
// nbBad = nbBadAfter;
// }
// }
if ( nbBad > 0 )
badSmooEdges.push_back( edgeFN );
}
}
// move a bit not smoothed around moved nodes
// for ( size_t i = nbBadBefore; i < badSmooEdges.size(); ++i )
// {
// _LayerEdge* edgeF = badSmooEdges[i];
// SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edgeF->_nodes.back() );
// gp_XYZ newPos1 = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec;
// gp_XYZ newPos2 = 0.5 * ( newPos1 + SMESH_TNodeXYZ( tgtNode ));
// tgtNode->setXYZ( newPos2.X(), newPos2.Y(), newPos2.Z() );
// edgeF->_pos.back() = newPosF;
// dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug
// }
}
//================================================================================
/*!
* \brief Perform smooth of _LayerEdge's based on EDGE's
* \retval bool - true if node has been moved
*/
//================================================================================
bool _LayerEdge::SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper)
{
ASSERT( IsOnEdge() );
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _nodes.back() );
SMESH_TNodeXYZ oldPos( tgtNode );
double dist01, distNewOld;
SMESH_TNodeXYZ p0( _2neibors->tgtNode(0));
SMESH_TNodeXYZ p1( _2neibors->tgtNode(1));
dist01 = p0.Distance( _2neibors->tgtNode(1) );
gp_Pnt newPos = p0 * _2neibors->_wgt[0] + p1 * _2neibors->_wgt[1];
double lenDelta = 0;
if ( _curvature )
{
//lenDelta = _curvature->lenDelta( _len );
lenDelta = _curvature->lenDeltaByDist( dist01 );
newPos.ChangeCoord() += _normal * lenDelta;
}
distNewOld = newPos.Distance( oldPos );
if ( F.IsNull() )
{
if ( _2neibors->_plnNorm )
{
// put newPos on the plane defined by source node and _plnNorm
gp_XYZ new2src = SMESH_TNodeXYZ( _nodes[0] ) - newPos.XYZ();
double new2srcProj = (*_2neibors->_plnNorm) * new2src;
newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj;
}
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
_pos.back() = newPos.XYZ();
}
else
{
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
gp_XY uv( Precision::Infinite(), 0 );
helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true );
_pos.back().SetCoord( uv.X(), uv.Y(), 0 );
newPos = surface->Value( uv );
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
}
// commented for IPAL0052478
// if ( _curvature && lenDelta < 0 )
// {
// gp_Pnt prevPos( _pos[ _pos.size()-2 ]);
// _len -= prevPos.Distance( oldPos );
// _len += prevPos.Distance( newPos );
// }
bool moved = distNewOld > dist01/50;
//if ( moved )
dumpMove( tgtNode ); // debug
return moved;
}
//================================================================================
/*!
* \brief Perform 3D smooth of nodes inflated from FACE. No check of validity
*/
//================================================================================
void _LayerEdge::SmoothWoCheck()
{
if ( Is( DIFFICULT ))
return;
bool moved = Is( SMOOTHED );
for ( size_t i = 0; i < _neibors.size() && !moved; ++i )
moved = _neibors[i]->Is( SMOOTHED );
if ( !moved )
return;
gp_XYZ newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction()
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
_pos.back() = newPos;
dumpMoveComm( n, SMESH_Comment("No check - ") << _funNames[ smooFunID() ]);
}
//================================================================================
/*!
* \brief Checks validity of _neibors on EDGEs and VERTEXes
*/
//================================================================================
int _LayerEdge::CheckNeiborsOnBoundary( vector< _LayerEdge* >* badNeibors, bool * needSmooth )
{
if ( ! Is( NEAR_BOUNDARY ))
return 0;
int nbBad = 0;
double vol;
for ( size_t iN = 0; iN < _neibors.size(); ++iN )
{
_LayerEdge* eN = _neibors[iN];
if ( eN->_nodes[0]->getshapeId() == _nodes[0]->getshapeId() )
continue;
if ( needSmooth )
*needSmooth |= ( eN->Is( _LayerEdge::BLOCKED ) ||
eN->Is( _LayerEdge::NORMAL_UPDATED ) ||
eN->_pos.size() != _pos.size() );
SMESH_TNodeXYZ curPosN ( eN->_nodes.back() );
SMESH_TNodeXYZ prevPosN( eN->_nodes[0] );
for ( size_t i = 0; i < eN->_simplices.size(); ++i )
if ( eN->_nodes.size() > 1 &&
eN->_simplices[i].Includes( _nodes.back() ) &&
!eN->_simplices[i].IsForward( &prevPosN, &curPosN, vol ))
{
++nbBad;
if ( badNeibors )
{
badNeibors->push_back( eN );
debugMsg("Bad boundary simplex ( "
<< " "<< eN->_nodes[0]->GetID()
<< " "<< eN->_nodes.back()->GetID()
<< " "<< eN->_simplices[i]._nPrev->GetID()
<< " "<< eN->_simplices[i]._nNext->GetID() << " )" );
}
else
{
break;
}
}
}
return nbBad;
}
//================================================================================
/*!
* \brief Perform 'smart' 3D smooth of nodes inflated from FACE
* \retval int - nb of bad simplices around this _LayerEdge
*/
//================================================================================
int _LayerEdge::Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth )
{
if ( !Is( MOVED ) || Is( SMOOTHED ) || Is( BLOCKED ))
return 0; // shape of simplices not changed
if ( _simplices.size() < 2 )
return 0; // _LayerEdge inflated along EDGE or FACE
if ( Is( DIFFICULT )) // || Is( ON_CONCAVE_FACE )
findBest = true;
const gp_XYZ& curPos = _pos.back();
const gp_XYZ& prevPos = _pos[0]; //PrevPos();
// quality metrics (orientation) of tetras around _tgtNode
int nbOkBefore = 0;
double vol, minVolBefore = 1e100;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol );
minVolBefore = Min( minVolBefore, vol );
}
int nbBad = _simplices.size() - nbOkBefore;
bool bndNeedSmooth = false;
if ( nbBad == 0 )
nbBad = CheckNeiborsOnBoundary( 0, & bndNeedSmooth );
if ( nbBad > 0 )
Set( DISTORTED );
// evaluate min angle
if ( nbBad == 0 && !findBest && !bndNeedSmooth )
{
size_t nbGoodAngles = _simplices.size();
double angle;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
if ( !_simplices[i].IsMinAngleOK( curPos, angle ) && angle > _minAngle )
--nbGoodAngles;
}
if ( nbGoodAngles == _simplices.size() )
{
Unset( MOVED );
return 0;
}
}
if ( Is( ON_CONCAVE_FACE ))
findBest = true;
if ( step % 2 == 0 )
findBest = false;
if ( Is( ON_CONCAVE_FACE ) && !findBest ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN
{
if ( _smooFunction == _funs[ FUN_LAPLACIAN ] )
_smooFunction = _funs[ FUN_CENTROIDAL ];
else
_smooFunction = _funs[ FUN_LAPLACIAN ];
}
// compute new position for the last _pos using different _funs
gp_XYZ newPos;
bool moved = false;
for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun )
{
if ( iFun < 0 )
newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction()
else if ( _funs[ iFun ] == _smooFunction )
continue; // _smooFunction again
else if ( step > 1 )
newPos = (this->*_funs[ iFun ])(); // try other smoothing fun
else
break; // let "easy" functions improve elements around distorted ones
if ( _curvature )
{
double delta = _curvature->lenDelta( _len );
if ( delta > 0 )
newPos += _normal * delta;
else
{
double segLen = _normal * ( newPos - prevPos );
if ( segLen + delta > 0 )
newPos += _normal * delta;
}
// double segLenChange = _normal * ( curPos - newPos );
// newPos += 0.5 * _normal * segLenChange;
}
int nbOkAfter = 0;
double minVolAfter = 1e100;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol );
minVolAfter = Min( minVolAfter, vol );
}
// get worse?
if ( nbOkAfter < nbOkBefore )
continue;
if (( findBest ) &&
( nbOkAfter == nbOkBefore ) &&
( minVolAfter <= minVolBefore ))
continue;
nbBad = _simplices.size() - nbOkAfter;
minVolBefore = minVolAfter;
nbOkBefore = nbOkAfter;
moved = true;
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
_pos.back() = newPos;
dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] )
<< (nbBad ? " --BAD" : ""));
if ( iFun > -1 )
{
continue; // look for a better function
}
if ( !findBest )
break;
} // loop on smoothing functions
if ( moved ) // notify _neibors
{
Set( SMOOTHED );
for ( size_t i = 0; i < _neibors.size(); ++i )
if ( !_neibors[i]->Is( MOVED ))
{
_neibors[i]->Set( MOVED );
toSmooth.push_back( _neibors[i] );
}
}
return nbBad;
}
//================================================================================
/*!
* \brief Perform 'smart' 3D smooth of nodes inflated from FACE
* \retval int - nb of bad simplices around this _LayerEdge
*/
//================================================================================
int _LayerEdge::Smooth(const int step, const bool isConcaveFace, bool findBest )
{
if ( !_smooFunction )
return 0; // _LayerEdge inflated along EDGE or FACE
if ( Is( BLOCKED ))
return 0; // not inflated
const gp_XYZ& curPos = _pos.back();
const gp_XYZ& prevPos = _pos[0]; //PrevCheckPos();
// quality metrics (orientation) of tetras around _tgtNode
int nbOkBefore = 0;
double vol, minVolBefore = 1e100;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol );
minVolBefore = Min( minVolBefore, vol );
}
int nbBad = _simplices.size() - nbOkBefore;
if ( isConcaveFace ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN
{
if ( _smooFunction == _funs[ FUN_CENTROIDAL ] && step % 2 )
_smooFunction = _funs[ FUN_LAPLACIAN ];
else if ( _smooFunction == _funs[ FUN_LAPLACIAN ] && !( step % 2 ))
_smooFunction = _funs[ FUN_CENTROIDAL ];
}
// compute new position for the last _pos using different _funs
gp_XYZ newPos;
for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun )
{
if ( iFun < 0 )
newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction()
else if ( _funs[ iFun ] == _smooFunction )
continue; // _smooFunction again
else if ( step > 1 )
newPos = (this->*_funs[ iFun ])(); // try other smoothing fun
else
break; // let "easy" functions improve elements around distorted ones
if ( _curvature )
{
double delta = _curvature->lenDelta( _len );
if ( delta > 0 )
newPos += _normal * delta;
else
{
double segLen = _normal * ( newPos - prevPos );
if ( segLen + delta > 0 )
newPos += _normal * delta;
}
// double segLenChange = _normal * ( curPos - newPos );
// newPos += 0.5 * _normal * segLenChange;
}
int nbOkAfter = 0;
double minVolAfter = 1e100;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol );
minVolAfter = Min( minVolAfter, vol );
}
// get worse?
if ( nbOkAfter < nbOkBefore )
continue;
if (( isConcaveFace || findBest ) &&
( nbOkAfter == nbOkBefore ) &&
( minVolAfter <= minVolBefore )
)
continue;
nbBad = _simplices.size() - nbOkAfter;
minVolBefore = minVolAfter;
nbOkBefore = nbOkAfter;
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
_pos.back() = newPos;
dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] )
<< ( nbBad ? "--BAD" : ""));
// commented for IPAL0052478
// _len -= prevPos.Distance(SMESH_TNodeXYZ( n ));
// _len += prevPos.Distance(newPos);
if ( iFun > -1 ) // findBest || the chosen _fun makes worse
{
//_smooFunction = _funs[ iFun ];
// cout << "# " << _funNames[ iFun ] << "\t N:" << _nodes.back()->GetID()
// << "\t nbBad: " << _simplices.size() - nbOkAfter
// << " minVol: " << minVolAfter
// << " " << newPos.X() << " " << newPos.Y() << " " << newPos.Z()
// << endl;
continue; // look for a better function
}
if ( !findBest )
break;
} // loop on smoothing functions
return nbBad;
}
//================================================================================
/*!
* \brief Chooses a smoothing technique giving a position most close to an initial one.
* For a correct result, _simplices must contain nodes lying on geometry.
*/
//================================================================================
void _LayerEdge::ChooseSmooFunction( const set< TGeomID >& concaveVertices,
const TNode2Edge& /*n2eMap*/)
{
if ( _smooFunction ) return;
// use smoothNefPolygon() near concaveVertices
if ( !concaveVertices.empty() )
{
_smooFunction = _funs[ FUN_CENTROIDAL ];
Set( ON_CONCAVE_FACE );
for ( size_t i = 0; i < _simplices.size(); ++i )
{
if ( concaveVertices.count( _simplices[i]._nPrev->getshapeId() ))
{
_smooFunction = _funs[ FUN_NEFPOLY ];
// set FUN_CENTROIDAL to neighbor edges
for ( i = 0; i < _neibors.size(); ++i )
{
if ( _neibors[i]->_nodes[0]->GetPosition()->GetDim() == 2 )
{
_neibors[i]->_smooFunction = _funs[ FUN_CENTROIDAL ];
}
}
return;
}
}
// // this choice is done only if ( !concaveVertices.empty() ) for Grids/smesh/bugs_19/X1
// // where the nodes are smoothed too far along a sphere thus creating
// // inverted _simplices
// double dist[theNbSmooFuns];
// //double coef[theNbSmooFuns] = { 1., 1.2, 1.4, 1.4 };
// double coef[theNbSmooFuns] = { 1., 1., 1., 1. };
// double minDist = Precision::Infinite();
// gp_Pnt p = SMESH_TNodeXYZ( _nodes[0] );
// for ( int i = 0; i < FUN_NEFPOLY; ++i )
// {
// gp_Pnt newP = (this->*_funs[i])();
// dist[i] = p.SquareDistance( newP );
// if ( dist[i]*coef[i] < minDist )
// {
// _smooFunction = _funs[i];
// minDist = dist[i]*coef[i];
// }
// }
}
else
{
_smooFunction = _funs[ FUN_LAPLACIAN ];
}
// int minDim = 3;
// for ( size_t i = 0; i < _simplices.size(); ++i )
// minDim = Min( minDim, _simplices[i]._nPrev->GetPosition()->GetDim() );
// if ( minDim == 0 )
// _smooFunction = _funs[ FUN_CENTROIDAL ];
// else if ( minDim == 1 )
// _smooFunction = _funs[ FUN_CENTROIDAL ];
// int iMin;
// for ( int i = 0; i < FUN_NB; ++i )
// {
// //cout << dist[i] << " ";
// if ( _smooFunction == _funs[i] ) {
// iMin = i;
// //debugMsg( fNames[i] );
// break;
// }
// }
// cout << _funNames[ iMin ] << "\t N:" << _nodes.back()->GetID() << endl;
}
//================================================================================
/*!
* \brief Returns a name of _SmooFunction
*/
//================================================================================
int _LayerEdge::smooFunID( _LayerEdge::PSmooFun fun) const
{
if ( !fun )
fun = _smooFunction;
for ( int i = 0; i < theNbSmooFuns; ++i )
if ( fun == _funs[i] )
return i;
return theNbSmooFuns;
}
//================================================================================
/*!
* \brief Computes a new node position using Laplacian smoothing
*/
//================================================================================
gp_XYZ _LayerEdge::smoothLaplacian()
{
gp_XYZ newPos (0,0,0);
for ( size_t i = 0; i < _simplices.size(); ++i )
newPos += SMESH_TNodeXYZ( _simplices[i]._nPrev );
newPos /= _simplices.size();
return newPos;
}
//================================================================================
/*!
* \brief Computes a new node position using angular-based smoothing
*/
//================================================================================
gp_XYZ _LayerEdge::smoothAngular()
{
vector< gp_Vec > edgeDir; edgeDir. reserve( _simplices.size() + 1 );
vector< double > edgeSize; edgeSize.reserve( _simplices.size() );
vector< gp_XYZ > points; points. reserve( _simplices.size() + 1 );
gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev );
gp_XYZ pN( 0,0,0 );
for ( size_t i = 0; i < _simplices.size(); ++i )
{
gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev );
edgeDir.push_back( p - pPrev );
edgeSize.push_back( edgeDir.back().Magnitude() );
if ( edgeSize.back() < numeric_limits<double>::min() )
{
edgeDir.pop_back();
edgeSize.pop_back();
}
else
{
edgeDir.back() /= edgeSize.back();
points.push_back( p );
pN += p;
}
pPrev = p;
}
edgeDir.push_back ( edgeDir[0] );
edgeSize.push_back( edgeSize[0] );
pN /= points.size();
gp_XYZ newPos(0,0,0);
double sumSize = 0;
for ( size_t i = 0; i < points.size(); ++i )
{
gp_Vec toN = pN - points[i];
double toNLen = toN.Magnitude();
if ( toNLen < numeric_limits<double>::min() )
{
newPos += pN;
continue;
}
gp_Vec bisec = edgeDir[i] + edgeDir[i+1];
double bisecLen = bisec.SquareMagnitude();
if ( bisecLen < numeric_limits<double>::min() )
{
gp_Vec norm = edgeDir[i] ^ toN;
bisec = norm ^ edgeDir[i];
bisecLen = bisec.SquareMagnitude();
}
bisecLen = Sqrt( bisecLen );
bisec /= bisecLen;
#if 1
gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * bisecLen;
sumSize += bisecLen;
#else
gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * ( edgeSize[i] + edgeSize[i+1] );
sumSize += ( edgeSize[i] + edgeSize[i+1] );
#endif
newPos += pNew;
}
newPos /= sumSize;
// project newPos to an average plane
gp_XYZ norm(0,0,0); // plane normal
points.push_back( points[0] );
for ( size_t i = 1; i < points.size(); ++i )
{
gp_XYZ vec1 = points[ i-1 ] - pN;
gp_XYZ vec2 = points[ i ] - pN;
gp_XYZ cross = vec1 ^ vec2;
try {
cross.Normalize();
if ( cross * norm < numeric_limits<double>::min() )
norm += cross.Reversed();
else
norm += cross;
}
catch (Standard_Failure&) { // if |cross| == 0.
}
}
gp_XYZ vec = newPos - pN;
double r = ( norm * vec ) / norm.SquareModulus(); // param [0,1] on norm
newPos = newPos - r * norm;
return newPos;
}
//================================================================================
/*!
* \brief Computes a new node position using weighted node positions
*/
//================================================================================
gp_XYZ _LayerEdge::smoothLengthWeighted()
{
vector< double > edgeSize; edgeSize.reserve( _simplices.size() + 1);
vector< gp_XYZ > points; points. reserve( _simplices.size() );
gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev );
for ( size_t i = 0; i < _simplices.size(); ++i )
{
gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev );
edgeSize.push_back( ( p - pPrev ).Modulus() );
if ( edgeSize.back() < numeric_limits<double>::min() )
{
edgeSize.pop_back();
}
else
{
points.push_back( p );
}
pPrev = p;
}
edgeSize.push_back( edgeSize[0] );
gp_XYZ newPos(0,0,0);
double sumSize = 0;
for ( size_t i = 0; i < points.size(); ++i )
{
newPos += points[i] * ( edgeSize[i] + edgeSize[i+1] );
sumSize += edgeSize[i] + edgeSize[i+1];
}
newPos /= sumSize;
return newPos;
}
//================================================================================
/*!
* \brief Computes a new node position using angular-based smoothing
*/
//================================================================================
gp_XYZ _LayerEdge::smoothCentroidal()
{
gp_XYZ newPos(0,0,0);
gp_XYZ pN = SMESH_TNodeXYZ( _nodes.back() );
double sumSize = 0;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
gp_XYZ p1 = SMESH_TNodeXYZ( _simplices[i]._nPrev );
gp_XYZ p2 = SMESH_TNodeXYZ( _simplices[i]._nNext );
gp_XYZ gc = ( pN + p1 + p2 ) / 3.;
double size = (( p1 - pN ) ^ ( p2 - pN )).Modulus();
sumSize += size;
newPos += gc * size;
}
newPos /= sumSize;
return newPos;
}
//================================================================================
/*!
* \brief Computes a new node position located inside a Nef polygon
*/
//================================================================================
gp_XYZ _LayerEdge::smoothNefPolygon()
#ifdef OLD_NEF_POLYGON
{
gp_XYZ newPos(0,0,0);
// get a plane to search a solution on
vector< gp_XYZ > vecs( _simplices.size() + 1 );
size_t i;
const double tol = numeric_limits<double>::min();
gp_XYZ center(0,0,0);
for ( i = 0; i < _simplices.size(); ++i )
{
vecs[i] = ( SMESH_TNodeXYZ( _simplices[i]._nNext ) -
SMESH_TNodeXYZ( _simplices[i]._nPrev ));
center += SMESH_TNodeXYZ( _simplices[i]._nPrev );
}
vecs.back() = vecs[0];
center /= _simplices.size();
gp_XYZ zAxis(0,0,0);
for ( i = 0; i < _simplices.size(); ++i )
zAxis += vecs[i] ^ vecs[i+1];
gp_XYZ yAxis;
for ( i = 0; i < _simplices.size(); ++i )
{
yAxis = vecs[i];
if ( yAxis.SquareModulus() > tol )
break;
}
gp_XYZ xAxis = yAxis ^ zAxis;
// SMESH_TNodeXYZ p0( _simplices[0]._nPrev );
// const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) +
// p0.Distance( _simplices[2]._nPrev ));
// gp_XYZ center = smoothLaplacian();
// gp_XYZ xAxis, yAxis, zAxis;
// for ( i = 0; i < _simplices.size(); ++i )
// {
// xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
// if ( xAxis.SquareModulus() > tol*tol )
// break;
// }
// for ( i = 1; i < _simplices.size(); ++i )
// {
// yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
// zAxis = xAxis ^ yAxis;
// if ( zAxis.SquareModulus() > tol*tol )
// break;
// }
// if ( i == _simplices.size() ) return newPos;
yAxis = zAxis ^ xAxis;
xAxis /= xAxis.Modulus();
yAxis /= yAxis.Modulus();
// get half-planes of _simplices
vector< _halfPlane > halfPlns( _simplices.size() );
int nbHP = 0;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
gp_XYZ OP1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
gp_XYZ OP2 = SMESH_TNodeXYZ( _simplices[i]._nNext ) - center;
gp_XY p1( OP1 * xAxis, OP1 * yAxis );
gp_XY p2( OP2 * xAxis, OP2 * yAxis );
gp_XY vec12 = p2 - p1;
double dist12 = vec12.Modulus();
if ( dist12 < tol )
continue;
vec12 /= dist12;
halfPlns[ nbHP ]._pos = p1;
halfPlns[ nbHP ]._dir = vec12;
halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() );
++nbHP;
}
// intersect boundaries of half-planes, define state of intersection points
// in relation to all half-planes and calculate internal point of a 2D polygon
double sumLen = 0;
gp_XY newPos2D (0,0);
enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT };
typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state
TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF );
vector< vector< TIntPntState > > allIntPnts( nbHP );
for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 )
{
vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ];
if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS );
int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP );
int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP );
int nbNotOut = 0;
const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points
for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
{
if ( iHP1 == iHP2 ) continue;
TIntPntState & ips1 = intPnts1[ iHP2 ];
if ( ips1.second == UNDEF )
{
// find an intersection point of boundaries of iHP1 and iHP2
if ( iHP2 == iPrev ) // intersection with neighbors is known
ips1.first = halfPlns[ iHP1 ]._pos;
else if ( iHP2 == iNext )
ips1.first = halfPlns[ iHP2 ]._pos;
else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first ))
ips1.second = NO_INT;
// classify the found intersection point
if ( ips1.second != NO_INT )
{
ips1.second = NOT_OUT;
for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i )
if ( i != iHP1 && i != iHP2 &&
halfPlns[ i ].IsOut( ips1.first, tol ))
ips1.second = IS_OUT;
}
vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ];
if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS );
TIntPntState & ips2 = intPnts2[ iHP1 ];
ips2 = ips1;
}
if ( ips1.second == NOT_OUT )
{
++nbNotOut;
segEnds[ bool(segEnds[0]) ] = & ips1.first;
}
}
// find a NOT_OUT segment of boundary which is located between
// two NOT_OUT int points
if ( nbNotOut < 2 )
continue; // no such a segment
if ( nbNotOut > 2 )
{
// sort points along the boundary
map< double, TIntPntState* > ipsByParam;
for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
{
TIntPntState & ips1 = intPnts1[ iHP2 ];
if ( ips1.second != NO_INT )
{
gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos;
double param = op * halfPlns[ iHP1 ]._dir;
ipsByParam.insert( make_pair( param, & ips1 ));
}
}
// look for two neighboring NOT_OUT points
nbNotOut = 0;
map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin();
for ( ; u2ips != ipsByParam.end(); ++u2ips )
{
TIntPntState & ips1 = *(u2ips->second);
if ( ips1.second == NOT_OUT )
segEnds[ bool( nbNotOut++ ) ] = & ips1.first;
else if ( nbNotOut >= 2 )
break;
else
nbNotOut = 0;
}
}
if ( nbNotOut >= 2 )
{
double len = ( *segEnds[0] - *segEnds[1] ).Modulus();
sumLen += len;
newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] );
}
}
if ( sumLen > 0 )
{
newPos2D /= sumLen;
newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y();
}
else
{
newPos = center;
}
return newPos;
}
#else // OLD_NEF_POLYGON
{ ////////////////////////////////// NEW
gp_XYZ newPos(0,0,0);
// get a plane to search a solution on
size_t i;
gp_XYZ center(0,0,0);
for ( i = 0; i < _simplices.size(); ++i )
center += SMESH_TNodeXYZ( _simplices[i]._nPrev );
center /= _simplices.size();
vector< gp_XYZ > vecs( _simplices.size() + 1 );
for ( i = 0; i < _simplices.size(); ++i )
vecs[i] = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
vecs.back() = vecs[0];
const double tol = numeric_limits<double>::min();
gp_XYZ zAxis(0,0,0);
for ( i = 0; i < _simplices.size(); ++i )
{
gp_XYZ cross = vecs[i] ^ vecs[i+1];
try {
cross.Normalize();
if ( cross * zAxis < tol )
zAxis += cross.Reversed();
else
zAxis += cross;
}
catch (Standard_Failure) { // if |cross| == 0.
}
}
gp_XYZ yAxis;
for ( i = 0; i < _simplices.size(); ++i )
{
yAxis = vecs[i];
if ( yAxis.SquareModulus() > tol )
break;
}
gp_XYZ xAxis = yAxis ^ zAxis;
// SMESH_TNodeXYZ p0( _simplices[0]._nPrev );
// const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) +
// p0.Distance( _simplices[2]._nPrev ));
// gp_XYZ center = smoothLaplacian();
// gp_XYZ xAxis, yAxis, zAxis;
// for ( i = 0; i < _simplices.size(); ++i )
// {
// xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
// if ( xAxis.SquareModulus() > tol*tol )
// break;
// }
// for ( i = 1; i < _simplices.size(); ++i )
// {
// yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
// zAxis = xAxis ^ yAxis;
// if ( zAxis.SquareModulus() > tol*tol )
// break;
// }
// if ( i == _simplices.size() ) return newPos;
yAxis = zAxis ^ xAxis;
xAxis /= xAxis.Modulus();
yAxis /= yAxis.Modulus();
// get half-planes of _simplices
vector< _halfPlane > halfPlns( _simplices.size() );
int nbHP = 0;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
const gp_XYZ& OP1 = vecs[ i ];
const gp_XYZ& OP2 = vecs[ i+1 ];
gp_XY p1( OP1 * xAxis, OP1 * yAxis );
gp_XY p2( OP2 * xAxis, OP2 * yAxis );
gp_XY vec12 = p2 - p1;
double dist12 = vec12.Modulus();
if ( dist12 < tol )
continue;
vec12 /= dist12;
halfPlns[ nbHP ]._pos = p1;
halfPlns[ nbHP ]._dir = vec12;
halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() );
++nbHP;
}
// intersect boundaries of half-planes, define state of intersection points
// in relation to all half-planes and calculate internal point of a 2D polygon
double sumLen = 0;
gp_XY newPos2D (0,0);
enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT };
typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state
TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF );
vector< vector< TIntPntState > > allIntPnts( nbHP );
for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 )
{
vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ];
if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS );
int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP );
int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP );
int nbNotOut = 0;
const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points
for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
{
if ( iHP1 == iHP2 ) continue;
TIntPntState & ips1 = intPnts1[ iHP2 ];
if ( ips1.second == UNDEF )
{
// find an intersection point of boundaries of iHP1 and iHP2
if ( iHP2 == iPrev ) // intersection with neighbors is known
ips1.first = halfPlns[ iHP1 ]._pos;
else if ( iHP2 == iNext )
ips1.first = halfPlns[ iHP2 ]._pos;
else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first ))
ips1.second = NO_INT;
// classify the found intersection point
if ( ips1.second != NO_INT )
{
ips1.second = NOT_OUT;
for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i )
if ( i != iHP1 && i != iHP2 &&
halfPlns[ i ].IsOut( ips1.first, tol ))
ips1.second = IS_OUT;
}
vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ];
if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS );
TIntPntState & ips2 = intPnts2[ iHP1 ];
ips2 = ips1;
}
if ( ips1.second == NOT_OUT )
{
++nbNotOut;
segEnds[ bool(segEnds[0]) ] = & ips1.first;
}
}
// find a NOT_OUT segment of boundary which is located between
// two NOT_OUT int points
if ( nbNotOut < 2 )
continue; // no such a segment
if ( nbNotOut > 2 )
{
// sort points along the boundary
map< double, TIntPntState* > ipsByParam;
for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
{
TIntPntState & ips1 = intPnts1[ iHP2 ];
if ( ips1.second != NO_INT )
{
gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos;
double param = op * halfPlns[ iHP1 ]._dir;
ipsByParam.insert( make_pair( param, & ips1 ));
}
}
// look for two neighboring NOT_OUT points
nbNotOut = 0;
map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin();
for ( ; u2ips != ipsByParam.end(); ++u2ips )
{
TIntPntState & ips1 = *(u2ips->second);
if ( ips1.second == NOT_OUT )
segEnds[ bool( nbNotOut++ ) ] = & ips1.first;
else if ( nbNotOut >= 2 )
break;
else
nbNotOut = 0;
}
}
if ( nbNotOut >= 2 )
{
double len = ( *segEnds[0] - *segEnds[1] ).Modulus();
sumLen += len;
newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] );
}
}
if ( sumLen > 0 )
{
newPos2D /= sumLen;
newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y();
}
else
{
newPos = center;
}
return newPos;
}
#endif // OLD_NEF_POLYGON
//================================================================================
/*!
* \brief Add a new segment to _LayerEdge during inflation
*/
//================================================================================
void _LayerEdge::SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper )
{
if ( Is( BLOCKED ))
return;
if ( len > _maxLen )
{
len = _maxLen;
Block( eos.GetData() );
}
const double lenDelta = len - _len;
// if ( lenDelta < 0 )
// return;
if ( lenDelta < len * 1e-3 )
{
Block( eos.GetData() );
return;
}
SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() );
gp_XYZ oldXYZ = SMESH_TNodeXYZ( n );
gp_XYZ newXYZ;
if ( eos._hyp.IsOffsetMethod() )
{
newXYZ = oldXYZ;
gp_Vec faceNorm;
SMDS_ElemIteratorPtr faceIt = _nodes[0]->GetInverseElementIterator( SMDSAbs_Face );
while ( faceIt->more() )
{
const SMDS_MeshElement* face = faceIt->next();
if ( !eos.GetNormal( face, faceNorm ))
continue;
// translate plane of a face
gp_XYZ baryCenter = oldXYZ + faceNorm.XYZ() * lenDelta;
// find point of intersection of the face plane located at baryCenter
// and _normal located at newXYZ
double d = -( faceNorm.XYZ() * baryCenter ); // d of plane equation ax+by+cz+d=0
double dot = ( faceNorm.XYZ() * _normal );
if ( dot < std::numeric_limits<double>::min() )
dot = lenDelta * 1e-3;
double step = -( faceNorm.XYZ() * newXYZ + d ) / dot;
newXYZ += step * _normal;
}
_lenFactor = _normal * ( newXYZ - oldXYZ ) / lenDelta; // _lenFactor is used in InvalidateStep()
}
else
{
newXYZ = oldXYZ + _normal * lenDelta * _lenFactor;
}
n->setXYZ( newXYZ.X(), newXYZ.Y(), newXYZ.Z() );
_pos.push_back( newXYZ );
if ( !eos._sWOL.IsNull() )
if ( !UpdatePositionOnSWOL( n, 2*lenDelta, eos, helper ))
{
n->setXYZ( oldXYZ.X(), oldXYZ.Y(), oldXYZ.Z() );
_pos.pop_back();
Block( eos.GetData() );
return;
}
_len = len;
// notify _neibors
if ( eos.ShapeType() != TopAbs_FACE )
{
for ( size_t i = 0; i < _neibors.size(); ++i )
//if ( _len > _neibors[i]->GetSmooLen() )
_neibors[i]->Set( MOVED );
Set( MOVED );
}
dumpMove( n ); //debug
}
//================================================================================
/*!
* \brief Update last position on SWOL by projecting node on SWOL
*/
//================================================================================
bool _LayerEdge::UpdatePositionOnSWOL( SMDS_MeshNode* n,
double tol,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper )
{
double distXYZ[4];
bool uvOK = false;
if ( eos.SWOLType() == TopAbs_EDGE )
{
double u = Precision::Infinite(); // to force projection w/o distance check
uvOK = helper.CheckNodeU( TopoDS::Edge( eos._sWOL ), n, u, tol, /*force=*/true, distXYZ );
_pos.back().SetCoord( u, 0, 0 );
if ( _nodes.size() > 1 && uvOK )
{
SMDS_EdgePositionPtr pos = n->GetPosition();
pos->SetUParameter( u );
}
}
else // TopAbs_FACE
{
gp_XY uv( Precision::Infinite(), 0 );
uvOK = helper.CheckNodeUV( TopoDS::Face( eos._sWOL ), n, uv, tol, /*force=*/true, distXYZ );
_pos.back().SetCoord( uv.X(), uv.Y(), 0 );
if ( _nodes.size() > 1 && uvOK )
{
SMDS_FacePositionPtr pos = n->GetPosition();
pos->SetUParameter( uv.X() );
pos->SetVParameter( uv.Y() );
}
}
if ( uvOK )
{
n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]);
}
return uvOK;
}
//================================================================================
/*!
* \brief Set BLOCKED flag and propagate limited _maxLen to _neibors
*/
//================================================================================
void _LayerEdge::Block( _SolidData& data )
{
//if ( Is( BLOCKED )) return;
Set( BLOCKED );
SMESH_Comment msg( "#BLOCK shape=");
msg << data.GetShapeEdges( this )->_shapeID
<< ", nodes " << _nodes[0]->GetID() << ", " << _nodes.back()->GetID();
dumpCmd( msg + " -- BEGIN");
SetMaxLen( _len );
std::queue<_LayerEdge*> queue;
queue.push( this );
gp_Pnt pSrc, pTgt, pSrcN, pTgtN;
while ( !queue.empty() )
{
_LayerEdge* edge = queue.front(); queue.pop();
pSrc = SMESH_TNodeXYZ( edge->_nodes[0] );
pTgt = SMESH_TNodeXYZ( edge->_nodes.back() );
for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN )
{
_LayerEdge* neibor = edge->_neibors[iN];
if ( neibor->_maxLen < edge->_maxLen * 1.01 )
continue;
pSrcN = SMESH_TNodeXYZ( neibor->_nodes[0] );
pTgtN = SMESH_TNodeXYZ( neibor->_nodes.back() );
double minDist = pSrc.SquareDistance( pSrcN );
minDist = Min( pTgt.SquareDistance( pTgtN ), minDist );
minDist = Min( pSrc.SquareDistance( pTgtN ), minDist );
minDist = Min( pTgt.SquareDistance( pSrcN ), minDist );
double newMaxLen = edge->_maxLen + 0.5 * Sqrt( minDist );
//if ( edge->_nodes[0]->getshapeId() == neibor->_nodes[0]->getshapeId() ) viscous_layers_00/A3
{
//newMaxLen *= edge->_lenFactor / neibor->_lenFactor;
// newMaxLen *= Min( edge->_lenFactor / neibor->_lenFactor,
// neibor->_lenFactor / edge->_lenFactor );
}
if ( neibor->_maxLen > newMaxLen )
{
neibor->SetMaxLen( newMaxLen );
if ( neibor->_maxLen < neibor->_len )
{
_EdgesOnShape* eos = data.GetShapeEdges( neibor );
int lastStep = neibor->Is( BLOCKED ) ? 1 : 0;
while ( neibor->_len > neibor->_maxLen &&
neibor->NbSteps() > lastStep )
neibor->InvalidateStep( neibor->NbSteps(), *eos, /*restoreLength=*/true );
neibor->SetNewLength( neibor->_maxLen, *eos, data.GetHelper() );
//neibor->Block( data );
}
queue.push( neibor );
}
}
}
dumpCmd( msg + " -- END");
}
//================================================================================
/*!
* \brief Remove last inflation step
*/
//================================================================================
void _LayerEdge::InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength )
{
if ( _pos.size() > curStep && _nodes.size() > 1 )
{
_pos.resize( curStep );
gp_Pnt nXYZ = _pos.back();
SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() );
SMESH_TNodeXYZ curXYZ( n );
if ( !eos._sWOL.IsNull() )
{
TopLoc_Location loc;
if ( eos.SWOLType() == TopAbs_EDGE )
{
SMDS_EdgePositionPtr pos = n->GetPosition();
pos->SetUParameter( nXYZ.X() );
double f,l;
Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l);
nXYZ = curve->Value( nXYZ.X() ).Transformed( loc );
}
else
{
SMDS_FacePositionPtr pos = n->GetPosition();
pos->SetUParameter( nXYZ.X() );
pos->SetVParameter( nXYZ.Y() );
Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(eos._sWOL), loc );
nXYZ = surface->Value( nXYZ.X(), nXYZ.Y() ).Transformed( loc );
}
}
n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() );
dumpMove( n );
if ( restoreLength )
{
if ( NbSteps() == 0 )
_len = 0.;
else if ( IsOnFace() && Is( MOVED ))
_len = ( nXYZ.XYZ() - SMESH_NodeXYZ( _nodes[0] )) * _normal;
else
_len -= ( nXYZ.XYZ() - curXYZ ).Modulus() / _lenFactor;
}
}
return;
}
//================================================================================
/*!
* \brief Return index of a _pos distant from _normal
*/
//================================================================================
int _LayerEdge::GetSmoothedPos( const double tol )
{
int iSmoothed = 0;
for ( size_t i = 1; i < _pos.size() && !iSmoothed; ++i )
{
double normDist = ( _pos[i] - _pos[0] ).Crossed( _normal ).SquareModulus();
if ( normDist > tol * tol )
iSmoothed = i;
}
return iSmoothed;
}
//================================================================================
/*!
* \brief Smooth a path formed by _pos of a _LayerEdge smoothed on FACE
*/
//================================================================================
void _LayerEdge::SmoothPos( const vector< double >& segLen, const double tol )
{
if ( /*Is( NORMAL_UPDATED ) ||*/ _pos.size() <= 2 )
return;
// find the 1st smoothed _pos
int iSmoothed = GetSmoothedPos( tol );
if ( !iSmoothed ) return;
gp_XYZ normal = _normal;
if ( Is( NORMAL_UPDATED ))
{
double minDot = 1;
for ( size_t i = 0; i < _neibors.size(); ++i )
{
if ( _neibors[i]->IsOnFace() )
{
double dot = _normal * _neibors[i]->_normal;
if ( dot < minDot )
{
normal = _neibors[i]->_normal;
minDot = dot;
}
}
}
if ( minDot == 1. )
for ( size_t i = 1; i < _pos.size(); ++i )
{
normal = _pos[i] - _pos[0];
double size = normal.Modulus();
if ( size > RealSmall() )
{
normal /= size;
break;
}
}
}
const double r = 0.2;
for ( int iter = 0; iter < 50; ++iter )
{
double minDot = 1;
for ( size_t i = Max( 1, iSmoothed-1-iter ); i < _pos.size()-1; ++i )
{
gp_XYZ midPos = 0.5 * ( _pos[i-1] + _pos[i+1] );
gp_XYZ newPos = ( 1-r ) * midPos + r * _pos[i];
_pos[i] = newPos;
double midLen = 0.5 * ( segLen[i-1] + segLen[i+1] );
double newLen = ( 1-r ) * midLen + r * segLen[i];
const_cast< double& >( segLen[i] ) = newLen;
// check angle between normal and (_pos[i+1], _pos[i] )
gp_XYZ posDir = _pos[i+1] - _pos[i];
double size = posDir.SquareModulus();
if ( size > RealSmall() )
minDot = Min( minDot, ( normal * posDir ) * ( normal * posDir ) / size );
}
if ( minDot > 0.5 * 0.5 )
break;
}
return;
}
//================================================================================
/*!
* \brief Print flags
*/
//================================================================================
std::string _LayerEdge::DumpFlags() const
{
SMESH_Comment dump;
for ( int flag = 1; flag < 0x1000000; flag *= 2 )
if ( _flags & flag )
{
EFlags f = (EFlags) flag;
switch ( f ) {
case TO_SMOOTH: dump << "TO_SMOOTH"; break;
case MOVED: dump << "MOVED"; break;
case SMOOTHED: dump << "SMOOTHED"; break;
case DIFFICULT: dump << "DIFFICULT"; break;
case ON_CONCAVE_FACE: dump << "ON_CONCAVE_FACE"; break;
case BLOCKED: dump << "BLOCKED"; break;
case INTERSECTED: dump << "INTERSECTED"; break;
case NORMAL_UPDATED: dump << "NORMAL_UPDATED"; break;
case UPD_NORMAL_CONV: dump << "UPD_NORMAL_CONV"; break;
case MARKED: dump << "MARKED"; break;
case MULTI_NORMAL: dump << "MULTI_NORMAL"; break;
case NEAR_BOUNDARY: dump << "NEAR_BOUNDARY"; break;
case SMOOTHED_C1: dump << "SMOOTHED_C1"; break;
case DISTORTED: dump << "DISTORTED"; break;
case RISKY_SWOL: dump << "RISKY_SWOL"; break;
case SHRUNK: dump << "SHRUNK"; break;
case UNUSED_FLAG: dump << "UNUSED_FLAG"; break;
}
dump << " ";
}
cout << dump << endl;
return dump;
}
//================================================================================
/*!
* \brief Create layers of prisms
*/
//================================================================================
bool _ViscousBuilder::refine(_SolidData& data)
{
SMESH_MesherHelper& helper = data.GetHelper();
helper.SetElementsOnShape(false);
Handle(Geom_Curve) curve;
Handle(ShapeAnalysis_Surface) surface;
TopoDS_Edge geomEdge;
TopoDS_Face geomFace;
TopLoc_Location loc;
double f,l, u = 0;
gp_XY uv;
vector< gp_XYZ > pos3D;
bool isOnEdge, isTooConvexFace = false;
TGeomID prevBaseId = -1;
TNode2Edge* n2eMap = 0;
TNode2Edge::iterator n2e;
// Create intermediate nodes on each _LayerEdge
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
if ( eos._edges.empty() ) continue;
if ( eos._edges[0]->_nodes.size() < 2 )
continue; // on _noShrinkShapes
// get data of a shrink shape
isOnEdge = false;
geomEdge.Nullify(); geomFace.Nullify();
curve.Nullify(); surface.Nullify();
if ( !eos._sWOL.IsNull() )
{
isOnEdge = ( eos.SWOLType() == TopAbs_EDGE );
if ( isOnEdge )
{
geomEdge = TopoDS::Edge( eos._sWOL );
curve = BRep_Tool::Curve( geomEdge, loc, f,l);
}
else
{
geomFace = TopoDS::Face( eos._sWOL );
surface = helper.GetSurface( geomFace );
}
}
else if ( eos.ShapeType() == TopAbs_FACE && eos._toSmooth )
{
geomFace = TopoDS::Face( eos._shape );
surface = helper.GetSurface( geomFace );
// propagate _toSmooth back to _eosC1, which was unset in findShapesToSmooth()
for ( size_t i = 0; i < eos._eosC1.size(); ++i )
eos._eosC1[ i ]->_toSmooth = true;
isTooConvexFace = false;
if ( _ConvexFace* cf = data.GetConvexFace( eos._shapeID ))
isTooConvexFace = cf->_isTooCurved;
}
vector< double > segLen;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge& edge = *eos._edges[i];
if ( edge._pos.size() < 2 )
continue;
// get accumulated length of segments
segLen.resize( edge._pos.size() );
segLen[0] = 0.0;
if ( eos._sWOL.IsNull() )
{
bool useNormal = true;
bool usePos = false;
bool smoothed = false;
double preci = 0.1 * edge._len;
if ( eos._toSmooth && edge._pos.size() > 2 )
{
smoothed = edge.GetSmoothedPos( preci );
}
if ( smoothed )
{
if ( !surface.IsNull() && !isTooConvexFace ) // edge smoothed on FACE
{
useNormal = usePos = false;
gp_Pnt2d uv = helper.GetNodeUV( geomFace, edge._nodes[0] );
for ( size_t j = 1; j < edge._pos.size() && !useNormal; ++j )
{
uv = surface->NextValueOfUV( uv, edge._pos[j], preci );
if ( surface->Gap() < 2. * edge._len )
segLen[j] = surface->Gap();
else
useNormal = true;
}
}
}
else if ( !edge.Is( _LayerEdge::NORMAL_UPDATED ))
{
#ifndef __NODES_AT_POS
useNormal = usePos = false;
edge._pos[1] = edge._pos.back();
edge._pos.resize( 2 );
segLen.resize( 2 );
segLen[ 1 ] = edge._len;
#endif
}
if ( useNormal && edge.Is( _LayerEdge::NORMAL_UPDATED ))
{
useNormal = usePos = false;
_LayerEdge tmpEdge; // get original _normal
tmpEdge._nodes.push_back( edge._nodes[0] );
if ( !setEdgeData( tmpEdge, eos, helper, data ))
usePos = true;
else
for ( size_t j = 1; j < edge._pos.size(); ++j )
segLen[j] = ( edge._pos[j] - edge._pos[0] ) * tmpEdge._normal;
}
if ( useNormal )
{
for ( size_t j = 1; j < edge._pos.size(); ++j )
segLen[j] = ( edge._pos[j] - edge._pos[0] ) * edge._normal;
}
if ( usePos )
{
for ( size_t j = 1; j < edge._pos.size(); ++j )
segLen[j] = segLen[j-1] + ( edge._pos[j-1] - edge._pos[j] ).Modulus();
}
else
{
bool swapped = ( edge._pos.size() > 2 );
while ( swapped )
{
swapped = false;
for ( size_t j = 1; j < edge._pos.size()-1; ++j )
if ( segLen[j] > segLen.back() )
{
segLen.erase( segLen.begin() + j );
edge._pos.erase( edge._pos.begin() + j );
--j;
}
else if ( segLen[j] < segLen[j-1] )
{
std::swap( segLen[j], segLen[j-1] );
std::swap( edge._pos[j], edge._pos[j-1] );
swapped = true;
}
}
}
// smooth a path formed by edge._pos
#ifndef __NODES_AT_POS
if (( smoothed ) /*&&
( eos.ShapeType() == TopAbs_FACE || edge.Is( _LayerEdge::SMOOTHED_C1 ))*/)
edge.SmoothPos( segLen, preci );
#endif
}
else if ( eos._isRegularSWOL ) // usual SWOL
{
if ( edge.Is( _LayerEdge::SMOOTHED ))
{
SMESH_NodeXYZ p0( edge._nodes[0] );
for ( size_t j = 1; j < edge._pos.size(); ++j )
{
gp_XYZ pj = surface->Value( edge._pos[j].X(), edge._pos[j].Y() ).XYZ();
segLen[j] = ( pj - p0 ) * edge._normal;
}
}
else
{
for ( size_t j = 1; j < edge._pos.size(); ++j )
segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus();
}
}
else // SWOL is surface with singularities or irregularly parametrized curve
{
pos3D.resize( edge._pos.size() );
if ( !surface.IsNull() )
for ( size_t j = 0; j < edge._pos.size(); ++j )
pos3D[j] = surface->Value( edge._pos[j].X(), edge._pos[j].Y() ).XYZ();
else if ( !curve.IsNull() )
for ( size_t j = 0; j < edge._pos.size(); ++j )
pos3D[j] = curve->Value( edge._pos[j].X() ).XYZ();
for ( size_t j = 1; j < edge._pos.size(); ++j )
segLen[j] = segLen[j-1] + ( pos3D[j-1] - pos3D[j] ).Modulus();
}
// allocate memory for new nodes if it is not yet refined
const SMDS_MeshNode* tgtNode = edge._nodes.back();
if ( edge._nodes.size() == 2 )
{
#ifdef __NODES_AT_POS
int nbNodes = edge._pos.size();
#else
int nbNodes = eos._hyp.GetNumberLayers() + 1;
#endif
edge._nodes.resize( nbNodes, 0 );
edge._nodes[1] = 0;
edge._nodes.back() = tgtNode;
}
// restore shapePos of the last node by already treated _LayerEdge of another _SolidData
const TGeomID baseShapeId = edge._nodes[0]->getshapeId();
if ( baseShapeId != prevBaseId )
{
map< TGeomID, TNode2Edge* >::iterator s2ne = data._s2neMap.find( baseShapeId );
n2eMap = ( s2ne == data._s2neMap.end() ) ? 0 : s2ne->second;
prevBaseId = baseShapeId;
}
_LayerEdge* edgeOnSameNode = 0;
bool useExistingPos = false;
if ( n2eMap && (( n2e = n2eMap->find( edge._nodes[0] )) != n2eMap->end() ))
{
edgeOnSameNode = n2e->second;
useExistingPos = ( edgeOnSameNode->_len < edge._len ||
segLen[0] == segLen.back() ); // too short inflation step (bos #20643)
const gp_XYZ& otherTgtPos = edgeOnSameNode->_pos.back();
SMDS_PositionPtr lastPos = tgtNode->GetPosition();
if ( isOnEdge )
{
SMDS_EdgePositionPtr epos = lastPos;
epos->SetUParameter( otherTgtPos.X() );
}
else
{
SMDS_FacePositionPtr fpos = lastPos;
fpos->SetUParameter( otherTgtPos.X() );
fpos->SetVParameter( otherTgtPos.Y() );
}
}
// create intermediate nodes
const double h0 = eos._hyp.Get1stLayerThickness( segLen.back() );
const double zeroLen = std::numeric_limits<double>::min();
double hSum = 0, hi = h0/eos._hyp.GetStretchFactor();
size_t iSeg = 1;
for ( size_t iStep = 1; iStep < edge._nodes.size(); ++iStep )
{
// compute an intermediate position
hi *= eos._hyp.GetStretchFactor();
hSum += hi;
while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1 )
++iSeg;
int iPrevSeg = iSeg-1;
while ( fabs( segLen[iPrevSeg] - segLen[iSeg]) <= zeroLen && iPrevSeg > 0 )
--iPrevSeg;
double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] );
gp_Pnt pos = r * edge._pos[iPrevSeg] + (1-r) * edge._pos[iSeg];
#ifdef __NODES_AT_POS
pos = edge._pos[ iStep ];
#endif
SMDS_MeshNode*& node = const_cast< SMDS_MeshNode*& >( edge._nodes[ iStep ]);
if ( !eos._sWOL.IsNull() )
{
// compute XYZ by parameters <pos>
if ( isOnEdge )
{
u = pos.X();
if ( !node )
pos = curve->Value( u ).Transformed(loc);
}
else if ( eos._isRegularSWOL )
{
uv.SetCoord( pos.X(), pos.Y() );
if ( !node )
pos = surface->Value( pos.X(), pos.Y() );
}
else
{
uv.SetCoord( pos.X(), pos.Y() );
gp_Pnt p = r * pos3D[ iPrevSeg ] + (1-r) * pos3D[ iSeg ];
uv = surface->NextValueOfUV( uv, p, BRep_Tool::Tolerance( geomFace )).XY();
if ( !node )
pos = surface->Value( uv );
}
}
// create or update the node
if ( !node )
{
node = helper.AddNode( pos.X(), pos.Y(), pos.Z());
if ( !eos._sWOL.IsNull() )
{
if ( isOnEdge )
getMeshDS()->SetNodeOnEdge( node, geomEdge, u );
else
getMeshDS()->SetNodeOnFace( node, geomFace, uv.X(), uv.Y() );
}
else
{
getMeshDS()->SetNodeInVolume( node, helper.GetSubShapeID() );
}
}
else
{
if ( !eos._sWOL.IsNull() )
{
// make average pos from new and current parameters
if ( isOnEdge )
{
//u = 0.5 * ( u + helper.GetNodeU( geomEdge, node ));
if ( useExistingPos )
u = helper.GetNodeU( geomEdge, node );
pos = curve->Value( u ).Transformed(loc);
SMDS_EdgePositionPtr epos = node->GetPosition();
epos->SetUParameter( u );
}
else
{
//uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node ));
if ( useExistingPos )
uv = helper.GetNodeUV( geomFace, node );
pos = surface->Value( uv );
SMDS_FacePositionPtr fpos = node->GetPosition();
fpos->SetUParameter( uv.X() );
fpos->SetVParameter( uv.Y() );
}
}
node->setXYZ( pos.X(), pos.Y(), pos.Z() );
}
} // loop on edge._nodes
if ( !eos._sWOL.IsNull() ) // prepare for shrink()
{
if ( isOnEdge )
edge._pos.back().SetCoord( u, 0,0);
else
edge._pos.back().SetCoord( uv.X(), uv.Y() ,0);
if ( edgeOnSameNode )
edgeOnSameNode->_pos.back() = edge._pos.back();
}
} // loop on eos._edges to create nodes
if ( !getMeshDS()->IsEmbeddedMode() )
// Log node movement
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
SMESH_TNodeXYZ p ( eos._edges[i]->_nodes.back() );
getMeshDS()->MoveNode( p._node, p.X(), p.Y(), p.Z() );
}
}
// Create volumes
helper.SetElementsOnShape(true);
vector< vector<const SMDS_MeshNode*>* > nnVec;
set< vector<const SMDS_MeshNode*>* > nnSet;
set< int > degenEdgeInd;
vector<const SMDS_MeshElement*> degenVols;
TopExp_Explorer exp( data._solid, TopAbs_FACE );
for ( ; exp.More(); exp.Next() )
{
const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() );
if ( data._ignoreFaceIds.count( faceID ))
continue;
_EdgesOnShape* eos = data.GetShapeEdges( faceID );
SMDS_MeshGroup* group = StdMeshers_ViscousLayers::CreateGroup( eos->_hyp.GetGroupName(),
*helper.GetMesh(),
SMDSAbs_Volume );
std::vector< const SMDS_MeshElement* > vols;
const bool isReversedFace = data._reversedFaceIds.count( faceID );
SMESHDS_SubMesh* fSubM = getMeshDS()->MeshElements( exp.Current() );
SMDS_ElemIteratorPtr fIt = fSubM->GetElements();
while ( fIt->more() )
{
const SMDS_MeshElement* face = fIt->next();
const int nbNodes = face->NbCornerNodes();
nnVec.resize( nbNodes );
nnSet.clear();
degenEdgeInd.clear();
size_t maxZ = 0, minZ = std::numeric_limits<size_t>::max();
SMDS_NodeIteratorPtr nIt = face->nodeIterator();
for ( int iN = 0; iN < nbNodes; ++iN )
{
const SMDS_MeshNode* n = nIt->next();
_LayerEdge* edge = data._n2eMap[ n ];
const int i = isReversedFace ? nbNodes-1-iN : iN;
nnVec[ i ] = & edge->_nodes;
maxZ = std::max( maxZ, nnVec[ i ]->size() );
minZ = std::min( minZ, nnVec[ i ]->size() );
if ( helper.HasDegeneratedEdges() )
nnSet.insert( nnVec[ i ]);
}
if ( maxZ == 0 )
continue;
if ( 0 < nnSet.size() && nnSet.size() < 3 )
continue;
vols.clear();
const SMDS_MeshElement* vol;
switch ( nbNodes )
{
case 3: // TRIA
{
// PENTA
for ( size_t iZ = 1; iZ < minZ; ++iZ )
{
vol = helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1],
(*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ]);
vols.push_back( vol );
}
for ( size_t iZ = minZ; iZ < maxZ; ++iZ )
{
for ( int iN = 0; iN < nbNodes; ++iN )
if ( nnVec[ iN ]->size() < iZ+1 )
degenEdgeInd.insert( iN );
if ( degenEdgeInd.size() == 1 ) // PYRAM
{
int i2 = *degenEdgeInd.begin();
int i0 = helper.WrapIndex( i2 - 1, nbNodes );
int i1 = helper.WrapIndex( i2 + 1, nbNodes );
vol = helper.AddVolume( (*nnVec[i0])[iZ-1], (*nnVec[i1])[iZ-1],
(*nnVec[i1])[iZ ], (*nnVec[i0])[iZ ], (*nnVec[i2]).back());
vols.push_back( vol );
}
else // TETRA
{
int i3 = !degenEdgeInd.count(0) ? 0 : !degenEdgeInd.count(1) ? 1 : 2;
vol = helper.AddVolume( (*nnVec[ 0 ])[ i3 == 0 ? iZ-1 : nnVec[0]->size()-1 ],
(*nnVec[ 1 ])[ i3 == 1 ? iZ-1 : nnVec[1]->size()-1 ],
(*nnVec[ 2 ])[ i3 == 2 ? iZ-1 : nnVec[2]->size()-1 ],
(*nnVec[ i3 ])[ iZ ]);
vols.push_back( vol );
}
}
break; // TRIA
}
case 4: // QUAD
{
// HEX
for ( size_t iZ = 1; iZ < minZ; ++iZ )
{
vol = helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1],
(*nnVec[2])[iZ-1], (*nnVec[3])[iZ-1],
(*nnVec[0])[iZ], (*nnVec[1])[iZ],
(*nnVec[2])[iZ], (*nnVec[3])[iZ]);
vols.push_back( vol );
}
for ( size_t iZ = minZ; iZ < maxZ; ++iZ )
{
for ( int iN = 0; iN < nbNodes; ++iN )
if ( nnVec[ iN ]->size() < iZ+1 )
degenEdgeInd.insert( iN );
switch ( degenEdgeInd.size() )
{
case 2: // PENTA
{
int i2 = *degenEdgeInd.begin();
int i3 = *degenEdgeInd.rbegin();
bool ok = ( i3 - i2 == 1 );
if ( i2 == 0 && i3 == 3 ) { i2 = 3; i3 = 0; ok = true; }
int i0 = helper.WrapIndex( i3 + 1, nbNodes );
int i1 = helper.WrapIndex( i0 + 1, nbNodes );
vol = helper.AddVolume( nnVec[i3]->back(), (*nnVec[i0])[iZ], (*nnVec[i0])[iZ-1],
nnVec[i2]->back(), (*nnVec[i1])[iZ], (*nnVec[i1])[iZ-1]);
vols.push_back( vol );
if ( !ok && vol )
degenVols.push_back( vol );
}
break;
default: // degen HEX
{
vol = helper.AddVolume( nnVec[0]->size() > iZ-1 ? (*nnVec[0])[iZ-1] : nnVec[0]->back(),
nnVec[1]->size() > iZ-1 ? (*nnVec[1])[iZ-1] : nnVec[1]->back(),
nnVec[2]->size() > iZ-1 ? (*nnVec[2])[iZ-1] : nnVec[2]->back(),
nnVec[3]->size() > iZ-1 ? (*nnVec[3])[iZ-1] : nnVec[3]->back(),
nnVec[0]->size() > iZ ? (*nnVec[0])[iZ] : nnVec[0]->back(),
nnVec[1]->size() > iZ ? (*nnVec[1])[iZ] : nnVec[1]->back(),
nnVec[2]->size() > iZ ? (*nnVec[2])[iZ] : nnVec[2]->back(),
nnVec[3]->size() > iZ ? (*nnVec[3])[iZ] : nnVec[3]->back());
vols.push_back( vol );
degenVols.push_back( vol );
}
}
}
break; // HEX
}
default:
return error("Not supported type of element", data._index);
} // switch ( nbNodes )
if ( group )
for ( size_t i = 0; i < vols.size(); ++i )
group->Add( vols[ i ]);
} // while ( fIt->more() )
} // loop on FACEs
if ( !degenVols.empty() )
{
SMESH_ComputeErrorPtr& err = _mesh->GetSubMesh( data._solid )->GetComputeError();
if ( !err || err->IsOK() )
{
SMESH_BadInputElements* badElems =
new SMESH_BadInputElements( getMeshDS(), COMPERR_WARNING, "Bad quality volumes created" );
badElems->myBadElements.insert( badElems->myBadElements.end(),
degenVols.begin(),degenVols.end() );
err.reset( badElems );
}
}
return true;
}
namespace VISCOUS_3D
{
struct ShrinkFace;
//--------------------------------------------------------------------------------
/*!
* \brief Pair of periodic FACEs
*/
struct PeriodicFaces
{
typedef StdMeshers_ProjectionUtils::TrsfFinder3D Trsf;
ShrinkFace* _shriFace[2];
TNodeNodeMap _nnMap;
Trsf _trsf;
PeriodicFaces( ShrinkFace* sf1, ShrinkFace* sf2 ): _shriFace{ sf1, sf2 } {}
bool IncludeShrunk( const TopoDS_Face& face, const TopTools_MapOfShape& shrunkFaces ) const;
bool MoveNodes( const TopoDS_Face& tgtFace );
void Clear() { _nnMap.clear(); }
bool IsEmpty() const { return _nnMap.empty(); }
};
//--------------------------------------------------------------------------------
/*!
* \brief Shrink FACE data used to find periodic FACEs
*/
struct ShrinkFace
{
// ................................................................................
struct BndPart //!< part of FACE boundary, either shrink or no-shrink
{
bool _isShrink, _isReverse;
int _nbSegments;
AverageHyp* _hyp;
std::vector< SMESH_NodeXYZ > _nodes;
TopAbs_ShapeEnum _vertSWOLType[2]; // shrink part includes VERTEXes
AverageHyp* _vertHyp[2];
double _edgeWOLLen[2]; // length of wol EDGE
double _tol; // to compare _edgeWOLLen's
BndPart():
_isShrink(0), _isReverse(0), _nbSegments(0), _hyp(0),
_vertSWOLType{ TopAbs_WIRE, TopAbs_WIRE }, _vertHyp{ 0, 0 }, _edgeWOLLen{ 0., 0.}
{}
bool IsEqualLengthEWOL( const BndPart& other ) const
{
return ( std::abs( _edgeWOLLen[0] - other._edgeWOLLen[0] ) < _tol &&
std::abs( _edgeWOLLen[1] - other._edgeWOLLen[1] ) < _tol );
}
bool operator==( const BndPart& other ) const
{
return ( _isShrink == other._isShrink &&
_nbSegments == other._nbSegments &&
_nodes.size() == other._nodes.size() &&
vertSWOLType1() == other.vertSWOLType1() &&
vertSWOLType2() == other.vertSWOLType2() &&
(( !_isShrink ) ||
( *_hyp == *other._hyp &&
vertHyp1() == other.vertHyp1() &&
vertHyp2() == other.vertHyp2() &&
IsEqualLengthEWOL( other )))
);
}
bool CanAppend( const BndPart& other )
{
return ( _isShrink == other._isShrink &&
(( !_isShrink ) ||
( *_hyp == *other._hyp &&
*_hyp == vertHyp2() &&
vertHyp2() == other.vertHyp1() ))
);
}
void Append( const BndPart& other )
{
_nbSegments += other._nbSegments;
bool hasCommonNode = ( _nodes.back()->GetID() == other._nodes.front()->GetID() );
_nodes.insert( _nodes.end(), other._nodes.begin() + hasCommonNode, other._nodes.end() );
_vertSWOLType[1] = other._vertSWOLType[1];
if ( _isShrink ) {
_vertHyp[1] = other._vertHyp[1];
_edgeWOLLen[1] = other._edgeWOLLen[1];
}
}
const SMDS_MeshNode* Node(size_t i) const
{
return _nodes[ _isReverse ? ( _nodes.size() - 1 - i ) : i ]._node;
}
void Reverse() { _isReverse = !_isReverse; }
const TopAbs_ShapeEnum& vertSWOLType1() const { return _vertSWOLType[ _isReverse ]; }
const TopAbs_ShapeEnum& vertSWOLType2() const { return _vertSWOLType[ !_isReverse ]; }
const AverageHyp& vertHyp1() const { return *(_vertHyp[ _isReverse ]); }
const AverageHyp& vertHyp2() const { return *(_vertHyp[ !_isReverse ]); }
};
// ................................................................................
SMESH_subMesh* _subMesh;
_SolidData* _data1;
_SolidData* _data2;
std::list< BndPart > _boundary;
int _boundarySize, _nbBoundaryParts;
void Init( SMESH_subMesh* sm, _SolidData* sd1, _SolidData* sd2 )
{
_subMesh = sm; _data1 = sd1; _data2 = sd2;
}
bool IsSame( const TopoDS_Face& face ) const
{
return _subMesh->GetSubShape().IsSame( face );
}
bool IsShrunk( const TopTools_MapOfShape& shrunkFaces ) const
{
return shrunkFaces.Contains( _subMesh->GetSubShape() );
}
//================================================================================
/*!
* Check if meshes on two FACEs are equal
*/
bool IsPeriodic( ShrinkFace& other, PeriodicFaces& periodic )
{
if ( !IsSameNbElements( other ))
return false;
this->SetBoundary();
other.SetBoundary();
if ( this->_boundarySize != other._boundarySize ||
this->_nbBoundaryParts != other._nbBoundaryParts )
return false;
for ( int isReverse = 0; isReverse < 2; ++isReverse )
{
if ( isReverse )
Reverse( _boundary );
// check boundaries
bool equalBoundary = false;
for ( int iP = 0; iP < _nbBoundaryParts && !equalBoundary; ++iP )
{
if ( ! ( equalBoundary = ( this->_boundary == other._boundary )))
// set first part at end
_boundary.splice( _boundary.end(), _boundary, _boundary.begin() );
}
if ( !equalBoundary )
continue;
// check connectivity
std::set<const SMDS_MeshElement*> elemsThis, elemsOther;
this->GetElements( elemsThis );
other.GetElements( elemsOther );
SMESH_MeshEditor::Sew_Error err =
SMESH_MeshEditor::FindMatchingNodes( elemsThis, elemsOther,
this->_boundary.front().Node(0),
other._boundary.front().Node(0),
this->_boundary.front().Node(1),
other._boundary.front().Node(1),
periodic._nnMap );
if ( err != SMESH_MeshEditor::SEW_OK )
continue;
// check node positions
std::vector< gp_XYZ > srcPnts, tgtPnts;
this->GetBoundaryPoints( srcPnts );
other.GetBoundaryPoints( tgtPnts );
if ( !periodic._trsf.Solve( srcPnts, tgtPnts )) {
continue;
}
double tol = std::numeric_limits<double>::max(); // tolerance by segment size
for ( size_t i = 1; i < srcPnts.size(); ++i ) {
tol = Min( tol, ( srcPnts[i-1] - srcPnts[i] ).SquareModulus() );
}
tol = 0.01 * Sqrt( tol );
for ( BndPart& boundary : _boundary ) { // tolerance by VL thickness
if ( boundary._isShrink )
tol = Min( tol, boundary._hyp->Get1stLayerThickness() / 50. );
}
bool nodeCoincide = true;
TNodeNodeMap::iterator n2n = periodic._nnMap.begin();
for ( ; n2n != periodic._nnMap.end() && nodeCoincide; ++n2n )
{
SMESH_NodeXYZ nSrc = n2n->first;
SMESH_NodeXYZ nTgt = n2n->second;
gp_XYZ pTgt = periodic._trsf.Transform( nSrc );
nodeCoincide = (( pTgt - nTgt ).SquareModulus() < tol * tol );
}
if ( nodeCoincide )
return true;
}
return false;
}
bool IsSameNbElements( ShrinkFace& other ) // check number of mesh faces
{
SMESHDS_SubMesh* sm1 = this->_subMesh->GetSubMeshDS();
SMESHDS_SubMesh* sm2 = other._subMesh->GetSubMeshDS();
return ( sm1->NbElements() == sm2->NbElements() &&
sm1->NbNodes() == sm2->NbNodes() );
}
void Reverse( std::list< BndPart >& boundary )
{
boundary.reverse();
for ( std::list< BndPart >::iterator part = boundary.begin(); part != boundary.end(); ++part )
part->Reverse();
}
void SetBoundary()
{
if ( !_boundary.empty() )
return;
TopoDS_Face F = TopoDS::Face( _subMesh->GetSubShape() );
if ( F.Orientation() >= TopAbs_INTERNAL ) F.Orientation( TopAbs_FORWARD );
std::list< TopoDS_Edge > edges;
std::list< int > nbEdgesInWire;
/*int nbWires =*/ SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
// std::list< TopoDS_Edge >::iterator edgesEnd = edges.end();
// if ( nbWires > 1 ) {
// edgesEnd = edges.begin();
// std::advance( edgesEnd, nbEdgesInWire.front() );
// }
StdMeshers_FaceSide fSide( F, edges, _subMesh->GetFather(),
/*fwd=*/true, /*skipMedium=*/true );
_boundarySize = fSide.NbSegments();
//TopoDS_Vertex vv[2];
//std::list< TopoDS_Edge >::iterator edgeIt = edges.begin();
for ( int iE = 0; iE < nbEdgesInWire.front(); ++iE )
{
BndPart bndPart;
std::vector<const SMDS_MeshNode*> nodes = fSide.GetOrderedNodes( iE );
bndPart._nodes.assign( nodes.begin(), nodes.end() );
bndPart._nbSegments = bndPart._nodes.size() - 1;
_EdgesOnShape* eos = _data1->GetShapeEdges( fSide.EdgeID( iE ));
bndPart._isShrink = ( eos->SWOLType() == TopAbs_FACE );
if ( bndPart._isShrink )
if (( _data1->_noShrinkShapes.count( eos->_shapeID )) ||
( _data2 && _data2->_noShrinkShapes.count( eos->_shapeID )))
bndPart._isShrink = false;
if ( bndPart._isShrink )
{
bndPart._hyp = & eos->_hyp;
_EdgesOnShape* eov[2] = { _data1->GetShapeEdges( fSide.FirstVertex( iE )),
_data1->GetShapeEdges( fSide.LastVertex ( iE )) };
for ( int iV = 0; iV < 2; ++iV )
{
bndPart._vertHyp [iV] = & eov[iV]->_hyp;
bndPart._vertSWOLType[iV] = eov[iV]->SWOLType();
if ( _data1->_noShrinkShapes.count( eov[iV]->_shapeID ))
bndPart._vertSWOLType[iV] = TopAbs_SHAPE;
if ( _data2 && bndPart._vertSWOLType[iV] != TopAbs_SHAPE )
{
eov[iV] = _data2->GetShapeEdges( iV ? fSide.LastVertex(iE) : fSide.FirstVertex(iE ));
if ( _data2->_noShrinkShapes.count( eov[iV]->_shapeID ))
bndPart._vertSWOLType[iV] = TopAbs_SHAPE;
else if ( eov[iV]->SWOLType() > bndPart._vertSWOLType[iV] )
bndPart._vertSWOLType[iV] = eov[iV]->SWOLType();
}
}
bndPart._edgeWOLLen[0] = fSide.EdgeLength( iE - 1 );
bndPart._edgeWOLLen[1] = fSide.EdgeLength( iE + 1 );
bndPart._tol = std::numeric_limits<double>::max(); // tolerance by segment size
for ( size_t i = 1; i < bndPart._nodes.size(); ++i )
bndPart._tol = Min( bndPart._tol,
( bndPart._nodes[i-1] - bndPart._nodes[i] ).SquareModulus() );
}
if ( _boundary.empty() || ! _boundary.back().CanAppend( bndPart ))
_boundary.push_back( bndPart );
else
_boundary.back().Append( bndPart );
}
_nbBoundaryParts = _boundary.size();
if ( _nbBoundaryParts > 1 && _boundary.front()._isShrink == _boundary.back()._isShrink )
{
_boundary.back().Append( _boundary.front() );
_boundary.pop_front();
--_nbBoundaryParts;
}
}
void GetElements( std::set<const SMDS_MeshElement*>& theElems)
{
if ( SMESHDS_SubMesh* sm = _subMesh->GetSubMeshDS() )
for ( SMDS_ElemIteratorPtr fIt = sm->GetElements(); fIt->more(); )
theElems.insert( theElems.end(), fIt->next() );
return ;
}
void GetBoundaryPoints( std::vector< gp_XYZ >& points )
{
points.reserve( _boundarySize );
size_t nb = _boundary.rbegin()->_nodes.size();
smIdType lastID = _boundary.rbegin()->Node( nb - 1 )->GetID();
std::list< BndPart >::const_iterator part = _boundary.begin();
for ( ; part != _boundary.end(); ++part )
{
size_t nb = part->_nodes.size();
size_t iF = 0;
size_t iR = nb - 1;
size_t* i = part->_isReverse ? &iR : &iF;
if ( part->_nodes[ *i ]->GetID() == lastID )
++iF, --iR;
for ( ; iF < nb; ++iF, --iR )
points.push_back( part->_nodes[ *i ]);
--iF, ++iR;
lastID = part->_nodes[ *i ]->GetID();
}
}
}; // struct ShrinkFace
//--------------------------------------------------------------------------------
/*!
* \brief Periodic FACEs
*/
struct Periodicity
{
std::vector< ShrinkFace > _shrinkFaces;
std::vector< PeriodicFaces > _periodicFaces;
PeriodicFaces* GetPeriodic( const TopoDS_Face& face, const TopTools_MapOfShape& shrunkFaces )
{
for ( size_t i = 0; i < _periodicFaces.size(); ++i )
if ( _periodicFaces[ i ].IncludeShrunk( face, shrunkFaces ))
return & _periodicFaces[ i ];
return 0;
}
void ClearPeriodic( const TopoDS_Face& face )
{
for ( size_t i = 0; i < _periodicFaces.size(); ++i )
if ( _periodicFaces[ i ]._shriFace[0]->IsSame( face ) ||
_periodicFaces[ i ]._shriFace[1]->IsSame( face ))
_periodicFaces[ i ].Clear();
}
};
//================================================================================
/*!
* Check if a pair includes the given FACE and the other FACE is already shrunk
*/
bool PeriodicFaces::IncludeShrunk( const TopoDS_Face& face,
const TopTools_MapOfShape& shrunkFaces ) const
{
if ( IsEmpty() ) return false;
return (( _shriFace[0]->IsSame( face ) && _shriFace[1]->IsShrunk( shrunkFaces )) ||
( _shriFace[1]->IsSame( face ) && _shriFace[0]->IsShrunk( shrunkFaces )));
}
//================================================================================
/*!
* Make equal meshes on periodic faces by moving corresponding nodes
*/
bool PeriodicFaces::MoveNodes( const TopoDS_Face& tgtFace )
{
int iTgt = _shriFace[1]->IsSame( tgtFace );
int iSrc = 1 - iTgt;
_SolidData* dataSrc = _shriFace[iSrc]->_data1;
_SolidData* dataTgt = _shriFace[iTgt]->_data1;
Trsf * trsf = & _trsf, trsfInverse;
if ( iSrc != 0 )
{
trsfInverse = _trsf;
if ( !trsfInverse.Invert())
return false;
trsf = &trsfInverse;
}
SMESHDS_Mesh* meshDS = dataSrc->GetHelper().GetMeshDS();
dumpFunction(SMESH_Comment("periodicMoveNodes_F")
<< _shriFace[iSrc]->_subMesh->GetId() << "_F"
<< _shriFace[iTgt]->_subMesh->GetId() );
TNode2Edge::iterator n2e;
TNodeNodeMap::iterator n2n = _nnMap.begin();
for ( ; n2n != _nnMap.end(); ++n2n )
{
const SMDS_MeshNode* const* nn = & n2n->first;
const SMDS_MeshNode* nSrc = nn[ iSrc ];
const SMDS_MeshNode* nTgt = nn[ iTgt ];
if (( nSrc->GetPosition()->GetDim() == 2 ) ||
(( n2e = dataSrc->_n2eMap.find( nSrc )) == dataSrc->_n2eMap.end() ))
{
SMESH_NodeXYZ pSrc = nSrc;
gp_XYZ pTgt = trsf->Transform( pSrc );
meshDS->MoveNode( nTgt, pTgt.X(), pTgt.Y(), pTgt.Z() );
}
else
{
_LayerEdge* leSrc = n2e->second;
n2e = dataTgt->_n2eMap.find( nTgt );
if ( n2e == dataTgt->_n2eMap.end() )
break;
_LayerEdge* leTgt = n2e->second;
if ( leSrc->_nodes.size() != leTgt->_nodes.size() )
break;
for ( size_t iN = 1; iN < leSrc->_nodes.size(); ++iN )
{
SMESH_NodeXYZ pSrc = leSrc->_nodes[ iN ];
gp_XYZ pTgt = trsf->Transform( pSrc );
meshDS->MoveNode( leTgt->_nodes[ iN ], pTgt.X(), pTgt.Y(), pTgt.Z() );
dumpMove( leTgt->_nodes[ iN ]);
}
}
}
bool done = ( n2n == _nnMap.end() );
debugMsg( "PeriodicFaces::MoveNodes "
<< _shriFace[iSrc]->_subMesh->GetId() << " -> "
<< _shriFace[iTgt]->_subMesh->GetId() << " -- "
<< ( done ? "DONE" : "FAIL"));
dumpFunctionEnd();
return done;
}
} // namespace VISCOUS_3D; Periodicity part
//================================================================================
/*!
* \brief Find FACEs to shrink, that are equally meshed before shrink (i.e. periodic)
* and should remain equal after shrink
*/
//================================================================================
void _ViscousBuilder::findPeriodicFaces()
{
// make map of (ids of FACEs to shrink mesh on) to (list of _SolidData containing
// _LayerEdge's inflated along FACE or EDGE)
std::map< TGeomID, std::list< _SolidData* > > id2sdMap;
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
{
_SolidData& data = _sdVec[i];
std::map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin();
for (; s2s != data._shrinkShape2Shape.end(); ++s2s )
if ( s2s->second.ShapeType() == TopAbs_FACE )
id2sdMap[ getMeshDS()->ShapeToIndex( s2s->second )].push_back( &data );
}
_periodicity.reset( new Periodicity );
_periodicity->_shrinkFaces.resize( id2sdMap.size() );
std::map< TGeomID, std::list< _SolidData* > >::iterator id2sdIt = id2sdMap.begin();
for ( size_t i = 0; i < id2sdMap.size(); ++i, ++id2sdIt )
{
_SolidData* sd1 = id2sdIt->second.front();
_SolidData* sd2 = id2sdIt->second.back();
_periodicity->_shrinkFaces[ i ].Init( _mesh->GetSubMeshContaining( id2sdIt->first ), sd1, sd2 );
}
for ( size_t i1 = 0; i1 < _periodicity->_shrinkFaces.size(); ++i1 )
for ( size_t i2 = i1 + 1; i2 < _periodicity->_shrinkFaces.size(); ++i2 )
{
PeriodicFaces pf( & _periodicity->_shrinkFaces[ i1 ],
& _periodicity->_shrinkFaces[ i2 ]);
if ( pf._shriFace[0]->IsPeriodic( *pf._shriFace[1], pf ))
{
_periodicity->_periodicFaces.push_back( pf );
}
}
return;
}
//================================================================================
/*!
* \brief Shrink 2D mesh on faces to let space for inflated layers
*/
//================================================================================
bool _ViscousBuilder::shrink(_SolidData& theData)
{
// make map of (ids of FACEs to shrink mesh on) to (list of _SolidData containing
// _LayerEdge's inflated along FACE or EDGE)
map< TGeomID, list< _SolidData* > > f2sdMap;
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
{
_SolidData& data = _sdVec[i];
map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin();
for (; s2s != data._shrinkShape2Shape.end(); ++s2s )
if ( s2s->second.ShapeType() == TopAbs_FACE && !_shrunkFaces.Contains( s2s->second ))
{
f2sdMap[ getMeshDS()->ShapeToIndex( s2s->second )].push_back( &data );
// Put mesh faces on the shrunk FACE to the proxy sub-mesh to avoid
// usage of mesh faces made in addBoundaryElements() by the 3D algo or
// by StdMeshers_QuadToTriaAdaptor
if ( SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( s2s->second ))
{
SMESH_ProxyMesh::SubMesh* proxySub =
data._proxyMesh->getFaceSubM( TopoDS::Face( s2s->second ), /*create=*/true);
if ( proxySub->NbElements() == 0 )
{
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
// as a result 3D algo will use elements from proxySub and not from smDS
proxySub->AddElement( f );
f->setIsMarked( true );
// Mark nodes on the FACE to discriminate them from nodes
// added by addBoundaryElements(); marked nodes are to be smoothed while shrink()
for ( int iN = 0, nbN = f->NbNodes(); iN < nbN; ++iN )
{
const SMDS_MeshNode* n = f->GetNode( iN );
if ( n->GetPosition()->GetDim() == 2 )
n->setIsMarked( true );
}
}
}
}
}
}
SMESH_MesherHelper helper( *_mesh );
helper.ToFixNodeParameters( true );
// EDGEs to shrink
map< TGeomID, _Shrinker1D > e2shrMap;
vector< _EdgesOnShape* > subEOS;
vector< _LayerEdge* > lEdges;
// loop on FACEs to shrink mesh on
map< TGeomID, list< _SolidData* > >::iterator f2sd = f2sdMap.begin();
for ( ; f2sd != f2sdMap.end(); ++f2sd )
{
list< _SolidData* > & dataList = f2sd->second;
if ( dataList.front()->_n2eMap.empty() ||
dataList.back() ->_n2eMap.empty() )
continue; // not yet computed
if ( dataList.front() != &theData &&
dataList.back() != &theData )
continue;
_SolidData& data = *dataList.front();
_SolidData* data2 = dataList.size() > 1 ? dataList.back() : 0;
const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( f2sd->first ));
SMESH_subMesh* sm = _mesh->GetSubMesh( F );
SMESHDS_SubMesh* smDS = sm->GetSubMeshDS();
Handle(Geom_Surface) surface = BRep_Tool::Surface( F );
_shrunkFaces.Add( F );
helper.SetSubShape( F );
// ==============================
// Use periodicity to move nodes
// ==============================
PeriodicFaces* periodic = _periodicity->GetPeriodic( F, _shrunkFaces );
bool movedByPeriod = ( periodic && periodic->MoveNodes( F ));
// ===========================
// Prepare data for shrinking
// ===========================
// Collect nodes to smooth (they are marked at the beginning of this method)
vector < const SMDS_MeshNode* > smoothNodes;
if ( !movedByPeriod )
{
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* n = nIt->next();
if ( n->isMarked() )
smoothNodes.push_back( n );
}
}
// Find out face orientation
double refSign = 1;
const set<TGeomID> ignoreShapes;
bool isOkUV;
if ( !smoothNodes.empty() )
{
vector<_Simplex> simplices;
_Simplex::GetSimplices( smoothNodes[0], simplices, ignoreShapes );
helper.GetNodeUV( F, simplices[0]._nPrev, 0, &isOkUV ); // fix UV of simplex nodes
helper.GetNodeUV( F, simplices[0]._nNext, 0, &isOkUV );
gp_XY uv = helper.GetNodeUV( F, smoothNodes[0], 0, &isOkUV );
if ( !simplices[0].IsForward(uv, smoothNodes[0], F, helper, refSign ))
refSign = -1;
}
// Find _LayerEdge's inflated along F
subEOS.clear();
lEdges.clear();
{
SMESH_subMeshIteratorPtr subIt = sm->getDependsOnIterator(/*includeSelf=*/false,
/*complexFirst=*/true); //!!!
while ( subIt->more() )
{
const TGeomID subID = subIt->next()->GetId();
if ( data._noShrinkShapes.count( subID ))
continue;
_EdgesOnShape* eos = data.GetShapeEdges( subID );
if ( !eos || eos->_sWOL.IsNull() )
if ( data2 ) // check in adjacent SOLID
{
eos = data2->GetShapeEdges( subID );
if ( !eos || eos->_sWOL.IsNull() )
continue;
}
subEOS.push_back( eos );
if ( !movedByPeriod )
for ( size_t i = 0; i < eos->_edges.size(); ++i )
{
lEdges.push_back( eos->_edges[ i ] );
prepareEdgeToShrink( *eos->_edges[ i ], *eos, helper, smDS );
}
}
}
dumpFunction(SMESH_Comment("beforeShrinkFace")<<f2sd->first); // debug
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
while ( fIt->more() )
if ( const SMDS_MeshElement* f = fIt->next() )
dumpChangeNodes( f );
dumpFunctionEnd();
// Replace source nodes by target nodes in mesh faces to shrink
dumpFunction(SMESH_Comment("replNodesOnFace")<<f2sd->first); // debug
const SMDS_MeshNode* nodes[20];
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
{
_EdgesOnShape& eos = * subEOS[ iS ];
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge& edge = *eos._edges[i];
const SMDS_MeshNode* srcNode = edge._nodes[0];
const SMDS_MeshNode* tgtNode = edge._nodes.back();
SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
if ( !smDS->Contains( f ) || !f->isMarked() )
continue;
SMDS_NodeIteratorPtr nIt = f->nodeIterator();
for ( int iN = 0; nIt->more(); ++iN )
{
const SMDS_MeshNode* n = nIt->next();
nodes[iN] = ( n == srcNode ? tgtNode : n );
}
helper.GetMeshDS()->ChangeElementNodes( f, nodes, f->NbNodes() );
dumpChangeNodes( f );
}
}
}
dumpFunctionEnd();
// find out if a FACE is concave
const bool isConcaveFace = isConcave( F, helper );
// Create _SmoothNode's on face F
vector< _SmoothNode > nodesToSmooth( smoothNodes.size() );
{
dumpFunction(SMESH_Comment("fixUVOnFace")<<f2sd->first); // debug
const bool sortSimplices = isConcaveFace;
for ( size_t i = 0; i < smoothNodes.size(); ++i )
{
const SMDS_MeshNode* n = smoothNodes[i];
nodesToSmooth[ i ]._node = n;
// src nodes must be already replaced by tgt nodes to have tgt nodes in _simplices
_Simplex::GetSimplices( n, nodesToSmooth[ i ]._simplices, ignoreShapes, 0, sortSimplices);
// fix up incorrect uv of nodes on the FACE
helper.GetNodeUV( F, n, 0, &isOkUV);
dumpMove( n );
}
dumpFunctionEnd();
}
//if ( nodesToSmooth.empty() ) continue;
// Find EDGE's to shrink and set simpices to LayerEdge's
set< _Shrinker1D* > eShri1D;
{
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
{
_EdgesOnShape& eos = * subEOS[ iS ];
if ( eos.SWOLType() == TopAbs_EDGE )
{
SMESH_subMesh* edgeSM = _mesh->GetSubMesh( eos._sWOL );
VISCOUS_3D::ToClearSubWithMain( edgeSM, data._solid );
if ( !movedByPeriod )
{
_Shrinker1D& shrinker = e2shrMap[ edgeSM->GetId() ];
eShri1D.insert( & shrinker );
shrinker.AddEdge( eos._edges[0], eos, helper );
// restore params of nodes on EDGE if the EDGE has been already
// shrunk while shrinking other FACE
shrinker.RestoreParams();
}
}
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge& edge = * eos._edges[i];
_Simplex::GetSimplices( /*tgtNode=*/edge._nodes.back(), edge._simplices, ignoreShapes );
// additionally mark tgt node; only marked nodes will be used in SetNewLength2d()
// not-marked nodes are those added by refine()
edge._nodes.back()->setIsMarked( true );
}
}
}
bool toFixTria = false; // to improve quality of trias by diagonal swap
if ( isConcaveFace && !movedByPeriod )
{
const bool hasTria = _mesh->NbTriangles(), hasQuad = _mesh->NbQuadrangles();
if ( hasTria != hasQuad ) {
toFixTria = hasTria;
}
else {
set<int> nbNodesSet;
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
while ( fIt->more() && nbNodesSet.size() < 2 )
nbNodesSet.insert( fIt->next()->NbCornerNodes() );
toFixTria = ( *nbNodesSet.begin() == 3 );
}
}
// ==================
// Perform shrinking
// ==================
bool shrunk = !movedByPeriod;
int nbBad, shriStep=0, smooStep=0;
_SmoothNode::SmoothType smoothType
= isConcaveFace ? _SmoothNode::ANGULAR : _SmoothNode::LAPLACIAN;
SMESH_Comment errMsg;
while ( shrunk )
{
shriStep++;
// Move boundary nodes (actually just set new UV)
// -----------------------------------------------
dumpFunction(SMESH_Comment("moveBoundaryOnF")<<f2sd->first<<"_st"<<shriStep ); // debug
shrunk = false;
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
{
_EdgesOnShape& eos = * subEOS[ iS ];
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
shrunk |= eos._edges[i]->SetNewLength2d( surface, F, eos, helper );
}
}
dumpFunctionEnd();
// Move nodes on EDGE's
// (XYZ is set as soon as a needed length reached in SetNewLength2d())
set< _Shrinker1D* >::iterator shr = eShri1D.begin();
for ( ; shr != eShri1D.end(); ++shr )
(*shr)->Compute( /*set3D=*/false, helper );
// Smoothing in 2D
// -----------------
int nbNoImpSteps = 0;
bool moved = true;
nbBad = 1;
while (( nbNoImpSteps < 5 && nbBad > 0) && moved)
{
dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
int oldBadNb = nbBad;
nbBad = 0;
moved = false;
// '% 5' minimizes NB FUNCTIONS on viscous_layers_00/B2 case
_SmoothNode::SmoothType smooTy = ( smooStep % 5 ) ? smoothType : _SmoothNode::LAPLACIAN;
for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
{
moved |= nodesToSmooth[i].Smooth( nbBad, surface, helper, refSign,
smooTy, /*set3D=*/isConcaveFace);
}
if ( nbBad < oldBadNb )
nbNoImpSteps = 0;
else
nbNoImpSteps++;
dumpFunctionEnd();
}
errMsg.clear();
if ( nbBad > 0 )
errMsg << "Can't shrink 2D mesh on face " << f2sd->first;
if ( shriStep > 200 )
errMsg << "Infinite loop at shrinking 2D mesh on face " << f2sd->first;
if ( !errMsg.empty() )
break;
// Fix narrow triangles by swapping diagonals
// ---------------------------------------
if ( toFixTria )
{
set<const SMDS_MeshNode*> usedNodes;
fixBadFaces( F, helper, /*is2D=*/true, shriStep, & usedNodes); // swap diagonals
// update working data
set<const SMDS_MeshNode*>::iterator n;
for ( size_t i = 0; i < nodesToSmooth.size() && !usedNodes.empty(); ++i )
{
n = usedNodes.find( nodesToSmooth[ i ]._node );
if ( n != usedNodes.end())
{
_Simplex::GetSimplices( nodesToSmooth[ i ]._node,
nodesToSmooth[ i ]._simplices,
ignoreShapes, NULL,
/*sortSimplices=*/ smoothType == _SmoothNode::ANGULAR );
usedNodes.erase( n );
}
}
for ( size_t i = 0; i < lEdges.size() && !usedNodes.empty(); ++i )
{
n = usedNodes.find( /*tgtNode=*/ lEdges[i]->_nodes.back() );
if ( n != usedNodes.end())
{
_Simplex::GetSimplices( lEdges[i]->_nodes.back(),
lEdges[i]->_simplices,
ignoreShapes );
usedNodes.erase( n );
}
}
}
// TODO: check effect of this additional smooth
// additional laplacian smooth to increase allowed shrink step
// for ( int st = 1; st; --st )
// {
// dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
// for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
// {
// nodesToSmooth[i].Smooth( nbBad,surface,helper,refSign,
// _SmoothNode::LAPLACIAN,/*set3D=*/false);
// }
// }
} // while ( shrunk )
if ( !errMsg.empty() ) // Try to re-compute the shrink FACE
{
debugMsg( "Re-compute FACE " << f2sd->first << " because " << errMsg );
// remove faces
SMESHDS_SubMesh* psm = data._proxyMesh->getFaceSubM( F );
{
vector< const SMDS_MeshElement* > facesToRm;
if ( psm )
{
facesToRm.reserve( psm->NbElements() );
for ( SMDS_ElemIteratorPtr ite = psm->GetElements(); ite->more(); )
facesToRm.push_back( ite->next() );
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F )))
psm->Clear();
}
for ( size_t i = 0; i < facesToRm.size(); ++i )
getMeshDS()->RemoveFreeElement( facesToRm[i], smDS, /*fromGroups=*/false );
}
// remove nodes
{
TIDSortedNodeSet nodesToKeep; // nodes of _LayerEdge to keep
for ( size_t iS = 0; iS < subEOS.size(); ++iS ) {
for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i )
nodesToKeep.insert( ++( subEOS[iS]->_edges[i]->_nodes.begin() ),
subEOS[iS]->_edges[i]->_nodes.end() );
}
SMDS_NodeIteratorPtr itn = smDS->GetNodes();
while ( itn->more() ) {
const SMDS_MeshNode* n = itn->next();
if ( !nodesToKeep.count( n ))
getMeshDS()->RemoveFreeNode( n, smDS, /*fromGroups=*/false );
}
}
_periodicity->ClearPeriodic( F );
// restore position and UV of target nodes
gp_Pnt p;
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i )
{
_LayerEdge* edge = subEOS[iS]->_edges[i];
SMDS_MeshNode* tgtNode = const_cast< SMDS_MeshNode*& >( edge->_nodes.back() );
if ( edge->_pos.empty() ||
edge->Is( _LayerEdge::SHRUNK )) continue;
if ( subEOS[iS]->SWOLType() == TopAbs_FACE )
{
SMDS_FacePositionPtr pos = tgtNode->GetPosition();
pos->SetUParameter( edge->_pos[0].X() );
pos->SetVParameter( edge->_pos[0].Y() );
p = surface->Value( edge->_pos[0].X(), edge->_pos[0].Y() );
}
else
{
SMDS_EdgePositionPtr pos = tgtNode->GetPosition();
pos->SetUParameter( edge->_pos[0].Coord( U_TGT ));
p = BRepAdaptor_Curve( TopoDS::Edge( subEOS[iS]->_sWOL )).Value( pos->GetUParameter() );
}
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( tgtNode );
}
// shrink EDGE sub-meshes and set proxy sub-meshes
UVPtStructVec uvPtVec;
set< _Shrinker1D* >::iterator shrIt = eShri1D.begin();
for ( shrIt = eShri1D.begin(); shrIt != eShri1D.end(); ++shrIt )
{
_Shrinker1D* shr = (*shrIt);
shr->Compute( /*set3D=*/true, helper );
// set proxy mesh of EDGEs w/o layers
map< double, const SMDS_MeshNode* > nodes;
SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), shr->GeomEdge(),/*skipMedium=*/true, nodes);
// remove refinement nodes
const SMDS_MeshNode* sn0 = shr->SrcNode(0), *sn1 = shr->SrcNode(1);
const SMDS_MeshNode* tn0 = shr->TgtNode(0), *tn1 = shr->TgtNode(1);
map< double, const SMDS_MeshNode* >::iterator u2n = nodes.begin();
if ( u2n->second == sn0 || u2n->second == sn1 )
{
while ( u2n->second != tn0 && u2n->second != tn1 )
++u2n;
nodes.erase( nodes.begin(), u2n );
}
u2n = --nodes.end();
if ( u2n->second == sn0 || u2n->second == sn1 )
{
while ( u2n->second != tn0 && u2n->second != tn1 )
--u2n;
nodes.erase( ++u2n, nodes.end() );
}
// set proxy sub-mesh
uvPtVec.resize( nodes.size() );
u2n = nodes.begin();
BRepAdaptor_Curve2d curve( shr->GeomEdge(), F );
for ( size_t i = 0; i < nodes.size(); ++i, ++u2n )
{
uvPtVec[ i ].node = u2n->second;
uvPtVec[ i ].param = u2n->first;
uvPtVec[ i ].SetUV( curve.Value( u2n->first ).XY() );
}
StdMeshers_FaceSide fSide( uvPtVec, F, shr->GeomEdge(), _mesh );
StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide );
}
// set proxy mesh of EDGEs with layers
vector< _LayerEdge* > edges;
for ( size_t iS = 0; iS < subEOS.size(); ++iS )
{
_EdgesOnShape& eos = * subEOS[ iS ];
if ( eos.ShapeType() != TopAbs_EDGE ) continue;
if ( eos.size() == 0 )
continue;
const TopoDS_Edge& E = TopoDS::Edge( eos._shape );
data.SortOnEdge( E, eos._edges );
edges.clear();
if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 0, E, /*CumOri=*/false )))
if ( !eov->_edges.empty() )
edges.push_back( eov->_edges[0] ); // on 1st VERTEX
edges.insert( edges.end(), eos._edges.begin(), eos._edges.end() );
if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 1, E, /*CumOri=*/false )))
if ( !eov->_edges.empty() )
edges.push_back( eov->_edges[0] ); // on last VERTEX
uvPtVec.resize( edges.size() );
for ( size_t i = 0; i < edges.size(); ++i )
{
uvPtVec[ i ].node = edges[i]->_nodes.back();
uvPtVec[ i ].param = helper.GetNodeU( E, edges[i]->_nodes[0] );
uvPtVec[ i ].SetUV( helper.GetNodeUV( F, edges[i]->_nodes.back() ));
}
if ( uvPtVec[ 0 ].node == uvPtVec.back().node && // closed
helper.IsSeamShape( uvPtVec[ 0 ].node->GetShapeID() ))
{
uvPtVec[ 0 ].SetUV( helper.GetNodeUV( F,
edges[0]->_nodes.back(),
edges[1]->_nodes.back() ));
size_t i = edges.size() - 1;
uvPtVec[ i ].SetUV( helper.GetNodeUV( F,
edges[i ]->_nodes.back(),
edges[i-1]->_nodes.back() ));
}
// if ( edges.empty() )
// continue;
BRep_Tool::Range( E, uvPtVec[0].param, uvPtVec.back().param );
StdMeshers_FaceSide fSide( uvPtVec, F, E, _mesh );
StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide );
}
// temporary clear the FACE sub-mesh from faces made by refine()
vector< const SMDS_MeshElement* > elems;
elems.reserve( smDS->NbElements() + smDS->NbNodes() );
for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); )
elems.push_back( ite->next() );
for ( SMDS_NodeIteratorPtr ite = smDS->GetNodes(); ite->more(); )
elems.push_back( ite->next() );
smDS->Clear();
// compute the mesh on the FACE
TopTools_IndexedMapOfShape allowed(1);
allowed.Add( sm->GetSubShape() );
sm->SetAllowedSubShapes( &allowed );
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
sm->ComputeStateEngine( SMESH_subMesh::COMPUTE_SUBMESH );
sm->SetAllowedSubShapes( nullptr );
// re-fill proxy sub-meshes of the FACE
for ( size_t i = 0 ; i < _sdVec.size(); ++i )
if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F )))
for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); )
psm->AddElement( ite->next() );
// re-fill smDS
for ( size_t i = 0; i < elems.size(); ++i )
smDS->AddElement( elems[i] );
if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK )
return error( errMsg );
} // end of re-meshing in case of failed smoothing
else if ( !movedByPeriod )
{
// No wrongly shaped faces remain; final smooth. Set node XYZ.
bool isStructuredFixed = false;
if ( SMESH_2D_Algo* algo = dynamic_cast<SMESH_2D_Algo*>( sm->GetAlgo() ))
isStructuredFixed = algo->FixInternalNodes( *data._proxyMesh, F );
if ( !isStructuredFixed )
{
if ( isConcaveFace ) // fix narrow faces by swapping diagonals
fixBadFaces( F, helper, /*is2D=*/false, ++shriStep );
for ( int st = 3; st; --st )
{
switch( st ) {
case 1: smoothType = _SmoothNode::LAPLACIAN; break;
case 2: smoothType = _SmoothNode::LAPLACIAN; break;
case 3: smoothType = _SmoothNode::ANGULAR; break;
}
dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
{
nodesToSmooth[i].Smooth( nbBad,surface,helper,refSign,
smoothType,/*set3D=*/st==1 );
}
dumpFunctionEnd();
}
}
if ( !getMeshDS()->IsEmbeddedMode() )
// Log node movement
for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
{
SMESH_TNodeXYZ p ( nodesToSmooth[i]._node );
getMeshDS()->MoveNode( nodesToSmooth[i]._node, p.X(), p.Y(), p.Z() );
}
}
// Set an event listener to clear FACE sub-mesh together with SOLID sub-mesh
VISCOUS_3D::ToClearSubWithMain( sm, data._solid );
if ( data2 )
VISCOUS_3D::ToClearSubWithMain( sm, data2->_solid );
} // loop on FACES to shrink mesh on
// Replace source nodes by target nodes in shrunk mesh edges
map< int, _Shrinker1D >::iterator e2shr = e2shrMap.begin();
for ( ; e2shr != e2shrMap.end(); ++e2shr )
e2shr->second.SwapSrcTgtNodes( getMeshDS() );
return true;
}
//================================================================================
/*!
* \brief Computes 2d shrink direction and finds nodes limiting shrinking
*/
//================================================================================
bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper,
const SMESHDS_SubMesh* /*faceSubMesh*/)
{
const SMDS_MeshNode* srcNode = edge._nodes[0];
const SMDS_MeshNode* tgtNode = edge._nodes.back();
if ( eos.SWOLType() == TopAbs_FACE )
{
if ( tgtNode->GetPosition()->GetDim() != 2 ) // not inflated edge
{
edge._pos.clear();
edge.Set( _LayerEdge::SHRUNK );
return srcNode == tgtNode;
}
gp_XY srcUV ( edge._pos[0].X(), edge._pos[0].Y() ); //helper.GetNodeUV( F, srcNode );
gp_XY tgtUV = edge.LastUV( TopoDS::Face( eos._sWOL ), eos ); //helper.GetNodeUV( F, tgtNode );
gp_Vec2d uvDir( srcUV, tgtUV );
double uvLen = uvDir.Magnitude();
uvDir /= uvLen;
edge._normal.SetCoord( uvDir.X(),uvDir.Y(), 0 );
edge._len = uvLen;
//edge._pos.resize(1);
edge._pos[0].SetCoord( tgtUV.X(), tgtUV.Y(), 0 );
// set UV of source node to target node
SMDS_FacePositionPtr pos = tgtNode->GetPosition();
pos->SetUParameter( srcUV.X() );
pos->SetVParameter( srcUV.Y() );
}
else // _sWOL is TopAbs_EDGE
{
if ( tgtNode->GetPosition()->GetDim() != 1 ) // not inflated edge
{
edge._pos.clear();
edge.Set( _LayerEdge::SHRUNK );
return srcNode == tgtNode;
}
const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL );
SMESHDS_SubMesh* edgeSM = getMeshDS()->MeshElements( E );
if ( !edgeSM || edgeSM->NbElements() == 0 )
return error(SMESH_Comment("Not meshed EDGE ") << getMeshDS()->ShapeToIndex( E ));
const SMDS_MeshNode* n2 = 0;
SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge);
while ( eIt->more() && !n2 )
{
const SMDS_MeshElement* e = eIt->next();
if ( !edgeSM->Contains(e)) continue;
n2 = e->GetNode( 0 );
if ( n2 == srcNode ) n2 = e->GetNode( 1 );
}
if ( !n2 )
return error(SMESH_Comment("Wrongly meshed EDGE ") << getMeshDS()->ShapeToIndex( E ));
if ( n2 == tgtNode || // for 3D_mesh_GHS3D_01/B1
n2 == edge._nodes[1] ) // bos #20643
{
// shrunk by other SOLID
edge.Set( _LayerEdge::SHRUNK ); // ???
return true;
}
double uSrc = helper.GetNodeU( E, srcNode, n2 );
double uTgt = helper.GetNodeU( E, tgtNode, srcNode );
double u2 = helper.GetNodeU( E, n2, srcNode );
//edge._pos.clear();
if ( fabs( uSrc-uTgt ) < 0.99 * fabs( uSrc-u2 ))
{
// tgtNode is located so that it does not make faces with wrong orientation
edge.Set( _LayerEdge::SHRUNK );
return true;
}
//edge._pos.resize(1);
edge._pos[0].SetCoord( U_TGT, uTgt );
edge._pos[0].SetCoord( U_SRC, uSrc );
edge._pos[0].SetCoord( LEN_TGT, fabs( uSrc-uTgt ));
edge._simplices.resize( 1 );
edge._simplices[0]._nPrev = n2;
// set U of source node to the target node
SMDS_EdgePositionPtr pos = tgtNode->GetPosition();
pos->SetUParameter( uSrc );
}
return true;
}
//================================================================================
/*!
* \brief Restore position of a sole node of a _LayerEdge based on _noShrinkShapes
*/
//================================================================================
void _ViscousBuilder::restoreNoShrink( _LayerEdge& edge ) const
{
if ( edge._nodes.size() == 1 )
{
edge._pos.clear();
edge._len = 0;
const SMDS_MeshNode* srcNode = edge._nodes[0];
TopoDS_Shape S = SMESH_MesherHelper::GetSubShapeByNode( srcNode, getMeshDS() );
if ( S.IsNull() ) return;
gp_Pnt p;
switch ( S.ShapeType() )
{
case TopAbs_EDGE:
{
double f,l;
TopLoc_Location loc;
Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( S ), loc, f, l );
if ( curve.IsNull() ) return;
SMDS_EdgePositionPtr ePos = srcNode->GetPosition();
p = curve->Value( ePos->GetUParameter() );
break;
}
case TopAbs_VERTEX:
{
p = BRep_Tool::Pnt( TopoDS::Vertex( S ));
break;
}
default: return;
}
getMeshDS()->MoveNode( srcNode, p.X(), p.Y(), p.Z() );
dumpMove( srcNode );
}
}
//================================================================================
/*!
* \brief Try to fix triangles with high aspect ratio by swapping diagonals
*/
//================================================================================
void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F,
SMESH_MesherHelper& helper,
const bool is2D,
const int step,
set<const SMDS_MeshNode*> * involvedNodes)
{
SMESH::Controls::AspectRatio qualifier;
SMESH::Controls::TSequenceOfXYZ points(3), points1(3), points2(3);
const double maxAspectRatio = is2D ? 4. : 2;
_NodeCoordHelper xyz( F, helper, is2D );
// find bad triangles
vector< const SMDS_MeshElement* > badTrias;
vector< double > badAspects;
SMESHDS_SubMesh* sm = helper.GetMeshDS()->MeshElements( F );
SMDS_ElemIteratorPtr fIt = sm->GetElements();
while ( fIt->more() )
{
const SMDS_MeshElement * f = fIt->next();
if ( f->NbCornerNodes() != 3 ) continue;
for ( int iP = 0; iP < 3; ++iP ) points(iP+1) = xyz( f->GetNode(iP));
double aspect = qualifier.GetValue( points );
if ( aspect > maxAspectRatio )
{
badTrias.push_back( f );
badAspects.push_back( aspect );
}
}
if ( step == 1 )
{
dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<<helper.GetSubShapeID());
SMDS_ElemIteratorPtr fIt = sm->GetElements();
while ( fIt->more() )
{
const SMDS_MeshElement * f = fIt->next();
if ( f->NbCornerNodes() == 3 )
dumpChangeNodes( f );
}
dumpFunctionEnd();
}
if ( badTrias.empty() )
return;
// find couples of faces to swap diagonal
typedef pair < const SMDS_MeshElement* , const SMDS_MeshElement* > T2Trias;
vector< T2Trias > triaCouples;
TIDSortedElemSet involvedFaces, emptySet;
for ( size_t iTia = 0; iTia < badTrias.size(); ++iTia )
{
T2Trias trias [3];
double aspRatio [3];
int i1, i2, i3;
if ( !involvedFaces.insert( badTrias[iTia] ).second )
continue;
for ( int iP = 0; iP < 3; ++iP )
points(iP+1) = xyz( badTrias[iTia]->GetNode(iP));
// find triangles adjacent to badTrias[iTia] with better aspect ratio after diag-swaping
int bestCouple = -1;
for ( int iSide = 0; iSide < 3; ++iSide )
{
const SMDS_MeshNode* n1 = badTrias[iTia]->GetNode( iSide );
const SMDS_MeshNode* n2 = badTrias[iTia]->GetNode(( iSide+1 ) % 3 );
trias [iSide].first = badTrias[iTia];
trias [iSide].second = SMESH_MeshAlgos::FindFaceInSet( n1, n2, emptySet, involvedFaces,
& i1, & i2 );
if (( ! trias[iSide].second ) ||
( trias[iSide].second->NbCornerNodes() != 3 ) ||
( ! sm->Contains( trias[iSide].second )))
continue;
// aspect ratio of an adjacent tria
for ( int iP = 0; iP < 3; ++iP )
points2(iP+1) = xyz( trias[iSide].second->GetNode(iP));
double aspectInit = qualifier.GetValue( points2 );
// arrange nodes as after diag-swaping
if ( helper.WrapIndex( i1+1, 3 ) == i2 )
i3 = helper.WrapIndex( i1-1, 3 );
else
i3 = helper.WrapIndex( i1+1, 3 );
points1 = points;
points1( 1+ iSide ) = points2( 1+ i3 );
points2( 1+ i2 ) = points1( 1+ ( iSide+2 ) % 3 );
// aspect ratio after diag-swaping
aspRatio[ iSide ] = qualifier.GetValue( points1 ) + qualifier.GetValue( points2 );
if ( aspRatio[ iSide ] > aspectInit + badAspects[ iTia ] )
continue;
// prevent inversion of a triangle
gp_Vec norm1 = gp_Vec( points1(1), points1(3) ) ^ gp_Vec( points1(1), points1(2) );
gp_Vec norm2 = gp_Vec( points2(1), points2(3) ) ^ gp_Vec( points2(1), points2(2) );
if ( norm1 * norm2 < 0. && norm1.Angle( norm2 ) > 70./180.*M_PI )
continue;
if ( bestCouple < 0 || aspRatio[ bestCouple ] > aspRatio[ iSide ] )
bestCouple = iSide;
}
if ( bestCouple >= 0 )
{
triaCouples.push_back( trias[bestCouple] );
involvedFaces.insert ( trias[bestCouple].second );
}
else
{
involvedFaces.erase( badTrias[iTia] );
}
}
if ( triaCouples.empty() )
return;
// swap diagonals
SMESH_MeshEditor editor( helper.GetMesh() );
dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<<helper.GetSubShapeID()<<"_"<<step);
for ( size_t i = 0; i < triaCouples.size(); ++i )
{
dumpChangeNodes( triaCouples[i].first );
dumpChangeNodes( triaCouples[i].second );
editor.InverseDiag( triaCouples[i].first, triaCouples[i].second );
}
if ( involvedNodes )
for ( size_t i = 0; i < triaCouples.size(); ++i )
{
involvedNodes->insert( triaCouples[i].first->begin_nodes(),
triaCouples[i].first->end_nodes() );
involvedNodes->insert( triaCouples[i].second->begin_nodes(),
triaCouples[i].second->end_nodes() );
}
// just for debug dump resulting triangles
dumpFunction(SMESH_Comment("swapDiagonals_F")<<helper.GetSubShapeID()<<"_"<<step);
for ( size_t i = 0; i < triaCouples.size(); ++i )
{
dumpChangeNodes( triaCouples[i].first );
dumpChangeNodes( triaCouples[i].second );
}
}
//================================================================================
/*!
* \brief Move target node to it's final position on the FACE during shrinking
*/
//================================================================================
bool _LayerEdge::SetNewLength2d( Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper )
{
if ( Is( SHRUNK ))
return false; // already at the target position
SMDS_MeshNode* tgtNode = const_cast< SMDS_MeshNode*& >( _nodes.back() );
if ( eos.SWOLType() == TopAbs_FACE )
{
gp_XY curUV = helper.GetNodeUV( F, tgtNode );
gp_Pnt2d tgtUV( _pos[0].X(), _pos[0].Y() );
gp_Vec2d uvDir( _normal.X(), _normal.Y() );
const double uvLen = tgtUV.Distance( curUV );
const double kSafe = Max( 0.5, 1. - 0.1 * _simplices.size() );
// Select shrinking step such that not to make faces with wrong orientation.
double stepSize = 1e100;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
if ( !_simplices[i]._nPrev->isMarked() ||
!_simplices[i]._nNext->isMarked() )
continue; // simplex of quadrangle created by addBoundaryElements()
// find intersection of 2 lines: curUV-tgtUV and that connecting simplex nodes
gp_XY uvN1 = helper.GetNodeUV( F, _simplices[i]._nPrev, tgtNode );
gp_XY uvN2 = helper.GetNodeUV( F, _simplices[i]._nNext, tgtNode );
gp_XY dirN = uvN2 - uvN1;
double det = uvDir.Crossed( dirN );
if ( Abs( det ) < std::numeric_limits<double>::min() ) continue;
gp_XY dirN2Cur = curUV - uvN1;
double step = dirN.Crossed( dirN2Cur ) / det;
if ( step > 0 )
stepSize = Min( step, stepSize );
}
gp_Pnt2d newUV;
if ( uvLen <= stepSize )
{
newUV = tgtUV;
Set( SHRUNK );
//_pos.clear();
}
else if ( stepSize > 0 )
{
newUV = curUV + uvDir.XY() * stepSize * kSafe;
}
else
{
return true;
}
SMDS_FacePositionPtr pos = tgtNode->GetPosition();
pos->SetUParameter( newUV.X() );
pos->SetVParameter( newUV.Y() );
#ifdef __myDEBUG
gp_Pnt p = surface->Value( newUV.X(), newUV.Y() );
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( tgtNode );
#else
if ( surface.IsNull() ) {}
#endif
}
else // _sWOL is TopAbs_EDGE
{
const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL );
const SMDS_MeshNode* n2 = _simplices[0]._nPrev;
SMDS_EdgePositionPtr tgtPos = tgtNode->GetPosition();
const double u2 = helper.GetNodeU( E, n2, tgtNode );
const double uSrc = _pos[0].Coord( U_SRC );
const double lenTgt = _pos[0].Coord( LEN_TGT );
double newU = _pos[0].Coord( U_TGT );
if ( lenTgt < 0.99 * fabs( uSrc-u2 )) // n2 got out of src-tgt range
{
Set( _LayerEdge::SHRUNK );
//_pos.clear();
}
else
{
newU = 0.1 * tgtPos->GetUParameter() + 0.9 * u2;
}
tgtPos->SetUParameter( newU );
#ifdef __myDEBUG
gp_XY newUV = helper.GetNodeUV( F, tgtNode, _nodes[0]);
gp_Pnt p = surface->Value( newUV.X(), newUV.Y() );
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( tgtNode );
#endif
}
return true;
}
//================================================================================
/*!
* \brief Perform smooth on the FACE
* \retval bool - true if the node has been moved
*/
//================================================================================
bool _SmoothNode::Smooth(int& nbBad,
Handle(Geom_Surface)& surface,
SMESH_MesherHelper& helper,
const double refSign,
SmoothType how,
bool set3D)
{
const TopoDS_Face& face = TopoDS::Face( helper.GetSubShape() );
// get uv of surrounding nodes
vector<gp_XY> uv( _simplices.size() );
for ( size_t i = 0; i < _simplices.size(); ++i )
uv[i] = helper.GetNodeUV( face, _simplices[i]._nPrev, _node );
// compute new UV for the node
gp_XY newPos (0,0);
if ( how == TFI && _simplices.size() == 4 )
{
gp_XY corners[4];
for ( size_t i = 0; i < _simplices.size(); ++i )
if ( _simplices[i]._nOpp )
corners[i] = helper.GetNodeUV( face, _simplices[i]._nOpp, _node );
else
throw SALOME_Exception(LOCALIZED("TFI smoothing: _Simplex::_nOpp not set!"));
newPos = helper.calcTFI ( 0.5, 0.5,
corners[0], corners[1], corners[2], corners[3],
uv[1], uv[2], uv[3], uv[0] );
}
else if ( how == ANGULAR )
{
newPos = computeAngularPos( uv, helper.GetNodeUV( face, _node ), refSign );
}
else if ( how == CENTROIDAL && _simplices.size() > 3 )
{
// average centers of diagonals wieghted with their reciprocal lengths
if ( _simplices.size() == 4 )
{
double w1 = 1. / ( uv[2]-uv[0] ).SquareModulus();
double w2 = 1. / ( uv[3]-uv[1] ).SquareModulus();
newPos = ( w1 * ( uv[2]+uv[0] ) + w2 * ( uv[3]+uv[1] )) / ( w1+w2 ) / 2;
}
else
{
double sumWeight = 0;
int nb = _simplices.size() == 4 ? 2 : _simplices.size();
for ( int i = 0; i < nb; ++i )
{
int iFrom = i + 2;
int iTo = i + _simplices.size() - 1;
for ( int j = iFrom; j < iTo; ++j )
{
int i2 = SMESH_MesherHelper::WrapIndex( j, _simplices.size() );
double w = 1. / ( uv[i]-uv[i2] ).SquareModulus();
sumWeight += w;
newPos += w * ( uv[i]+uv[i2] );
}
}
newPos /= 2 * sumWeight; // 2 is to get a middle between uv's
}
}
else
{
// Laplacian smooth
for ( size_t i = 0; i < _simplices.size(); ++i )
newPos += uv[i];
newPos /= _simplices.size();
}
// count quality metrics (orientation) of triangles around the node
int nbOkBefore = 0;
gp_XY tgtUV = helper.GetNodeUV( face, _node );
for ( size_t i = 0; i < _simplices.size(); ++i )
nbOkBefore += _simplices[i].IsForward( tgtUV, _node, face, helper, refSign );
int nbOkAfter = 0;
for ( size_t i = 0; i < _simplices.size(); ++i )
nbOkAfter += _simplices[i].IsForward( newPos, _node, face, helper, refSign );
if ( nbOkAfter < nbOkBefore )
{
nbBad += _simplices.size() - nbOkBefore;
return false;
}
SMDS_FacePositionPtr pos = _node->GetPosition();
pos->SetUParameter( newPos.X() );
pos->SetVParameter( newPos.Y() );
#ifdef __myDEBUG
set3D = true;
#endif
if ( set3D )
{
gp_Pnt p = surface->Value( newPos.X(), newPos.Y() );
const_cast< SMDS_MeshNode* >( _node )->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( _node );
}
nbBad += _simplices.size() - nbOkAfter;
return ( (tgtUV-newPos).SquareModulus() > 1e-10 );
}
//================================================================================
/*!
* \brief Computes new UV using angle based smoothing technique
*/
//================================================================================
gp_XY _SmoothNode::computeAngularPos(vector<gp_XY>& uv,
const gp_XY& uvToFix,
const double refSign)
{
uv.push_back( uv.front() );
vector< gp_XY > edgeDir ( uv.size() );
vector< double > edgeSize( uv.size() );
for ( size_t i = 1; i < edgeDir.size(); ++i )
{
edgeDir [i-1] = uv[i] - uv[i-1];
edgeSize[i-1] = edgeDir[i-1].Modulus();
if ( edgeSize[i-1] < numeric_limits<double>::min() )
edgeDir[i-1].SetX( 100 );
else
edgeDir[i-1] /= edgeSize[i-1] * refSign;
}
edgeDir.back() = edgeDir.front();
edgeSize.back() = edgeSize.front();
gp_XY newPos(0,0);
double sumWgt = 0;
for ( size_t i = 1; i < edgeDir.size(); ++i )
{
const int i1 = i-1;
if ( edgeDir[i1].X() > 1. ) continue;
while ( edgeDir[i].X() > 1. && ++i < edgeDir.size() );
if ( i == edgeDir.size() ) break;
gp_XY p = uv[i];
gp_XY norm1( -edgeDir[i1].Y(), edgeDir[i1].X() );
gp_XY norm2( -edgeDir[i ].Y(), edgeDir[i ].X() );
gp_XY bisec = norm1 + norm2;
double bisecSize = bisec.Modulus();
if ( bisecSize < numeric_limits<double>::min() )
{
bisec = -edgeDir[i1] + edgeDir[i];
bisecSize = bisec.Modulus();
}
bisec /= bisecSize;
gp_XY dirToN = uvToFix - p;
double distToN = bisec * dirToN;
if ( bisec * dirToN < 0 )
distToN = -distToN;
double wgt = edgeSize[i1] + edgeSize[i];
newPos += ( p + bisec * distToN ) * wgt;
sumWgt += wgt;
}
newPos /= sumWgt;
return newPos;
}
//================================================================================
/*!
* \brief Keep a _LayerEdge inflated along the EDGE
*/
//================================================================================
void _Shrinker1D::AddEdge( const _LayerEdge* e,
_EdgesOnShape& eos,
SMESH_MesherHelper& helper )
{
// init
if ( _nodes.empty() )
{
_edges[0] = _edges[1] = 0;
_done = false;
}
// check _LayerEdge
if ( e == _edges[0] || e == _edges[1] || e->_nodes.size() < 2 )
return;
if ( eos.SWOLType() != TopAbs_EDGE )
throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added"));
if ( _edges[0] && !_geomEdge.IsSame( eos._sWOL ))
throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added"));
// store _LayerEdge
_geomEdge = TopoDS::Edge( eos._sWOL );
double f,l;
BRep_Tool::Range( _geomEdge, f,l );
double u = helper.GetNodeU( _geomEdge, e->_nodes[0], e->_nodes.back());
_edges[ u < 0.5*(f+l) ? 0 : 1 ] = e;
// Check if the nodes are already shrunk by another SOLID
const SMDS_MeshNode* tgtNode0 = TgtNode( 0 );
const SMDS_MeshNode* tgtNode1 = TgtNode( 1 );
_done = (( tgtNode0 && tgtNode0->NbInverseElements( SMDSAbs_Edge ) == 2 ) ||
( tgtNode1 && tgtNode1->NbInverseElements( SMDSAbs_Edge ) == 2 ));
if ( _done )
_nodes.resize( 1, nullptr );
// Update _nodes
if ( _nodes.empty() )
{
SMESHDS_SubMesh * eSubMesh = helper.GetMeshDS()->MeshElements( _geomEdge );
if ( !eSubMesh || eSubMesh->NbNodes() < 1 )
return;
TopLoc_Location loc;
Handle(Geom_Curve) C = BRep_Tool::Curve( _geomEdge, loc, f,l );
GeomAdaptor_Curve aCurve(C, f,l);
const double totLen = GCPnts_AbscissaPoint::Length(aCurve, f, l);
smIdType nbExpectNodes = eSubMesh->NbNodes();
_initU .reserve( nbExpectNodes );
_normPar.reserve( nbExpectNodes );
_nodes .reserve( nbExpectNodes );
SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* node = nIt->next();
// skip refinement nodes
if ( node->NbInverseElements(SMDSAbs_Edge) == 0 ||
node == tgtNode0 || node == tgtNode1 )
continue;
bool hasMarkedFace = false;
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() && !hasMarkedFace )
hasMarkedFace = fIt->next()->isMarked();
if ( !hasMarkedFace )
continue;
_nodes.push_back( node );
_initU.push_back( helper.GetNodeU( _geomEdge, node ));
double len = GCPnts_AbscissaPoint::Length(aCurve, f, _initU.back());
_normPar.push_back( len / totLen );
}
}
else
{
// remove target node of the _LayerEdge from _nodes
size_t nbFound = 0;
for ( size_t i = 0; i < _nodes.size(); ++i )
if ( !_nodes[i] || _nodes[i] == tgtNode0 || _nodes[i] == tgtNode1 )
_nodes[i] = 0, nbFound++;
if ( nbFound == _nodes.size() )
_nodes.clear();
}
}
//================================================================================
/*!
* \brief Move nodes on EDGE from ends where _LayerEdge's are inflated
*/
//================================================================================
void _Shrinker1D::Compute(bool set3D, SMESH_MesherHelper& helper)
{
if ( _done || _nodes.empty())
return;
const _LayerEdge* e = _edges[0];
if ( !e ) e = _edges[1];
if ( !e ) return;
_done = (( !_edges[0] || _edges[0]->Is( _LayerEdge::SHRUNK )) &&
( !_edges[1] || _edges[1]->Is( _LayerEdge::SHRUNK )));
double f,l;
if ( set3D || _done )
{
dumpFunction(SMESH_Comment("shrink1D_E") << helper.GetMeshDS()->ShapeToIndex( _geomEdge )<<
"_F" << helper.GetSubShapeID() );
Handle(Geom_Curve) C = BRep_Tool::Curve(_geomEdge, f,l);
GeomAdaptor_Curve aCurve(C, f,l);
if ( _edges[0] )
f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] );
if ( _edges[1] )
l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() );
double totLen = GCPnts_AbscissaPoint::Length( aCurve, f, l );
for ( size_t i = 0; i < _nodes.size(); ++i )
{
if ( !_nodes[i] ) continue;
double len = totLen * _normPar[i];
GCPnts_AbscissaPoint discret( aCurve, len, f );
if ( !discret.IsDone() )
return throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed"));
double u = discret.Parameter();
SMDS_EdgePositionPtr pos = _nodes[i]->GetPosition();
pos->SetUParameter( u );
gp_Pnt p = C->Value( u );
const_cast< SMDS_MeshNode*>( _nodes[i] )->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( _nodes[i] );
}
dumpFunctionEnd();
}
else
{
BRep_Tool::Range( _geomEdge, f,l );
if ( _edges[0] )
f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] );
if ( _edges[1] )
l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() );
for ( size_t i = 0; i < _nodes.size(); ++i )
{
if ( !_nodes[i] ) continue;
double u = f * ( 1-_normPar[i] ) + l * _normPar[i];
SMDS_EdgePositionPtr pos = _nodes[i]->GetPosition();
pos->SetUParameter( u );
}
}
}
//================================================================================
/*!
* \brief Restore initial parameters of nodes on EDGE
*/
//================================================================================
void _Shrinker1D::RestoreParams()
{
if ( _done )
for ( size_t i = 0; i < _nodes.size(); ++i )
{
if ( !_nodes[i] ) continue;
SMDS_EdgePositionPtr pos = _nodes[i]->GetPosition();
pos->SetUParameter( _initU[i] );
}
_done = false;
}
//================================================================================
/*!
* \brief Replace source nodes by target nodes in shrunk mesh edges
*/
//================================================================================
void _Shrinker1D::SwapSrcTgtNodes( SMESHDS_Mesh* mesh )
{
const SMDS_MeshNode* nodes[3];
for ( int i = 0; i < 2; ++i )
{
if ( !_edges[i] ) continue;
SMESHDS_SubMesh * eSubMesh = mesh->MeshElements( _geomEdge );
if ( !eSubMesh ) return;
const SMDS_MeshNode* srcNode = _edges[i]->_nodes[0];
const SMDS_MeshNode* tgtNode = _edges[i]->_nodes.back();
const SMDS_MeshNode* scdNode = _edges[i]->_nodes[1];
SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge);
while ( eIt->more() )
{
const SMDS_MeshElement* e = eIt->next();
if ( !eSubMesh->Contains( e ) || e->GetNodeIndex( scdNode ) >= 0 )
continue;
SMDS_ElemIteratorPtr nIt = e->nodesIterator();
for ( int iN = 0; iN < e->NbNodes(); ++iN )
{
const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( nIt->next() );
nodes[iN] = ( n == srcNode ? tgtNode : n );
}
mesh->ChangeElementNodes( e, nodes, e->NbNodes() );
}
}
}
//================================================================================
/*!
* \brief Setup quadPoints
*/
//================================================================================
_Mapper2D::_Mapper2D( const TParam2ColumnMap & param2ColumnMap, const TNode2Edge& n2eMap )
{
size_t i, iSize = _quadPoints.iSize = param2ColumnMap.size();
size_t j, jSize = _quadPoints.jSize = param2ColumnMap.begin()->second.size();
if ( _quadPoints.iSize < 3 ||
_quadPoints.jSize < 3 )
return;
_quadPoints.uv_grid.resize( iSize * jSize );
// set nodes
i = 0;
for ( auto & u_columnNodes : param2ColumnMap )
{
for ( j = 0; j < u_columnNodes.second.size(); ++j )
_quadPoints.UVPt( i, j ).node = u_columnNodes.second[ j ];
++i;
}
// compute x parameter on borders
uvPnt( 0, 0 ).x = 0;
uvPnt( 0, jSize-1 ).x = 0;
gp_Pnt p0, pPrev0 = SMESH_NodeXYZ( uvPnt( 0, 0 ).node );
gp_Pnt p1, pPrev1 = SMESH_NodeXYZ( uvPnt( 0, jSize-1 ).node );
for ( i = 1; i < iSize; ++i )
{
p0 = SMESH_NodeXYZ( uvPnt( i, 0 ).node );
p1 = SMESH_NodeXYZ( uvPnt( i, jSize-1 ).node );
uvPnt( i, 0 ).x = uvPnt( i-1, 0 ).x + p0.Distance( pPrev0 );
uvPnt( i, jSize-1 ).x = uvPnt( i-1, jSize-1 ).x + p1.Distance( pPrev1 );
pPrev0 = p0;
pPrev1 = p1;
}
for ( i = 1; i < iSize-1; ++i )
{
uvPnt( i, 0 ).x /= uvPnt( iSize-1, 0 ).x;
uvPnt( i, jSize-1 ).x /= uvPnt( iSize-1, jSize-1 ).x;
uvPnt( i, 0 ).y = 0;
uvPnt( i, jSize-1 ).y = 1;
}
// compute y parameter on borders
uvPnt( 0, 0 ).y = 0;
uvPnt( iSize-1, 0 ).y = 0;
pPrev0 = SMESH_NodeXYZ( uvPnt( 0, 0 ).node );
pPrev1 = SMESH_NodeXYZ( uvPnt( iSize-1, 0 ).node );
for ( j = 1; j < jSize; ++j )
{
p0 = SMESH_NodeXYZ( uvPnt( 0, j ).node );
p1 = SMESH_NodeXYZ( uvPnt( iSize-1, j ).node );
uvPnt( 0, j ).y = uvPnt( 0, j-1 ).y + p0.Distance( pPrev0 );
uvPnt( iSize-1, j ).y = uvPnt( iSize-1, j-1 ).y + p1.Distance( pPrev1 );
pPrev0 = p0;
pPrev1 = p1;
}
for ( j = 1; j < jSize-1; ++j )
{
uvPnt( 0, j ).y /= uvPnt( 0, jSize-1 ).y;
uvPnt( iSize-1, j ).y /= uvPnt( iSize-1, jSize-1 ).y;
uvPnt( 0, j ).x = 0;
uvPnt( iSize-1, j ).x = 1;
}
// compute xy of internal nodes
for ( i = 1; i < iSize-1; ++i )
{
const double x0 = uvPnt( i, 0 ).x;
const double x1 = uvPnt( i, jSize-1 ).x;
for ( j = 1; j < jSize-1; ++j )
{
const double y0 = uvPnt( 0, j ).y;
const double y1 = uvPnt( iSize-1, j ).y;
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
uvPnt( i, j ).x = x;
uvPnt( i, j ).y = y;
}
}
// replace base nodes with target ones
for ( i = 0; i < iSize; ++i )
for ( j = 0; j < jSize; ++j )
{
auto n2e = n2eMap.find( uvPnt( i, j ).node );
uvPnt( i, j ).node = n2e->second->_nodes.back();
}
return;
}
//================================================================================
/*!
* \brief Compute positions of nodes of 2D structured mesh using TFI
*/
//================================================================================
bool _Mapper2D::ComputeNodePositions()
{
if ( _quadPoints.uv_grid.empty() )
return true;
size_t i, iSize = _quadPoints.iSize;
size_t j, jSize = _quadPoints.jSize;
SMESH_NodeXYZ a0 ( uvPnt( 0, 0 ).node );
SMESH_NodeXYZ a1 ( uvPnt( iSize-1, 0 ).node );
SMESH_NodeXYZ a2 ( uvPnt( iSize-1, jSize-1 ).node );
SMESH_NodeXYZ a3 ( uvPnt( 0, jSize-1 ).node );
for ( i = 1; i < iSize-1; ++i )
{
SMESH_NodeXYZ p0 ( uvPnt( i, 0 ).node );
SMESH_NodeXYZ p2 ( uvPnt( i, jSize-1 ).node );
for ( j = 1; j < jSize-1; ++j )
{
SMESH_NodeXYZ p1 ( uvPnt( iSize-1, j ).node );
SMESH_NodeXYZ p3 ( uvPnt( 0, j ).node );
double x = uvPnt( i, j ).x;
double y = uvPnt( i, j ).y;
gp_XYZ p = SMESH_MesherHelper::calcTFI( x, y, a0,a1,a2,a3, p0,p1,p2,p3 );
const_cast< SMDS_MeshNode* >( uvPnt( i, j ).node )->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( uvPnt( i, j ).node );
}
}
return true;
}
//================================================================================
/*!
* \brief Creates 2D and 1D elements on boundaries of new prisms
*/
//================================================================================
bool _ViscousBuilder::addBoundaryElements(_SolidData& data)
{
SMESH_MesherHelper helper( *_mesh );
vector< const SMDS_MeshNode* > faceNodes;
//for ( size_t i = 0; i < _sdVec.size(); ++i )
{
//_SolidData& data = _sdVec[i];
TopTools_IndexedMapOfShape geomEdges;
TopExp::MapShapes( data._solid, TopAbs_EDGE, geomEdges );
for ( int iE = 1; iE <= geomEdges.Extent(); ++iE )
{
const TopoDS_Edge& E = TopoDS::Edge( geomEdges(iE));
const TGeomID edgeID = getMeshDS()->ShapeToIndex( E );
if ( data._noShrinkShapes.count( edgeID ))
continue;
// Get _LayerEdge's based on E
map< double, const SMDS_MeshNode* > u2nodes;
if ( !SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), E, /*ignoreMedium=*/false, u2nodes))
continue;
vector< _LayerEdge* > ledges; ledges.reserve( u2nodes.size() );
TNode2Edge & n2eMap = data._n2eMap;
map< double, const SMDS_MeshNode* >::iterator u2n = u2nodes.begin();
{
//check if 2D elements are needed on E
TNode2Edge::iterator n2e = n2eMap.find( u2n->second );
if ( n2e == n2eMap.end() ) continue; // no layers on vertex
ledges.push_back( n2e->second );
u2n++;
if (( n2e = n2eMap.find( u2n->second )) == n2eMap.end() )
continue; // no layers on E
ledges.push_back( n2eMap[ u2n->second ]);
const SMDS_MeshNode* tgtN0 = ledges[0]->_nodes.back();
const SMDS_MeshNode* tgtN1 = ledges[1]->_nodes.back();
int nbSharedPyram = 0;
SMDS_ElemIteratorPtr vIt = tgtN1->GetInverseElementIterator(SMDSAbs_Volume);
while ( vIt->more() )
{
const SMDS_MeshElement* v = vIt->next();
nbSharedPyram += int( v->GetNodeIndex( tgtN0 ) >= 0 );
}
if ( nbSharedPyram > 1 )
continue; // not free border of the pyramid
faceNodes.clear();
faceNodes.push_back( ledges[0]->_nodes[0] );
faceNodes.push_back( ledges[1]->_nodes[0] );
if ( ledges[0]->_nodes.size() > 1 ) faceNodes.push_back( ledges[0]->_nodes[1] );
if ( ledges[1]->_nodes.size() > 1 ) faceNodes.push_back( ledges[1]->_nodes[1] );
if ( getMeshDS()->FindElement( faceNodes, SMDSAbs_Face, /*noMedium=*/true))
continue; // faces already created
}
for ( ++u2n; u2n != u2nodes.end(); ++u2n )
ledges.push_back( n2eMap[ u2n->second ]);
// Find out orientation and type of face to create
bool reverse = false, isOnFace;
TopoDS_Shape F;
map< TGeomID, TopoDS_Shape >::iterator e2f = data._shrinkShape2Shape.find( edgeID );
if (( isOnFace = ( e2f != data._shrinkShape2Shape.end() )))
{
F = e2f->second.Oriented( TopAbs_FORWARD );
reverse = ( helper.GetSubShapeOri( F, E ) == TopAbs_REVERSED );
if ( helper.GetSubShapeOri( data._solid, F ) == TopAbs_REVERSED )
reverse = !reverse, F.Reverse();
if ( helper.IsReversedSubMesh( TopoDS::Face(F) ))
reverse = !reverse;
}
else if ( !data._ignoreFaceIds.count( e2f->first ))
{
// find FACE with layers sharing E
PShapeIteratorPtr fIt = helper.GetAncestors( E, *_mesh, TopAbs_FACE, &data._solid );
if ( fIt->more() )
F = *( fIt->next() );
}
// Find the sub-mesh to add new faces
SMESHDS_SubMesh* sm = 0;
if ( isOnFace )
sm = getMeshDS()->MeshElements( F );
else
sm = data._proxyMesh->getFaceSubM( TopoDS::Face(F), /*create=*/true );
if ( !sm )
return error("error in addBoundaryElements()", data._index);
// Find a proxy sub-mesh of the FACE of an adjacent SOLID, which will use the new boundary
// faces for 3D meshing (PAL23414)
SMESHDS_SubMesh* adjSM = 0;
if ( isOnFace )
{
const TGeomID faceID = sm->GetID();
PShapeIteratorPtr soIt = helper.GetAncestors( F, *_mesh, TopAbs_SOLID );
while ( const TopoDS_Shape* solid = soIt->next() )
if ( !solid->IsSame( data._solid ))
{
size_t iData = _solids.FindIndex( *solid ) - 1;
if ( iData < _sdVec.size() &&
_sdVec[ iData ]._ignoreFaceIds.count( faceID ) &&
_sdVec[ iData ]._shrinkShape2Shape.count( edgeID ) == 0 )
{
SMESH_ProxyMesh::SubMesh* proxySub =
_sdVec[ iData ]._proxyMesh->getFaceSubM( TopoDS::Face( F ), /*create=*/false);
if ( proxySub && proxySub->NbElements() > 0 )
adjSM = proxySub;
}
}
}
// Make faces
const int dj1 = reverse ? 0 : 1;
const int dj2 = reverse ? 1 : 0;
vector< const SMDS_MeshElement*> ff; // new faces row
SMESHDS_Mesh* m = getMeshDS();
for ( size_t j = 1; j < ledges.size(); ++j )
{
vector< const SMDS_MeshNode*>& nn1 = ledges[j-dj1]->_nodes;
vector< const SMDS_MeshNode*>& nn2 = ledges[j-dj2]->_nodes;
ff.resize( std::max( nn1.size(), nn2.size() ), NULL );
if ( nn1.size() == nn2.size() )
{
if ( isOnFace )
for ( size_t z = 1; z < nn1.size(); ++z )
sm->AddElement( ff[z-1] = m->AddFace( nn1[z-1], nn2[z-1], nn2[z], nn1[z] ));
else
for ( size_t z = 1; z < nn1.size(); ++z )
sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[z-1], nn2[z], nn1[z] ));
}
else if ( nn1.size() == 1 )
{
if ( isOnFace )
for ( size_t z = 1; z < nn2.size(); ++z )
sm->AddElement( ff[z-1] = m->AddFace( nn1[0], nn2[z-1], nn2[z] ));
else
for ( size_t z = 1; z < nn2.size(); ++z )
sm->AddElement( new SMDS_FaceOfNodes( nn1[0], nn2[z-1], nn2[z] ));
}
else
{
if ( isOnFace )
for ( size_t z = 1; z < nn1.size(); ++z )
sm->AddElement( ff[z-1] = m->AddFace( nn1[z-1], nn2[0], nn1[z] ));
else
for ( size_t z = 1; z < nn1.size(); ++z )
sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[0], nn2[z] ));
}
if ( adjSM ) // add faces to a proxy SM of the adjacent SOLID
{
for ( size_t z = 0; z < ff.size(); ++z )
if ( ff[ z ])
adjSM->AddElement( ff[ z ]);
ff.clear();
}
}
// Make edges
for ( int isFirst = 0; isFirst < 2; ++isFirst )
{
_LayerEdge* edge = isFirst ? ledges.front() : ledges.back();
_EdgesOnShape* eos = data.GetShapeEdges( edge );
if ( eos && eos->SWOLType() == TopAbs_EDGE )
{
vector< const SMDS_MeshNode*>& nn = edge->_nodes;
if ( nn.size() < 2 || nn[1]->NbInverseElements( SMDSAbs_Edge ) >= 2 )
continue;
helper.SetSubShape( eos->_sWOL );
helper.SetElementsOnShape( true );
for ( size_t z = 1; z < nn.size(); ++z )
helper.AddEdge( nn[z-1], nn[z] );
}
}
} // loop on EDGE's
} // loop on _SolidData's
return true;
}