smesh/src/StdMeshers/StdMeshers_QuadToTriaAdaptor.cxx
eap a9219e5f12 bos #29266 EDF 24971 - SALOME crashes
fix crash, meshing failure still there
2022-03-11 14:46:25 +03:00

1580 lines
54 KiB
C++

// Copyright (C) 2007-2021 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_QuadToTriaAdaptor.cxx
// Module : SMESH
// Created : Wen May 07 16:37:07 2008
// Author : Sergey KUUL (skl)
#include "StdMeshers_QuadToTriaAdaptor.hxx"
#include "SMDS_IteratorOnIterators.hxx"
#include "SMDS_SetIterator.hxx"
#include "SMESHDS_GroupBase.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_Algo.hxx"
#include "SMESH_Group.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MeshAlgos.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include <IntAna_IntConicQuad.hxx>
#include <IntAna_Quadric.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfVec.hxx>
#include <TColgp_SequenceOfPnt.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Iterator.hxx>
#include <gp_Lin.hxx>
#include <gp_Pln.hxx>
#include "utilities.h"
#include <string>
#include <numeric>
#include <limits>
using namespace std;
enum EQuadNature { NOT_QUAD, QUAD, DEGEN_QUAD, PYRAM_APEX = 4, TRIA_APEX = 0 };
// std-like iterator used to get coordinates of nodes of mesh element
typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator;
namespace
{
//================================================================================
/*!
* \brief Return true if two nodes of triangles are equal
*/
//================================================================================
bool EqualTriangles(const SMDS_MeshElement* F1,const SMDS_MeshElement* F2)
{
return
( F1->GetNode(1)==F2->GetNode(2) && F1->GetNode(2)==F2->GetNode(1) ) ||
( F1->GetNode(1)==F2->GetNode(1) && F1->GetNode(2)==F2->GetNode(2) );
}
//================================================================================
/*!
* \brief Return true if two adjacent pyramids are too close one to another
* so that a tetrahedron to built between them would have too poor quality
*/
//================================================================================
bool TooCloseAdjacent( const SMDS_MeshElement* PrmI,
const SMDS_MeshElement* PrmJ,
const bool hasShape)
{
const SMDS_MeshNode* nApexI = PrmI->GetNode(4);
const SMDS_MeshNode* nApexJ = PrmJ->GetNode(4);
if ( nApexI == nApexJ ||
nApexI->getshapeId() != nApexJ->getshapeId() )
return false;
// Find two common base nodes and their indices within PrmI and PrmJ
const SMDS_MeshNode* baseNodes[2] = { 0,0 };
int baseNodesIndI[2], baseNodesIndJ[2];
for ( int i = 0; i < 4 ; ++i )
{
int j = PrmJ->GetNodeIndex( PrmI->GetNode(i));
if ( j >= 0 )
{
int ind = baseNodes[0] ? 1:0;
if ( baseNodes[ ind ])
return false; // pyramids with a common base face
baseNodes [ ind ] = PrmI->GetNode(i);
baseNodesIndI[ ind ] = i;
baseNodesIndJ[ ind ] = j;
}
}
if ( !baseNodes[1] ) return false; // not adjacent
// Get normals of triangles sharing baseNodes
gp_XYZ apexI = SMESH_TNodeXYZ( nApexI );
gp_XYZ apexJ = SMESH_TNodeXYZ( nApexJ );
gp_XYZ base1 = SMESH_TNodeXYZ( baseNodes[0]);
gp_XYZ base2 = SMESH_TNodeXYZ( baseNodes[1]);
gp_Vec baseVec( base1, base2 );
gp_Vec baI( base1, apexI );
gp_Vec baJ( base1, apexJ );
gp_Vec nI = baseVec.Crossed( baI );
gp_Vec nJ = baseVec.Crossed( baJ );
// Check angle between normals
double angle = nI.Angle( nJ );
bool tooClose = ( angle < 15. * M_PI / 180. );
// Check if pyramids collide
if ( !tooClose && ( baI * baJ > 0 ) && ( nI * nJ > 0 ))
{
// find out if nI points outside of PrmI or inside
int dInd = baseNodesIndI[1] - baseNodesIndI[0];
bool isOutI = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0;
// find out sign of projection of baI to nJ
double proj = baI * nJ;
tooClose = ( isOutI ? proj > 0 : proj < 0 );
}
// Check if PrmI and PrmJ are in same domain
if ( tooClose && !hasShape )
{
// check order of baseNodes within pyramids, it must be opposite
int dInd;
dInd = baseNodesIndI[1] - baseNodesIndI[0];
bool isOutI = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0;
dInd = baseNodesIndJ[1] - baseNodesIndJ[0];
bool isOutJ = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0;
if ( isOutJ == isOutI )
return false; // other domain
// direct both normals outside pyramid
( isOutI ? nJ : nI ).Reverse();
// check absence of a face separating domains between pyramids
TIDSortedElemSet emptySet, avoidSet;
int i1, i2;
while ( const SMDS_MeshElement* f =
SMESH_MeshAlgos::FindFaceInSet( baseNodes[0], baseNodes[1],
emptySet, avoidSet, &i1, &i2 ))
{
avoidSet.insert( f );
// face node other than baseNodes
int otherNodeInd = 0;
while ( otherNodeInd == i1 || otherNodeInd == i2 ) otherNodeInd++;
const SMDS_MeshNode* otherFaceNode = f->GetNode( otherNodeInd );
if ( otherFaceNode == nApexI || otherFaceNode == nApexJ )
continue; // f is a temporary triangle
// check if f is a base face of either of pyramids
if ( f->NbCornerNodes() == 4 &&
( PrmI->GetNodeIndex( otherFaceNode ) >= 0 ||
PrmJ->GetNodeIndex( otherFaceNode ) >= 0 ))
continue; // f is a base quadrangle
// check projections of face direction (baOFN) to triangle normals (nI and nJ)
gp_Vec baOFN( base2, SMESH_TNodeXYZ( otherFaceNode ));
if ( nI * baOFN > 0 && nJ * baOFN > 0 &&
baI* baOFN > 0 && baJ* baOFN > 0 ) // issue 0023212
{
tooClose = false; // f is between pyramids
break;
}
}
}
return tooClose;
}
//================================================================================
/*!
* \brief Move medium nodes of merged quadratic pyramids
*/
//================================================================================
void UpdateQuadraticPyramids(const set<const SMDS_MeshNode*>& commonApex,
SMESHDS_Mesh* meshDS)
{
typedef SMDS_StdIterator< const SMDS_MeshElement*, SMDS_ElemIteratorPtr > TStdElemIterator;
TStdElemIterator itEnd;
// shift of node index to get medium nodes between the 4 base nodes and the apex
const int base2MediumShift = 9;
set<const SMDS_MeshNode*>::const_iterator nIt = commonApex.begin();
for ( ; nIt != commonApex.end(); ++nIt )
{
SMESH_TNodeXYZ apex( *nIt );
vector< const SMDS_MeshElement* > pyrams // pyramids sharing the apex node
( TStdElemIterator( apex._node->GetInverseElementIterator( SMDSAbs_Volume )), itEnd );
// Select medium nodes to keep and medium nodes to remove
typedef map < const SMDS_MeshNode*, const SMDS_MeshNode*, TIDCompare > TN2NMap;
TN2NMap base2medium; // to keep
vector< const SMDS_MeshNode* > nodesToRemove;
for ( unsigned i = 0; i < pyrams.size(); ++i )
for ( int baseIndex = 0; baseIndex < PYRAM_APEX; ++baseIndex )
{
SMESH_TNodeXYZ base = pyrams[i]->GetNode( baseIndex );
const SMDS_MeshNode* medium = pyrams[i]->GetNode( baseIndex + base2MediumShift );
TN2NMap::iterator b2m = base2medium.insert( make_pair( base._node, medium )).first;
if ( b2m->second != medium )
{
nodesToRemove.push_back( medium );
}
else
{
// move the kept medium node
gp_XYZ newXYZ = 0.5 * ( apex + base );
meshDS->MoveNode( medium, newXYZ.X(), newXYZ.Y(), newXYZ.Z() );
}
}
// Within pyramids, replace nodes to remove by nodes to keep
for ( unsigned i = 0; i < pyrams.size(); ++i )
{
vector< const SMDS_MeshNode* > nodes( pyrams[i]->begin_nodes(),
pyrams[i]->end_nodes() );
for ( int baseIndex = 0; baseIndex < PYRAM_APEX; ++baseIndex )
{
const SMDS_MeshNode* base = pyrams[i]->GetNode( baseIndex );
nodes[ baseIndex + base2MediumShift ] = base2medium[ base ];
}
meshDS->ChangeElementNodes( pyrams[i], &nodes[0], nodes.size());
}
// Remove the replaced nodes
if ( !nodesToRemove.empty() )
{
SMESHDS_SubMesh * sm = meshDS->MeshElements( nodesToRemove[0]->getshapeId() );
for ( unsigned i = 0; i < nodesToRemove.size(); ++i )
meshDS->RemoveFreeNode( nodesToRemove[i], sm, /*fromGroups=*/false);
}
}
return;
}
//================================================================================
/*!
* \brief Store an error about overlapping faces
*/
//================================================================================
bool overlapError( SMESH_Mesh& mesh,
const SMDS_MeshElement* face1,
const SMDS_MeshElement* face2,
const TopoDS_Shape& shape = TopoDS_Shape())
{
if ( !face1 || !face2 ) return false;
SMESH_Comment msg;
msg << "face " << face1->GetID() << " overlaps face " << face2->GetID();
SMESH_subMesh * sm = 0;
if ( shape.IsNull() )
{
sm = mesh.GetSubMesh( mesh.GetShapeToMesh() );
}
else if ( shape.ShapeType() >= TopAbs_SOLID )
{
sm = mesh.GetSubMesh( shape );
}
else
{
TopoDS_Iterator it ( shape );
if ( it.More() )
sm = mesh.GetSubMesh( it.Value() );
}
if ( sm )
{
SMESH_ComputeErrorPtr& err = sm->GetComputeError();
if ( !err || err->IsOK() )
{
SMESH_BadInputElements* badElems =
new SMESH_BadInputElements( mesh.GetMeshDS(),COMPERR_BAD_INPUT_MESH, msg, sm->GetAlgo() );
badElems->add( face1 );
badElems->add( face2 );
err.reset( badElems );
}
}
return false; // == "algo fails"
}
//================================================================================
/*!
* \brief Check if a face is in a SOLID
*/
//================================================================================
bool isInSolid( vector<const SMDS_MeshNode*> & faceNodes,
const int nbNodes,
const int solidID )
{
if ( !faceNodes[0] )
return true; // NOT_QUAD
for ( int i = 0; i < nbNodes; ++i )
{
int shapeID = faceNodes[i]->GetShapeID();
if ( shapeID == solidID )
return true;
}
faceNodes.resize( nbNodes );
std::vector<const SMDS_MeshElement*> vols;
SMDS_Mesh::GetElementsByNodes( faceNodes, vols, SMDSAbs_Volume );
bool inSolid = false;
for ( size_t i = 0; i < vols.size() && !inSolid; ++i )
{
int shapeID = vols[i]->GetShapeID();
inSolid = ( shapeID == solidID );
}
faceNodes.push_back( faceNodes[0] );
return inSolid;
}
}
//================================================================================
/*!
* \brief Merge the two pyramids (i.e. fuse their apex) and others already merged with them
*/
//================================================================================
void StdMeshers_QuadToTriaAdaptor::MergePiramids( const SMDS_MeshElement* PrmI,
const SMDS_MeshElement* PrmJ,
set<const SMDS_MeshNode*> & nodesToMove)
{
// cout << endl << "Merge " << PrmI->GetID() << " " << PrmJ->GetID() << " "
// << PrmI->GetNode(4)->GetID() << " " << PrmJ->GetNode(4)->GetID() << endl;
const SMDS_MeshNode* Nrem = PrmJ->GetNode(4); // node to remove
//int nbJ = Nrem->NbInverseElements( SMDSAbs_Volume );
SMESH_TNodeXYZ Pj( Nrem );
// an apex node to make common to all merged pyramids
SMDS_MeshNode* CommonNode = const_cast<SMDS_MeshNode*>(PrmI->GetNode(4));
if ( CommonNode == Nrem ) return; // already merged
//int nbI = CommonNode->NbInverseElements( SMDSAbs_Volume );
SMESH_TNodeXYZ Pi( CommonNode );
gp_XYZ Pnew = /*( nbI*Pi + nbJ*Pj ) / (nbI+nbJ);*/ 0.5 * ( Pi + Pj );
CommonNode->setXYZ( Pnew.X(), Pnew.Y(), Pnew.Z() );
nodesToMove.insert( CommonNode );
nodesToMove.erase ( Nrem );
typedef SMDS_StdIterator< const SMDS_MeshElement*, SMDS_ElemIteratorPtr > TStdElemIterator;
TStdElemIterator itEnd;
typedef std::map< const SMDS_MeshNode*, const SMDS_MeshNode* > TNNMap;
TNNMap mediumReplaceMap;
// find and remove coincided faces of merged pyramids
vector< const SMDS_MeshElement* > inverseElems
// copy inverse elements to avoid iteration on changing container
( TStdElemIterator( CommonNode->GetInverseElementIterator(SMDSAbs_Face)), itEnd);
for ( size_t i = 0; i < inverseElems.size(); ++i )
{
const SMDS_MeshElement* FI = inverseElems[i];
const SMDS_MeshElement* FJEqual = 0;
SMDS_ElemIteratorPtr triItJ = Nrem->GetInverseElementIterator(SMDSAbs_Face);
while ( !FJEqual && triItJ->more() )
{
const SMDS_MeshElement* FJ = triItJ->next();
if ( EqualTriangles( FJ, FI ))
FJEqual = FJ;
}
if ( FJEqual )
{
if ( FJEqual->NbNodes() == 6 ) // find medium nodes to replace
{
mediumReplaceMap.insert( std::make_pair( FJEqual->GetNode(3), FI->GetNode(5) ));
mediumReplaceMap.insert( std::make_pair( FJEqual->GetNode(5), FI->GetNode(3) ));
}
removeTmpElement( FI );
removeTmpElement( FJEqual );
myRemovedTrias.insert( FI );
myRemovedTrias.insert( FJEqual );
}
}
// set the common apex node to pyramids and triangles merged with J
vector< const SMDS_MeshNode* > nodes;
inverseElems.assign( TStdElemIterator( Nrem->GetInverseElementIterator()), itEnd );
for ( size_t i = 0; i < inverseElems.size(); ++i )
{
const SMDS_MeshElement* elem = inverseElems[i];
nodes.assign( elem->begin_nodes(), elem->end_nodes() );
nodes[ elem->GetType() == SMDSAbs_Volume ? PYRAM_APEX : TRIA_APEX ] = CommonNode;
if ( !mediumReplaceMap.empty() )
for ( size_t iN = elem->NbCornerNodes(); iN < nodes.size(); ++iN )
{
TNNMap::iterator n2n = mediumReplaceMap.find( nodes[iN] );
if ( n2n != mediumReplaceMap.end() )
nodes[iN] = n2n->second;
}
GetMeshDS()->ChangeElementNodes( elem, &nodes[0], nodes.size());
}
ASSERT( Nrem->NbInverseElements() == 0 );
GetMeshDS()->RemoveFreeNode( Nrem,
GetMeshDS()->MeshElements( Nrem->getshapeId()),
/*fromGroups=*/false);
if ( !mediumReplaceMap.empty() )
for ( TNNMap::iterator n2n = mediumReplaceMap.begin(); n2n != mediumReplaceMap.end(); ++n2n )
{
const SMDS_MeshNode* remNode = n2n->first;
if ( !remNode->IsNull() && remNode->NbInverseElements() == 0 )
GetMeshDS()->RemoveFreeNode( remNode, 0, /*fromGroups=*/false);
}
return;
}
//================================================================================
/*!
* \brief Merges adjacent pyramids
*/
//================================================================================
void StdMeshers_QuadToTriaAdaptor::MergeAdjacent(const SMDS_MeshElement* PrmI,
set<const SMDS_MeshNode*>& nodesToMove,
const bool isRecursion)
{
TIDSortedElemSet adjacentPyrams;
bool mergedPyrams = false;
for ( int k = 0; k < 4; k++ ) // loop on 4 base nodes of PrmI
{
const SMDS_MeshNode* n = PrmI->GetNode(k);
SMDS_ElemIteratorPtr vIt = n->GetInverseElementIterator( SMDSAbs_Volume );
while ( vIt->more() )
{
const SMDS_MeshElement* PrmJ = vIt->next();
if ( PrmJ == PrmI || PrmJ->NbCornerNodes() != 5 || !adjacentPyrams.insert( PrmJ ).second )
continue;
if ( TooCloseAdjacent( PrmI, PrmJ, GetMesh()->HasShapeToMesh() ))
{
MergePiramids( PrmI, PrmJ, nodesToMove );
mergedPyrams = true;
// container of inverse elements can change
// vIt = n->GetInverseElementIterator( SMDSAbs_Volume ); -- iterator re-implemented
}
}
}
if ( mergedPyrams && !isRecursion )
{
TIDSortedElemSet::iterator prm;
for (prm = adjacentPyrams.begin(); prm != adjacentPyrams.end(); ++prm)
MergeAdjacent( *prm, nodesToMove, true );
}
return;
}
//================================================================================
/*!
* \brief Constructor
*/
//================================================================================
StdMeshers_QuadToTriaAdaptor::StdMeshers_QuadToTriaAdaptor():
myElemSearcher(0)
{
}
//================================================================================
/*!
* \brief Destructor
*/
//================================================================================
StdMeshers_QuadToTriaAdaptor::~StdMeshers_QuadToTriaAdaptor()
{
// temporary faces are deleted by ~SMESH_ProxyMesh()
if ( myElemSearcher ) delete myElemSearcher;
myElemSearcher=0;
}
//=======================================================================
//function : FindBestPoint
//purpose : Return a point P laying on the line (PC,V) so that triangle
// (P, P1, P2) to be equilateral as much as possible
// V - normal to (P1,P2,PC)
//=======================================================================
static gp_Pnt FindBestPoint(const gp_Pnt& P1, const gp_Pnt& P2,
const gp_Pnt& PC, const gp_Vec& V)
{
gp_Pnt Pbest = PC;
const double a2 = P1.SquareDistance(P2);
const double b2 = P1.SquareDistance(PC);
const double c2 = P2.SquareDistance(PC);
if ( a2 < ( b2 + Sqrt( 4 * b2 * c2 ) + c2 ) / 4 ) // ( a < (b+c)/2 )
return Pbest;
else {
// find shift along V in order a to became equal to (b+c)/2
const double Vsize = V.Magnitude();
if ( fabs( Vsize ) > std::numeric_limits<double>::min() )
{
const double shift = sqrt( a2 + (b2-c2)*(b2-c2)/16/a2 - (b2+c2)/2 );
Pbest.ChangeCoord() += shift * V.XYZ() / Vsize;
}
}
return Pbest;
}
//=======================================================================
//function : HasIntersection3
//purpose : Find intersection point between a triangle (P1,P2,P3)
// and a segment [PC,P]
//=======================================================================
static bool HasIntersection3(const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint,
const gp_Pnt& P1, const gp_Pnt& P2, const gp_Pnt& P3)
{
const double EPSILON = 1e-6;
double segLen = P.Distance( PC );
gp_XYZ orig = PC.XYZ();
gp_XYZ dir = ( P.XYZ() - PC.XYZ() ) / segLen;
gp_XYZ vert0 = P1.XYZ();
gp_XYZ vert1 = P2.XYZ();
gp_XYZ vert2 = P3.XYZ();
gp_XYZ edge1 = vert1 - vert0;
gp_XYZ edge2 = vert2 - vert0;
/* begin calculating determinant - also used to calculate U parameter */
gp_XYZ pvec = dir ^ edge2;
/* if determinant is near zero, ray lies in plane of triangle */
double det = edge1 * pvec;
const double ANGL_EPSILON = 1e-12;
if ( det > -ANGL_EPSILON && det < ANGL_EPSILON )
return false;
/* calculate distance from vert0 to ray origin */
gp_XYZ tvec = orig - vert0;
/* calculate U parameter and test bounds */
double u = ( tvec * pvec ) / det;
//if (u < 0.0 || u > 1.0)
if (u < -EPSILON || u > 1.0 + EPSILON)
return false;
/* prepare to test V parameter */
gp_XYZ qvec = tvec ^ edge1;
/* calculate V parameter and test bounds */
double v = (dir * qvec) / det;
//if ( v < 0.0 || u + v > 1.0 )
if ( v < -EPSILON || u + v > 1.0 + EPSILON)
return false;
/* calculate t, ray intersects triangle */
double t = (edge2 * qvec) / det;
Pint = orig + dir * t;
bool hasInt = ( t > 0. && t < segLen );
if ( hasInt && det < EPSILON ) // t is inaccurate, additionally check
{
gp_XYZ triNorm = edge1 ^ edge2;
gp_XYZ int0vec = Pint.XYZ() - vert0;
gp_XYZ in = triNorm ^ edge1; // dir inside triangle from edge1
double dot = int0vec * in;
if ( dot < 0 && dot / triNorm.Modulus() < -EPSILON )
return false;
in = edge2 ^ triNorm;
dot = int0vec * in;
if ( dot < 0 && dot / triNorm.Modulus() < -EPSILON )
return false;
gp_XYZ int1vec = Pint.XYZ() - vert1;
in = triNorm ^ ( vert2 - vert1 );
dot = int1vec * in;
if ( dot < 0 && dot / triNorm.Modulus() < -EPSILON )
return false;
}
return hasInt;
}
//=======================================================================
//function : HasIntersection
//purpose : Auxilare for CheckIntersection()
//=======================================================================
static bool HasIntersection(const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint,
TColgp_SequenceOfPnt& aContour)
{
if ( aContour.Length() == 3 ) {
return HasIntersection3( P, PC, Pint, aContour(1), aContour(2), aContour(3) );
}
else {
bool check = false;
if( (aContour(1).SquareDistance(aContour(2)) > 1.e-12) &&
(aContour(1).SquareDistance(aContour(3)) > 1.e-12) &&
(aContour(2).SquareDistance(aContour(3)) > 1.e-12) ) {
check = HasIntersection3( P, PC, Pint, aContour(1), aContour(2), aContour(3) );
}
if(check) return true;
if( (aContour(1).SquareDistance(aContour(4)) > 1.e-12) &&
(aContour(1).SquareDistance(aContour(3)) > 1.e-12) &&
(aContour(4).SquareDistance(aContour(3)) > 1.e-12) ) {
check = HasIntersection3( P, PC, Pint, aContour(1), aContour(3), aContour(4) );
}
if(check) return true;
}
return false;
}
//================================================================================
/*!
* \brief Return allowed height of a pyramid
* \param Papex - optimal pyramid apex
* \param PC - gravity center of a quadrangle
* \param PN - four nodes of the quadrangle
* \param aMesh - mesh
* \param NotCheckedFace - the quadrangle face
* \param Shape - the shape being meshed
* \retval false if mesh invalidity detected
*/
//================================================================================
bool StdMeshers_QuadToTriaAdaptor::LimitHeight (gp_Pnt& Papex,
const gp_Pnt& PC,
const TColgp_Array1OfPnt& PN,
const vector<const SMDS_MeshNode*>& FNodes,
SMESH_Mesh& aMesh,
const SMDS_MeshElement* NotCheckedFace,
const bool UseApexRay,
const TopoDS_Shape& Shape)
{
if ( !myElemSearcher )
myElemSearcher = SMESH_MeshAlgos::GetElementSearcher( *aMesh.GetMeshDS() );
SMESH_ElementSearcher* searcher = const_cast<SMESH_ElementSearcher*>(myElemSearcher);
// Find intersection of faces with (P,PC) segment elongated 3 times
double height = Papex.Distance( PC );
gp_Ax1 line( PC, gp_Vec( PC, Papex ));
gp_Pnt Pint, Ptest;
vector< const SMDS_MeshElement* > suspectFaces;
TColgp_SequenceOfPnt aContour;
if ( UseApexRay )
{
double idealHeight = height;
const SMDS_MeshElement* intFace = 0;
// find intersection closest to PC
Ptest = PC.XYZ() + line.Direction().XYZ() * height * 3;
searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectFaces );
for ( size_t iF = 0; iF < suspectFaces.size(); ++iF )
{
const SMDS_MeshElement* face = suspectFaces[iF];
if ( face == NotCheckedFace ) continue;
aContour.Clear();
for ( int i = 0, nb = face->NbCornerNodes(); i < nb; ++i )
aContour.Append( SMESH_TNodeXYZ( face->GetNode(i) ));
if ( HasIntersection( Ptest, PC, Pint, aContour ))
{
double dInt = PC.Distance( Pint ) / 3.;
if ( dInt < height )
{
height = dInt;
intFace = face;
}
}
}
if ( height < 1e-2 * idealHeight && intFace )
return overlapError( aMesh, NotCheckedFace, intFace, Shape );
}
// Find faces intersecting triangular facets of the pyramid (issue 23212)
gp_XYZ center = PC.XYZ() + line.Direction().XYZ() * height * 0.5;
double diameter = Max( PN(1).Distance(PN(3)), PN(2).Distance(PN(4)));
suspectFaces.clear();
searcher->GetElementsInSphere( center, diameter * 0.6, SMDSAbs_Face, suspectFaces);
const double upShift = 1.5;
Ptest = PC.XYZ() + line.Direction().XYZ() * height * upShift; // tmp apex
for ( size_t iF = 0; iF < suspectFaces.size(); ++iF )
{
const SMDS_MeshElement* face = suspectFaces[iF];
if ( face == NotCheckedFace ) continue;
if ( face->GetNodeIndex( FNodes[0] ) >= 0 ||
face->GetNodeIndex( FNodes[1] ) >= 0 ||
face->GetNodeIndex( FNodes[2] ) >= 0 ||
face->GetNodeIndex( FNodes[3] ) >= 0 )
continue; // neighbor face of the quadrangle
// limit height using points of intersection of face links with pyramid facets
int nbN = face->NbCornerNodes();
gp_Pnt P1 = SMESH_TNodeXYZ( face->GetNode( nbN-1 )); // 1st link end
for ( int i = 0; i < nbN; ++i )
{
gp_Pnt P2 = SMESH_TNodeXYZ( face->GetNode(i) ); // 2nd link end
for ( int iN = 1; iN <= 4; ++iN ) // loop on pyramid facets
{
if ( HasIntersection3( P1, P2, Pint, PN(iN), PN(iN+1), Ptest ))
{
height = Min( height, gp_Vec( PC, Pint ) * line.Direction() );
//Ptest = PC.XYZ() + line.Direction().XYZ() * height * upShift; // new tmp apex
}
}
P1 = P2;
}
}
Papex = PC.XYZ() + line.Direction().XYZ() * height;
return true;
}
//================================================================================
/*!
* \brief Retrieve data of the given face
* \param PN - coordinates of face nodes
* \param VN - cross products of vectors (PC-PN(i)) ^ (PC-PN(i+1))
* \param FNodes - face nodes
* \param PC - gravity center of nodes
* \param VNorm - face normal (sum of VN)
* \param volumes - two volumes sharing the given face, the first is in VNorm direction
* \retval int - 0 if given face is not quad,
* 1 if given face is quad,
* 2 if given face is degenerate quad (two nodes are coincided)
*/
//================================================================================
int StdMeshers_QuadToTriaAdaptor::Preparation(const SMDS_MeshElement* face,
TColgp_Array1OfPnt& PN,
TColgp_Array1OfVec& VN,
vector<const SMDS_MeshNode*>& FNodes,
gp_Pnt& PC,
gp_Vec& VNorm,
const SMDS_MeshElement** volumes)
{
if( face->NbCornerNodes() != 4 )
{
return NOT_QUAD;
}
int i = 0;
gp_XYZ xyzC(0., 0., 0.);
for ( i = 0; i < 4; ++i )
{
gp_XYZ p = SMESH_TNodeXYZ( FNodes[i] = face->GetNode(i) );
PN.SetValue( i+1, p );
xyzC += p;
}
PC = xyzC/4;
int nbp = 4;
int j = 0;
for ( i = 1; i < 4; i++ )
{
j = i+1;
for(; j<=4; j++) {
if( PN(i).Distance(PN(j)) < 1.e-6 )
break;
}
if(j<=4) break;
}
bool hasdeg = false;
if ( i < 4 )
{
hasdeg = true;
gp_Pnt Pdeg = PN(i);
list< const SMDS_MeshNode* >::iterator itdg = myDegNodes.begin();
const SMDS_MeshNode* DegNode = 0;
for(; itdg!=myDegNodes.end(); itdg++) {
const SMDS_MeshNode* N = (*itdg);
gp_Pnt Ptmp(N->X(),N->Y(),N->Z());
if(Pdeg.Distance(Ptmp)<1.e-6) {
DegNode = N;
break;
}
}
if(!DegNode) {
DegNode = FNodes[i-1];
myDegNodes.push_back(DegNode);
}
else {
FNodes[i-1] = DegNode;
}
for(i=j; i<4; i++) {
PN.SetValue(i,PN.Value(i+1));
FNodes[i-1] = FNodes[i];
}
nbp = 3;
}
PN.SetValue(nbp+1,PN(1));
FNodes[nbp] = FNodes[0];
// find normal direction
gp_Vec V1(PC,PN(nbp));
gp_Vec V2(PC,PN(1));
VNorm = V1.Crossed(V2);
VN.SetValue(nbp,VNorm);
for(i=1; i<nbp; i++) {
V1 = gp_Vec(PC,PN(i));
V2 = gp_Vec(PC,PN(i+1));
gp_Vec Vtmp = V1.Crossed(V2);
VN.SetValue(i,Vtmp);
VNorm += Vtmp;
}
// find volumes sharing the face
if ( volumes )
{
volumes[0] = volumes[1] = 0;
SMDS_ElemIteratorPtr vIt = FNodes[0]->GetInverseElementIterator( SMDSAbs_Volume );
while ( vIt->more() )
{
const SMDS_MeshElement* vol = vIt->next();
bool volSharesAllNodes = true;
for ( int i = 1; i < face->NbNodes() && volSharesAllNodes; ++i )
volSharesAllNodes = ( vol->GetNodeIndex( FNodes[i] ) >= 0 );
if ( volSharesAllNodes )
volumes[ volumes[0] ? 1 : 0 ] = vol;
// we could additionally check that vol has all FNodes in its one face using SMDS_VolumeTool
}
// define volume position relating to the face normal
if ( volumes[0] )
{
// get volume gc
SMDS_ElemIteratorPtr nodeIt = volumes[0]->nodesIterator();
gp_XYZ volGC(0,0,0);
volGC = accumulate( TXyzIterator(nodeIt), TXyzIterator(), volGC ) / volumes[0]->NbNodes();
if ( VNorm * gp_Vec( PC, volGC ) < 0 )
swap( volumes[0], volumes[1] );
}
}
return hasdeg ? DEGEN_QUAD : QUAD;
}
//=======================================================================
//function : Compute
//purpose :
//=======================================================================
bool StdMeshers_QuadToTriaAdaptor::Compute(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_ProxyMesh* aProxyMesh)
{
SMESH_ProxyMesh::setMesh( aMesh );
if ( aShape.ShapeType() != TopAbs_SOLID )
return false;
myShape = aShape;
vector<const SMDS_MeshElement*> myPyramids;
const SMESHDS_SubMesh * aSubMeshDSFace;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
SMESH_MesherHelper helper1(aMesh);
helper1.IsQuadraticSubMesh(aShape);
if ( myElemSearcher ) delete myElemSearcher;
vector< SMDS_ElemIteratorPtr > itVec;
if ( aProxyMesh )
{
itVec.push_back( aProxyMesh->GetFaces( aShape ));
}
else
{
for ( TopExp_Explorer exp(aShape,TopAbs_FACE); exp.More(); exp.Next() )
if (( aSubMeshDSFace = meshDS->MeshElements( exp.Current() )))
itVec.push_back( aSubMeshDSFace->GetElements() );
}
typedef
SMDS_IteratorOnIterators< const SMDS_MeshElement*, vector< SMDS_ElemIteratorPtr > > TIter;
SMDS_ElemIteratorPtr faceIt( new TIter( itVec ));
myElemSearcher = SMESH_MeshAlgos::GetElementSearcher( *meshDS, faceIt );
TColgp_Array1OfPnt PN(1,5);
TColgp_Array1OfVec VN(1,4);
vector<const SMDS_MeshNode*> FNodes(5);
gp_Pnt PC;
gp_Vec VNorm;
const int solidID = meshDS->ShapeToIndex( aShape );
for ( TopExp_Explorer exp(aShape,TopAbs_FACE); exp.More(); exp.Next() )
{
const TopoDS_Shape& aShapeFace = exp.Current();
if ( aProxyMesh )
aSubMeshDSFace = aProxyMesh->GetSubMesh( aShapeFace );
else
aSubMeshDSFace = meshDS->MeshElements( aShapeFace );
if ( !aSubMeshDSFace )
continue;
vector<const SMDS_MeshElement*> trias, quads;
bool hasNewTrias = false;
const bool toCheckFaceInSolid =
aProxyMesh ? aProxyMesh->HasPrismsOnTwoSides( meshDS->MeshElements( aShapeFace )) : false;
if ( toCheckFaceInSolid && !dynamic_cast< const SMESH_ProxyMesh::SubMesh* >( aSubMeshDSFace ))
continue; // no room for pyramids as prisms are on both sides
{
bool isRevGlob = false;
SMESH_MesherHelper helper2( aMesh );
PShapeIteratorPtr sIt = helper2.GetAncestors( aShapeFace, aMesh, aShape.ShapeType() );
while ( const TopoDS_Shape * solid = sIt->next() )
if ( !solid->IsSame( aShape ))
{
isRevGlob = helper2.IsReversedSubMesh( TopoDS::Face( aShapeFace ));
if ( toCheckFaceInSolid )
helper2.IsQuadraticSubMesh( *solid );
break;
}
SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
while ( iteratorElem->more() ) // loop on elements on a geometrical face
{
const SMDS_MeshElement* face = iteratorElem->next();
// preparation step to get face info
int stat = Preparation( face, PN, VN, FNodes, PC, VNorm );
bool isRev = isRevGlob;
SMESH_MesherHelper* helper = &helper1;
if ( toCheckFaceInSolid && !isInSolid( FNodes, face->NbCornerNodes(), solidID ))
{
isRev = !isRevGlob;
helper = &helper2;
}
switch ( stat )
{
case NOT_QUAD:
trias.push_back( face );
break;
case DEGEN_QUAD:
{
// degenerate face
// add triangles to result map
SMDS_MeshFace* NewFace;
helper->SetElementsOnShape( false );
if(!isRev)
NewFace = helper->AddFace( FNodes[0], FNodes[1], FNodes[2] );
else
NewFace = helper->AddFace( FNodes[0], FNodes[2], FNodes[1] );
storeTmpElement( NewFace );
trias.push_back ( NewFace );
quads.push_back( face );
hasNewTrias = true;
break;
}
case QUAD:
{
if(!isRev) VNorm.Reverse();
double xc = 0., yc = 0., zc = 0.;
int i = 1;
for(; i<=4; i++) {
gp_Pnt Pbest;
if(!isRev)
Pbest = FindBestPoint(PN(i), PN(i+1), PC, VN(i).Reversed());
else
Pbest = FindBestPoint(PN(i), PN(i+1), PC, VN(i));
xc += Pbest.X();
yc += Pbest.Y();
zc += Pbest.Z();
}
gp_Pnt PCbest(xc/4., yc/4., zc/4.);
// check PCbest
double height = PCbest.Distance(PC);
if ( height < 1.e-6 ) {
// create new PCbest using a bit shift along VNorm
PCbest = PC.XYZ() + VNorm.XYZ() * 0.001;
}
else {
// check possible intersection with other faces
if ( !LimitHeight( PCbest, PC, PN, FNodes, aMesh, face, /*UseApexRay=*/true, aShape ))
return false;
}
// create node at PCbest
helper->SetElementsOnShape( true );
SMDS_MeshNode* NewNode = helper->AddNode( PCbest.X(), PCbest.Y(), PCbest.Z() );
// create a pyramid
SMDS_MeshVolume* aPyram;
if ( isRev )
aPyram = helper->AddVolume( FNodes[0], FNodes[3], FNodes[2], FNodes[1], NewNode );
else
aPyram = helper->AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode );
myPyramids.push_back(aPyram);
// add triangles to result map
helper->SetElementsOnShape( false );
for ( i = 0; i < 4; i++ )
{
trias.push_back ( helper->AddFace( NewNode, FNodes[i], FNodes[i+1] ));
storeTmpElement( trias.back() );
}
quads.push_back( face );
hasNewTrias = true;
break;
} // case QUAD:
} // switch ( stat )
} // end loop on elements on a face submesh
bool sourceSubMeshIsProxy = false;
if ( aProxyMesh )
{
// move proxy sub-mesh from other proxy mesh to this
sourceSubMeshIsProxy = takeProxySubMesh( aShapeFace, aProxyMesh );
// move also tmp elements added in mesh
takeTmpElemsInMesh( aProxyMesh );
}
if ( hasNewTrias )
{
SMESH_ProxyMesh::SubMesh* prxSubMesh = getProxySubMesh( aShapeFace );
prxSubMesh->ChangeElements( trias.begin(), trias.end() );
// delete tmp quadrangles removed from aProxyMesh
if ( sourceSubMeshIsProxy )
{
for ( unsigned i = 0; i < quads.size(); ++i )
removeTmpElement( quads[i] );
delete myElemSearcher;
myElemSearcher =
SMESH_MeshAlgos::GetElementSearcher( *meshDS, aProxyMesh->GetFaces(aShape));
}
}
}
} // end for(TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next()) {
return Compute2ndPart(aMesh, myPyramids);
}
//================================================================================
/*!
* \brief Computes pyramids in mesh with no shape
*/
//================================================================================
bool StdMeshers_QuadToTriaAdaptor::Compute(SMESH_Mesh& aMesh)
{
SMESH_ProxyMesh::setMesh( aMesh );
SMESH_ProxyMesh::_allowedTypes.push_back( SMDSEntity_Triangle );
SMESH_ProxyMesh::_allowedTypes.push_back( SMDSEntity_Quad_Triangle );
if ( aMesh.NbQuadrangles() < 1 )
return false;
// find if there is a group of faces identified as skin faces, with normal going outside the volume
std::string groupName = "skinFaces";
SMESHDS_GroupBase* groupDS = 0;
SMESH_Mesh::GroupIteratorPtr groupIt = aMesh.GetGroups();
while ( groupIt->more() )
{
groupDS = 0;
SMESH_Group * group = groupIt->next();
if ( !group ) continue;
groupDS = group->GetGroupDS();
if ( !groupDS || groupDS->IsEmpty() )
{
groupDS = 0;
continue;
}
if (groupDS->GetType() != SMDSAbs_Face)
{
groupDS = 0;
continue;
}
std::string grpName = group->GetName();
if (grpName == groupName)
{
break;
}
else
groupDS = 0;
}
const bool toFindVolumes = aMesh.NbVolumes() > 0;
vector<const SMDS_MeshElement*> myPyramids;
SMESH_MesherHelper helper(aMesh);
helper.IsQuadraticSubMesh(aMesh.GetShapeToMesh());
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
SMESH_ProxyMesh::SubMesh* prxSubMesh = getProxySubMesh();
if ( !myElemSearcher )
myElemSearcher = SMESH_MeshAlgos::GetElementSearcher( *meshDS );
SMESH_ElementSearcher* searcher = const_cast<SMESH_ElementSearcher*>( myElemSearcher );
SMESHUtils::Deleter<SMESH_ElementSearcher>
volSearcher( SMESH_MeshAlgos::GetElementSearcher( *meshDS ));
vector< const SMDS_MeshElement* > suspectFaces, foundVolumes;
TColgp_Array1OfPnt PN(1,5);
TColgp_Array1OfVec VN(1,4);
vector<const SMDS_MeshNode*> FNodes(5);
TColgp_SequenceOfPnt aContour;
SMDS_FaceIteratorPtr fIt = meshDS->facesIterator();
while( fIt->more())
{
const SMDS_MeshElement* face = fIt->next();
if ( !face ) continue;
// retrieve needed information about a face
gp_Pnt PC;
gp_Vec VNorm;
const SMDS_MeshElement* volumes[2];
int what = Preparation( face, PN, VN, FNodes, PC, VNorm, volumes );
if ( what == NOT_QUAD )
continue;
if ( volumes[0] && volumes[1] )
continue; // face is shared by two volumes - no room for a pyramid
if ( what == DEGEN_QUAD )
{
// degenerate face
// add a triangle to the proxy mesh
SMDS_MeshFace* NewFace;
// check orientation
double tmp = PN(1).Distance(PN(2)) + PN(2).Distance(PN(3));
// far points in VNorm direction
gp_Pnt Ptmp1 = PC.XYZ() + VNorm.XYZ() * tmp * 1.e6;
gp_Pnt Ptmp2 = PC.XYZ() - VNorm.XYZ() * tmp * 1.e6;
// check intersection for Ptmp1 and Ptmp2
bool IsRev = false;
bool IsOK1 = false;
bool IsOK2 = false;
double dist1 = RealLast();
double dist2 = RealLast();
gp_Pnt Pres1,Pres2;
gp_Ax1 line( PC, VNorm );
vector< const SMDS_MeshElement* > suspectFaces;
searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectFaces);
for ( size_t iF = 0; iF < suspectFaces.size(); ++iF ) {
const SMDS_MeshElement* F = suspectFaces[iF];
if ( F == face ) continue;
aContour.Clear();
for ( int i = 0; i < 4; ++i )
aContour.Append( SMESH_TNodeXYZ( F->GetNode(i) ));
gp_Pnt PPP;
if ( !volumes[0] && HasIntersection( Ptmp1, PC, PPP, aContour )) {
IsOK1 = true;
double tmp = PC.Distance(PPP);
if ( tmp < dist1 ) {
Pres1 = PPP;
dist1 = tmp;
}
}
if ( !volumes[1] && HasIntersection( Ptmp2, PC, PPP, aContour )) {
IsOK2 = true;
double tmp = PC.Distance(PPP);
if ( tmp < dist2 ) {
Pres2 = PPP;
dist2 = tmp;
}
}
}
if( IsOK1 && !IsOK2 ) {
// using existed direction
}
else if( !IsOK1 && IsOK2 ) {
// using opposite direction
IsRev = true;
}
else { // IsOK1 && IsOK2
double tmp1 = PC.Distance(Pres1);
double tmp2 = PC.Distance(Pres2);
if(tmp1<tmp2) {
// using existed direction
}
else {
// using opposite direction
IsRev = true;
}
}
helper.SetElementsOnShape( false );
if(!IsRev)
NewFace = helper.AddFace( FNodes[0], FNodes[1], FNodes[2] );
else
NewFace = helper.AddFace( FNodes[0], FNodes[2], FNodes[1] );
storeTmpElement( NewFace );
prxSubMesh->AddElement( NewFace );
continue;
}
// -----------------------------------
// Case of non-degenerated quadrangle
// -----------------------------------
// Find pyramid peak
gp_XYZ PCbest(0., 0., 0.); // pyramid peak
int i = 1;
for ( ; i <= 4; i++ ) {
gp_Pnt Pbest = FindBestPoint(PN(i), PN(i+1), PC, VN(i));
PCbest += Pbest.XYZ();
}
PCbest /= 4;
double height = PC.Distance(PCbest); // pyramid height to precise
if ( height < 1.e-6 ) {
// create new PCbest using a bit shift along VNorm
PCbest = PC.XYZ() + VNorm.XYZ() * 0.001;
height = PC.Distance(PCbest);
if ( height < std::numeric_limits<double>::min() )
return false; // batterfly element
}
// Restrict pyramid height by intersection with other faces
gp_Vec tmpDir(PC,PCbest); tmpDir.Normalize();
double tmp = PN(1).Distance(PN(3)) + PN(2).Distance(PN(4));
// far points: in (PC, PCbest) direction and vice-versa
gp_Pnt farPnt[2] = { PC.XYZ() + tmpDir.XYZ() * tmp * 1.e6,
PC.XYZ() - tmpDir.XYZ() * tmp * 1.e6 };
// check intersection for farPnt1 and farPnt2
bool intersected[2] = { false, false };
double dist2int [2] = { RealLast(), RealLast() };
gp_Pnt intPnt [2];
int intFaceInd [2] = { 0, 0 };
if ( toFindVolumes && 0 ) // non-conformal mesh is not suitable for any mesher so far
{
// there are volumes in the mesh, in a non-conformal mesh a neighbor
// volume can be not found yet
for ( int isRev = 0; isRev < 2; ++isRev )
{
if ( volumes[isRev] ) continue;
gp_Pnt testPnt = PC.XYZ() + tmpDir.XYZ() * height * ( isRev ? -0.1: 0.1 );
foundVolumes.clear();
if ( volSearcher->FindElementsByPoint( testPnt, SMDSAbs_Volume, foundVolumes ))
volumes[isRev] = foundVolumes[0];
}
if ( volumes[0] && volumes[1] )
continue; // no room for a pyramid
}
gp_Ax1 line( PC, tmpDir );
suspectFaces.clear();
searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectFaces);
for ( size_t iF = 0; iF < suspectFaces.size(); ++iF )
{
const SMDS_MeshElement* F = suspectFaces[iF];
if ( F == face ) continue;
aContour.Clear();
int nbN = F->NbCornerNodes();
for ( i = 0; i < nbN; ++i )
aContour.Append( SMESH_TNodeXYZ( F->GetNode(i) ));
gp_Pnt intP;
for ( int isRev = 0; isRev < 2; ++isRev )
{
if( !volumes[isRev] && HasIntersection( farPnt[isRev], PC, intP, aContour ))
{
double d = PC.Distance( intP );
if ( d < dist2int[isRev] )
{
intersected[isRev] = true;
intPnt [isRev] = intP;
dist2int [isRev] = d;
intFaceInd [isRev] = iF;
}
}
}
}
// if the face belong to the group of skinFaces, do not build a pyramid outside
if ( groupDS && groupDS->Contains(face) )
{
intersected[0] = false;
}
else if ( intersected[0] && intersected[1] ) // check if one of pyramids is in a hole
{
gp_Pnt P ( PC.XYZ() + tmpDir.XYZ() * 0.5 * dist2int[0] );
if ( searcher->GetPointState( P ) == TopAbs_OUT )
intersected[0] = false;
else
{
P = ( PC.XYZ() - tmpDir.XYZ() * 0.5 * dist2int[1] );
if ( searcher->GetPointState( P ) == TopAbs_OUT )
intersected[1] = false;
}
}
// Create one or two pyramids
for ( int isRev = 0; isRev < 2; ++isRev )
{
if ( !intersected[isRev] ) continue;
double pyramidH = Min( height, dist2int[isRev]/3. );
gp_Pnt Papex = PC.XYZ() + tmpDir.XYZ() * (isRev ? -pyramidH : pyramidH);
if ( pyramidH < 1e-2 * height )
return overlapError( aMesh, face, suspectFaces[ intFaceInd[isRev] ] );
if ( !LimitHeight( Papex, PC, PN, FNodes, aMesh, face, /*UseApexRay=*/false ))
return false;
// create node for Papex
helper.SetElementsOnShape( true );
SMDS_MeshNode* NewNode = helper.AddNode( Papex.X(), Papex.Y(), Papex.Z() );
// create a pyramid
SMDS_MeshVolume* aPyram;
if(isRev)
aPyram = helper.AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode );
else
aPyram = helper.AddVolume( FNodes[0], FNodes[3], FNodes[2], FNodes[1], NewNode );
myPyramids.push_back(aPyram);
// add triangles to result map
helper.SetElementsOnShape( false );
for ( i = 0; i < 4; i++) {
SMDS_MeshFace* NewFace;
if(isRev)
NewFace = helper.AddFace( NewNode, FNodes[i], FNodes[i+1] );
else
NewFace = helper.AddFace( NewNode, FNodes[i+1], FNodes[i] );
storeTmpElement( NewFace );
prxSubMesh->AddElement( NewFace );
}
}
} // end loop on all faces
return Compute2ndPart(aMesh, myPyramids);
}
//================================================================================
/*!
* \brief Update created pyramids and faces to avoid their intersection
*/
//================================================================================
bool StdMeshers_QuadToTriaAdaptor::Compute2ndPart(SMESH_Mesh& aMesh,
const vector<const SMDS_MeshElement*>& myPyramids)
{
if ( myPyramids.empty() )
return true;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
size_t i, j, k;
//int myShapeID = myPyramids[0]->GetNode(4)->getshapeId();
{
SMDS_ElemIteratorPtr
pyramIt( new SMDS_ElementVectorIterator( myPyramids.begin(), myPyramids.end() ));
if ( myElemSearcher ) delete myElemSearcher;
myElemSearcher = SMESH_MeshAlgos::GetElementSearcher( *meshDS, pyramIt );
}
SMESH_ElementSearcher* searcher = const_cast<SMESH_ElementSearcher*>( myElemSearcher );
set<const SMDS_MeshNode*> nodesToMove;
// check adjacent pyramids
for ( i = 0; i < myPyramids.size(); ++i )
{
const SMDS_MeshElement* PrmI = myPyramids[i];
MergeAdjacent( PrmI, nodesToMove );
}
// iterate on all new pyramids
vector< const SMDS_MeshElement* > suspectPyrams;
for ( i = 0; i < myPyramids.size(); ++i )
{
const SMDS_MeshElement* PrmI = myPyramids[i];
const SMDS_MeshNode* apexI = PrmI->GetNode( PYRAM_APEX );
// compare PrmI with all the rest pyramids
// collect adjacent pyramids and nodes coordinates of PrmI
set<const SMDS_MeshElement*> checkedPyrams;
gp_Pnt PsI[5];
for ( k = 0; k < 5; k++ )
{
const SMDS_MeshNode* n = PrmI->GetNode(k);
PsI[k] = SMESH_TNodeXYZ( n );
SMDS_ElemIteratorPtr vIt = n->GetInverseElementIterator( SMDSAbs_Volume );
while ( vIt->more() )
{
const SMDS_MeshElement* PrmJ = vIt->next();
if ( SMESH_MeshAlgos::NbCommonNodes( PrmI, PrmJ ) > 1 )
checkedPyrams.insert( PrmJ );
}
}
// get pyramids to check
gp_XYZ PC = ( PsI[0].XYZ() + PsI[1].XYZ() + PsI[2].XYZ() + PsI[3].XYZ() ) / 4.;
gp_XYZ ray = PsI[4].XYZ() - PC;
gp_XYZ center = PC + 0.5 * ray;
double diameter = Max( PsI[0].Distance(PsI[2]), PsI[1].Distance(PsI[3]));
suspectPyrams.clear();
searcher->GetElementsInSphere( center, diameter * 0.6, SMDSAbs_Volume, suspectPyrams);
// check intersection with distant pyramids
for ( j = 0; j < suspectPyrams.size(); ++j )
{
const SMDS_MeshElement* PrmJ = suspectPyrams[j];
if ( PrmJ == PrmI )
continue;
if ( apexI == PrmJ->GetNode( PYRAM_APEX ))
continue; // pyramids PrmI and PrmJ already merged
if ( !checkedPyrams.insert( PrmJ ).second )
continue; // already checked
gp_Pnt PsJ[5];
for ( k = 0; k < 5; k++ )
PsJ[k] = SMESH_TNodeXYZ( PrmJ->GetNode(k) );
if ( ray * ( PsJ[4].XYZ() - PC ) < 0. )
continue; // PrmJ is below PrmI
for ( k = 0; k < 4; k++ ) // loop on 4 base nodes of PrmI
{
gp_Pnt Pint;
bool hasInt=false;
for ( k = 0; k < 4 && !hasInt; k++ )
{
gp_Vec Vtmp( PsI[k], PsI[ PYRAM_APEX ]);
gp_Pnt Pshift = PsI[k].XYZ() + Vtmp.XYZ() * 0.01; // base node moved a bit to apex
hasInt =
( HasIntersection3( Pshift, PsI[4], Pint, PsJ[0], PsJ[1], PsJ[PYRAM_APEX]) ||
HasIntersection3( Pshift, PsI[4], Pint, PsJ[1], PsJ[2], PsJ[PYRAM_APEX]) ||
HasIntersection3( Pshift, PsI[4], Pint, PsJ[2], PsJ[3], PsJ[PYRAM_APEX]) ||
HasIntersection3( Pshift, PsI[4], Pint, PsJ[3], PsJ[0], PsJ[PYRAM_APEX]) );
}
for ( k = 0; k < 4 && !hasInt; k++ )
{
gp_Vec Vtmp( PsJ[k], PsJ[ PYRAM_APEX ]);
gp_Pnt Pshift = PsJ[k].XYZ() + Vtmp.XYZ() * 0.01;
hasInt =
( HasIntersection3( Pshift, PsJ[4], Pint, PsI[0], PsI[1], PsI[PYRAM_APEX]) ||
HasIntersection3( Pshift, PsJ[4], Pint, PsI[1], PsI[2], PsI[PYRAM_APEX]) ||
HasIntersection3( Pshift, PsJ[4], Pint, PsI[2], PsI[3], PsI[PYRAM_APEX]) ||
HasIntersection3( Pshift, PsJ[4], Pint, PsI[3], PsI[0], PsI[PYRAM_APEX]) );
}
if ( hasInt )
{
// count common nodes of base faces of two pyramids
int nbc = 0;
for ( k = 0; k < 4; k++ )
nbc += int ( PrmI->GetNodeIndex( PrmJ->GetNode(k) ) >= 0 );
if ( nbc == 4 )
continue; // pyrams have a common base face
if ( nbc > 0 )
{
// Merge the two pyramids and others already merged with them
MergePiramids( PrmI, PrmJ, nodesToMove );
}
else // nbc==0
{
// decrease height of pyramids
gp_XYZ PCi(0,0,0), PCj(0,0,0);
for ( k = 0; k < 4; k++ ) {
PCi += PsI[k].XYZ();
PCj += PsJ[k].XYZ();
}
PCi /= 4; PCj /= 4;
gp_Vec VN1(PCi,PsI[4]);
gp_Vec VN2(PCj,PsJ[4]);
gp_Vec VI1(PCi,Pint);
gp_Vec VI2(PCj,Pint);
double ang1 = fabs(VN1.Angle(VI1));
double ang2 = fabs(VN2.Angle(VI2));
double coef1 = 0.5 - (( ang1 < M_PI/3. ) ? cos(ang1)*0.25 : 0 );
double coef2 = 0.5 - (( ang2 < M_PI/3. ) ? cos(ang2)*0.25 : 0 ); // cos(ang2) ?
// double coef2 = 0.5;
// if(ang2<PI/3)
// coef2 -= cos(ang1)*0.25;
VN1.Scale(coef1);
VN2.Scale(coef2);
SMDS_MeshNode* aNode1 = const_cast<SMDS_MeshNode*>( apexI );
aNode1->setXYZ( PCi.X()+VN1.X(), PCi.Y()+VN1.Y(), PCi.Z()+VN1.Z() );
SMDS_MeshNode* aNode2 = const_cast<SMDS_MeshNode*>(PrmJ->GetNode( PYRAM_APEX ));
aNode2->setXYZ( PCj.X()+VN2.X(), PCj.Y()+VN2.Y(), PCj.Z()+VN2.Z() );
nodesToMove.insert( aNode1 );
nodesToMove.insert( aNode2 );
}
// fix intersections that can appear after apex movement
MergeAdjacent( PrmI, nodesToMove );
MergeAdjacent( PrmJ, nodesToMove );
apexI = PrmI->GetNode( PYRAM_APEX ); // apexI can be removed by merge
} // end if(hasInt)
} // loop on 4 base nodes of PrmI
} // loop on suspectPyrams
} // loop on all pyramids
if( !nodesToMove.empty() && !meshDS->IsEmbeddedMode() )
{
set<const SMDS_MeshNode*>::iterator n = nodesToMove.begin();
for ( ; n != nodesToMove.end(); ++n )
meshDS->MoveNode( *n, (*n)->X(), (*n)->Y(), (*n)->Z() );
}
// move medium nodes of merged quadratic pyramids
if ( myPyramids[0]->IsQuadratic() )
UpdateQuadraticPyramids( nodesToMove, GetMeshDS() );
// erase removed triangles from the proxy mesh
if ( !myRemovedTrias.empty() )
{
for ( int i = 0; i <= meshDS->MaxShapeIndex(); ++i )
if ( SMESH_ProxyMesh::SubMesh* sm = findProxySubMesh(i))
{
vector<const SMDS_MeshElement *> faces;
faces.reserve( sm->NbElements() );
SMDS_ElemIteratorPtr fIt = sm->GetElements();
while ( fIt->more() )
{
const SMDS_MeshElement* tria = fIt->next();
set<const SMDS_MeshElement*>::iterator rmTria = myRemovedTrias.find( tria );
if ( rmTria != myRemovedTrias.end() )
myRemovedTrias.erase( rmTria );
else
faces.push_back( tria );
}
sm->ChangeElements( faces.begin(), faces.end() );
}
}
myDegNodes.clear();
delete myElemSearcher;
myElemSearcher=0;
return true;
}