smesh/src/Tools/MeshCut/MeshCut_Fonctions.cxx
eap 65c1beab50 Fix regressions
1) 2D_mesh_QuadranglePreference_01/B5 ( StdMeshers_Quadrangle_2D.cxx )
2) viscous_layers_01/B2, B8 ( StdMeshers_ViscousLayers.cxx )

+ Fix compilation warning "variable may be used uninitialized"
2016-05-19 20:50:08 +03:00

189 lines
5.5 KiB
C++

// Copyright (C) 2006-2016 EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
#include "MeshCut_Fonctions.hxx"
#include "MeshCut_Globals.hxx"
#include <iostream>
#include <cmath>
using namespace MESHCUT;
using namespace std;
//=================================================================================================
// intersectionSegmentPlan
//=================================================================================================
float MESHCUT::longueurSegment(int ngA, int ngB)
{
float A[3], B[3];
A[0] = MAILLAGE1->XX[ngA - 1];
A[1] = MAILLAGE1->YY[ngA - 1];
A[2] = MAILLAGE1->ZZ[ngA - 1];
B[0] = MAILLAGE1->XX[ngB - 1];
B[1] = MAILLAGE1->YY[ngB - 1];
B[2] = MAILLAGE1->ZZ[ngB - 1];
float dx = B[0] - A[0];
float dy = B[1] - A[1];
float dz = B[2] - A[2];
return sqrt(dx * dx + dy * dy + dz * dz);
}
float MESHCUT::distanceNoeudPlan(float point[3])
{
return normale[0] * point[0] + normale[1] * point[1] + normale[2] * point[2] + d;
}
float MESHCUT::distanceNoeudPlan(int ng)
{
float A[3];
A[0] = MAILLAGE1->XX[ng - 1];
A[1] = MAILLAGE1->YY[ng - 1];
A[2] = MAILLAGE1->ZZ[ng - 1];
return distanceNoeudPlan(A);
}
int MESHCUT::positionNoeudPlan(int indiceNoeud)
{
if (distanceNoeudPlan(indiceNoeud + 1) > epsilon)
return 1;
else if (distanceNoeudPlan(indiceNoeud + 1) < -epsilon)
return -1;
else
return 0;
}
/*!
* Equation paramétrique de la droite AB: OP = OA + lambda AB
*
* Fonction caractéristique du plan : PI(X,Y,Z) = nx X + ny Y + nz Z + d
*
* Pour un point P de la droite: PI(OP) = PI(OA) + lambda n.AB avec n=(nx,ny,nz),
* L'intersection AB/plan est donnée par le point P tel que PI(OP)=0.
*
* Il lui correspond la coordonnée lambda = - PI(OA) / n.AB.
*
* Cette intersection est dans le segment si lambda est dans [0,1]
*/
int MESHCUT::intersectionSegmentPlan(int it4, int na)
{
int ngA = -1, ngB = -1; // Numéros des noeuds extrémités AB
float lambda, ps; //, ab; // ab = longueur AB
float A[3], B[3];
// Détermination des ng des extrémités de l'arête passée en argument na
int * offset = MAILLAGE1->CNX[TETRA4] + 4 * it4;
if (na == 0)
{
ngA = *(offset + 0);
ngB = *(offset + 1);
}
else if (na == 1)
{
ngA = *(offset + 0);
ngB = *(offset + 2);
}
else if (na == 2)
{
ngA = *(offset + 0);
ngB = *(offset + 3);
}
else if (na == 3)
{
ngA = *(offset + 1);
ngB = *(offset + 2);
}
else if (na == 4)
{
ngA = *(offset + 1);
ngB = *(offset + 3);
}
else if (na == 5)
{
ngA = *(offset + 2);
ngB = *(offset + 3);
}
else
ERREUR("Edge number superior to 6");
string cle1 = int2string(ngA) + (string) "_" + int2string(ngB);
string cle2 = int2string(ngB) + (string) "_" + int2string(ngA);
if (intersections[cle1])
return intersections[cle1];
else
{
A[0] = MAILLAGE1->XX[ngA - 1];
A[1] = MAILLAGE1->YY[ngA - 1];
A[2] = MAILLAGE1->ZZ[ngA - 1];
B[0] = MAILLAGE1->XX[ngB - 1];
B[1] = MAILLAGE1->YY[ngB - 1];
B[2] = MAILLAGE1->ZZ[ngB - 1];
// // Longueur AB
// float lx = B[0] - A[0], ly = B[1] - A[1], lz = B[2] - A[2];
// ab = sqrt(lx * lx + ly * ly + lz * lz);
// // La longueur maximale théorique est 2 epsilon
// if (ab < 2 * epsilon * 0.9)
// ERREUR("Arête de longueur inférieure au minimum théorique 2 epsilon");
// Calcul du produit scalaire AB.n
ps = 0.0;
for (int k = 0; k < 3; k++)
ps += (B[k] - A[k]) * normale[k];
// ps = ps / ab ;
if (debug)
{
cout << "Routine ISP : arête " << na << " - ngA=" << ngA << " ngB=" << ngB << endl;
cout << "A : " << A[0] << ' ' << A[1] << ' ' << A[2] << endl;
cout << "B : " << B[0] << ' ' << B[1] << ' ' << B[2] << endl;
cout << "N : " << normale[0] << ' ' << normale[1] << ' ' << normale[2] << endl;
}
if (fabs(ps) == 0.0)
ERREUR("Error on null scalar product");
// PS non nul: l'intersection AB/plan existe
lambda = -distanceNoeudPlan(A) / ps;
float inter[3];
for (int k = 0; k < 3; k++)
inter[k] = A[k] + lambda * (B[k] - A[k]);
newXX.push_back(inter[0]);
newYY.push_back(inter[1]);
newZZ.push_back(inter[2]);
indexNouveauxNoeuds++;
intersections[cle1] = indexNouveauxNoeuds;
intersections[cle2] = indexNouveauxNoeuds;
// cout << "création noeud " << indexNouveauxNoeuds << " : " << inter[0] << " " << inter[1] << " " << inter[2]
// << endl;
if (debug)
cout << " sortie nouveau noeud, lambda = " << lambda << " , noeud = " << indexNouveauxNoeuds << endl;
return indexNouveauxNoeuds;
}
}