smesh/src/SMESH/SMESH_Pattern.hxx
2012-06-05 12:18:07 +00:00

390 lines
15 KiB
C++

// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : SMESH_Pattern.hxx
// Created : Mon Aug 2 10:30:00 2004
// Author : Edward AGAPOV (eap)
//
#ifndef SMESH_Pattern_HeaderFile
#define SMESH_Pattern_HeaderFile
#include "SMESH_SMESH.hxx"
#include <vector>
#include <list>
#include <map>
#include <set>
#include <iostream>
#include <TopoDS_Shape.hxx>
#include <TopTools_IndexedMapOfOrientedShape.hxx>
#include <gp_XYZ.hxx>
#include <gp_XY.hxx>
#include <gp_Pnt.hxx>
class SMDS_MeshElement;
class SMDS_MeshFace;
class SMDS_MeshVolume;
class SMDS_MeshNode;
class SMESH_Mesh;
class SMESHDS_SubMesh;
class TopoDS_Shell;
class TopoDS_Vertex;
class TopoDS_Face;
class TopoDS_Edge;
//
// Class allowing meshing by mapping of pre-defined patterns: it generates
// a 2D mesh on a geometrical face or a 3D mesh inside a geometrical block
// of 6 faces.
//
class SMESH_EXPORT SMESH_Pattern {
public:
SMESH_Pattern ();
void Clear();
// clear fields
bool Load (const char* theFileContents);
// Load a pattern from <theFileContents>
bool Load (SMESH_Mesh* theMesh,
const TopoDS_Face& theFace,
bool theProject = false);
// Create a pattern from the mesh built on <theFace>.
// <theProject>==true makes override nodes positions
// on <theFace> computed by mesher
bool Load (SMESH_Mesh* theMesh,
const TopoDS_Shell& theBlock);
// Create a pattern from the mesh built on <theBlock>
bool Save (std::ostream& theFile);
// Save the loaded pattern into theFile
bool Apply (const TopoDS_Face& theFace,
const TopoDS_Vertex& theVertexOnKeyPoint1,
const bool theReverse);
// Compute nodes coordinates applying
// the loaded pattern to <theFace>. The first key-point
// will be mapped into <theVertexOnKeyPoint1>, which must
// be in the outer wire of theFace
bool Apply (const TopoDS_Shell& theBlock,
const TopoDS_Vertex& theVertex000,
const TopoDS_Vertex& theVertex001);
// Compute nodes coordinates applying
// the loaded pattern to <theBlock>. The (0,0,0) key-point
// will be mapped into <theVertex000>. The
// (0,0,1) key-point will be mapped into <theVertex001>.
bool Apply (const SMDS_MeshFace* theFace,
const int theNodeIndexOnKeyPoint1,
const bool theReverse);
// Compute nodes coordinates applying
// the loaded pattern to <theFace>. The first key-point
// will be mapped into <theNodeIndexOnKeyPoint1>-th node
bool Apply (SMESH_Mesh* theMesh,
const SMDS_MeshFace* theFace,
const TopoDS_Shape& theSurface,
const int theNodeIndexOnKeyPoint1,
const bool theReverse);
// Compute nodes coordinates applying
// the loaded pattern to <theFace>. The first key-point
// will be mapped into <theNodeIndexOnKeyPoint1>-th node
bool Apply (SMESH_Mesh* theMesh,
std::set<const SMDS_MeshFace*>& theFaces,
const int theNodeIndexOnKeyPoint1,
const bool theReverse);
// Compute nodes coordinates applying
// the loaded pattern to <theFaces>. The first key-point
// will be mapped into <theNodeIndexOnKeyPoint1>-th node
bool Apply (const SMDS_MeshVolume* theVolume,
const int theNode000Index,
const int theNode001Index);
// Compute nodes coordinates applying
// the loaded pattern to <theVolume>. The (0,0,0) key-point
// will be mapped into <theNode000Index>-th node. The
// (0,0,1) key-point will be mapped into <theNode000Index>-th
// node.
bool Apply (std::set<const SMDS_MeshVolume*>& theVolumes,
const int theNode000Index,
const int theNode001Index);
// Compute nodes coordinates applying
// the loaded pattern to <theVolumes>. The (0,0,0) key-point
// will be mapped into <theNode000Index>-th node. The
// (0,0,1) key-point will be mapped into <theNode000Index>-th
// node.
bool GetMappedPoints ( std::list<const gp_XYZ *> & thePoints ) const;
// Return nodes coordinates computed by Apply() method
bool MakeMesh(SMESH_Mesh* theMesh,
const bool toCreatePolygons = false,
const bool toCreatePolyedrs = false);
// Create nodes and elements in <theMesh> using nodes
// coordinates computed by either of Apply...() methods
// ----------
// Inquiries
// ----------
enum ErrorCode {
ERR_OK,
// Load(file)
ERR_READ_NB_POINTS, // couldn't read nb of points
ERR_READ_POINT_COORDS, // invalid nb of point coordinates
ERR_READ_TOO_FEW_POINTS, // too few points in a pattern
ERR_READ_3D_COORD, // coordinate of 3D point out of [0,1] range
ERR_READ_NO_KEYPOINT, // no key-points in 2D pattern
ERR_READ_BAD_INDEX, // invalid point index
ERR_READ_ELEM_POINTS, // invalid nb of points in element
ERR_READ_NO_ELEMS, // no elements in a pattern
ERR_READ_BAD_KEY_POINT, // a key-point not on a boundary
// Save(file)
ERR_SAVE_NOT_LOADED, // pattern was not loaded
// Load(shape)
ERR_LOAD_EMPTY_SUBMESH, // no elements to load
// Load(face)
ERR_LOADF_NARROW_FACE, // too narrow face
ERR_LOADF_CLOSED_FACE, // closed face
ERR_LOADF_CANT_PROJECT, // impossible to project nodes
// Load(volume)
ERR_LOADV_BAD_SHAPE, // volume is not a brick of 6 faces
ERR_LOADV_COMPUTE_PARAMS, // cant compute point parameters
// Apply(shape)
ERR_APPL_NOT_COMPUTED, // mapping failed
ERR_APPL_NOT_LOADED, // pattern was not loaded
ERR_APPL_BAD_DIMENTION, // wrong shape dimention
ERR_APPL_BAD_NB_VERTICES, // keypoints - vertices mismatch
// Apply(face)
ERR_APPLF_BAD_TOPOLOGY, // bad pattern topology
ERR_APPLF_BAD_VERTEX, // first vertex not on an outer face boundary
ERR_APPLF_INTERNAL_EEROR, // program error
// Apply(volume)
ERR_APPLV_BAD_SHAPE, // volume is not a brick of 6 faces
// Apply(mesh_face)
ERR_APPLF_BAD_FACE_GEOM, // bad face geometry
// MakeMesh
ERR_MAKEM_NOT_COMPUTED, // mapping failed
//Unexpected error
ERR_UNEXPECTED // Unexpected of the pattern mapping alorithm
};
ErrorCode GetErrorCode() const { return myErrorCode; }
// return ErrorCode of the last operation
bool IsLoaded() const { return !myPoints.empty() && !myElemPointIDs.empty(); }
// Return true if a pattern was successfully loaded
bool Is2D() const { return myIs2D; }
// Return true if the loaded pattern is a 2D one
bool GetPoints ( std::list<const gp_XYZ *> & thePoints ) const;
// Return nodes coordinates of the pattern
const std::list< int > & GetKeyPointIDs () const { return myKeyPointIDs; }
// Return indices of key-points within the sequences returned by
// GetPoints() and GetMappedPoints()
const std::list< std::list< int > >& GetElementPointIDs (bool applied) const
{ return myElemXYZIDs.empty() || !applied ? myElemPointIDs : myElemXYZIDs; }
// Return nodal connectivity of the elements of the pattern
void DumpPoints() const;
// Debug
// -----------------------------
// Utilities for advanced usage
// -----------------------------
TopoDS_Shape GetSubShape( const int i ) const {
if ( i < 1 || i > myShapeIDMap.Extent() ) return TopoDS_Shape();
return myShapeIDMap( i );
}
// Return a shape from myShapeIDMap where shapes are indexed so that first go
// ordered vertices, then ordered edge, then faces and maybe a shell
private:
// private methods
struct TPoint {
gp_XYZ myInitXYZ; // loaded postion
gp_XY myInitUV;
double myInitU; // [0,1]
gp_Pnt myXYZ; // position to compute
gp_XY myUV;
double myU;
TPoint();
};
friend std::ostream & operator <<(std::ostream & OS, const TPoint& p);
bool setErrorCode( const ErrorCode theErrorCode );
// set ErrorCode and return true if it is Ok
bool setShapeToMesh(const TopoDS_Shape& theShape);
// Set a shape to be meshed. Return True if meshing is possible
std::list< TPoint* > & getShapePoints(const TopoDS_Shape& theShape);
// Return list of points located on theShape.
// A list of edge-points include vertex-points (for 2D pattern only).
// A list of face-points doesnt include edge-points.
// A list of volume-points doesnt include face-points.
std::list< TPoint* > & getShapePoints(const int theShapeID);
// Return list of points located on the shape
bool findBoundaryPoints();
// If loaded from file, find points to map on edges and faces and
// compute their parameters
void arrangeBoundaries (std::list< std::list< TPoint* > >& boundaryPoints);
// if there are several wires, arrange boundaryPoints so that
// the outer wire goes first and fix inner wires orientation;
// update myKeyPointIDs to correspond to the order of key-points
// in boundaries; sort internal boundaries by the nb of key-points
void computeUVOnEdge( const TopoDS_Edge& theEdge, const std::list< TPoint* > & ePoints );
// compute coordinates of points on theEdge
bool compUVByIsoIntersection (const std::list< std::list< TPoint* > >& boundaryPoints,
const gp_XY& theInitUV,
gp_XY& theUV,
bool & theIsDeformed);
// compute UV by intersection of iso-lines found by points on edges
bool compUVByElasticIsolines(const std::list< std::list< TPoint* > >& boundaryPoints,
const std::list< TPoint* >& pointsToCompute);
// compute UV as nodes of iso-poly-lines consisting of
// segments keeping relative size as in the pattern
double setFirstEdge (std::list< TopoDS_Edge > & theWire, int theFirstEdgeID);
// choose the best first edge of theWire; return the summary distance
// between point UV computed by isolines intersection and
// eventual UV got from edge p-curves
typedef std::list< std::list< TopoDS_Edge > > TListOfEdgesList;
bool sortSameSizeWires (TListOfEdgesList & theWireList,
const TListOfEdgesList::iterator& theFromWire,
const TListOfEdgesList::iterator& theToWire,
const int theFirstEdgeID,
std::list< std::list< TPoint* > >& theEdgesPointsList );
// sort wires in theWireList from theFromWire until theToWire,
// the wires are set in the order to correspond to the order
// of boundaries; after sorting, edges in the wires are put
// in a good order, point UVs on edges are computed and points
// are appended to theEdgesPointsList
typedef std::set<const SMDS_MeshNode*> TNodeSet;
void mergePoints (const bool uniteGroups);
// Merge XYZ on edges and/or faces.
void makePolyElements(const std::vector< const SMDS_MeshNode* >& theNodes,
const bool toCreatePolygons,
const bool toCreatePolyedrs);
// prepare intermediate data to create Polygons and Polyhedrons
void createElements(SMESH_Mesh* theMesh,
const std::vector<const SMDS_MeshNode* >& theNodesVector,
const std::list< std::list< int > > & theElemNodeIDs,
const std::vector<const SMDS_MeshElement*>& theElements);
// add elements to the mesh
bool getFacesDefinition(const SMDS_MeshNode** theBndNodes,
const int theNbBndNodes,
const std::vector< const SMDS_MeshNode* >& theNodes,
std::list< int >& theFaceDefs,
std::vector<int>& theQuantity);
// fill faces definition for a volume face defined by theBndNodes
// return true if a face definition changes
bool isReversed(const SMDS_MeshNode* theFirstNode,
const std::list< int >& theIdsList) const;
// check xyz ids order in theIdsList taking into account
// theFirstNode on a link
void clearMesh(SMESH_Mesh* theMesh) const;
// clear mesh elements existing on myShape in theMesh
static SMESHDS_SubMesh * getSubmeshWithElements(SMESH_Mesh* theMesh,
const TopoDS_Shape& theShape);
// return submesh containing elements bound to theShape in theMesh
private:
// fields
typedef std::list< int > TElemDef; // element definition is its nodes ids
bool myIs2D;
std::vector< TPoint > myPoints;
std::list< int > myKeyPointIDs;
std::list< TElemDef > myElemPointIDs;
ErrorCode myErrorCode;
bool myIsComputed;
bool myIsBoundaryPointsFound;
TopoDS_Shape myShape;
// all functions assure that shapes are indexed so that first go
// ordered vertices, then ordered edge, then faces and maybe a shell
TopTools_IndexedMapOfOrientedShape myShapeIDMap;
std::map< int, std::list< TPoint* > > myShapeIDToPointsMap;
// for the 2d case:
// nb of key-points in each of pattern boundaries
std::list< int > myNbKeyPntInBoundary;
// to compute while applying to mesh elements, not to shapes
std::vector<gp_XYZ> myXYZ; // XYZ of nodes to create
std::list< TElemDef > myElemXYZIDs; // new elements definitions
std::map< int, const SMDS_MeshNode*> myXYZIdToNodeMap; // map XYZ id to node of a refined element
std::vector<const SMDS_MeshElement*> myElements; // refined elements
std::vector<const SMDS_MeshNode*> myOrderedNodes;
// elements to replace with polygon or polyhedron
std::vector<const SMDS_MeshElement*> myPolyElems;
// definitions of new poly elements
std::list< TElemDef > myPolyElemXYZIDs;
std::list< std::vector<int> > myPolyhedronQuantities;
// map a boundary to XYZs on it;
// a boundary (edge or face) is defined as a set of its nodes,
// XYZs on a boundary are indices of myXYZ s
std::map<TNodeSet,std::list<std::list<int> > > myIdsOnBoundary;
// map XYZ id to element it is in
std::map< int, std::list< TElemDef* > > myReverseConnectivity;
};
#endif