smesh/src/SMESH/SMESH_subMesh.cxx
eap d5a3c3b28a 0021208: Performance issue when loading SMESH with an hdf file containing a big mesh
rename private methods to start from lower-case letters

  enum compute_event {
+     SUBMESH_LOADED

+  void loadDependentMeshes();
2012-02-24 10:38:22 +00:00

2302 lines
72 KiB
C++

// Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
// SMESH SMESH : implementaion of SMESH idl descriptions
// File : SMESH_subMesh.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
#include "SMESH_subMesh.hxx"
#include "SMESH_Algo.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Hypothesis.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "SMESH_Comment.hxx"
#include "SMDS_SetIterator.hxx"
#include "SMDSAbs_ElementType.hxx"
#include <Basics_OCCTVersion.hxx>
#include "utilities.h"
#include "OpUtil.hxx"
#include "Basics_Utils.hxx"
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <TopExp.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Compound.hxx>
#include <gp_Pnt.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS_Iterator.hxx>
#include <Standard_OutOfMemory.hxx>
#include <Standard_ErrorHandler.hxx>
#include <numeric>
using namespace std;
//=============================================================================
/*!
* \brief Allocate some memory at construction and release it at destruction.
* Is used to be able to continue working after mesh generation breaks due to
* lack of memory
*/
//=============================================================================
struct MemoryReserve
{
char* myBuf;
MemoryReserve(): myBuf( new char[1024*1024*2] ){}
~MemoryReserve() { delete [] myBuf; }
};
//=============================================================================
/*!
* default constructor:
*/
//=============================================================================
SMESH_subMesh::SMESH_subMesh(int Id,
SMESH_Mesh * father,
SMESHDS_Mesh * meshDS,
const TopoDS_Shape & aSubShape)
{
_subShape = aSubShape;
_subMeshDS = meshDS->MeshElements(_subShape); // may be null ...
_father = father;
_Id = Id;
_dependenceAnalysed = _alwaysComputed = false;
if (_subShape.ShapeType() == TopAbs_VERTEX)
{
_algoState = HYP_OK;
_computeState = READY_TO_COMPUTE;
}
else
{
_algoState = NO_ALGO;
_computeState = NOT_READY;
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_subMesh::~SMESH_subMesh()
{
MESSAGE("SMESH_subMesh::~SMESH_subMesh");
// ****
deleteOwnListeners();
}
//=============================================================================
/*!
*
*/
//=============================================================================
int SMESH_subMesh::GetId() const
{
//MESSAGE("SMESH_subMesh::GetId");
return _Id;
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESHDS_SubMesh * SMESH_subMesh::GetSubMeshDS()
{
// submesh appears in DS only when a mesher set nodes and elements on a shape
return _subMeshDS ? _subMeshDS : _subMeshDS = _father->GetMeshDS()->MeshElements(_subShape); // may be null
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESHDS_SubMesh* SMESH_subMesh::CreateSubMeshDS()
{
if ( !GetSubMeshDS() ) {
SMESHDS_Mesh* meshDS = _father->GetMeshDS();
meshDS->NewSubMesh( meshDS->ShapeToIndex( _subShape ) );
}
return GetSubMeshDS();
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_subMesh *SMESH_subMesh::GetFirstToCompute()
{
SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(true,false);
while ( smIt->more() ) {
SMESH_subMesh *sm = smIt->next();
if ( sm->GetComputeState() == READY_TO_COMPUTE )
return sm;
}
return 0; // nothing to compute
}
//================================================================================
/*!
* \brief Returns a current algorithm
*/
//================================================================================
SMESH_Algo* SMESH_subMesh::GetAlgo() const
{
return _father->GetGen()->GetAlgo(*_father, _subShape);
}
//================================================================================
/*!
* \brief Allow algo->Compute() if a sub-shape of lower dim is meshed but
* none mesh entity is bound to it (PAL13615, 2nd part)
*/
//================================================================================
void SMESH_subMesh::SetIsAlwaysComputed(bool isAlCo)
{
_alwaysComputed = isAlCo;
if ( _alwaysComputed )
_computeState = COMPUTE_OK;
else
ComputeStateEngine( CHECK_COMPUTE_STATE );
}
//=======================================================================
/*!
* \brief Return true if no mesh entities is bound to the submesh
*/
//=======================================================================
bool SMESH_subMesh::IsEmpty() const
{
if (SMESHDS_SubMesh * subMeshDS = ((SMESH_subMesh*)this)->GetSubMeshDS())
return (!subMeshDS->NbElements() && !subMeshDS->NbNodes());
return true;
}
//=======================================================================
//function : IsMeshComputed
//purpose : check if _subMeshDS contains mesh elements
//=======================================================================
bool SMESH_subMesh::IsMeshComputed() const
{
if ( _alwaysComputed )
return true;
// algo may bind a submesh not to _subShape, eg 3D algo
// sets nodes on SHELL while _subShape may be SOLID
SMESHDS_Mesh* meshDS = _father->GetMeshDS();
int dim = SMESH_Gen::GetShapeDim( _subShape );
int type = _subShape.ShapeType();
for ( ; type <= TopAbs_VERTEX; type++) {
if ( dim == SMESH_Gen::GetShapeDim( (TopAbs_ShapeEnum) type ))
{
TopExp_Explorer exp( _subShape, (TopAbs_ShapeEnum) type );
for ( ; exp.More(); exp.Next() )
{
if ( SMESHDS_SubMesh * smDS = meshDS->MeshElements( exp.Current() ))
{
bool computed = (dim > 0) ? smDS->NbElements() : smDS->NbNodes();
if ( computed )
return true;
}
}
}
else
break;
}
return false;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool SMESH_subMesh::subMeshesComputed()
{
int myDim = SMESH_Gen::GetShapeDim( _subShape );
int dimToCheck = myDim - 1;
bool subMeshesComputed = true;
// check subMeshes with upper dimension => reverse iteration
SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(false,true);
while ( smIt->more() )
{
SMESH_subMesh *sm = smIt->next();
if ( sm->_alwaysComputed )
continue;
const TopoDS_Shape & ss = sm->GetSubShape();
// MSV 07.04.2006: restrict checking to myDim-1 only. Ex., there is no sense
// in checking of existence of edges if the algo needs only faces. Moreover,
// degenerated edges may have no submesh, as after computing NETGEN_2D.
int dim = SMESH_Gen::GetShapeDim( ss );
if (dim < dimToCheck)
break; // the rest subMeshes are all of less dimension
SMESHDS_SubMesh * ds = sm->GetSubMeshDS();
bool computeOk = (sm->GetComputeState() == COMPUTE_OK ||
(ds && ( dimToCheck ? ds->NbElements() : ds->NbNodes() )));
if (!computeOk)
{
int type = ss.ShapeType();
subMeshesComputed = false;
switch (type)
{
case TopAbs_COMPOUND:
{
MESSAGE("The not computed sub mesh is a COMPOUND");
break;
}
case TopAbs_COMPSOLID:
{
MESSAGE("The not computed sub mesh is a COMPSOLID");
break;
}
case TopAbs_SHELL:
{
MESSAGE("The not computed sub mesh is a SHEL");
break;
}
case TopAbs_WIRE:
{
MESSAGE("The not computed sub mesh is a WIRE");
break;
}
case TopAbs_SOLID:
{
MESSAGE("The not computed sub mesh is a SOLID");
break;
}
case TopAbs_FACE:
{
MESSAGE("The not computed sub mesh is a FACE");
break;
}
case TopAbs_EDGE:
{
MESSAGE("The not computed sub mesh is a EDGE");
break;
}
default:
{
MESSAGE("The not computed sub mesh is of unknown type");
break;
}
}
break;
}
}
return subMeshesComputed;
}
//=============================================================================
/*!
*
*/
//=============================================================================
// bool SMESH_subMesh::SubMeshesReady()
// {
// bool subMeshesReady = true;
// SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(false,true);
// while ( smIt->more() ) {
// SMESH_subMesh *sm = smIt->next();
// bool computeOk = (sm->GetComputeState() == COMPUTE_OK ||
// sm->GetComputeState() == READY_TO_COMPUTE);
// if (!computeOk)
// {
// subMeshesReady = false;
// SCRUTE(sm->GetId());
// break;
// }
// }
// return subMeshesReady;
// }
//=============================================================================
/*!
* Construct dependence on first level subMeshes. complex shapes (compsolid,
* shell, wire) are not analysed the same way as simple shapes (solid, face,
* edge).
* For collection shapes (compsolid, shell, wire) prepare a list of submeshes
* with possible multiples occurences. Multiples occurences corresponds to
* internal frontiers within shapes of the collection and must not be keeped.
* See FinalizeDependence.
*/
//=============================================================================
const map < int, SMESH_subMesh * >& SMESH_subMesh::DependsOn()
{
if (_dependenceAnalysed)
return _mapDepend;
//MESSAGE("SMESH_subMesh::DependsOn");
int type = _subShape.ShapeType();
//SCRUTE(type);
switch (type)
{
case TopAbs_COMPOUND:
{
//MESSAGE("compound");
for (TopExp_Explorer exp(_subShape, TopAbs_SOLID); exp.More();exp.Next())
{
insertDependence(exp.Current());
}
for (TopExp_Explorer exp(_subShape, TopAbs_SHELL, TopAbs_SOLID); exp.More(); exp.Next())
{
if ( BRep_Tool::IsClosed(exp.Current() ))
insertDependence(exp.Current()); //only shell not in solid
else
for (TopExp_Explorer expF(exp.Current(), TopAbs_FACE); expF.More();expF.Next())
insertDependence(expF.Current()); // issue 0020959: HEXA_3D fails on shell
}
for (TopExp_Explorer exp(_subShape, TopAbs_FACE, TopAbs_SHELL); exp.More();exp.Next())
{
insertDependence(exp.Current());
}
for (TopExp_Explorer exp(_subShape, TopAbs_EDGE, TopAbs_FACE); exp.More();exp.Next())
{
insertDependence(exp.Current());
}
break;
}
case TopAbs_COMPSOLID:
{
//MESSAGE("compsolid");
for (TopExp_Explorer exp(_subShape, TopAbs_SOLID); exp.More(); exp.Next())
{
insertDependence(exp.Current());
}
break;
}
case TopAbs_SHELL:
{
//MESSAGE("shell");
for (TopExp_Explorer exp(_subShape, TopAbs_FACE); exp.More(); exp.Next())
{
insertDependence(exp.Current());
}
break;
}
case TopAbs_WIRE:
{
//MESSAGE("wire");
for (TopExp_Explorer exp(_subShape, TopAbs_EDGE); exp.More(); exp.Next())
{
insertDependence(exp.Current());
}
break;
}
case TopAbs_SOLID:
{
//MESSAGE("solid");
if(_father->HasShapeToMesh()) {
for (TopExp_Explorer exp(_subShape, TopAbs_FACE); exp.More();exp.Next())
{
insertDependence(exp.Current());
}
}
break;
}
case TopAbs_FACE:
{
//MESSAGE("face");
for (TopExp_Explorer exp(_subShape, TopAbs_EDGE); exp.More();exp.Next())
{
insertDependence(exp.Current());
}
break;
}
case TopAbs_EDGE:
{
//MESSAGE("edge");
for (TopExp_Explorer exp(_subShape, TopAbs_VERTEX); exp.More(); exp.Next())
{
insertDependence(exp.Current());
}
break;
}
case TopAbs_VERTEX:
{
break;
}
default:
{
break;
}
}
_dependenceAnalysed = true;
return _mapDepend;
}
//=============================================================================
/*!
* For simple Shapes (solid, face, edge): add subMesh into dependence list.
*/
//=============================================================================
void SMESH_subMesh::insertDependence(const TopoDS_Shape aSubShape)
{
SMESH_subMesh *aSubMesh = _father->GetSubMesh(aSubShape);
int type = aSubShape.ShapeType();
int ordType = 9 - type; // 2 = Vertex, 8 = CompSolid
int cle = aSubMesh->GetId();
cle += 10000000 * ordType; // sort map by ordType then index
if ( _mapDepend.find( cle ) == _mapDepend.end())
{
_mapDepend[cle] = aSubMesh;
const map < int, SMESH_subMesh * > & subMap = aSubMesh->DependsOn();
_mapDepend.insert( subMap.begin(), subMap.end() );
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
const TopoDS_Shape & SMESH_subMesh::GetSubShape() const
{
//MESSAGE("SMESH_subMesh::GetSubShape");
return _subShape;
}
//=======================================================================
//function : CanAddHypothesis
//purpose : return true if theHypothesis can be attached to me:
// its dimention is checked
//=======================================================================
bool SMESH_subMesh::CanAddHypothesis(const SMESH_Hypothesis* theHypothesis) const
{
int aHypDim = theHypothesis->GetDim();
int aShapeDim = SMESH_Gen::GetShapeDim(_subShape);
// issue 21106. Forbid 3D mesh on the SHELL
// if (aHypDim == 3 && aShapeDim == 3) {
// // check case of open shell
// //if (_subShape.ShapeType() == TopAbs_SHELL && !_subShape.Closed())
// if (_subShape.ShapeType() == TopAbs_SHELL && !BRep_Tool::IsClosed(_subShape))
// return false;
// }
if ( aHypDim <= aShapeDim )
return true;
return false;
}
//=======================================================================
//function : IsApplicableHypotesis
//purpose :
//=======================================================================
bool SMESH_subMesh::IsApplicableHypotesis(const SMESH_Hypothesis* theHypothesis,
const TopAbs_ShapeEnum theShapeType)
{
if ( theHypothesis->GetType() > SMESHDS_Hypothesis::PARAM_ALGO)
{
// algorithm
if ( theHypothesis->GetShapeType() & (1<< theShapeType))
// issue 21106. Forbid 3D mesh on the SHELL
return !( theHypothesis->GetDim() == 3 && theShapeType == TopAbs_SHELL );
else
return false;
}
// hypothesis
switch ( theShapeType ) {
case TopAbs_VERTEX:
case TopAbs_EDGE:
case TopAbs_FACE:
case TopAbs_SOLID:
return SMESH_Gen::GetShapeDim( theShapeType ) == theHypothesis->GetDim();
case TopAbs_SHELL:
// Special case for algorithms, building 2D mesh on a whole shell.
// Before this fix there was a problem after restoring from study,
// because in that case algorithm is assigned before hypothesis
// (on shell in problem case) and hypothesis is checked on faces
// (because it is 2D), where we have NO_ALGO state.
// Now 2D hypothesis is also applicable to shells.
return (theHypothesis->GetDim() == 2 || theHypothesis->GetDim() == 3);
// case TopAbs_WIRE:
// case TopAbs_COMPSOLID:
// case TopAbs_COMPOUND:
default:;
}
return false;
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Hypothesis::Hypothesis_Status
SMESH_subMesh::AlgoStateEngine(int event, SMESH_Hypothesis * anHyp)
{
// MESSAGE("SMESH_subMesh::AlgoStateEngine");
//SCRUTE(_algoState);
//SCRUTE(event);
// **** les retour des evenement shape sont significatifs
// (add ou remove fait ou non)
// le retour des evenement father n'indiquent pas que add ou remove fait
SMESH_Hypothesis::Hypothesis_Status aux_ret, ret = SMESH_Hypothesis::HYP_OK;
SMESHDS_Mesh* meshDS =_father->GetMeshDS();
//SMESH_Gen* gen =_father->GetGen();
SMESH_Algo* algo = 0;
if (_subShape.ShapeType() == TopAbs_VERTEX )
{
if ( anHyp->GetDim() != 0) {
if (event == ADD_HYP || event == ADD_ALGO)
return SMESH_Hypothesis::HYP_BAD_DIM;
else
return SMESH_Hypothesis::HYP_OK;
}
// 0D hypothesis
else if ( _algoState == HYP_OK ) {
// update default _algoState
if ( event != REMOVE_FATHER_ALGO )
{
_algoState = NO_ALGO;
algo = GetAlgo();
if ( algo ) {
_algoState = MISSING_HYP;
if ( event == REMOVE_FATHER_HYP ||
algo->CheckHypothesis(*_father,_subShape, aux_ret))
_algoState = HYP_OK;
}
}
}
}
int oldAlgoState = _algoState;
bool modifiedHyp = (event == MODIF_HYP); // if set to true, force event MODIF_ALGO_STATE
bool needFullClean = false;
bool isApplicableHyp = IsApplicableHypotesis( anHyp );
if (event == ADD_ALGO || event == ADD_FATHER_ALGO)
{
// -------------------------------------------
// check if a shape needed by algo is present
// -------------------------------------------
algo = static_cast< SMESH_Algo* >( anHyp );
if ( !_father->HasShapeToMesh() && algo->NeedShape() )
return SMESH_Hypothesis::HYP_NEED_SHAPE;
// ----------------------
// check mesh conformity
// ----------------------
if (isApplicableHyp && !_father->IsNotConformAllowed() && !IsConform( algo ))
return SMESH_Hypothesis::HYP_NOTCONFORM;
// check if all-dimensional algo is hidden by other local one
if ( event == ADD_ALGO ) {
SMESH_HypoFilter filter( SMESH_HypoFilter::HasType( algo->GetType() ));
filter.Or( SMESH_HypoFilter::HasType( algo->GetType()+1 ));
filter.Or( SMESH_HypoFilter::HasType( algo->GetType()+2 ));
if ( SMESH_Algo * curAlgo = (SMESH_Algo*) _father->GetHypothesis( _subShape, filter, true ))
needFullClean = ( !curAlgo->NeedDiscreteBoundary() );
}
}
// ----------------------------------
// add a hypothesis to DS if possible
// ----------------------------------
if (event == ADD_HYP || event == ADD_ALGO)
{
if ( ! CanAddHypothesis( anHyp )) // check dimension
return SMESH_Hypothesis::HYP_BAD_DIM;
if ( /*!anHyp->IsAuxiliary() &&*/ getSimilarAttached( _subShape, anHyp ) )
return SMESH_Hypothesis::HYP_ALREADY_EXIST;
if ( !meshDS->AddHypothesis(_subShape, anHyp))
return SMESH_Hypothesis::HYP_ALREADY_EXIST;
}
// --------------------------
// remove a hypothesis from DS
// --------------------------
if (event == REMOVE_HYP || event == REMOVE_ALGO)
{
if (!meshDS->RemoveHypothesis(_subShape, anHyp))
return SMESH_Hypothesis::HYP_OK; // nothing changes
if (event == REMOVE_ALGO)
{
algo = dynamic_cast<SMESH_Algo*> (anHyp);
if (!algo->NeedDiscreteBoundary())
{
// clean all mesh in the tree of the current submesh;
// we must perform it now because later
// we will have no information about the type of the removed algo
needFullClean = true;
}
}
}
// ------------------
// analyse algo state
// ------------------
if (!isApplicableHyp)
return ret; // not applicable hypotheses do not change algo state
switch (_algoState)
{
// ----------------------------------------------------------------------
case NO_ALGO:
switch (event) {
case ADD_HYP:
break;
case ADD_ALGO: {
algo = GetAlgo();
ASSERT(algo);
if (algo->CheckHypothesis((*_father),_subShape, aux_ret))
setAlgoState(HYP_OK);
else if ( algo->IsStatusFatal( aux_ret )) {
meshDS->RemoveHypothesis(_subShape, anHyp);
ret = aux_ret;
}
else
setAlgoState(MISSING_HYP);
break;
}
case REMOVE_HYP:
case REMOVE_ALGO:
case ADD_FATHER_HYP:
break;
case ADD_FATHER_ALGO: { // Algo just added in father
algo = GetAlgo();
ASSERT(algo);
if ( algo == anHyp ) {
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret))
setAlgoState(HYP_OK);
else
setAlgoState(MISSING_HYP);
}
break;
}
case REMOVE_FATHER_HYP:
break;
case REMOVE_FATHER_ALGO: {
algo = GetAlgo();
if (algo)
{
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret ))
setAlgoState(HYP_OK);
else
setAlgoState(MISSING_HYP);
}
break;
}
case MODIF_HYP: break;
default:
ASSERT(0);
break;
}
break;
// ----------------------------------------------------------------------
case MISSING_HYP:
switch (event)
{
case ADD_HYP: {
algo = GetAlgo();
ASSERT(algo);
if ( algo->CheckHypothesis((*_father),_subShape, ret ))
setAlgoState(HYP_OK);
if (SMESH_Hypothesis::IsStatusFatal( ret ))
meshDS->RemoveHypothesis(_subShape, anHyp);
else if (!_father->IsUsedHypothesis( anHyp, this ))
{
meshDS->RemoveHypothesis(_subShape, anHyp);
ret = SMESH_Hypothesis::HYP_INCOMPATIBLE;
}
break;
}
case ADD_ALGO: { //already existing algo : on father ?
algo = GetAlgo();
ASSERT(algo);
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret ))// ignore hyp status
setAlgoState(HYP_OK);
else if ( algo->IsStatusFatal( aux_ret )) {
meshDS->RemoveHypothesis(_subShape, anHyp);
ret = aux_ret;
}
else
setAlgoState(MISSING_HYP);
break;
}
case REMOVE_HYP:
break;
case REMOVE_ALGO: { // perhaps a father algo applies ?
algo = GetAlgo();
if (algo == NULL) // no more algo applying on sub-shape...
{
setAlgoState(NO_ALGO);
}
else
{
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret ))
setAlgoState(HYP_OK);
else
setAlgoState(MISSING_HYP);
}
break;
}
case MODIF_HYP: // assigned hypothesis value may become good
case ADD_FATHER_HYP: {
algo = GetAlgo();
ASSERT(algo);
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret ))
setAlgoState(HYP_OK);
else
setAlgoState(MISSING_HYP);
break;
}
case ADD_FATHER_ALGO: { // new father algo
algo = GetAlgo();
ASSERT( algo );
if ( algo == anHyp ) {
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret ))
setAlgoState(HYP_OK);
else
setAlgoState(MISSING_HYP);
}
break;
}
case REMOVE_FATHER_HYP: // nothing to do
break;
case REMOVE_FATHER_ALGO: {
algo = GetAlgo();
if (algo == NULL) // no more applying algo on father
{
setAlgoState(NO_ALGO);
}
else
{
if ( algo->CheckHypothesis((*_father),_subShape , aux_ret ))
setAlgoState(HYP_OK);
else
setAlgoState(MISSING_HYP);
}
break;
}
default:
ASSERT(0);
break;
}
break;
// ----------------------------------------------------------------------
case HYP_OK:
switch (event)
{
case ADD_HYP: {
algo = GetAlgo();
ASSERT(algo);
if (!algo->CheckHypothesis((*_father),_subShape, ret ))
{
if ( !SMESH_Hypothesis::IsStatusFatal( ret ))
// ret should be fatal: anHyp was not added
ret = SMESH_Hypothesis::HYP_INCOMPATIBLE;
}
else if (!_father->IsUsedHypothesis( anHyp, this ))
ret = SMESH_Hypothesis::HYP_INCOMPATIBLE;
if (SMESH_Hypothesis::IsStatusFatal( ret ))
{
MESSAGE("do not add extra hypothesis");
meshDS->RemoveHypothesis(_subShape, anHyp);
}
else
{
modifiedHyp = true;
}
break;
}
case ADD_ALGO: { //already existing algo : on father ?
algo = GetAlgo();
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret )) {
// check if algo changes
SMESH_HypoFilter f;
f.Init( SMESH_HypoFilter::IsAlgo() );
f.And( SMESH_HypoFilter::IsApplicableTo( _subShape ));
f.AndNot( SMESH_HypoFilter::Is( algo ));
const SMESH_Hypothesis * prevAlgo = _father->GetHypothesis( _subShape, f, true );
if (prevAlgo &&
string(algo->GetName()) != string(prevAlgo->GetName()) )
modifiedHyp = true;
}
else
setAlgoState(MISSING_HYP);
break;
}
case REMOVE_HYP: {
algo = GetAlgo();
ASSERT(algo);
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret ))
setAlgoState(HYP_OK);
else
setAlgoState(MISSING_HYP);
modifiedHyp = true;
break;
}
case REMOVE_ALGO: { // perhaps a father algo applies ?
algo = GetAlgo();
if (algo == NULL) // no more algo applying on sub-shape...
{
setAlgoState(NO_ALGO);
}
else
{
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret )) {
// check if algo remains
if ( anHyp != algo && strcmp( anHyp->GetName(), algo->GetName()) )
modifiedHyp = true;
}
else
setAlgoState(MISSING_HYP);
}
break;
}
case MODIF_HYP: // hypothesis value may become bad
case ADD_FATHER_HYP: { // new father hypothesis ?
algo = GetAlgo();
ASSERT(algo);
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret ))
{
if (_father->IsUsedHypothesis( anHyp, this )) // new Hyp
modifiedHyp = true;
}
else
setAlgoState(MISSING_HYP);
break;
}
case ADD_FATHER_ALGO: {
algo = GetAlgo();
if ( algo == anHyp ) { // a new algo on father
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret )) {
// check if algo changes
SMESH_HypoFilter f;
f.Init( SMESH_HypoFilter::IsAlgo() );
f.And( SMESH_HypoFilter::IsApplicableTo( _subShape ));
f.AndNot( SMESH_HypoFilter::Is( algo ));
const SMESH_Hypothesis* prevAlgo = _father->GetHypothesis( _subShape, f, true );
if (prevAlgo &&
string(algo->GetName()) != string(prevAlgo->GetName()) )
modifiedHyp = true;
}
else
setAlgoState(MISSING_HYP);
}
break;
}
case REMOVE_FATHER_HYP: {
algo = GetAlgo();
ASSERT(algo);
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret )) {
// is there the same local hyp or maybe a new father algo applied?
if ( !getSimilarAttached( _subShape, anHyp ) )
modifiedHyp = true;
}
else
setAlgoState(MISSING_HYP);
break;
}
case REMOVE_FATHER_ALGO: {
// IPAL21346. Edges not removed when Netgen 1d-2d is removed from a SOLID.
// CLEAN was not called at event REMOVE_ALGO because the algo is not applicable to SOLID.
algo = dynamic_cast<SMESH_Algo*> (anHyp);
if (!algo->NeedDiscreteBoundary())
needFullClean = true;
algo = GetAlgo();
if (algo == NULL) // no more applying algo on father
{
setAlgoState(NO_ALGO);
}
else
{
if ( algo->CheckHypothesis((*_father),_subShape, aux_ret )) {
// check if algo changes
if ( string(algo->GetName()) != string( anHyp->GetName()) )
modifiedHyp = true;
}
else
setAlgoState(MISSING_HYP);
}
break;
}
default:
ASSERT(0);
break;
}
break;
// ----------------------------------------------------------------------
default:
ASSERT(0);
break;
}
// detect algorithm hiding
//
if ( ret == SMESH_Hypothesis::HYP_OK &&
( event == ADD_ALGO || event == ADD_FATHER_ALGO ) &&
algo->GetName() == anHyp->GetName() )
{
// is algo hidden?
SMESH_Gen* gen = _father->GetGen();
TopTools_ListIteratorOfListOfShape it( _father->GetAncestors( _subShape ));
for ( ; ( ret == SMESH_Hypothesis::HYP_OK && it.More()); it.Next() ) {
if ( SMESH_Algo* upperAlgo = gen->GetAlgo( *_father, it.Value() ))
if ( !upperAlgo->NeedDiscreteBoundary() && !upperAlgo->SupportSubmeshes())
ret = SMESH_Hypothesis::HYP_HIDDEN_ALGO;
}
// is algo hiding?
if ( ret == SMESH_Hypothesis::HYP_OK &&
!algo->NeedDiscreteBoundary() &&
!algo->SupportSubmeshes()) {
TopoDS_Shape algoAssignedTo, otherAssignedTo;
gen->GetAlgo( *_father, _subShape, &algoAssignedTo );
map<int, SMESH_subMesh*>::reverse_iterator i_sm = _mapDepend.rbegin();
for ( ; ( ret == SMESH_Hypothesis::HYP_OK && i_sm != _mapDepend.rend()) ; ++i_sm )
if ( gen->GetAlgo( *_father, i_sm->second->_subShape, &otherAssignedTo ) &&
SMESH_MesherHelper::IsSubShape( /*sub=*/otherAssignedTo, /*main=*/algoAssignedTo ))
ret = SMESH_Hypothesis::HYP_HIDING_ALGO;
}
}
bool stateChange = ( _algoState != oldAlgoState );
if ( stateChange && _algoState == HYP_OK ) // hyp becomes OK
algo->SetEventListener( this );
notifyListenersOnEvent( event, ALGO_EVENT, anHyp );
if ( stateChange && oldAlgoState == HYP_OK ) { // hyp becomes KO
deleteOwnListeners();
SetIsAlwaysComputed( false );
if (_subShape.ShapeType() == TopAbs_VERTEX ) {
// restore default states
_algoState = HYP_OK;
_computeState = READY_TO_COMPUTE;
}
}
if ( needFullClean ) {
// added or removed algo is all-dimensional
ComputeStateEngine( CLEAN );
cleanDependsOn();
ComputeSubMeshStateEngine( CHECK_COMPUTE_STATE );
}
if (stateChange || modifiedHyp)
ComputeStateEngine(MODIF_ALGO_STATE);
return ret;
}
//=======================================================================
//function : IsConform
//purpose : check if a conform mesh will be produced by the Algo
//=======================================================================
bool SMESH_subMesh::IsConform(const SMESH_Algo* theAlgo)
{
// MESSAGE( "SMESH_subMesh::IsConform" );
if ( !theAlgo ) return false;
// Suppose that theAlgo is applicable to _subShape, do not check it here
//if ( !IsApplicableHypotesis( theAlgo )) return false;
// check only algo that doesn't NeedDiscreteBoundary(): because mesh made
// on a sub-shape will be ignored by theAlgo
if ( theAlgo->NeedDiscreteBoundary() ||
!theAlgo->OnlyUnaryInput() ) // all adjacent shapes will be meshed by this algo?
return true;
SMESH_Gen* gen =_father->GetGen();
// only local algo is to be checked
//if ( gen->IsGlobalHypothesis( theAlgo, *_father ))
if ( _subShape.ShapeType() == _father->GetMeshDS()->ShapeToMesh().ShapeType() )
return true;
// check algo attached to adjacent shapes
// loop on one level down sub-meshes
TopoDS_Iterator itsub( _subShape );
for (; itsub.More(); itsub.Next())
{
// loop on adjacent subShapes
TopTools_ListIteratorOfListOfShape it( _father->GetAncestors( itsub.Value() ));
for (; it.More(); it.Next())
{
const TopoDS_Shape& adjacent = it.Value();
if ( _subShape.IsSame( adjacent )) continue;
if ( adjacent.ShapeType() != _subShape.ShapeType())
break;
// check algo attached to smAdjacent
SMESH_Algo * algo = gen->GetAlgo((*_father), adjacent);
if (algo &&
!algo->NeedDiscreteBoundary() &&
algo->OnlyUnaryInput())
return false; // NOT CONFORM MESH WILL BE PRODUCED
}
}
return true;
}
//=============================================================================
/*!
*
*/
//=============================================================================
void SMESH_subMesh::setAlgoState(int state)
{
_algoState = state;
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Hypothesis::Hypothesis_Status
SMESH_subMesh::SubMeshesAlgoStateEngine(int event,
SMESH_Hypothesis * anHyp)
{
SMESH_Hypothesis::Hypothesis_Status ret = SMESH_Hypothesis::HYP_OK;
//EAP: a wire (dim==1) should notify edges (dim==1)
//EAP: int dim = SMESH_Gen::GetShapeDim(_subShape);
//if (_subShape.ShapeType() < TopAbs_EDGE ) // wire,face etc
{
SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(false,false);
while ( smIt->more() ) {
SMESH_Hypothesis::Hypothesis_Status ret2 =
smIt->next()->AlgoStateEngine(event, anHyp);
if ( ret2 > ret )
ret = ret2;
}
}
return ret;
}
//=============================================================================
/*!
*
*/
//=============================================================================
void SMESH_subMesh::cleanDependsOn()
{
SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(false,false);
while ( smIt->more() )
smIt->next()->ComputeStateEngine(CLEAN);
}
//=============================================================================
/*!
*
*/
//=============================================================================
void SMESH_subMesh::DumpAlgoState(bool isMain)
{
int dim = SMESH_Gen::GetShapeDim(_subShape);
// if (dim < 1) return;
if (isMain)
{
const map < int, SMESH_subMesh * >&subMeshes = DependsOn();
map < int, SMESH_subMesh * >::const_iterator itsub;
for (itsub = subMeshes.begin(); itsub != subMeshes.end(); itsub++)
{
SMESH_subMesh *sm = (*itsub).second;
sm->DumpAlgoState(false);
}
}
int type = _subShape.ShapeType();
MESSAGE("dim = " << dim << " type of shape " << type);
switch (_algoState)
{
case NO_ALGO:
MESSAGE(" AlgoState = NO_ALGO");
break;
case MISSING_HYP:
MESSAGE(" AlgoState = MISSING_HYP");
break;
case HYP_OK:
MESSAGE(" AlgoState = HYP_OK");
break;
}
switch (_computeState)
{
case NOT_READY:
MESSAGE(" ComputeState = NOT_READY");
break;
case READY_TO_COMPUTE:
MESSAGE(" ComputeState = READY_TO_COMPUTE");
break;
case COMPUTE_OK:
MESSAGE(" ComputeState = COMPUTE_OK");
break;
case FAILED_TO_COMPUTE:
MESSAGE(" ComputeState = FAILED_TO_COMPUTE");
break;
}
}
//================================================================================
/*!
* \brief Remove nodes and elements bound to submesh
* \param subMesh - submesh containing nodes and elements
*/
//================================================================================
static void cleanSubMesh( SMESH_subMesh * subMesh )
{
if (subMesh) {
if (SMESHDS_SubMesh * subMeshDS = subMesh->GetSubMeshDS()) {
SMESHDS_Mesh * meshDS = subMesh->GetFather()->GetMeshDS();
SMDS_ElemIteratorPtr ite = subMeshDS->GetElements();
while (ite->more()) {
const SMDS_MeshElement * elt = ite->next();
//MESSAGE( " RM elt: "<<elt->GetID()<<" ( "<<elt->NbNodes()<<" )" );
//meshDS->RemoveElement(elt);
meshDS->RemoveFreeElement(elt, subMeshDS);
}
SMDS_NodeIteratorPtr itn = subMeshDS->GetNodes();
while (itn->more()) {
const SMDS_MeshNode * node = itn->next();
//MESSAGE( " RM node: "<<node->GetID());
if ( node->NbInverseElements() == 0 )
meshDS->RemoveFreeNode(node, subMeshDS);
else // for StdMeshers_CompositeSegment_1D: node in one submesh, edge in another
meshDS->RemoveNode(node);
}
}
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool SMESH_subMesh::ComputeStateEngine(int event)
{
_computeError.reset();
//MESSAGE("SMESH_subMesh::ComputeStateEngine");
//SCRUTE(_computeState);
//SCRUTE(event);
if (_subShape.ShapeType() == TopAbs_VERTEX)
{
_computeState = READY_TO_COMPUTE;
SMESHDS_SubMesh* smDS = GetSubMeshDS();
if ( smDS && smDS->NbNodes() ) {
if ( event == CLEAN ) {
cleanDependants();
cleanSubMesh( this );
}
else
_computeState = COMPUTE_OK;
}
else if ( event == COMPUTE && !_alwaysComputed ) {
const TopoDS_Vertex & V = TopoDS::Vertex( _subShape );
gp_Pnt P = BRep_Tool::Pnt(V);
if ( SMDS_MeshNode * n = _father->GetMeshDS()->AddNode(P.X(), P.Y(), P.Z()) ) {
_father->GetMeshDS()->SetNodeOnVertex(n,_Id);
_computeState = COMPUTE_OK;
}
}
if ( event == MODIF_ALGO_STATE )
cleanDependants();
return true;
}
SMESH_Gen *gen = _father->GetGen();
SMESH_Algo *algo = 0;
bool ret = true;
SMESH_Hypothesis::Hypothesis_Status hyp_status;
//algo_state oldAlgoState = (algo_state) GetAlgoState();
switch (_computeState)
{
// ----------------------------------------------------------------------
case NOT_READY:
switch (event)
{
case MODIF_ALGO_STATE:
algo = GetAlgo();
if (algo && !algo->NeedDiscreteBoundary())
cleanDependsOn(); // clean sub-meshes with event CLEAN
if ( _algoState == HYP_OK )
_computeState = READY_TO_COMPUTE;
break;
case COMPUTE: // nothing to do
break;
#ifdef WITH_SMESH_CANCEL_COMPUTE
case COMPUTE_CANCELED: // nothing to do
break;
#endif
case CLEAN:
cleanDependants();
removeSubMeshElementsAndNodes();
break;
case SUBMESH_COMPUTED: // nothing to do
break;
case SUBMESH_RESTORED:
ComputeSubMeshStateEngine( SUBMESH_RESTORED );
break;
case MESH_ENTITY_REMOVED:
break;
case SUBMESH_LOADED:
loadDependentMeshes();
ComputeSubMeshStateEngine( SUBMESH_LOADED );
//break;
case CHECK_COMPUTE_STATE:
if ( IsMeshComputed() )
_computeState = COMPUTE_OK;
break;
default:
ASSERT(0);
break;
}
break;
// ----------------------------------------------------------------------
case READY_TO_COMPUTE:
switch (event)
{
case MODIF_ALGO_STATE:
_computeState = NOT_READY;
algo = GetAlgo();
if (algo)
{
if (!algo->NeedDiscreteBoundary())
cleanDependsOn(); // clean sub-meshes with event CLEAN
if ( _algoState == HYP_OK )
_computeState = READY_TO_COMPUTE;
}
break;
case COMPUTE:
{
algo = GetAlgo();
ASSERT(algo);
ret = algo->CheckHypothesis((*_father), _subShape, hyp_status);
if (!ret)
{
MESSAGE("***** verify compute state *****");
_computeState = NOT_READY;
setAlgoState(MISSING_HYP);
break;
}
TopoDS_Shape shape = _subShape;
// check submeshes needed
if (_father->HasShapeToMesh() ) {
bool subComputed = false;
if (!algo->OnlyUnaryInput())
shape = getCollection( gen, algo, subComputed );
else
subComputed = subMeshesComputed();
ret = ( algo->NeedDiscreteBoundary() ? subComputed :
algo->SupportSubmeshes() ? true :
( !subComputed || _father->IsNotConformAllowed() ));
if (!ret) {
_computeState = FAILED_TO_COMPUTE;
if ( !algo->NeedDiscreteBoundary() )
_computeError =
SMESH_ComputeError::New(COMPERR_BAD_INPUT_MESH,
"Unexpected computed submesh",algo);
break;
}
}
// compute
// cleanDependants(); for "UseExisting_*D" algos
// removeSubMeshElementsAndNodes();
ret = false;
_computeState = FAILED_TO_COMPUTE;
_computeError = SMESH_ComputeError::New(COMPERR_OK,"",algo);
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
algo->InitComputeError();
MemoryReserve aMemoryReserve;
SMDS_Mesh::CheckMemory();
Kernel_Utils::Localizer loc;
if ( !_father->HasShapeToMesh() ) // no shape
{
SMESH_MesherHelper helper( *_father );
helper.SetSubShape( shape );
helper.SetElementsOnShape( true );
ret = algo->Compute(*_father, &helper );
}
else
{
ret = algo->Compute((*_father), shape);
}
if ( !_computeError || ( !ret && _computeError->IsOK() ) ) // algo can set _computeError of submesh
_computeError = algo->GetComputeError();
}
catch ( ::SMESH_ComputeError& comperr ) {
cout << " SMESH_ComputeError caught" << endl;
if ( !_computeError ) _computeError = SMESH_ComputeError::New();
*_computeError = comperr;
}
catch ( std::bad_alloc& exc ) {
MESSAGE("std::bad_alloc thrown inside algo->Compute()");
if ( _computeError ) {
_computeError->myName = COMPERR_MEMORY_PB;
//_computeError->myComment = exc.what();
}
cleanSubMesh( this );
throw exc;
}
catch ( Standard_OutOfMemory& exc ) {
MESSAGE("Standard_OutOfMemory thrown inside algo->Compute()");
if ( _computeError ) {
_computeError->myName = COMPERR_MEMORY_PB;
//_computeError->myComment = exc.what();
}
cleanSubMesh( this );
throw std::bad_alloc();
}
catch (Standard_Failure& ex) {
if ( !_computeError ) _computeError = SMESH_ComputeError::New();
_computeError->myName = COMPERR_OCC_EXCEPTION;
_computeError->myComment += ex.DynamicType()->Name();
if ( ex.GetMessageString() && strlen( ex.GetMessageString() )) {
_computeError->myComment += ": ";
_computeError->myComment += ex.GetMessageString();
}
}
catch ( SALOME_Exception& S_ex ) {
if ( !_computeError ) _computeError = SMESH_ComputeError::New();
_computeError->myName = COMPERR_SLM_EXCEPTION;
_computeError->myComment = S_ex.what();
}
catch ( std::exception& exc ) {
if ( !_computeError ) _computeError = SMESH_ComputeError::New();
_computeError->myName = COMPERR_STD_EXCEPTION;
_computeError->myComment = exc.what();
}
catch ( ... ) {
if ( _computeError )
_computeError->myName = COMPERR_EXCEPTION;
else
ret = false;
}
TopExp_Explorer subS(shape, _subShape.ShapeType());
if (ret) // check if anything was built
{
for (; ret && subS.More(); subS.Next())
ret = _father->GetSubMesh( subS.Current() )->IsMeshComputed();
}
bool isComputeErrorSet = !checkComputeError( algo, shape );
if (!ret && !isComputeErrorSet)
{
// Set _computeError
for (subS.ReInit(); subS.More(); subS.Next())
{
SMESH_subMesh* sm = _father->GetSubMesh( subS.Current() );
if ( !sm->IsMeshComputed() )
{
if ( !sm->_computeError )
sm->_computeError = SMESH_ComputeError::New();
if ( sm->_computeError->IsOK() )
sm->_computeError->myName = COMPERR_ALGO_FAILED;
sm->_computeState = FAILED_TO_COMPUTE;
sm->_computeError->myAlgo = algo;
}
}
}
if (ret && _computeError && _computeError->myName != COMPERR_WARNING )
{
_computeError.reset();
}
updateDependantsState( SUBMESH_COMPUTED ); // send event SUBMESH_COMPUTED
}
break;
#ifdef WITH_SMESH_CANCEL_COMPUTE
case COMPUTE_CANCELED: // nothing to do
break;
#endif
case CLEAN:
cleanDependants();
removeSubMeshElementsAndNodes();
_computeState = NOT_READY;
algo = GetAlgo();
if (algo)
{
ret = algo->CheckHypothesis((*_father), _subShape, hyp_status);
if (ret)
_computeState = READY_TO_COMPUTE;
else
setAlgoState(MISSING_HYP);
}
break;
case SUBMESH_COMPUTED: // nothing to do
break;
case SUBMESH_RESTORED:
// check if a mesh is already computed that may
// happen after retrieval from a file
ComputeStateEngine( CHECK_COMPUTE_STATE );
ComputeSubMeshStateEngine( SUBMESH_RESTORED );
algo = GetAlgo();
if (algo) algo->SubmeshRestored( this );
break;
case MESH_ENTITY_REMOVED:
break;
case SUBMESH_LOADED:
loadDependentMeshes();
ComputeSubMeshStateEngine( SUBMESH_LOADED );
//break;
case CHECK_COMPUTE_STATE:
if ( IsMeshComputed() )
_computeState = COMPUTE_OK;
break;
default:
ASSERT(0);
break;
}
break;
// ----------------------------------------------------------------------
case COMPUTE_OK:
switch (event)
{
case MODIF_ALGO_STATE:
ComputeStateEngine( CLEAN );
algo = GetAlgo();
if (algo && !algo->NeedDiscreteBoundary())
cleanDependsOn(); // clean sub-meshes with event CLEAN
break;
case COMPUTE: // nothing to do
break;
#ifdef WITH_SMESH_CANCEL_COMPUTE
case COMPUTE_CANCELED: // nothing to do
break;
#endif
case CLEAN:
cleanDependants(); // clean sub-meshes, dependant on this one, with event CLEAN
removeSubMeshElementsAndNodes();
_computeState = NOT_READY;
if ( _algoState == HYP_OK )
_computeState = READY_TO_COMPUTE;
break;
case SUBMESH_COMPUTED: // nothing to do
break;
case SUBMESH_RESTORED:
ComputeStateEngine( CHECK_COMPUTE_STATE );
ComputeSubMeshStateEngine( SUBMESH_RESTORED );
algo = GetAlgo();
if (algo) algo->SubmeshRestored( this );
break;
case MESH_ENTITY_REMOVED:
updateDependantsState ( CHECK_COMPUTE_STATE );
ComputeStateEngine ( CHECK_COMPUTE_STATE );
ComputeSubMeshStateEngine( CHECK_COMPUTE_STATE );
break;
case CHECK_COMPUTE_STATE:
if ( !IsMeshComputed() ) {
if (_algoState == HYP_OK)
_computeState = READY_TO_COMPUTE;
else
_computeState = NOT_READY;
}
break;
case SUBMESH_LOADED:
// already treated event, thanks to which _computeState == COMPUTE_OK
break;
default:
ASSERT(0);
break;
}
break;
// ----------------------------------------------------------------------
case FAILED_TO_COMPUTE:
switch (event)
{
case MODIF_ALGO_STATE:
if ( !IsEmpty() )
ComputeStateEngine( CLEAN );
algo = GetAlgo();
if (algo && !algo->NeedDiscreteBoundary())
cleanDependsOn(); // clean sub-meshes with event CLEAN
if (_algoState == HYP_OK)
_computeState = READY_TO_COMPUTE;
else
_computeState = NOT_READY;
break;
case COMPUTE: // nothing to do
break;
#ifdef WITH_SMESH_CANCEL_COMPUTE
case COMPUTE_CANCELED:
{
algo = GetAlgo();
algo->CancelCompute();
}
break;
#endif
case CLEAN:
cleanDependants(); // submeshes dependent on me should be cleaned as well
removeSubMeshElementsAndNodes();
break;
case SUBMESH_COMPUTED: // allow retry compute
if (_algoState == HYP_OK)
_computeState = READY_TO_COMPUTE;
else
_computeState = NOT_READY;
break;
case SUBMESH_RESTORED:
ComputeSubMeshStateEngine( SUBMESH_RESTORED );
break;
case MESH_ENTITY_REMOVED:
break;
case CHECK_COMPUTE_STATE:
if ( IsMeshComputed() )
_computeState = COMPUTE_OK;
else
if (_algoState == HYP_OK)
_computeState = READY_TO_COMPUTE;
else
_computeState = NOT_READY;
break;
default:
ASSERT(0);
break;
}
break;
// ----------------------------------------------------------------------
default:
ASSERT(0);
break;
}
notifyListenersOnEvent( event, COMPUTE_EVENT );
return ret;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool SMESH_subMesh::Evaluate(MapShapeNbElems& aResMap)
{
_computeError.reset();
bool ret = true;
if (_subShape.ShapeType() == TopAbs_VERTEX) {
vector<int> aVec(SMDSEntity_Last,0);
aVec[SMDSEntity_Node] = 1;
aResMap.insert(make_pair(this,aVec));
return ret;
}
//SMESH_Gen *gen = _father->GetGen();
SMESH_Algo *algo = 0;
SMESH_Hypothesis::Hypothesis_Status hyp_status;
algo = GetAlgo();
if(algo && !aResMap.count(this) )
{
ret = algo->CheckHypothesis((*_father), _subShape, hyp_status);
if (!ret) return false;
if (_father->HasShapeToMesh() && algo->NeedDiscreteBoundary())
{
// check submeshes needed
bool subMeshEvaluated = true;
int dimToCheck = SMESH_Gen::GetShapeDim( _subShape ) - 1;
SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(false,/*complexShapeFirst=*/true);
while ( smIt->more() && subMeshEvaluated )
{
SMESH_subMesh* sm = smIt->next();
int dim = SMESH_Gen::GetShapeDim( sm->GetSubShape() );
if (dim < dimToCheck) break; // the rest subMeshes are all of less dimension
const vector<int> & nbs = aResMap[ sm ];
subMeshEvaluated = (std::accumulate( nbs.begin(), nbs.end(), 0 ) > 0 );
}
if ( !subMeshEvaluated )
return false;
}
_computeError = SMESH_ComputeError::New(COMPERR_OK,"",algo);
ret = algo->Evaluate((*_father), _subShape, aResMap);
aResMap.insert( make_pair( this,vector<int>(0)));
}
return ret;
}
//=======================================================================
/*!
* \brief Update compute_state by _computeError and send proper events to
* dependent submeshes
* \retval bool - true if _computeError is NOT set
*/
//=======================================================================
bool SMESH_subMesh::checkComputeError(SMESH_Algo* theAlgo, const TopoDS_Shape& theShape)
{
bool noErrors = true;
if ( !theShape.IsNull() )
{
// Check state of submeshes
if ( !theAlgo->NeedDiscreteBoundary())
{
SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(false,false);
while ( smIt->more() )
if ( !smIt->next()->checkComputeError( theAlgo ))
noErrors = false;
}
// Check state of neighbours
if ( !theAlgo->OnlyUnaryInput() &&
theShape.ShapeType() == TopAbs_COMPOUND &&
!theShape.IsSame( _subShape ))
{
for (TopoDS_Iterator subIt( theShape ); subIt.More(); subIt.Next()) {
SMESH_subMesh* sm = _father->GetSubMesh( subIt.Value() );
if ( sm != this ) {
if ( !sm->checkComputeError( theAlgo, sm->GetSubShape() ))
noErrors = false;
updateDependantsState( SUBMESH_COMPUTED ); // send event SUBMESH_COMPUTED
}
}
}
}
{
// Check my state
if ( !_computeError || _computeError->IsOK() )
{
// no error description is set to this sub-mesh, check if any mesh is computed
_computeState = IsMeshComputed() ? COMPUTE_OK : FAILED_TO_COMPUTE;
}
else
{
if ( !_computeError->myAlgo )
_computeError->myAlgo = theAlgo;
// Show error
SMESH_Comment text;
text << theAlgo->GetName() << " failed on sub-shape #" << _Id << " with error ";
if (_computeError->IsCommon() )
text << _computeError->CommonName();
else
text << _computeError->myName;
if ( _computeError->myComment.size() > 0 )
text << " \"" << _computeError->myComment << "\"";
INFOS( text );
_computeState = _computeError->IsKO() ? FAILED_TO_COMPUTE : COMPUTE_OK;
noErrors = false;
}
}
return noErrors;
}
//=======================================================================
//function : updateSubMeshState
//purpose :
//=======================================================================
void SMESH_subMesh::updateSubMeshState(const compute_state theState)
{
SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(false,false);
while ( smIt->more() )
smIt->next()->_computeState = theState;
}
//=======================================================================
//function : ComputeSubMeshStateEngine
//purpose :
//=======================================================================
void SMESH_subMesh::ComputeSubMeshStateEngine(int event)
{
SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(false,false);
while ( smIt->more() )
smIt->next()->ComputeStateEngine(event);
}
//=======================================================================
//function : updateDependantsState
//purpose :
//=======================================================================
void SMESH_subMesh::updateDependantsState(const compute_event theEvent)
{
TopTools_ListIteratorOfListOfShape it( _father->GetAncestors( _subShape ));
for (; it.More(); it.Next())
{
const TopoDS_Shape& ancestor = it.Value();
SMESH_subMesh *aSubMesh =
_father->GetSubMeshContaining(ancestor);
if (aSubMesh)
aSubMesh->ComputeStateEngine( theEvent );
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
void SMESH_subMesh::cleanDependants()
{
int dimToClean = SMESH_Gen::GetShapeDim( _subShape ) + 1;
TopTools_ListIteratorOfListOfShape it( _father->GetAncestors( _subShape ));
for (; it.More(); it.Next())
{
const TopoDS_Shape& ancestor = it.Value();
if ( SMESH_Gen::GetShapeDim( ancestor ) == dimToClean ) {
// PAL8021. do not go upper than SOLID, else ComputeStateEngine(CLEAN)
// will erase mesh on other shapes in a compound
if ( ancestor.ShapeType() >= TopAbs_SOLID ) {
SMESH_subMesh *aSubMesh = _father->GetSubMeshContaining(ancestor);
if (aSubMesh &&
!aSubMesh->IsEmpty() ) // prevent infinite CLEAN via event lesteners
aSubMesh->ComputeStateEngine(CLEAN);
}
}
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
void SMESH_subMesh::removeSubMeshElementsAndNodes()
{
cleanSubMesh( this );
// algo may bind a submesh not to _subShape, eg 3D algo
// sets nodes on SHELL while _subShape may be SOLID
int dim = SMESH_Gen::GetShapeDim( _subShape );
int type = _subShape.ShapeType() + 1;
for ( ; type <= TopAbs_EDGE; type++) {
if ( dim == SMESH_Gen::GetShapeDim( (TopAbs_ShapeEnum) type ))
{
TopExp_Explorer exp( _subShape, (TopAbs_ShapeEnum) type );
for ( ; exp.More(); exp.Next() )
cleanSubMesh( _father->GetSubMeshContaining( exp.Current() ));
}
else
break;
}
}
//=======================================================================
//function : getCollection
//purpose : return a shape containing all sub-shapes of the MainShape that can be
// meshed at once along with _subShape
//=======================================================================
TopoDS_Shape SMESH_subMesh::getCollection(SMESH_Gen * theGen,
SMESH_Algo* theAlgo,
bool & theSubComputed)
{
theSubComputed = subMeshesComputed();
TopoDS_Shape mainShape = _father->GetMeshDS()->ShapeToMesh();
if ( mainShape.IsSame( _subShape ))
return _subShape;
const bool ignoreAuxiliaryHyps = false;
list<const SMESHDS_Hypothesis*> aUsedHyp =
theAlgo->GetUsedHypothesis( *_father, _subShape, ignoreAuxiliaryHyps ); // copy
// put in a compound all shapes with the same hypothesis assigned
// and a good ComputState
TopoDS_Compound aCompound;
BRep_Builder aBuilder;
aBuilder.MakeCompound( aCompound );
TopExp_Explorer anExplorer( mainShape, _subShape.ShapeType() );
for ( ; anExplorer.More(); anExplorer.Next() )
{
const TopoDS_Shape& S = anExplorer.Current();
SMESH_subMesh* subMesh = _father->GetSubMesh( S );
if ( subMesh == this )
{
aBuilder.Add( aCompound, S );
}
else if ( subMesh->GetComputeState() == READY_TO_COMPUTE )
{
SMESH_Algo* anAlgo = theGen->GetAlgo( *_father, S );
if (strcmp( anAlgo->GetName(), theAlgo->GetName()) == 0 && // same algo
anAlgo->GetUsedHypothesis( *_father, S, ignoreAuxiliaryHyps ) == aUsedHyp) // same hyps
aBuilder.Add( aCompound, S );
if ( !subMesh->subMeshesComputed() )
theSubComputed = false;
}
}
return aCompound;
}
//=======================================================================
//function : getSimilarAttached
//purpose : return a hypothesis attached to theShape.
// If theHyp is provided, similar but not same hypotheses
// is returned; else only applicable ones having theHypType
// is returned
//=======================================================================
const SMESH_Hypothesis* SMESH_subMesh::getSimilarAttached(const TopoDS_Shape& theShape,
const SMESH_Hypothesis * theHyp,
const int theHypType)
{
SMESH_HypoFilter hypoKind;
hypoKind.Init( hypoKind.HasType( theHyp ? theHyp->GetType() : theHypType ));
if ( theHyp ) {
hypoKind.And ( hypoKind.HasDim( theHyp->GetDim() ));
hypoKind.AndNot( hypoKind.Is( theHyp ));
if ( theHyp->IsAuxiliary() )
hypoKind.And( hypoKind.HasName( theHyp->GetName() ));
else
hypoKind.AndNot( hypoKind.IsAuxiliary());
}
else {
hypoKind.And( hypoKind.IsApplicableTo( theShape ));
}
return _father->GetHypothesis( theShape, hypoKind, false );
}
//=======================================================================
//function : CheckConcurentHypothesis
//purpose : check if there are several applicable hypothesis attached to
// ancestors
//=======================================================================
SMESH_Hypothesis::Hypothesis_Status
SMESH_subMesh::CheckConcurentHypothesis (const int theHypType)
{
MESSAGE ("SMESH_subMesh::CheckConcurentHypothesis");
// is there local hypothesis on me?
if ( getSimilarAttached( _subShape, 0, theHypType ) )
return SMESH_Hypothesis::HYP_OK;
TopoDS_Shape aPrevWithHyp;
const SMESH_Hypothesis* aPrevHyp = 0;
TopTools_ListIteratorOfListOfShape it( _father->GetAncestors( _subShape ));
for (; it.More(); it.Next())
{
const TopoDS_Shape& ancestor = it.Value();
const SMESH_Hypothesis* hyp = getSimilarAttached( ancestor, 0, theHypType );
if ( hyp )
{
if ( aPrevWithHyp.IsNull() || aPrevWithHyp.IsSame( ancestor ))
{
aPrevWithHyp = ancestor;
aPrevHyp = hyp;
}
else if ( aPrevWithHyp.ShapeType() == ancestor.ShapeType() && aPrevHyp != hyp )
return SMESH_Hypothesis::HYP_CONCURENT;
else
return SMESH_Hypothesis::HYP_OK;
}
}
return SMESH_Hypothesis::HYP_OK;
}
//================================================================================
/*!
* \brief Constructor of OwnListenerData
*/
//================================================================================
SMESH_subMesh::OwnListenerData::OwnListenerData( SMESH_subMesh* sm, EventListener* el):
mySubMesh( sm ),
myMeshID( sm ? sm->GetFather()->GetId() : -1 ),
mySubMeshID( sm ? sm->GetId() : -1 ),
myListener( el )
{
}
//================================================================================
/*!
* \brief Sets an event listener and its data to a submesh
* \param listener - the listener to store
* \param data - the listener data to store
* \param where - the submesh to store the listener and it's data
*
* It remembers the submesh where it puts the listener in order to delete
* them when HYP_OK algo_state is lost
* After being set, event listener is notified on each event of where submesh.
*/
//================================================================================
void SMESH_subMesh::SetEventListener(EventListener* listener,
EventListenerData* data,
SMESH_subMesh* where)
{
if ( listener && where ) {
where->setEventListener( listener, data );
_ownListeners.push_back( OwnListenerData( where, listener ));
}
}
//================================================================================
/*!
* \brief Sets an event listener and its data to a submesh
* \param listener - the listener to store
* \param data - the listener data to store
*
* After being set, event listener is notified on each event of a submesh.
*/
//================================================================================
void SMESH_subMesh::setEventListener(EventListener* listener, EventListenerData* data)
{
map< EventListener*, EventListenerData* >::iterator l_d =
_eventListeners.find( listener );
if ( l_d != _eventListeners.end() ) {
EventListenerData* curData = l_d->second;
if ( curData && curData != data && curData->IsDeletable() )
delete curData;
l_d->second = data;
}
else
_eventListeners.insert( make_pair( listener, data ));
}
//================================================================================
/*!
* \brief Return an event listener data
* \param listener - the listener whose data is
* \retval EventListenerData* - found data, maybe NULL
*/
//================================================================================
EventListenerData* SMESH_subMesh::GetEventListenerData(EventListener* listener) const
{
map< EventListener*, EventListenerData* >::const_iterator l_d =
_eventListeners.find( listener );
if ( l_d != _eventListeners.end() )
return l_d->second;
return 0;
}
//================================================================================
/*!
* \brief Notify stored event listeners on the occured event
* \param event - algo_event or compute_event itself
* \param eventType - algo_event or compute_event
* \param hyp - hypothesis, if eventType is algo_event
*/
//================================================================================
void SMESH_subMesh::notifyListenersOnEvent( const int event,
const event_type eventType,
SMESH_Hypothesis* hyp)
{
map< EventListener*, EventListenerData* >::iterator l_d = _eventListeners.begin();
for ( ; l_d != _eventListeners.end(); ++l_d )
{
std::pair< EventListener*, EventListenerData* > li_da = *l_d; /* copy to enable removal
of a listener from
_eventListeners by
its ProcessEvent() */
if ( li_da.first->myBusySM.insert( this ).second )
{
li_da.first->ProcessEvent( event, eventType, this, li_da.second, hyp );
li_da.first->myBusySM.erase( this );
}
}
}
//================================================================================
/*!
* \brief Unregister the listener and delete listener's data
* \param listener - the event listener
*/
//================================================================================
void SMESH_subMesh::DeleteEventListener(EventListener* listener)
{
map< EventListener*, EventListenerData* >::iterator l_d =
_eventListeners.find( listener );
if ( l_d != _eventListeners.end() ) {
if ( l_d->first && l_d->first->IsDeletable() ) delete l_d->first;
if ( l_d->second && l_d->second->IsDeletable() ) delete l_d->second;
_eventListeners.erase( l_d );
}
}
//================================================================================
/*!
* \brief Delete event listeners depending on algo of this submesh
*/
//================================================================================
void SMESH_subMesh::deleteOwnListeners()
{
list< OwnListenerData >::iterator d;
for ( d = _ownListeners.begin(); d != _ownListeners.end(); ++d )
{
if ( !_father->MeshExists( d->myMeshID ))
continue;
if ( _father->GetId() == d->myMeshID && !_father->GetSubMeshContaining( d->mySubMeshID ))
continue;
d->mySubMesh->DeleteEventListener( d->myListener );
}
_ownListeners.clear();
}
//=======================================================================
//function : loadDependentMeshes
//purpose : loads dependent meshes on SUBMESH_LOADED event
//=======================================================================
void SMESH_subMesh::loadDependentMeshes()
{
list< OwnListenerData >::iterator d;
for ( d = _ownListeners.begin(); d != _ownListeners.end(); ++d )
if ( _father != d->mySubMesh->_father )
d->mySubMesh->_father->Load();
// map< EventListener*, EventListenerData* >::iterator l_d = _eventListeners.begin();
// for ( ; l_d != _eventListeners.end(); ++l_d )
// if ( l_d->second )
// {
// const list<SMESH_subMesh*>& smList = l_d->second->mySubMeshes;
// list<SMESH_subMesh*>::const_iterator sm = smList.begin();
// for ( ; sm != smList.end(); ++sm )
// if ( _father != (*sm)->_father )
// (*sm)->_father->Load();
// }
}
//================================================================================
/*!
* \brief Do something on a certain event
* \param event - algo_event or compute_event itself
* \param eventType - algo_event or compute_event
* \param subMesh - the submesh where the event occures
* \param data - listener data stored in the subMesh
* \param hyp - hypothesis, if eventType is algo_event
*
* The base implementation translates CLEAN event to the subMesh
* stored in listener data. Also it sends SUBMESH_COMPUTED event in case of
* successful COMPUTE event.
*/
//================================================================================
void SMESH_subMeshEventListener::ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* subMesh,
EventListenerData* data,
const SMESH_Hypothesis* /*hyp*/)
{
if ( data && !data->mySubMeshes.empty() &&
eventType == SMESH_subMesh::COMPUTE_EVENT)
{
ASSERT( data->mySubMeshes.front() != subMesh );
list<SMESH_subMesh*>::iterator smIt = data->mySubMeshes.begin();
list<SMESH_subMesh*>::iterator smEnd = data->mySubMeshes.end();
switch ( event ) {
case SMESH_subMesh::CLEAN:
for ( ; smIt != smEnd; ++ smIt)
(*smIt)->ComputeStateEngine( event );
break;
case SMESH_subMesh::COMPUTE:
if ( subMesh->GetComputeState() == SMESH_subMesh::COMPUTE_OK )
for ( ; smIt != smEnd; ++ smIt)
(*smIt)->ComputeStateEngine( SMESH_subMesh::SUBMESH_COMPUTED );
break;
default:;
}
}
}
namespace {
//================================================================================
/*!
* \brief Iterator over submeshes and optionally prepended or appended one
*/
//================================================================================
struct _Iterator : public SMDS_Iterator<SMESH_subMesh*>
{
_Iterator(SMDS_Iterator<SMESH_subMesh*>* subIt,
SMESH_subMesh* prepend,
SMESH_subMesh* append): myIt(subIt),myAppend(append)
{
myCur = prepend ? prepend : myIt->more() ? myIt->next() : append;
if ( myCur == append ) append = 0;
}
/// Return true if and only if there are other object in this iterator
virtual bool more()
{
return myCur;
}
/// Return the current object and step to the next one
virtual SMESH_subMesh* next()
{
SMESH_subMesh* res = myCur;
if ( myIt->more() ) { myCur = myIt->next(); }
else { myCur = myAppend; myAppend = 0; }
return res;
}
/// ~
~_Iterator()
{ delete myIt; }
///
SMESH_subMesh *myAppend, *myCur;
SMDS_Iterator<SMESH_subMesh*> *myIt;
};
}
//================================================================================
/*!
* \brief Return iterator on the submeshes this one depends on
* \param includeSelf - this submesh to be returned also
* \param reverse - if true, complex shape submeshes go first
*/
//================================================================================
SMESH_subMeshIteratorPtr SMESH_subMesh::getDependsOnIterator(const bool includeSelf,
const bool reverse)
{
SMESH_subMesh *prepend=0, *append=0;
if ( includeSelf ) {
if ( reverse ) prepend = this;
else append = this;
}
typedef map < int, SMESH_subMesh * > TMap;
if ( reverse )
{
return SMESH_subMeshIteratorPtr
( new _Iterator( new SMDS_mapReverseIterator<TMap>( DependsOn() ), prepend, append ));
}
{
return SMESH_subMeshIteratorPtr
( new _Iterator( new SMDS_mapIterator<TMap>( DependsOn() ), prepend, append ));
}
}
//================================================================================
/*!
* \brief Find common submeshes (based on shared sub-shapes with other
* \param theOther submesh to check
* \param theSetOfCommon set of common submesh
*/
//================================================================================
bool SMESH_subMesh::FindIntersection(const SMESH_subMesh* theOther,
std::set<const SMESH_subMesh*>& theSetOfCommon ) const
{
int oldNb = theSetOfCommon.size();
// check main submeshes
const map <int, SMESH_subMesh*>::const_iterator otherEnd = theOther->_mapDepend.end();
if ( theOther->_mapDepend.find(this->GetId()) != otherEnd )
theSetOfCommon.insert( this );
if ( _mapDepend.find(theOther->GetId()) != _mapDepend.end() )
theSetOfCommon.insert( theOther );
// check common submeshes
map <int, SMESH_subMesh*>::const_iterator mapIt = _mapDepend.begin();
for( ; mapIt != _mapDepend.end(); mapIt++ )
if ( theOther->_mapDepend.find((*mapIt).first) != otherEnd )
theSetOfCommon.insert( (*mapIt).second );
return oldNb < theSetOfCommon.size();
}