smesh/src/StdMeshers/StdMeshers_ViscousLayers.cxx
2012-06-05 12:18:07 +00:00

4482 lines
155 KiB
C++

// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_ViscousLayers.cxx
// Created : Wed Dec 1 15:15:34 2010
// Author : Edward AGAPOV (eap)
#include "StdMeshers_ViscousLayers.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FaceOfNodes.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_SetIterator.hxx"
#include "SMESHDS_Group.hxx"
#include "SMESHDS_Hypothesis.hxx"
#include "SMESH_Algo.hxx"
#include "SMESH_ComputeError.hxx"
#include "SMESH_ControlsDef.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Group.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_ProxyMesh.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "utilities.h"
#include <BRepAdaptor_Curve2d.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_B2d.hxx>
#include <Bnd_B3d.hxx>
#include <ElCLib.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Precision.hxx>
#include <Standard_ErrorHandler.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Vertex.hxx>
#include <gp_Ax1.hxx>
#include <gp_Vec.hxx>
#include <gp_XY.hxx>
#include <list>
#include <string>
#include <cmath>
#include <limits>
//#define __myDEBUG
using namespace std;
//================================================================================
namespace VISCOUS
{
typedef int TGeomID;
enum UIndex { U_TGT = 1, U_SRC, LEN_TGT };
/*!
* \brief SMESH_ProxyMesh computed by _ViscousBuilder for a SOLID.
* It is stored in a SMESH_subMesh of the SOLID as SMESH_subMeshEventListenerData
*/
struct _MeshOfSolid : public SMESH_ProxyMesh,
public SMESH_subMeshEventListenerData
{
bool _n2nMapComputed;
_MeshOfSolid( SMESH_Mesh* mesh)
:SMESH_subMeshEventListenerData( /*isDeletable=*/true),_n2nMapComputed(false)
{
SMESH_ProxyMesh::setMesh( *mesh );
}
// returns submesh for a geom face
SMESH_ProxyMesh::SubMesh* getFaceSubM(const TopoDS_Face& F, bool create=false)
{
TGeomID i = SMESH_ProxyMesh::shapeIndex(F);
return create ? SMESH_ProxyMesh::getProxySubMesh(i) : findProxySubMesh(i);
}
void setNode2Node(const SMDS_MeshNode* srcNode,
const SMDS_MeshNode* proxyNode,
const SMESH_ProxyMesh::SubMesh* subMesh)
{
SMESH_ProxyMesh::setNode2Node( srcNode,proxyNode,subMesh);
}
};
//--------------------------------------------------------------------------------
/*!
* \brief Listener of events of 3D sub-meshes computed with viscous layers.
* It is used to clear an inferior dim sub-meshes modified by viscous layers
*/
class _SrinkShapeListener : SMESH_subMeshEventListener
{
_SrinkShapeListener()
: SMESH_subMeshEventListener(/*isDeletable=*/false,
"StdMeshers_ViscousLayers::_SrinkShapeListener") {}
static SMESH_subMeshEventListener* Get() { static _SrinkShapeListener l; return &l; }
public:
virtual void ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* solidSM,
SMESH_subMeshEventListenerData* data,
const SMESH_Hypothesis* hyp)
{
if ( SMESH_subMesh::COMPUTE_EVENT == eventType && solidSM->IsEmpty() && data )
{
SMESH_subMeshEventListener::ProcessEvent(event,eventType,solidSM,data,hyp);
}
}
static void ToClearSubMeshWithSolid( SMESH_subMesh* sm,
const TopoDS_Shape& solid)
{
SMESH_subMesh* solidSM = sm->GetFather()->GetSubMesh( solid );
SMESH_subMeshEventListenerData* data = solidSM->GetEventListenerData( Get());
if ( data )
{
if ( find( data->mySubMeshes.begin(), data->mySubMeshes.end(), sm ) ==
data->mySubMeshes.end())
data->mySubMeshes.push_back( sm );
}
else
{
data = SMESH_subMeshEventListenerData::MakeData( /*dependent=*/sm );
sm->SetEventListener( Get(), data, /*whereToListenTo=*/solidSM );
}
}
};
//--------------------------------------------------------------------------------
/*!
* \brief Listener of events of 3D sub-meshes computed with viscous layers.
* It is used to store data computed by _ViscousBuilder for a sub-mesh and to
* delete the data as soon as it has been used
*/
class _ViscousListener : SMESH_subMeshEventListener
{
_ViscousListener():
SMESH_subMeshEventListener(/*isDeletable=*/false,
"StdMeshers_ViscousLayers::_ViscousListener") {}
static SMESH_subMeshEventListener* Get() { static _ViscousListener l; return &l; }
public:
virtual void ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* subMesh,
SMESH_subMeshEventListenerData* data,
const SMESH_Hypothesis* hyp)
{
if ( SMESH_subMesh::COMPUTE_EVENT == eventType )
{
// delete SMESH_ProxyMesh containing temporary faces
subMesh->DeleteEventListener( this );
}
}
// Finds or creates proxy mesh of the solid
static _MeshOfSolid* GetSolidMesh(SMESH_Mesh* mesh,
const TopoDS_Shape& solid,
bool toCreate=false)
{
if ( !mesh ) return 0;
SMESH_subMesh* sm = mesh->GetSubMesh(solid);
_MeshOfSolid* data = (_MeshOfSolid*) sm->GetEventListenerData( Get() );
if ( !data && toCreate )
{
data = new _MeshOfSolid(mesh);
data->mySubMeshes.push_back( sm ); // to find SOLID by _MeshOfSolid
sm->SetEventListener( Get(), data, sm );
}
return data;
}
// Removes proxy mesh of the solid
static void RemoveSolidMesh(SMESH_Mesh* mesh, const TopoDS_Shape& solid)
{
mesh->GetSubMesh(solid)->DeleteEventListener( _ViscousListener::Get() );
}
};
//--------------------------------------------------------------------------------
/*!
* \brief Simplex (triangle or tetrahedron) based on 1 (tria) or 2 (tet) nodes of
* _LayerEdge and 2 nodes of the mesh surface beening smoothed.
* The class is used to check validity of face or volumes around a smoothed node;
* it stores only 2 nodes as the other nodes are stored by _LayerEdge.
*/
struct _Simplex
{
const SMDS_MeshNode *_nPrev, *_nNext; // nodes on a smoothed mesh surface
_Simplex(const SMDS_MeshNode* nPrev=0, const SMDS_MeshNode* nNext=0)
: _nPrev(nPrev), _nNext(nNext) {}
bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ* pntTgt) const
{
const double M[3][3] =
{{ _nNext->X() - nSrc->X(), _nNext->Y() - nSrc->Y(), _nNext->Z() - nSrc->Z() },
{ pntTgt->X() - nSrc->X(), pntTgt->Y() - nSrc->Y(), pntTgt->Z() - nSrc->Z() },
{ _nPrev->X() - nSrc->X(), _nPrev->Y() - nSrc->Y(), _nPrev->Z() - nSrc->Z() }};
double determinant = ( + M[0][0]*M[1][1]*M[2][2]
+ M[0][1]*M[1][2]*M[2][0]
+ M[0][2]*M[1][0]*M[2][1]
- M[0][0]*M[1][2]*M[2][1]
- M[0][1]*M[1][0]*M[2][2]
- M[0][2]*M[1][1]*M[2][0]);
return determinant > 1e-100;
}
bool IsForward(const gp_XY& tgtUV,
const SMDS_MeshNode* smoothedNode,
const TopoDS_Face& face,
SMESH_MesherHelper& helper,
const double refSign) const
{
gp_XY prevUV = helper.GetNodeUV( face, _nPrev, smoothedNode );
gp_XY nextUV = helper.GetNodeUV( face, _nNext, smoothedNode );
gp_Vec2d v1( tgtUV, prevUV ), v2( tgtUV, nextUV );
double d = v1 ^ v2;
return d*refSign > 1e-100;
}
bool IsNeighbour(const _Simplex& other) const
{
return _nPrev == other._nNext || _nNext == other._nPrev;
}
};
//--------------------------------------------------------------------------------
/*!
* Structure used to take into account surface curvature while smoothing
*/
struct _Curvature
{
double _r; // radius
double _k; // factor to correct node smoothed position
public:
static _Curvature* New( double avgNormProj, double avgDist )
{
_Curvature* c = 0;
if ( fabs( avgNormProj / avgDist ) > 1./200 )
{
c = new _Curvature;
c->_r = avgDist * avgDist / avgNormProj;
c->_k = avgDist * avgDist / c->_r / c->_r;
c->_k *= ( c->_r < 0 ? 1/1.1 : 1.1 ); // not to be too restrictive
}
return c;
}
double lenDelta(double len) const { return _k * ( _r + len ); }
};
struct _LayerEdge;
//--------------------------------------------------------------------------------
/*!
* Structure used to smooth a _LayerEdge (master) based on an EDGE.
*/
struct _2NearEdges
{
// target nodes of 2 neighbour _LayerEdge's based on the same EDGE
const SMDS_MeshNode* _nodes[2];
// vectors from source nodes of 2 _LayerEdge's to the source node of master _LayerEdge
//gp_XYZ _vec[2];
double _wgt[2]; // weights of _nodes
_LayerEdge* _edges[2];
// normal to plane passing through _LayerEdge._normal and tangent of EDGE
gp_XYZ* _plnNorm;
_2NearEdges() { _nodes[0]=_nodes[1]=0; _plnNorm = 0; }
void reverse() {
std::swap( _nodes[0], _nodes[1] );
std::swap( _wgt[0], _wgt[1] );
}
};
//--------------------------------------------------------------------------------
/*!
* \brief Edge normal to surface, connecting a node on solid surface (_nodes[0])
* and a node of the most internal layer (_nodes.back())
*/
struct _LayerEdge
{
vector< const SMDS_MeshNode*> _nodes;
gp_XYZ _normal; // to solid surface
vector<gp_XYZ> _pos; // points computed during inflation
double _len; // length achived with the last step
double _cosin; // of angle (_normal ^ surface)
double _lenFactor; // to compute _len taking _cosin into account
// face or edge w/o layer along or near which _LayerEdge is inflated
TopoDS_Shape _sWOL;
// simplices connected to the source node (_nodes[0]);
// used for smoothing and quality check of _LayerEdge's based on the FACE
vector<_Simplex> _simplices;
// data for smoothing of _LayerEdge's based on the EDGE
_2NearEdges* _2neibors;
_Curvature* _curvature;
// TODO:: detele _Curvature, _plnNorm
void SetNewLength( double len, SMESH_MesherHelper& helper );
bool SetNewLength2d( Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper );
void SetDataByNeighbors( const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
SMESH_MesherHelper& helper);
void InvalidateStep( int curStep );
bool Smooth(int& badNb);
bool SmoothOnEdge(Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper);
bool FindIntersection( SMESH_ElementSearcher& searcher,
double & distance,
const double& epsilon,
const SMDS_MeshElement** face = 0);
bool SegTriaInter( const gp_Ax1& lastSegment,
const SMDS_MeshNode* n0,
const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
double& dist,
const double& epsilon) const;
gp_Ax1 LastSegment(double& segLen) const;
bool IsOnEdge() const { return _2neibors; }
void Copy( _LayerEdge& other, SMESH_MesherHelper& helper );
void SetCosin( double cosin );
};
struct _LayerEdgeCmp
{
bool operator () (const _LayerEdge* e1, const _LayerEdge* e2) const
{
const bool cmpNodes = ( e1 && e2 && e1->_nodes.size() && e2->_nodes.size() );
return cmpNodes ? ( e1->_nodes[0]->GetID() < e2->_nodes[0]->GetID()) : ( e1 < e2 );
}
};
//--------------------------------------------------------------------------------
typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge;
//--------------------------------------------------------------------------------
/*!
* \brief Data of a SOLID
*/
struct _SolidData
{
TopoDS_Shape _solid;
const StdMeshers_ViscousLayers* _hyp;
_MeshOfSolid* _proxyMesh;
set<TGeomID> _reversedFaceIds;
double _stepSize, _stepSizeCoeff;
const SMDS_MeshNode* _stepSizeNodes[2];
TNode2Edge _n2eMap;
// edges of _n2eMap. We keep same data in two containers because
// iteration over the map is 5 time longer than over the vector
vector< _LayerEdge* > _edges;
// key: an id of shape (EDGE or VERTEX) shared by a FACE with
// layers and a FACE w/o layers
// value: the shape (FACE or EDGE) to shrink mesh on.
// _LayerEdge's basing on nodes on key shape are inflated along the value shape
map< TGeomID, TopoDS_Shape > _shrinkShape2Shape;
// FACE's WOL, srink on which is forbiden due to algo on the adjacent SOLID
set< TGeomID > _noShrinkFaces;
// <EDGE to smooth on> to <it's curve>
map< TGeomID,Handle(Geom_Curve)> _edge2curve;
// end indices in _edges of _LayerEdge on one shape to smooth
vector< int > _endEdgeToSmooth;
double _epsilon; // precision for SegTriaInter()
int _index; // for debug
_SolidData(const TopoDS_Shape& s=TopoDS_Shape(),
const StdMeshers_ViscousLayers* h=0,
_MeshOfSolid* m=0) :_solid(s), _hyp(h), _proxyMesh(m) {}
~_SolidData();
Handle(Geom_Curve) CurveForSmooth( const TopoDS_Edge& E,
const int iFrom,
const int iTo,
Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper);
};
//--------------------------------------------------------------------------------
/*!
* \brief Data of node on a shrinked FACE
*/
struct _SmoothNode
{
const SMDS_MeshNode* _node;
//vector<const SMDS_MeshNode*> _nodesAround;
vector<_Simplex> _simplices; // for quality check
bool Smooth(int& badNb,
Handle(Geom_Surface)& surface,
SMESH_MesherHelper& helper,
const double refSign,
bool isCentroidal,
bool set3D);
};
//--------------------------------------------------------------------------------
/*!
* \brief Builder of viscous layers
*/
class _ViscousBuilder
{
public:
_ViscousBuilder();
// does it's job
SMESH_ComputeErrorPtr Compute(SMESH_Mesh& mesh,
const TopoDS_Shape& shape);
// restore event listeners used to clear an inferior dim sub-mesh modified by viscous layers
void RestoreListeners();
// computes SMESH_ProxyMesh::SubMesh::_n2n;
bool MakeN2NMap( _MeshOfSolid* pm );
private:
bool findSolidsWithLayers();
bool findFacesWithLayers();
bool makeLayer(_SolidData& data);
bool setEdgeData(_LayerEdge& edge, const set<TGeomID>& subIds,
SMESH_MesherHelper& helper, _SolidData& data);
bool findNeiborsOnEdge(const _LayerEdge* edge,
const SMDS_MeshNode*& n1,
const SMDS_MeshNode*& n2,
_SolidData& data);
void getSimplices( const SMDS_MeshNode* node, vector<_Simplex>& simplices,
const set<TGeomID>& ingnoreShapes,
const _SolidData* dataToCheckOri = 0,
const bool toSort = false);
bool sortEdges( _SolidData& data,
vector< vector<_LayerEdge*> >& edgesByGeom);
void limitStepSize( _SolidData& data,
const SMDS_MeshElement* face,
const double cosin);
void limitStepSize( _SolidData& data, const double minSize);
bool inflate(_SolidData& data);
bool smoothAndCheck(_SolidData& data, const int nbSteps, double & distToIntersection);
bool smoothAnalyticEdge( _SolidData& data,
const int iFrom,
const int iTo,
Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper);
bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper );
bool refine(_SolidData& data);
bool shrink();
bool prepareEdgeToShrink( _LayerEdge& edge, const TopoDS_Face& F,
SMESH_MesherHelper& helper,
const SMESHDS_SubMesh* faceSubMesh );
void fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& helper);
bool addBoundaryElements();
bool error( const string& text, int solidID=-1 );
SMESHDS_Mesh* getMeshDS() { return _mesh->GetMeshDS(); }
// debug
void makeGroupOfLE();
SMESH_Mesh* _mesh;
SMESH_ComputeErrorPtr _error;
vector< _SolidData > _sdVec;
set<TGeomID> _ignoreShapeIds;
int _tmpFaceID;
};
//--------------------------------------------------------------------------------
/*!
* \brief Shrinker of nodes on the EDGE
*/
class _Shrinker1D
{
vector<double> _initU;
vector<double> _normPar;
vector<const SMDS_MeshNode*> _nodes;
const _LayerEdge* _edges[2];
bool _done;
public:
void AddEdge( const _LayerEdge* e, SMESH_MesherHelper& helper );
void Compute(bool set3D, SMESH_MesherHelper& helper);
void RestoreParams();
void SwapSrcTgtNodes(SMESHDS_Mesh* mesh);
};
//--------------------------------------------------------------------------------
/*!
* \brief Class of temporary mesh face.
* We can't use SMDS_FaceOfNodes since it's impossible to set it's ID which is
* needed because SMESH_ElementSearcher internaly uses set of elements sorted by ID
*/
struct TmpMeshFace : public SMDS_MeshElement
{
vector<const SMDS_MeshNode* > _nn;
TmpMeshFace( const vector<const SMDS_MeshNode*>& nodes, int id):
SMDS_MeshElement(id), _nn(nodes) {}
virtual const SMDS_MeshNode* GetNode(const int ind) const { return _nn[ind]; }
virtual SMDSAbs_ElementType GetType() const { return SMDSAbs_Face; }
virtual vtkIdType GetVtkType() const { return -1; }
virtual SMDSAbs_EntityType GetEntityType() const { return SMDSEntity_Last; }
virtual SMDS_ElemIteratorPtr elementsIterator(SMDSAbs_ElementType type) const
{ return SMDS_ElemIteratorPtr( new SMDS_NodeVectorElemIterator( _nn.begin(), _nn.end()));}
};
//--------------------------------------------------------------------------------
/*!
* \brief Class of temporary mesh face storing _LayerEdge it's based on
*/
struct TmpMeshFaceOnEdge : public TmpMeshFace
{
_LayerEdge *_le1, *_le2;
TmpMeshFaceOnEdge( _LayerEdge* le1, _LayerEdge* le2, int ID ):
TmpMeshFace( vector<const SMDS_MeshNode*>(4), ID ), _le1(le1), _le2(le2)
{
_nn[0]=_le1->_nodes[0];
_nn[1]=_le1->_nodes.back();
_nn[2]=_le2->_nodes.back();
_nn[3]=_le2->_nodes[0];
}
};
} // namespace VISCOUS
//================================================================================
// StdMeshers_ViscousLayers hypothesis
//
StdMeshers_ViscousLayers::StdMeshers_ViscousLayers(int hypId, int studyId, SMESH_Gen* gen)
:SMESH_Hypothesis(hypId, studyId, gen),
_nbLayers(1), _thickness(1), _stretchFactor(1)
{
_name = StdMeshers_ViscousLayers::GetHypType();
_param_algo_dim = -3; // auxiliary hyp used by 3D algos
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetIgnoreFaces(const std::vector<int>& faceIds)
{
if ( faceIds != _ignoreFaceIds )
_ignoreFaceIds = faceIds, NotifySubMeshesHypothesisModification();
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetTotalThickness(double thickness)
{
if ( thickness != _thickness )
_thickness = thickness, NotifySubMeshesHypothesisModification();
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetNumberLayers(int nb)
{
if ( _nbLayers != nb )
_nbLayers = nb, NotifySubMeshesHypothesisModification();
} // --------------------------------------------------------------------------------
void StdMeshers_ViscousLayers::SetStretchFactor(double factor)
{
if ( _stretchFactor != factor )
_stretchFactor = factor, NotifySubMeshesHypothesisModification();
} // --------------------------------------------------------------------------------
SMESH_ProxyMesh::Ptr
StdMeshers_ViscousLayers::Compute(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape,
const bool toMakeN2NMap) const
{
using namespace VISCOUS;
_ViscousBuilder bulder;
SMESH_ComputeErrorPtr err = bulder.Compute( theMesh, theShape );
if ( err && !err->IsOK() )
return SMESH_ProxyMesh::Ptr();
vector<SMESH_ProxyMesh::Ptr> components;
TopExp_Explorer exp( theShape, TopAbs_SOLID );
for ( ; exp.More(); exp.Next() )
{
if ( _MeshOfSolid* pm =
_ViscousListener::GetSolidMesh( &theMesh, exp.Current(), /*toCreate=*/false))
{
if ( toMakeN2NMap && !pm->_n2nMapComputed )
if ( !bulder.MakeN2NMap( pm ))
return SMESH_ProxyMesh::Ptr();
components.push_back( SMESH_ProxyMesh::Ptr( pm ));
pm->myIsDeletable = false; // it will de deleted by boost::shared_ptr
}
_ViscousListener::RemoveSolidMesh ( &theMesh, exp.Current() );
}
switch ( components.size() )
{
case 0: break;
case 1: return components[0];
default: return SMESH_ProxyMesh::Ptr( new SMESH_ProxyMesh( components ));
}
return SMESH_ProxyMesh::Ptr();
} // --------------------------------------------------------------------------------
std::ostream & StdMeshers_ViscousLayers::SaveTo(std::ostream & save)
{
save << " " << _nbLayers
<< " " << _thickness
<< " " << _stretchFactor
<< " " << _ignoreFaceIds.size();
for ( unsigned i = 0; i < _ignoreFaceIds.size(); ++i )
save << " " << _ignoreFaceIds[i];
return save;
} // --------------------------------------------------------------------------------
std::istream & StdMeshers_ViscousLayers::LoadFrom(std::istream & load)
{
int nbFaces, faceID;
load >> _nbLayers >> _thickness >> _stretchFactor >> nbFaces;
while ( _ignoreFaceIds.size() < nbFaces && load >> faceID )
_ignoreFaceIds.push_back( faceID );
return load;
} // --------------------------------------------------------------------------------
bool StdMeshers_ViscousLayers::SetParametersByMesh(const SMESH_Mesh* theMesh,
const TopoDS_Shape& theShape)
{
// TODO
return false;
}
// END StdMeshers_ViscousLayers hypothesis
//================================================================================
namespace
{
gp_XYZ getEdgeDir( const TopoDS_Edge& E, const TopoDS_Vertex& fromV )
{
gp_Vec dir;
double f,l;
Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l );
gp_Pnt p = BRep_Tool::Pnt( fromV );
double distF = p.SquareDistance( c->Value( f ));
double distL = p.SquareDistance( c->Value( l ));
c->D1(( distF < distL ? f : l), p, dir );
if ( distL < distF ) dir.Reverse();
return dir.XYZ();
}
//--------------------------------------------------------------------------------
gp_XYZ getEdgeDir( const TopoDS_Edge& E, const SMDS_MeshNode* atNode,
SMESH_MesherHelper& helper)
{
gp_Vec dir;
double f,l; gp_Pnt p;
Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l );
double u = helper.GetNodeU( E, atNode );
c->D1( u, p, dir );
return dir.XYZ();
}
//--------------------------------------------------------------------------------
gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Edge& fromE,
const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok)
{
gp_XY uv = helper.GetNodeUV( F, node, 0, &ok );
Handle(Geom_Surface) surface = BRep_Tool::Surface( F );
gp_Pnt p; gp_Vec du, dv, norm;
surface->D1( uv.X(),uv.Y(), p, du,dv );
norm = du ^ dv;
double f,l;
Handle(Geom_Curve) c = BRep_Tool::Curve( fromE, f, l );
double u = helper.GetNodeU( fromE, node, 0, &ok );
c->D1( u, p, du );
TopAbs_Orientation o = helper.GetSubShapeOri( F.Oriented(TopAbs_FORWARD), fromE);
if ( o == TopAbs_REVERSED )
du.Reverse();
gp_Vec dir = norm ^ du;
if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX &&
helper.IsClosedEdge( fromE ))
{
if ( fabs(u-f) < fabs(u-l )) c->D1( l, p, dv );
else c->D1( f, p, dv );
if ( o == TopAbs_REVERSED )
dv.Reverse();
gp_Vec dir2 = norm ^ dv;
dir = dir.Normalized() + dir2.Normalized();
}
return dir.XYZ();
}
//--------------------------------------------------------------------------------
gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV,
const SMDS_MeshNode* node, SMESH_MesherHelper& helper,
bool& ok, double* cosin=0)
{
double f,l; TopLoc_Location loc;
vector< TopoDS_Edge > edges; // sharing a vertex
PShapeIteratorPtr eIt = helper.GetAncestors( fromV, *helper.GetMesh(), TopAbs_EDGE);
while ( eIt->more())
{
const TopoDS_Edge* e = static_cast<const TopoDS_Edge*>( eIt->next() );
if ( helper.IsSubShape( *e, F ) && !BRep_Tool::Curve( *e, loc,f,l).IsNull() )
edges.push_back( *e );
}
gp_XYZ dir(0,0,0);
if ( !( ok = ( edges.size() > 0 ))) return dir;
// get average dir of edges going fromV
gp_Vec edgeDir;
for ( unsigned i = 0; i < edges.size(); ++i )
{
edgeDir = getEdgeDir( edges[i], fromV );
double size2 = edgeDir.SquareMagnitude();
if ( size2 > numeric_limits<double>::min() )
edgeDir /= sqrt( size2 );
else
ok = false;
dir += edgeDir.XYZ();
}
gp_XYZ fromEdgeDir = getFaceDir( F, edges[0], node, helper, ok );
if ( edges.size() == 1 || dir.SquareModulus() < 1e-10)
dir = fromEdgeDir;
else if ( dir * fromEdgeDir < 0 )
dir *= -1;
if ( ok )
{
//dir /= edges.size();
if ( cosin ) {
double angle = edgeDir.Angle( dir );
*cosin = cos( angle );
}
}
return dir;
}
//================================================================================
/*!
* \brief Returns true if a FACE is bound by a concave EDGE
*/
//================================================================================
bool isConcave( const TopoDS_Face& F, SMESH_MesherHelper& helper )
{
gp_Vec2d drv1, drv2;
gp_Pnt2d p;
TopExp_Explorer eExp( F.Oriented( TopAbs_FORWARD ), TopAbs_EDGE );
for ( ; eExp.More(); eExp.Next() )
{
const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() );
if ( BRep_Tool::Degenerated( E )) continue;
// check if 2D curve is concave
BRepAdaptor_Curve2d curve( E, F );
const int nbIntervals = curve.NbIntervals( GeomAbs_C2 );
TColStd_Array1OfReal intervals(1, nbIntervals + 1 );
curve.Intervals( intervals, GeomAbs_C2 );
bool isConvex = true;
for ( int i = 1; i <= nbIntervals && isConvex; ++i )
{
double u1 = intervals( i );
double u2 = intervals( i+1 );
curve.D2( 0.5*( u1+u2 ), p, drv1, drv2 );
double cross = drv2 ^ drv1;
if ( E.Orientation() == TopAbs_REVERSED )
cross = -cross;
isConvex = ( cross < 1e-9 );
}
// check if concavity is strong enough to care about it
//const double maxAngle = 5 * Standard_PI180;
if ( !isConvex )
{
//cout << "Concave FACE " << helper.GetMeshDS()->ShapeToIndex( F ) << endl;
return true;
// map< double, const SMDS_MeshNode* > u2nodes;
// if ( !SMESH_Algo::GetSortedNodesOnEdge( helper.GetMeshDS(), E,
// /*ignoreMedium=*/true, u2nodes))
// continue;
// map< double, const SMDS_MeshNode* >::iterator u2n = u2nodes.begin();
// gp_Pnt2d uvPrev = helper.GetNodeUV( F, u2n->second );
// double uPrev = u2n->first;
// for ( ++u2n; u2n != u2nodes.end(); ++u2n )
// {
// gp_Pnt2d uv = helper.GetNodeUV( F, u2n->second );
// gp_Vec2d segmentDir( uvPrev, uv );
// curve.D1( uPrev, p, drv1 );
// try {
// if ( fabs( segmentDir.Angle( drv1 )) > maxAngle )
// return true;
// }
// catch ( ... ) {}
// uvPrev = uv;
// uPrev = u2n->first;
// }
}
}
return false;
}
//--------------------------------------------------------------------------------
// DEBUG. Dump intermediate node positions into a python script
#ifdef __myDEBUG
ofstream* py;
struct PyDump {
PyDump() {
const char* fname = "/tmp/viscous.py";
cout << "execfile('"<<fname<<"')"<<endl;
py = new ofstream(fname);
*py << "from smesh import *" << endl
<< "meshSO = GetCurrentStudy().FindObjectID('0:1:2:3')" << endl
<< "mesh = Mesh( meshSO.GetObject() )"<<endl;
}
void Finish() {
if (py)
*py << "mesh.MakeGroup('Viscous Prisms',VOLUME,FT_ElemGeomType,'=',Geom_PENTA)"<<endl;
delete py; py=0;
}
~PyDump() { Finish(); }
};
#define dumpFunction(f) { _dumpFunction(f, __LINE__);}
#define dumpMove(n) { _dumpMove(n, __LINE__);}
#define dumpCmd(txt) { _dumpCmd(txt, __LINE__);}
void _dumpFunction(const string& fun, int ln)
{ if (py) *py<< "def "<<fun<<"(): # "<< ln <<endl; cout<<fun<<"()"<<endl;}
void _dumpMove(const SMDS_MeshNode* n, int ln)
{ if (py) *py<< " mesh.MoveNode( "<<n->GetID()<< ", "<< n->X()
<< ", "<<n->Y()<<", "<< n->Z()<< ")\t\t # "<< ln <<endl; }
void _dumpCmd(const string& txt, int ln)
{ if (py) *py<< " "<<txt<<" # "<< ln <<endl; }
void dumpFunctionEnd()
{ if (py) *py<< " return"<< endl; }
void dumpChangeNodes( const SMDS_MeshElement* f )
{ if (py) { *py<< " mesh.ChangeElemNodes( " << f->GetID()<<", [";
for ( int i=1; i < f->NbNodes(); ++i ) *py << f->GetNode(i-1)->GetID()<<", ";
*py << f->GetNode( f->NbNodes()-1 )->GetID() << " ])"<< endl; }}
#else
struct PyDump { void Finish() {} };
#define dumpFunction(f) f
#define dumpMove(n)
#define dumpCmd(txt)
#define dumpFunctionEnd()
#define dumpChangeNodes(f)
#endif
}
using namespace VISCOUS;
//================================================================================
/*!
* \brief Constructor of _ViscousBuilder
*/
//================================================================================
_ViscousBuilder::_ViscousBuilder()
{
_error = SMESH_ComputeError::New(COMPERR_OK);
_tmpFaceID = 0;
}
//================================================================================
/*!
* \brief Stores error description and returns false
*/
//================================================================================
bool _ViscousBuilder::error(const string& text, int solidId )
{
_error->myName = COMPERR_ALGO_FAILED;
_error->myComment = string("Viscous layers builder: ") + text;
if ( _mesh )
{
SMESH_subMesh* sm = _mesh->GetSubMeshContaining( solidId );
if ( !sm && !_sdVec.empty() )
sm = _mesh->GetSubMeshContaining( _sdVec[0]._index );
if ( sm && sm->GetSubShape().ShapeType() == TopAbs_SOLID )
{
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
if ( smError && smError->myAlgo )
_error->myAlgo = smError->myAlgo;
smError = _error;
}
}
makeGroupOfLE(); // debug
return false;
}
//================================================================================
/*!
* \brief At study restoration, restore event listeners used to clear an inferior
* dim sub-mesh modified by viscous layers
*/
//================================================================================
void _ViscousBuilder::RestoreListeners()
{
// TODO
}
//================================================================================
/*!
* \brief computes SMESH_ProxyMesh::SubMesh::_n2n
*/
//================================================================================
bool _ViscousBuilder::MakeN2NMap( _MeshOfSolid* pm )
{
SMESH_subMesh* solidSM = pm->mySubMeshes.front();
TopExp_Explorer fExp( solidSM->GetSubShape(), TopAbs_FACE );
for ( ; fExp.More(); fExp.Next() )
{
SMESHDS_SubMesh* srcSmDS = pm->GetMeshDS()->MeshElements( fExp.Current() );
const SMESH_ProxyMesh::SubMesh* prxSmDS = pm->GetProxySubMesh( fExp.Current() );
if ( !srcSmDS || !prxSmDS || !srcSmDS->NbElements() || !prxSmDS->NbElements() )
continue;
if ( srcSmDS->GetElements()->next() == prxSmDS->GetElements()->next())
continue;
if ( srcSmDS->NbElements() != prxSmDS->NbElements() )
return error( "Different nb elements in a source and a proxy sub-mesh", solidSM->GetId());
SMDS_ElemIteratorPtr srcIt = srcSmDS->GetElements();
SMDS_ElemIteratorPtr prxIt = prxSmDS->GetElements();
while( prxIt->more() )
{
const SMDS_MeshElement* fSrc = srcIt->next();
const SMDS_MeshElement* fPrx = prxIt->next();
if ( fSrc->NbNodes() != fPrx->NbNodes())
return error( "Different elements in a source and a proxy sub-mesh", solidSM->GetId());
for ( int i = 0 ; i < fPrx->NbNodes(); ++i )
pm->setNode2Node( fSrc->GetNode(i), fPrx->GetNode(i), prxSmDS );
}
}
pm->_n2nMapComputed = true;
return true;
}
//================================================================================
/*!
* \brief Does its job
*/
//================================================================================
SMESH_ComputeErrorPtr _ViscousBuilder::Compute(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape)
{
// TODO: set priority of solids during Gen::Compute()
_mesh = & theMesh;
// check if proxy mesh already computed
TopExp_Explorer exp( theShape, TopAbs_SOLID );
if ( !exp.More() )
return error("No SOLID's in theShape"), _error;
if ( _ViscousListener::GetSolidMesh( _mesh, exp.Current(), /*toCreate=*/false))
return SMESH_ComputeErrorPtr(); // everything already computed
PyDump debugDump;
// TODO: ignore already computed SOLIDs
if ( !findSolidsWithLayers())
return _error;
if ( !findFacesWithLayers() )
return _error;
for ( unsigned i = 0; i < _sdVec.size(); ++i )
{
if ( ! makeLayer(_sdVec[i]) )
return _error;
if ( ! inflate(_sdVec[i]) )
return _error;
if ( ! refine(_sdVec[i]) )
return _error;
}
if ( !shrink() )
return _error;
addBoundaryElements();
makeGroupOfLE(); // debug
debugDump.Finish();
return _error;
}
//================================================================================
/*!
* \brief Finds SOLIDs to compute using viscous layers. Fills _sdVec
*/
//================================================================================
bool _ViscousBuilder::findSolidsWithLayers()
{
// get all solids
TopTools_IndexedMapOfShape allSolids;
TopExp::MapShapes( _mesh->GetShapeToMesh(), TopAbs_SOLID, allSolids );
_sdVec.reserve( allSolids.Extent());
SMESH_Gen* gen = _mesh->GetGen();
for ( int i = 1; i <= allSolids.Extent(); ++i )
{
// find StdMeshers_ViscousLayers hyp assigned to the i-th solid
SMESH_Algo* algo = gen->GetAlgo( *_mesh, allSolids(i) );
if ( !algo ) continue;
// TODO: check if algo is hidden
const list <const SMESHDS_Hypothesis *> & allHyps =
algo->GetUsedHypothesis(*_mesh, allSolids(i), /*ignoreAuxiliary=*/false);
list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin();
const StdMeshers_ViscousLayers* viscHyp = 0;
for ( ; hyp != allHyps.end() && !viscHyp; ++hyp )
viscHyp = dynamic_cast<const StdMeshers_ViscousLayers*>( *hyp );
if ( viscHyp )
{
_MeshOfSolid* proxyMesh = _ViscousListener::GetSolidMesh( _mesh,
allSolids(i),
/*toCreate=*/true);
_sdVec.push_back( _SolidData( allSolids(i), viscHyp, proxyMesh ));
_sdVec.back()._index = getMeshDS()->ShapeToIndex( allSolids(i));
}
}
if ( _sdVec.empty() )
return error
( SMESH_Comment(StdMeshers_ViscousLayers::GetHypType()) << " hypothesis not found",0);
return true;
}
//================================================================================
/*!
* \brief
*/
//================================================================================
bool _ViscousBuilder::findFacesWithLayers()
{
// collect all faces to ignore defined by hyp
vector<TopoDS_Shape> ignoreFaces;
for ( unsigned i = 0; i < _sdVec.size(); ++i )
{
vector<TGeomID> ids = _sdVec[i]._hyp->GetIgnoreFaces();
for ( unsigned i = 0; i < ids.size(); ++i )
{
const TopoDS_Shape& s = getMeshDS()->IndexToShape( ids[i] );
if ( !s.IsNull() && s.ShapeType() == TopAbs_FACE )
{
_ignoreShapeIds.insert( ids[i] );
ignoreFaces.push_back( s );
}
}
}
// ignore internal faces
SMESH_MesherHelper helper( *_mesh );
TopExp_Explorer exp;
for ( unsigned i = 0; i < _sdVec.size(); ++i )
{
exp.Init( _sdVec[i]._solid.Oriented( TopAbs_FORWARD ), TopAbs_FACE );
for ( ; exp.More(); exp.Next() )
{
TGeomID faceInd = getMeshDS()->ShapeToIndex( exp.Current() );
if ( helper.NbAncestors( exp.Current(), *_mesh, TopAbs_SOLID ) > 1 )
{
_ignoreShapeIds.insert( faceInd );
ignoreFaces.push_back( exp.Current() );
if ( SMESH_Algo::IsReversedSubMesh( TopoDS::Face( exp.Current() ), getMeshDS()))
_sdVec[i]._reversedFaceIds.insert( faceInd );
}
}
}
// Find faces to shrink mesh on (solution 2 in issue 0020832);
TopTools_IndexedMapOfShape shapes;
for ( unsigned i = 0; i < _sdVec.size(); ++i )
{
shapes.Clear();
TopExp::MapShapes(_sdVec[i]._solid, TopAbs_EDGE, shapes);
for ( int iE = 1; iE <= shapes.Extent(); ++iE )
{
const TopoDS_Shape& edge = shapes(iE);
// find 2 faces sharing an edge
TopoDS_Shape FF[2];
PShapeIteratorPtr fIt = helper.GetAncestors(edge, *_mesh, TopAbs_FACE);
while ( fIt->more())
{
const TopoDS_Shape* f = fIt->next();
if ( helper.IsSubShape( *f, _sdVec[i]._solid))
FF[ int( !FF[0].IsNull()) ] = *f;
}
if( FF[1].IsNull() ) continue; // seam edge can be shared by 1 FACE only
// check presence of layers on them
int ignore[2];
for ( int j = 0; j < 2; ++j )
ignore[j] = _ignoreShapeIds.count ( getMeshDS()->ShapeToIndex( FF[j] ));
if ( ignore[0] == ignore[1] ) continue; // nothing interesting
TopoDS_Shape fWOL = FF[ ignore[0] ? 0 : 1 ];
// add edge to maps
TGeomID edgeInd = getMeshDS()->ShapeToIndex( edge );
_sdVec[i]._shrinkShape2Shape.insert( make_pair( edgeInd, fWOL ));
}
}
// Exclude from _shrinkShape2Shape FACE's that can't be shrinked since
// the algo of the SOLID sharing the FACE does not support it
set< string > notSupportAlgos; notSupportAlgos.insert("Hexa_3D");
for ( unsigned i = 0; i < _sdVec.size(); ++i )
{
TopTools_MapOfShape noShrinkVertices;
map< TGeomID, TopoDS_Shape >::iterator e2f = _sdVec[i]._shrinkShape2Shape.begin();
for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ++e2f )
{
const TopoDS_Shape& fWOL = e2f->second;
TGeomID edgeID = e2f->first;
bool notShrinkFace = false;
PShapeIteratorPtr soIt = helper.GetAncestors(fWOL, *_mesh, TopAbs_SOLID);
while ( soIt->more())
{
const TopoDS_Shape* solid = soIt->next();
if ( _sdVec[i]._solid.IsSame( *solid )) continue;
SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, *solid );
if ( !algo || !notSupportAlgos.count( algo->GetName() )) continue;
notShrinkFace = true;
for ( unsigned j = 0; j < _sdVec.size(); ++j )
{
if ( _sdVec[j]._solid.IsSame( *solid ) )
if ( _sdVec[j]._shrinkShape2Shape.count( edgeID ))
notShrinkFace = false;
}
}
if ( notShrinkFace )
{
_sdVec[i]._noShrinkFaces.insert( getMeshDS()->ShapeToIndex( fWOL ));
for ( TopExp_Explorer vExp( fWOL, TopAbs_VERTEX ); vExp.More(); vExp.Next() )
noShrinkVertices.Add( vExp.Current() );
}
}
// erase from _shrinkShape2Shape all srink EDGE's of a SOLID connected
// to the found not shrinked fWOL's
e2f = _sdVec[i]._shrinkShape2Shape.begin();
for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); )
{
TGeomID edgeID = e2f->first;
TopoDS_Vertex VV[2];
TopExp::Vertices( TopoDS::Edge( getMeshDS()->IndexToShape( edgeID )),VV[0],VV[1]);
if ( noShrinkVertices.Contains( VV[0] ) || noShrinkVertices.Contains( VV[1] ))
{
_sdVec[i]._noShrinkFaces.insert( getMeshDS()->ShapeToIndex( e2f->second ));
_sdVec[i]._shrinkShape2Shape.erase( e2f++ );
}
else
{
e2f++;
}
}
}
// Find the SHAPE along which to inflate _LayerEdge based on VERTEX
for ( unsigned i = 0; i < _sdVec.size(); ++i )
{
shapes.Clear();
TopExp::MapShapes(_sdVec[i]._solid, TopAbs_VERTEX, shapes);
for ( int iV = 1; iV <= shapes.Extent(); ++iV )
{
const TopoDS_Shape& vertex = shapes(iV);
// find faces WOL sharing the vertex
vector< TopoDS_Shape > facesWOL;
int totalNbFaces = 0;
PShapeIteratorPtr fIt = helper.GetAncestors(vertex, *_mesh, TopAbs_FACE);
while ( fIt->more())
{
const TopoDS_Shape* f = fIt->next();
const int fID = getMeshDS()->ShapeToIndex( *f );
if ( helper.IsSubShape( *f, _sdVec[i]._solid ) )
{
totalNbFaces++;
if ( _ignoreShapeIds.count ( fID ) && ! _sdVec[i]._noShrinkFaces.count( fID ))
facesWOL.push_back( *f );
}
}
if ( facesWOL.size() == totalNbFaces || facesWOL.empty() )
continue; // no layers at this vertex or no WOL
TGeomID vInd = getMeshDS()->ShapeToIndex( vertex );
switch ( facesWOL.size() )
{
case 1:
{
helper.SetSubShape( facesWOL[0] );
if ( helper.IsRealSeam( vInd )) // inflate along a seam edge?
{
TopoDS_Shape seamEdge;
PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE);
while ( eIt->more() && seamEdge.IsNull() )
{
const TopoDS_Shape* e = eIt->next();
if ( helper.IsRealSeam( *e ) )
seamEdge = *e;
}
if ( !seamEdge.IsNull() )
{
_sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, seamEdge ));
break;
}
}
_sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, facesWOL[0] ));
break;
}
case 2:
{
// find an edge shared by 2 faces
PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE);
while ( eIt->more())
{
const TopoDS_Shape* e = eIt->next();
if ( helper.IsSubShape( *e, facesWOL[0]) &&
helper.IsSubShape( *e, facesWOL[1]))
{
_sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, *e )); break;
}
}
break;
}
default:
return error("Not yet supported case", _sdVec[i]._index);
}
}
}
return true;
}
//================================================================================
/*!
* \brief Create the inner surface of the viscous layer and prepare data for infation
*/
//================================================================================
bool _ViscousBuilder::makeLayer(_SolidData& data)
{
// get all sub-shapes to make layers on
set<TGeomID> subIds, faceIds;
subIds = data._noShrinkFaces;
TopExp_Explorer exp( data._solid, TopAbs_FACE );
for ( ; exp.More(); exp.Next() )
if ( ! _ignoreShapeIds.count( getMeshDS()->ShapeToIndex( exp.Current() )))
{
SMESH_subMesh* fSubM = _mesh->GetSubMesh( exp.Current() );
faceIds.insert( fSubM->GetId() );
SMESH_subMeshIteratorPtr subIt =
fSubM->getDependsOnIterator(/*includeSelf=*/true, /*complexShapeFirst=*/false);
while ( subIt->more() )
subIds.insert( subIt->next()->GetId() );
}
// make a map to find new nodes on sub-shapes shared with other SOLID
map< TGeomID, TNode2Edge* > s2neMap;
map< TGeomID, TNode2Edge* >::iterator s2ne;
map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin();
for (; s2s != data._shrinkShape2Shape.end(); ++s2s )
{
TGeomID shapeInd = s2s->first;
for ( unsigned i = 0; i < _sdVec.size(); ++i )
{
if ( _sdVec[i]._index == data._index ) continue;
map< TGeomID, TopoDS_Shape >::iterator s2s2 = _sdVec[i]._shrinkShape2Shape.find( shapeInd );
if ( s2s2 != _sdVec[i]._shrinkShape2Shape.end() &&
*s2s == *s2s2 && !_sdVec[i]._n2eMap.empty() )
{
s2neMap.insert( make_pair( shapeInd, &_sdVec[i]._n2eMap ));
break;
}
}
}
// Create temporary faces and _LayerEdge's
dumpFunction(SMESH_Comment("makeLayers_")<<data._index);
data._stepSize = Precision::Infinite();
data._stepSizeNodes[0] = 0;
SMESH_MesherHelper helper( *_mesh );
helper.SetSubShape( data._solid );
helper.SetElementsOnShape(true);
vector< const SMDS_MeshNode*> newNodes; // of a mesh face
TNode2Edge::iterator n2e2;
// collect _LayerEdge's of shapes they are based on
const int nbShapes = getMeshDS()->MaxShapeIndex();
vector< vector<_LayerEdge*> > edgesByGeom( nbShapes+1 );
for ( set<TGeomID>::iterator id = faceIds.begin(); id != faceIds.end(); ++id )
{
SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( *id );
if ( !smDS ) return error(SMESH_Comment("Not meshed face ") << *id, data._index );
const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( *id ));
SMESH_ProxyMesh::SubMesh* proxySub =
data._proxyMesh->getFaceSubM( F, /*create=*/true);
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
while ( eIt->more() )
{
const SMDS_MeshElement* face = eIt->next();
newNodes.resize( face->NbCornerNodes() );
double faceMaxCosin = -1;
for ( int i = 0 ; i < face->NbCornerNodes(); ++i )
{
const SMDS_MeshNode* n = face->GetNode(i);
TNode2Edge::iterator n2e = data._n2eMap.insert( make_pair( n, (_LayerEdge*)0 )).first;
if ( !(*n2e).second )
{
// add a _LayerEdge
_LayerEdge* edge = new _LayerEdge();
n2e->second = edge;
edge->_nodes.push_back( n );
const int shapeID = n->getshapeId();
edgesByGeom[ shapeID ].push_back( edge );
// set edge data or find already refined _LayerEdge and get data from it
if ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE &&
( s2ne = s2neMap.find( shapeID )) != s2neMap.end() &&
( n2e2 = (*s2ne).second->find( n )) != s2ne->second->end())
{
_LayerEdge* foundEdge = (*n2e2).second;
edge->Copy( *foundEdge, helper );
// location of the last node is modified but we can restore
// it by node position on _sWOL stored by the node
const_cast< SMDS_MeshNode* >
( edge->_nodes.back() )->setXYZ( n->X(), n->Y(), n->Z() );
}
else
{
edge->_nodes.push_back( helper.AddNode( n->X(), n->Y(), n->Z() ));
if ( !setEdgeData( *edge, subIds, helper, data ))
return false;
}
dumpMove(edge->_nodes.back());
if ( edge->_cosin > 0.01 )
{
if ( edge->_cosin > faceMaxCosin )
faceMaxCosin = edge->_cosin;
}
}
newNodes[ i ] = n2e->second->_nodes.back();
}
// create a temporary face
const SMDS_MeshElement* newFace = new TmpMeshFace( newNodes, --_tmpFaceID );
proxySub->AddElement( newFace );
// compute inflation step size by min size of element on a convex surface
if ( faceMaxCosin > 0.1 )
limitStepSize( data, face, faceMaxCosin );
} // loop on 2D elements on a FACE
} // loop on FACEs of a SOLID
data._epsilon = 1e-7;
if ( data._stepSize < 1. )
data._epsilon *= data._stepSize;
// Put _LayerEdge's into a vector
if ( !sortEdges( data, edgesByGeom ))
return false;
// Set target nodes into _Simplex and _2NearEdges
TNode2Edge::iterator n2e;
for ( unsigned i = 0; i < data._edges.size(); ++i )
{
if ( data._edges[i]->IsOnEdge())
for ( int j = 0; j < 2; ++j )
{
if ( data._edges[i]->_nodes.back()->NbInverseElements(SMDSAbs_Volume) > 0 )
break; // _LayerEdge is shared by two _SolidData's
const SMDS_MeshNode* & n = data._edges[i]->_2neibors->_nodes[j];
if (( n2e = data._n2eMap.find( n )) == data._n2eMap.end() )
return error("_LayerEdge not found by src node", data._index);
n = (*n2e).second->_nodes.back();
data._edges[i]->_2neibors->_edges[j] = n2e->second;
}
else
for ( unsigned j = 0; j < data._edges[i]->_simplices.size(); ++j )
{
_Simplex& s = data._edges[i]->_simplices[j];
s._nNext = data._n2eMap[ s._nNext ]->_nodes.back();
s._nPrev = data._n2eMap[ s._nPrev ]->_nodes.back();
}
}
dumpFunctionEnd();
return true;
}
//================================================================================
/*!
* \brief Compute inflation step size by min size of element on a convex surface
*/
//================================================================================
void _ViscousBuilder::limitStepSize( _SolidData& data,
const SMDS_MeshElement* face,
const double cosin)
{
int iN = 0;
double minSize = 10 * data._stepSize;
const int nbNodes = face->NbCornerNodes();
for ( int i = 0; i < nbNodes; ++i )
{
const SMDS_MeshNode* nextN = face->GetNode( SMESH_MesherHelper::WrapIndex( i+1, nbNodes ));
const SMDS_MeshNode* curN = face->GetNode( i );
if ( nextN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ||
curN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE )
{
double dist = SMESH_TNodeXYZ( face->GetNode(i)).Distance( nextN );
if ( dist < minSize )
minSize = dist, iN = i;
}
}
double newStep = 0.8 * minSize / cosin;
if ( newStep < data._stepSize )
{
data._stepSize = newStep;
data._stepSizeCoeff = 0.8 / cosin;
data._stepSizeNodes[0] = face->GetNode( iN );
data._stepSizeNodes[1] = face->GetNode( SMESH_MesherHelper::WrapIndex( iN+1, nbNodes ));
}
}
//================================================================================
/*!
* \brief Compute inflation step size by min size of element on a convex surface
*/
//================================================================================
void _ViscousBuilder::limitStepSize( _SolidData& data, const double minSize)
{
if ( minSize < data._stepSize )
{
data._stepSize = minSize;
if ( data._stepSizeNodes[0] )
{
double dist =
SMESH_TNodeXYZ(data._stepSizeNodes[0]).Distance(data._stepSizeNodes[1]);
data._stepSizeCoeff = data._stepSize / dist;
}
}
}
//================================================================================
/*!
* \brief Separate shapes (and _LayerEdge's on them) to smooth from the rest ones
*/
//================================================================================
bool _ViscousBuilder::sortEdges( _SolidData& data,
vector< vector<_LayerEdge*> >& edgesByGeom)
{
// Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's
// boundry inclined at a sharp angle to the shape
list< TGeomID > shapesToSmooth;
SMESH_MesherHelper helper( *_mesh );
bool ok = true;
for ( unsigned iS = 0; iS < edgesByGeom.size(); ++iS )
{
vector<_LayerEdge*>& eS = edgesByGeom[iS];
if ( eS.empty() ) continue;
TopoDS_Shape S = getMeshDS()->IndexToShape( iS );
bool needSmooth = false;
switch ( S.ShapeType() )
{
case TopAbs_EDGE: {
bool isShrinkEdge = !eS[0]->_sWOL.IsNull();
for ( TopoDS_Iterator vIt( S ); vIt.More() && !needSmooth; vIt.Next() )
{
TGeomID iV = getMeshDS()->ShapeToIndex( vIt.Value() );
vector<_LayerEdge*>& eV = edgesByGeom[ iV ];
if ( eV.empty() ) continue;
double cosin = eV[0]->_cosin;
bool badCosin =
( !eV[0]->_sWOL.IsNull() && ( eV[0]->_sWOL.ShapeType() == TopAbs_EDGE || !isShrinkEdge));
if ( badCosin )
{
gp_Vec dir1, dir2;
if ( eV[0]->_sWOL.ShapeType() == TopAbs_EDGE )
dir1 = getEdgeDir( TopoDS::Edge( eV[0]->_sWOL ), TopoDS::Vertex( vIt.Value() ));
else
dir1 = getFaceDir( TopoDS::Face( eV[0]->_sWOL ), TopoDS::Vertex( vIt.Value() ),
eV[0]->_nodes[0], helper, ok);
dir2 = getEdgeDir( TopoDS::Edge( S ), TopoDS::Vertex( vIt.Value() ));
double angle = dir1.Angle( dir2 );
cosin = cos( angle );
}
needSmooth = ( cosin > 0.1 );
}
break;
}
case TopAbs_FACE: {
for ( TopExp_Explorer eExp( S, TopAbs_EDGE ); eExp.More() && !needSmooth; eExp.Next() )
{
TGeomID iE = getMeshDS()->ShapeToIndex( eExp.Current() );
vector<_LayerEdge*>& eE = edgesByGeom[ iE ];
if ( eE.empty() ) continue;
if ( eE[0]->_sWOL.IsNull() )
{
for ( unsigned i = 0; i < eE.size() && !needSmooth; ++i )
needSmooth = ( eE[i]->_cosin > 0.1 );
}
else
{
const TopoDS_Face& F1 = TopoDS::Face( S );
const TopoDS_Face& F2 = TopoDS::Face( eE[0]->_sWOL );
const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() );
for ( unsigned i = 0; i < eE.size() && !needSmooth; ++i )
{
gp_Vec dir1 = getFaceDir( F1, E, eE[i]->_nodes[0], helper, ok );
gp_Vec dir2 = getFaceDir( F2, E, eE[i]->_nodes[0], helper, ok );
double angle = dir1.Angle( dir2 );
double cosin = cos( angle );
needSmooth = ( cosin > 0.1 );
}
}
}
break;
}
case TopAbs_VERTEX:
continue;
default:;
}
if ( needSmooth )
{
if ( S.ShapeType() == TopAbs_EDGE ) shapesToSmooth.push_front( iS );
else shapesToSmooth.push_back ( iS );
}
} // loop on edgesByGeom
data._edges.reserve( data._n2eMap.size() );
data._endEdgeToSmooth.clear();
// first we put _LayerEdge's on shapes to smooth
list< TGeomID >::iterator gIt = shapesToSmooth.begin();
for ( ; gIt != shapesToSmooth.end(); ++gIt )
{
vector<_LayerEdge*>& eVec = edgesByGeom[ *gIt ];
if ( eVec.empty() ) continue;
data._edges.insert( data._edges.end(), eVec.begin(), eVec.end() );
data._endEdgeToSmooth.push_back( data._edges.size() );
eVec.clear();
}
// then the rest _LayerEdge's
for ( unsigned iS = 0; iS < edgesByGeom.size(); ++iS )
{
vector<_LayerEdge*>& eVec = edgesByGeom[iS];
data._edges.insert( data._edges.end(), eVec.begin(), eVec.end() );
eVec.clear();
}
return ok;
}
//================================================================================
/*!
* \brief Set data of _LayerEdge needed for smoothing
* \param subIds - ids of sub-shapes of a SOLID to take into account faces from
*/
//================================================================================
bool _ViscousBuilder::setEdgeData(_LayerEdge& edge,
const set<TGeomID>& subIds,
SMESH_MesherHelper& helper,
_SolidData& data)
{
SMESH_MeshEditor editor(_mesh);
const SMDS_MeshNode* node = edge._nodes[0]; // source node
SMDS_TypeOfPosition posType = node->GetPosition()->GetTypeOfPosition();
edge._len = 0;
edge._2neibors = 0;
edge._curvature = 0;
// --------------------------
// Compute _normal and _cosin
// --------------------------
edge._cosin = 0;
edge._normal.SetCoord(0,0,0);
int totalNbFaces = 0;
gp_Pnt p;
gp_Vec du, dv, geomNorm;
bool normOK = true;
TGeomID shapeInd = node->getshapeId();
map< TGeomID, TopoDS_Shape >::const_iterator s2s = data._shrinkShape2Shape.find( shapeInd );
bool onShrinkShape ( s2s != data._shrinkShape2Shape.end() );
TopoDS_Shape vertEdge;
if ( onShrinkShape ) // one of faces the node is on has no layers
{
vertEdge = getMeshDS()->IndexToShape( s2s->first ); // vertex or edge
if ( s2s->second.ShapeType() == TopAbs_EDGE )
{
// inflate from VERTEX along EDGE
edge._normal = getEdgeDir( TopoDS::Edge( s2s->second ), TopoDS::Vertex( vertEdge ));
}
else if ( vertEdge.ShapeType() == TopAbs_VERTEX )
{
// inflate from VERTEX along FACE
edge._normal = getFaceDir( TopoDS::Face( s2s->second ), TopoDS::Vertex( vertEdge ),
node, helper, normOK, &edge._cosin);
}
else
{
// inflate from EDGE along FACE
edge._normal = getFaceDir( TopoDS::Face( s2s->second ), TopoDS::Edge( vertEdge ),
node, helper, normOK);
}
}
else // layers are on all faces of SOLID the node is on
{
// find indices of geom faces the node lies on
set<TGeomID> faceIds;
if ( posType == SMDS_TOP_FACE )
{
faceIds.insert( node->getshapeId() );
}
else
{
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
faceIds.insert( editor.FindShape(fIt->next()));
}
set<TGeomID>::iterator id = faceIds.begin();
TopoDS_Face F;
for ( ; id != faceIds.end(); ++id )
{
const TopoDS_Shape& s = getMeshDS()->IndexToShape( *id );
if ( s.IsNull() || s.ShapeType() != TopAbs_FACE || !subIds.count( *id ))
continue;
totalNbFaces++;
//nbLayerFaces += subIds.count( *id );
F = TopoDS::Face( s );
gp_XY uv = helper.GetNodeUV( F, node, 0, &normOK );
Handle(Geom_Surface) surface = BRep_Tool::Surface( F );
surface->D1( uv.X(),uv.Y(), p, du,dv );
geomNorm = du ^ dv;
double size2 = geomNorm.SquareMagnitude();
if ( size2 > numeric_limits<double>::min() )
geomNorm /= sqrt( size2 );
else
normOK = false;
if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED )
geomNorm.Reverse();
edge._normal += geomNorm.XYZ();
}
if ( totalNbFaces == 0 )
return error(SMESH_Comment("Can't get normal to node ") << node->GetID(), data._index);
edge._normal /= totalNbFaces;
switch ( posType )
{
case SMDS_TOP_FACE:
edge._cosin = 0; break;
case SMDS_TOP_EDGE: {
TopoDS_Edge E = TopoDS::Edge( helper.GetSubShapeByNode( node, getMeshDS()));
gp_Vec inFaceDir = getFaceDir( F, E, node, helper, normOK);
double angle = inFaceDir.Angle( edge._normal ); // [0,PI]
edge._cosin = cos( angle );
//cout << "Cosin on EDGE " << edge._cosin << " node " << node->GetID() << endl;
break;
}
case SMDS_TOP_VERTEX: {
TopoDS_Vertex V = TopoDS::Vertex( helper.GetSubShapeByNode( node, getMeshDS()));
gp_Vec inFaceDir = getFaceDir( F, V, node, helper, normOK);
double angle = inFaceDir.Angle( edge._normal ); // [0,PI]
edge._cosin = cos( angle );
//cout << "Cosin on VERTEX " << edge._cosin << " node " << node->GetID() << endl;
break;
}
default:
return error(SMESH_Comment("Invalid shape position of node ")<<node, data._index);
}
}
double normSize = edge._normal.SquareModulus();
if ( normSize < numeric_limits<double>::min() )
return error(SMESH_Comment("Bad normal at node ")<< node->GetID(), data._index );
edge._normal /= sqrt( normSize );
// TODO: if ( !normOK ) then get normal by mesh faces
// Set the rest data
// --------------------
if ( onShrinkShape )
{
edge._sWOL = (*s2s).second;
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edge._nodes.back() );
if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( data._solid ))
sm->RemoveNode( tgtNode , /*isNodeDeleted=*/false );
// set initial position which is parameters on _sWOL in this case
if ( edge._sWOL.ShapeType() == TopAbs_EDGE )
{
double u = helper.GetNodeU( TopoDS::Edge( edge._sWOL ), node, 0, &normOK );
edge._pos.push_back( gp_XYZ( u, 0, 0));
getMeshDS()->SetNodeOnEdge( tgtNode, TopoDS::Edge( edge._sWOL ), u );
}
else // TopAbs_FACE
{
gp_XY uv = helper.GetNodeUV( TopoDS::Face( edge._sWOL ), node, 0, &normOK );
edge._pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0));
getMeshDS()->SetNodeOnFace( tgtNode, TopoDS::Face( edge._sWOL ), uv.X(), uv.Y() );
}
}
else
{
edge._pos.push_back( SMESH_TNodeXYZ( node ));
if ( posType == SMDS_TOP_FACE )
{
getSimplices( node, edge._simplices, _ignoreShapeIds, &data );
double avgNormProj = 0, avgLen = 0;
for ( unsigned i = 0; i < edge._simplices.size(); ++i )
{
gp_XYZ vec = edge._pos.back() - SMESH_TNodeXYZ( edge._simplices[i]._nPrev );
avgNormProj += edge._normal * vec;
avgLen += vec.Modulus();
}
avgNormProj /= edge._simplices.size();
avgLen /= edge._simplices.size();
edge._curvature = _Curvature::New( avgNormProj, avgLen );
}
}
// Set neighbour nodes for a _LayerEdge based on EDGE
if ( posType == SMDS_TOP_EDGE /*||
( onShrinkShape && posType == SMDS_TOP_VERTEX && fabs( edge._cosin ) < 1e-10 )*/)
{
edge._2neibors = new _2NearEdges;
// target node instead of source ones will be set later
if ( ! findNeiborsOnEdge( &edge,
edge._2neibors->_nodes[0],
edge._2neibors->_nodes[1],
data))
return false;
edge.SetDataByNeighbors( edge._2neibors->_nodes[0],
edge._2neibors->_nodes[1],
helper);
}
edge.SetCosin( edge._cosin ); // to update edge._lenFactor
return true;
}
//================================================================================
/*!
* \brief Find 2 neigbor nodes of a node on EDGE
*/
//================================================================================
bool _ViscousBuilder::findNeiborsOnEdge(const _LayerEdge* edge,
const SMDS_MeshNode*& n1,
const SMDS_MeshNode*& n2,
_SolidData& data)
{
const SMDS_MeshNode* node = edge->_nodes[0];
const int shapeInd = node->getshapeId();
SMESHDS_SubMesh* edgeSM = 0;
if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_EDGE )
{
edgeSM = getMeshDS()->MeshElements( shapeInd );
if ( !edgeSM || edgeSM->NbElements() == 0 )
return error(SMESH_Comment("Not meshed EDGE ") << shapeInd, data._index);
}
int iN = 0;
n2 = 0;
SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Edge);
while ( eIt->more() && !n2 )
{
const SMDS_MeshElement* e = eIt->next();
const SMDS_MeshNode* nNeibor = e->GetNode( 0 );
if ( nNeibor == node ) nNeibor = e->GetNode( 1 );
if ( edgeSM )
{
if (!edgeSM->Contains(e)) continue;
}
else
{
TopoDS_Shape s = SMESH_MesherHelper::GetSubShapeByNode(nNeibor, getMeshDS() );
if ( !SMESH_MesherHelper::IsSubShape( s, edge->_sWOL )) continue;
}
( iN++ ? n2 : n1 ) = nNeibor;
}
if ( !n2 )
return error(SMESH_Comment("Wrongly meshed EDGE ") << shapeInd, data._index);
return true;
}
//================================================================================
/*!
* \brief Set _curvature and _2neibors->_plnNorm by 2 neigbor nodes residing the same EDGE
*/
//================================================================================
void _LayerEdge::SetDataByNeighbors( const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
SMESH_MesherHelper& helper)
{
if ( _nodes[0]->GetPosition()->GetTypeOfPosition() != SMDS_TOP_EDGE )
return;
gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] );
gp_XYZ vec1 = pos - SMESH_TNodeXYZ( n1 );
gp_XYZ vec2 = pos - SMESH_TNodeXYZ( n2 );
// Set _curvature
double sumLen = vec1.Modulus() + vec2.Modulus();
_2neibors->_wgt[0] = 1 - vec1.Modulus() / sumLen;
_2neibors->_wgt[1] = 1 - vec2.Modulus() / sumLen;
double avgNormProj = 0.5 * ( _normal * vec1 + _normal * vec2 );
double avgLen = 0.5 * ( vec1.Modulus() + vec2.Modulus() );
if ( _curvature ) delete _curvature;
_curvature = _Curvature::New( avgNormProj, avgLen );
#ifdef __myDEBUG
// if ( _curvature )
// cout << _nodes[0]->GetID()
// << " CURV r,k: " << _curvature->_r<<","<<_curvature->_k
// << " proj = "<<avgNormProj<< " len = " << avgLen << "| lenDelta(0) = "
// << _curvature->lenDelta(0) << endl;
#endif
// Set _plnNorm
if ( _sWOL.IsNull() )
{
TopoDS_Shape S = helper.GetSubShapeByNode( _nodes[0], helper.GetMeshDS() );
gp_XYZ dirE = getEdgeDir( TopoDS::Edge( S ), _nodes[0], helper );
gp_XYZ plnNorm = dirE ^ _normal;
double proj0 = plnNorm * vec1;
double proj1 = plnNorm * vec2;
if ( fabs( proj0 ) > 1e-10 || fabs( proj1 ) > 1e-10 )
{
if ( _2neibors->_plnNorm ) delete _2neibors->_plnNorm;
_2neibors->_plnNorm = new gp_XYZ( plnNorm.Normalized() );
}
}
}
//================================================================================
/*!
* \brief Copy data from a _LayerEdge of other SOLID and based on the same node;
* this and other _LayerEdge's are inflated along a FACE or an EDGE
*/
//================================================================================
void _LayerEdge::Copy( _LayerEdge& other, SMESH_MesherHelper& helper )
{
_nodes = other._nodes;
_normal = other._normal;
_len = 0;
_lenFactor = other._lenFactor;
_cosin = other._cosin;
_sWOL = other._sWOL;
_2neibors = other._2neibors;
_curvature = 0; std::swap( _curvature, other._curvature );
_2neibors = 0; std::swap( _2neibors, other._2neibors );
if ( _sWOL.ShapeType() == TopAbs_EDGE )
{
double u = helper.GetNodeU( TopoDS::Edge( _sWOL ), _nodes[0] );
_pos.push_back( gp_XYZ( u, 0, 0));
}
else // TopAbs_FACE
{
gp_XY uv = helper.GetNodeUV( TopoDS::Face( _sWOL ), _nodes[0]);
_pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0));
}
}
//================================================================================
/*!
* \brief Set _cosin and _lenFactor
*/
//================================================================================
void _LayerEdge::SetCosin( double cosin )
{
_cosin = cosin;
_lenFactor = ( _cosin > 0.1 ) ? 1./sqrt(1-_cosin*_cosin) : 1.0;
}
//================================================================================
/*!
* \brief Fills a vector<_Simplex >
*/
//================================================================================
void _ViscousBuilder::getSimplices( const SMDS_MeshNode* node,
vector<_Simplex>& simplices,
const set<TGeomID>& ingnoreShapes,
const _SolidData* dataToCheckOri,
const bool toSort)
{
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
const TGeomID shapeInd = f->getshapeId();
if ( ingnoreShapes.count( shapeInd )) continue;
const int nbNodes = f->NbCornerNodes();
int srcInd = f->GetNodeIndex( node );
const SMDS_MeshNode* nPrev = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd-1, nbNodes ));
const SMDS_MeshNode* nNext = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd+1, nbNodes ));
if ( dataToCheckOri && dataToCheckOri->_reversedFaceIds.count( shapeInd ))
std::swap( nPrev, nNext );
simplices.push_back( _Simplex( nPrev, nNext ));
}
if ( toSort )
{
vector<_Simplex> sortedSimplices( simplices.size() );
sortedSimplices[0] = simplices[0];
int nbFound = 0;
for ( size_t i = 1; i < simplices.size(); ++i )
{
for ( size_t j = 1; j < simplices.size(); ++j )
if ( sortedSimplices[i-1]._nNext == simplices[j]._nPrev )
{
sortedSimplices[i] = simplices[j];
nbFound++;
break;
}
}
if ( nbFound == simplices.size() - 1 )
simplices.swap( sortedSimplices );
}
}
//================================================================================
/*!
* \brief DEBUG. Create groups contating temorary data of _LayerEdge's
*/
//================================================================================
void _ViscousBuilder::makeGroupOfLE()
{
#ifdef _DEBUG_
for ( unsigned i = 0 ; i < _sdVec.size(); ++i )
{
if ( _sdVec[i]._edges.empty() ) continue;
// string name = SMESH_Comment("_LayerEdge's_") << i;
// int id;
// SMESH_Group* g = _mesh->AddGroup(SMDSAbs_Edge, name.c_str(), id );
// SMESHDS_Group* gDS = (SMESHDS_Group*)g->GetGroupDS();
// SMESHDS_Mesh* mDS = _mesh->GetMeshDS();
dumpFunction( SMESH_Comment("make_LayerEdge_") << i );
for ( unsigned j = 0 ; j < _sdVec[i]._edges.size(); ++j )
{
_LayerEdge* le = _sdVec[i]._edges[j];
for ( unsigned iN = 1; iN < le->_nodes.size(); ++iN )
dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <<le->_nodes[iN-1]->GetID()
<< ", " << le->_nodes[iN]->GetID() <<"])");
//gDS->SMDSGroup().Add( mDS->AddEdge( le->_nodes[iN-1], le->_nodes[iN]));
}
dumpFunctionEnd();
dumpFunction( SMESH_Comment("makeNormals") << i );
for ( unsigned j = 0 ; j < _sdVec[i]._edges.size(); ++j )
{
_LayerEdge& edge = *_sdVec[i]._edges[j];
SMESH_TNodeXYZ nXYZ( edge._nodes[0] );
nXYZ += edge._normal * _sdVec[i]._stepSize;
dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <<edge._nodes[0]->GetID()
<< ", mesh.AddNode( " << nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])");
}
dumpFunctionEnd();
// name = SMESH_Comment("tmp_faces ") << i;
// g = _mesh->AddGroup(SMDSAbs_Face, name.c_str(), id );
// gDS = (SMESHDS_Group*)g->GetGroupDS();
// SMESH_MeshEditor editor( _mesh );
dumpFunction( SMESH_Comment("makeTmpFaces_") << i );
TopExp_Explorer fExp( _sdVec[i]._solid, TopAbs_FACE );
for ( ; fExp.More(); fExp.Next() )
{
if (const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current()))
{
SMDS_ElemIteratorPtr fIt = sm->GetElements();
while ( fIt->more())
{
const SMDS_MeshElement* e = fIt->next();
SMESH_Comment cmd("mesh.AddFace([");
for ( int j=0; j < e->NbCornerNodes(); ++j )
cmd << e->GetNode(j)->GetID() << (j+1<e->NbCornerNodes() ? ",": "])");
dumpCmd( cmd );
//vector<const SMDS_MeshNode*> nodes( e->begin_nodes(), e->end_nodes() );
//gDS->SMDSGroup().Add( editor.AddElement( nodes, e->GetType(), e->IsPoly()));
}
}
}
dumpFunctionEnd();
}
#endif
}
//================================================================================
/*!
* \brief Increase length of _LayerEdge's to reach the required thickness of layers
*/
//================================================================================
bool _ViscousBuilder::inflate(_SolidData& data)
{
SMESH_MesherHelper helper( *_mesh );
// Limit inflation step size by geometry size found by itersecting
// normals of _LayerEdge's with mesh faces
double geomSize = Precision::Infinite(), intersecDist;
SMESH_MeshEditor editor( _mesh );
auto_ptr<SMESH_ElementSearcher> searcher
( editor.GetElementSearcher( data._proxyMesh->GetFaces( data._solid )) );
for ( unsigned i = 0; i < data._edges.size(); ++i )
{
if ( data._edges[i]->IsOnEdge() ) continue;
data._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon );
if ( geomSize > intersecDist )
geomSize = intersecDist;
}
if ( data._stepSize > 0.3 * geomSize )
limitStepSize( data, 0.3 * geomSize );
const double tgtThick = data._hyp->GetTotalThickness();
if ( data._stepSize > tgtThick )
limitStepSize( data, tgtThick );
if ( data._stepSize < 1. )
data._epsilon = data._stepSize * 1e-7;
#ifdef __myDEBUG
cout << "-- geomSize = " << geomSize << ", stepSize = " << data._stepSize << endl;
#endif
double avgThick = 0, curThick = 0, distToIntersection = Precision::Infinite();
int nbSteps = 0, nbRepeats = 0;
while ( 1.01 * avgThick < tgtThick )
{
// new target length
curThick += data._stepSize;
if ( curThick > tgtThick )
{
curThick = tgtThick + ( tgtThick-avgThick ) * nbRepeats;
nbRepeats++;
}
// Elongate _LayerEdge's
dumpFunction(SMESH_Comment("inflate")<<data._index<<"_step"<<nbSteps); // debug
for ( unsigned i = 0; i < data._edges.size(); ++i )
{
data._edges[i]->SetNewLength( curThick, helper );
}
dumpFunctionEnd();
if ( !nbSteps )
if ( !updateNormals( data, helper ) )
return false;
// Improve and check quality
if ( !smoothAndCheck( data, nbSteps, distToIntersection ))
{
if ( nbSteps > 0 )
{
dumpFunction(SMESH_Comment("invalidate")<<data._index<<"_step"<<nbSteps); // debug
for ( unsigned i = 0; i < data._edges.size(); ++i )
{
data._edges[i]->InvalidateStep( nbSteps+1 );
}
dumpFunctionEnd();
}
break; // no more inflating possible
}
nbSteps++;
// Evaluate achieved thickness
avgThick = 0;
for ( unsigned i = 0; i < data._edges.size(); ++i )
avgThick += data._edges[i]->_len;
avgThick /= data._edges.size();
#ifdef __myDEBUG
cout << "-- Thickness " << avgThick << " reached" << endl;
#endif
if ( distToIntersection < avgThick*1.5 )
{
#ifdef __myDEBUG
cout << "-- Stop inflation since distToIntersection( "<<distToIntersection<<" ) < avgThick( "
<< avgThick << " ) * 1.5" << endl;
#endif
break;
}
// new step size
limitStepSize( data, 0.25 * distToIntersection );
if ( data._stepSizeNodes[0] )
data._stepSize = data._stepSizeCoeff *
SMESH_TNodeXYZ(data._stepSizeNodes[0]).Distance(data._stepSizeNodes[1]);
}
if (nbSteps == 0 )
return error("failed at the very first inflation step", data._index);
return true;
}
//================================================================================
/*!
* \brief Improve quality of layer inner surface and check intersection
*/
//================================================================================
bool _ViscousBuilder::smoothAndCheck(_SolidData& data,
const int nbSteps,
double & distToIntersection)
{
if ( data._endEdgeToSmooth.empty() )
return true; // no shapes needing smoothing
bool moved, improved;
SMESH_MesherHelper helper(*_mesh);
Handle(Geom_Surface) surface;
TopoDS_Face F;
int iBeg, iEnd = 0;
for ( unsigned iS = 0; iS < data._endEdgeToSmooth.size(); ++iS )
{
iBeg = iEnd;
iEnd = data._endEdgeToSmooth[ iS ];
if ( !data._edges[ iBeg ]->_sWOL.IsNull() &&
data._edges[ iBeg ]->_sWOL.ShapeType() == TopAbs_FACE )
{
if ( !F.IsSame( data._edges[ iBeg ]->_sWOL )) {
F = TopoDS::Face( data._edges[ iBeg ]->_sWOL );
helper.SetSubShape( F );
surface = BRep_Tool::Surface( F );
}
}
else
{
F.Nullify(); surface.Nullify();
}
TGeomID sInd = data._edges[ iBeg ]->_nodes[0]->getshapeId();
if ( data._edges[ iBeg ]->IsOnEdge() )
{
dumpFunction(SMESH_Comment("smooth")<<data._index << "_Ed"<<sInd <<"_InfStep"<<nbSteps);
// try a simple solution on an analytic EDGE
if ( !smoothAnalyticEdge( data, iBeg, iEnd, surface, F, helper ))
{
// smooth on EDGE's
int step = 0;
do {
moved = false;
for ( int i = iBeg; i < iEnd; ++i )
{
moved |= data._edges[i]->SmoothOnEdge(surface, F, helper);
}
dumpCmd( SMESH_Comment("# end step ")<<step);
}
while ( moved && step++ < 5 );
//cout << " NB STEPS: " << step << endl;
}
dumpFunctionEnd();
}
else
{
// smooth on FACE's
int step = 0, badNb = 0; moved = true;
while (( ++step <= 5 && moved ) || improved )
{
dumpFunction(SMESH_Comment("smooth")<<data._index<<"_Fa"<<sInd
<<"_InfStep"<<nbSteps<<"_"<<step); // debug
int oldBadNb = badNb;
badNb = 0;
moved = false;
for ( int i = iBeg; i < iEnd; ++i )
moved |= data._edges[i]->Smooth(badNb);
improved = ( badNb < oldBadNb );
dumpFunctionEnd();
}
if ( badNb > 0 )
{
#ifdef __myDEBUG
for ( int i = iBeg; i < iEnd; ++i )
{
_LayerEdge* edge = data._edges[i];
SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() );
for ( unsigned j = 0; j < edge->_simplices.size(); ++j )
if ( !edge->_simplices[j].IsForward( edge->_nodes[0], &tgtXYZ ))
{
cout << "Bad simplex ( " << edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID()
<< " "<< edge->_simplices[j]._nPrev->GetID()
<< " "<< edge->_simplices[j]._nNext->GetID() << " )" << endl;
return false;
}
}
#endif
return false;
}
}
} // loop on shapes to smooth
// Check if the last segments of _LayerEdge intersects 2D elements;
// checked elements are either temporary faces or faces on surfaces w/o the layers
SMESH_MeshEditor editor( _mesh );
auto_ptr<SMESH_ElementSearcher> searcher
( editor.GetElementSearcher( data._proxyMesh->GetFaces( data._solid )) );
distToIntersection = Precision::Infinite();
double dist;
const SMDS_MeshElement* intFace = 0;
#ifdef __myDEBUG
const SMDS_MeshElement* closestFace = 0;
int iLE = 0;
#endif
for ( unsigned i = 0; i < data._edges.size(); ++i )
{
if ( data._edges[i]->FindIntersection( *searcher, dist, data._epsilon, &intFace ))
return false;
if ( distToIntersection > dist )
{
distToIntersection = dist;
#ifdef __myDEBUG
iLE = i;
closestFace = intFace;
#endif
}
}
#ifdef __myDEBUG
if ( closestFace )
{
SMDS_MeshElement::iterator nIt = closestFace->begin_nodes();
cout << "Shortest distance: _LayerEdge nodes: tgt " << data._edges[iLE]->_nodes.back()->GetID()
<< " src " << data._edges[iLE]->_nodes[0]->GetID()<< ", intersection with face ("
<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()
<< ") distance = " << distToIntersection<< endl;
}
#endif
return true;
}
//================================================================================
/*!
* \brief Return a curve of the EDGE to be used for smoothing and arrange
* _LayerEdge's to be in a consequent order
*/
//================================================================================
Handle(Geom_Curve) _SolidData::CurveForSmooth( const TopoDS_Edge& E,
const int iFrom,
const int iTo,
Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper)
{
TGeomID eIndex = helper.GetMeshDS()->ShapeToIndex( E );
map< TGeomID, Handle(Geom_Curve)>::iterator i2curve = _edge2curve.find( eIndex );
if ( i2curve == _edge2curve.end() )
{
// sort _LayerEdge's by position on the EDGE
{
map< double, _LayerEdge* > u2edge;
for ( int i = iFrom; i < iTo; ++i )
u2edge.insert( make_pair( helper.GetNodeU( E, _edges[i]->_nodes[0] ), _edges[i] ));
ASSERT( u2edge.size() == iTo - iFrom );
map< double, _LayerEdge* >::iterator u2e = u2edge.begin();
for ( int i = iFrom; i < iTo; ++i, ++u2e )
_edges[i] = u2e->second;
// set _2neibors according to the new order
for ( int i = iFrom; i < iTo-1; ++i )
if ( _edges[i]->_2neibors->_nodes[1] != _edges[i+1]->_nodes.back() )
_edges[i]->_2neibors->reverse();
if ( u2edge.size() > 1 &&
_edges[iTo-1]->_2neibors->_nodes[0] != _edges[iTo-2]->_nodes.back() )
_edges[iTo-1]->_2neibors->reverse();
}
SMESHDS_SubMesh* smDS = helper.GetMeshDS()->MeshElements( eIndex );
TopLoc_Location loc; double f,l;
Handle(Geom_Line) line;
Handle(Geom_Circle) circle;
bool isLine, isCirc;
if ( F.IsNull() ) // 3D case
{
// check if the EDGE is a line
Handle(Geom_Curve) curve = BRep_Tool::Curve( E, loc, f, l);
if ( curve->IsKind( STANDARD_TYPE( Geom_TrimmedCurve )))
curve = Handle(Geom_TrimmedCurve)::DownCast( curve )->BasisCurve();
line = Handle(Geom_Line)::DownCast( curve );
circle = Handle(Geom_Circle)::DownCast( curve );
isLine = (!line.IsNull());
isCirc = (!circle.IsNull());
if ( !isLine && !isCirc ) // Check if the EDGE is close to a line
{
Bnd_B3d bndBox;
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
while ( nIt->more() )
bndBox.Add( SMESH_TNodeXYZ( nIt->next() ));
gp_XYZ size = bndBox.CornerMax() - bndBox.CornerMin();
SMESH_TNodeXYZ p0( _edges[iFrom]->_2neibors->_nodes[0] );
SMESH_TNodeXYZ p1( _edges[iFrom]->_2neibors->_nodes[1] );
const double lineTol = 1e-2 * ( p0 - p1 ).Modulus();
for ( int i = 0; i < 3 && !isLine; ++i )
isLine = ( size.Coord( i+1 ) <= lineTol );
}
if ( !isLine && !isCirc && iTo-iFrom > 2) // Check if the EDGE is close to a circle
{
// TODO
}
}
else // 2D case
{
// check if the EDGE is a line
Handle(Geom2d_Curve) curve = BRep_Tool::CurveOnSurface( E, F, f, l);
if ( curve->IsKind( STANDARD_TYPE( Geom2d_TrimmedCurve )))
curve = Handle(Geom2d_TrimmedCurve)::DownCast( curve )->BasisCurve();
Handle(Geom2d_Line) line2d = Handle(Geom2d_Line)::DownCast( curve );
Handle(Geom2d_Circle) circle2d = Handle(Geom2d_Circle)::DownCast( curve );
isLine = (!line2d.IsNull());
isCirc = (!circle2d.IsNull());
if ( !isLine && !isCirc) // Check if the EDGE is close to a line
{
Bnd_B2d bndBox;
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
while ( nIt->more() )
bndBox.Add( helper.GetNodeUV( F, nIt->next() ));
gp_XY size = bndBox.CornerMax() - bndBox.CornerMin();
const double lineTol = 1e-2 * sqrt( bndBox.SquareExtent() );
for ( int i = 0; i < 2 && !isLine; ++i )
isLine = ( size.Coord( i+1 ) <= lineTol );
}
if ( !isLine && !isCirc && iTo-iFrom > 2) // Check if the EDGE is close to a circle
{
// TODO
}
if ( isLine )
{
line = new Geom_Line( gp::OX() ); // only type does matter
}
else if ( isCirc )
{
gp_Pnt2d p = circle2d->Location();
gp_Ax2 ax( gp_Pnt( p.X(), p.Y(), 0), gp::DX());
circle = new Geom_Circle( ax, 1.); // only center position does matter
}
}
Handle(Geom_Curve)& res = _edge2curve[ eIndex ];
if ( isLine )
res = line;
else if ( isCirc )
res = circle;
return res;
}
return i2curve->second;
}
//================================================================================
/*!
* \brief smooth _LayerEdge's on a staight EDGE or circular EDGE
*/
//================================================================================
bool _ViscousBuilder::smoothAnalyticEdge( _SolidData& data,
const int iFrom,
const int iTo,
Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper)
{
TopoDS_Shape S = helper.GetSubShapeByNode( data._edges[ iFrom ]->_nodes[0],
helper.GetMeshDS());
TopoDS_Edge E = TopoDS::Edge( S );
Handle(Geom_Curve) curve = data.CurveForSmooth( E, iFrom, iTo, surface, F, helper );
if ( curve.IsNull() ) return false;
// compute a relative length of segments
vector< double > len( iTo-iFrom+1 );
{
double curLen, prevLen = len[0] = 1.0;
for ( int i = iFrom; i < iTo; ++i )
{
curLen = prevLen * data._edges[i]->_2neibors->_wgt[0] / data._edges[i]->_2neibors->_wgt[1];
len[i-iFrom+1] = len[i-iFrom] + curLen;
prevLen = curLen;
}
}
if ( curve->IsKind( STANDARD_TYPE( Geom_Line )))
{
if ( F.IsNull() ) // 3D
{
SMESH_TNodeXYZ p0( data._edges[iFrom]->_2neibors->_nodes[0]);
SMESH_TNodeXYZ p1( data._edges[iTo-1]->_2neibors->_nodes[1]);
for ( int i = iFrom; i < iTo; ++i )
{
double r = len[i-iFrom] / len.back();
gp_XYZ newPos = p0 * ( 1. - r ) + p1 * r;
data._edges[i]->_pos.back() = newPos;
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( data._edges[i]->_nodes.back() );
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
dumpMove( tgtNode );
}
}
else
{
gp_XY uv0 = helper.GetNodeUV( F, data._edges[iFrom]->_2neibors->_nodes[0]);
gp_XY uv1 = helper.GetNodeUV( F, data._edges[iTo-1]->_2neibors->_nodes[1]);
if ( data._edges[iFrom]->_2neibors->_nodes[0] ==
data._edges[iTo-1]->_2neibors->_nodes[1] ) // closed edge
{
int iPeriodic = helper.GetPeriodicIndex();
if ( iPeriodic == 1 || iPeriodic == 2 )
{
uv1.SetCoord( iPeriodic, helper.GetOtherParam( uv1.Coord( iPeriodic )));
if ( uv0.Coord( iPeriodic ) > uv1.Coord( iPeriodic ))
std::swap( uv0, uv1 );
}
}
const gp_XY rangeUV = uv1 - uv0;
for ( int i = iFrom; i < iTo; ++i )
{
double r = len[i-iFrom] / len.back();
gp_XY newUV = uv0 + r * rangeUV;
data._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 );
gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( data._edges[i]->_nodes.back() );
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
dumpMove( tgtNode );
SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( tgtNode->GetPosition() );
pos->SetUParameter( newUV.X() );
pos->SetVParameter( newUV.Y() );
}
}
return true;
}
if ( curve->IsKind( STANDARD_TYPE( Geom_Circle )))
{
Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast( curve );
gp_Pnt center3D = circle->Location();
if ( F.IsNull() ) // 3D
{
return false; // TODO ???
}
else // 2D
{
const gp_XY center( center3D.X(), center3D.Y() );
gp_XY uv0 = helper.GetNodeUV( F, data._edges[iFrom]->_2neibors->_nodes[0]);
gp_XY uvM = helper.GetNodeUV( F, data._edges[iFrom]->_nodes.back());
gp_XY uv1 = helper.GetNodeUV( F, data._edges[iTo-1]->_2neibors->_nodes[1]);
gp_Vec2d vec0( center, uv0 );
gp_Vec2d vecM( center, uvM);
gp_Vec2d vec1( center, uv1 );
double uLast = vec0.Angle( vec1 ); // -PI - +PI
double uMidl = vec0.Angle( vecM );
if ( uLast < 0 ) uLast += 2.*M_PI; // 0.0 - 2*PI
if ( uMidl < 0 ) uMidl += 2.*M_PI;
const bool sense = ( uMidl < uLast );
const double radius = 0.5 * ( vec0.Magnitude() + vec1.Magnitude() );
gp_Ax2d axis( center, vec0 );
gp_Circ2d circ ( axis, radius, sense );
for ( int i = iFrom; i < iTo; ++i )
{
double newU = uLast * len[i-iFrom] / len.back();
gp_Pnt2d newUV = ElCLib::Value( newU, circ );
data._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 );
gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( data._edges[i]->_nodes.back() );
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
dumpMove( tgtNode );
SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( tgtNode->GetPosition() );
pos->SetUParameter( newUV.X() );
pos->SetVParameter( newUV.Y() );
}
}
return true;
}
return false;
}
//================================================================================
/*!
* \brief Modify normals of _LayerEdge's on EDGE's to avoid intersection with
* _LayerEdge's on neighbor EDGE's
*/
//================================================================================
bool _ViscousBuilder::updateNormals( _SolidData& data,
SMESH_MesherHelper& helper )
{
// make temporary quadrangles got by extrusion of
// mesh edges along _LayerEdge._normal's
vector< const SMDS_MeshElement* > tmpFaces;
{
set< SMESH_TLink > extrudedLinks; // contains target nodes
vector< const SMDS_MeshNode*> nodes(4); // of a tmp mesh face
dumpFunction(SMESH_Comment("makeTmpFacesOnEdges")<<data._index);
for ( unsigned i = 0; i < data._edges.size(); ++i )
{
_LayerEdge* edge = data._edges[i];
if ( !edge->IsOnEdge() || !edge->_sWOL.IsNull() ) continue;
const SMDS_MeshNode* tgt1 = edge->_nodes.back();
for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges
{
const SMDS_MeshNode* tgt2 = edge->_2neibors->_nodes[j];
pair< set< SMESH_TLink >::iterator, bool > link_isnew =
extrudedLinks.insert( SMESH_TLink( tgt1, tgt2 ));
if ( !link_isnew.second )
{
extrudedLinks.erase( link_isnew.first );
continue; // already extruded and will no more encounter
}
// look for a _LayerEdge containg tgt2
// _LayerEdge* neiborEdge = 0;
// unsigned di = 0; // check _edges[i+di] and _edges[i-di]
// while ( !neiborEdge && ++di <= data._edges.size() )
// {
// if ( i+di < data._edges.size() && data._edges[i+di]->_nodes.back() == tgt2 )
// neiborEdge = data._edges[i+di];
// else if ( di <= i && data._edges[i-di]->_nodes.back() == tgt2 )
// neiborEdge = data._edges[i-di];
// }
// if ( !neiborEdge )
// return error("updateNormals(): neighbor _LayerEdge not found", data._index);
_LayerEdge* neiborEdge = edge->_2neibors->_edges[j];
TmpMeshFaceOnEdge* f = new TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID );
tmpFaces.push_back( f );
dumpCmd(SMESH_Comment("mesh.AddFace([ ")
<<f->_nn[0]->GetID()<<", "<<f->_nn[1]->GetID()<<", "
<<f->_nn[2]->GetID()<<", "<<f->_nn[3]->GetID()<<" ])");
}
}
dumpFunctionEnd();
}
// Check if _LayerEdge's based on EDGE's intersects tmpFaces.
// Perform two loops on _LayerEdge on EDGE's:
// 1) to find and fix intersection
// 2) to check that no new intersection appears as result of 1)
SMESH_MeshEditor editor( _mesh );
SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(),
tmpFaces.end()));
auto_ptr<SMESH_ElementSearcher> searcher ( editor.GetElementSearcher( fIt ));
// 1) Find intersections
double dist;
const SMDS_MeshElement* face;
typedef map< _LayerEdge*, set< _LayerEdge*, _LayerEdgeCmp >, _LayerEdgeCmp > TLEdge2LEdgeSet;
TLEdge2LEdgeSet edge2CloseEdge;
const double eps = data._epsilon * data._epsilon;
for ( unsigned i = 0; i < data._edges.size(); ++i )
{
_LayerEdge* edge = data._edges[i];
if ( !edge->IsOnEdge() || !edge->_sWOL.IsNull() ) continue;
if ( edge->FindIntersection( *searcher, dist, eps, &face ))
{
const TmpMeshFaceOnEdge* f = (const TmpMeshFaceOnEdge*) face;
set< _LayerEdge*, _LayerEdgeCmp > & ee = edge2CloseEdge[ edge ];
ee.insert( f->_le1 );
ee.insert( f->_le2 );
if ( f->_le1->IsOnEdge() && f->_le1->_sWOL.IsNull() )
edge2CloseEdge[ f->_le1 ].insert( edge );
if ( f->_le2->IsOnEdge() && f->_le2->_sWOL.IsNull() )
edge2CloseEdge[ f->_le2 ].insert( edge );
}
}
// Set _LayerEdge._normal
if ( !edge2CloseEdge.empty() )
{
dumpFunction(SMESH_Comment("updateNormals")<<data._index);
TLEdge2LEdgeSet::iterator e2ee = edge2CloseEdge.begin();
for ( ; e2ee != edge2CloseEdge.end(); ++e2ee )
{
_LayerEdge* edge1 = e2ee->first;
_LayerEdge* edge2 = 0;
set< _LayerEdge*, _LayerEdgeCmp >& ee = e2ee->second;
// find EDGEs the edges reside
TopoDS_Edge E1, E2;
TopoDS_Shape S = helper.GetSubShapeByNode( edge1->_nodes[0], getMeshDS() );
if ( S.ShapeType() != TopAbs_EDGE )
continue; // TODO: find EDGE by VERTEX
E1 = TopoDS::Edge( S );
set< _LayerEdge*, _LayerEdgeCmp >::iterator eIt = ee.begin();
while ( E2.IsNull() && eIt != ee.end())
{
_LayerEdge* e2 = *eIt++;
TopoDS_Shape S = helper.GetSubShapeByNode( e2->_nodes[0], getMeshDS() );
if ( S.ShapeType() == TopAbs_EDGE )
E2 = TopoDS::Edge( S ), edge2 = e2;
}
if ( E2.IsNull() ) continue; // TODO: find EDGE by VERTEX
// find 3 FACEs sharing 2 EDGEs
TopoDS_Face FF1[2], FF2[2];
PShapeIteratorPtr fIt = helper.GetAncestors(E1, *_mesh, TopAbs_FACE);
while ( fIt->more() && FF1[1].IsNull())
{
const TopoDS_Face *F = (const TopoDS_Face*) fIt->next();
if ( helper.IsSubShape( *F, data._solid))
FF1[ FF1[0].IsNull() ? 0 : 1 ] = *F;
}
fIt = helper.GetAncestors(E2, *_mesh, TopAbs_FACE);
while ( fIt->more() && FF2[1].IsNull())
{
const TopoDS_Face *F = (const TopoDS_Face*) fIt->next();
if ( helper.IsSubShape( *F, data._solid))
FF2[ FF2[0].IsNull() ? 0 : 1 ] = *F;
}
// exclude a FACE common to E1 and E2 (put it at [1] in FF* )
if ( FF1[0].IsSame( FF2[0]) || FF1[0].IsSame( FF2[1]))
std::swap( FF1[0], FF1[1] );
if ( FF2[0].IsSame( FF1[0]) )
std::swap( FF2[0], FF2[1] );
if ( FF1[0].IsNull() || FF2[0].IsNull() )
continue;
// // get a new normal for edge1
bool ok;
gp_Vec dir1 = edge1->_normal, dir2 = edge2->_normal;
if ( edge1->_cosin < 0 )
dir1 = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ).Normalized();
if ( edge2->_cosin < 0 )
dir2 = getFaceDir( FF2[0], E2, edge2->_nodes[0], helper, ok ).Normalized();
// gp_Vec dir1 = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok );
// gp_Vec dir2 = getFaceDir( FF2[0], E2, edge2->_nodes[0], helper, ok2 );
// double wgt1 = ( edge1->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 );
// double wgt2 = ( edge2->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 );
// gp_Vec newNorm = wgt1 * dir1 + wgt2 * dir2;
// newNorm.Normalize();
double wgt1 = ( edge1->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 );
double wgt2 = ( edge2->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 );
gp_Vec newNorm = wgt1 * dir1 + wgt2 * dir2;
newNorm.Normalize();
edge1->_normal = newNorm.XYZ();
// update data of edge1 depending on _normal
const SMDS_MeshNode *n1, *n2;
n1 = edge1->_2neibors->_edges[0]->_nodes[0];
n2 = edge1->_2neibors->_edges[1]->_nodes[0];
//if ( !findNeiborsOnEdge( edge1, n1, n2, data ))
//continue;
edge1->SetDataByNeighbors( n1, n2, helper );
gp_Vec dirInFace;
if ( edge1->_cosin < 0 )
dirInFace = dir1;
else
getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok );
double angle = dir1.Angle( edge1->_normal ); // [0,PI]
edge1->SetCosin( cos( angle ));
// limit data._stepSize
if ( edge1->_cosin > 0.1 )
{
SMDS_ElemIteratorPtr fIt = edge1->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
limitStepSize( data, fIt->next(), edge1->_cosin );
}
// set new XYZ of target node
edge1->InvalidateStep( 1 );
edge1->_len = 0;
edge1->SetNewLength( data._stepSize, helper );
}
// Update normals and other dependent data of not intersecting _LayerEdge's
// neighboring the intersecting ones
for ( e2ee = edge2CloseEdge.begin(); e2ee != edge2CloseEdge.end(); ++e2ee )
{
_LayerEdge* edge1 = e2ee->first;
if ( !edge1->_2neibors )
continue;
for ( int j = 0; j < 2; ++j ) // loop on 2 neighbors
{
_LayerEdge* neighbor = edge1->_2neibors->_edges[j];
if ( edge2CloseEdge.count ( neighbor ))
continue; // j-th neighbor is also intersected
_LayerEdge* prevEdge = edge1;
const int nbSteps = 6;
for ( int step = nbSteps; step; --step ) // step from edge1 in j-th direction
{
if ( !neighbor->_2neibors )
break; // neighbor is on VERTEX
int iNext = 0;
_LayerEdge* nextEdge = neighbor->_2neibors->_edges[iNext];
if ( nextEdge == prevEdge )
nextEdge = neighbor->_2neibors->_edges[ ++iNext ];
// const double& wgtPrev = neighbor->_2neibors->_wgt[1-iNext];
// const double& wgtNext = neighbor->_2neibors->_wgt[iNext];
double r = double(step-1)/nbSteps;
if ( !nextEdge->_2neibors )
r = 0.5;
gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r);
newNorm.Normalize();
neighbor->_normal = newNorm;
neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) );
neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], helper );
neighbor->InvalidateStep( 1 );
neighbor->_len = 0;
neighbor->SetNewLength( data._stepSize, helper );
// goto the next neighbor
prevEdge = neighbor;
neighbor = nextEdge;
}
}
}
dumpFunctionEnd();
}
// 2) Check absence of intersections
// TODO?
for ( unsigned i = 0 ; i < tmpFaces.size(); ++i )
delete tmpFaces[i];
return true;
}
//================================================================================
/*!
* \brief Looks for intersection of it's last segment with faces
* \param distance - returns shortest distance from the last node to intersection
*/
//================================================================================
bool _LayerEdge::FindIntersection( SMESH_ElementSearcher& searcher,
double & distance,
const double& epsilon,
const SMDS_MeshElement** face)
{
vector< const SMDS_MeshElement* > suspectFaces;
double segLen;
gp_Ax1 lastSegment = LastSegment(segLen);
searcher.GetElementsNearLine( lastSegment, SMDSAbs_Face, suspectFaces );
bool segmentIntersected = false;
distance = Precision::Infinite();
int iFace = -1; // intersected face
for ( unsigned j = 0 ; j < suspectFaces.size() && !segmentIntersected; ++j )
{
const SMDS_MeshElement* face = suspectFaces[j];
if ( face->GetNodeIndex( _nodes.back() ) >= 0 ||
face->GetNodeIndex( _nodes[0] ) >= 0 )
continue; // face sharing _LayerEdge node
const int nbNodes = face->NbCornerNodes();
bool intFound = false;
double dist;
SMDS_MeshElement::iterator nIt = face->begin_nodes();
if ( nbNodes == 3 )
{
intFound = SegTriaInter( lastSegment, *nIt++, *nIt++, *nIt++, dist, epsilon );
}
else
{
const SMDS_MeshNode* tria[3];
tria[0] = *nIt++;
tria[1] = *nIt++;;
for ( int n2 = 2; n2 < nbNodes && !intFound; ++n2 )
{
tria[2] = *nIt++;
intFound = SegTriaInter(lastSegment, tria[0], tria[1], tria[2], dist, epsilon );
tria[1] = tria[2];
}
}
if ( intFound )
{
if ( dist < segLen*(1.01))
segmentIntersected = true;
if ( distance > dist )
distance = dist, iFace = j;
}
}
if ( iFace != -1 && face ) *face = suspectFaces[iFace];
// if ( distance && iFace > -1 )
// {
// // distance is used to limit size of inflation step which depends on
// // whether the intersected face bears viscous layers or not
// bool faceHasVL = suspectFaces[iFace]->GetID() < 1;
// if ( faceHasVL )
// *distance /= 2;
// }
if ( segmentIntersected )
{
#ifdef __myDEBUG
SMDS_MeshElement::iterator nIt = suspectFaces[iFace]->begin_nodes();
gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * distance );
cout << "nodes: tgt " << _nodes.back()->GetID() << " src " << _nodes[0]->GetID()
<< ", intersection with face ("
<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()
<< ") at point (" << intP.X() << ", " << intP.Y() << ", " << intP.Z()
<< ") distance = " << distance - segLen<< endl;
#endif
}
distance -= segLen;
return segmentIntersected;
}
//================================================================================
/*!
* \brief Returns size and direction of the last segment
*/
//================================================================================
gp_Ax1 _LayerEdge::LastSegment(double& segLen) const
{
// find two non-coincident positions
gp_XYZ orig = _pos.back();
gp_XYZ dir;
int iPrev = _pos.size() - 2;
while ( iPrev >= 0 )
{
dir = orig - _pos[iPrev];
if ( dir.SquareModulus() > 1e-100 )
break;
else
iPrev--;
}
// make gp_Ax1
gp_Ax1 segDir;
if ( iPrev < 0 )
{
segDir.SetLocation( SMESH_TNodeXYZ( _nodes[0] ));
segDir.SetDirection( _normal );
segLen = 0;
}
else
{
gp_Pnt pPrev = _pos[ iPrev ];
if ( !_sWOL.IsNull() )
{
TopLoc_Location loc;
if ( _sWOL.ShapeType() == TopAbs_EDGE )
{
double f,l;
Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( _sWOL ), loc, f,l);
pPrev = curve->Value( pPrev.X() ).Transformed( loc );
}
else
{
Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(_sWOL), loc );
pPrev = surface->Value( pPrev.X(), pPrev.Y() ).Transformed( loc );
}
dir = SMESH_TNodeXYZ( _nodes.back() ) - pPrev.XYZ();
}
segDir.SetLocation( pPrev );
segDir.SetDirection( dir );
segLen = dir.Modulus();
}
return segDir;
}
//================================================================================
/*!
* \brief Test intersection of the last segment with a given triangle
* using Moller-Trumbore algorithm
* Intersection is detected if distance to intersection is less than _LayerEdge._len
*/
//================================================================================
bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment,
const SMDS_MeshNode* n0,
const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
double& t,
const double& EPSILON) const
{
//const double EPSILON = 1e-6;
gp_XYZ orig = lastSegment.Location().XYZ();
gp_XYZ dir = lastSegment.Direction().XYZ();
SMESH_TNodeXYZ vert0( n0 );
SMESH_TNodeXYZ vert1( n1 );
SMESH_TNodeXYZ vert2( n2 );
/* calculate distance from vert0 to ray origin */
gp_XYZ tvec = orig - vert0;
if ( tvec * dir > EPSILON )
// intersected face is at back side of the temporary face this _LayerEdge belongs to
return false;
gp_XYZ edge1 = vert1 - vert0;
gp_XYZ edge2 = vert2 - vert0;
/* begin calculating determinant - also used to calculate U parameter */
gp_XYZ pvec = dir ^ edge2;
/* if determinant is near zero, ray lies in plane of triangle */
double det = edge1 * pvec;
if (det > -EPSILON && det < EPSILON)
return 0;
double inv_det = 1.0 / det;
/* calculate U parameter and test bounds */
double u = ( tvec * pvec ) * inv_det;
if (u < 0.0 || u > 1.0)
return 0;
/* prepare to test V parameter */
gp_XYZ qvec = tvec ^ edge1;
/* calculate V parameter and test bounds */
double v = (dir * qvec) * inv_det;
if ( v < 0.0 || u + v > 1.0 )
return 0;
/* calculate t, ray intersects triangle */
t = (edge2 * qvec) * inv_det;
// if (det < EPSILON)
// return false;
// /* calculate distance from vert0 to ray origin */
// gp_XYZ tvec = orig - vert0;
// /* calculate U parameter and test bounds */
// double u = tvec * pvec;
// if (u < 0.0 || u > det)
// return 0;
// /* prepare to test V parameter */
// gp_XYZ qvec = tvec ^ edge1;
// /* calculate V parameter and test bounds */
// double v = dir * qvec;
// if (v < 0.0 || u + v > det)
// return 0;
// /* calculate t, scale parameters, ray intersects triangle */
// double t = edge2 * qvec;
// double inv_det = 1.0 / det;
// t *= inv_det;
// //u *= inv_det;
// //v *= inv_det;
return true;
}
//================================================================================
/*!
* \brief Perform smooth of _LayerEdge's based on EDGE's
* \retval bool - true if node has been moved
*/
//================================================================================
bool _LayerEdge::SmoothOnEdge(Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper)
{
ASSERT( IsOnEdge() );
SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _nodes.back() );
SMESH_TNodeXYZ oldPos( tgtNode );
double dist01, distNewOld;
SMESH_TNodeXYZ p0( _2neibors->_nodes[0]);
SMESH_TNodeXYZ p1( _2neibors->_nodes[1]);
dist01 = p0.Distance( _2neibors->_nodes[1] );
gp_Pnt newPos = p0 * _2neibors->_wgt[0] + p1 * _2neibors->_wgt[1];
double lenDelta = 0;
if ( _curvature )
{
lenDelta = _curvature->lenDelta( _len );
newPos.ChangeCoord() += _normal * lenDelta;
}
distNewOld = newPos.Distance( oldPos );
if ( F.IsNull() )
{
if ( _2neibors->_plnNorm )
{
// put newPos on the plane defined by source node and _plnNorm
gp_XYZ new2src = SMESH_TNodeXYZ( _nodes[0] ) - newPos.XYZ();
double new2srcProj = (*_2neibors->_plnNorm) * new2src;
newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj;
}
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
_pos.back() = newPos.XYZ();
}
else
{
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
gp_XY uv( Precision::Infinite(), 0 );
helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true );
_pos.back().SetCoord( uv.X(), uv.Y(), 0 );
newPos = surface->Value( uv.X(), uv.Y() );
tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
}
if ( _curvature && lenDelta < 0 )
{
gp_Pnt prevPos( _pos[ _pos.size()-2 ]);
_len -= prevPos.Distance( oldPos );
_len += prevPos.Distance( newPos );
}
bool moved = distNewOld > dist01/50;
//if ( moved )
dumpMove( tgtNode ); // debug
return moved;
}
//================================================================================
/*!
* \brief Perform laplacian smooth in 3D of nodes inflated from FACE
* \retval bool - true if _tgtNode has been moved
*/
//================================================================================
bool _LayerEdge::Smooth(int& badNb)
{
if ( _simplices.size() < 2 )
return false; // _LayerEdge inflated along EDGE or FACE
// compute new position for the last _pos
gp_XYZ newPos (0,0,0);
for ( unsigned i = 0; i < _simplices.size(); ++i )
newPos += SMESH_TNodeXYZ( _simplices[i]._nPrev );
newPos /= _simplices.size();
if ( _curvature )
newPos += _normal * _curvature->lenDelta( _len );
gp_Pnt prevPos( _pos[ _pos.size()-2 ]);
// if ( _cosin < -0.1)
// {
// // Avoid decreasing length of edge on concave surface
// //gp_Vec oldMove( _pos[ _pos.size()-2 ], _pos.back() );
// gp_Vec newMove( prevPos, newPos );
// newPos = _pos.back() + newMove.XYZ();
// }
// else if ( _cosin > 0.3 )
// {
// // Avoid increasing length of edge too much
// }
// count quality metrics (orientation) of tetras around _tgtNode
int nbOkBefore = 0;
SMESH_TNodeXYZ tgtXYZ( _nodes.back() );
for ( unsigned i = 0; i < _simplices.size(); ++i )
nbOkBefore += _simplices[i].IsForward( _nodes[0], &tgtXYZ );
int nbOkAfter = 0;
for ( unsigned i = 0; i < _simplices.size(); ++i )
nbOkAfter += _simplices[i].IsForward( _nodes[0], &newPos );
if ( nbOkAfter < nbOkBefore )
return false;
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
_len -= prevPos.Distance(SMESH_TNodeXYZ( n ));
_len += prevPos.Distance(newPos);
n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
_pos.back() = newPos;
badNb += _simplices.size() - nbOkAfter;
dumpMove( n );
return true;
}
//================================================================================
/*!
* \brief Add a new segment to _LayerEdge during inflation
*/
//================================================================================
void _LayerEdge::SetNewLength( double len, SMESH_MesherHelper& helper )
{
if ( _len - len > -1e-6 )
{
_pos.push_back( _pos.back() );
return;
}
SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() );
SMESH_TNodeXYZ oldXYZ( n );
gp_XYZ nXYZ = oldXYZ + _normal * ( len - _len ) * _lenFactor;
n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() );
_pos.push_back( nXYZ );
_len = len;
if ( !_sWOL.IsNull() )
{
double distXYZ[4];
if ( _sWOL.ShapeType() == TopAbs_EDGE )
{
double u = Precision::Infinite(); // to force projection w/o distance check
helper.CheckNodeU( TopoDS::Edge( _sWOL ), n, u, 1e-10, /*force=*/true, distXYZ );
_pos.back().SetCoord( u, 0, 0 );
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( n->GetPosition() );
pos->SetUParameter( u );
}
else // TopAbs_FACE
{
gp_XY uv( Precision::Infinite(), 0 );
helper.CheckNodeUV( TopoDS::Face( _sWOL ), n, uv, 1e-10, /*force=*/true, distXYZ );
_pos.back().SetCoord( uv.X(), uv.Y(), 0 );
SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( n->GetPosition() );
pos->SetUParameter( uv.X() );
pos->SetVParameter( uv.Y() );
}
n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]);
}
dumpMove( n ); //debug
}
//================================================================================
/*!
* \brief Remove last inflation step
*/
//================================================================================
void _LayerEdge::InvalidateStep( int curStep )
{
if ( _pos.size() > curStep )
{
_pos.resize( curStep );
gp_Pnt nXYZ = _pos.back();
SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() );
if ( !_sWOL.IsNull() )
{
TopLoc_Location loc;
if ( _sWOL.ShapeType() == TopAbs_EDGE )
{
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( n->GetPosition() );
pos->SetUParameter( nXYZ.X() );
double f,l;
Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( _sWOL ), loc, f,l);
nXYZ = curve->Value( nXYZ.X() ).Transformed( loc );
}
else
{
SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( n->GetPosition() );
pos->SetUParameter( nXYZ.X() );
pos->SetVParameter( nXYZ.Y() );
Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(_sWOL), loc );
nXYZ = surface->Value( nXYZ.X(), nXYZ.Y() ).Transformed( loc );
}
}
n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() );
dumpMove( n );
}
}
//================================================================================
/*!
* \brief Create layers of prisms
*/
//================================================================================
bool _ViscousBuilder::refine(_SolidData& data)
{
SMESH_MesherHelper helper( *_mesh );
helper.SetSubShape( data._solid );
helper.SetElementsOnShape(false);
Handle(Geom_Curve) curve;
Handle(Geom_Surface) surface;
TopoDS_Edge geomEdge;
TopoDS_Face geomFace;
TopLoc_Location loc;
double f,l, u/*, distXYZ[4]*/;
gp_XY uv;
bool isOnEdge;
for ( unsigned i = 0; i < data._edges.size(); ++i )
{
_LayerEdge& edge = *data._edges[i];
// get accumulated length of segments
vector< double > segLen( edge._pos.size() );
segLen[0] = 0.0;
for ( unsigned j = 1; j < edge._pos.size(); ++j )
segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus();
// allocate memory for new nodes if it is not yet refined
const SMDS_MeshNode* tgtNode = edge._nodes.back();
if ( edge._nodes.size() == 2 )
{
edge._nodes.resize( data._hyp->GetNumberLayers() + 1, 0 );
edge._nodes[1] = 0;
edge._nodes.back() = tgtNode;
}
if ( !edge._sWOL.IsNull() )
{
isOnEdge = ( edge._sWOL.ShapeType() == TopAbs_EDGE );
// restore position of the last node
// gp_Pnt p;
if ( isOnEdge )
{
geomEdge = TopoDS::Edge( edge._sWOL );
curve = BRep_Tool::Curve( geomEdge, loc, f,l);
// double u = helper.GetNodeU( tgtNode );
// p = curve->Value( u );
}
else
{
geomFace = TopoDS::Face( edge._sWOL );
surface = BRep_Tool::Surface( geomFace, loc );
// gp_XY uv = helper.GetNodeUV( tgtNode );
// p = surface->Value( uv.X(), uv.Y() );
}
// p.Transform( loc );
// const_cast< SMDS_MeshNode* >( tgtNode )->setXYZ( p.X(), p.Y(), p.Z() );
}
// calculate height of the first layer
double h0;
const double T = segLen.back(); //data._hyp.GetTotalThickness();
const double f = data._hyp->GetStretchFactor();
const int N = data._hyp->GetNumberLayers();
const double fPowN = pow( f, N );
if ( fPowN - 1 <= numeric_limits<double>::min() )
h0 = T / N;
else
h0 = T * ( f - 1 )/( fPowN - 1 );
const double zeroLen = std::numeric_limits<double>::min();
// create intermediate nodes
double hSum = 0, hi = h0/f;
unsigned iSeg = 1;
for ( unsigned iStep = 1; iStep < edge._nodes.size(); ++iStep )
{
// compute an intermediate position
hi *= f;
hSum += hi;
while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1)
++iSeg;
int iPrevSeg = iSeg-1;
while ( fabs( segLen[iPrevSeg] - segLen[iSeg]) <= zeroLen && iPrevSeg > 0 )
--iPrevSeg;
double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] );
gp_Pnt pos = r * edge._pos[iPrevSeg] + (1-r) * edge._pos[iSeg];
SMDS_MeshNode*& node = const_cast< SMDS_MeshNode*& >(edge._nodes[ iStep ]);
if ( !edge._sWOL.IsNull() )
{
// compute XYZ by parameters <pos>
if ( isOnEdge )
{
u = pos.X();
pos = curve->Value( u ).Transformed(loc);
}
else
{
uv.SetCoord( pos.X(), pos.Y() );
pos = surface->Value( pos.X(), pos.Y() ).Transformed(loc);
}
}
// create or update the node
if ( !node )
{
node = helper.AddNode( pos.X(), pos.Y(), pos.Z());
if ( !edge._sWOL.IsNull() )
{
if ( isOnEdge )
getMeshDS()->SetNodeOnEdge( node, geomEdge, u );
else
getMeshDS()->SetNodeOnFace( node, geomFace, uv.X(), uv.Y() );
}
else
{
getMeshDS()->SetNodeInVolume( node, helper.GetSubShapeID() );
}
}
else
{
if ( !edge._sWOL.IsNull() )
{
// make average pos from new and current parameters
if ( isOnEdge )
{
u = 0.5 * ( u + helper.GetNodeU( geomEdge, node ));
pos = curve->Value( u ).Transformed(loc);
}
else
{
uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node ));
pos = surface->Value( uv.X(), uv.Y()).Transformed(loc);
}
}
node->setXYZ( pos.X(), pos.Y(), pos.Z() );
}
}
}
// TODO: make quadratic prisms and polyhedrons(?)
helper.SetElementsOnShape(true);
TopExp_Explorer exp( data._solid, TopAbs_FACE );
for ( ; exp.More(); exp.Next() )
{
if ( _ignoreShapeIds.count( getMeshDS()->ShapeToIndex( exp.Current() )))
continue;
SMESHDS_SubMesh* fSubM = getMeshDS()->MeshElements( exp.Current() );
SMDS_ElemIteratorPtr fIt = fSubM->GetElements();
vector< vector<const SMDS_MeshNode*>* > nnVec;
while ( fIt->more() )
{
const SMDS_MeshElement* face = fIt->next();
int nbNodes = face->NbCornerNodes();
nnVec.resize( nbNodes );
SMDS_ElemIteratorPtr nIt = face->nodesIterator();
for ( int iN = 0; iN < nbNodes; ++iN )
{
const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( nIt->next() );
nnVec[ iN ] = & data._n2eMap[ n ]->_nodes;
}
int nbZ = nnVec[0]->size();
switch ( nbNodes )
{
case 3:
for ( int iZ = 1; iZ < nbZ; ++iZ )
helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1],
(*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ]);
break;
case 4:
for ( int iZ = 1; iZ < nbZ; ++iZ )
helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1],
(*nnVec[2])[iZ-1], (*nnVec[3])[iZ-1],
(*nnVec[0])[iZ], (*nnVec[1])[iZ],
(*nnVec[2])[iZ], (*nnVec[3])[iZ]);
break;
default:
return error("Not supported type of element", data._index);
}
}
}
return true;
}
//================================================================================
/*!
* \brief Shrink 2D mesh on faces to let space for inflated layers
*/
//================================================================================
bool _ViscousBuilder::shrink()
{
// make map of (ids of FACEs to shrink mesh on) to (_SolidData containing _LayerEdge's
// inflated along FACE or EDGE)
map< TGeomID, _SolidData* > f2sdMap;
for ( unsigned i = 0 ; i < _sdVec.size(); ++i )
{
_SolidData& data = _sdVec[i];
TopTools_MapOfShape FFMap;
map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin();
for (; s2s != data._shrinkShape2Shape.end(); ++s2s )
if ( s2s->second.ShapeType() == TopAbs_FACE )
{
f2sdMap.insert( make_pair( getMeshDS()->ShapeToIndex( s2s->second ), &data ));
if ( FFMap.Add( (*s2s).second ))
// Put mesh faces on the shrinked FACE to the proxy sub-mesh to avoid
// usage of mesh faces made in addBoundaryElements() by the 3D algo or
// by StdMeshers_QuadToTriaAdaptor
if ( SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( s2s->second ))
{
SMESH_ProxyMesh::SubMesh* proxySub =
data._proxyMesh->getFaceSubM( TopoDS::Face( s2s->second ), /*create=*/true);
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
while ( fIt->more() )
proxySub->AddElement( fIt->next() );
// as a result 3D algo will use elements from proxySub and not from smDS
}
}
}
SMESH_MesherHelper helper( *_mesh );
// EDGE's to shrink
map< int, _Shrinker1D > e2shrMap;
// loop on FACES to srink mesh on
map< TGeomID, _SolidData* >::iterator f2sd = f2sdMap.begin();
for ( ; f2sd != f2sdMap.end(); ++f2sd )
{
_SolidData& data = *f2sd->second;
TNode2Edge& n2eMap = data._n2eMap;
const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( f2sd->first ));
Handle(Geom_Surface) surface = BRep_Tool::Surface(F);
SMESH_subMesh* sm = _mesh->GetSubMesh( F );
SMESHDS_SubMesh* smDS = sm->GetSubMeshDS();
helper.SetSubShape(F);
// ===========================
// Prepare data for shrinking
// ===========================
// Collect nodes to smooth, as src nodes are not yet replaced by tgt ones
// and thus all nodes on a FACE connected to 2d elements are to be smoothed
vector < const SMDS_MeshNode* > smoothNodes;
{
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* n = nIt->next();
if ( n->NbInverseElements( SMDSAbs_Face ) > 0 )
smoothNodes.push_back( n );
}
}
// Find out face orientation
double refSign = 1;
const set<TGeomID> ignoreShapes;
bool isOkUV;
if ( !smoothNodes.empty() )
{
vector<_Simplex> simplices;
getSimplices( smoothNodes[0], simplices, ignoreShapes );
helper.GetNodeUV( F, simplices[0]._nPrev, 0, &isOkUV ); // fix UV of silpmex nodes
helper.GetNodeUV( F, simplices[0]._nNext, 0, &isOkUV );
gp_XY uv = helper.GetNodeUV( F, smoothNodes[0], 0, &isOkUV );
if ( !simplices[0].IsForward(uv, smoothNodes[0], F, helper,refSign) )
refSign = -1;
}
// Find _LayerEdge's inflated along F
vector< _LayerEdge* > lEdges;
{
SMESH_subMeshIteratorPtr subIt =
sm->getDependsOnIterator(/*includeSelf=*/false, /*complexShapeFirst=*/false);
while ( subIt->more() )
{
SMESH_subMesh* sub = subIt->next();
SMESHDS_SubMesh* subDS = sub->GetSubMeshDS();
if ( subDS->NbNodes() == 0 || !n2eMap.count( subDS->GetNodes()->next() ))
continue;
SMDS_NodeIteratorPtr nIt = subDS->GetNodes();
while ( nIt->more() )
{
_LayerEdge* edge = n2eMap[ nIt->next() ];
lEdges.push_back( edge );
prepareEdgeToShrink( *edge, F, helper, smDS );
}
}
}
// Replace source nodes by target nodes in mesh faces to shrink
const SMDS_MeshNode* nodes[20];
for ( unsigned i = 0; i < lEdges.size(); ++i )
{
_LayerEdge& edge = *lEdges[i];
const SMDS_MeshNode* srcNode = edge._nodes[0];
const SMDS_MeshNode* tgtNode = edge._nodes.back();
SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
if ( !smDS->Contains( f ))
continue;
SMDS_ElemIteratorPtr nIt = f->nodesIterator();
for ( int iN = 0; iN < f->NbNodes(); ++iN )
{
const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( nIt->next() );
nodes[iN] = ( n == srcNode ? tgtNode : n );
}
helper.GetMeshDS()->ChangeElementNodes( f, nodes, f->NbNodes() );
}
}
// find out if a FACE is concave
const bool isConcaveFace = isConcave( F, helper );
// Create _SmoothNode's on face F
vector< _SmoothNode > nodesToSmooth( smoothNodes.size() );
{
dumpFunction(SMESH_Comment("beforeShrinkFace")<<f2sd->first); // debug
for ( unsigned i = 0; i < smoothNodes.size(); ++i )
{
const SMDS_MeshNode* n = smoothNodes[i];
nodesToSmooth[ i ]._node = n;
// src nodes must be replaced by tgt nodes to have tgt nodes in _simplices
getSimplices( n, nodesToSmooth[ i ]._simplices, ignoreShapes, NULL, isConcaveFace );
// fix up incorrect uv of nodes on the FACE
helper.GetNodeUV( F, n, 0, &isOkUV);
dumpMove( n );
}
dumpFunctionEnd();
}
//if ( nodesToSmooth.empty() ) continue;
// Find EDGE's to shrink
set< _Shrinker1D* > eShri1D;
{
for ( unsigned i = 0; i < lEdges.size(); ++i )
{
_LayerEdge* edge = lEdges[i];
if ( edge->_sWOL.ShapeType() == TopAbs_EDGE )
{
TGeomID edgeIndex = getMeshDS()->ShapeToIndex( edge->_sWOL );
_Shrinker1D& srinker = e2shrMap[ edgeIndex ];
eShri1D.insert( & srinker );
srinker.AddEdge( edge, helper );
// restore params of nodes on EGDE if the EDGE has been already
// srinked while srinking another FACE
srinker.RestoreParams();
}
}
}
// ==================
// Perform shrinking
// ==================
bool shrinked = true;
int badNb, shriStep=0, smooStep=0;
while ( shrinked )
{
// Move boundary nodes (actually just set new UV)
// -----------------------------------------------
dumpFunction(SMESH_Comment("moveBoundaryOnF")<<f2sd->first<<"_st"<<shriStep++ ); // debug
shrinked = false;
for ( unsigned i = 0; i < lEdges.size(); ++i )
{
shrinked |= lEdges[i]->SetNewLength2d( surface,F,helper );
}
dumpFunctionEnd();
// Move nodes on EDGE's
set< _Shrinker1D* >::iterator shr = eShri1D.begin();
for ( ; shr != eShri1D.end(); ++shr )
(*shr)->Compute( /*set3D=*/false, helper );
// Smoothing in 2D
// -----------------
int nbNoImpSteps = 0;
bool moved = true;
badNb = 1;
while (( nbNoImpSteps < 5 && badNb > 0) && moved)
{
dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
int oldBadNb = badNb;
badNb = 0;
moved = false;
for ( unsigned i = 0; i < nodesToSmooth.size(); ++i )
{
moved |= nodesToSmooth[i].Smooth( badNb,surface,helper,refSign,
/*isCentroidal=*/isConcaveFace,/*set3D=*/false );
}
if ( badNb < oldBadNb )
nbNoImpSteps = 0;
else
nbNoImpSteps++;
dumpFunctionEnd();
}
if ( badNb > 0 )
return error(SMESH_Comment("Can't shrink 2D mesh on face ") << f2sd->first );
}
// No wrongly shaped faces remain; final smooth. Set node XYZ.
// First, find out a needed quality of smoothing (high for quadrangles only)
bool highQuality;
{
const bool hasTria = _mesh->NbTriangles(), hasQuad = _mesh->NbQuadrangles();
if ( hasTria != hasQuad )
{
highQuality = hasQuad;
}
else
{
set<int> nbNodesSet;
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
while ( fIt->more() && nbNodesSet.size() < 2 )
nbNodesSet.insert( fIt->next()->NbCornerNodes() );
highQuality = ( *nbNodesSet.begin() == 4 );
}
}
if ( !highQuality && isConcaveFace )
fixBadFaces( F, helper ); // fix narrow faces by swaping diagonals
for ( int st = highQuality ? 10 : 3; st; --st )
{
dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
for ( unsigned i = 0; i < nodesToSmooth.size(); ++i )
nodesToSmooth[i].Smooth( badNb,surface,helper,refSign,
/*isCentroidal=*/isConcaveFace,/*set3D=*/st==1 );
dumpFunctionEnd();
}
// Set an event listener to clear FACE sub-mesh together with SOLID sub-mesh
_SrinkShapeListener::ToClearSubMeshWithSolid( sm, data._solid );
} // loop on FACES to srink mesh on
// Replace source nodes by target nodes in shrinked mesh edges
map< int, _Shrinker1D >::iterator e2shr = e2shrMap.begin();
for ( ; e2shr != e2shrMap.end(); ++e2shr )
e2shr->second.SwapSrcTgtNodes( getMeshDS() );
return true;
}
//================================================================================
/*!
* \brief Computes 2d shrink direction and finds nodes limiting shrinking
*/
//================================================================================
bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge,
const TopoDS_Face& F,
SMESH_MesherHelper& helper,
const SMESHDS_SubMesh* faceSubMesh)
{
const SMDS_MeshNode* srcNode = edge._nodes[0];
const SMDS_MeshNode* tgtNode = edge._nodes.back();
edge._pos.clear();
if ( edge._sWOL.ShapeType() == TopAbs_FACE )
{
gp_XY srcUV = helper.GetNodeUV( F, srcNode );
gp_XY tgtUV = helper.GetNodeUV( F, tgtNode );
gp_Vec2d uvDir( srcUV, tgtUV );
double uvLen = uvDir.Magnitude();
uvDir /= uvLen;
edge._normal.SetCoord( uvDir.X(),uvDir.Y(), 0);
// IMPORTANT to have src nodes NOT yet REPLACED by tgt nodes in shrinked faces
vector<const SMDS_MeshElement*> faces;
multimap< double, const SMDS_MeshNode* > proj2node;
SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
if ( faceSubMesh->Contains( f ))
faces.push_back( f );
}
for ( unsigned i = 0; i < faces.size(); ++i )
{
const int nbNodes = faces[i]->NbCornerNodes();
for ( int j = 0; j < nbNodes; ++j )
{
const SMDS_MeshNode* n = faces[i]->GetNode(j);
if ( n == srcNode ) continue;
if ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE &&
( faces.size() > 1 || nbNodes > 3 ))
continue;
gp_Pnt2d uv = helper.GetNodeUV( F, n );
gp_Vec2d uvDirN( srcUV, uv );
double proj = uvDirN * uvDir;
proj2node.insert( make_pair( proj, n ));
}
}
multimap< double, const SMDS_MeshNode* >::iterator p2n = proj2node.begin(), p2nEnd;
const double minProj = p2n->first;
const double projThreshold = 1.1 * uvLen;
if ( minProj > projThreshold )
{
// tgtNode is located so that it does not make faces with wrong orientation
return true;
}
edge._pos.resize(1);
edge._pos[0].SetCoord( tgtUV.X(), tgtUV.Y(), 0 );
// store most risky nodes in _simplices
p2nEnd = proj2node.lower_bound( projThreshold );
int nbSimpl = ( std::distance( p2n, p2nEnd ) + 1) / 2;
edge._simplices.resize( nbSimpl );
for ( int i = 0; i < nbSimpl; ++i )
{
edge._simplices[i]._nPrev = p2n->second;
if ( ++p2n != p2nEnd )
edge._simplices[i]._nNext = p2n->second;
}
// set UV of source node to target node
SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( tgtNode->GetPosition() );
pos->SetUParameter( srcUV.X() );
pos->SetVParameter( srcUV.Y() );
}
else // _sWOL is TopAbs_EDGE
{
TopoDS_Edge E = TopoDS::Edge( edge._sWOL);
SMESHDS_SubMesh* edgeSM = getMeshDS()->MeshElements( E );
if ( !edgeSM || edgeSM->NbElements() == 0 )
return error(SMESH_Comment("Not meshed EDGE ") << getMeshDS()->ShapeToIndex( E ));
const SMDS_MeshNode* n2 = 0;
SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge);
while ( eIt->more() && !n2 )
{
const SMDS_MeshElement* e = eIt->next();
if ( !edgeSM->Contains(e)) continue;
n2 = e->GetNode( 0 );
if ( n2 == srcNode ) n2 = e->GetNode( 1 );
}
if ( !n2 )
return error(SMESH_Comment("Wrongly meshed EDGE ") << getMeshDS()->ShapeToIndex( E ));
double uSrc = helper.GetNodeU( E, srcNode, n2 );
double uTgt = helper.GetNodeU( E, tgtNode, srcNode );
double u2 = helper.GetNodeU( E, n2, srcNode );
if ( fabs( uSrc-uTgt ) < 0.99 * fabs( uSrc-u2 ))
{
// tgtNode is located so that it does not make faces with wrong orientation
return true;
}
edge._pos.resize(1);
edge._pos[0].SetCoord( U_TGT, uTgt );
edge._pos[0].SetCoord( U_SRC, uSrc );
edge._pos[0].SetCoord( LEN_TGT, fabs( uSrc-uTgt ));
edge._simplices.resize( 1 );
edge._simplices[0]._nPrev = n2;
// set UV of source node to target node
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( tgtNode->GetPosition() );
pos->SetUParameter( uSrc );
}
return true;
//================================================================================
/*!
* \brief Compute positions (UV) to set to a node on edge moved during shrinking
*/
//================================================================================
// Compute UV to follow during shrinking
// const SMDS_MeshNode* srcNode = edge._nodes[0];
// const SMDS_MeshNode* tgtNode = edge._nodes.back();
// gp_XY srcUV = helper.GetNodeUV( F, srcNode );
// gp_XY tgtUV = helper.GetNodeUV( F, tgtNode );
// gp_Vec2d uvDir( srcUV, tgtUV );
// double uvLen = uvDir.Magnitude();
// uvDir /= uvLen;
// // Select shrinking step such that not to make faces with wrong orientation.
// // IMPORTANT to have src nodes NOT yet REPLACED by tgt nodes in shrinked faces
// const double minStepSize = uvLen / 20;
// double stepSize = uvLen;
// SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face);
// while ( fIt->more() )
// {
// const SMDS_MeshElement* f = fIt->next();
// if ( !faceSubMesh->Contains( f )) continue;
// const int nbNodes = f->NbCornerNodes();
// for ( int i = 0; i < nbNodes; ++i )
// {
// const SMDS_MeshNode* n = f->GetNode(i);
// if ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE || n == srcNode)
// continue;
// gp_XY uv = helper.GetNodeUV( F, n );
// gp_Vec2d uvDirN( srcUV, uv );
// double proj = uvDirN * uvDir;
// if ( proj < stepSize && proj > minStepSize )
// stepSize = proj;
// }
// }
// stepSize *= 0.8;
// const int nbSteps = ceil( uvLen / stepSize );
// gp_XYZ srcUV0( srcUV.X(), srcUV.Y(), 0 );
// gp_XYZ tgtUV0( tgtUV.X(), tgtUV.Y(), 0 );
// edge._pos.resize( nbSteps );
// edge._pos[0] = tgtUV0;
// for ( int i = 1; i < nbSteps; ++i )
// {
// double r = i / double( nbSteps );
// edge._pos[i] = (1-r) * tgtUV0 + r * srcUV0;
// }
// return true;
}
//================================================================================
/*!
* \brief Try to fix triangles with high aspect ratio by swaping diagonals
*/
//================================================================================
void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& helper)
{
SMESH::Controls::AspectRatio qualifier;
SMESH::Controls::TSequenceOfXYZ points(3), points1(3), points2(3);
const double maxAspectRatio = 4.;
// find bad triangles
vector< const SMDS_MeshElement* > badTrias;
vector< double > badAspects;
SMESHDS_SubMesh* sm = helper.GetMeshDS()->MeshElements( F );
SMDS_ElemIteratorPtr fIt = sm->GetElements();
while ( fIt->more() )
{
const SMDS_MeshElement * f = fIt->next();
if ( f->NbCornerNodes() != 3 ) continue;
for ( int iP = 0; iP < 3; ++iP ) points(iP+1) = SMESH_TNodeXYZ( f->GetNode(iP));
double aspect = qualifier.GetValue( points );
if ( aspect > maxAspectRatio )
{
badTrias.push_back( f );
badAspects.push_back( aspect );
}
}
if ( badTrias.empty() )
return;
// find couples of faces to swap diagonal
typedef pair < const SMDS_MeshElement* , const SMDS_MeshElement* > T2Trias;
vector< T2Trias > triaCouples;
TIDSortedElemSet involvedFaces, emptySet;
for ( size_t iTia = 0; iTia < badTrias.size(); ++iTia )
{
T2Trias trias [3];
double aspRatio [3];
int i1, i2, i3;
involvedFaces.insert( badTrias[iTia] );
for ( int iP = 0; iP < 3; ++iP )
points(iP+1) = SMESH_TNodeXYZ( badTrias[iTia]->GetNode(iP));
// find triangles adjacent to badTrias[iTia] with better aspect ratio after diag-swaping
int bestCouple = -1;
for ( int iSide = 0; iSide < 3; ++iSide )
{
const SMDS_MeshNode* n1 = badTrias[iTia]->GetNode( iSide );
const SMDS_MeshNode* n2 = badTrias[iTia]->GetNode(( iSide+1 ) % 3 );
trias [iSide].first = badTrias[iTia];
trias [iSide].second = SMESH_MeshEditor::FindFaceInSet( n1, n2, emptySet, involvedFaces,
& i1, & i2 );
if ( ! trias[iSide].second || trias[iSide].second->NbCornerNodes() != 3 )
continue;
// aspect ratio of an adjacent tria
for ( int iP = 0; iP < 3; ++iP )
points2(iP+1) = SMESH_TNodeXYZ( trias[iSide].second->GetNode(iP));
double aspectInit = qualifier.GetValue( points2 );
// arrange nodes as after diag-swaping
if ( helper.WrapIndex( i1+1, 3 ) == i2 )
i3 = helper.WrapIndex( i1-1, 3 );
else
i3 = helper.WrapIndex( i1+1, 3 );
points1 = points;
points1( 1+ iSide ) = points2( 1+ i3 );
points2( 1+ i2 ) = points1( 1+ ( iSide+2 ) % 3 );
// aspect ratio after diag-swaping
aspRatio[ iSide ] = qualifier.GetValue( points1 ) + qualifier.GetValue( points2 );
if ( aspRatio[ iSide ] > aspectInit + badAspects[ iTia ] )
continue;
if ( bestCouple < 0 || aspRatio[ bestCouple ] > aspRatio[ iSide ] )
bestCouple = iSide;
}
if ( bestCouple >= 0 )
{
triaCouples.push_back( trias[bestCouple] );
involvedFaces.insert ( trias[bestCouple].second );
}
else
{
involvedFaces.erase( badTrias[iTia] );
}
}
if ( triaCouples.empty() )
return;
// swap diagonals
SMESH_MeshEditor editor( helper.GetMesh() );
dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<<helper.GetSubShapeID());
for ( size_t i = 0; i < triaCouples.size(); ++i )
{
dumpChangeNodes( triaCouples[i].first );
dumpChangeNodes( triaCouples[i].second );
editor.InverseDiag( triaCouples[i].first, triaCouples[i].second );
}
dumpFunctionEnd();
// just for debug dump resulting triangles
dumpFunction(SMESH_Comment("swapDiagonals_F")<<helper.GetSubShapeID());
for ( size_t i = 0; i < triaCouples.size(); ++i )
{
dumpChangeNodes( triaCouples[i].first );
dumpChangeNodes( triaCouples[i].second );
}
}
//================================================================================
/*!
* \brief Move target node to it's final position on the FACE during shrinking
*/
//================================================================================
bool _LayerEdge::SetNewLength2d( Handle(Geom_Surface)& surface,
const TopoDS_Face& F,
SMESH_MesherHelper& helper )
{
if ( _pos.empty() )
return false; // already at the target position
SMDS_MeshNode* tgtNode = const_cast< SMDS_MeshNode*& >( _nodes.back() );
if ( _sWOL.ShapeType() == TopAbs_FACE )
{
gp_XY curUV = helper.GetNodeUV( F, tgtNode );
gp_Pnt2d tgtUV( _pos[0].X(), _pos[0].Y());
gp_Vec2d uvDir( _normal.X(), _normal.Y() );
const double uvLen = tgtUV.Distance( curUV );
// Select shrinking step such that not to make faces with wrong orientation.
const double kSafe = 0.8;
const double minStepSize = uvLen / 10;
double stepSize = uvLen;
for ( unsigned i = 0; i < _simplices.size(); ++i )
{
const SMDS_MeshNode* nn[2] = { _simplices[i]._nPrev, _simplices[i]._nNext };
for ( int j = 0; j < 2; ++j )
if ( const SMDS_MeshNode* n = nn[j] )
{
gp_XY uv = helper.GetNodeUV( F, n );
gp_Vec2d uvDirN( curUV, uv );
double proj = uvDirN * uvDir * kSafe;
if ( proj < stepSize && proj > minStepSize )
stepSize = proj;
}
}
gp_Pnt2d newUV;
if ( stepSize == uvLen )
{
newUV = tgtUV;
_pos.clear();
}
else
{
newUV = curUV + uvDir.XY() * stepSize;
}
SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( tgtNode->GetPosition() );
pos->SetUParameter( newUV.X() );
pos->SetVParameter( newUV.Y() );
#ifdef __myDEBUG
gp_Pnt p = surface->Value( newUV.X(), newUV.Y() );
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( tgtNode );
#endif
}
else // _sWOL is TopAbs_EDGE
{
TopoDS_Edge E = TopoDS::Edge( _sWOL );
const SMDS_MeshNode* n2 = _simplices[0]._nPrev;
const double u2 = helper.GetNodeU( E, n2, tgtNode );
const double uSrc = _pos[0].Coord( U_SRC );
const double lenTgt = _pos[0].Coord( LEN_TGT );
double newU = _pos[0].Coord( U_TGT );
if ( lenTgt < 0.99 * fabs( uSrc-u2 ))
{
_pos.clear();
}
else
{
newU = 0.1 * uSrc + 0.9 * u2;
}
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( tgtNode->GetPosition() );
pos->SetUParameter( newU );
#ifdef __myDEBUG
gp_XY newUV = helper.GetNodeUV( F, tgtNode, _nodes[0]);
gp_Pnt p = surface->Value( newUV.X(), newUV.Y() );
tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( tgtNode );
#endif
}
return true;
}
//================================================================================
/*!
* \brief Perform smooth on the FACE
* \retval bool - true if the node has been moved
*/
//================================================================================
bool _SmoothNode::Smooth(int& badNb,
Handle(Geom_Surface)& surface,
SMESH_MesherHelper& helper,
const double refSign,
bool isCentroidal,
bool set3D)
{
const TopoDS_Face& face = TopoDS::Face( helper.GetSubShape() );
// get uv of surrounding nodes
vector<gp_XY> uv( _simplices.size() );
for ( size_t i = 0; i < _simplices.size(); ++i )
uv[i] = helper.GetNodeUV( face, _simplices[i]._nPrev, _node );
// compute new UV for the node
gp_XY newPos (0,0);
if ( isCentroidal && _simplices.size() > 3 )
{
// average centers of diagonals wieghted with their reciprocal lengths
if ( _simplices.size() == 4 )
{
double w1 = 1. / ( uv[2]-uv[0] ).SquareModulus();
double w2 = 1. / ( uv[3]-uv[1] ).SquareModulus();
newPos = ( w1 * ( uv[2]+uv[0] ) + w2 * ( uv[3]+uv[1] )) / ( w1+w2 ) / 2;
}
else
{
double sumWeight = 0;
int nb = _simplices.size() == 4 ? 2 : _simplices.size();
for ( int i = 0; i < nb; ++i )
{
int iFrom = i + 2;
int iTo = i + _simplices.size() - 1;
for ( int j = iFrom; j < iTo; ++j )
{
int i2 = SMESH_MesherHelper::WrapIndex( j, _simplices.size() );
double w = 1. / ( uv[i]-uv[i2] ).SquareModulus();
sumWeight += w;
newPos += w * ( uv[i]+uv[i2] );
}
}
newPos /= 2 * sumWeight;
}
}
else
{
// Laplacian smooth
isCentroidal = false;
for ( size_t i = 0; i < _simplices.size(); ++i )
newPos += uv[i];
newPos /= _simplices.size();
}
// count quality metrics (orientation) of triangles around the node
int nbOkBefore = 0;
gp_XY tgtUV = helper.GetNodeUV( face, _node );
for ( unsigned i = 0; i < _simplices.size(); ++i )
nbOkBefore += _simplices[i].IsForward( tgtUV, _node, face, helper, refSign );
int nbOkAfter = 0;
for ( unsigned i = 0; i < _simplices.size(); ++i )
nbOkAfter += _simplices[i].IsForward( newPos, _node, face, helper, refSign );
if ( nbOkAfter < nbOkBefore )
{
// if ( isCentroidal )
// return Smooth( badNb, surface, helper, refSign, !isCentroidal, set3D );
badNb += _simplices.size() - nbOkBefore;
return false;
}
SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( _node->GetPosition() );
pos->SetUParameter( newPos.X() );
pos->SetVParameter( newPos.Y() );
#ifdef __myDEBUG
set3D = true;
#endif
if ( set3D )
{
gp_Pnt p = surface->Value( newPos.X(), newPos.Y() );
const_cast< SMDS_MeshNode* >( _node )->setXYZ( p.X(), p.Y(), p.Z() );
dumpMove( _node );
}
badNb += _simplices.size() - nbOkAfter;
return ( (tgtUV-newPos).SquareModulus() > 1e-10 );
}
//================================================================================
/*!
* \brief Delete _SolidData
*/
//================================================================================
_SolidData::~_SolidData()
{
for ( unsigned i = 0; i < _edges.size(); ++i )
{
if ( _edges[i] && _edges[i]->_2neibors )
delete _edges[i]->_2neibors;
delete _edges[i];
}
_edges.clear();
}
//================================================================================
/*!
* \brief Add a _LayerEdge inflated along the EDGE
*/
//================================================================================
void _Shrinker1D::AddEdge( const _LayerEdge* e, SMESH_MesherHelper& helper )
{
// init
if ( _nodes.empty() )
{
_edges[0] = _edges[1] = 0;
_done = false;
}
// check _LayerEdge
if ( e == _edges[0] || e == _edges[1] )
return;
if ( e->_sWOL.IsNull() || e->_sWOL.ShapeType() != TopAbs_EDGE )
throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added"));
if ( _edges[0] && _edges[0]->_sWOL != e->_sWOL )
throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added"));
// store _LayerEdge
const TopoDS_Edge& E = TopoDS::Edge( e->_sWOL );
double f,l;
BRep_Tool::Range( E, f,l );
double u = helper.GetNodeU( E, e->_nodes[0], e->_nodes.back());
_edges[ u < 0.5*(f+l) ? 0 : 1 ] = e;
// Update _nodes
const SMDS_MeshNode* tgtNode0 = _edges[0] ? _edges[0]->_nodes.back() : 0;
const SMDS_MeshNode* tgtNode1 = _edges[1] ? _edges[1]->_nodes.back() : 0;
if ( _nodes.empty() )
{
SMESHDS_SubMesh * eSubMesh = helper.GetMeshDS()->MeshElements( E );
if ( !eSubMesh || eSubMesh->NbNodes() < 1 )
return;
TopLoc_Location loc;
Handle(Geom_Curve) C = BRep_Tool::Curve(E, loc, f,l);
GeomAdaptor_Curve aCurve(C, f,l);
const double totLen = GCPnts_AbscissaPoint::Length(aCurve, f, l);
int nbExpectNodes = eSubMesh->NbNodes() - e->_nodes.size();
_initU .reserve( nbExpectNodes );
_normPar.reserve( nbExpectNodes );
_nodes .reserve( nbExpectNodes );
SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* node = nIt->next();
if ( node->NbInverseElements(SMDSAbs_Edge) == 0 ||
node == tgtNode0 || node == tgtNode1 )
continue; // refinement nodes
_nodes.push_back( node );
_initU.push_back( helper.GetNodeU( E, node ));
double len = GCPnts_AbscissaPoint::Length(aCurve, f, _initU.back());
_normPar.push_back( len / totLen );
}
}
else
{
// remove target node of the _LayerEdge from _nodes
int nbFound = 0;
for ( unsigned i = 0; i < _nodes.size(); ++i )
if ( !_nodes[i] || _nodes[i] == tgtNode0 || _nodes[i] == tgtNode1 )
_nodes[i] = 0, nbFound++;
if ( nbFound == _nodes.size() )
_nodes.clear();
}
}
//================================================================================
/*!
* \brief Move nodes on EDGE from ends where _LayerEdge's are inflated
*/
//================================================================================
void _Shrinker1D::Compute(bool set3D, SMESH_MesherHelper& helper)
{
if ( _done || _nodes.empty())
return;
const _LayerEdge* e = _edges[0];
if ( !e ) e = _edges[1];
if ( !e ) return;
_done = (( !_edges[0] || _edges[0]->_pos.empty() ) &&
( !_edges[1] || _edges[1]->_pos.empty() ));
const TopoDS_Edge& E = TopoDS::Edge( e->_sWOL );
double f,l;
if ( set3D || _done )
{
Handle(Geom_Curve) C = BRep_Tool::Curve(E, f,l);
GeomAdaptor_Curve aCurve(C, f,l);
if ( _edges[0] )
f = helper.GetNodeU( E, _edges[0]->_nodes.back(), _nodes[0] );
if ( _edges[1] )
l = helper.GetNodeU( E, _edges[1]->_nodes.back(), _nodes.back() );
double totLen = GCPnts_AbscissaPoint::Length( aCurve, f, l );
for ( unsigned i = 0; i < _nodes.size(); ++i )
{
if ( !_nodes[i] ) continue;
double len = totLen * _normPar[i];
GCPnts_AbscissaPoint discret( aCurve, len, f );
if ( !discret.IsDone() )
return throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed"));
double u = discret.Parameter();
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( _nodes[i]->GetPosition() );
pos->SetUParameter( u );
gp_Pnt p = C->Value( u );
const_cast< SMDS_MeshNode*>( _nodes[i] )->setXYZ( p.X(), p.Y(), p.Z() );
}
}
else
{
BRep_Tool::Range( E, f,l );
if ( _edges[0] )
f = helper.GetNodeU( E, _edges[0]->_nodes.back(), _nodes[0] );
if ( _edges[1] )
l = helper.GetNodeU( E, _edges[1]->_nodes.back(), _nodes.back() );
for ( unsigned i = 0; i < _nodes.size(); ++i )
{
if ( !_nodes[i] ) continue;
double u = f * ( 1-_normPar[i] ) + l * _normPar[i];
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( _nodes[i]->GetPosition() );
pos->SetUParameter( u );
}
}
}
//================================================================================
/*!
* \brief Restore initial parameters of nodes on EDGE
*/
//================================================================================
void _Shrinker1D::RestoreParams()
{
if ( _done )
for ( unsigned i = 0; i < _nodes.size(); ++i )
{
if ( !_nodes[i] ) continue;
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( _nodes[i]->GetPosition() );
pos->SetUParameter( _initU[i] );
}
_done = false;
}
//================================================================================
/*!
* \brief Replace source nodes by target nodes in shrinked mesh edges
*/
//================================================================================
void _Shrinker1D::SwapSrcTgtNodes( SMESHDS_Mesh* mesh )
{
const SMDS_MeshNode* nodes[3];
for ( int i = 0; i < 2; ++i )
{
if ( !_edges[i] ) continue;
SMESHDS_SubMesh * eSubMesh = mesh->MeshElements( _edges[i]->_sWOL );
if ( !eSubMesh ) return;
const SMDS_MeshNode* srcNode = _edges[i]->_nodes[0];
const SMDS_MeshNode* tgtNode = _edges[i]->_nodes.back();
SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge);
while ( eIt->more() )
{
const SMDS_MeshElement* e = eIt->next();
if ( !eSubMesh->Contains( e ))
continue;
SMDS_ElemIteratorPtr nIt = e->nodesIterator();
for ( int iN = 0; iN < e->NbNodes(); ++iN )
{
const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( nIt->next() );
nodes[iN] = ( n == srcNode ? tgtNode : n );
}
mesh->ChangeElementNodes( e, nodes, e->NbNodes() );
}
}
}
//================================================================================
/*!
* \brief Creates 2D and 1D elements on boundaries of new prisms
*/
//================================================================================
bool _ViscousBuilder::addBoundaryElements()
{
SMESH_MesherHelper helper( *_mesh );
for ( unsigned i = 0; i < _sdVec.size(); ++i )
{
_SolidData& data = _sdVec[i];
TopTools_IndexedMapOfShape geomEdges;
TopExp::MapShapes( data._solid, TopAbs_EDGE, geomEdges );
for ( int iE = 1; iE <= geomEdges.Extent(); ++iE )
{
const TopoDS_Edge& E = TopoDS::Edge( geomEdges(iE));
// Get _LayerEdge's based on E
map< double, const SMDS_MeshNode* > u2nodes;
if ( !SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), E, /*ignoreMedium=*/false, u2nodes))
continue;
vector< _LayerEdge* > ledges; ledges.reserve( u2nodes.size() );
TNode2Edge & n2eMap = data._n2eMap;
map< double, const SMDS_MeshNode* >::iterator u2n = u2nodes.begin();
{
//check if 2D elements are needed on E
TNode2Edge::iterator n2e = n2eMap.find( u2n->second );
if ( n2e == n2eMap.end() ) continue; // no layers on vertex
ledges.push_back( n2e->second );
u2n++;
if (( n2e = n2eMap.find( u2n->second )) == n2eMap.end() )
continue; // no layers on E
ledges.push_back( n2eMap[ u2n->second ]);
const SMDS_MeshNode* tgtN0 = ledges[0]->_nodes.back();
const SMDS_MeshNode* tgtN1 = ledges[1]->_nodes.back();
int nbSharedPyram = 0;
SMDS_ElemIteratorPtr vIt = tgtN0->GetInverseElementIterator(SMDSAbs_Volume);
while ( vIt->more() )
{
const SMDS_MeshElement* v = vIt->next();
nbSharedPyram += int( v->GetNodeIndex( tgtN1 ) >= 0 );
}
if ( nbSharedPyram > 1 )
continue; // not free border of the pyramid
if ( getMeshDS()->FindFace( ledges[0]->_nodes[0], ledges[0]->_nodes[1],
ledges[1]->_nodes[0], ledges[1]->_nodes[1]))
continue; // faces already created
}
for ( ++u2n; u2n != u2nodes.end(); ++u2n )
ledges.push_back( n2eMap[ u2n->second ]);
// Find out orientation and type of face to create
bool reverse = false, isOnFace;
map< TGeomID, TopoDS_Shape >::iterator e2f =
data._shrinkShape2Shape.find( getMeshDS()->ShapeToIndex( E ));
TopoDS_Shape F;
if (( isOnFace = ( e2f != data._shrinkShape2Shape.end() )))
{
F = e2f->second.Oriented( TopAbs_FORWARD );
reverse = ( helper.GetSubShapeOri( F, E ) == TopAbs_REVERSED );
if ( helper.GetSubShapeOri( data._solid, F ) == TopAbs_REVERSED )
reverse = !reverse;
}
else
{
// find FACE with layers sharing E
PShapeIteratorPtr fIt = helper.GetAncestors( E, *_mesh, TopAbs_FACE );
while ( fIt->more() && F.IsNull() )
{
const TopoDS_Shape* pF = fIt->next();
if ( helper.IsSubShape( *pF, data._solid) &&
!_ignoreShapeIds.count( e2f->first ))
F = *pF;
}
}
// Find the sub-mesh to add new faces
SMESHDS_SubMesh* sm = 0;
if ( isOnFace )
sm = getMeshDS()->MeshElements( F );
else
sm = data._proxyMesh->getFaceSubM( TopoDS::Face(F), /*create=*/true );
if ( !sm )
return error("error in addBoundaryElements()", data._index);
// Make faces
const int dj1 = reverse ? 0 : 1;
const int dj2 = reverse ? 1 : 0;
for ( unsigned j = 1; j < ledges.size(); ++j )
{
vector< const SMDS_MeshNode*>& nn1 = ledges[j-dj1]->_nodes;
vector< const SMDS_MeshNode*>& nn2 = ledges[j-dj2]->_nodes;
if ( isOnFace )
for ( unsigned z = 1; z < nn1.size(); ++z )
sm->AddElement( getMeshDS()->AddFace( nn1[z-1], nn2[z-1], nn2[z], nn1[z] ));
else
for ( unsigned z = 1; z < nn1.size(); ++z )
sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[z-1], nn2[z], nn1[z]));
}
}
}
return true;
}