smesh/src/SMESH_I/SMESH_Homard_i.cxx
2022-05-05 16:51:14 +03:00

2848 lines
101 KiB
C++

// Copyright (C) 2011-2022 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
#include "SMESH_Homard_i.hxx"
#include "SMESH_Homard.hxx"
#include "SMESH_Gen_i.hxx"
#include "SMESH_PythonDump.hxx"
#include "SMESH_File.hxx"
#include "utilities.h"
#include "Basics_Utils.hxx"
#include "Basics_DirUtils.hxx"
#include "Utils_SINGLETON.hxx"
#include "Utils_CorbaException.hxx"
#include "SALOMEDS_Tool.hxx"
#include "SALOME_LifeCycleCORBA.hxx"
#include "SALOMEconfig.h"
// Have to be included before std headers
#include <Python.h>
#include <structmember.h>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <stdlib.h>
#include <sys/stat.h>
#include <algorithm>
#include <med.h>
#ifdef WIN32
#include <direct.h>
#else
#include <dirent.h>
#endif
#include <string>
#include <cstring>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <set>
#include <vector>
#include <stdio.h>
// C'est le ASSERT de SALOMELocalTrace/utilities.h dans KERNEL
#ifndef VERIFICATION
#define VERIFICATION(condition) \
if (!(condition)){INTERRUPTION("CONDITION "<<#condition<<" NOT VERIFIED")}
#endif /* VERIFICATION */
// La gestion des repertoires
#ifndef CHDIR
#ifdef WIN32
#define CHDIR _chdir
#else
#define CHDIR chdir
#endif
#endif
using namespace std;
SMESHHOMARD::HOMARD_Gen_ptr SMESH_Gen_i::CreateHOMARD_ADAPT()
{
if (getenv("HOMARD_ROOT_DIR") == NULL) {
THROW_SALOME_CORBA_EXCEPTION("HOMARD_ROOT_DIR is not defined", SALOME::INTERNAL_ERROR);
}
else {
std::string homard_exec = getenv("HOMARD_ROOT_DIR");
homard_exec += "/bin/salome/homard";
if (!SMESH_File(homard_exec).exists())
THROW_SALOME_CORBA_EXCEPTION("HOMARD module is not built", SALOME::INTERNAL_ERROR);
}
SMESHHOMARD_I::HOMARD_Gen_i* aHomardGen = new SMESHHOMARD_I::HOMARD_Gen_i();
SMESHHOMARD::HOMARD_Gen_var anObj = aHomardGen->_this();
return anObj._retn();
}
namespace SMESHHOMARD_I
{
//=============================================================================
/*!
* standard constructor
*/
//=============================================================================
HOMARD_Boundary_i::HOMARD_Boundary_i()
: SALOME::GenericObj_i(SMESH_Gen_i::GetPOA())
{
MESSAGE("Default constructor, not for use");
ASSERT(0);
}
//=============================================================================
/*!
* standard constructor
*/
//=============================================================================
HOMARD_Boundary_i::HOMARD_Boundary_i(SMESHHOMARD::HOMARD_Gen_var engine)
: SALOME::GenericObj_i(SMESH_Gen_i::GetPOA())
{
MESSAGE("HOMARD_Boundary_i");
_gen_i = engine;
myHomardBoundary = new SMESHHOMARDImpl::HOMARD_Boundary();
ASSERT(myHomardBoundary);
}
//=============================================================================
/*!
* standard destructor
*/
//=============================================================================
HOMARD_Boundary_i::~HOMARD_Boundary_i()
{
}
//=============================================================================
//=============================================================================
// Generalites
//=============================================================================
//=============================================================================
void HOMARD_Boundary_i::SetName(const char* Name)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetName(Name);
}
//=============================================================================
char* HOMARD_Boundary_i::GetName()
{
ASSERT(myHomardBoundary);
return CORBA::string_dup(myHomardBoundary->GetName().c_str());
}
//=============================================================================
char* HOMARD_Boundary_i::GetDumpPython()
{
ASSERT(myHomardBoundary);
return CORBA::string_dup(myHomardBoundary->GetDumpPython().c_str());
}
//=============================================================================
//=============================================================================
// Caracteristiques
//=============================================================================
//=============================================================================
void HOMARD_Boundary_i::SetType(CORBA::Long Type)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetType(Type);
}
//=============================================================================
CORBA::Long HOMARD_Boundary_i::GetType()
{
ASSERT(myHomardBoundary);
return CORBA::Long(myHomardBoundary->GetType());
}
//=============================================================================
void HOMARD_Boundary_i::SetMeshName(const char* MeshName)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetMeshName(MeshName);
}
//=============================================================================
char* HOMARD_Boundary_i::GetMeshName()
{
ASSERT(myHomardBoundary);
return CORBA::string_dup(myHomardBoundary->GetMeshName().c_str());
}
//=============================================================================
void HOMARD_Boundary_i::SetDataFile(const char* DataFile)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetDataFile(DataFile);
}
//=============================================================================
char* HOMARD_Boundary_i::GetDataFile()
{
ASSERT(myHomardBoundary);
return CORBA::string_dup(myHomardBoundary->GetDataFile().c_str());
}
//=============================================================================
void HOMARD_Boundary_i::SetCylinder(double X0, double X1, double X2, double X3, double X4, double X5, double X6)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetCylinder(X0, X1, X2, X3, X4, X5, X6);
}
//=============================================================================
void HOMARD_Boundary_i::SetSphere(double Xcentre, double Ycentre, double ZCentre, double rayon)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetSphere(Xcentre, Ycentre, ZCentre, rayon);
}
//=============================================================================
void HOMARD_Boundary_i::SetConeR(double Xcentre1, double Ycentre1, double Zcentre1, double Rayon1, double Xcentre2, double Ycentre2, double Zcentre2, double Rayon2)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetConeR(Xcentre1, Ycentre1, Zcentre1, Rayon1, Xcentre2, Ycentre2, Zcentre2, Rayon2);
}
//=============================================================================
void HOMARD_Boundary_i::SetConeA(double Xaxe, double Yaxe, double Zaxe, double Angle, double Xcentre, double Ycentre, double Zcentre)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetConeA(Xaxe, Yaxe, Zaxe, Angle, Xcentre, Ycentre, Zcentre);
}
//=============================================================================
void HOMARD_Boundary_i::SetTorus(double X0, double X1, double X2, double X3, double X4, double X5, double X6, double X7)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetTorus(X0, X1, X2, X3, X4, X5, X6, X7);
}
//=============================================================================
SMESHHOMARD::double_array* HOMARD_Boundary_i::GetCoords()
{
ASSERT(myHomardBoundary);
SMESHHOMARD::double_array_var aResult = new SMESHHOMARD::double_array();
std::vector<double> mesCoor = myHomardBoundary->GetCoords();
aResult->length(mesCoor .size());
std::vector<double>::const_iterator it;
int i = 0;
for (it = mesCoor.begin(); it != mesCoor.end(); it++)
aResult[i++] = (*it);
return aResult._retn();
}
//=============================================================================
void HOMARD_Boundary_i::SetLimit(double Xincr, double Yincr, double Zincr)
{
ASSERT(myHomardBoundary);
myHomardBoundary->SetLimit(Xincr, Yincr, Zincr);
}
//=============================================================================
SMESHHOMARD::double_array* HOMARD_Boundary_i::GetLimit()
{
ASSERT(myHomardBoundary);
SMESHHOMARD::double_array_var aResult = new SMESHHOMARD::double_array();
std::vector<double> mesCoor = myHomardBoundary->GetLimit();
aResult->length(mesCoor .size());
std::vector<double>::const_iterator it;
int i = 0;
for (it = mesCoor.begin(); it != mesCoor.end(); it++)
aResult[i++] = (*it);
return aResult._retn();
}
//=============================================================================
void HOMARD_Boundary_i::AddGroup(const char* Group)
{
ASSERT(myHomardBoundary);
myHomardBoundary->AddGroup(Group);
}
//=============================================================================
void HOMARD_Boundary_i::SetGroups(const SMESHHOMARD::ListGroupType& ListGroup)
{
ASSERT(myHomardBoundary);
std::list<std::string> ListString;
for (unsigned int i = 0; i < ListGroup.length(); i++) {
ListString.push_back(std::string(ListGroup[i]));
}
myHomardBoundary->SetGroups(ListString);
}
//=============================================================================
SMESHHOMARD::ListGroupType* HOMARD_Boundary_i::GetGroups()
{
ASSERT(myHomardBoundary);
const std::list<std::string>& ListString = myHomardBoundary->GetGroups();
SMESHHOMARD::ListGroupType_var aResult = new SMESHHOMARD::ListGroupType;
aResult->length(ListString.size());
std::list<std::string>::const_iterator it;
int i = 0;
for (it = ListString.begin(); it != ListString.end(); it++)
{
aResult[i++] = CORBA::string_dup((*it).c_str());
}
return aResult._retn();
}
//=============================================================================
/*!
* standard constructor
*/
//=============================================================================
HOMARD_Cas_i::HOMARD_Cas_i()
: SALOME::GenericObj_i(SMESH_Gen_i::GetPOA())
{
MESSAGE("Default constructor, not for use");
ASSERT(0);
}
//=============================================================================
/*!
* standard constructor
*/
//=============================================================================
HOMARD_Cas_i::HOMARD_Cas_i(SMESHHOMARD::HOMARD_Gen_var engine)
: SALOME::GenericObj_i(SMESH_Gen_i::GetPOA())
{
MESSAGE("HOMARD_Cas_i");
_gen_i = engine;
myHomardCas = new SMESHHOMARDImpl::HOMARD_Cas();
ASSERT(myHomardCas);
}
//=============================================================================
/*!
* standard destructor
*/
//=============================================================================
HOMARD_Cas_i::~HOMARD_Cas_i()
{
}
//=============================================================================
char* HOMARD_Cas_i::GetDumpPython()
{
ASSERT(myHomardCas);
return CORBA::string_dup(myHomardCas->GetDumpPython().c_str());
}
//=============================================================================
//=============================================================================
// Caracteristiques
//=============================================================================
//=============================================================================
void HOMARD_Cas_i::SetDirName(const char* NomDir)
{
ASSERT(myHomardCas);
int codret;
// A. recuperation du nom; on ne fait rien si c'est le meme
char* oldrep = GetDirName();
if (strcmp(oldrep,NomDir) == 0) return;
MESSAGE ("SetDirName : passage de oldrep = "<< oldrep << " a NomDir = "<<NomDir);
// C. Changement/creation du repertoire
codret = myHomardCas->SetDirName(NomDir);
if (codret != 0) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
std::string text;
if (codret == 1)
text = "The directory for the case cannot be modified because some iterations are already defined.";
else
text = "The directory for the case cannot be reached.";
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
}
// D. En cas de reprise, deplacement du point de depart
HOMARD_Gen_i* aGenImpl = SMESH::DownCast<HOMARD_Gen_i*>(_gen_i);
HOMARD_Iteration_i* Iter0 = aGenImpl->GetIteration(0);
int state = Iter0->GetNumber();
if (state != 0) { // GetState()
MESSAGE ("etat : " << state);
// D.1. Nom local du repertoire de l'iteration de depart dans le repertoire actuel du cas
char* DirNameIter = Iter0->GetDirNameLoc();
MESSAGE ("SetDirName : nom actuel pour le repertoire de l iteration, DirNameIter = "<< DirNameIter);
// D.2. Recherche d'un nom local pour l'iteration de depart dans le futur repertoire du cas
char* nomDirIter = aGenImpl->CreateDirNameIter(NomDir, 0);
MESSAGE ("SetDirName : nom futur pour le repertoire de l iteration, nomDirIter = "<< nomDirIter);
// D.3. Creation du futur repertoire local pour l'iteration de depart
std::string nomDirIterTotal;
nomDirIterTotal = std::string(NomDir) + "/" + std::string(nomDirIter);
#ifndef WIN32
if (mkdir(nomDirIterTotal.c_str(), S_IRWXU|S_IRGRP|S_IXGRP) != 0)
#else
if (_mkdir(nomDirIterTotal.c_str()) != 0)
#endif
{
MESSAGE ("nomDirIterTotal : " << nomDirIterTotal);
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
std::string text = "The directory for the starting iteration cannot be created.";
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
}
// D.4. Deplacement du contenu du repertoire
std::string oldnomDirIterTotal;
oldnomDirIterTotal = std::string(oldrep) + "/" + std::string(DirNameIter);
std::string commande = "mv " + std::string(oldnomDirIterTotal) + "/*" + " " + std::string(nomDirIterTotal);
codret = system(commande.c_str());
if (codret != 0)
{
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
std::string text = "The starting point for the case cannot be moved into the new directory.";
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
}
commande = "rm -rf " + std::string(oldnomDirIterTotal);
codret = system(commande.c_str());
if (codret != 0)
{
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
std::string text = "The starting point for the case cannot be deleted.";
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
}
// D.5. Memorisation du nom du repertoire de l'iteration
Iter0->SetDirNameLoc(nomDirIter);
}
}
//=============================================================================
char* HOMARD_Cas_i::GetDirName()
{
ASSERT(myHomardCas);
return CORBA::string_dup(myHomardCas->GetDirName().c_str());
}
//=============================================================================
void HOMARD_Cas_i::SetBoundingBox(const SMESHHOMARD::extrema& LesExtrema)
{
ASSERT(myHomardCas);
std::vector<double> VExtrema;
ASSERT(LesExtrema.length() == 10);
VExtrema.resize(LesExtrema.length());
for (int i = 0; i < (int)LesExtrema.length(); i++) {
VExtrema[i] = LesExtrema[i];
}
myHomardCas->SetBoundingBox(VExtrema);
}
//=============================================================================
SMESHHOMARD::extrema* HOMARD_Cas_i::GetBoundingBox()
{
ASSERT(myHomardCas);
SMESHHOMARD::extrema_var aResult = new SMESHHOMARD::extrema();
std::vector<double> LesExtremes = myHomardCas->GetBoundingBox();
ASSERT(LesExtremes.size() == 10);
aResult->length(10);
for (unsigned int i = 0; i < LesExtremes.size(); i++) {
aResult[i] = LesExtremes[i];
}
return aResult._retn();
}
//=============================================================================
void HOMARD_Cas_i::AddGroup(const char* Group)
{
ASSERT(myHomardCas);
myHomardCas->AddGroup(Group);
}
//=============================================================================
void HOMARD_Cas_i::SetGroups(const SMESHHOMARD::ListGroupType& ListGroup)
{
ASSERT(myHomardCas);
std::list<std::string> ListString;
for (unsigned int i = 0; i < ListGroup.length(); i++)
{
ListString.push_back(std::string(ListGroup[i]));
}
myHomardCas->SetGroups(ListString);
}
//=============================================================================
SMESHHOMARD::ListGroupType* HOMARD_Cas_i::GetGroups()
{
ASSERT(myHomardCas);
const std::list<std::string>& ListString = myHomardCas->GetGroups();
SMESHHOMARD::ListGroupType_var aResult = new SMESHHOMARD::ListGroupType();
aResult->length(ListString.size());
std::list<std::string>::const_iterator it;
int i = 0;
for (it = ListString.begin(); it != ListString.end(); it++) {
aResult[i++] = CORBA::string_dup((*it).c_str());
}
return aResult._retn();
}
//=============================================================================
void HOMARD_Cas_i::AddBoundary(const char* BoundaryName)
{
MESSAGE ("HOMARD_Cas_i::AddBoundary : BoundaryName = "<< BoundaryName);
const char * Group = "";
AddBoundaryGroup(BoundaryName, Group);
}
//=============================================================================
void HOMARD_Cas_i::AddBoundaryGroup(const char* BoundaryName, const char* Group)
{
MESSAGE ("HOMARD_Cas_i::AddBoundaryGroup : BoundaryName = "<< BoundaryName << ", Group = " << Group);
ASSERT(myHomardCas);
// A. Préalables
// A.1. Caractéristiques de la frontière à ajouter
SMESHHOMARD::HOMARD_Boundary_ptr myBoundary = _gen_i->GetBoundary(BoundaryName);
ASSERT(!CORBA::is_nil(myBoundary));
int BoundaryType = myBoundary->GetType();
MESSAGE (". BoundaryType = " << BoundaryType);
// A.2. La liste des frontiere+groupes
const std::list<std::string>& ListBoundaryGroup = myHomardCas->GetBoundaryGroup();
std::list<std::string>::const_iterator it;
// B. Controles
const char * boun;
int erreur = 0;
while (erreur == 0)
{
// B.1. Si on ajoute une frontière CAO, elle doit être la seule frontière
if (BoundaryType == -1)
{
for (it = ListBoundaryGroup.begin(); it != ListBoundaryGroup.end(); it++)
{
boun = (*it).c_str();
MESSAGE (".. Frontiere enregistrée : "<< boun);
if (*it != BoundaryName)
{ erreur = 1;
break; }
// On saute le nom du groupe
it++;
}
}
if (erreur != 0) { break; }
// B.2. Si on ajoute une frontière non CAO, il ne doit pas y avoir de frontière CAO
if (BoundaryType != -1)
{
for (it = ListBoundaryGroup.begin(); it != ListBoundaryGroup.end(); it++)
{
boun = (*it).c_str();
MESSAGE (".. Frontiere enregistrée : "<< boun);
SMESHHOMARD::HOMARD_Boundary_ptr myBoundary_0 = _gen_i->GetBoundary(boun);
int BoundaryType_0 = myBoundary_0->GetType();
MESSAGE (".. BoundaryType_0 = " << BoundaryType_0);
if (BoundaryType_0 == -1)
{ erreur = 2;
break; }
// On saute le nom du groupe
it++;
}
if (erreur != 0) { break; }
}
// B.3. Si on ajoute une frontière discrète, il ne doit pas y avoir d'autre frontière discrète
if (BoundaryType == 0)
{
for (it = ListBoundaryGroup.begin(); it != ListBoundaryGroup.end(); it++)
{
boun = (*it).c_str();
MESSAGE (".. Frontiere enregistrée : "<< boun);
if (boun != BoundaryName)
{
SMESHHOMARD::HOMARD_Boundary_ptr myBoundary_0 = _gen_i->GetBoundary(boun);
int BoundaryType_0 = myBoundary_0->GetType();
MESSAGE (".. BoundaryType_0 = " << BoundaryType_0);
if (BoundaryType_0 == 0)
{ erreur = 3;
break; }
}
// On saute le nom du groupe
it++;
}
if (erreur != 0) { break; }
}
// B.4. Pour une nouvelle frontiere, publication dans l'arbre d'etudes sous le cas
for (it = ListBoundaryGroup.begin(); it != ListBoundaryGroup.end(); it++) {
MESSAGE (".. Frontiere : "<< *it);
// On saute le nom du groupe
it++;
}
// B.5. Le groupe est-il deja enregistre pour une frontiere de ce cas ?
for (it = ListBoundaryGroup.begin(); it != ListBoundaryGroup.end(); it++) {
boun = (*it).c_str();
it++;
MESSAGE (".. Groupe enregistré : "<< *it);
if (*it == Group) {
erreur = 5;
break;
}
}
if (erreur != 0) { break; }
//
break;
}
// F. Si aucune erreur, enregistrement du couple (frontiere,groupe) dans la reference du cas
// Sinon, arrêt
if (erreur == 0) {
myHomardCas->AddBoundaryGroup(BoundaryName, Group);
}
else {
std::stringstream ss;
ss << erreur;
std::string str = ss.str();
std::string texte;
texte = "Erreur numéro " + str + " pour la frontière à enregistrer : " + std::string(BoundaryName);
if (erreur == 1) { texte += "\nIl existe déjà la frontière "; }
else if (erreur == 2) { texte += "\nIl existe déjà la frontière CAO "; }
else if (erreur == 3) { texte += "\nIl existe déjà une frontière discrète : "; }
else if (erreur == 5) { texte += "\nLe groupe " + std::string(Group) + " est déjà enregistré pour la frontière "; }
texte += std::string(boun);
//
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
#ifdef _DEBUG_
texte += "\nInvalid AddBoundaryGroup";
#endif
INFOS(texte);
es.text = CORBA::string_dup(texte.c_str());
throw SALOME::SALOME_Exception(es);
}
}
//=============================================================================
SMESHHOMARD::ListBoundaryGroupType* HOMARD_Cas_i::GetBoundaryGroup()
{
MESSAGE ("GetBoundaryGroup");
ASSERT(myHomardCas);
const std::list<std::string>& ListBoundaryGroup = myHomardCas->GetBoundaryGroup();
SMESHHOMARD::ListBoundaryGroupType_var aResult = new SMESHHOMARD::ListBoundaryGroupType();
aResult->length(ListBoundaryGroup.size());
std::list<std::string>::const_iterator it;
int i = 0;
for (it = ListBoundaryGroup.begin(); it != ListBoundaryGroup.end(); it++)
{
aResult[i++] = CORBA::string_dup((*it).c_str());
}
return aResult._retn();
}
//=============================================================================
void HOMARD_Cas_i::SupprBoundaryGroup()
{
MESSAGE ("SupprBoundaryGroup");
ASSERT(myHomardCas);
myHomardCas->SupprBoundaryGroup();
}
void HOMARD_Cas_i::AddIteration(const char* NomIteration)
{
ASSERT(myHomardCas);
myHomardCas->AddIteration(NomIteration);
}
//=============================================================================
/*!
* standard constructor
*/
//=============================================================================
HOMARD_Iteration_i::HOMARD_Iteration_i()
{
MESSAGE("Default constructor, not for use");
ASSERT(0);
}
//=============================================================================
/*!
* standard constructor
*/
//=============================================================================
HOMARD_Iteration_i::HOMARD_Iteration_i(SMESHHOMARD::HOMARD_Gen_var engine)
{
MESSAGE("constructor");
_gen_i = engine;
myHomardIteration = new SMESHHOMARDImpl::HOMARD_Iteration();
ASSERT(myHomardIteration);
}
//=============================================================================
/*!
* standard destructor
*/
//=============================================================================
HOMARD_Iteration_i::~HOMARD_Iteration_i()
{
}
//=============================================================================
void HOMARD_Iteration_i::SetName(const char* Name)
{
ASSERT(myHomardIteration);
myHomardIteration->SetName(Name);
}
//=============================================================================
char* HOMARD_Iteration_i::GetName()
{
ASSERT(myHomardIteration);
return CORBA::string_dup(myHomardIteration->GetName().c_str());
}
//=============================================================================
void HOMARD_Iteration_i::SetDirNameLoc(const char* NomDir)
{
ASSERT(myHomardIteration);
myHomardIteration->SetDirNameLoc(NomDir);
}
//=============================================================================
char* HOMARD_Iteration_i::GetDirNameLoc()
{
ASSERT(myHomardIteration);
return CORBA::string_dup(myHomardIteration->GetDirNameLoc().c_str());
}
//=============================================================================
char* HOMARD_Iteration_i::GetDirName()
{
ASSERT(myHomardIteration);
SMESHHOMARD::HOMARD_Cas_ptr caseiter = _gen_i->GetCase();
std::string dirnamecase = caseiter->GetDirName();
std::string dirname = dirnamecase + "/" + GetDirNameLoc();
return CORBA::string_dup(dirname.c_str());
}
//=============================================================================
void HOMARD_Iteration_i::SetNumber(CORBA::Long NumIter)
{
ASSERT(myHomardIteration);
myHomardIteration->SetNumber(NumIter);
}
//=============================================================================
CORBA::Long HOMARD_Iteration_i::GetNumber()
{
ASSERT(myHomardIteration);
return myHomardIteration->GetNumber();
}
//=============================================================================
void HOMARD_Iteration_i::SetState(CORBA::Long Etat)
{
ASSERT(myHomardIteration);
myHomardIteration->SetState(Etat);
}
//=============================================================================
CORBA::Long HOMARD_Iteration_i::GetState()
{
ASSERT(myHomardIteration);
return myHomardIteration->GetState();
}
//=============================================================================
void HOMARD_Iteration_i::SetMeshName(const char* NomMesh)
{
ASSERT(myHomardIteration);
myHomardIteration->SetMeshName(NomMesh);
}
//=============================================================================
char* HOMARD_Iteration_i::GetMeshName()
{
ASSERT(myHomardIteration);
return CORBA::string_dup(myHomardIteration->GetMeshName().c_str());
}
//=============================================================================
void HOMARD_Iteration_i::SetMeshFile(const char* MeshFile)
{
ASSERT(myHomardIteration);
myHomardIteration->SetMeshFile(MeshFile);
}
//=============================================================================
char* HOMARD_Iteration_i::GetMeshFile()
{
ASSERT(myHomardIteration);
return CORBA::string_dup(myHomardIteration->GetMeshFile().c_str());
}
//=============================================================================
void HOMARD_Iteration_i::SetLogFile(const char* LogFile)
{
ASSERT(myHomardIteration);
myHomardIteration->SetLogFile(LogFile);
}
//=============================================================================
char* HOMARD_Iteration_i::GetLogFile()
{
ASSERT(myHomardIteration);
return CORBA::string_dup(myHomardIteration->GetLogFile().c_str());
}
//=============================================================================
void HOMARD_Iteration_i::SetFileInfo(const char* FileInfo)
{
ASSERT(myHomardIteration);
myHomardIteration->SetFileInfo(FileInfo);
}
//=============================================================================
char* HOMARD_Iteration_i::GetFileInfo()
{
ASSERT(myHomardIteration);
return CORBA::string_dup(myHomardIteration->GetFileInfo().c_str());
}
//=============================================================================
void HOMARD_Iteration_i::SetInfoCompute(CORBA::Long MessInfo)
{
ASSERT(myHomardIteration);
myHomardIteration->SetInfoCompute(MessInfo);
}
//=============================================================================
CORBA::Long HOMARD_Iteration_i::GetInfoCompute()
{
ASSERT(myHomardIteration);
return myHomardIteration->GetInfoCompute();
}
//=============================================================================
/*!
* standard constructor
*/
//=============================================================================
HOMARD_Gen_i::HOMARD_Gen_i() : SALOME::GenericObj_i(SMESH_Gen_i::GetPOA()),
myIteration0(NULL),
myIteration1(NULL),
_ConfType(0),
_KeepMedOUT(true),
_PublishMeshOUT(false),
_KeepWorkingFiles(false),
_LogInFile(false),
_RemoveLogOnSuccess(false),
_VerboseLevel(0),
_MeshNameOUT(""),
_MeshFileOUT(""),
_LogFile(""),
_CaseOnMedFile(true),
_SmeshMesh(SMESH::SMESH_Mesh::_nil()),
_TmpMeshFile("")
{
MESSAGE("constructor de HOMARD_Gen_i");
myHomard = new SMESHHOMARDImpl::HOMARD_Gen;
}
//=============================================================================
/*!
* standard destructor
*/
//=============================================================================
HOMARD_Gen_i::~HOMARD_Gen_i()
{
MESSAGE ("HOMARD_Gen_i::~HOMARD_Gen_i()");
}
//=============================================================================
//=============================================================================
// Destruction des structures identifiees par leurs noms
//=============================================================================
//=============================================================================
CORBA::Long HOMARD_Gen_i::DeleteBoundary(const char* BoundaryName)
{
MESSAGE ("DeleteBoundary : BoundaryName = " << BoundaryName);
SMESHHOMARD::HOMARD_Boundary_var myBoundary = _mesBoundarys[BoundaryName];
if (CORBA::is_nil(myBoundary)) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "Invalid boundary";
throw SALOME::SALOME_Exception(es);
}
// Boundaries should be deleted only after all cases deletion!!!
// comme on a un _var comme pointeur CORBA, on ne se preoccupe pas du delete
_mesBoundarys.erase(BoundaryName);
return 0;
}
//=============================================================================
CORBA::Long HOMARD_Gen_i::DeleteIteration(int numIter)
{
MESSAGE ("DeleteIteration : numIter = " << numIter);
if (numIter == 0) {
if (myIteration0 != NULL) {
delete myIteration0;
myIteration0 = NULL;
}
}
else {
if (myIteration1 != NULL) {
// Invalide Iteration
if (myIteration1->GetState() > 0) {
myIteration1->SetState(1);
if (!_KeepWorkingFiles) {
std::string nomDir = myIteration1->GetDirName();
std::string commande = "rm -rf " + nomDir;
if (numIter > 0 && !_KeepMedOUT) {
// Remove associated mesh file
std::string nomFichier = myIteration1->GetMeshFile();
commande = commande + ";rm -rf " + nomFichier;
}
MESSAGE ("commande = " << commande);
if ((system(commande.c_str())) != 0) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "The directory for the calculation cannot be cleared.";
throw SALOME::SALOME_Exception(es);
}
}
}
delete myIteration1;
myIteration1 = NULL;
}
}
return 0;
}
//=============================================================================
//=============================================================================
// Invalidation des structures identifiees par leurs noms
//=============================================================================
//=============================================================================
void HOMARD_Gen_i::InvalideBoundary(const char* BoundaryName)
{
MESSAGE("InvalideBoundary : BoundaryName = " << BoundaryName);
SMESHHOMARD::HOMARD_Boundary_var myBoundary = _mesBoundarys[BoundaryName];
if (CORBA::is_nil(myBoundary)) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "Invalid boundary";
throw SALOME::SALOME_Exception(es);
}
else {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "No change is allowed in a boundary. Ask for evolution.";
throw SALOME::SALOME_Exception(es);
}
}
//=============================================================================
//=============================================================================
// Association de lien entre des structures identifiees par leurs noms
//=============================================================================
//=============================================================================
void HOMARD_Gen_i::AssociateCaseIter(int numIter, const char* labelIter)
{
MESSAGE("AssociateCaseIter : " << numIter << ", " << labelIter);
if (CORBA::is_nil(myCase)) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "Invalid case";
throw SALOME::SALOME_Exception(es);
}
if (numIter == 0) {
if (myIteration0 == NULL) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "Invalid iteration";
throw SALOME::SALOME_Exception(es);
}
HOMARD_Cas_i* aCaseImpl = SMESH::DownCast<HOMARD_Cas_i*>(myCase);
aCaseImpl->AddIteration(myIteration0->GetName());
}
else {
if (myIteration1 == NULL) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "Invalid iteration";
throw SALOME::SALOME_Exception(es);
}
HOMARD_Cas_i* aCaseImpl = SMESH::DownCast<HOMARD_Cas_i*>(myCase);
aCaseImpl->AddIteration(myIteration1->GetName());
}
}
//=============================================================================
//=============================================================================
// Recuperation des listes
//=============================================================================
//=============================================================================
SMESHHOMARD::listeBoundarys* HOMARD_Gen_i::GetAllBoundarysName()
{
MESSAGE("GetAllBoundarysName");
SMESHHOMARD::listeBoundarys_var ret = new SMESHHOMARD::listeBoundarys;
ret->length(_mesBoundarys.size());
std::map<std::string, SMESHHOMARD::HOMARD_Boundary_var>::const_iterator it;
int i = 0;
for (it = _mesBoundarys.begin();
it != _mesBoundarys.end(); it++) {
ret[i++] = CORBA::string_dup((*it).first.c_str());
}
return ret._retn();
}
//=============================================================================
//=============================================================================
// Recuperation des structures identifiees par leurs noms
//=============================================================================
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::GetBoundary(const char* nomBoundary)
{
SMESHHOMARD::HOMARD_Boundary_var myBoundary = _mesBoundarys[nomBoundary];
ASSERT(!CORBA::is_nil(myBoundary));
return SMESHHOMARD::HOMARD_Boundary::_duplicate(myBoundary);
}
//=============================================================================
SMESHHOMARD::HOMARD_Cas_ptr HOMARD_Gen_i::GetCase()
{
ASSERT(!CORBA::is_nil(myCase));
return SMESHHOMARD::HOMARD_Cas::_duplicate(myCase);
}
//=============================================================================
HOMARD_Iteration_i* HOMARD_Gen_i::GetIteration(CORBA::Long numIter)
{
if (numIter == 0) {
ASSERT(myIteration0);
return myIteration0;
}
ASSERT(myIteration1);
return myIteration1;
}
//=============================================================================
//=============================================================================
// Nouvelles structures
//=============================================================================
//=============================================================================
SMESHHOMARD::HOMARD_Cas_ptr HOMARD_Gen_i::newCase()
{
SMESHHOMARD::HOMARD_Gen_var engine = POA_SMESHHOMARD::HOMARD_Gen::_this();
HOMARD_Cas_i* aServant = new HOMARD_Cas_i(engine);
SMESHHOMARD::HOMARD_Cas_var aCase = SMESHHOMARD::HOMARD_Cas::_narrow(aServant->_this());
return aCase._retn();
}
//=============================================================================
HOMARD_Iteration_i* HOMARD_Gen_i::newIteration()
{
SMESHHOMARD::HOMARD_Gen_var engine = POA_SMESHHOMARD::HOMARD_Gen::_this();
HOMARD_Iteration_i* aServant = new HOMARD_Iteration_i(engine);
return aServant;
}
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::newBoundary()
{
SMESHHOMARD::HOMARD_Gen_var engine = POA_SMESHHOMARD::HOMARD_Gen::_this();
HOMARD_Boundary_i* aServant = new HOMARD_Boundary_i(engine);
SMESHHOMARD::HOMARD_Boundary_var aBoundary =
SMESHHOMARD::HOMARD_Boundary::_narrow(aServant->_this());
return aBoundary._retn();
}
//=============================================================================
// Creation of a case
// MeshName : name of the mesh
// smeshMesh : correspondent mesh
// theWorkingDir : path to working directory
//=============================================================================
SMESHHOMARD::HOMARD_Cas_ptr HOMARD_Gen_i::CreateCaseOnMesh (const char* MeshName,
SMESH::SMESH_Mesh_ptr smeshMesh,
const char* theWorkingDir)
{
INFOS("CreateCaseOnMesh");
// A. Controles
// A.1. Controle du nom :
if (!myCase->_is_nil()) {
DeleteCase();
}
// A.2. Controle du objet maillage
if (CORBA::is_nil(smeshMesh)) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "The mesh object is null.";
throw SALOME::SALOME_Exception(es);
}
MESSAGE("CreateCaseOnMesh : smeshMesh is not nil");
// A.3. Write mesh object in a temporary file in the working directory
std::string aTmpMeshFile = theWorkingDir;
aTmpMeshFile = theWorkingDir;
aTmpMeshFile += std::string("/") + std::string(MeshName) + "_saved_from_SMESH";
_TmpMeshFile = aTmpMeshFile + ".med";
SMESH_File aFile (_TmpMeshFile, false);
for (int ii = 1; aFile.exists(); ii++) {
_TmpMeshFile = aTmpMeshFile + std::string("_") + std::to_string(ii) + ".med";
aFile = SMESH_File(_TmpMeshFile, false);
}
const char* MeshFile = _TmpMeshFile.c_str();
bool toOverwrite = true;
bool toFindOutDim = true;
// Prevent dump of ExportMED
{
SMESH::TPythonDump pDump; // do not delete this line of code
smeshMesh->ExportMED(MeshFile, false, -1, toOverwrite, toFindOutDim);
}
// A.4. Controle du fichier du maillage
med_idt medIdt = MEDfileOpen(MeshFile, MED_ACC_RDONLY);
bool existeMeshFile = medIdt >= 0;
if (existeMeshFile) MEDfileClose(medIdt);
MESSAGE("CreateCaseOnMesh : existeMeshFile = " << existeMeshFile);
if (!existeMeshFile) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "The mesh file does not exist.";
throw SALOME::SALOME_Exception(es);
}
// B. Creation de l'objet cas
myCase = newCase();
_CaseOnMedFile = false;
_SmeshMesh = SMESH::SMESH_Mesh::_duplicate(smeshMesh);
// C. Caracteristiques du maillage
if (existeMeshFile) {
// Les valeurs extremes des coordonnées
//MESSAGE ("CreateCaseOnMesh : Les valeurs extremes des coordonnées");
std::vector<double> LesExtremes = GetBoundingBoxInMedFile(MeshFile);
SMESHHOMARD::extrema_var aSeq = new SMESHHOMARD::extrema();
if (LesExtremes.size() != 10) { return 0; }
aSeq->length(10);
for (unsigned int i = 0; i < LesExtremes.size(); i++)
aSeq[i] = LesExtremes[i];
myCase->SetBoundingBox(aSeq);
// Les groupes
//MESSAGE ("CreateCaseOnMesh : Les groupes");
std::set<std::string> LesGroupes = GetListeGroupesInMedFile(MeshFile);
SMESHHOMARD::ListGroupType_var aSeqGroupe = new SMESHHOMARD::ListGroupType;
aSeqGroupe->length(LesGroupes.size());
std::set<std::string>::const_iterator it;
int i = 0;
for (it = LesGroupes.begin(); it != LesGroupes.end(); it++)
aSeqGroupe[i++] = (*it).c_str();
myCase->SetGroups(aSeqGroupe);
}
// D. L'iteration initiale du cas
MESSAGE ("CreateCaseOnMesh : iteration initiale du cas");
// D.1. Recherche d'un nom : par defaut, on prend le nom du maillage correspondant.
// Si ce nom d'iteration existe deja, on incremente avec 0, 1, 2, etc.
MESSAGE("CreateCaseOnMesh : ==> NomIteration = " << MeshName);
// D.2. Creation de l'iteration 0
myIteration0 = newIteration();
myIteration0->SetName(MeshName);
AssociateCaseIter(0, "IterationHomard");
// D.4. Maillage correspondant
if (existeMeshFile) {
myIteration0->SetMeshFile(MeshFile);
}
myIteration0->SetMeshName(MeshName);
myIteration0->SetNumber(0);
myIteration0->SetState(0);
// Only after full initialization of Iteration0
myCase->SetDirName(theWorkingDir);
return SMESHHOMARD::HOMARD_Cas::_duplicate(myCase);
}
//=============================================================================
// Creation of a case
// MeshName : name of the mesh
// MeshFile : med file
// theWorkingDir : path to working directory
//=============================================================================
SMESHHOMARD::HOMARD_Cas_ptr HOMARD_Gen_i::CreateCase(const char* MeshName,
const char* MeshFile,
const char* theWorkingDir)
{
INFOS("CreateCase : MeshName = " << MeshName << ", MeshFile = " << MeshFile);
// A. Controles
// A.1. Controle du nom :
if (!myCase->_is_nil()) {
DeleteCase();
}
// A.3. Controle du fichier du maillage
med_idt medIdt = MEDfileOpen(MeshFile, MED_ACC_RDONLY);
bool existeMeshFile = medIdt >= 0;
if (existeMeshFile) MEDfileClose(medIdt);
MESSAGE("CreateCase : existeMeshFile = " << existeMeshFile);
if (!existeMeshFile) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "The mesh file does not exist.";
throw SALOME::SALOME_Exception(es);
}
// B. Creation de l'objet cas
myCase = newCase();
_CaseOnMedFile = true;
// C. Caracteristiques du maillage
if (existeMeshFile) {
// Les valeurs extremes des coordonnées
//MESSAGE ("CreateCase : Les valeurs extremes des coordonnées");
std::vector<double> LesExtremes = GetBoundingBoxInMedFile(MeshFile);
SMESHHOMARD::extrema_var aSeq = new SMESHHOMARD::extrema();
if (LesExtremes.size() != 10) { return 0; }
aSeq->length(10);
for (unsigned int i = 0; i < LesExtremes.size(); i++)
aSeq[i] = LesExtremes[i];
myCase->SetBoundingBox(aSeq);
// Les groupes
//MESSAGE ("CreateCase : Les groupes");
std::set<std::string> LesGroupes = GetListeGroupesInMedFile(MeshFile);
SMESHHOMARD::ListGroupType_var aSeqGroupe = new SMESHHOMARD::ListGroupType;
aSeqGroupe->length(LesGroupes.size());
std::set<std::string>::const_iterator it;
int i = 0;
for (it = LesGroupes.begin(); it != LesGroupes.end(); it++)
aSeqGroupe[i++] = (*it).c_str();
myCase->SetGroups(aSeqGroupe);
}
// D. L'iteration initiale du cas
MESSAGE ("CreateCase : iteration initiale du cas");
// D.1. Recherche d'un nom : par defaut, on prend le nom du maillage correspondant.
// Si ce nom d'iteration existe deja, on incremente avec 0, 1, 2, etc.
MESSAGE("CreateCas : ==> NomIteration = " << MeshName);
// D.2. Creation de l'iteration
myIteration0 = newIteration();
myIteration0->SetName(MeshName);
AssociateCaseIter(0, "IterationHomard");
// D.4. Maillage correspondant
if (existeMeshFile) {
myIteration0->SetMeshFile(MeshFile);
}
myIteration0->SetMeshName(MeshName);
myIteration0->SetNumber(0);
myIteration0->SetState(0);
// Only after full initialization of Iteration0
myCase->SetDirName(theWorkingDir);
return SMESHHOMARD::HOMARD_Cas::_duplicate(myCase);
}
//=============================================================================
// Create Iteration1
//=============================================================================
HOMARD_Iteration_i* HOMARD_Gen_i::CreateIteration()
{
if (myIteration0 == NULL) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "The parent iteration is not defined.";
throw SALOME::SALOME_Exception(es);
}
if (CORBA::is_nil(myCase)) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "Invalid case context";
throw SALOME::SALOME_Exception(es);
}
const char* nomDirCase = myCase->GetDirName();
if (myIteration1 != NULL) {
DeleteIteration(1);
}
myIteration1 = newIteration();
if (myIteration1 == NULL) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "Unable to create the iteration 1";
throw SALOME::SALOME_Exception(es);
}
// Nom de l'iteration et du maillage
myIteration1->SetName("Iter_1");
myIteration1->SetMeshName("Iter_1");
myIteration1->SetState(1);
myIteration1->SetNumber(1);
int nbitercase = 1;
char* nomDirIter = CreateDirNameIter(nomDirCase, nbitercase);
myIteration1->SetDirNameLoc(nomDirIter);
// Le nom du fichier du maillage MED est indice par le nombre d'iterations du cas.
// Si on a une chaine unique depuis le depart, ce nombre est le meme que le
// numero d'iteration dans la sucession : maill.01.med, maill.02.med, etc... C'est la
// situation la plus frequente.
// Si on a plusieurs branches, donc des iterations du meme niveau d'adaptation, utiliser
// le nombre d'iterations du cas permet d'eviter les collisions.
int jaux;
if (nbitercase < 100) { jaux = 2; }
else if (nbitercase < 1000) { jaux = 3; }
else if (nbitercase < 10000) { jaux = 4; }
else if (nbitercase < 100000) { jaux = 5; }
else { jaux = 9; }
std::ostringstream iaux;
iaux << std::setw(jaux) << std::setfill('0') << nbitercase;
std::stringstream MeshFile;
MeshFile << nomDirCase << "/maill." << iaux.str() << ".med";
myIteration1->SetMeshFile(MeshFile.str().c_str());
// Association avec le cas
std::string nomIterParent = myIteration0->GetName();
std::string label = "IterationHomard_" + nomIterParent;
AssociateCaseIter(1, label.c_str());
return myIteration1;
}
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::CreateBoundary(const char* BoundaryName,
CORBA::Long BoundaryType)
{
MESSAGE ("CreateBoundary : BoundaryName = " << BoundaryName <<
", BoundaryType = " << BoundaryType);
// Controle du nom :
if ((_mesBoundarys).find(BoundaryName) != (_mesBoundarys).end()) {
MESSAGE ("CreateBoundary : la frontiere " << BoundaryName << " existe deja");
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "This boundary has already been defined";
throw SALOME::SALOME_Exception(es);
}
SMESHHOMARD::HOMARD_Boundary_var myBoundary = newBoundary();
myBoundary->SetName(BoundaryName);
myBoundary->SetType(BoundaryType);
_mesBoundarys[BoundaryName] = myBoundary;
return SMESHHOMARD::HOMARD_Boundary::_duplicate(myBoundary);
}
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::CreateBoundaryCAO(const char* BoundaryName, const char* CAOFile)
{
MESSAGE ("CreateBoundaryCAO : BoundaryName = " << BoundaryName << ", CAOFile = " << CAOFile);
SMESHHOMARD::HOMARD_Boundary_var myBoundary = CreateBoundary(BoundaryName, -1);
myBoundary->SetDataFile(CAOFile);
return SMESHHOMARD::HOMARD_Boundary::_duplicate(myBoundary);
}
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::CreateBoundaryDi(const char* BoundaryName, const char* MeshName, const char* MeshFile)
{
MESSAGE ("CreateBoundaryDi : BoundaryName = " << BoundaryName << ", MeshName = " << MeshName << ", MeshFile = " << MeshFile);
SMESHHOMARD::HOMARD_Boundary_var myBoundary = CreateBoundary(BoundaryName, 0);
myBoundary->SetDataFile(MeshFile);
myBoundary->SetMeshName(MeshName);
return SMESHHOMARD::HOMARD_Boundary::_duplicate(myBoundary);
}
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::CreateBoundaryCylinder(const char* BoundaryName,
CORBA::Double Xcentre, CORBA::Double Ycentre, CORBA::Double Zcentre,
CORBA::Double Xaxe, CORBA::Double Yaxe, CORBA::Double Zaxe,
CORBA::Double Rayon)
{
MESSAGE ("CreateBoundaryCylinder : BoundaryName = " << BoundaryName);
//
SALOME::ExceptionStruct es;
int error = 0;
if (Rayon <= 0.0)
{ es.text = "The radius must be positive.";
error = 1; }
double daux = fabs(Xaxe) + fabs(Yaxe) + fabs(Zaxe);
if (daux < 0.0000001)
{ es.text = "The axis must be a non 0 vector.";
error = 2; }
if (error != 0)
{
es.type = SALOME::BAD_PARAM;
throw SALOME::SALOME_Exception(es);
return 0;
};
//
SMESHHOMARD::HOMARD_Boundary_var myBoundary = CreateBoundary(BoundaryName, 1);
myBoundary->SetCylinder(Xcentre, Ycentre, Zcentre, Xaxe, Yaxe, Zaxe, Rayon);
return SMESHHOMARD::HOMARD_Boundary::_duplicate(myBoundary);
}
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::CreateBoundarySphere(const char* BoundaryName,
CORBA::Double Xcentre, CORBA::Double Ycentre, CORBA::Double Zcentre,
CORBA::Double Rayon)
{
MESSAGE ("CreateBoundarySphere : BoundaryName = " << BoundaryName);
//
SALOME::ExceptionStruct es;
int error = 0;
if (Rayon <= 0.0)
{ es.text = "The radius must be positive.";
error = 1; }
if (error != 0)
{
es.type = SALOME::BAD_PARAM;
throw SALOME::SALOME_Exception(es);
return 0;
};
//
SMESHHOMARD::HOMARD_Boundary_var myBoundary = CreateBoundary(BoundaryName, 2);
myBoundary->SetSphere(Xcentre, Ycentre, Zcentre, Rayon);
return SMESHHOMARD::HOMARD_Boundary::_duplicate(myBoundary);
}
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::CreateBoundaryConeA(const char* BoundaryName,
CORBA::Double Xaxe, CORBA::Double Yaxe, CORBA::Double Zaxe, CORBA::Double Angle,
CORBA::Double Xcentre, CORBA::Double Ycentre, CORBA::Double Zcentre)
{
MESSAGE ("CreateBoundaryConeA : BoundaryName = " << BoundaryName);
//
SALOME::ExceptionStruct es;
int error = 0;
if (Angle <= 0.0 || Angle >= 90.0)
{ es.text = "The angle must be included higher than 0 degree and lower than 90 degrees.";
error = 1; }
double daux = fabs(Xaxe) + fabs(Yaxe) + fabs(Zaxe);
if (daux < 0.0000001)
{ es.text = "The axis must be a non 0 vector.";
error = 2; }
if (error != 0)
{
es.type = SALOME::BAD_PARAM;
throw SALOME::SALOME_Exception(es);
return 0;
};
//
SMESHHOMARD::HOMARD_Boundary_var myBoundary = CreateBoundary(BoundaryName, 3);
myBoundary->SetConeA(Xaxe, Yaxe, Zaxe, Angle, Xcentre, Ycentre, Zcentre);
return SMESHHOMARD::HOMARD_Boundary::_duplicate(myBoundary);
}
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::CreateBoundaryConeR(const char* BoundaryName,
CORBA::Double Xcentre1, CORBA::Double Ycentre1, CORBA::Double Zcentre1, CORBA::Double Rayon1,
CORBA::Double Xcentre2, CORBA::Double Ycentre2, CORBA::Double Zcentre2, CORBA::Double Rayon2)
{
MESSAGE ("CreateBoundaryConeR : BoundaryName = " << BoundaryName);
//
SALOME::ExceptionStruct es;
int error = 0;
if (Rayon1 < 0.0 || Rayon2 < 0.0)
{ es.text = "The radius must be positive.";
error = 1; }
double daux = fabs(Rayon2-Rayon1);
if (daux < 0.0000001)
{ es.text = "The radius must be different.";
error = 2; }
daux = fabs(Xcentre2-Xcentre1) + fabs(Ycentre2-Ycentre1) + fabs(Zcentre2-Zcentre1);
if (daux < 0.0000001)
{ es.text = "The centers must be different.";
error = 3; }
if (error != 0)
{
es.type = SALOME::BAD_PARAM;
throw SALOME::SALOME_Exception(es);
return 0;
};
//
SMESHHOMARD::HOMARD_Boundary_var myBoundary = CreateBoundary(BoundaryName, 4);
myBoundary->SetConeR(Xcentre1, Ycentre1, Zcentre1, Rayon1, Xcentre2, Ycentre2, Zcentre2, Rayon2);
return SMESHHOMARD::HOMARD_Boundary::_duplicate(myBoundary);
}
//=============================================================================
SMESHHOMARD::HOMARD_Boundary_ptr HOMARD_Gen_i::CreateBoundaryTorus(const char* BoundaryName,
CORBA::Double Xcentre, CORBA::Double Ycentre, CORBA::Double Zcentre,
CORBA::Double Xaxe, CORBA::Double Yaxe, CORBA::Double Zaxe,
CORBA::Double RayonRev, CORBA::Double RayonPri)
{
MESSAGE ("CreateBoundaryTorus : BoundaryName = " << BoundaryName);
//
SALOME::ExceptionStruct es;
int error = 0;
if ((RayonRev <= 0.0) || (RayonPri <= 0.0))
{ es.text = "The radius must be positive.";
error = 1; }
double daux = fabs(Xaxe) + fabs(Yaxe) + fabs(Zaxe);
if (daux < 0.0000001)
{ es.text = "The axis must be a non 0 vector.";
error = 2; }
if (error != 0)
{
es.type = SALOME::BAD_PARAM;
throw SALOME::SALOME_Exception(es);
return 0;
};
//
SMESHHOMARD::HOMARD_Boundary_var myBoundary = CreateBoundary(BoundaryName, 5);
myBoundary->SetTorus(Xcentre, Ycentre, Zcentre, Xaxe, Yaxe, Zaxe, RayonRev, RayonPri);
return SMESHHOMARD::HOMARD_Boundary::_duplicate(myBoundary);
}
//=============================================================================
//=============================================================================
CORBA::Long HOMARD_Gen_i::Compute()
{
INFOS ("Compute");
// A. Prealable
int codret = 0;
// A.0. Create Iteration 1
CreateIteration();
myIteration1->SetInfoCompute(_VerboseLevel);
myIteration1->SetMeshName(_MeshNameOUT.c_str());
myIteration1->SetMeshFile(_MeshFileOUT.c_str());
if (_LogInFile) myIteration1->SetLogFile(_LogFile.c_str());
// A.1. L'objet iteration
ASSERT(myIteration1);
// A.2. Controle de la possibilite d'agir
// A.2.1. Etat de l'iteration
int etat = myIteration1->GetState();
MESSAGE ("etat = " << etat);
// A.2.2. On ne calcule pas l'iteration initiale, ni une iteration deja calculee
if (etat == 2) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "This iteration is already computed.";
throw SALOME::SALOME_Exception(es);
}
// A.3. Numero de l'iteration
// siterp1 : numero de l'iteration a traiter
// Si adaptation :
// siter: numero de l'iteration parent, ou 0 si deja au debut mais cela ne servira pas !
// Ou si information :
// siter = siterp1
int NumeIter = myIteration1->GetNumber();
std::string siterp1;
std::stringstream saux1;
saux1 << NumeIter;
siterp1 = saux1.str();
if (NumeIter < 10) { siterp1 = "0" + siterp1; }
std::string siter;
std::stringstream saux0;
int iaux = max(0, NumeIter-1);
saux0 << iaux;
siter = saux0.str();
if (NumeIter < 11) { siter = "0" + siter; }
// A.4. Le cas
ASSERT(!CORBA::is_nil(myCase));
// B. Les répertoires
// B.1. Le répertoire courant
std::string nomDirWork = getenv("PWD");
// B.2. Le sous-répertoire de l'iteration a traiter
char* DirCompute = ComputeDirManagement();
MESSAGE(". DirCompute = " << DirCompute);
// C. Le fichier des messages
// C.1. Le deroulement de l'execution de HOMARD
std::string LogFile = myIteration1->GetLogFile();
if (LogFile.empty()) {
LogFile = DirCompute;
LogFile += "/Liste." + siter + ".vers." + siterp1 + ".log";
myIteration1->SetLogFile(LogFile.c_str());
}
MESSAGE (". LogFile = " << LogFile);
// C.2. Le bilan de l'analyse du maillage
std::string FileInfo = DirCompute;
FileInfo += "/apad." + siterp1 + ".bilan";
myIteration1->SetFileInfo(FileInfo.c_str());
// D. On passe dans le répertoire de l'iteration a calculer
MESSAGE (". On passe dans DirCompute = " << DirCompute);
CHDIR(DirCompute);
// E. Les données de l'exécution HOMARD
// E.1. L'objet du texte du fichier de configuration
SMESHHOMARDImpl::HomardDriver* myDriver = new SMESHHOMARDImpl::HomardDriver(siter, siterp1);
myDriver->TexteInit(DirCompute, LogFile, "English");
// E.2. Le maillage associe a l'iteration
const char* NomMesh = myIteration1->GetMeshName();
MESSAGE (". NomMesh = " << NomMesh);
const char* MeshFile = myIteration1->GetMeshFile();
MESSAGE (". MeshFile = " << MeshFile);
// E.3. Les données du traitement HOMARD
iaux = 1;
myDriver->TexteMaillageHOMARD(DirCompute, siterp1, iaux);
myDriver->TexteMaillage(NomMesh, MeshFile, 1);
codret = ComputeAdap(myDriver);
// E.4. Ajout des informations liees a l'eventuel suivi de frontiere
int BoundaryOption = DriverTexteBoundary(myDriver);
// E.5. Ecriture du texte dans le fichier
MESSAGE (". Ecriture du texte dans le fichier de configuration; codret = "<<codret);
if (codret == 0)
{ myDriver->CreeFichier(); }
// G. Execution
//
int codretexec = 1789;
if (codret == 0) {
codretexec = myDriver->ExecuteHomard();
//
MESSAGE ("Erreur en executant HOMARD : " << codretexec);
// En mode adaptation, on ajuste l'etat de l'iteration
if (codretexec == 0) { myIteration1->SetState(2); }
else { myIteration1->SetState(1); }
}
// H. Gestion des resultats
if (codret == 0) {
std::string Commentaire;
// H.1. Le fichier des messages, dans tous les cas
Commentaire = "log";
Commentaire += " " + siterp1;
// H.2. Si tout s'est bien passe :
if (codretexec == 0) {
// H.2.1. Le fichier de bilan
Commentaire = "Summary";
Commentaire += " " + siterp1;
// H.2.2. Le fichier de maillage obtenu
std::stringstream saux0;
Commentaire = "Mesh";
Commentaire += " " + siterp1;
if (_PublishMeshOUT) PublishResultInSmesh(MeshFile);
}
// H.3 Message d'erreur
if (codretexec != 0) {
std::string text = "";
// Message d'erreur en cas de probleme en adaptation
text = "Error during the adaptation.\n";
bool stopvu = false;
std::ifstream fichier(LogFile.c_str());
if (fichier) { // ce test échoue si le fichier n'est pas ouvert
std::string ligne; // variable contenant chaque ligne lue
while (std::getline(fichier, ligne)) {
//INFOS(ligne);
if (stopvu) { text += ligne+ "\n"; }
else {
int position = ligne.find("===== HOMARD ===== STOP =====");
if (position > 0) { stopvu = true; }
}
}
}
text += "\n\nSee the file " + LogFile + "\n";
INFOS (text);
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
}
}
// I. Menage et retour dans le répertoire du cas
if (codret == 0) {
delete myDriver;
MESSAGE (". On retourne dans nomDirWork = " << nomDirWork);
CHDIR(nomDirWork.c_str());
}
// J. Suivi de la frontière CAO
if (codret == 0) {
if ((BoundaryOption % 5 == 0) && (codretexec == 0)) {
MESSAGE ("Suivi de frontière CAO");
codret = ComputeCAO();
}
}
if (codretexec == 0) {
// Python Dump
PythonDump();
// Delete log file, if required
if (myIteration1 != NULL) {
MESSAGE("myIteration1->GetLogFile() = " << myIteration1->GetLogFile());
if (_LogInFile && _RemoveLogOnSuccess) {
// Remove log file on success
SMESH_File(myIteration1->GetLogFile(), false).remove();
}
}
// Clean all data
DeleteCase();
}
return codretexec;
}
void HOMARD_Gen_i::DeleteCase()
{
MESSAGE ("DeleteCase");
if (myCase->_is_nil()) return;
// Delete all boundaries
_mesBoundarys.clear();
// Delete iterations
DeleteIteration(1);
DeleteIteration(0);
// Delete case
myCase = SMESHHOMARD::HOMARD_Cas::_nil();
// Delete tmp mesh file
if (!_CaseOnMedFile && !_TmpMeshFile.empty()) {
SMESH_File aFile (_TmpMeshFile, false);
if (aFile.exists()) aFile.remove();
_TmpMeshFile = "";
}
_SmeshMesh = SMESH::SMESH_Mesh::_nil();
}
//=============================================================================
// Calcul d'une iteration : partie spécifique à l'adaptation
//=============================================================================
CORBA::Long HOMARD_Gen_i::ComputeAdap(SMESHHOMARDImpl::HomardDriver* myDriver)
{
MESSAGE ("ComputeAdap");
// A. Prealable
// A.1. Bases
int codret = 0;
// Numero de l'iteration
int NumeIter = 1;
std::stringstream saux0;
saux0 << NumeIter-1;
std::string siter = saux0.str();
if (NumeIter < 11) { siter = "0" + siter; }
// B. L'iteration parent
ASSERT(myIteration0);
// C. Le sous-répertoire de l'iteration precedente
char* DirComputePa = ComputeDirPaManagement();
MESSAGE(". DirComputePa = " << DirComputePa);
// D. Les données de l'adaptation HOMARD
// D.1. Le type de conformite
MESSAGE (". ConfType = " << _ConfType);
// D.3. Le maillage de depart
const char* NomMeshParent = myIteration0->GetMeshName();
MESSAGE (". NomMeshParent = " << NomMeshParent);
const char* MeshFileParent = myIteration0->GetMeshFile();
MESSAGE (". MeshFileParent = " << MeshFileParent);
// D.4. Le maillage associe a l'iteration
const char* MeshFile = myIteration1->GetMeshFile();
MESSAGE (". MeshFile = " << MeshFile);
FILE *file = fopen(MeshFile,"r");
if (file != NULL) {
fclose(file);
// CleanOption = 0 : report an error if output mesh file exists
// CleanOption = 1 : destruction du répertoire d'execution
int CleanOption = 1;
if (CleanOption == 0) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
std::string text = "MeshFile : " + std::string(MeshFile) + " already exists ";
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
}
else {
std::string commande = "rm -f " + std::string(MeshFile);
codret = system(commande.c_str());
if (codret != 0) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "The mesh file cannot be deleted.";
throw SALOME::SALOME_Exception(es);
}
}
}
// E. Texte du fichier de configuration
// E.1. Incontournables du texte
myDriver->TexteAdap();
int iaux = 0;
myDriver->TexteMaillageHOMARD(DirComputePa, siter, iaux);
myDriver->TexteMaillage(NomMeshParent, MeshFileParent, 0);
myDriver->TexteConfRaffDera(_ConfType);
// E.6. Ajout des options avancees
//myDriver->TexteAdvanced(NivMax, DiamMin, AdapInit, ExtraOutput);
myDriver->TexteAdvanced(-1, -1.0, 0, 1);
// E.7. Ajout des informations sur le deroulement de l'execution
int MessInfo = myIteration1->GetInfoCompute();
MESSAGE (". MessInfo = " << MessInfo);
myDriver->TexteInfoCompute(MessInfo);
return codret;
}
//=============================================================================
// Calcul d'une iteration : partie spécifique au suivi de frontière CAO
//=============================================================================
CORBA::Long HOMARD_Gen_i::ComputeCAO()
{
MESSAGE ("ComputeCAO");
// A. Prealable
// A.1. Bases
int codret = 0;
#ifndef DISABLE_HOMARD_ADAPT
// A.2. Le sous-répertoire de l'iteration en cours de traitement
char* DirCompute = myIteration1->GetDirName();
// A.3. Le maillage résultat de l'iteration en cours de traitement
char* MeshFile = myIteration1->GetMeshFile();
// B. Les données pour FrontTrack
// B.1. Le maillage à modifier
const std::string theInputMedFile = MeshFile;
MESSAGE (". theInputMedFile = " << theInputMedFile);
// B.2. Le maillage après modification : fichier identique
const std::string theOutputMedFile = MeshFile;
MESSAGE (". theOutputMedFile = " << theInputMedFile);
// B.3. La liste des fichiers contenant les numéros des noeuds à bouger
std::vector< std::string > theInputNodeFiles;
MESSAGE (". DirCompute = " << DirCompute);
std::basic_string<char>::size_type bilan;
int icpt = 0;
#ifndef WIN32
DIR *dp;
struct dirent *dirp;
dp = opendir(DirCompute);
while ((dirp = readdir(dp)) != NULL)
{
std::string file_name(dirp->d_name);
bilan = file_name.find("fr");
if (bilan != string::npos)
{
std::stringstream filename_total;
filename_total << DirCompute << "/" << file_name;
theInputNodeFiles.push_back(filename_total.str());
icpt += 1;
}
}
#else
HANDLE hFind = INVALID_HANDLE_VALUE;
WIN32_FIND_DATA ffd;
hFind = FindFirstFile(DirNameStart, &ffd);
if (INVALID_HANDLE_VALUE != hFind) {
while (FindNextFile(hFind, &ffd) != 0) {
std::string file_name(ffd.cFileName);
bilan = file_name.find("fr");
if (bilan != string::npos)
{
std::stringstream filename_total;
filename_total << DirCompute << "/" << file_name;
theInputNodeFiles.push_back(filename_total.str());
icpt += 1;
}
}
FindClose(hFind);
}
#endif
for (int i = 0; i < icpt; i++)
{ MESSAGE (". theInputNodeFiles["<< i << "] = " << theInputNodeFiles[i]); }
// B.4. Le fichier de la CAO
SMESHHOMARD::ListBoundaryGroupType* ListBoundaryGroupType = myCase->GetBoundaryGroup();
std::string BoundaryName = std::string((*ListBoundaryGroupType)[0]);
MESSAGE (". BoundaryName = " << BoundaryName);
SMESHHOMARD::HOMARD_Boundary_var myBoundary = _mesBoundarys[BoundaryName];
const std::string theXaoFileName = myBoundary->GetDataFile();
MESSAGE (". theXaoFileName = " << theXaoFileName);
// C. Lancement des projections
MESSAGE (". Lancement des projections");
assert(Py_IsInitialized());
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyRun_SimpleString("from FrontTrack import FrontTrack");
// FrontTrack().track( fic_med_brut, fic_med_new, l_fr, xao_file )
std::string pyCommand ("FrontTrack().track( \"");
pyCommand += theInputMedFile + "\", \"" + theOutputMedFile + "\", [";
for (int i = 0; i < icpt; i++) {
if (i > 0) pyCommand += ", ";
pyCommand += "\"";
pyCommand += theInputNodeFiles[i];
pyCommand += "\"";
}
pyCommand += "], \"" + theXaoFileName + "\", False )";
MESSAGE (". Lancement des projections: pyCommand = " << pyCommand);
PyRun_SimpleString(pyCommand.c_str());
PyGILState_Release(gstate);
// D. Transfert des coordonnées modifiées dans le fichier historique de HOMARD
// On lance une exécution spéciale de HOMARD en attendant
// de savoir le faire avec MEDCoupling
MESSAGE (". Transfert des coordonnées");
codret = ComputeCAObis();
#endif
return codret;
}
//=============================================================================
//=============================================================================
// Transfert des coordonnées en suivi de frontière CAO
//=============================================================================
CORBA::Long HOMARD_Gen_i::ComputeCAObis()
{
MESSAGE ("ComputeCAObis");
// A. Prealable
int codret = 0;
// A.1. Controle de la possibilite d'agir
// A.1.1. Etat de l'iteration
int etat = myIteration1->GetState();
MESSAGE ("etat = " << etat);
// A.1.2. L'iteration doit être calculee
if (etat == 1) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "This iteration is not computed.";
throw SALOME::SALOME_Exception(es);
return 1;
}
// A.2. Numero de l'iteration
// siterp1 : numero de l'iteration a traiter
int NumeIter = myIteration1->GetNumber();
std::string siterp1;
std::stringstream saux1;
saux1 << NumeIter;
siterp1 = saux1.str();
if (NumeIter < 10) { siterp1 = "0" + siterp1; }
MESSAGE ("siterp1 = "<<siterp1);
// A.3. Le cas
ASSERT(!CORBA::is_nil(myCase));
// A.4. Le sous-répertoire de l'iteration a traiter
char* DirCompute = myIteration1->GetDirName();
MESSAGE(". DirCompute = " << DirCompute);
// C. Le fichier des messages
std::string LogFile = DirCompute;
LogFile += "/Liste." + siterp1 + ".maj_coords.log";
MESSAGE (". LogFile = " << LogFile);
myIteration1->SetFileInfo(LogFile.c_str());
// D. On passe dans le répertoire de l'iteration a calculer
MESSAGE (". On passe dans DirCompute = " << DirCompute);
CHDIR(DirCompute);
// E. Les données de l'exécution HOMARD
// E.1. L'objet du texte du fichier de configuration
SMESHHOMARDImpl::HomardDriver* myDriver = new SMESHHOMARDImpl::HomardDriver("", siterp1);
myDriver->TexteInit(DirCompute, LogFile, "English");
// E.2. Le maillage associe a l'iteration
const char* NomMesh = myIteration1->GetMeshName();
MESSAGE (". NomMesh = " << NomMesh);
const char* MeshFile = myIteration1->GetMeshFile();
MESSAGE (". MeshFile = " << MeshFile);
// E.3. Les données du traitement HOMARD
myDriver->TexteMajCoords(NumeIter);
int iaux = 0;
myDriver->TexteMaillageHOMARD(DirCompute, siterp1, iaux);
myDriver->TexteMaillage(NomMesh, MeshFile, 0);
//
// E.4. Ecriture du texte dans le fichier
MESSAGE (". Ecriture du texte dans le fichier de configuration; codret = "<<codret);
if (codret == 0) myDriver->CreeFichier();
// F. Execution
//
int codretexec = 1789;
if (codret == 0) {
codretexec = myDriver->ExecuteHomard();
MESSAGE ("Erreur en executant HOMARD : " << codretexec);
}
// G. Gestion des resultats
if (codret == 0) {
// G.1. Le fichier des messages, dans tous les cas
std::string Commentaire = "logmaj_coords";
// G.2 Message d'erreur
if (codretexec != 0) {
std::string text = "\n\nSee the file " + LogFile + "\n";
INFOS (text);
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
// On force le succes pour pouvoir consulter le fichier log
codretexec = 0;
}
}
// H. Menage et retour dans le répertoire du cas
if (codret == 0) { delete myDriver; }
return codret;
}
//=============================================================================
// Creation d'un nom de sous-répertoire pour l'iteration au sein d'un répertoire parent
// nomrep : nom du répertoire parent
// num : le nom du sous-répertoire est sous la forme 'In', n est >= num
//=============================================================================
char* HOMARD_Gen_i::CreateDirNameIter(const char* nomrep, CORBA::Long num)
{
#ifndef DISABLE_HOMARD_ADAPT
MESSAGE ("CreateDirNameIter : nomrep ="<< nomrep << ", num = "<<num);
// On verifie que le répertoire parent existe
int codret = CHDIR(nomrep);
if (codret != 0) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "The directory of the case does not exist.";
throw SALOME::SALOME_Exception(es);
}
std::string nomDirActuel = getenv("PWD");
std::string DirName;
// On boucle sur tous les noms possibles jusqu'a trouver un nom correspondant a un répertoire inconnu
bool a_chercher = true;
while (a_chercher) {
// On passe dans le répertoire parent
CHDIR(nomrep);
// On recherche un nom sous la forme Iabc, avec abc representant le numero
int jaux;
if (num < 100) { jaux = 2; }
else if (num < 1000) { jaux = 3; }
else if (num < 10000) { jaux = 4; }
else if (num < 100000) { jaux = 5; }
else { jaux = 9; }
std::ostringstream iaux;
iaux << std::setw(jaux) << std::setfill('0') << num;
std::ostringstream DirNameA;
DirNameA << "I" << iaux.str();
// Si on ne pas peut entrer dans le répertoire, on doit verifier
// que c'est bien un probleme d'absence
if (CHDIR(DirNameA.str().c_str()) != 0)
{
bool existe = false;
#ifndef WIN32
DIR *dp;
struct dirent *dirp;
dp = opendir(nomrep);
while ((dirp = readdir(dp)) != NULL)
{
std::string file_name(dirp->d_name);
#else
HANDLE hFind = INVALID_HANDLE_VALUE;
WIN32_FIND_DATA ffd;
hFind = FindFirstFile(nomrep, &ffd);
if (INVALID_HANDLE_VALUE != hFind) {
while (FindNextFile(hFind, &ffd) != 0) {
if (ffd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) continue; //skip directories
std::string file_name(ffd.cFileName);
#endif
if (file_name == DirNameA.str()) { existe = true; }
}
#ifndef WIN32
closedir(dp);
#else
FindClose(hFind);
#endif
if (!existe)
{
DirName = DirNameA.str();
a_chercher = false;
break;
}
}
num += 1;
}
MESSAGE ("==> DirName = " << DirName);
MESSAGE (". On retourne dans nomDirActuel = " << nomDirActuel);
CHDIR(nomDirActuel.c_str());
return CORBA::string_dup(DirName.c_str());
#else
return "";
#endif
}
//=============================================================================
// Calcul d'une iteration : gestion du répertoire de calcul
//=============================================================================
char* HOMARD_Gen_i::ComputeDirManagement()
{
#ifndef DISABLE_HOMARD_ADAPT
MESSAGE ("ComputeDirManagement : répertoires pour le calcul");
//Si le sous-répertoire existe :
// CleanOption = 0 : on sort en erreur si le répertoire n'est pas vide
// CleanOption = 1 : on fait le menage du répertoire
// CleanOption = -1 : on ne fait rien
int CleanOption = 0;
// B.2. Le répertoire du cas
const char* nomDirCase = myCase->GetDirName();
MESSAGE (". nomDirCase = " << nomDirCase);
// B.3. Le sous-répertoire de l'iteration a calculer, puis le répertoire complet a creer
// B.3.1. Le nom du sous-répertoire
const char* nomDirIt = myIteration1->GetDirNameLoc();
// B.3.2. Le nom complet du sous-répertoire
std::stringstream DirCompute;
DirCompute << nomDirCase << "/" << nomDirIt;
MESSAGE (". DirCompute = " << DirCompute.str());
// B.3.3. Si le sous-répertoire n'existe pas, on le cree
if (CHDIR(DirCompute.str().c_str()) != 0)
{
#ifndef WIN32
if (mkdir(DirCompute.str().c_str(), S_IRWXU|S_IRGRP|S_IXGRP) != 0)
#else
if (_mkdir(DirCompute.str().c_str()) != 0)
#endif
{
// GERALD -- QMESSAGE BOX
std::cerr << "Pb Creation du répertoire DirCompute = " << DirCompute.str() << std::endl;
VERIFICATION("Pb a la creation du répertoire" == 0);
}
}
else
{
// Le répertoire existe
// On demande de faire le menage de son contenu :
if (CleanOption == 1) {
MESSAGE (". Menage du répertoire DirCompute = " << DirCompute.str());
std::string commande = "rm -rf " + DirCompute.str()+"/*";
int codret = system(commande.c_str());
if (codret != 0)
{
// GERALD -- QMESSAGE BOX
std::cerr << ". Menage du répertoire de calcul" << DirCompute.str() << std::endl;
VERIFICATION("Pb au menage du répertoire de calcul" == 0);
}
}
// On n'a pas demande de faire le menage de son contenu : on sort en erreur :
else {
if (CleanOption == 0) {
#ifndef WIN32
DIR *dp;
struct dirent *dirp;
dp = opendir(DirCompute.str().c_str());
bool result = true;
while ((dirp = readdir(dp)) != NULL && result)
{
std::string file_name(dirp->d_name);
result = file_name.empty() || file_name == "." || file_name == ".."; //if any file - break and return false
}
closedir(dp);
#else
HANDLE hFind = INVALID_HANDLE_VALUE;
WIN32_FIND_DATA ffd;
hFind = FindFirstFile(DirCompute.str().c_str(), &ffd);
bool result = true;
if (INVALID_HANDLE_VALUE != hFind) {
while (FindNextFile(hFind, &ffd) != 0) {
if (ffd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) continue; //skip directories
std::string file_name(ffd.cFileName);
result = file_name.empty() || file_name == "." || file_name == ".."; //if any file - break and return false
}
}
FindClose(hFind);
#endif
if (result == false)
{
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
std::string text = "Directory : " + DirCompute.str() + " is not empty";
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
VERIFICATION("Directory is not empty" == 0);
}
}
}
}
return CORBA::string_dup(DirCompute.str().c_str());
#else
return "";
#endif
}
//=============================================================================
// Calcul d'une iteration : gestion du répertoire de calcul de l'iteration parent
//=============================================================================
char* HOMARD_Gen_i::ComputeDirPaManagement()
{
MESSAGE ("ComputeDirPaManagement : répertoires pour le calcul");
// Le répertoire du cas
const char* nomDirCase = myCase->GetDirName();
MESSAGE (". nomDirCase = " << nomDirCase);
// Le sous-répertoire de l'iteration precedente
const char* nomDirItPa = myIteration0->GetDirNameLoc();
std::stringstream DirComputePa;
DirComputePa << nomDirCase << "/" << nomDirItPa;
MESSAGE(". nomDirItPa = " << nomDirItPa);
MESSAGE(". DirComputePa = " << DirComputePa.str());
return CORBA::string_dup(DirComputePa.str().c_str());
}
//=============================================================================
// Calcul d'une iteration : ecriture des frontieres dans le fichier de configuration
// On ecrit dans l'ordre :
// 1. la definition des frontieres
// 2. les liens avec les groupes
// 3. un entier resumant le type de comportement pour les frontieres
//=============================================================================
int HOMARD_Gen_i::DriverTexteBoundary(SMESHHOMARDImpl::HomardDriver* myDriver)
{
MESSAGE ("... DriverTexteBoundary");
// 1. Recuperation des frontieres
std::list<std::string> ListeBoundaryTraitees;
SMESHHOMARD::ListBoundaryGroupType* ListBoundaryGroupType = myCase->GetBoundaryGroup();
int numberOfitems = ListBoundaryGroupType->length();
MESSAGE ("... number of string for Boundary+Group = " << numberOfitems);
int BoundaryOption = 1;
// 2. Parcours des frontieres pour ecrire leur description
int NumBoundaryAnalytical = 0;
for (int NumBoundary = 0; NumBoundary< numberOfitems; NumBoundary=NumBoundary+2)
{
std::string BoundaryName = std::string((*ListBoundaryGroupType)[NumBoundary]);
MESSAGE ("... BoundaryName = " << BoundaryName);
// 2.1. La frontiere a-t-elle deja ete ecrite ?
// Cela arrive quand elle est liee a plusieurs groupes. Il ne faut l'ecrire que la premiere fois
int A_faire = 1;
std::list<std::string>::const_iterator it = ListeBoundaryTraitees.begin();
while (it != ListeBoundaryTraitees.end())
{
MESSAGE ("..... BoundaryNameTraitee = " << *it);
if (BoundaryName == *it) { A_faire = 0; }
it++;
}
// 2.2. Ecriture de la frontiere
if (A_faire == 1)
{
// 2.2.1. Caracteristiques de la frontiere
SMESHHOMARD::HOMARD_Boundary_var myBoundary = _mesBoundarys[BoundaryName];
ASSERT(!CORBA::is_nil(myBoundary));
int BoundaryType = myBoundary->GetType();
MESSAGE ("... BoundaryType = " << BoundaryType);
// 2.2.2. Ecriture selon le type
// 2.2.2.1. Cas d une frontiere CAO
if (BoundaryType == -1)
{
// const char* CAOFile = myBoundary->GetDataFile();
// MESSAGE (". CAOFile = " << CAOFile);
if (BoundaryOption % 5 != 0) { BoundaryOption = BoundaryOption*5; }
}
// 2.2.2.2. Cas d une frontiere discrete
else if (BoundaryType == 0)
{
const char* MeshName = myBoundary->GetMeshName();
MESSAGE (". MeshName = " << MeshName);
const char* MeshFile = myBoundary->GetDataFile();
MESSAGE (". MeshFile = " << MeshFile);
myDriver->TexteBoundaryDi(MeshName, MeshFile);
if (BoundaryOption % 2 != 0) { BoundaryOption = BoundaryOption*2; }
}
// 2.2.2.3. Cas d une frontiere analytique
else
{
NumBoundaryAnalytical++;
SMESHHOMARD::double_array* coor = myBoundary->GetCoords();
if (BoundaryType == 1) // Cas d un cylindre
{
myDriver->TexteBoundaryAn(BoundaryName, NumBoundaryAnalytical, BoundaryType, (*coor)[0], (*coor)[1], (*coor)[2], (*coor)[3], (*coor)[4], (*coor)[5], (*coor)[6], 0.);
if (BoundaryOption % 3 != 0) { BoundaryOption = BoundaryOption*3; }
}
else if (BoundaryType == 2) // Cas d une sphere
{
myDriver->TexteBoundaryAn(BoundaryName, NumBoundaryAnalytical, BoundaryType, (*coor)[0], (*coor)[1], (*coor)[2], (*coor)[3], 0., 0., 0., 0.);
if (BoundaryOption % 3 != 0) { BoundaryOption = BoundaryOption*3; }
}
else if (BoundaryType == 3) // Cas d un cone defini par un axe et un angle
{
myDriver->TexteBoundaryAn(BoundaryName, NumBoundaryAnalytical, BoundaryType, (*coor)[0], (*coor)[1], (*coor)[2], (*coor)[3], (*coor)[4], (*coor)[5], (*coor)[6], 0.);
if (BoundaryOption % 3 != 0) { BoundaryOption = BoundaryOption*3; }
}
else if (BoundaryType == 4) // Cas d un cone defini par les 2 rayons
{
myDriver->TexteBoundaryAn(BoundaryName, NumBoundaryAnalytical, BoundaryType, (*coor)[0], (*coor)[1], (*coor)[2], (*coor)[3], (*coor)[4], (*coor)[5], (*coor)[6], (*coor)[7]);
if (BoundaryOption % 3 != 0) { BoundaryOption = BoundaryOption*3; }
}
else if (BoundaryType == 5) // Cas d un tore
{
myDriver->TexteBoundaryAn(BoundaryName, NumBoundaryAnalytical, BoundaryType, (*coor)[0], (*coor)[1], (*coor)[2], (*coor)[3], (*coor)[4], (*coor)[5], (*coor)[6], (*coor)[7]);
if (BoundaryOption % 3 != 0) { BoundaryOption = BoundaryOption*3; }
}
}
// 2.2.3. Memorisation du traitement
ListeBoundaryTraitees.push_back(BoundaryName);
}
}
// 3. Parcours des frontieres pour ecrire les liens avec les groupes
NumBoundaryAnalytical = 0;
for (int NumBoundary = 0; NumBoundary< numberOfitems; NumBoundary=NumBoundary+2)
{
std::string BoundaryName = std::string((*ListBoundaryGroupType)[NumBoundary]);
MESSAGE ("... BoundaryName = " << BoundaryName);
SMESHHOMARD::HOMARD_Boundary_var myBoundary = _mesBoundarys[BoundaryName];
ASSERT(!CORBA::is_nil(myBoundary));
int BoundaryType = myBoundary->GetType();
MESSAGE ("... BoundaryType = " << BoundaryType);
// 3.1. Recuperation du nom du groupe
std::string GroupName = std::string((*ListBoundaryGroupType)[NumBoundary+1]);
MESSAGE ("... GroupName = " << GroupName);
// 3.2. Cas d une frontiere CAO
if (BoundaryType == -1)
{
if (GroupName.size() > 0) { myDriver->TexteBoundaryCAOGr (GroupName); }
}
// 3.3. Cas d une frontiere discrete
else if (BoundaryType == 0)
{
if (GroupName.size() > 0) { myDriver->TexteBoundaryDiGr (GroupName); }
}
// 3.4. Cas d une frontiere analytique
else
{
NumBoundaryAnalytical++;
myDriver->TexteBoundaryAnGr (BoundaryName, NumBoundaryAnalytical, GroupName);
}
}
// 4. Ecriture de l'option finale
myDriver->TexteBoundaryOption(BoundaryOption);
//
return BoundaryOption;
}
//===========================================================================
//===========================================================================
//===========================================================================
// Publication
//===========================================================================
void HOMARD_Gen_i::PublishResultInSmesh(const char* NomFich)
{
// Prevent dump of CreateMeshesFromMED
SMESH::TPythonDump pDump; // do not delete this line of code
MESSAGE("PublishResultInSmesh " << NomFich);
if (CORBA::is_nil(SMESH_Gen_i::GetSMESHGen()->getStudyServant())) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "Invalid study context";
throw SALOME::SALOME_Exception(es);
}
// Le module SMESH est-il actif ?
SALOMEDS::SObject_var aSmeshSO =
SMESH_Gen_i::GetSMESHGen()->getStudyServant()->FindComponent("SMESH");
//
// TODO?
// Temporary suppressed depublication of mesh with the same name of file
/*
if (!CORBA::is_nil(aSmeshSO)) {
// On verifie que le fichier n est pas deja publie
SALOMEDS::ChildIterator_var aIter =
SMESH_Gen_i::GetSMESHGen()->getStudyServant()->NewChildIterator(aSmeshSO);
for (; aIter->More(); aIter->Next()) {
SALOMEDS::SObject_var aSO = aIter->Value();
SALOMEDS::GenericAttribute_var aGAttr;
if (aSO->FindAttribute(aGAttr, "AttributeExternalFileDef")) {
SALOMEDS::AttributeExternalFileDef_var anAttr =
SALOMEDS::AttributeExternalFileDef::_narrow(aGAttr);
CORBA::String_var value = anAttr->Value();
if (strcmp((const char*)value, NomFich) == 0) {
MESSAGE ("PublishResultInSmesh : le fichier " << NomFich << " est deja publie.");
// Pour un fichier importe, on ne republie pas
// Option = 0 : fichier issu d'une importation
// Option = 1 : fichier issu d'une execution HOMARD
if (Option == 0) { return; }
// Pour un fichier calcule, on commence par faire la depublication
else {
MESSAGE("PublishResultInSmesh : depublication");
if (aSO->FindAttribute(aGAttr, "AttributeName")) {
SALOMEDS::AttributeName_var anAttr2 = SALOMEDS::AttributeName::_narrow(aGAttr);
CORBA::String_var value2 = anAttr2->Value();
std::string MeshName = string(value2);
MESSAGE("PublishResultInSmesh : depublication de " << MeshName);
DeleteResultInSmesh(NomFich, MeshName);
}
}
}
}
}
}
*/
// On enregistre le fichier
MESSAGE("Enregistrement du fichier");
//
//SMESH::SMESH_Gen_var aSmeshEngine = this->retrieveSMESHInst();
SMESH_Gen_i* aSmeshEngine = SMESH_Gen_i::GetSMESHGen();
//
//ASSERT(!CORBA::is_nil(aSmeshEngine));
aSmeshEngine->UpdateStudy();
SMESH::DriverMED_ReadStatus theStatus;
// On met a jour les attributs AttributeExternalFileDef et AttributePixMap
SMESH::mesh_array* mesMaillages = aSmeshEngine->CreateMeshesFromMED(NomFich, theStatus);
if (CORBA::is_nil(aSmeshSO)) {
aSmeshSO = SMESH_Gen_i::GetSMESHGen()->getStudyServant()->FindComponent("SMESH");
if (CORBA::is_nil(aSmeshSO)) return;
}
for (int i = 0; i < (int)mesMaillages->length(); i++) {
MESSAGE(". Mise a jour des attributs du maillage");
SMESH::SMESH_Mesh_var monMaillage = (*mesMaillages)[i];
SALOMEDS::SObject_var aSO = SALOMEDS::SObject::_narrow
(SMESH_Gen_i::GetSMESHGen()->getStudyServant()->FindObjectIOR
(SMESH_Gen_i::GetORB()->object_to_string(monMaillage)));
SALOMEDS::StudyBuilder_var aStudyBuilder =
SMESH_Gen_i::GetSMESHGen()->getStudyServant()->NewBuilder();
SALOMEDS::GenericAttribute_var aGAttr =
aStudyBuilder->FindOrCreateAttribute(aSO, "AttributeExternalFileDef");
SALOMEDS::AttributeExternalFileDef_var anAttr =
SALOMEDS::AttributeExternalFileDef::_narrow(aGAttr);
anAttr->SetValue(NomFich);
SALOMEDS::GenericAttribute_var aPixMap =
aStudyBuilder->FindOrCreateAttribute(aSO, "AttributePixMap");
SALOMEDS::AttributePixMap_var anAttr2 = SALOMEDS::AttributePixMap::_narrow(aPixMap);
anAttr2->SetPixMap("mesh_tree_mesh.png");
}
}
//=============================================================================
void HOMARD_Gen_i::DeleteResultInSmesh(std::string NomFich, std::string MeshName)
{
MESSAGE ("DeleteResultInSmesh pour le maillage " << MeshName << " dans le fichier " << NomFich);
if (CORBA::is_nil(SMESH_Gen_i::GetSMESHGen()->getStudyServant())) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
es.text = "Invalid study context";
throw SALOME::SALOME_Exception(es);
}
// Le module SMESH est-il actif ?
SALOMEDS::SObject_var aSmeshSO =
SMESH_Gen_i::GetSMESHGen()->getStudyServant()->FindComponent("SMESH");
//
if (CORBA::is_nil(aSmeshSO)) return;
// On verifie que le fichier est deja publie
SALOMEDS::StudyBuilder_var myBuilder =
SMESH_Gen_i::GetSMESHGen()->getStudyServant()->NewBuilder();
SALOMEDS::ChildIterator_var aIter =
SMESH_Gen_i::GetSMESHGen()->getStudyServant()->NewChildIterator(aSmeshSO);
for (; aIter->More(); aIter->Next()) {
SALOMEDS::SObject_var aSO = aIter->Value();
SALOMEDS::GenericAttribute_var aGAttr;
if (aSO->FindAttribute(aGAttr, "AttributeExternalFileDef")) {
SALOMEDS::AttributeExternalFileDef_var anAttr =
SALOMEDS::AttributeExternalFileDef::_narrow(aGAttr);
CORBA::String_var value = anAttr->Value();
if (strcmp((const char*)value, NomFich.c_str()) == 0) {
if (aSO->FindAttribute(aGAttr, "AttributeName")) {
SALOMEDS::AttributeName_var anAttr2 = SALOMEDS::AttributeName::_narrow(aGAttr);
CORBA::String_var value2 = anAttr2->Value();
if (strcmp((const char*)value2, MeshName.c_str()) == 0) {
myBuilder->RemoveObjectWithChildren(aSO);
}
}
}
}
}
}
void HOMARD_Gen_i::PythonDump()
{
MESSAGE ("Begin PythonDump");
SMESH::TPythonDump pd;
// SMESH_Homard
pd << "import SMESHHOMARD\n";
//pd << "smeshhomard = " << SMESH_Gen_i::GetSMESHGen() << ".CreateHOMARD_ADAPT()\n";
pd << "smeshhomard = " << SMESH_Gen_i::GetSMESHGen() << ".Adaptation(\"Uniform\")\n";
// Boundaries
if (_mesBoundarys.size() > 0) MESSAGE(". Creation of the boundaries");
std::map<std::string, SMESHHOMARD::HOMARD_Boundary_var>::const_iterator it_boundary;
for (it_boundary = _mesBoundarys.begin();
it_boundary != _mesBoundarys.end(); ++it_boundary) {
SMESHHOMARD::HOMARD_Boundary_var maBoundary = (*it_boundary).second;
//MESSAGE ("PythonDump of boundary " << (*it_boundary).first <<
// " : " << maBoundary->GetDumpPython());
pd << maBoundary->GetDumpPython();
}
// Case
ASSERT(!myCase->_is_nil());
MESSAGE (". Creation of the case");
if (_CaseOnMedFile) {
pd << "smeshhomard.CreateCase(\"" << myIteration0->GetMeshName();
pd << "\", \"" << myIteration0->GetMeshFile();
pd << "\", \"" << myCase->GetDirName() << "\")\n";
}
else {
pd << "smeshhomard.CreateCaseOnMesh(\"" << myIteration0->GetMeshName();
pd << "\", " << _SmeshMesh;
pd << ".GetMesh(), \"" << myCase->GetDirName() << "\")\n";
}
pd << myCase->GetDumpPython();
// Preferences
pd << "smeshhomard.SetConfType(" << _ConfType << ")\n";
pd << "smeshhomard.SetKeepMedOUT(" << (_KeepMedOUT ? "True" : "False") << ")\n";
pd << "smeshhomard.SetPublishMeshOUT(" << (_PublishMeshOUT ? "True" : "False") << ")\n";
pd << "smeshhomard.SetMeshNameOUT(\"" << _MeshNameOUT << "\")\n";
pd << "smeshhomard.SetMeshFileOUT(\"" << _MeshFileOUT << "\")\n";
pd << "smeshhomard.SetKeepWorkingFiles(" << (_KeepWorkingFiles ? "True" : "False") << ")\n";
pd << "smeshhomard.SetLogInFile(" << (_LogInFile ? "True" : "False") << ")\n";
if (_LogInFile) pd << "smeshhomard.SetLogFile(\"" << _LogFile << "\")\n";
pd << "smeshhomard.SetRemoveLogOnSuccess(" << (_RemoveLogOnSuccess ? "True" : "False") << ")\n";
pd << "smeshhomard.SetVerboseLevel(" << _VerboseLevel << ")\n";
// Compute
pd << "smeshhomard.Compute()\n";
MESSAGE ("End PythonDump");
}
void HOMARD_Gen_i::AddBoundary(const char* BoundaryName)
{
MESSAGE("HOMARD_Gen_i::AddBoundary : BoundaryName = " << BoundaryName);
if (myCase->_is_nil()) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
std::string text = "The input mesh must be defined before boundary addition";
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
}
myCase->AddBoundary(BoundaryName);
}
void HOMARD_Gen_i::AddBoundaryGroup(const char* BoundaryName, const char* Group)
{
MESSAGE("HOMARD_Gen_i::AddBoundaryGroup : BoundaryName = " <<
BoundaryName << ", Group = " << Group);
if (myCase->_is_nil()) {
SALOME::ExceptionStruct es;
es.type = SALOME::BAD_PARAM;
std::string text = "The input mesh must be defined before boundary group addition";
es.text = CORBA::string_dup(text.c_str());
throw SALOME::SALOME_Exception(es);
}
myCase->AddBoundaryGroup(BoundaryName, Group);
}
//===============================================================================
// Preferences
//===============================================================================
void HOMARD_Gen_i::SetConfType(CORBA::Long theConfType)
{
_ConfType = theConfType;
}
void HOMARD_Gen_i::SetKeepMedOUT(bool theKeepMedOUT)
{
_KeepMedOUT = theKeepMedOUT;
}
void HOMARD_Gen_i::SetPublishMeshOUT(bool thePublishMeshOUT)
{
_PublishMeshOUT = thePublishMeshOUT;
}
void HOMARD_Gen_i::SetKeepWorkingFiles(bool theKeepWorkingFiles)
{
_KeepWorkingFiles = theKeepWorkingFiles;
}
void HOMARD_Gen_i::SetLogInFile(bool theLogInFile)
{
_LogInFile = theLogInFile;
}
void HOMARD_Gen_i::SetRemoveLogOnSuccess(bool theRemoveLogOnSuccess)
{
_RemoveLogOnSuccess = theRemoveLogOnSuccess;
}
void HOMARD_Gen_i::SetVerboseLevel(CORBA::Long theVerboseLevel)
{
_VerboseLevel = theVerboseLevel;
}
void HOMARD_Gen_i::SetMeshNameOUT(const char* theMeshNameOUT)
{
_MeshNameOUT = theMeshNameOUT;
}
void HOMARD_Gen_i::SetMeshFileOUT(const char* theMeshFileOUT)
{
_MeshFileOUT = theMeshFileOUT;
}
void HOMARD_Gen_i::SetLogFile(const char* theLogFile)
{
_LogFile = theLogFile;
}
// =======================================================================
std::set<std::string> GetListeGroupesInMedFile(const char * aFile)
{
std::set<std::string> ListeGroupes;
med_err erreur = 0;
med_idt medIdt;
while (erreur == 0) {
// Ouverture du fichier
medIdt = MEDfileOpen(aFile,MED_ACC_RDONLY);
if (medIdt < 0) {
erreur = 1;
break;
}
// Caracteristiques du maillage
char meshname[MED_NAME_SIZE+1];
med_int spacedim,meshdim;
med_mesh_type meshtype;
char descriptionription[MED_COMMENT_SIZE+1];
char dtunit[MED_SNAME_SIZE+1];
med_sorting_type sortingtype;
med_int nstep;
med_axis_type axistype;
int naxis = MEDmeshnAxis(medIdt,1);
char *axisname=new char[naxis*MED_SNAME_SIZE+1];
char *axisunit=new char[naxis*MED_SNAME_SIZE+1];
erreur = MEDmeshInfo(medIdt,
1,
meshname,
&spacedim,
&meshdim,
&meshtype,
descriptionription,
dtunit,
&sortingtype,
&nstep,
&axistype,
axisname,
axisunit);
delete[] axisname;
delete[] axisunit;
if (erreur < 0) { break; }
// Nombre de familles
med_int nfam;
nfam = MEDnFamily(medIdt,meshname);
if (nfam < 0) {
erreur = 2;
break;
}
// Lecture des caracteristiques des familles
for (int i=0;i<nfam;i++) {
// Lecture du nombre de groupes
med_int ngro = MEDnFamilyGroup(medIdt,meshname,i+1);
if (ngro < 0) {
erreur = 3;
break;
}
// Lecture de la famille
else if (ngro > 0) {
char familyname[MED_NAME_SIZE+1];
med_int numfam;
char* gro = (char*) malloc(MED_LNAME_SIZE*ngro+1);
erreur = MEDfamilyInfo(medIdt,
meshname,
i+1,
familyname,
&numfam,
gro);
if (erreur < 0) {
free(gro);
break;
}
// Lecture des groupes pour une famille de mailles
if (numfam < 0) {
for (int j=0;j<ngro;j++) {
char str2[MED_LNAME_SIZE+1];
strncpy(str2,gro+j*MED_LNAME_SIZE,MED_LNAME_SIZE);
str2[MED_LNAME_SIZE] = '\0';
ListeGroupes.insert(std::string(str2));
}
}
free(gro);
}
}
break;
}
// Fermeture du fichier
if (medIdt > 0) MEDfileClose(medIdt);
return ListeGroupes;
}
// =======================================================================
// Le vecteur en retour contiendra les informations suivantes :
// en position 0 et 1 Xmin, Xmax et en position 2 Dx si < 0 2D
// en position 3 et 4 Ymin, Ymax et en position 5 Dy si < 0 2D
// en position 6 et 7 Zmin, Zmax et en position 8 Dz si < 0 2D
// 9 distance max dans le maillage
// =======================================================================
std::vector<double> GetBoundingBoxInMedFile(const char * aFile)
{
std::vector<double> LesExtremes;
med_err erreur = 0;
med_idt medIdt;
while (erreur == 0) {
// Ouverture du fichier
medIdt = MEDfileOpen(aFile,MED_ACC_RDONLY);
if (medIdt < 0) {
erreur = 1;
break;
}
//Nombre de maillage : on ne peut en lire qu'un seul
med_int numberOfMeshes = MEDnMesh(medIdt);
if (numberOfMeshes != 1) {
erreur = 2;
break;
}
// Caracteristiques du maillage
char meshname[MED_NAME_SIZE+1];
med_int spacedim,meshdim;
med_mesh_type meshtype;
char descriptionription[MED_COMMENT_SIZE+1];
char dtunit[MED_SNAME_SIZE+1];
med_sorting_type sortingtype;
med_int nstep;
med_axis_type axistype;
int naxis = MEDmeshnAxis(medIdt,1);
char *axisname=new char[naxis*MED_SNAME_SIZE+1];
char *axisunit=new char[naxis*MED_SNAME_SIZE+1];
erreur = MEDmeshInfo(medIdt,
1,
meshname,
&spacedim,
&meshdim,
&meshtype,
descriptionription,
dtunit,
&sortingtype,
&nstep,
&axistype,
axisname,
axisunit);
delete[] axisname;
delete[] axisunit;
if (erreur < 0) { break; }
// Nombre de noeuds
med_bool chgt,trsf;
med_int nnoe = MEDmeshnEntity(medIdt,
meshname,
MED_NO_DT,
MED_NO_IT,
MED_NODE,
MED_NO_GEOTYPE,
MED_COORDINATE,
MED_NO_CMODE,
&chgt,
&trsf);
if (nnoe < 0) {
erreur = 4;
break;
}
// Les coordonnees
med_float* coo = (med_float*) malloc(sizeof(med_float)*nnoe*spacedim);
erreur = MEDmeshNodeCoordinateRd(medIdt,
meshname,
MED_NO_DT,
MED_NO_IT,
MED_NO_INTERLACE,
coo);
if (erreur < 0) {
free(coo);
break;
}
// Calcul des extremes
med_float xmin,xmax,ymin,ymax,zmin,zmax;
xmin = coo[0];
xmax = coo[0];
for (int i = 1; i < nnoe; i++) {
xmin = std::min(xmin, coo[i]);
xmax = std::max(xmax, coo[i]);
}
//
if (spacedim > 1) {
ymin = coo[nnoe];
ymax = coo[nnoe];
for (int i = nnoe + 1; i < 2*nnoe; i++) {
ymin = std::min(ymin,coo[i]);
ymax = std::max(ymax,coo[i]);
}
}
else {
ymin = 0;
ymax = 0;
zmin = 0;
zmax = 0;
}
//
if (spacedim > 2) {
zmin = coo[2*nnoe];
zmax = coo[2*nnoe];
for (int i = 2*nnoe + 1; i < 3*nnoe; i++) {
zmin = std::min(zmin,coo[i]);
zmax = std::max(zmax,coo[i]);
}
}
else {
zmin = 0;
zmax = 0;
}
MESSAGE("_______________________________________");
MESSAGE("xmin : " << xmin << " xmax : " << xmax);
MESSAGE("ymin : " << ymin << " ymax : " << ymax);
MESSAGE("zmin : " << zmin << " zmax : " << zmax);
MESSAGE("_______________________________________");
double epsilon = 1.e-6;
LesExtremes.push_back(xmin);
LesExtremes.push_back(xmax);
LesExtremes.push_back(0);
LesExtremes.push_back(ymin);
LesExtremes.push_back(ymax);
LesExtremes.push_back(0);
LesExtremes.push_back(zmin);
LesExtremes.push_back(zmax);
LesExtremes.push_back(0);
double max1 = std::max (LesExtremes[1] - LesExtremes[0], LesExtremes[4] - LesExtremes[3]);
double max2 = std::max (max1 , LesExtremes[7] - LesExtremes[6]);
LesExtremes.push_back(max2);
// LesExtremes[0] = Xmini du maillage
// LesExtremes[1] = Xmaxi du maillage
// LesExtremes[2] = increment de progression en X
// LesExtremes[3,4,5] : idem pour Y
// LesExtremes[6,7,8] : idem pour Z
// LesExtremes[9] = ecart maximal entre coordonnees
// On fait un traitement pour dans le cas d'une coordonnee constante
// inhiber ce cas en mettant un increment negatif
//
double diff = LesExtremes[1] - LesExtremes[0];
if (fabs(diff) > epsilon*max2) { LesExtremes[2] = diff/100.; }
else { LesExtremes[2] = -1.; }
diff = LesExtremes[4] - LesExtremes[3];
if (fabs(diff) > epsilon*max2) { LesExtremes[5]=diff/100.; }
else { LesExtremes[5] = -1.; }
diff = LesExtremes[7] - LesExtremes[6];
if (fabs(diff) > epsilon*max2) { LesExtremes[8]=diff/100.; }
else { LesExtremes[8] = -1.; }
MESSAGE ("_______________________________________");
MESSAGE ("xmin : " << LesExtremes[0] << " xmax : " << LesExtremes[1] << " xincr : " << LesExtremes[2]);
MESSAGE ("ymin : " << LesExtremes[3] << " ymax : " << LesExtremes[4] << " yincr : " << LesExtremes[5]);
MESSAGE ("zmin : " << LesExtremes[6] << " zmax : " << LesExtremes[7] << " zincr : " << LesExtremes[8]);
MESSAGE ("dmax : " << LesExtremes[9]);
MESSAGE ("_______________________________________");
free(coo);
break;
}
// Fermeture du fichier
if (medIdt > 0) MEDfileClose(medIdt);
return LesExtremes;
}
}; // namespace SMESHHOMARD_I