smesh/src/SMDS/SMDS_VolumeTool.cxx
2016-03-18 20:10:28 +03:00

2196 lines
68 KiB
C++

// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : SMDS_VolumeTool.cxx
// Created : Tue Jul 13 12:22:13 2004
// Author : Edward AGAPOV (eap)
//
#ifdef _MSC_VER
#pragma warning(disable:4786)
#endif
#include "SMDS_VolumeTool.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_VtkVolume.hxx"
#include "SMDS_Mesh.hxx"
#include "utilities.h"
#include <map>
#include <limits>
#include <cmath>
#include <numeric>
#include <algorithm>
using namespace std;
namespace
{
// ======================================================
// Node indices in faces depending on volume orientation
// making most faces normals external
// ======================================================
// For all elements, 0-th face is bottom based on the first nodes.
// For prismatic elements (tetra,hexa,prisms), 1-th face is a top one.
// For all elements, side faces follow order of bottom nodes
// ======================================================
/*
// N3
// +
// /|\
// / | \
// / | \
// N0 +---|---+ N1 TETRAHEDRON
// \ | /
// \ | /
// \ | /
// \|/
// +
// N2
*/
static int Tetra_F [4][4] = { // FORWARD == EXTERNAL
{ 0, 1, 2, 0 }, // All faces have external normals
{ 0, 3, 1, 0 },
{ 1, 3, 2, 1 },
{ 0, 2, 3, 0 }};
static int Tetra_RE [4][4] = { // REVERSED -> FORWARD (EXTERNAL)
{ 0, 2, 1, 0 }, // All faces have external normals
{ 0, 1, 3, 0 },
{ 1, 2, 3, 1 },
{ 0, 3, 2, 0 }};
static int Tetra_nbN [] = { 3, 3, 3, 3 };
//
// PYRAMID
//
static int Pyramid_F [5][5] = { // FORWARD == EXTERNAL
{ 0, 1, 2, 3, 0 }, // All faces have external normals
{ 0, 4, 1, 0, 4 },
{ 1, 4, 2, 1, 4 },
{ 2, 4, 3, 2, 4 },
{ 3, 4, 0, 3, 4 }
};
static int Pyramid_RE [5][5] = { // REVERSED -> FORWARD (EXTERNAL)
{ 0, 3, 2, 1, 0 }, // All faces but a bottom have external normals
{ 0, 1, 4, 0, 4 },
{ 1, 2, 4, 1, 4 },
{ 2, 3, 4, 2, 4 },
{ 3, 0, 4, 3, 4 }};
static int Pyramid_nbN [] = { 4, 3, 3, 3, 3 };
/*
// + N4
// /|\
// / | \
// / | \
// / | \
// N3 +---------+ N5
// | | |
// | + N1 |
// | / \ | PENTAHEDRON
// | / \ |
// | / \ |
// |/ \|
// N0 +---------+ N2
*/
static int Penta_F [5][5] = { // FORWARD
{ 0, 1, 2, 0, 0 }, // All faces have external normals
{ 3, 5, 4, 3, 3 }, // 0 is bottom, 1 is top face
{ 0, 3, 4, 1, 0 },
{ 1, 4, 5, 2, 1 },
{ 0, 2, 5, 3, 0 }};
static int Penta_RE [5][5] = { // REVERSED -> EXTERNAL
{ 0, 2, 1, 0, 0 },
{ 3, 4, 5, 3, 3 },
{ 0, 1, 4, 3, 0 },
{ 1, 2, 5, 4, 1 },
{ 0, 3, 5, 2, 0 }};
static int Penta_nbN [] = { 3, 3, 4, 4, 4 };
/*
// N5+----------+N6
// /| /|
// / | / |
// / | / |
// N4+----------+N7 |
// | | | | HEXAHEDRON
// | N1+------|---+N2
// | / | /
// | / | /
// |/ |/
// N0+----------+N3
*/
static int Hexa_F [6][5] = { // FORWARD
{ 0, 1, 2, 3, 0 },
{ 4, 7, 6, 5, 4 }, // all face normals are external
{ 0, 4, 5, 1, 0 },
{ 1, 5, 6, 2, 1 },
{ 3, 2, 6, 7, 3 },
{ 0, 3, 7, 4, 0 }};
static int Hexa_RE [6][5] = { // REVERSED -> EXTERNAL
{ 0, 3, 2, 1, 0 },
{ 4, 5, 6, 7, 4 }, // all face normals are external
{ 0, 1, 5, 4, 0 },
{ 1, 2, 6, 5, 1 },
{ 3, 7, 6, 2, 3 },
{ 0, 4, 7, 3, 0 }};
static int Hexa_nbN [] = { 4, 4, 4, 4, 4, 4 };
static int Hexa_oppF[] = { 1, 0, 4, 5, 2, 3 }; // oppopsite facet indices
/*
// N8 +------+ N9
// / \
// / \
// N7 + + N10
// \ /
// \ /
// N6 +------+ N11
// HEXAGONAL PRISM
// N2 +------+ N3
// / \
// / \
// N1 + + N4
// \ /
// \ /
// N0 +------+ N5
*/
static int HexPrism_F [8][7] = { // FORWARD
{ 0, 1, 2, 3, 4, 5, 0 },
{ 6,11,10, 9, 8, 7, 6 },
{ 0, 6, 7, 1, 0, 0, 0 },
{ 1, 7, 8, 2, 1, 1, 1 },
{ 2, 8, 9, 3, 2, 2, 2 },
{ 3, 9,10, 4, 3, 3, 3 },
{ 4,10,11, 5, 4, 4, 4 },
{ 5,11, 6, 0, 5, 5, 5 }};
static int HexPrism_RE [8][7] = { // REVERSED -> EXTERNAL
{ 0, 5, 4, 3, 2, 1, 0 },
{ 6,11,10, 9, 8, 7, 6 },
{ 0, 6, 7, 1, 0, 0, 0 },
{ 1, 7, 8, 2, 1, 1, 1 },
{ 2, 8, 9, 3, 2, 2, 2 },
{ 3, 9,10, 4, 3, 3, 3 },
{ 4,10,11, 5, 4, 4, 4 },
{ 5,11, 6, 0, 5, 5, 5 }};
static int HexPrism_nbN [] = { 6, 6, 4, 4, 4, 4, 4, 4 };
/*
// N3
// +
// /|\
// 7/ | \8
// / |4 \ QUADRATIC
// N0 +---|---+ N1 TETRAHEDRON
// \ +9 /
// \ | /
// 6\ | /5
// \|/
// +
// N2
*/
static int QuadTetra_F [4][7] = { // FORWARD
{ 0, 4, 1, 5, 2, 6, 0 }, // All faces have external normals
{ 0, 7, 3, 8, 1, 4, 0 },
{ 1, 8, 3, 9, 2, 5, 1 },
{ 0, 6, 2, 9, 3, 7, 0 }};
static int QuadTetra_RE [4][7] = { // REVERSED -> FORWARD (EXTERNAL)
{ 0, 6, 2, 5, 1, 4, 0 }, // All faces have external normals
{ 0, 4, 1, 8, 3, 7, 0 },
{ 1, 5, 2, 9, 3, 8, 1 },
{ 0, 7, 3, 9, 2, 6, 0 }};
static int QuadTetra_nbN [] = { 6, 6, 6, 6 };
//
// QUADRATIC
// PYRAMID
//
// +4
//
//
// 10+-----+11
// | | 9 - middle point for (0,4) etc.
// | |
// 9+-----+12
//
// 6
// 1+----+----+2
// | |
// | |
// 5+ +7
// | |
// | |
// 0+----+----+3
// 8
static int QuadPyram_F [5][9] = { // FORWARD
{ 0, 5, 1, 6, 2, 7, 3, 8, 0 }, // All faces have external normals
{ 0, 9, 4, 10,1, 5, 0, 4, 4 },
{ 1, 10,4, 11,2, 6, 1, 4, 4 },
{ 2, 11,4, 12,3, 7, 2, 4, 4 },
{ 3, 12,4, 9, 0, 8, 3, 4, 4 }};
static int QuadPyram_RE [5][9] = { // REVERSED -> FORWARD (EXTERNAL)
{ 0, 8, 3, 7, 2, 6, 1, 5, 0 }, // All faces but a bottom have external normals
{ 0, 5, 1, 10,4, 9, 0, 4, 4 },
{ 1, 6, 2, 11,4, 10,1, 4, 4 },
{ 2, 7, 3, 12,4, 11,2, 4, 4 },
{ 3, 8, 0, 9, 4, 12,3, 4, 4 }};
static int QuadPyram_nbN [] = { 8, 6, 6, 6, 6 };
/*
// + N4
// /|\
// 9/ | \10
// / | \
// / | \
// N3 +----+----+ N5
// | |11 |
// | | |
// | +13 | QUADRATIC
// | | | PENTAHEDRON
// 12+ | +14
// | | |
// | | |
// | + N1 |
// | / \ |
// | 6/ \7 |
// | / \ |
// |/ \|
// N0 +---------+ N2
// 8
*/
static int QuadPenta_F [5][9] = { // FORWARD
{ 0, 6, 1, 7, 2, 8, 0, 0, 0 },
{ 3, 11,5, 10,4, 9, 3, 3, 3 },
{ 0, 12,3, 9, 4, 13,1, 6, 0 },
{ 1, 13,4, 10,5, 14,2, 7, 1 },
{ 0, 8, 2, 14,5, 11,3, 12,0 }};
static int QuadPenta_RE [5][9] = { // REVERSED -> EXTERNAL
{ 0, 8, 2, 7, 1, 6, 0, 0, 0 },
{ 3, 9, 4, 10,5, 11,3, 3, 3 },
{ 0, 6, 1, 13,4, 9, 3, 12,0 },
{ 1, 7, 2, 14,5, 10,4, 13,1 },
{ 0, 12,3, 11,5, 14,2, 8, 0 }};
static int QuadPenta_nbN [] = { 6, 6, 8, 8, 8 };
/*
// 13
// N5+-----+-----+N6 +-----+-----+
// /| /| /| /|
// 12+ | 14+ | + | +25 + |
// / | / | / | / |
// N4+-----+-----+N7 | QUADRATIC +-----+-----+ | Central nodes
// | | 15 | | HEXAHEDRON | | | | of tri-quadratic
// | | | | | | | | HEXAHEDRON
// | 17+ | +18 | + 22+ | +
// | | | | |21 | | |
// | | | | | + | 26+ | + |
// | | | | | | |23 |
// 16+ | +19 | + | +24 + |
// | | | | | | | |
// | | 9 | | | | | |
// | N1+-----+-|---+N2 | +-----+-|---+
// | / | / | / | /
// | +8 | +10 | + 20+ | +
// |/ |/ |/ |/
// N0+-----+-----+N3 +-----+-----+
// 11
*/
static int QuadHexa_F [6][9] = { // FORWARD
{ 0, 8, 1, 9, 2, 10,3, 11,0 }, // all face normals are external,
{ 4, 15,7, 14,6, 13,5, 12,4 },
{ 0, 16,4, 12,5, 17,1, 8, 0 },
{ 1, 17,5, 13,6, 18,2, 9, 1 },
{ 3, 10,2, 18,6, 14,7, 19,3 },
{ 0, 11,3, 19,7, 15,4, 16,0 }};
static int QuadHexa_RE [6][9] = { // REVERSED -> EXTERNAL
{ 0, 11,3, 10,2, 9, 1, 8, 0 }, // all face normals are external
{ 4, 12,5, 13,6, 14,7, 15,4 },
{ 0, 8, 1, 17,5, 12,4, 16,0 },
{ 1, 9, 2, 18,6, 13,5, 17,1 },
{ 3, 19,7, 14,6, 18,2, 10,3 },
{ 0, 16,4, 15,7, 19,3, 11,0 }};
static int QuadHexa_nbN [] = { 8, 8, 8, 8, 8, 8 };
static int TriQuadHexa_F [6][9] = { // FORWARD
{ 0, 8, 1, 9, 2, 10,3, 11, 20 }, // all face normals are external
{ 4, 15,7, 14,6, 13,5, 12, 25 },
{ 0, 16,4, 12,5, 17,1, 8, 21 },
{ 1, 17,5, 13,6, 18,2, 9, 22 },
{ 3, 10,2, 18,6, 14,7, 19, 23 },
{ 0, 11,3, 19,7, 15,4, 16, 24 }};
static int TriQuadHexa_RE [6][9] = { // REVERSED -> EXTERNAL
{ 0, 11,3, 10,2, 9, 1, 8, 20 }, // opposite faces are neighbouring,
{ 4, 12,5, 13,6, 14,7, 15, 25 }, // all face normals are external
{ 0, 8, 1, 17,5, 12,4, 16, 21 },
{ 1, 9, 2, 18,6, 13,5, 17, 22 },
{ 3, 19,7, 14,6, 18,2, 10, 23 },
{ 0, 16,4, 15,7, 19,3, 11, 24 }};
static int TriQuadHexa_nbN [] = { 9, 9, 9, 9, 9, 9 };
// ========================================================
// to perform some calculations without linkage to CASCADE
// ========================================================
struct XYZ {
double x;
double y;
double z;
XYZ() { x = 0; y = 0; z = 0; }
XYZ( double X, double Y, double Z ) { x = X; y = Y; z = Z; }
XYZ( const XYZ& other ) { x = other.x; y = other.y; z = other.z; }
XYZ( const SMDS_MeshNode* n ) { x = n->X(); y = n->Y(); z = n->Z(); }
inline XYZ operator-( const XYZ& other );
inline XYZ operator+( const XYZ& other );
inline XYZ Crossed( const XYZ& other );
inline double Dot( const XYZ& other );
inline double Magnitude();
inline double SquareMagnitude();
};
inline XYZ XYZ::operator-( const XYZ& Right ) {
return XYZ(x - Right.x, y - Right.y, z - Right.z);
}
inline XYZ XYZ::operator+( const XYZ& Right ) {
return XYZ(x + Right.x, y + Right.y, z + Right.z);
}
inline XYZ XYZ::Crossed( const XYZ& Right ) {
return XYZ (y * Right.z - z * Right.y,
z * Right.x - x * Right.z,
x * Right.y - y * Right.x);
}
inline double XYZ::Dot( const XYZ& Other ) {
return(x * Other.x + y * Other.y + z * Other.z);
}
inline double XYZ::Magnitude() {
return sqrt (x * x + y * y + z * z);
}
inline double XYZ::SquareMagnitude() {
return (x * x + y * y + z * z);
}
//================================================================================
/*!
* \brief Return linear type corresponding to a quadratic one
*/
//================================================================================
SMDS_VolumeTool::VolumeType quadToLinear(SMDS_VolumeTool::VolumeType quadType)
{
SMDS_VolumeTool::VolumeType linType = SMDS_VolumeTool::VolumeType( int(quadType)-4 );
const int nbCornersByQuad = SMDS_VolumeTool::NbCornerNodes( quadType );
if ( SMDS_VolumeTool::NbCornerNodes( linType ) == nbCornersByQuad )
return linType;
int iLin = 0;
for ( ; iLin < SMDS_VolumeTool::NB_VOLUME_TYPES; ++iLin )
if ( SMDS_VolumeTool::NbCornerNodes( SMDS_VolumeTool::VolumeType( iLin )) == nbCornersByQuad)
return SMDS_VolumeTool::VolumeType( iLin );
return SMDS_VolumeTool::UNKNOWN;
}
} // namespace
//================================================================================
/*!
* \brief Saver/restorer of a SMDS_VolumeTool::myCurFace
*/
//================================================================================
struct SMDS_VolumeTool::SaveFacet
{
SMDS_VolumeTool::Facet mySaved;
SMDS_VolumeTool::Facet& myToRestore;
SaveFacet( SMDS_VolumeTool::Facet& facet ): myToRestore( facet )
{
mySaved = facet;
}
~SaveFacet()
{
if ( myToRestore.myIndex != mySaved.myIndex )
myToRestore = mySaved;
}
};
//=======================================================================
//function : SMDS_VolumeTool
//purpose :
//=======================================================================
SMDS_VolumeTool::SMDS_VolumeTool ()
{
Set( 0 );
}
//=======================================================================
//function : SMDS_VolumeTool
//purpose :
//=======================================================================
SMDS_VolumeTool::SMDS_VolumeTool (const SMDS_MeshElement* theVolume,
const bool ignoreCentralNodes)
{
Set( theVolume, ignoreCentralNodes );
}
//=======================================================================
//function : SMDS_VolumeTool
//purpose :
//=======================================================================
SMDS_VolumeTool::~SMDS_VolumeTool()
{
myCurFace.myNodeIndices = NULL;
}
//=======================================================================
//function : SetVolume
//purpose : Set volume to iterate on
//=======================================================================
bool SMDS_VolumeTool::Set (const SMDS_MeshElement* theVolume,
const bool ignoreCentralNodes)
{
// reset fields
myVolume = 0;
myPolyedre = 0;
myIgnoreCentralNodes = ignoreCentralNodes;
myVolForward = true;
myNbFaces = 0;
myVolumeNodes.clear();
myPolyIndices.clear();
myPolyQuantities.clear();
myPolyFacetOri.clear();
myFwdLinks.clear();
myExternalFaces = false;
myAllFacesNodeIndices_F = 0;
myAllFacesNodeIndices_RE = 0;
myAllFacesNbNodes = 0;
myCurFace.myIndex = -1;
myCurFace.myNodeIndices = NULL;
myCurFace.myNodes.clear();
// set volume data
if ( !theVolume || theVolume->GetType() != SMDSAbs_Volume )
return false;
myVolume = theVolume;
myNbFaces = theVolume->NbFaces();
if ( myVolume->IsPoly() )
{
myPolyedre = dynamic_cast<const SMDS_VtkVolume*>( myVolume );
myPolyFacetOri.resize( myNbFaces, 0 );
}
// set nodes
int iNode = 0;
myVolumeNodes.resize( myVolume->NbNodes() );
SMDS_ElemIteratorPtr nodeIt = myVolume->nodesIterator();
while ( nodeIt->more() )
myVolumeNodes[ iNode++ ] = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
// check validity
if ( !setFace(0) )
return ( myVolume = 0 );
if ( !myPolyedre )
{
// define volume orientation
XYZ botNormal;
if ( GetFaceNormal( 0, botNormal.x, botNormal.y, botNormal.z ))
{
const SMDS_MeshNode* botNode = myVolumeNodes[ 0 ];
int topNodeIndex = myVolume->NbCornerNodes() - 1;
while ( !IsLinked( 0, topNodeIndex, /*ignoreMediumNodes=*/true )) --topNodeIndex;
const SMDS_MeshNode* topNode = myVolumeNodes[ topNodeIndex ];
XYZ upDir (topNode->X() - botNode->X(),
topNode->Y() - botNode->Y(),
topNode->Z() - botNode->Z() );
myVolForward = ( botNormal.Dot( upDir ) < 0 );
}
if ( !myVolForward )
myCurFace.myIndex = -1; // previous setFace(0) didn't take myVolForward into account
}
return true;
}
//=======================================================================
//function : Inverse
//purpose : Inverse volume
//=======================================================================
#define SWAP_NODES(nodes,i1,i2) \
{ \
const SMDS_MeshNode* tmp = nodes[ i1 ]; \
nodes[ i1 ] = nodes[ i2 ]; \
nodes[ i2 ] = tmp; \
}
void SMDS_VolumeTool::Inverse ()
{
if ( !myVolume ) return;
if (myVolume->IsPoly()) {
MESSAGE("Warning: attempt to inverse polyhedral volume");
return;
}
myVolForward = !myVolForward;
myCurFace.myIndex = -1;
// inverse top and bottom faces
switch ( myVolumeNodes.size() ) {
case 4:
SWAP_NODES( myVolumeNodes, 1, 2 );
break;
case 5:
SWAP_NODES( myVolumeNodes, 1, 3 );
break;
case 6:
SWAP_NODES( myVolumeNodes, 1, 2 );
SWAP_NODES( myVolumeNodes, 4, 5 );
break;
case 8:
SWAP_NODES( myVolumeNodes, 1, 3 );
SWAP_NODES( myVolumeNodes, 5, 7 );
break;
case 12:
SWAP_NODES( myVolumeNodes, 1, 5 );
SWAP_NODES( myVolumeNodes, 2, 4 );
SWAP_NODES( myVolumeNodes, 7, 11 );
SWAP_NODES( myVolumeNodes, 8, 10 );
break;
case 10:
SWAP_NODES( myVolumeNodes, 1, 2 );
SWAP_NODES( myVolumeNodes, 4, 6 );
SWAP_NODES( myVolumeNodes, 8, 9 );
break;
case 13:
SWAP_NODES( myVolumeNodes, 1, 3 );
SWAP_NODES( myVolumeNodes, 5, 8 );
SWAP_NODES( myVolumeNodes, 6, 7 );
SWAP_NODES( myVolumeNodes, 10, 12 );
break;
case 15:
SWAP_NODES( myVolumeNodes, 1, 2 );
SWAP_NODES( myVolumeNodes, 4, 5 );
SWAP_NODES( myVolumeNodes, 6, 8 );
SWAP_NODES( myVolumeNodes, 9, 11 );
SWAP_NODES( myVolumeNodes, 13, 14 );
break;
case 20:
SWAP_NODES( myVolumeNodes, 1, 3 );
SWAP_NODES( myVolumeNodes, 5, 7 );
SWAP_NODES( myVolumeNodes, 8, 11 );
SWAP_NODES( myVolumeNodes, 9, 10 );
SWAP_NODES( myVolumeNodes, 12, 15 );
SWAP_NODES( myVolumeNodes, 13, 14 );
SWAP_NODES( myVolumeNodes, 17, 19 );
break;
case 27:
SWAP_NODES( myVolumeNodes, 1, 3 );
SWAP_NODES( myVolumeNodes, 5, 7 );
SWAP_NODES( myVolumeNodes, 8, 11 );
SWAP_NODES( myVolumeNodes, 9, 10 );
SWAP_NODES( myVolumeNodes, 12, 15 );
SWAP_NODES( myVolumeNodes, 13, 14 );
SWAP_NODES( myVolumeNodes, 17, 19 );
SWAP_NODES( myVolumeNodes, 21, 24 );
SWAP_NODES( myVolumeNodes, 22, 23 );
break;
default:;
}
}
//=======================================================================
//function : GetVolumeType
//purpose :
//=======================================================================
SMDS_VolumeTool::VolumeType SMDS_VolumeTool::GetVolumeType() const
{
if ( myPolyedre )
return POLYHEDA;
switch( myVolumeNodes.size() ) {
case 4: return TETRA;
case 5: return PYRAM;
case 6: return PENTA;
case 8: return HEXA;
case 12: return HEX_PRISM;
case 10: return QUAD_TETRA;
case 13: return QUAD_PYRAM;
case 15: return QUAD_PENTA;
case 20: return QUAD_HEXA;
case 27: return QUAD_HEXA;
default: break;
}
return UNKNOWN;
}
//=======================================================================
//function : getTetraVolume
//purpose :
//=======================================================================
static double getTetraVolume(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshNode* n3,
const SMDS_MeshNode* n4)
{
double p1[3], p2[3], p3[3], p4[3];
n1->GetXYZ( p1 );
n2->GetXYZ( p2 );
n3->GetXYZ( p3 );
n4->GetXYZ( p4 );
double Q1 = -(p1[ 0 ]-p2[ 0 ])*(p3[ 1 ]*p4[ 2 ]-p4[ 1 ]*p3[ 2 ]);
double Q2 = (p1[ 0 ]-p3[ 0 ])*(p2[ 1 ]*p4[ 2 ]-p4[ 1 ]*p2[ 2 ]);
double R1 = -(p1[ 0 ]-p4[ 0 ])*(p2[ 1 ]*p3[ 2 ]-p3[ 1 ]*p2[ 2 ]);
double R2 = -(p2[ 0 ]-p3[ 0 ])*(p1[ 1 ]*p4[ 2 ]-p4[ 1 ]*p1[ 2 ]);
double S1 = (p2[ 0 ]-p4[ 0 ])*(p1[ 1 ]*p3[ 2 ]-p3[ 1 ]*p1[ 2 ]);
double S2 = -(p3[ 0 ]-p4[ 0 ])*(p1[ 1 ]*p2[ 2 ]-p2[ 1 ]*p1[ 2 ]);
return (Q1+Q2+R1+R2+S1+S2)/6.0;
}
//=======================================================================
//function : GetSize
//purpose : Return element volume
//=======================================================================
double SMDS_VolumeTool::GetSize() const
{
double V = 0.;
if ( !myVolume )
return 0.;
if ( myVolume->IsPoly() )
{
if ( !myPolyedre )
return 0.;
// split a polyhedron into tetrahedrons
SaveFacet savedFacet( myCurFace );
SMDS_VolumeTool* me = const_cast< SMDS_VolumeTool* > ( this );
for ( int f = 0; f < NbFaces(); ++f )
{
me->setFace( f );
XYZ area (0,0,0), p1( myCurFace.myNodes[0] );
for ( int n = 0; n < myCurFace.myNbNodes; ++n )
{
XYZ p2( myCurFace.myNodes[ n+1 ]);
area = area + p1.Crossed( p2 );
p1 = p2;
}
V += p1.Dot( area );
}
V /= 6;
}
else
{
const static int ind[] = {
0, 1, 3, 6, 11, 23, 31, 44, 58, 78 };
const static int vtab[][4] = { // decomposition into tetra in the order of enum VolumeType
// tetrahedron
{ 0, 1, 2, 3 },
// pyramid
{ 0, 1, 3, 4 },
{ 1, 2, 3, 4 },
// pentahedron
{ 0, 1, 2, 3 },
{ 1, 5, 3, 4 },
{ 1, 5, 2, 3 },
// hexahedron
{ 1, 4, 3, 0 },
{ 4, 1, 6, 5 },
{ 1, 3, 6, 2 },
{ 4, 6, 3, 7 },
{ 1, 4, 6, 3 },
// hexagonal prism
{ 0, 1, 2, 7 },
{ 0, 7, 8, 6 },
{ 2, 7, 8, 0 },
{ 0, 3, 4, 9 },
{ 0, 9, 10, 6 },
{ 4, 9, 10, 0 },
{ 0, 3, 4, 9 },
{ 0, 9, 10, 6 },
{ 4, 9, 10, 0 },
{ 0, 4, 5, 10 },
{ 0, 10, 11, 6 },
{ 5, 10, 11, 0 },
// quadratic tetrahedron
{ 0, 4, 6, 7 },
{ 1, 5, 4, 8 },
{ 2, 6, 5, 9 },
{ 7, 8, 9, 3 },
{ 4, 6, 7, 9 },
{ 4, 5, 6, 9 },
{ 4, 7, 8, 9 },
{ 4, 5, 9, 8 },
// quadratic pyramid
{ 0, 5, 8, 9 },
{ 1, 5,10, 6 },
{ 2, 6,11, 7 },
{ 3, 7,12, 8 },
{ 4, 9,11,10 },
{ 4, 9,12,11 },
{ 10, 5, 9, 8 },
{ 10, 8, 9,12 },
{ 10, 8,12, 7 },
{ 10, 7,12,11 },
{ 10, 7,11, 6 },
{ 10, 5, 8, 6 },
{ 10, 6, 8, 7 },
// quadratic pentahedron
{ 12, 0, 8, 6 },
{ 12, 8, 7, 6 },
{ 12, 8, 2, 7 },
{ 12, 6, 7, 1 },
{ 12, 1, 7,13 },
{ 12, 7, 2,13 },
{ 12, 2,14,13 },
{ 12, 3, 9,11 },
{ 12,11, 9,10 },
{ 12,11,10, 5 },
{ 12, 9, 4,10 },
{ 12,14, 5,10 },
{ 12,14,10, 4 },
{ 12,14, 4,13 },
// quadratic hexahedron
{ 16, 0,11, 8 },
{ 16,11, 9, 8 },
{ 16, 8, 9, 1 },
{ 16,11, 3,10 },
{ 16,11,10, 9 },
{ 16,10, 2, 9 },
{ 16, 3,19, 2 },
{ 16, 2,19,18 },
{ 16, 2,18,17 },
{ 16, 2,17, 1 },
{ 16, 4,12,15 },
{ 16,12, 5,13 },
{ 16,12,13,15 },
{ 16,13, 6,14 },
{ 16,13,14,15 },
{ 16,14, 7,15 },
{ 16, 6, 5,17 },
{ 16,18, 6,17 },
{ 16,18, 7, 6 },
{ 16,18,19, 7 },
};
int type = GetVolumeType();
int n1 = ind[type];
int n2 = ind[type+1];
for (int i = n1; i < n2; i++) {
V -= getTetraVolume( myVolumeNodes[ vtab[i][0] ],
myVolumeNodes[ vtab[i][1] ],
myVolumeNodes[ vtab[i][2] ],
myVolumeNodes[ vtab[i][3] ]);
}
}
return V;
}
//=======================================================================
//function : GetBaryCenter
//purpose :
//=======================================================================
bool SMDS_VolumeTool::GetBaryCenter(double & X, double & Y, double & Z) const
{
X = Y = Z = 0.;
if ( !myVolume )
return false;
for ( size_t i = 0; i < myVolumeNodes.size(); i++ ) {
X += myVolumeNodes[ i ]->X();
Y += myVolumeNodes[ i ]->Y();
Z += myVolumeNodes[ i ]->Z();
}
X /= myVolumeNodes.size();
Y /= myVolumeNodes.size();
Z /= myVolumeNodes.size();
return true;
}
//================================================================================
/*!
* \brief Classify a point
* \param tol - thickness of faces
*/
//================================================================================
bool SMDS_VolumeTool::IsOut(double X, double Y, double Z, double tol) const
{
// LIMITATION: for convex volumes only
XYZ p( X,Y,Z );
for ( int iF = 0; iF < myNbFaces; ++iF )
{
XYZ faceNormal;
if ( !GetFaceNormal( iF, faceNormal.x, faceNormal.y, faceNormal.z ))
continue;
if ( !IsFaceExternal( iF ))
faceNormal = XYZ() - faceNormal; // reverse
XYZ face2p( p - XYZ( myCurFace.myNodes[0] ));
if ( face2p.Dot( faceNormal ) > tol )
return true;
}
return false;
}
//=======================================================================
//function : SetExternalNormal
//purpose : Node order will be so that faces normals are external
//=======================================================================
void SMDS_VolumeTool::SetExternalNormal ()
{
myExternalFaces = true;
myCurFace.myIndex = -1;
}
//=======================================================================
//function : NbFaceNodes
//purpose : Return number of nodes in the array of face nodes
//=======================================================================
int SMDS_VolumeTool::NbFaceNodes( int faceIndex ) const
{
if ( !setFace( faceIndex ))
return 0;
return myCurFace.myNbNodes;
}
//=======================================================================
//function : GetFaceNodes
//purpose : Return pointer to the array of face nodes.
// To comfort link iteration, the array
// length == NbFaceNodes( faceIndex ) + 1 and
// the last node == the first one.
//=======================================================================
const SMDS_MeshNode** SMDS_VolumeTool::GetFaceNodes( int faceIndex ) const
{
if ( !setFace( faceIndex ))
return 0;
return &myCurFace.myNodes[0];
}
//=======================================================================
//function : GetFaceNodesIndices
//purpose : Return pointer to the array of face nodes indices
// To comfort link iteration, the array
// length == NbFaceNodes( faceIndex ) + 1 and
// the last node index == the first one.
//=======================================================================
const int* SMDS_VolumeTool::GetFaceNodesIndices( int faceIndex ) const
{
if ( !setFace( faceIndex ))
return 0;
return myCurFace.myNodeIndices;
}
//=======================================================================
//function : GetFaceNodes
//purpose : Return a set of face nodes.
//=======================================================================
bool SMDS_VolumeTool::GetFaceNodes (int faceIndex,
set<const SMDS_MeshNode*>& theFaceNodes ) const
{
if ( !setFace( faceIndex ))
return false;
theFaceNodes.clear();
theFaceNodes.insert( myCurFace.myNodes.begin(), myCurFace.myNodes.end() );
return true;
}
namespace
{
struct NLink : public std::pair<int,int>
{
int myOri;
NLink(const SMDS_MeshNode* n1=0, const SMDS_MeshNode* n2=0, int ori=1 )
{
if ( n1 )
{
if (( myOri = ( n1->GetID() < n2->GetID() )))
{
first = n1->GetID();
second = n2->GetID();
}
else
{
myOri = -1;
first = n2->GetID();
second = n1->GetID();
}
myOri *= ori;
}
else
{
myOri = first = second = 0;
}
}
//int Node1() const { return myOri == -1 ? second : first; }
//bool IsSameOri( const std::pair<int,int>& link ) const { return link.first == Node1(); }
};
}
//=======================================================================
//function : IsFaceExternal
//purpose : Check normal orientation of a given face
//=======================================================================
bool SMDS_VolumeTool::IsFaceExternal( int faceIndex ) const
{
if ( myExternalFaces || !myVolume )
return true;
if ( !myPolyedre ) // all classical volumes have external facet normals
return true;
SMDS_VolumeTool* me = const_cast< SMDS_VolumeTool* >( this );
if ( myPolyFacetOri[ faceIndex ])
return myPolyFacetOri[ faceIndex ] > 0;
int ori = 0; // -1-in, +1-out, 0-undef
double minProj, maxProj;
if ( projectNodesToNormal( faceIndex, minProj, maxProj ))
{
// all nodes are on the same side of the facet
ori = ( minProj < 0 ? +1 : -1 );
me->myPolyFacetOri[ faceIndex ] = ori;
if ( !myFwdLinks.empty() ) // concave polyhedron; collect oriented links
for ( int i = 0; i < myCurFace.myNbNodes; ++i )
{
NLink link( myCurFace.myNodes[i], myCurFace.myNodes[i+1], ori );
me->myFwdLinks.insert( make_pair( link, link.myOri ));
}
return ori > 0;
}
SaveFacet savedFacet( myCurFace );
// concave polyhedron
if ( myFwdLinks.empty() ) // get links of the least ambiguously oriented facet
{
for ( size_t i = 0; i < myPolyFacetOri.size() && !ori; ++i )
ori = myPolyFacetOri[ i ];
if ( !ori ) // none facet is oriented yet
{
// find the least ambiguously oriented facet
int faceMostConvex = -1;
std::map< double, int > convexity2face;
for ( size_t iF = 0; iF < myPolyFacetOri.size() && faceMostConvex < 0; ++iF )
{
if ( projectNodesToNormal( iF, minProj, maxProj ))
{
// all nodes are on the same side of the facet
me->myPolyFacetOri[ iF ] = ( minProj < 0 ? +1 : -1 );
faceMostConvex = iF;
}
else
{
ori = ( -minProj < maxProj ? -1 : +1 );
double convexity = std::min( -minProj, maxProj ) / std::max( -minProj, maxProj );
convexity2face.insert( make_pair( convexity, iF * ori ));
}
}
if ( faceMostConvex < 0 ) // none facet has nodes on the same side
{
// use the least ambiguous facet
faceMostConvex = convexity2face.begin()->second;
ori = ( faceMostConvex < 0 ? -1 : +1 );
faceMostConvex = std::abs( faceMostConvex );
me->myPolyFacetOri[ faceMostConvex ] = ori;
}
}
// collect links of the oriented facets in myFwdLinks
for ( size_t iF = 0; iF < myPolyFacetOri.size(); ++iF )
{
ori = myPolyFacetOri[ iF ];
if ( !ori ) continue;
setFace( iF );
for ( int i = 0; i < myCurFace.myNbNodes; ++i )
{
NLink link( myCurFace.myNodes[i], myCurFace.myNodes[i+1], ori );
me->myFwdLinks.insert( make_pair( link, link.myOri ));
}
}
}
// compare orientation of links of the facet with myFwdLinks
ori = 0;
setFace( faceIndex );
vector< NLink > links( myCurFace.myNbNodes ), links2;
for ( int i = 0; i < myCurFace.myNbNodes && !ori; ++i )
{
NLink link( myCurFace.myNodes[i], myCurFace.myNodes[i+1] );
std::map<Link, int>::const_iterator l2o = myFwdLinks.find( link );
if ( l2o != myFwdLinks.end() )
ori = link.myOri * l2o->second * -1;
links[ i ] = link;
}
while ( !ori ) // the facet has no common links with already oriented facets
{
// orient and collect links of other non-oriented facets
for ( size_t iF = 0; iF < myPolyFacetOri.size(); ++iF )
{
if ( myPolyFacetOri[ iF ] ) continue; // already oriented
setFace( iF );
links2.clear();
ori = 0;
for ( int i = 0; i < myCurFace.myNbNodes && !ori; ++i )
{
NLink link( myCurFace.myNodes[i], myCurFace.myNodes[i+1] );
std::map<Link, int>::const_iterator l2o = myFwdLinks.find( link );
if ( l2o != myFwdLinks.end() )
ori = link.myOri * l2o->second * -1;
links2.push_back( link );
}
if ( ori ) // one more facet oriented
{
me->myPolyFacetOri[ iF ] = ori;
for ( size_t i = 0; i < links2.size(); ++i )
me->myFwdLinks.insert( make_pair( links2[i], links2[i].myOri * ori ));
break;
}
}
if ( !ori )
return false; // error in algorithm: infinite loop
// try to orient the facet again
ori = 0;
for ( size_t i = 0; i < links.size() && !ori; ++i )
{
std::map<Link, int>::const_iterator l2o = myFwdLinks.find( links[i] );
if ( l2o != myFwdLinks.end() )
ori = links[i].myOri * l2o->second * -1;
}
me->myPolyFacetOri[ faceIndex ] = ori;
}
return ori > 0;
}
//=======================================================================
//function : projectNodesToNormal
//purpose : compute min and max projections of all nodes to normal of a facet.
//=======================================================================
bool SMDS_VolumeTool::projectNodesToNormal( int faceIndex,
double& minProj,
double& maxProj ) const
{
minProj = std::numeric_limits<double>::max();
maxProj = std::numeric_limits<double>::min();
XYZ normal;
if ( !GetFaceNormal( faceIndex, normal.x, normal.y, normal.z ))
return false;
XYZ p0 ( myCurFace.myNodes[0] );
for ( size_t i = 0; i < myVolumeNodes.size(); ++i )
{
if ( std::find( myCurFace.myNodes.begin() + 1,
myCurFace.myNodes.end(),
myVolumeNodes[ i ] ) != myCurFace.myNodes.end() )
continue; // node of the faceIndex-th facet
double proj = normal.Dot( XYZ( myVolumeNodes[ i ]) - p0 );
if ( proj < minProj ) minProj = proj;
if ( proj > maxProj ) maxProj = proj;
}
const double tol = 1e-7;
minProj += tol;
maxProj -= tol;
bool diffSize = ( minProj * maxProj < 0 );
// if ( diffSize )
// {
// minProj = -minProj;
// }
// else if ( minProj < 0 )
// {
// minProj = -minProj;
// maxProj = -maxProj;
// }
return !diffSize; // ? 0 : (minProj >= 0);
}
//=======================================================================
//function : GetFaceNormal
//purpose : Return a normal to a face
//=======================================================================
bool SMDS_VolumeTool::GetFaceNormal (int faceIndex, double & X, double & Y, double & Z) const
{
if ( !setFace( faceIndex ))
return false;
const int iQuad = ( !myPolyedre && myCurFace.myNbNodes > 6 ) ? 2 : 1;
XYZ p1 ( myCurFace.myNodes[0*iQuad] );
XYZ p2 ( myCurFace.myNodes[1*iQuad] );
XYZ p3 ( myCurFace.myNodes[2*iQuad] );
XYZ aVec12( p2 - p1 );
XYZ aVec13( p3 - p1 );
XYZ cross = aVec12.Crossed( aVec13 );
if ( myCurFace.myNbNodes >3*iQuad ) {
XYZ p4 ( myCurFace.myNodes[3*iQuad] );
XYZ aVec14( p4 - p1 );
XYZ cross2 = aVec13.Crossed( aVec14 );
cross = cross + cross2;
}
double size = cross.Magnitude();
if ( size <= numeric_limits<double>::min() )
return false;
X = cross.x / size;
Y = cross.y / size;
Z = cross.z / size;
return true;
}
//================================================================================
/*!
* \brief Return barycenter of a face
*/
//================================================================================
bool SMDS_VolumeTool::GetFaceBaryCenter (int faceIndex, double & X, double & Y, double & Z) const
{
if ( !setFace( faceIndex ))
return false;
X = Y = Z = 0.0;
for ( int i = 0; i < myCurFace.myNbNodes; ++i )
{
X += myCurFace.myNodes[i]->X() / myCurFace.myNbNodes;
Y += myCurFace.myNodes[i]->Y() / myCurFace.myNbNodes;
Z += myCurFace.myNodes[i]->Z() / myCurFace.myNbNodes;
}
return true;
}
//=======================================================================
//function : GetFaceArea
//purpose : Return face area
//=======================================================================
double SMDS_VolumeTool::GetFaceArea( int faceIndex ) const
{
double area = 0;
if ( !setFace( faceIndex ))
return area;
XYZ p1 ( myCurFace.myNodes[0] );
XYZ p2 ( myCurFace.myNodes[1] );
XYZ p3 ( myCurFace.myNodes[2] );
XYZ aVec12( p2 - p1 );
XYZ aVec13( p3 - p1 );
area += aVec12.Crossed( aVec13 ).Magnitude();
if (myVolume->IsPoly())
{
for ( int i = 3; i < myCurFace.myNbNodes; ++i )
{
XYZ pI ( myCurFace.myNodes[i] );
XYZ aVecI( pI - p1 );
area += aVec13.Crossed( aVecI ).Magnitude();
aVec13 = aVecI;
}
}
else
{
if ( myCurFace.myNbNodes == 4 ) {
XYZ p4 ( myCurFace.myNodes[3] );
XYZ aVec14( p4 - p1 );
area += aVec14.Crossed( aVec13 ).Magnitude();
}
}
return area / 2;
}
//================================================================================
/*!
* \brief Return index of the node located at face center of a quadratic element like HEX27
*/
//================================================================================
int SMDS_VolumeTool::GetCenterNodeIndex( int faceIndex ) const
{
if ( myAllFacesNbNodes && myVolumeNodes.size() == 27 ) // classic element with 27 nodes
{
switch ( faceIndex ) {
case 0: return 20;
case 1: return 25;
default:
return faceIndex + 19;
}
}
return -1;
}
//=======================================================================
//function : GetOppFaceIndex
//purpose : Return index of the opposite face if it exists, else -1.
//=======================================================================
int SMDS_VolumeTool::GetOppFaceIndex( int faceIndex ) const
{
int ind = -1;
if (myPolyedre) {
MESSAGE("Warning: attempt to obtain opposite face on polyhedral volume");
return ind;
}
const int nbHoriFaces = 2;
if ( faceIndex >= 0 && faceIndex < NbFaces() ) {
switch ( myVolumeNodes.size() ) {
case 6:
case 15:
if ( faceIndex == 0 || faceIndex == 1 )
ind = 1 - faceIndex;
break;
case 8:
case 12:
if ( faceIndex <= 1 ) // top or bottom
ind = 1 - faceIndex;
else {
const int nbSideFaces = myAllFacesNbNodes[0];
ind = ( faceIndex - nbHoriFaces + nbSideFaces/2 ) % nbSideFaces + nbHoriFaces;
}
break;
case 20:
case 27:
ind = GetOppFaceIndexOfHex( faceIndex );
break;
default:;
}
}
return ind;
}
//=======================================================================
//function : GetOppFaceIndexOfHex
//purpose : Return index of the opposite face of the hexahedron
//=======================================================================
int SMDS_VolumeTool::GetOppFaceIndexOfHex( int faceIndex )
{
return Hexa_oppF[ faceIndex ];
}
//=======================================================================
//function : IsLinked
//purpose : return true if theNode1 is linked with theNode2
// If theIgnoreMediumNodes then corner nodes of quadratic cell are considered linked as well
//=======================================================================
bool SMDS_VolumeTool::IsLinked (const SMDS_MeshNode* theNode1,
const SMDS_MeshNode* theNode2,
const bool theIgnoreMediumNodes) const
{
if ( !myVolume )
return false;
if (myVolume->IsPoly()) {
if (!myPolyedre) {
MESSAGE("Warning: bad volumic element");
return false;
}
if ( !myAllFacesNbNodes ) {
SMDS_VolumeTool* me = const_cast< SMDS_VolumeTool* >( this );
me->myPolyQuantities = myPolyedre->GetQuantities();
myAllFacesNbNodes = &myPolyQuantities[0];
}
int from, to = 0, d1 = 1, d2 = 2;
if ( myPolyedre->IsQuadratic() ) {
if ( theIgnoreMediumNodes ) {
d1 = 2; d2 = 0;
}
} else {
d2 = 0;
}
vector<const SMDS_MeshNode*>::const_iterator i;
for (int iface = 0; iface < myNbFaces; iface++)
{
from = to;
to += myPolyQuantities[iface];
i = std::find( myVolumeNodes.begin() + from, myVolumeNodes.begin() + to, theNode1 );
if ( i != myVolumeNodes.end() )
{
if (( theNode2 == *( i-d1 ) ||
theNode2 == *( i+d1 )))
return true;
if (( d2 ) &&
(( theNode2 == *( i-d2 ) ||
theNode2 == *( i+d2 ))))
return true;
}
}
return false;
}
// find nodes indices
int i1 = -1, i2 = -1, nbFound = 0;
for ( size_t i = 0; i < myVolumeNodes.size() && nbFound < 2; i++ )
{
if ( myVolumeNodes[ i ] == theNode1 )
i1 = i, ++nbFound;
else if ( myVolumeNodes[ i ] == theNode2 )
i2 = i, ++nbFound;
}
return IsLinked( i1, i2 );
}
//=======================================================================
//function : IsLinked
//purpose : return true if the node with theNode1Index is linked
// with the node with theNode2Index
// If theIgnoreMediumNodes then corner nodes of quadratic cell are considered linked as well
//=======================================================================
bool SMDS_VolumeTool::IsLinked (const int theNode1Index,
const int theNode2Index,
bool theIgnoreMediumNodes) const
{
if ( myVolume->IsPoly() ) {
return IsLinked(myVolumeNodes[theNode1Index], myVolumeNodes[theNode2Index]);
}
int minInd = min( theNode1Index, theNode2Index );
int maxInd = max( theNode1Index, theNode2Index );
if ( minInd < 0 || maxInd > (int)myVolumeNodes.size() - 1 || maxInd == minInd )
return false;
VolumeType type = GetVolumeType();
if ( myVolume->IsQuadratic() )
{
int firstMediumInd = myVolume->NbCornerNodes();
if ( minInd >= firstMediumInd )
return false; // both nodes are medium - not linked
if ( maxInd < firstMediumInd ) // both nodes are corners
{
if ( theIgnoreMediumNodes )
type = quadToLinear(type); // to check linkage of corner nodes only
else
return false; // corner nodes are not linked directly in a quadratic cell
}
}
switch ( type ) {
case TETRA:
return true;
case HEXA:
switch ( maxInd - minInd ) {
case 1: return minInd != 3;
case 3: return minInd == 0 || minInd == 4;
case 4: return true;
default:;
}
break;
case PYRAM:
if ( maxInd == 4 )
return true;
switch ( maxInd - minInd ) {
case 1:
case 3: return true;
default:;
}
break;
case PENTA:
switch ( maxInd - minInd ) {
case 1: return minInd != 2;
case 2: return minInd == 0 || minInd == 3;
case 3: return true;
default:;
}
break;
case QUAD_TETRA:
{
switch ( minInd ) {
case 0: if( maxInd==4 || maxInd==6 || maxInd==7 ) return true;
case 1: if( maxInd==4 || maxInd==5 || maxInd==8 ) return true;
case 2: if( maxInd==5 || maxInd==6 || maxInd==9 ) return true;
case 3: if( maxInd==7 || maxInd==8 || maxInd==9 ) return true;
default:;
}
break;
}
case QUAD_HEXA:
{
switch ( minInd ) {
case 0: if( maxInd==8 || maxInd==11 || maxInd==16 ) return true;
case 1: if( maxInd==8 || maxInd==9 || maxInd==17 ) return true;
case 2: if( maxInd==9 || maxInd==10 || maxInd==18 ) return true;
case 3: if( maxInd==10 || maxInd==11 || maxInd==19 ) return true;
case 4: if( maxInd==12 || maxInd==15 || maxInd==16 ) return true;
case 5: if( maxInd==12 || maxInd==13 || maxInd==17 ) return true;
case 6: if( maxInd==13 || maxInd==14 || maxInd==18 ) return true;
case 7: if( maxInd==14 || maxInd==15 || maxInd==19 ) return true;
default:;
}
break;
}
case QUAD_PYRAM:
{
switch ( minInd ) {
case 0: if( maxInd==5 || maxInd==8 || maxInd==9 ) return true;
case 1: if( maxInd==5 || maxInd==6 || maxInd==10 ) return true;
case 2: if( maxInd==6 || maxInd==7 || maxInd==11 ) return true;
case 3: if( maxInd==7 || maxInd==8 || maxInd==12 ) return true;
case 4: if( maxInd==9 || maxInd==10 || maxInd==11 || maxInd==12 ) return true;
default:;
}
break;
}
case QUAD_PENTA:
{
switch ( minInd ) {
case 0: if( maxInd==6 || maxInd==8 || maxInd==12 ) return true;
case 1: if( maxInd==6 || maxInd==7 || maxInd==13 ) return true;
case 2: if( maxInd==7 || maxInd==8 || maxInd==14 ) return true;
case 3: if( maxInd==9 || maxInd==11 || maxInd==12 ) return true;
case 4: if( maxInd==9 || maxInd==10 || maxInd==13 ) return true;
case 5: if( maxInd==10 || maxInd==11 || maxInd==14 ) return true;
default:;
}
break;
}
case HEX_PRISM:
{
const int diff = maxInd-minInd;
if ( diff > 6 ) return false;// not linked top and bottom
if ( diff == 6 ) return true; // linked top and bottom
return diff == 1 || diff == 7;
}
default:;
}
return false;
}
//=======================================================================
//function : GetNodeIndex
//purpose : Return an index of theNode
//=======================================================================
int SMDS_VolumeTool::GetNodeIndex(const SMDS_MeshNode* theNode) const
{
if ( myVolume ) {
for ( size_t i = 0; i < myVolumeNodes.size(); i++ ) {
if ( myVolumeNodes[ i ] == theNode )
return i;
}
}
return -1;
}
//================================================================================
/*!
* \brief Fill vector with boundary faces existing in the mesh
* \param faces - vector of found nodes
* \retval int - nb of found faces
*/
//================================================================================
int SMDS_VolumeTool::GetAllExistingFaces(vector<const SMDS_MeshElement*> & faces) const
{
faces.clear();
SaveFacet savedFacet( myCurFace );
if ( IsPoly() )
for ( int iF = 0; iF < NbFaces(); ++iF ) {
if ( setFace( iF ))
if ( const SMDS_MeshElement* face = SMDS_Mesh::FindFace( myCurFace.myNodes ))
faces.push_back( face );
}
else
for ( int iF = 0; iF < NbFaces(); ++iF ) {
const SMDS_MeshFace* face = 0;
const SMDS_MeshNode** nodes = GetFaceNodes( iF );
switch ( NbFaceNodes( iF )) {
case 3:
face = SMDS_Mesh::FindFace( nodes[0], nodes[1], nodes[2] ); break;
case 4:
face = SMDS_Mesh::FindFace( nodes[0], nodes[1], nodes[2], nodes[3] ); break;
case 6:
face = SMDS_Mesh::FindFace( nodes[0], nodes[1], nodes[2],
nodes[3], nodes[4], nodes[5]); break;
case 8:
face = SMDS_Mesh::FindFace( nodes[0], nodes[1], nodes[2], nodes[3],
nodes[4], nodes[5], nodes[6], nodes[7]); break;
}
if ( face )
faces.push_back( face );
}
return faces.size();
}
//================================================================================
/*!
* \brief Fill vector with boundary edges existing in the mesh
* \param edges - vector of found edges
* \retval int - nb of found faces
*/
//================================================================================
int SMDS_VolumeTool::GetAllExistingEdges(vector<const SMDS_MeshElement*> & edges) const
{
edges.clear();
edges.reserve( myVolumeNodes.size() * 2 );
for ( size_t i = 0; i < myVolumeNodes.size()-1; ++i ) {
for ( size_t j = i + 1; j < myVolumeNodes.size(); ++j ) {
if ( IsLinked( i, j )) {
const SMDS_MeshElement* edge =
SMDS_Mesh::FindEdge( myVolumeNodes[i], myVolumeNodes[j] );
if ( edge )
edges.push_back( edge );
}
}
}
return edges.size();
}
//================================================================================
/*!
* \brief Return minimal square distance between connected corner nodes
*/
//================================================================================
double SMDS_VolumeTool::MinLinearSize2() const
{
double minSize = 1e+100;
int iQ = myVolume->IsQuadratic() ? 2 : 1;
SaveFacet savedFacet( myCurFace );
// it seems that compute distance twice is faster than organization of a sole computing
myCurFace.myIndex = -1;
for ( int iF = 0; iF < myNbFaces; ++iF )
{
setFace( iF );
for ( int iN = 0; iN < myCurFace.myNbNodes; iN += iQ )
{
XYZ n1( myCurFace.myNodes[ iN ]);
XYZ n2( myCurFace.myNodes[(iN + iQ) % myCurFace.myNbNodes]);
minSize = std::min( minSize, (n1 - n2).SquareMagnitude());
}
}
return minSize;
}
//================================================================================
/*!
* \brief Return maximal square distance between connected corner nodes
*/
//================================================================================
double SMDS_VolumeTool::MaxLinearSize2() const
{
double maxSize = -1e+100;
int iQ = myVolume->IsQuadratic() ? 2 : 1;
SaveFacet savedFacet( myCurFace );
// it seems that compute distance twice is faster than organization of a sole computing
myCurFace.myIndex = -1;
for ( int iF = 0; iF < myNbFaces; ++iF )
{
setFace( iF );
for ( int iN = 0; iN < myCurFace.myNbNodes; iN += iQ )
{
XYZ n1( myCurFace.myNodes[ iN ]);
XYZ n2( myCurFace.myNodes[(iN + iQ) % myCurFace.myNbNodes]);
maxSize = std::max( maxSize, (n1 - n2).SquareMagnitude());
}
}
return maxSize;
}
//================================================================================
/*!
* \brief fast check that only one volume is build on the face nodes
* This check is valid for conformal meshes only
*/
//================================================================================
bool SMDS_VolumeTool::IsFreeFace( int faceIndex, const SMDS_MeshElement** otherVol/*=0*/ ) const
{
const bool isFree = true;
if ( !setFace( faceIndex ))
return !isFree;
const SMDS_MeshNode** nodes = GetFaceNodes( faceIndex );
const int di = myVolume->IsQuadratic() ? 2 : 1;
const int nbN = ( myCurFace.myNbNodes/di <= 4 && !IsPoly()) ? 3 : myCurFace.myNbNodes/di; // nb nodes to check
SMDS_ElemIteratorPtr eIt = nodes[0]->GetInverseElementIterator( SMDSAbs_Volume );
while ( eIt->more() )
{
const SMDS_MeshElement* vol = eIt->next();
if ( vol == myVolume )
continue;
int iN;
for ( iN = 1; iN < nbN; ++iN )
if ( vol->GetNodeIndex( nodes[ iN*di ]) < 0 )
break;
if ( iN == nbN ) // nbN nodes are shared with vol
{
// if ( vol->IsPoly() || vol->NbFaces() > 6 ) // vol is polyhed or hex prism
// {
// int nb = myCurFace.myNbNodes;
// if ( myVolume->GetEntityType() != vol->GetEntityType() )
// nb -= ( GetCenterNodeIndex(0) > 0 );
// set<const SMDS_MeshNode*> faceNodes( nodes, nodes + nb );
// if ( SMDS_VolumeTool( vol ).GetFaceIndex( faceNodes ) < 0 )
// continue;
// }
if ( otherVol ) *otherVol = vol;
return !isFree;
}
}
if ( otherVol ) *otherVol = 0;
return isFree;
}
//================================================================================
/*!
* \brief Thorough check that only one volume is build on the face nodes
*/
//================================================================================
bool SMDS_VolumeTool::IsFreeFaceAdv( int faceIndex, const SMDS_MeshElement** otherVol/*=0*/ ) const
{
const bool isFree = true;
if (!setFace( faceIndex ))
return !isFree;
const SMDS_MeshNode** nodes = GetFaceNodes( faceIndex );
const int nbFaceNodes = myCurFace.myNbNodes;
// evaluate nb of face nodes shared by other volumes
int maxNbShared = -1;
typedef map< const SMDS_MeshElement*, int > TElemIntMap;
TElemIntMap volNbShared;
TElemIntMap::iterator vNbIt;
for ( int iNode = 0; iNode < nbFaceNodes; iNode++ ) {
const SMDS_MeshNode* n = nodes[ iNode ];
SMDS_ElemIteratorPtr eIt = n->GetInverseElementIterator( SMDSAbs_Volume );
while ( eIt->more() ) {
const SMDS_MeshElement* elem = eIt->next();
if ( elem != myVolume ) {
vNbIt = volNbShared.insert( make_pair( elem, 0 )).first;
(*vNbIt).second++;
if ( vNbIt->second > maxNbShared )
maxNbShared = vNbIt->second;
}
}
}
if ( maxNbShared < 3 )
return isFree; // is free
// find volumes laying on the opposite side of the face
// and sharing all nodes
XYZ intNormal; // internal normal
GetFaceNormal( faceIndex, intNormal.x, intNormal.y, intNormal.z );
if ( IsFaceExternal( faceIndex ))
intNormal = XYZ( -intNormal.x, -intNormal.y, -intNormal.z );
XYZ p0 ( nodes[0] ), baryCenter;
for ( vNbIt = volNbShared.begin(); vNbIt != volNbShared.end(); ) {
const int& nbShared = (*vNbIt).second;
if ( nbShared >= 3 ) {
SMDS_VolumeTool volume( (*vNbIt).first );
volume.GetBaryCenter( baryCenter.x, baryCenter.y, baryCenter.z );
XYZ intNormal2( baryCenter - p0 );
if ( intNormal.Dot( intNormal2 ) < 0 ) {
// opposite side
if ( nbShared >= nbFaceNodes )
{
// a volume shares the whole facet
if ( otherVol ) *otherVol = vNbIt->first;
return !isFree;
}
++vNbIt;
continue;
}
}
// remove a volume from volNbShared map
volNbShared.erase( vNbIt++ );
}
// here volNbShared contains only volumes laying on the opposite side of
// the face and sharing 3 or more but not all face nodes with myVolume
if ( volNbShared.size() < 2 ) {
return isFree; // is free
}
// check if the whole area of a face is shared
for ( int iNode = 0; iNode < nbFaceNodes; iNode++ )
{
const SMDS_MeshNode* n = nodes[ iNode ];
// check if n is shared by one of volumes of volNbShared
bool isShared = false;
SMDS_ElemIteratorPtr eIt = n->GetInverseElementIterator( SMDSAbs_Volume );
while ( eIt->more() && !isShared )
isShared = volNbShared.count( eIt->next() );
if ( !isShared )
return isFree;
}
if ( otherVol ) *otherVol = volNbShared.begin()->first;
return !isFree;
// if ( !myVolume->IsPoly() )
// {
// bool isShared[] = { false, false, false, false }; // 4 triangle parts of a quadrangle
// for ( vNbIt = volNbShared.begin(); vNbIt != volNbShared.end(); vNbIt++ ) {
// SMDS_VolumeTool volume( (*vNbIt).first );
// bool prevLinkShared = false;
// int nbSharedLinks = 0;
// for ( int iNode = 0; iNode < nbFaceNodes; iNode++ ) {
// bool linkShared = volume.IsLinked( nodes[ iNode ], nodes[ iNode + 1] );
// if ( linkShared )
// nbSharedLinks++;
// if ( linkShared && prevLinkShared &&
// volume.IsLinked( nodes[ iNode - 1 ], nodes[ iNode + 1] ))
// isShared[ iNode ] = true;
// prevLinkShared = linkShared;
// }
// if ( nbSharedLinks == nbFaceNodes )
// return !free; // is not free
// if ( nbFaceNodes == 4 ) {
// // check traingle parts 1 & 3
// if ( isShared[1] && isShared[3] )
// return !free; // is not free
// // check triangle parts 0 & 2;
// // 0 part could not be checked in the loop; check it here
// if ( isShared[2] && prevLinkShared &&
// volume.IsLinked( nodes[ 0 ], nodes[ 1 ] ) &&
// volume.IsLinked( nodes[ 1 ], nodes[ 3 ] ) )
// return !free; // is not free
// }
// }
// }
// return free;
}
//=======================================================================
//function : GetFaceIndex
//purpose : Return index of a face formed by theFaceNodes
//=======================================================================
int SMDS_VolumeTool::GetFaceIndex( const set<const SMDS_MeshNode*>& theFaceNodes,
const int theFaceIndexHint ) const
{
if ( theFaceIndexHint >= 0 )
{
int nbNodes = NbFaceNodes( theFaceIndexHint );
if ( nbNodes == (int) theFaceNodes.size() )
{
const SMDS_MeshNode** nodes = GetFaceNodes( theFaceIndexHint );
while ( nbNodes )
if ( theFaceNodes.count( nodes[ nbNodes-1 ]))
--nbNodes;
else
break;
if ( nbNodes == 0 )
return theFaceIndexHint;
}
}
for ( int iFace = 0; iFace < myNbFaces; iFace++ )
{
if ( iFace == theFaceIndexHint )
continue;
int nbNodes = NbFaceNodes( iFace );
if ( nbNodes == (int) theFaceNodes.size() )
{
const SMDS_MeshNode** nodes = GetFaceNodes( iFace );
while ( nbNodes )
if ( theFaceNodes.count( nodes[ nbNodes-1 ]))
--nbNodes;
else
break;
if ( nbNodes == 0 )
return iFace;
}
}
return -1;
}
//=======================================================================
//function : GetFaceIndex
//purpose : Return index of a face formed by theFaceNodes
//=======================================================================
/*int SMDS_VolumeTool::GetFaceIndex( const set<int>& theFaceNodesIndices )
{
for ( int iFace = 0; iFace < myNbFaces; iFace++ ) {
const int* nodes = GetFaceNodesIndices( iFace );
int nbFaceNodes = NbFaceNodes( iFace );
set<int> nodeSet;
for ( int iNode = 0; iNode < nbFaceNodes; iNode++ )
nodeSet.insert( nodes[ iNode ] );
if ( theFaceNodesIndices == nodeSet )
return iFace;
}
return -1;
}*/
//=======================================================================
//function : setFace
//purpose :
//=======================================================================
bool SMDS_VolumeTool::setFace( int faceIndex ) const
{
if ( !myVolume )
return false;
if ( myCurFace.myIndex == faceIndex )
return true;
myCurFace.myIndex = -1;
if ( faceIndex < 0 || faceIndex >= NbFaces() )
return false;
if (myVolume->IsPoly())
{
if (!myPolyedre) {
MESSAGE("Warning: bad volumic element");
return false;
}
// set face nodes
SMDS_VolumeTool* me = const_cast< SMDS_VolumeTool* >( this );
if ( !myAllFacesNbNodes ) {
me->myPolyQuantities = myPolyedre->GetQuantities();
myAllFacesNbNodes = &myPolyQuantities[0];
}
myCurFace.myNbNodes = myAllFacesNbNodes[ faceIndex ];
myCurFace.myNodes.resize( myCurFace.myNbNodes + 1 );
me->myPolyIndices.resize( myCurFace.myNbNodes + 1 );
myCurFace.myNodeIndices = & me->myPolyIndices[0];
int shift = std::accumulate( myAllFacesNbNodes, myAllFacesNbNodes+faceIndex, 0 );
for ( int iNode = 0; iNode < myCurFace.myNbNodes; iNode++ )
{
myCurFace.myNodes [ iNode ] = myVolumeNodes[ shift + iNode ];
myCurFace.myNodeIndices[ iNode ] = shift + iNode;
}
myCurFace.myNodes [ myCurFace.myNbNodes ] = myCurFace.myNodes[ 0 ]; // last = first
myCurFace.myNodeIndices[ myCurFace.myNbNodes ] = myCurFace.myNodeIndices[ 0 ];
// check orientation
if (myExternalFaces)
{
myCurFace.myIndex = faceIndex; // avoid infinite recursion in IsFaceExternal()
myExternalFaces = false; // force normal computation by IsFaceExternal()
if ( !IsFaceExternal( faceIndex ))
std::reverse( myCurFace.myNodes.begin(), myCurFace.myNodes.end() );
myExternalFaces = true;
}
}
else
{
if ( !myAllFacesNodeIndices_F )
{
// choose data for an element type
switch ( myVolumeNodes.size() ) {
case 4:
myAllFacesNodeIndices_F = &Tetra_F [0][0];
//myAllFacesNodeIndices_FE = &Tetra_F [0][0];
myAllFacesNodeIndices_RE = &Tetra_RE[0][0];
myAllFacesNbNodes = Tetra_nbN;
myMaxFaceNbNodes = sizeof(Tetra_F[0])/sizeof(Tetra_F[0][0]);
break;
case 5:
myAllFacesNodeIndices_F = &Pyramid_F [0][0];
//myAllFacesNodeIndices_FE = &Pyramid_F [0][0];
myAllFacesNodeIndices_RE = &Pyramid_RE[0][0];
myAllFacesNbNodes = Pyramid_nbN;
myMaxFaceNbNodes = sizeof(Pyramid_F[0])/sizeof(Pyramid_F[0][0]);
break;
case 6:
myAllFacesNodeIndices_F = &Penta_F [0][0];
//myAllFacesNodeIndices_FE = &Penta_FE[0][0];
myAllFacesNodeIndices_RE = &Penta_RE[0][0];
myAllFacesNbNodes = Penta_nbN;
myMaxFaceNbNodes = sizeof(Penta_F[0])/sizeof(Penta_F[0][0]);
break;
case 8:
myAllFacesNodeIndices_F = &Hexa_F [0][0];
///myAllFacesNodeIndices_FE = &Hexa_FE[0][0];
myAllFacesNodeIndices_RE = &Hexa_RE[0][0];
myAllFacesNbNodes = Hexa_nbN;
myMaxFaceNbNodes = sizeof(Hexa_F[0])/sizeof(Hexa_F[0][0]);
break;
case 10:
myAllFacesNodeIndices_F = &QuadTetra_F [0][0];
//myAllFacesNodeIndices_FE = &QuadTetra_F [0][0];
myAllFacesNodeIndices_RE = &QuadTetra_RE[0][0];
myAllFacesNbNodes = QuadTetra_nbN;
myMaxFaceNbNodes = sizeof(QuadTetra_F[0])/sizeof(QuadTetra_F[0][0]);
break;
case 13:
myAllFacesNodeIndices_F = &QuadPyram_F [0][0];
//myAllFacesNodeIndices_FE = &QuadPyram_F [0][0];
myAllFacesNodeIndices_RE = &QuadPyram_RE[0][0];
myAllFacesNbNodes = QuadPyram_nbN;
myMaxFaceNbNodes = sizeof(QuadPyram_F[0])/sizeof(QuadPyram_F[0][0]);
break;
case 15:
myAllFacesNodeIndices_F = &QuadPenta_F [0][0];
//myAllFacesNodeIndices_FE = &QuadPenta_FE[0][0];
myAllFacesNodeIndices_RE = &QuadPenta_RE[0][0];
myAllFacesNbNodes = QuadPenta_nbN;
myMaxFaceNbNodes = sizeof(QuadPenta_F[0])/sizeof(QuadPenta_F[0][0]);
break;
case 20:
case 27:
myAllFacesNodeIndices_F = &QuadHexa_F [0][0];
//myAllFacesNodeIndices_FE = &QuadHexa_FE[0][0];
myAllFacesNodeIndices_RE = &QuadHexa_RE[0][0];
myAllFacesNbNodes = QuadHexa_nbN;
myMaxFaceNbNodes = sizeof(QuadHexa_F[0])/sizeof(QuadHexa_F[0][0]);
if ( !myIgnoreCentralNodes && myVolumeNodes.size() == 27 )
{
myAllFacesNodeIndices_F = &TriQuadHexa_F [0][0];
//myAllFacesNodeIndices_FE = &TriQuadHexa_FE[0][0];
myAllFacesNodeIndices_RE = &TriQuadHexa_RE[0][0];
myAllFacesNbNodes = TriQuadHexa_nbN;
myMaxFaceNbNodes = sizeof(TriQuadHexa_F[0])/sizeof(TriQuadHexa_F[0][0]);
}
break;
case 12:
myAllFacesNodeIndices_F = &HexPrism_F [0][0];
//myAllFacesNodeIndices_FE = &HexPrism_FE[0][0];
myAllFacesNodeIndices_RE = &HexPrism_RE[0][0];
myAllFacesNbNodes = HexPrism_nbN;
myMaxFaceNbNodes = sizeof(HexPrism_F[0])/sizeof(HexPrism_F[0][0]);
break;
default:
return false;
}
}
myCurFace.myNbNodes = myAllFacesNbNodes[ faceIndex ];
// if ( myExternalFaces )
// myCurFace.myNodeIndices = (int*)( myVolForward ? myAllFacesNodeIndices_FE + faceIndex*myMaxFaceNbNodes : myAllFacesNodeIndices_RE + faceIndex*myMaxFaceNbNodes );
// else
// myCurFace.myNodeIndices = (int*)( myAllFacesNodeIndices_F + faceIndex*myMaxFaceNbNodes );
myCurFace.myNodeIndices = (int*)( myVolForward ? myAllFacesNodeIndices_F + faceIndex*myMaxFaceNbNodes : myAllFacesNodeIndices_RE + faceIndex*myMaxFaceNbNodes );
// set face nodes
myCurFace.myNodes.resize( myCurFace.myNbNodes + 1 );
for ( int iNode = 0; iNode < myCurFace.myNbNodes; iNode++ )
myCurFace.myNodes[ iNode ] = myVolumeNodes[ myCurFace.myNodeIndices[ iNode ]];
myCurFace.myNodes[ myCurFace.myNbNodes ] = myCurFace.myNodes[ 0 ];
}
myCurFace.myIndex = faceIndex;
return true;
}
//=======================================================================
//function : GetType
//purpose : return VolumeType by nb of nodes in a volume
//=======================================================================
SMDS_VolumeTool::VolumeType SMDS_VolumeTool::GetType(int nbNodes)
{
switch ( nbNodes ) {
case 4: return TETRA;
case 5: return PYRAM;
case 6: return PENTA;
case 8: return HEXA;
case 10: return QUAD_TETRA;
case 13: return QUAD_PYRAM;
case 15: return QUAD_PENTA;
case 20:
case 27: return QUAD_HEXA;
case 12: return HEX_PRISM;
default:return UNKNOWN;
}
}
//=======================================================================
//function : NbFaces
//purpose : return nb of faces by volume type
//=======================================================================
int SMDS_VolumeTool::NbFaces( VolumeType type )
{
switch ( type ) {
case TETRA :
case QUAD_TETRA: return 4;
case PYRAM :
case QUAD_PYRAM: return 5;
case PENTA :
case QUAD_PENTA: return 5;
case HEXA :
case QUAD_HEXA : return 6;
case HEX_PRISM : return 8;
default: return 0;
}
}
//================================================================================
/*!
* \brief Useful to know nb of corner nodes of a quadratic volume
* \param type - volume type
* \retval int - nb of corner nodes
*/
//================================================================================
int SMDS_VolumeTool::NbCornerNodes(VolumeType type)
{
switch ( type ) {
case TETRA :
case QUAD_TETRA: return 4;
case PYRAM :
case QUAD_PYRAM: return 5;
case PENTA :
case QUAD_PENTA: return 6;
case HEXA :
case QUAD_HEXA : return 8;
case HEX_PRISM : return 12;
default: return 0;
}
return 0;
}
//
//=======================================================================
//function : GetFaceNodesIndices
//purpose : Return the array of face nodes indices
// To comfort link iteration, the array
// length == NbFaceNodes( faceIndex ) + 1 and
// the last node index == the first one.
//=======================================================================
const int* SMDS_VolumeTool::GetFaceNodesIndices(VolumeType type,
int faceIndex,
bool external)
{
switch ( type ) {
case TETRA: return Tetra_F[ faceIndex ];
case PYRAM: return Pyramid_F[ faceIndex ];
case PENTA: return external ? Penta_F[ faceIndex ] : Penta_F[ faceIndex ];
case HEXA: return external ? Hexa_F[ faceIndex ] : Hexa_F[ faceIndex ];
case QUAD_TETRA: return QuadTetra_F[ faceIndex ];
case QUAD_PYRAM: return QuadPyram_F[ faceIndex ];
case QUAD_PENTA: return external ? QuadPenta_F[ faceIndex ] : QuadPenta_F[ faceIndex ];
// what about SMDSEntity_TriQuad_Hexa?
case QUAD_HEXA: return external ? QuadHexa_F[ faceIndex ] : QuadHexa_F[ faceIndex ];
case HEX_PRISM: return external ? HexPrism_F[ faceIndex ] : HexPrism_F[ faceIndex ];
default:;
}
return 0;
}
//=======================================================================
//function : NbFaceNodes
//purpose : Return number of nodes in the array of face nodes
//=======================================================================
int SMDS_VolumeTool::NbFaceNodes(VolumeType type,
int faceIndex )
{
switch ( type ) {
case TETRA: return Tetra_nbN[ faceIndex ];
case PYRAM: return Pyramid_nbN[ faceIndex ];
case PENTA: return Penta_nbN[ faceIndex ];
case HEXA: return Hexa_nbN[ faceIndex ];
case QUAD_TETRA: return QuadTetra_nbN[ faceIndex ];
case QUAD_PYRAM: return QuadPyram_nbN[ faceIndex ];
case QUAD_PENTA: return QuadPenta_nbN[ faceIndex ];
// what about SMDSEntity_TriQuad_Hexa?
case QUAD_HEXA: return QuadHexa_nbN[ faceIndex ];
case HEX_PRISM: return HexPrism_nbN[ faceIndex ];
default:;
}
return 0;
}
//=======================================================================
//function : Element
//purpose : return element
//=======================================================================
const SMDS_MeshVolume* SMDS_VolumeTool::Element() const
{
return static_cast<const SMDS_MeshVolume*>( myVolume );
}
//=======================================================================
//function : ID
//purpose : return element ID
//=======================================================================
int SMDS_VolumeTool::ID() const
{
return myVolume ? myVolume->GetID() : 0;
}