smesh/src/StdMeshers/StdMeshers_Prism_3D.cxx
eap 3369d458ea IPAL52935: "Apply and Close" button is not available in "Make 0D Elements on Element Nodes" dialog box
(SMESHGUI_Add0DElemsOnAllNodesDlg.cxx)

Eliminate compilation warnings (all the rest files)
2015-10-27 20:47:31 +03:00

4867 lines
179 KiB
C++

// Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_Prism_3D.cxx
// Module : SMESH
// Created : Fri Oct 20 11:37:07 2006
// Author : Edward AGAPOV (eap)
//
#include "StdMeshers_Prism_3D.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_VolumeOfNodes.hxx"
#include "SMDS_VolumeTool.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_MesherHelper.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "StdMeshers_ProjectionSource1D.hxx"
#include "StdMeshers_ProjectionSource2D.hxx"
#include "StdMeshers_ProjectionUtils.hxx"
#include "StdMeshers_Projection_1D.hxx"
#include "StdMeshers_Projection_1D2D.hxx"
#include "StdMeshers_Quadrangle_2D.hxx"
#include "utilities.h"
#include <BRepAdaptor_CompCurve.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_B3d.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom2d_Line.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <Geom_Curve.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopTools_SequenceOfShape.hxx>
#include <TopoDS.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax3.hxx>
#include <limits>
using namespace std;
#define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; }
#define gpXYZ(n) SMESH_TNodeXYZ(n)
#ifdef _DEBUG_
#define DBGOUT(msg) //cout << msg << endl;
#define SHOWYXZ(msg, xyz) \
//{ gp_Pnt p (xyz); cout << msg << " ("<< p.X() << "; " <<p.Y() << "; " <<p.Z() << ") " <<endl; }
#else
#define DBGOUT(msg)
#define SHOWYXZ(msg, xyz)
#endif
namespace NSProjUtils = StdMeshers_ProjectionUtils;
typedef SMESH_Comment TCom;
enum { ID_BOT_FACE = SMESH_Block::ID_Fxy0,
ID_TOP_FACE = SMESH_Block::ID_Fxy1,
BOTTOM_EDGE = 0, TOP_EDGE, V0_EDGE, V1_EDGE, // edge IDs in face
NB_WALL_FACES = 4 }; //
namespace {
//=======================================================================
/*!
* \brief Quadrangle algorithm
*/
struct TQuadrangleAlgo : public StdMeshers_Quadrangle_2D
{
TQuadrangleAlgo(int studyId, SMESH_Gen* gen)
: StdMeshers_Quadrangle_2D( gen->GetANewId(), studyId, gen)
{
}
static StdMeshers_Quadrangle_2D* instance( SMESH_Algo* fatherAlgo,
SMESH_MesherHelper* helper=0)
{
static TQuadrangleAlgo* algo = new TQuadrangleAlgo( fatherAlgo->GetStudyId(),
fatherAlgo->GetGen() );
if ( helper &&
algo->myProxyMesh &&
algo->myProxyMesh->GetMesh() != helper->GetMesh() )
algo->myProxyMesh.reset( new SMESH_ProxyMesh( *helper->GetMesh() ));
algo->myQuadList.clear();
if ( helper )
algo->_quadraticMesh = helper->GetIsQuadratic();
return algo;
}
};
//=======================================================================
/*!
* \brief Algorithm projecting 1D mesh
*/
struct TProjction1dAlgo : public StdMeshers_Projection_1D
{
StdMeshers_ProjectionSource1D myHyp;
TProjction1dAlgo(int studyId, SMESH_Gen* gen)
: StdMeshers_Projection_1D( gen->GetANewId(), studyId, gen),
myHyp( gen->GetANewId(), studyId, gen)
{
StdMeshers_Projection_1D::_sourceHypo = & myHyp;
}
static TProjction1dAlgo* instance( SMESH_Algo* fatherAlgo )
{
static TProjction1dAlgo* algo = new TProjction1dAlgo( fatherAlgo->GetStudyId(),
fatherAlgo->GetGen() );
return algo;
}
};
//=======================================================================
/*!
* \brief Algorithm projecting 2D mesh
*/
struct TProjction2dAlgo : public StdMeshers_Projection_1D2D
{
StdMeshers_ProjectionSource2D myHyp;
TProjction2dAlgo(int studyId, SMESH_Gen* gen)
: StdMeshers_Projection_1D2D( gen->GetANewId(), studyId, gen),
myHyp( gen->GetANewId(), studyId, gen)
{
StdMeshers_Projection_2D::_sourceHypo = & myHyp;
}
static TProjction2dAlgo* instance( SMESH_Algo* fatherAlgo )
{
static TProjction2dAlgo* algo = new TProjction2dAlgo( fatherAlgo->GetStudyId(),
fatherAlgo->GetGen() );
return algo;
}
const NSProjUtils::TNodeNodeMap& GetNodesMap()
{
return _src2tgtNodes;
}
};
//=======================================================================
/*!
* \brief Returns already computed EDGEs
*/
void getPrecomputedEdges( SMESH_MesherHelper& theHelper,
const TopoDS_Shape& theShape,
vector< TopoDS_Edge >& theEdges)
{
theEdges.clear();
SMESHDS_Mesh* meshDS = theHelper.GetMeshDS();
SMESHDS_SubMesh* sm;
TopTools_IndexedMapOfShape edges;
TopExp::MapShapes( theShape, TopAbs_EDGE, edges );
for ( int iE = 1; iE <= edges.Extent(); ++iE )
{
const TopoDS_Shape edge = edges( iE );
if (( ! ( sm = meshDS->MeshElements( edge ))) ||
( sm->NbElements() == 0 ))
continue;
// there must not be FACEs meshed with triangles and sharing a computed EDGE
// as the precomputed EDGEs are used for propagation other to 'vertical' EDGEs
bool faceFound = false;
PShapeIteratorPtr faceIt =
theHelper.GetAncestors( edge, *theHelper.GetMesh(), TopAbs_FACE );
while ( const TopoDS_Shape* face = faceIt->next() )
if (( sm = meshDS->MeshElements( *face )) &&
( sm->NbElements() > 0 ) &&
( !theHelper.IsSameElemGeometry( sm, SMDSGeom_QUADRANGLE ) ))
{
faceFound = true;
break;
}
if ( !faceFound )
theEdges.push_back( TopoDS::Edge( edge ));
}
}
//================================================================================
/*!
* \brief Make \a botE be the BOTTOM_SIDE of \a quad.
* Return false if the BOTTOM_SIDE is composite
*/
//================================================================================
bool setBottomEdge( const TopoDS_Edge& botE,
FaceQuadStruct::Ptr& quad,
const TopoDS_Shape& face)
{
quad->side[ QUAD_TOP_SIDE ].grid->Reverse();
quad->side[ QUAD_LEFT_SIDE ].grid->Reverse();
int edgeIndex = 0;
bool isComposite = false;
for ( size_t i = 0; i < quad->side.size(); ++i )
{
StdMeshers_FaceSidePtr quadSide = quad->side[i];
for ( int iE = 0; iE < quadSide->NbEdges(); ++iE )
if ( botE.IsSame( quadSide->Edge( iE )))
{
if ( quadSide->NbEdges() > 1 )
isComposite = true; //return false;
edgeIndex = i;
i = quad->side.size(); // to quit from the outer loop
break;
}
}
if ( edgeIndex != QUAD_BOTTOM_SIDE )
quad->shift( quad->side.size() - edgeIndex, /*keepUnitOri=*/false );
quad->face = TopoDS::Face( face );
return !isComposite;
}
//================================================================================
/*!
* \brief Return iterator pointing to node column for the given parameter
* \param columnsMap - node column map
* \param parameter - parameter
* \retval TParam2ColumnMap::iterator - result
*
* it returns closest left column
*/
//================================================================================
TParam2ColumnIt getColumn( const TParam2ColumnMap* columnsMap,
const double parameter )
{
TParam2ColumnIt u_col = columnsMap->upper_bound( parameter );
if ( u_col != columnsMap->begin() )
--u_col;
return u_col; // return left column
}
//================================================================================
/*!
* \brief Return nodes around given parameter and a ratio
* \param column - node column
* \param param - parameter
* \param node1 - lower node
* \param node2 - upper node
* \retval double - ratio
*/
//================================================================================
double getRAndNodes( const TNodeColumn* column,
const double param,
const SMDS_MeshNode* & node1,
const SMDS_MeshNode* & node2)
{
if ( param >= 1.0 || column->size() == 1) {
node1 = node2 = column->back();
return 0;
}
int i = int( param * ( column->size() - 1 ));
double u0 = double( i )/ double( column->size() - 1 );
double r = ( param - u0 ) * ( column->size() - 1 );
node1 = (*column)[ i ];
node2 = (*column)[ i + 1];
return r;
}
//================================================================================
/*!
* \brief Compute boundary parameters of face parts
* \param nbParts - nb of parts to split columns into
* \param columnsMap - node columns of the face to split
* \param params - computed parameters
*/
//================================================================================
void splitParams( const int nbParts,
const TParam2ColumnMap* columnsMap,
vector< double > & params)
{
params.clear();
params.reserve( nbParts + 1 );
TParam2ColumnIt last_par_col = --columnsMap->end();
double par = columnsMap->begin()->first; // 0.
double parLast = last_par_col->first;
params.push_back( par );
for ( int i = 0; i < nbParts - 1; ++ i )
{
double partSize = ( parLast - par ) / double ( nbParts - i );
TParam2ColumnIt par_col = getColumn( columnsMap, par + partSize );
if ( par_col->first == par ) {
++par_col;
if ( par_col == last_par_col ) {
while ( i < nbParts - 1 )
params.push_back( par + partSize * i++ );
break;
}
}
par = par_col->first;
params.push_back( par );
}
params.push_back( parLast ); // 1.
}
//================================================================================
/*!
* \brief Return coordinate system for z-th layer of nodes
*/
//================================================================================
gp_Ax2 getLayerCoordSys(const int z,
const vector< const TNodeColumn* >& columns,
int& xColumn)
{
// gravity center of a layer
gp_XYZ O(0,0,0);
int vertexCol = -1;
for ( int i = 0; i < columns.size(); ++i )
{
O += gpXYZ( (*columns[ i ])[ z ]);
if ( vertexCol < 0 &&
columns[ i ]->front()->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
vertexCol = i;
}
O /= columns.size();
// Z axis
gp_Vec Z(0,0,0);
int iPrev = columns.size()-1;
for ( int i = 0; i < columns.size(); ++i )
{
gp_Vec v1( O, gpXYZ( (*columns[ iPrev ])[ z ]));
gp_Vec v2( O, gpXYZ( (*columns[ i ] )[ z ]));
Z += v1 ^ v2;
iPrev = i;
}
if ( vertexCol >= 0 )
{
O = gpXYZ( (*columns[ vertexCol ])[ z ]);
}
if ( xColumn < 0 || xColumn >= columns.size() )
{
// select a column for X dir
double maxDist = 0;
for ( int i = 0; i < columns.size(); ++i )
{
double dist = ( O - gpXYZ((*columns[ i ])[ z ])).SquareModulus();
if ( dist > maxDist )
{
xColumn = i;
maxDist = dist;
}
}
}
// X axis
gp_Vec X( O, gpXYZ( (*columns[ xColumn ])[ z ]));
return gp_Ax2( O, Z, X);
}
//================================================================================
/*!
* \brief Removes submeshes that are or can be meshed with regular grid from given list
* \retval int - nb of removed submeshes
*/
//================================================================================
int removeQuasiQuads(list< SMESH_subMesh* >& notQuadSubMesh,
SMESH_MesherHelper* helper,
StdMeshers_Quadrangle_2D* quadAlgo)
{
int nbRemoved = 0;
//SMESHDS_Mesh* mesh = notQuadSubMesh.front()->GetFather()->GetMeshDS();
list< SMESH_subMesh* >::iterator smIt = notQuadSubMesh.begin();
while ( smIt != notQuadSubMesh.end() )
{
SMESH_subMesh* faceSm = *smIt;
SMESHDS_SubMesh* faceSmDS = faceSm->GetSubMeshDS();
int nbQuads = faceSmDS ? faceSmDS->NbElements() : 0;
bool toRemove;
if ( nbQuads > 0 )
toRemove = helper->IsStructured( faceSm );
else
toRemove = quadAlgo->CheckNbEdges( *helper->GetMesh(),
faceSm->GetSubShape() );
nbRemoved += toRemove;
if ( toRemove )
smIt = notQuadSubMesh.erase( smIt );
else
++smIt;
}
return nbRemoved;
}
//================================================================================
/*!
* \brief Return and angle between two EDGEs
* \return double - the angle normalized so that
* >~ 0 -> 2.0
* PI/2 -> 1.0
* PI -> 0.0
* -PI/2 -> -1.0
* <~ 0 -> -2.0
*/
//================================================================================
// double normAngle(const TopoDS_Edge & E1, const TopoDS_Edge & E2, const TopoDS_Face & F)
// {
// return SMESH_MesherHelper::GetAngle( E1, E2, F ) / ( 0.5 * M_PI );
// }
//================================================================================
/*!
* Consider continuous straight EDGES as one side - mark them to unite
*/
//================================================================================
int countNbSides( const Prism_3D::TPrismTopo & thePrism,
vector<int> & nbUnitePerEdge,
vector< double > & edgeLength)
{
int nbEdges = thePrism.myNbEdgesInWires.front(); // nb outer edges
int nbSides = nbEdges;
list< TopoDS_Edge >::const_iterator edgeIt = thePrism.myBottomEdges.begin();
std::advance( edgeIt, nbEdges-1 );
TopoDS_Edge prevE = *edgeIt;
// bool isPrevStraight = SMESH_Algo::IsStraight( prevE );
int iPrev = nbEdges - 1;
int iUnite = -1; // the first of united EDGEs
// analyse angles between EDGEs
int nbCorners = 0;
vector< bool > isCorner( nbEdges );
edgeIt = thePrism.myBottomEdges.begin();
for ( int iE = 0; iE < nbEdges; ++iE, ++edgeIt )
{
const TopoDS_Edge& curE = *edgeIt;
edgeLength[ iE ] = SMESH_Algo::EdgeLength( curE );
// double normAngle = normAngle( prevE, curE, thePrism.myBottom );
// isCorner[ iE ] = false;
// if ( normAngle < 2.0 )
// {
// if ( normAngle < 0.001 ) // straight or obtuse angle
// {
// // unite EDGEs in order not to put a corner of the unit quadrangle at this VERTEX
// if ( iUnite < 0 )
// iUnite = iPrev;
// nbUnitePerEdge[ iUnite ]++;
// nbUnitePerEdge[ iE ] = -1;
// --nbSides;
// }
// else
// {
// isCorner[ iE ] = true;
// nbCorners++;
// iUnite = -1;
// }
// }
// prevE = curE;
}
if ( nbCorners > 4 )
{
// define which of corners to put on a side of the unit quadrangle
}
// edgeIt = thePrism.myBottomEdges.begin();
// for ( int iE = 0; iE < nbEdges; ++iE, ++edgeIt )
// {
// const TopoDS_Edge& curE = *edgeIt;
// edgeLength[ iE ] = SMESH_Algo::EdgeLength( curE );
// const bool isCurStraight = SMESH_Algo::IsStraight( curE );
// if ( isPrevStraight && isCurStraight && SMESH_Algo::IsContinuous( prevE, curE ))
// {
// if ( iUnite < 0 )
// iUnite = iPrev;
// nbUnitePerEdge[ iUnite ]++;
// nbUnitePerEdge[ iE ] = -1;
// --nbSides;
// }
// else
// {
// iUnite = -1;
// }
// prevE = curE;
// isPrevStraight = isCurStraight;
// iPrev = iE;
// }
return nbSides;
}
void pointsToPython(const std::vector<gp_XYZ>& p)
{
#ifdef _DEBUG_
for ( int i = SMESH_Block::ID_V000; i < p.size(); ++i )
{
cout << "mesh.AddNode( " << p[i].X() << ", "<< p[i].Y() << ", "<< p[i].Z() << ") # " << i <<" " ;
SMESH_Block::DumpShapeID( i, cout ) << endl;
}
#endif
}
} // namespace
//=======================================================================
//function : StdMeshers_Prism_3D
//purpose :
//=======================================================================
StdMeshers_Prism_3D::StdMeshers_Prism_3D(int hypId, int studyId, SMESH_Gen* gen)
:SMESH_3D_Algo(hypId, studyId, gen)
{
_name = "Prism_3D";
_shapeType = (1 << TopAbs_SOLID); // 1 bit per shape type
_onlyUnaryInput = false; // mesh all SOLIDs at once
_requireDiscreteBoundary = false; // mesh FACEs and EDGEs by myself
_supportSubmeshes = true; // "source" FACE must be meshed by other algo
_neededLowerHyps[ 1 ] = true; // suppress warning on hiding a global 1D algo
_neededLowerHyps[ 2 ] = true; // suppress warning on hiding a global 2D algo
//myProjectTriangles = false;
mySetErrorToSM = true; // to pass an error to a sub-mesh of a current solid or not
}
//================================================================================
/*!
* \brief Destructor
*/
//================================================================================
StdMeshers_Prism_3D::~StdMeshers_Prism_3D()
{}
//=======================================================================
//function : CheckHypothesis
//purpose :
//=======================================================================
bool StdMeshers_Prism_3D::CheckHypothesis(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
// Check shape geometry
/* PAL16229
aStatus = SMESH_Hypothesis::HYP_BAD_GEOMETRY;
// find not quadrangle faces
list< TopoDS_Shape > notQuadFaces;
int nbEdge, nbWire, nbFace = 0;
TopExp_Explorer exp( aShape, TopAbs_FACE );
for ( ; exp.More(); exp.Next() ) {
++nbFace;
const TopoDS_Shape& face = exp.Current();
nbEdge = NSProjUtils::Count( face, TopAbs_EDGE, 0 );
nbWire = NSProjUtils::Count( face, TopAbs_WIRE, 0 );
if ( nbEdge!= 4 || nbWire!= 1 ) {
if ( !notQuadFaces.empty() ) {
if ( NSProjUtils::Count( notQuadFaces.back(), TopAbs_EDGE, 0 ) != nbEdge ||
NSProjUtils::Count( notQuadFaces.back(), TopAbs_WIRE, 0 ) != nbWire )
RETURN_BAD_RESULT("Different not quad faces");
}
notQuadFaces.push_back( face );
}
}
if ( !notQuadFaces.empty() )
{
if ( notQuadFaces.size() != 2 )
RETURN_BAD_RESULT("Bad nb not quad faces: " << notQuadFaces.size());
// check total nb faces
nbEdge = NSProjUtils::Count( notQuadFaces.back(), TopAbs_EDGE, 0 );
if ( nbFace != nbEdge + 2 )
RETURN_BAD_RESULT("Bad nb of faces: " << nbFace << " but must be " << nbEdge + 2);
}
*/
// no hypothesis
aStatus = SMESH_Hypothesis::HYP_OK;
return true;
}
//=======================================================================
//function : Compute
//purpose : Compute mesh on a COMPOUND of SOLIDs
//=======================================================================
bool StdMeshers_Prism_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape)
{
SMESH_MesherHelper helper( theMesh );
myHelper = &helper;
int nbSolids = helper.Count( theShape, TopAbs_SOLID, /*skipSame=*/false );
if ( nbSolids < 1 )
return true;
TopTools_IndexedDataMapOfShapeListOfShape faceToSolids;
TopExp::MapShapesAndAncestors( theShape, TopAbs_FACE, TopAbs_SOLID, faceToSolids );
// look for meshed FACEs ("source" FACEs) that must be prism bottoms
list< TopoDS_Face > meshedFaces, notQuadMeshedFaces, notQuadFaces;
const bool meshHasQuads = ( theMesh.NbQuadrangles() > 0 );
//StdMeshers_Quadrangle_2D* quadAlgo = TQuadrangleAlgo::instance( this );
for ( int iF = 1; iF <= faceToSolids.Extent(); ++iF )
{
const TopoDS_Face& face = TopoDS::Face( faceToSolids.FindKey( iF ));
SMESH_subMesh* faceSM = theMesh.GetSubMesh( face );
if ( !faceSM->IsEmpty() )
{
if ( !meshHasQuads ||
!helper.IsSameElemGeometry( faceSM->GetSubMeshDS(), SMDSGeom_QUADRANGLE ) ||
!helper.IsStructured( faceSM )
)
notQuadMeshedFaces.push_front( face );
else if ( myHelper->Count( face, TopAbs_EDGE, /*ignoreSame=*/false ) != 4 )
meshedFaces.push_front( face );
else
meshedFaces.push_back( face );
}
// not add not quadrilateral FACE as we can't compute it
// else if ( !quadAlgo->CheckNbEdges( theMesh, face ))
// // not add not quadrilateral FACE as it can be a prism side
// // else if ( myHelper->Count( face, TopAbs_EDGE, /*ignoreSame=*/false ) != 4 )
// {
// notQuadFaces.push_back( face );
// }
}
// notQuadFaces are of medium priority, put them before ordinary meshed faces
meshedFaces.splice( meshedFaces.begin(), notQuadFaces );
// notQuadMeshedFaces are of highest priority, put them before notQuadFaces
meshedFaces.splice( meshedFaces.begin(), notQuadMeshedFaces );
Prism_3D::TPrismTopo prism;
myPropagChains = 0;
bool selectBottom = meshedFaces.empty();
if ( nbSolids == 1 )
{
TopoDS_Shape solid = TopExp_Explorer( theShape, TopAbs_SOLID ).Current();
if ( !meshedFaces.empty() )
prism.myBottom = meshedFaces.front();
return ( initPrism( prism, solid, selectBottom ) &&
compute( prism ));
}
// find propagation chains from already computed EDGEs
vector< TopoDS_Edge > computedEdges;
getPrecomputedEdges( helper, theShape, computedEdges );
myPropagChains = new TopTools_IndexedMapOfShape[ computedEdges.size() + 1 ];
SMESHUtils::ArrayDeleter< TopTools_IndexedMapOfShape > pcDel( myPropagChains );
for ( size_t i = 0, nb = 0; i < computedEdges.size(); ++i )
{
StdMeshers_ProjectionUtils::GetPropagationEdge( &theMesh, TopoDS_Edge(),
computedEdges[i], myPropagChains + nb );
if ( myPropagChains[ nb ].Extent() < 2 ) // an empty map is a termination sign
myPropagChains[ nb ].Clear();
else
nb++;
}
TopTools_MapOfShape meshedSolids;
list< Prism_3D::TPrismTopo > meshedPrism;
list< TopoDS_Face > suspectSourceFaces;
TopTools_ListIteratorOfListOfShape solidIt;
while ( meshedSolids.Extent() < nbSolids )
{
if ( _computeCanceled )
return toSM( error( SMESH_ComputeError::New(COMPERR_CANCELED)));
// compute prisms having avident computed source FACE
while ( !meshedFaces.empty() )
{
TopoDS_Face face = meshedFaces.front();
meshedFaces.pop_front();
TopTools_ListOfShape& solidList = faceToSolids.ChangeFromKey( face );
while ( !solidList.IsEmpty() )
{
TopoDS_Shape solid = solidList.First();
solidList.RemoveFirst();
if ( meshedSolids.Add( solid ))
{
prism.Clear();
prism.myBottom = face;
if ( !initPrism( prism, solid, selectBottom ) ||
!compute( prism ))
return false;
SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( prism.myTop );
if ( !myHelper->IsSameElemGeometry( smDS, SMDSGeom_QUADRANGLE ))
{
meshedFaces.push_front( prism.myTop );
}
else
{
suspectSourceFaces.push_back( prism.myTop );
}
meshedPrism.push_back( prism );
}
}
}
if ( meshedSolids.Extent() == nbSolids )
break;
// below in the loop we try to find source FACEs somehow
// project mesh from source FACEs of computed prisms to
// prisms sharing wall FACEs
list< Prism_3D::TPrismTopo >::iterator prismIt = meshedPrism.begin();
for ( ; prismIt != meshedPrism.end(); ++prismIt )
{
for ( size_t iW = 0; iW < prismIt->myWallQuads.size(); ++iW )
{
Prism_3D::TQuadList::iterator wQuad = prismIt->myWallQuads[iW].begin();
for ( ; wQuad != prismIt->myWallQuads[iW].end(); ++ wQuad )
{
const TopoDS_Face& wFace = (*wQuad)->face;
TopTools_ListOfShape& solidList = faceToSolids.ChangeFromKey( wFace );
solidIt.Initialize( solidList );
while ( solidIt.More() )
{
const TopoDS_Shape& solid = solidIt.Value();
if ( meshedSolids.Contains( solid )) {
solidList.Remove( solidIt );
continue; // already computed prism
}
if ( myHelper->IsBlock( solid )) {
solidIt.Next();
continue; // too trivial
}
// find a source FACE of the SOLID: it's a FACE sharing a bottom EDGE with wFace
const TopoDS_Edge& wEdge = (*wQuad)->side[ QUAD_TOP_SIDE ].grid->Edge(0);
PShapeIteratorPtr faceIt = myHelper->GetAncestors( wEdge, *myHelper->GetMesh(),
TopAbs_FACE);
while ( const TopoDS_Shape* f = faceIt->next() )
{
const TopoDS_Face& candidateF = TopoDS::Face( *f );
if ( candidateF.IsSame( wFace )) continue;
// select a source FACE: prismIt->myBottom or prismIt->myTop
TopoDS_Face sourceF = prismIt->myBottom;
for ( TopExp_Explorer v( prismIt->myTop, TopAbs_VERTEX ); v.More(); v.Next() )
if ( myHelper->IsSubShape( v.Current(), candidateF )) {
sourceF = prismIt->myTop;
break;
}
prism.Clear();
prism.myBottom = candidateF;
mySetErrorToSM = false;
if ( !myHelper->IsSubShape( candidateF, prismIt->myShape3D ) &&
myHelper ->IsSubShape( candidateF, solid ) &&
!myHelper->GetMesh()->GetSubMesh( candidateF )->IsMeshComputed() &&
initPrism( prism, solid, /*selectBottom=*/false ) &&
!myHelper->GetMesh()->GetSubMesh( prism.myTop )->IsMeshComputed() &&
!myHelper->GetMesh()->GetSubMesh( prism.myBottom )->IsMeshComputed() &&
project2dMesh( sourceF, prism.myBottom ))
{
mySetErrorToSM = true;
if ( !compute( prism ))
return false;
SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( prism.myTop );
if ( !myHelper->IsSameElemGeometry( smDS, SMDSGeom_QUADRANGLE ))
{
meshedFaces.push_front( prism.myTop );
meshedFaces.push_front( prism.myBottom );
selectBottom = false;
}
meshedPrism.push_back( prism );
meshedSolids.Add( solid );
}
InitComputeError();
}
mySetErrorToSM = true;
InitComputeError();
if ( meshedSolids.Contains( solid ))
solidList.Remove( solidIt );
else
solidIt.Next();
}
}
}
if ( !meshedFaces.empty() )
break; // to compute prisms with avident sources
}
if ( meshedFaces.empty() )
{
meshedFaces.splice( meshedFaces.end(), suspectSourceFaces );
selectBottom = true;
}
// find FACEs with local 1D hyps, which has to be computed by now,
// or at least any computed FACEs
if ( meshedFaces.empty() )
{
int prevNbFaces = 0;
for ( int iF = 1; iF <= faceToSolids.Extent(); ++iF )
{
const TopoDS_Face& face = TopoDS::Face( faceToSolids.FindKey( iF ));
const TopTools_ListOfShape& solidList = faceToSolids.FindFromKey( face );
if ( solidList.IsEmpty() ) continue;
SMESH_subMesh* faceSM = theMesh.GetSubMesh( face );
if ( !faceSM->IsEmpty() )
{
int nbFaces = faceSM->GetSubMeshDS()->NbElements();
if ( prevNbFaces < nbFaces )
{
if ( !meshedFaces.empty() ) meshedFaces.pop_back();
meshedFaces.push_back( face ); // lower priority
selectBottom = true;
prevNbFaces = nbFaces;
}
}
else
{
bool allSubMeComputed = true;
SMESH_subMeshIteratorPtr smIt = faceSM->getDependsOnIterator(false,true);
while ( smIt->more() && allSubMeComputed )
allSubMeComputed = smIt->next()->IsMeshComputed();
if ( allSubMeComputed )
{
faceSM->ComputeStateEngine( SMESH_subMesh::COMPUTE );
if ( !faceSM->IsEmpty() ) {
meshedFaces.push_front( face ); // higher priority
selectBottom = true;
break;
}
else {
faceSM->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
}
}
}
}
// TODO. there are other ways to find out the source FACE:
// propagation, topological similarity, ect.
// simply try to mesh all not meshed SOLIDs
if ( meshedFaces.empty() )
{
for ( TopExp_Explorer solid( theShape, TopAbs_SOLID ); solid.More(); solid.Next() )
{
mySetErrorToSM = false;
prism.Clear();
if ( !meshedSolids.Contains( solid.Current() ) &&
initPrism( prism, solid.Current() ))
{
mySetErrorToSM = true;
if ( !compute( prism ))
return false;
meshedFaces.push_front( prism.myTop );
meshedFaces.push_front( prism.myBottom );
meshedPrism.push_back( prism );
meshedSolids.Add( solid.Current() );
selectBottom = true;
}
mySetErrorToSM = true;
}
}
if ( meshedFaces.empty() ) // set same error to 10 not-computed solids
{
SMESH_ComputeErrorPtr err = SMESH_ComputeError::New
( COMPERR_BAD_INPUT_MESH, "No meshed source face found", this );
const int maxNbErrors = 10; // limit nb errors not to overload the Compute dialog
TopExp_Explorer solid( theShape, TopAbs_SOLID );
for ( int i = 0; ( i < maxNbErrors && solid.More() ); ++i, solid.Next() )
if ( !meshedSolids.Contains( solid.Current() ))
{
SMESH_subMesh* sm = theMesh.GetSubMesh( solid.Current() );
sm->GetComputeError() = err;
}
return error( err );
}
}
return error( COMPERR_OK );
}
//================================================================================
/*!
* \brief Find wall faces by bottom edges
*/
//================================================================================
bool StdMeshers_Prism_3D::getWallFaces( Prism_3D::TPrismTopo & thePrism,
const int totalNbFaces)
{
thePrism.myWallQuads.clear();
SMESH_Mesh* mesh = myHelper->GetMesh();
StdMeshers_Quadrangle_2D* quadAlgo = TQuadrangleAlgo::instance( this, myHelper );
TopTools_MapOfShape faceMap;
TopTools_IndexedDataMapOfShapeListOfShape edgeToFaces;
TopExp::MapShapesAndAncestors( thePrism.myShape3D,
TopAbs_EDGE, TopAbs_FACE, edgeToFaces );
// ------------------------------
// Get the 1st row of wall FACEs
// ------------------------------
list< TopoDS_Edge >::iterator edge = thePrism.myBottomEdges.begin();
std::list< int >::iterator nbE = thePrism.myNbEdgesInWires.begin();
int iE = 0;
double f,l;
while ( edge != thePrism.myBottomEdges.end() )
{
++iE;
if ( BRep_Tool::Curve( *edge, f,l ).IsNull() )
{
edge = thePrism.myBottomEdges.erase( edge );
--iE;
--(*nbE);
}
else
{
TopTools_ListIteratorOfListOfShape faceIt( edgeToFaces.FindFromKey( *edge ));
for ( ; faceIt.More(); faceIt.Next() )
{
const TopoDS_Face& face = TopoDS::Face( faceIt.Value() );
if ( !thePrism.myBottom.IsSame( face ))
{
Prism_3D::TQuadList quadList( 1, quadAlgo->CheckNbEdges( *mesh, face ));
if ( !quadList.back() )
return toSM( error(TCom("Side face #") << shapeID( face )
<< " not meshable with quadrangles"));
bool isCompositeBase = ! setBottomEdge( *edge, quadList.back(), face );
if ( isCompositeBase )
{
// it's OK if all EDGEs of the bottom side belongs to the bottom FACE
StdMeshers_FaceSidePtr botSide = quadList.back()->side[ QUAD_BOTTOM_SIDE ];
for ( int iE = 0; iE < botSide->NbEdges(); ++iE )
if ( !myHelper->IsSubShape( botSide->Edge(iE), thePrism.myBottom ))
return toSM( error(TCom("Composite 'horizontal' edges are not supported")));
}
if ( faceMap.Add( face ))
thePrism.myWallQuads.push_back( quadList );
break;
}
}
++edge;
}
if ( iE == *nbE )
{
iE = 0;
++nbE;
}
}
// -------------------------
// Find the rest wall FACEs
// -------------------------
// Compose a vector of indixes of right neighbour FACE for each wall FACE
// that is not so evident in case of several WIREs in the bottom FACE
thePrism.myRightQuadIndex.clear();
for ( size_t i = 0; i < thePrism.myWallQuads.size(); ++i )
thePrism.myRightQuadIndex.push_back( i+1 );
list< int >::iterator nbEinW = thePrism.myNbEdgesInWires.begin();
for ( int iLeft = 0; nbEinW != thePrism.myNbEdgesInWires.end(); ++nbEinW )
{
thePrism.myRightQuadIndex[ iLeft + *nbEinW - 1 ] = iLeft; // 1st EDGE index of a current WIRE
iLeft += *nbEinW;
}
while ( totalNbFaces - faceMap.Extent() > 2 )
{
// find wall FACEs adjacent to each of wallQuads by the right side EDGE
int nbKnownFaces;
do {
nbKnownFaces = faceMap.Extent();
StdMeshers_FaceSidePtr rightSide, topSide; // sides of the quad
for ( size_t i = 0; i < thePrism.myWallQuads.size(); ++i )
{
rightSide = thePrism.myWallQuads[i].back()->side[ QUAD_RIGHT_SIDE ];
for ( int iE = 0; iE < rightSide->NbEdges(); ++iE ) // rightSide can be composite
{
const TopoDS_Edge & rightE = rightSide->Edge( iE );
TopTools_ListIteratorOfListOfShape face( edgeToFaces.FindFromKey( rightE ));
for ( ; face.More(); face.Next() )
if ( faceMap.Add( face.Value() ))
{
// a new wall FACE encountered, store it in thePrism.myWallQuads
const int iRight = thePrism.myRightQuadIndex[i];
topSide = thePrism.myWallQuads[ iRight ].back()->side[ QUAD_TOP_SIDE ];
const TopoDS_Edge& newBotE = topSide->Edge(0);
const TopoDS_Shape& newWallF = face.Value();
thePrism.myWallQuads[ iRight ].push_back( quadAlgo->CheckNbEdges( *mesh, newWallF ));
if ( !thePrism.myWallQuads[ iRight ].back() )
return toSM( error(TCom("Side face #") << shapeID( newWallF ) <<
" not meshable with quadrangles"));
if ( ! setBottomEdge( newBotE, thePrism.myWallQuads[ iRight ].back(), newWallF ))
return toSM( error(TCom("Composite 'horizontal' edges are not supported")));
}
}
}
} while ( nbKnownFaces != faceMap.Extent() );
// find wall FACEs adjacent to each of thePrism.myWallQuads by the top side EDGE
if ( totalNbFaces - faceMap.Extent() > 2 )
{
const int nbFoundWalls = faceMap.Extent();
for ( size_t i = 0; i < thePrism.myWallQuads.size(); ++i )
{
StdMeshers_FaceSidePtr topSide = thePrism.myWallQuads[i].back()->side[ QUAD_TOP_SIDE ];
const TopoDS_Edge & topE = topSide->Edge( 0 );
if ( topSide->NbEdges() > 1 )
return toSM( error(COMPERR_BAD_SHAPE, TCom("Side face #") <<
shapeID( thePrism.myWallQuads[i].back()->face )
<< " has a composite top edge"));
TopTools_ListIteratorOfListOfShape faceIt( edgeToFaces.FindFromKey( topE ));
for ( ; faceIt.More(); faceIt.Next() )
if ( faceMap.Add( faceIt.Value() ))
{
// a new wall FACE encountered, store it in wallQuads
thePrism.myWallQuads[ i ].push_back( quadAlgo->CheckNbEdges( *mesh, faceIt.Value() ));
if ( !thePrism.myWallQuads[ i ].back() )
return toSM( error(TCom("Side face #") << shapeID( faceIt.Value() ) <<
" not meshable with quadrangles"));
if ( ! setBottomEdge( topE, thePrism.myWallQuads[ i ].back(), faceIt.Value() ))
return toSM( error(TCom("Composite 'horizontal' edges are not supported")));
if ( totalNbFaces - faceMap.Extent() == 2 )
{
i = thePrism.myWallQuads.size(); // to quit from the outer loop
break;
}
}
}
if ( nbFoundWalls == faceMap.Extent() )
return toSM( error("Failed to find wall faces"));
}
} // while ( totalNbFaces - faceMap.Extent() > 2 )
// ------------------
// Find the top FACE
// ------------------
if ( thePrism.myTop.IsNull() )
{
// now only top and bottom FACEs are not in the faceMap
faceMap.Add( thePrism.myBottom );
for ( TopExp_Explorer f( thePrism.myShape3D, TopAbs_FACE );f.More(); f.Next() )
if ( !faceMap.Contains( f.Current() )) {
thePrism.myTop = TopoDS::Face( f.Current() );
break;
}
if ( thePrism.myTop.IsNull() )
return toSM( error("Top face not found"));
}
// Check that the top FACE shares all the top EDGEs
for ( size_t i = 0; i < thePrism.myWallQuads.size(); ++i )
{
StdMeshers_FaceSidePtr topSide = thePrism.myWallQuads[i].back()->side[ QUAD_TOP_SIDE ];
const TopoDS_Edge & topE = topSide->Edge( 0 );
if ( !myHelper->IsSubShape( topE, thePrism.myTop ))
return toSM( error( TCom("Wrong source face: #") << shapeID( thePrism.myBottom )));
}
return true;
}
//=======================================================================
//function : compute
//purpose : Compute mesh on a SOLID
//=======================================================================
bool StdMeshers_Prism_3D::compute(const Prism_3D::TPrismTopo& thePrism)
{
myHelper->IsQuadraticSubMesh( thePrism.myShape3D );
if ( _computeCanceled )
return toSM( error( SMESH_ComputeError::New(COMPERR_CANCELED)));
// Assure the bottom is meshed
SMESH_subMesh * botSM = myHelper->GetMesh()->GetSubMesh( thePrism.myBottom );
if (( botSM->IsEmpty() ) &&
( ! botSM->GetAlgo() ||
! _gen->Compute( *botSM->GetFather(), botSM->GetSubShape(), /*shapeOnly=*/true )))
return error( COMPERR_BAD_INPUT_MESH,
TCom( "No mesher defined to compute the face #")
<< shapeID( thePrism.myBottom ));
// Make all side FACEs of thePrism meshed with quads
if ( !computeWalls( thePrism ))
return false;
// Analyse mesh and geometry to find all block sub-shapes and submeshes
// (after fixing IPAL52499 myBlock is used as a holder of boundary nodes
// and for 2D projection in hard cases where StdMeshers_Projection_2D fails;
// location of internal nodes is usually computed by StdMeshers_Sweeper)
if ( !myBlock.Init( myHelper, thePrism ))
return toSM( error( myBlock.GetError()));
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
int volumeID = meshDS->ShapeToIndex( thePrism.myShape3D );
// Try to get gp_Trsf to get all nodes from bottom ones
vector<gp_Trsf> trsf;
gp_Trsf bottomToTopTrsf;
// if ( !myBlock.GetLayersTransformation( trsf, thePrism ))
// trsf.clear();
// else if ( !trsf.empty() )
// bottomToTopTrsf = trsf.back();
// To compute coordinates of a node inside a block, it is necessary to know
// 1. normalized parameters of the node by which
// 2. coordinates of node projections on all block sub-shapes are computed
// So we fill projections on vertices at once as they are same for all nodes
myShapeXYZ.resize( myBlock.NbSubShapes() );
for ( int iV = SMESH_Block::ID_FirstV; iV < SMESH_Block::ID_FirstE; ++iV ) {
myBlock.VertexPoint( iV, myShapeXYZ[ iV ]);
SHOWYXZ("V point " <<iV << " ", myShapeXYZ[ iV ]);
}
// Projections on the top and bottom faces are taken from nodes existing
// on these faces; find correspondence between bottom and top nodes
myUseBlock = false;
myBotToColumnMap.clear();
if ( !assocOrProjBottom2Top( bottomToTopTrsf, thePrism ) ) // it also fills myBotToColumnMap
return false;
// Create nodes inside the block
// use transformation (issue 0020680, IPAL0052499)
StdMeshers_Sweeper sweeper;
double tol;
bool allowHighBndError;
if ( !myUseBlock )
{
// load boundary nodes into sweeper
bool dummy;
list< TopoDS_Edge >::const_iterator edge = thePrism.myBottomEdges.begin();
for ( ; edge != thePrism.myBottomEdges.end(); ++edge )
{
int edgeID = meshDS->ShapeToIndex( *edge );
TParam2ColumnMap* u2col = const_cast<TParam2ColumnMap*>
( myBlock.GetParam2ColumnMap( edgeID, dummy ));
TParam2ColumnMap::iterator u2colIt = u2col->begin();
for ( ; u2colIt != u2col->end(); ++u2colIt )
sweeper.myBndColumns.push_back( & u2colIt->second );
}
// load node columns inside the bottom face
TNode2ColumnMap::iterator bot_column = myBotToColumnMap.begin();
for ( ; bot_column != myBotToColumnMap.end(); ++bot_column )
sweeper.myIntColumns.push_back( & bot_column->second );
tol = getSweepTolerance( thePrism );
allowHighBndError = !isSimpleBottom( thePrism );
}
if ( !myUseBlock && sweeper.ComputeNodes( *myHelper, tol, allowHighBndError ))
{
}
else // use block approach
{
// loop on nodes inside the bottom face
Prism_3D::TNode prevBNode;
TNode2ColumnMap::iterator bot_column = myBotToColumnMap.begin();
for ( ; bot_column != myBotToColumnMap.end(); ++bot_column )
{
const Prism_3D::TNode& tBotNode = bot_column->first; // bottom TNode
if ( tBotNode.GetPositionType() != SMDS_TOP_FACE )
continue; // node is not inside the FACE
// column nodes; middle part of the column are zero pointers
TNodeColumn& column = bot_column->second;
gp_XYZ botParams, topParams;
if ( !tBotNode.HasParams() )
{
// compute bottom node parameters
gp_XYZ paramHint(-1,-1,-1);
if ( prevBNode.IsNeighbor( tBotNode ))
paramHint = prevBNode.GetParams();
if ( !myBlock.ComputeParameters( tBotNode.GetCoords(), tBotNode.ChangeParams(),
ID_BOT_FACE, paramHint ))
return toSM( error(TCom("Can't compute normalized parameters for node ")
<< tBotNode.myNode->GetID() << " on the face #"
<< myBlock.SubMesh( ID_BOT_FACE )->GetId() ));
prevBNode = tBotNode;
botParams = topParams = tBotNode.GetParams();
topParams.SetZ( 1 );
// compute top node parameters
if ( column.size() > 2 ) {
gp_Pnt topCoords = gpXYZ( column.back() );
if ( !myBlock.ComputeParameters( topCoords, topParams, ID_TOP_FACE, topParams ))
return toSM( error(TCom("Can't compute normalized parameters ")
<< "for node " << column.back()->GetID()
<< " on the face #"<< column.back()->getshapeId() ));
}
}
else // top nodes are created by projection using parameters
{
botParams = topParams = tBotNode.GetParams();
topParams.SetZ( 1 );
}
myShapeXYZ[ ID_BOT_FACE ] = tBotNode.GetCoords();
myShapeXYZ[ ID_TOP_FACE ] = gpXYZ( column.back() );
// vertical loop
TNodeColumn::iterator columnNodes = column.begin();
for ( int z = 0; columnNodes != column.end(); ++columnNodes, ++z)
{
const SMDS_MeshNode* & node = *columnNodes;
if ( node ) continue; // skip bottom or top node
// params of a node to create
double rz = (double) z / (double) ( column.size() - 1 );
gp_XYZ params = botParams * ( 1 - rz ) + topParams * rz;
// set coords on all faces and nodes
const int nbSideFaces = 4;
int sideFaceIDs[nbSideFaces] = { SMESH_Block::ID_Fx0z,
SMESH_Block::ID_Fx1z,
SMESH_Block::ID_F0yz,
SMESH_Block::ID_F1yz };
for ( int iF = 0; iF < nbSideFaces; ++iF )
if ( !setFaceAndEdgesXYZ( sideFaceIDs[ iF ], params, z ))
return false;
// compute coords for a new node
gp_XYZ coords;
if ( !SMESH_Block::ShellPoint( params, myShapeXYZ, coords ))
return toSM( error("Can't compute coordinates by normalized parameters"));
// if ( !meshDS->MeshElements( volumeID ) ||
// meshDS->MeshElements( volumeID )->NbNodes() == 0 )
// pointsToPython(myShapeXYZ);
SHOWYXZ("TOPFacePoint ",myShapeXYZ[ ID_TOP_FACE]);
SHOWYXZ("BOT Node "<< tBotNode.myNode->GetID(),gpXYZ(tBotNode.myNode));
SHOWYXZ("ShellPoint ",coords);
// create a node
node = meshDS->AddNode( coords.X(), coords.Y(), coords.Z() );
meshDS->SetNodeInVolume( node, volumeID );
if ( _computeCanceled )
return false;
}
} // loop on bottom nodes
}
// Create volumes
SMESHDS_SubMesh* smDS = myBlock.SubMeshDS( ID_BOT_FACE );
if ( !smDS ) return toSM( error(COMPERR_BAD_INPUT_MESH, "Null submesh"));
// loop on bottom mesh faces
SMDS_ElemIteratorPtr faceIt = smDS->GetElements();
while ( faceIt->more() )
{
const SMDS_MeshElement* face = faceIt->next();
if ( !face || face->GetType() != SMDSAbs_Face )
continue;
// find node columns for each node
int nbNodes = face->NbCornerNodes();
vector< const TNodeColumn* > columns( nbNodes );
for ( int i = 0; i < nbNodes; ++i )
{
const SMDS_MeshNode* n = face->GetNode( i );
if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) {
TNode2ColumnMap::iterator bot_column = myBotToColumnMap.find( n );
if ( bot_column == myBotToColumnMap.end() )
return toSM( error(TCom("No nodes found above node ") << n->GetID() ));
columns[ i ] = & bot_column->second;
}
else {
columns[ i ] = myBlock.GetNodeColumn( n );
if ( !columns[ i ] )
return toSM( error(TCom("No side nodes found above node ") << n->GetID() ));
}
}
// create prisms
AddPrisms( columns, myHelper );
} // loop on bottom mesh faces
// clear data
myBotToColumnMap.clear();
myBlock.Clear();
// update state of sub-meshes (mostly in order to erase improper errors)
SMESH_subMesh* sm = myHelper->GetMesh()->GetSubMesh( thePrism.myShape3D );
SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false);
while ( smIt->more() )
{
sm = smIt->next();
sm->GetComputeError().reset();
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
return true;
}
//=======================================================================
//function : computeWalls
//purpose : Compute 2D mesh on walls FACEs of a prism
//=======================================================================
bool StdMeshers_Prism_3D::computeWalls(const Prism_3D::TPrismTopo& thePrism)
{
SMESH_Mesh* mesh = myHelper->GetMesh();
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
DBGOUT( endl << "COMPUTE Prism " << meshDS->ShapeToIndex( thePrism.myShape3D ));
TProjction1dAlgo* projector1D = TProjction1dAlgo::instance( this );
StdMeshers_Quadrangle_2D* quadAlgo = TQuadrangleAlgo::instance( this, myHelper );
// SMESH_HypoFilter hyp1dFilter( SMESH_HypoFilter::IsAlgo(),/*not=*/true);
// hyp1dFilter.And( SMESH_HypoFilter::HasDim( 1 ));
// hyp1dFilter.And( SMESH_HypoFilter::IsMoreLocalThan( thePrism.myShape3D, *mesh ));
// Discretize equally 'vertical' EDGEs
// -----------------------------------
// find source FACE sides for projection: either already computed ones or
// the 'most composite' ones
const size_t nbWalls = thePrism.myWallQuads.size();
vector< int > wgt( nbWalls, 0 ); // "weight" of a wall
for ( size_t iW = 0; iW != nbWalls; ++iW )
{
Prism_3D::TQuadList::const_iterator quad = thePrism.myWallQuads[iW].begin();
for ( ; quad != thePrism.myWallQuads[iW].end(); ++quad )
{
StdMeshers_FaceSidePtr lftSide = (*quad)->side[ QUAD_LEFT_SIDE ];
for ( int i = 0; i < lftSide->NbEdges(); ++i )
{
++wgt[ iW ];
const TopoDS_Edge& E = lftSide->Edge(i);
if ( mesh->GetSubMesh( E )->IsMeshComputed() )
{
wgt[ iW ] += 100;
wgt[ myHelper->WrapIndex( iW+1, nbWalls)] += 10;
wgt[ myHelper->WrapIndex( iW-1, nbWalls)] += 10;
}
// else if ( mesh->GetHypothesis( E, hyp1dFilter, true )) // local hypothesis!
// wgt += 100;
}
}
// in quadratic mesh, pass ignoreMediumNodes to quad sides
if ( myHelper->GetIsQuadratic() )
{
quad = thePrism.myWallQuads[iW].begin();
for ( ; quad != thePrism.myWallQuads[iW].end(); ++quad )
for ( int i = 0; i < NB_QUAD_SIDES; ++i )
(*quad)->side[ i ].grid->SetIgnoreMediumNodes( true );
}
}
multimap< int, int > wgt2quad;
for ( size_t iW = 0; iW != nbWalls; ++iW )
wgt2quad.insert( make_pair( wgt[ iW ], iW ));
// Project 'vertical' EDGEs, from left to right
multimap< int, int >::reverse_iterator w2q = wgt2quad.rbegin();
for ( ; w2q != wgt2quad.rend(); ++w2q )
{
const int iW = w2q->second;
const Prism_3D::TQuadList& quads = thePrism.myWallQuads[ iW ];
Prism_3D::TQuadList::const_iterator quad = quads.begin();
for ( ; quad != quads.end(); ++quad )
{
StdMeshers_FaceSidePtr rgtSide = (*quad)->side[ QUAD_RIGHT_SIDE ]; // tgt
StdMeshers_FaceSidePtr lftSide = (*quad)->side[ QUAD_LEFT_SIDE ]; // src
bool swapLeftRight = ( lftSide->NbSegments( /*update=*/true ) == 0 &&
rgtSide->NbSegments( /*update=*/true ) > 0 );
if ( swapLeftRight )
std::swap( lftSide, rgtSide );
// assure that all the source (left) EDGEs are meshed
int nbSrcSegments = 0;
for ( int i = 0; i < lftSide->NbEdges(); ++i )
{
const TopoDS_Edge& srcE = lftSide->Edge(i);
SMESH_subMesh* srcSM = mesh->GetSubMesh( srcE );
if ( !srcSM->IsMeshComputed() ) {
DBGOUT( "COMPUTE V edge " << srcSM->GetId() );
TopoDS_Edge prpgSrcE = findPropagationSource( srcE );
if ( !prpgSrcE.IsNull() ) {
srcSM->ComputeSubMeshStateEngine( SMESH_subMesh::COMPUTE );
projector1D->myHyp.SetSourceEdge( prpgSrcE );
projector1D->Compute( *mesh, srcE );
srcSM->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
else {
srcSM->ComputeSubMeshStateEngine( SMESH_subMesh::COMPUTE );
srcSM->ComputeStateEngine ( SMESH_subMesh::COMPUTE );
}
if ( !srcSM->IsMeshComputed() )
return toSM( error( "Can't compute 1D mesh" ));
}
nbSrcSegments += srcSM->GetSubMeshDS()->NbElements();
}
// check target EDGEs
int nbTgtMeshed = 0, nbTgtSegments = 0;
vector< bool > isTgtEdgeComputed( rgtSide->NbEdges() );
for ( int i = 0; i < rgtSide->NbEdges(); ++i )
{
const TopoDS_Edge& tgtE = rgtSide->Edge(i);
SMESH_subMesh* tgtSM = mesh->GetSubMesh( tgtE );
if ( !( isTgtEdgeComputed[ i ] = tgtSM->IsMeshComputed() )) {
tgtSM->ComputeSubMeshStateEngine( SMESH_subMesh::COMPUTE );
tgtSM->ComputeStateEngine ( SMESH_subMesh::COMPUTE );
}
if ( tgtSM->IsMeshComputed() ) {
++nbTgtMeshed;
nbTgtSegments += tgtSM->GetSubMeshDS()->NbElements();
}
}
if ( rgtSide->NbEdges() == nbTgtMeshed ) // all tgt EDGEs meshed
{
if ( nbTgtSegments != nbSrcSegments )
{
bool badMeshRemoved = false;
// remove just computed segments
for ( int i = 0; i < rgtSide->NbEdges(); ++i )
if ( !isTgtEdgeComputed[ i ])
{
const TopoDS_Edge& tgtE = rgtSide->Edge(i);
SMESH_subMesh* tgtSM = mesh->GetSubMesh( tgtE );
tgtSM->ComputeStateEngine( SMESH_subMesh::CLEAN );
badMeshRemoved = true;
nbTgtMeshed--;
}
if ( !badMeshRemoved )
{
for ( int i = 0; i < lftSide->NbEdges(); ++i )
addBadInputElements( meshDS->MeshElements( lftSide->Edge( i )));
for ( int i = 0; i < rgtSide->NbEdges(); ++i )
addBadInputElements( meshDS->MeshElements( rgtSide->Edge( i )));
return toSM( error( TCom("Different nb of segment on logically vertical edges #")
<< shapeID( lftSide->Edge(0) ) << " and #"
<< shapeID( rgtSide->Edge(0) ) << ": "
<< nbSrcSegments << " != " << nbTgtSegments ));
}
}
else // if ( nbTgtSegments == nbSrcSegments )
{
continue;
}
}
// Compute 'vertical projection'
if ( nbTgtMeshed == 0 )
{
// compute nodes on target VERTEXes
const UVPtStructVec& srcNodeStr = lftSide->GetUVPtStruct();
if ( srcNodeStr.size() == 0 )
return toSM( error( TCom("Invalid node positions on edge #") <<
shapeID( lftSide->Edge(0) )));
vector< SMDS_MeshNode* > newNodes( srcNodeStr.size() );
for ( int is2ndV = 0; is2ndV < 2; ++is2ndV )
{
const TopoDS_Edge& E = rgtSide->Edge( is2ndV ? rgtSide->NbEdges()-1 : 0 );
TopoDS_Vertex v = myHelper->IthVertex( is2ndV, E );
mesh->GetSubMesh( v )->ComputeStateEngine( SMESH_subMesh::COMPUTE );
const SMDS_MeshNode* n = SMESH_Algo::VertexNode( v, meshDS );
newNodes[ is2ndV ? 0 : newNodes.size()-1 ] = (SMDS_MeshNode*) n;
}
// compute nodes on target EDGEs
DBGOUT( "COMPUTE V edge (proj) " << shapeID( lftSide->Edge(0)));
rgtSide->Reverse(); // direct it same as the lftSide
myHelper->SetElementsOnShape( false ); // myHelper holds the prism shape
TopoDS_Edge tgtEdge;
for ( size_t iN = 1; iN < srcNodeStr.size()-1; ++iN ) // add nodes
{
gp_Pnt p = rgtSide->Value3d ( srcNodeStr[ iN ].normParam );
double u = rgtSide->Parameter( srcNodeStr[ iN ].normParam, tgtEdge );
newNodes[ iN ] = meshDS->AddNode( p.X(), p.Y(), p.Z() );
meshDS->SetNodeOnEdge( newNodes[ iN ], tgtEdge, u );
}
for ( size_t iN = 1; iN < srcNodeStr.size(); ++iN ) // add segments
{
// find an EDGE to set a new segment
std::pair<int, TopAbs_ShapeEnum> id2type =
myHelper->GetMediumPos( newNodes[ iN-1 ], newNodes[ iN ] );
if ( id2type.second != TopAbs_EDGE )
{
// new nodes are on different EDGEs; put one of them on VERTEX
const int edgeIndex = rgtSide->EdgeIndex( srcNodeStr[ iN-1 ].normParam );
const double vertexParam = rgtSide->LastParameter( edgeIndex );
TopoDS_Vertex vertex = rgtSide->LastVertex( edgeIndex );
const SMDS_MeshNode* vn = SMESH_Algo::VertexNode( vertex, meshDS );
const gp_Pnt p = BRep_Tool::Pnt( vertex );
const int isPrev = ( Abs( srcNodeStr[ iN-1 ].normParam - vertexParam ) <
Abs( srcNodeStr[ iN ].normParam - vertexParam ));
meshDS->UnSetNodeOnShape( newNodes[ iN-isPrev ] );
meshDS->SetNodeOnVertex ( newNodes[ iN-isPrev ], vertex );
meshDS->MoveNode ( newNodes[ iN-isPrev ], p.X(), p.Y(), p.Z() );
id2type.first = newNodes[ iN-(1-isPrev) ]->getshapeId();
if ( vn )
{
SMESH_MeshEditor::TListOfListOfNodes lln( 1, list< const SMDS_MeshNode* >() );
lln.back().push_back ( vn );
lln.back().push_front( newNodes[ iN-isPrev ] ); // to keep
SMESH_MeshEditor( mesh ).MergeNodes( lln );
}
}
SMDS_MeshElement* newEdge = myHelper->AddEdge( newNodes[ iN-1 ], newNodes[ iN ] );
meshDS->SetMeshElementOnShape( newEdge, id2type.first );
}
myHelper->SetElementsOnShape( true );
for ( int i = 0; i < rgtSide->NbEdges(); ++i ) // update state of sub-meshes
{
const TopoDS_Edge& E = rgtSide->Edge( i );
SMESH_subMesh* tgtSM = mesh->GetSubMesh( E );
tgtSM->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
// to continue projection from the just computed side as a source
if ( !swapLeftRight && rgtSide->NbEdges() > 1 && w2q->second == iW )
{
std::pair<int,int> wgt2quadKeyVal( w2q->first + 1, thePrism.myRightQuadIndex[ iW ]);
wgt2quad.insert( wgt2quadKeyVal ); // it will be skipped by ++w2q
wgt2quad.insert( wgt2quadKeyVal );
w2q = wgt2quad.rbegin();
}
}
else
{
// HOPE assigned hypotheses are OK, so that equal nb of segments will be generated
//return toSM( error("Partial projection not implemented"));
}
} // loop on quads of a composite wall side
} // loop on the ordered wall sides
for ( size_t iW = 0; iW != thePrism.myWallQuads.size(); ++iW )
{
Prism_3D::TQuadList::const_iterator quad = thePrism.myWallQuads[iW].begin();
for ( ; quad != thePrism.myWallQuads[iW].end(); ++quad )
{
const TopoDS_Face& face = (*quad)->face;
SMESH_subMesh* fSM = mesh->GetSubMesh( face );
if ( ! fSM->IsMeshComputed() )
{
// Top EDGEs must be projections from the bottom ones
// to compute stuctured quad mesh on wall FACEs
// ---------------------------------------------------
const TopoDS_Edge& botE = (*quad)->side[ QUAD_BOTTOM_SIDE ].grid->Edge(0);
const TopoDS_Edge& topE = (*quad)->side[ QUAD_TOP_SIDE ].grid->Edge(0);
SMESH_subMesh* botSM = mesh->GetSubMesh( botE );
SMESH_subMesh* topSM = mesh->GetSubMesh( topE );
SMESH_subMesh* srcSM = botSM;
SMESH_subMesh* tgtSM = topSM;
srcSM->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
tgtSM->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
if ( !srcSM->IsMeshComputed() && tgtSM->IsMeshComputed() )
std::swap( srcSM, tgtSM );
if ( !srcSM->IsMeshComputed() )
{
DBGOUT( "COMPUTE H edge " << srcSM->GetId());
srcSM->ComputeSubMeshStateEngine( SMESH_subMesh::COMPUTE ); // nodes on VERTEXes
srcSM->ComputeStateEngine( SMESH_subMesh::COMPUTE ); // segments on the EDGE
}
if ( tgtSM->IsMeshComputed() &&
tgtSM->GetSubMeshDS()->NbNodes() != srcSM->GetSubMeshDS()->NbNodes() )
{
// the top EDGE is computed differently than the bottom one,
// try to clear a wrong mesh
bool isAdjFaceMeshed = false;
PShapeIteratorPtr fIt = myHelper->GetAncestors( tgtSM->GetSubShape(),
*mesh, TopAbs_FACE );
while ( const TopoDS_Shape* f = fIt->next() )
if (( isAdjFaceMeshed = mesh->GetSubMesh( *f )->IsMeshComputed() ))
break;
if ( isAdjFaceMeshed )
return toSM( error( TCom("Different nb of segment on logically horizontal edges #")
<< shapeID( botE ) << " and #"
<< shapeID( topE ) << ": "
<< tgtSM->GetSubMeshDS()->NbElements() << " != "
<< srcSM->GetSubMeshDS()->NbElements() ));
tgtSM->ComputeStateEngine( SMESH_subMesh::CLEAN );
}
if ( !tgtSM->IsMeshComputed() )
{
// compute nodes on VERTEXes
SMESH_subMeshIteratorPtr smIt = tgtSM->getDependsOnIterator(/*includeSelf=*/false);
while ( smIt->more() )
smIt->next()->ComputeStateEngine( SMESH_subMesh::COMPUTE );
// project segments
DBGOUT( "COMPUTE H edge (proj) " << tgtSM->GetId());
projector1D->myHyp.SetSourceEdge( TopoDS::Edge( srcSM->GetSubShape() ));
projector1D->InitComputeError();
bool ok = projector1D->Compute( *mesh, tgtSM->GetSubShape() );
if ( !ok )
{
SMESH_ComputeErrorPtr err = projector1D->GetComputeError();
if ( err->IsOK() ) err->myName = COMPERR_ALGO_FAILED;
tgtSM->GetComputeError() = err;
return false;
}
}
tgtSM->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
// Compute quad mesh on wall FACEs
// -------------------------------
// make all EDGES meshed
fSM->ComputeSubMeshStateEngine( SMESH_subMesh::COMPUTE );
if ( !fSM->SubMeshesComputed() )
return toSM( error( COMPERR_BAD_INPUT_MESH,
"Not all edges have valid algorithm and hypothesis"));
// mesh the <face>
quadAlgo->InitComputeError();
DBGOUT( "COMPUTE Quad face " << fSM->GetId());
bool ok = quadAlgo->Compute( *mesh, face );
fSM->GetComputeError() = quadAlgo->GetComputeError();
if ( !ok )
return false;
fSM->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
if ( myHelper->GetIsQuadratic() )
{
// fill myHelper with medium nodes built by quadAlgo
SMDS_ElemIteratorPtr fIt = fSM->GetSubMeshDS()->GetElements();
while ( fIt->more() )
myHelper->AddTLinks( dynamic_cast<const SMDS_MeshFace*>( fIt->next() ));
}
}
}
return true;
}
//=======================================================================
/*!
* \brief Returns a source EDGE of propagation to a given EDGE
*/
//=======================================================================
TopoDS_Edge StdMeshers_Prism_3D::findPropagationSource( const TopoDS_Edge& E )
{
if ( myPropagChains )
for ( size_t i = 0; !myPropagChains[i].IsEmpty(); ++i )
if ( myPropagChains[i].Contains( E ))
return TopoDS::Edge( myPropagChains[i].FindKey( 1 ));
return TopoDS_Edge();
}
//=======================================================================
//function : Evaluate
//purpose :
//=======================================================================
bool StdMeshers_Prism_3D::Evaluate(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape,
MapShapeNbElems& aResMap)
{
if ( theShape.ShapeType() == TopAbs_COMPOUND )
{
bool ok = true;
for ( TopoDS_Iterator it( theShape ); it.More(); it.Next() )
ok &= Evaluate( theMesh, it.Value(), aResMap );
return ok;
}
SMESH_MesherHelper helper( theMesh );
myHelper = &helper;
myHelper->SetSubShape( theShape );
// find face contains only triangles
vector < SMESH_subMesh * >meshFaces;
TopTools_SequenceOfShape aFaces;
int NumBase = 0, i = 0, NbQFs = 0;
for (TopExp_Explorer exp(theShape, TopAbs_FACE); exp.More(); exp.Next()) {
i++;
aFaces.Append(exp.Current());
SMESH_subMesh *aSubMesh = theMesh.GetSubMesh(exp.Current());
meshFaces.push_back(aSubMesh);
MapShapeNbElemsItr anIt = aResMap.find(meshFaces[i-1]);
if( anIt==aResMap.end() )
return toSM( error( "Submesh can not be evaluated"));
std::vector<int> aVec = (*anIt).second;
int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
int nbqua = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
if( nbtri==0 && nbqua>0 ) {
NbQFs++;
}
if( nbtri>0 ) {
NumBase = i;
}
}
if(NbQFs<4) {
std::vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = theMesh.GetSubMesh(theShape);
aResMap.insert(std::make_pair(sm,aResVec));
return toSM( error( "Submesh can not be evaluated" ));
}
if(NumBase==0) NumBase = 1; // only quads => set 1 faces as base
// find number of 1d elems for base face
int nb1d = 0;
TopTools_MapOfShape Edges1;
for (TopExp_Explorer exp(aFaces.Value(NumBase), TopAbs_EDGE); exp.More(); exp.Next()) {
Edges1.Add(exp.Current());
SMESH_subMesh *sm = theMesh.GetSubMesh(exp.Current());
if( sm ) {
MapShapeNbElemsItr anIt = aResMap.find(sm);
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
}
}
// find face opposite to base face
int OppNum = 0;
for(i=1; i<=6; i++) {
if(i==NumBase) continue;
bool IsOpposite = true;
for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) {
if( Edges1.Contains(exp.Current()) ) {
IsOpposite = false;
break;
}
}
if(IsOpposite) {
OppNum = i;
break;
}
}
// find number of 2d elems on side faces
int nb2d = 0;
for(i=1; i<=6; i++) {
if( i==OppNum || i==NumBase ) continue;
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[i-1] );
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
nb2d += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
}
MapShapeNbElemsItr anIt = aResMap.find( meshFaces[NumBase-1] );
std::vector<int> aVec = (*anIt).second;
bool IsQuadratic = (aVec[SMDSEntity_Quad_Triangle]>aVec[SMDSEntity_Triangle]) ||
(aVec[SMDSEntity_Quad_Quadrangle]>aVec[SMDSEntity_Quadrangle]);
int nb2d_face0_3 = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
int nb2d_face0_4 = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
int nb0d_face0 = aVec[SMDSEntity_Node];
int nb1d_face0_int = ( nb2d_face0_3*3 + nb2d_face0_4*4 - nb1d ) / 2;
std::vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
if(IsQuadratic) {
aResVec[SMDSEntity_Quad_Penta] = nb2d_face0_3 * ( nb2d/nb1d );
aResVec[SMDSEntity_Quad_Hexa] = nb2d_face0_4 * ( nb2d/nb1d );
aResVec[SMDSEntity_Node] = nb0d_face0 * ( 2*nb2d/nb1d - 1 ) - nb1d_face0_int * nb2d/nb1d;
}
else {
aResVec[SMDSEntity_Node] = nb0d_face0 * ( nb2d/nb1d - 1 );
aResVec[SMDSEntity_Penta] = nb2d_face0_3 * ( nb2d/nb1d );
aResVec[SMDSEntity_Hexa] = nb2d_face0_4 * ( nb2d/nb1d );
}
SMESH_subMesh * sm = theMesh.GetSubMesh(theShape);
aResMap.insert(std::make_pair(sm,aResVec));
return true;
}
//================================================================================
/*!
* \brief Create prisms
* \param columns - columns of nodes generated from nodes of a mesh face
* \param helper - helper initialized by mesh and shape to add prisms to
*/
//================================================================================
void StdMeshers_Prism_3D::AddPrisms( vector<const TNodeColumn*> & columns,
SMESH_MesherHelper* helper)
{
int nbNodes = columns.size();
int nbZ = columns[0]->size();
if ( nbZ < 2 ) return;
// find out orientation
bool isForward = true;
SMDS_VolumeTool vTool;
int z = 1;
switch ( nbNodes ) {
case 3: {
SMDS_VolumeOfNodes tmpPenta ( (*columns[0])[z-1], // bottom
(*columns[1])[z-1],
(*columns[2])[z-1],
(*columns[0])[z], // top
(*columns[1])[z],
(*columns[2])[z] );
vTool.Set( &tmpPenta );
isForward = vTool.IsForward();
break;
}
case 4: {
SMDS_VolumeOfNodes tmpHex( (*columns[0])[z-1], (*columns[1])[z-1], // bottom
(*columns[2])[z-1], (*columns[3])[z-1],
(*columns[0])[z], (*columns[1])[z], // top
(*columns[2])[z], (*columns[3])[z] );
vTool.Set( &tmpHex );
isForward = vTool.IsForward();
break;
}
default:
const int di = (nbNodes+1) / 3;
SMDS_VolumeOfNodes tmpVol ( (*columns[0] )[z-1],
(*columns[di] )[z-1],
(*columns[2*di])[z-1],
(*columns[0] )[z],
(*columns[di] )[z],
(*columns[2*di])[z] );
vTool.Set( &tmpVol );
isForward = vTool.IsForward();
}
// vertical loop on columns
helper->SetElementsOnShape( true );
switch ( nbNodes ) {
case 3: { // ---------- pentahedra
const int i1 = isForward ? 1 : 2;
const int i2 = isForward ? 2 : 1;
for ( z = 1; z < nbZ; ++z )
helper->AddVolume( (*columns[0 ])[z-1], // bottom
(*columns[i1])[z-1],
(*columns[i2])[z-1],
(*columns[0 ])[z], // top
(*columns[i1])[z],
(*columns[i2])[z] );
break;
}
case 4: { // ---------- hexahedra
const int i1 = isForward ? 1 : 3;
const int i3 = isForward ? 3 : 1;
for ( z = 1; z < nbZ; ++z )
helper->AddVolume( (*columns[0])[z-1], (*columns[i1])[z-1], // bottom
(*columns[2])[z-1], (*columns[i3])[z-1],
(*columns[0])[z], (*columns[i1])[z], // top
(*columns[2])[z], (*columns[i3])[z] );
break;
}
case 6: { // ---------- octahedra
const int iBase1 = isForward ? -1 : 0;
const int iBase2 = isForward ? 0 :-1;
for ( z = 1; z < nbZ; ++z )
helper->AddVolume( (*columns[0])[z+iBase1], (*columns[1])[z+iBase1], // bottom or top
(*columns[2])[z+iBase1], (*columns[3])[z+iBase1],
(*columns[4])[z+iBase1], (*columns[5])[z+iBase1],
(*columns[0])[z+iBase2], (*columns[1])[z+iBase2], // top or bottom
(*columns[2])[z+iBase2], (*columns[3])[z+iBase2],
(*columns[4])[z+iBase2], (*columns[5])[z+iBase2] );
break;
}
default: // ---------- polyhedra
vector<int> quantities( 2 + nbNodes, 4 );
quantities[0] = quantities[1] = nbNodes;
columns.resize( nbNodes + 1 );
columns[ nbNodes ] = columns[ 0 ];
const int i1 = isForward ? 1 : 3;
const int i3 = isForward ? 3 : 1;
const int iBase1 = isForward ? -1 : 0;
const int iBase2 = isForward ? 0 :-1;
vector<const SMDS_MeshNode*> nodes( 2*nbNodes + 4*nbNodes);
for ( z = 1; z < nbZ; ++z )
{
for ( int i = 0; i < nbNodes; ++i ) {
nodes[ i ] = (*columns[ i ])[z+iBase1]; // bottom or top
nodes[ 2*nbNodes-i-1 ] = (*columns[ i ])[z+iBase2]; // top or bottom
// side
int di = 2*nbNodes + 4*i;
nodes[ di+0 ] = (*columns[i ])[z ];
nodes[ di+i1] = (*columns[i+1])[z ];
nodes[ di+2 ] = (*columns[i+1])[z-1];
nodes[ di+i3] = (*columns[i ])[z-1];
}
helper->AddPolyhedralVolume( nodes, quantities );
}
} // switch ( nbNodes )
}
//================================================================================
/*!
* \brief Find correspondence between bottom and top nodes
* If elements on the bottom and top faces are topologically different,
* and projection is possible and allowed, perform the projection
* \retval bool - is a success or not
*/
//================================================================================
bool StdMeshers_Prism_3D::assocOrProjBottom2Top( const gp_Trsf & bottomToTopTrsf,
const Prism_3D::TPrismTopo& thePrism)
{
SMESH_subMesh * botSM = myHelper->GetMesh()->GetSubMesh( thePrism.myBottom );
SMESH_subMesh * topSM = myHelper->GetMesh()->GetSubMesh( thePrism.myTop );
SMESHDS_SubMesh * botSMDS = botSM->GetSubMeshDS();
SMESHDS_SubMesh * topSMDS = topSM->GetSubMeshDS();
if ( !botSMDS || botSMDS->NbElements() == 0 )
{
_gen->Compute( *myHelper->GetMesh(), botSM->GetSubShape(), /*aShapeOnly=*/true );
botSMDS = botSM->GetSubMeshDS();
if ( !botSMDS || botSMDS->NbElements() == 0 )
return toSM( error(TCom("No elements on face #") << botSM->GetId() ));
}
bool needProject = !topSM->IsMeshComputed();
if ( !needProject &&
(botSMDS->NbElements() != topSMDS->NbElements() ||
botSMDS->NbNodes() != topSMDS->NbNodes()))
{
MESSAGE("nb elem bot " << botSMDS->NbElements() <<
" top " << ( topSMDS ? topSMDS->NbElements() : 0 ));
MESSAGE("nb node bot " << botSMDS->NbNodes() <<
" top " << ( topSMDS ? topSMDS->NbNodes() : 0 ));
return toSM( error(TCom("Mesh on faces #") << botSM->GetId()
<<" and #"<< topSM->GetId() << " seems different" ));
}
if ( 0/*needProject && !myProjectTriangles*/ )
return toSM( error(TCom("Mesh on faces #") << botSM->GetId()
<<" and #"<< topSM->GetId() << " seems different" ));
///RETURN_BAD_RESULT("Need to project but not allowed");
NSProjUtils::TNodeNodeMap n2nMap;
const NSProjUtils::TNodeNodeMap* n2nMapPtr = & n2nMap;
if ( needProject )
{
if ( !projectBottomToTop( bottomToTopTrsf, thePrism ))
return false;
n2nMapPtr = & TProjction2dAlgo::instance( this )->GetNodesMap();
}
if ( !n2nMapPtr || n2nMapPtr->size() < botSMDS->NbNodes() )
{
// associate top and bottom faces
NSProjUtils::TShapeShapeMap shape2ShapeMap;
const bool sameTopo =
NSProjUtils::FindSubShapeAssociation( thePrism.myBottom, myHelper->GetMesh(),
thePrism.myTop, myHelper->GetMesh(),
shape2ShapeMap);
if ( !sameTopo )
for ( size_t iQ = 0; iQ < thePrism.myWallQuads.size(); ++iQ )
{
const Prism_3D::TQuadList& quadList = thePrism.myWallQuads[iQ];
StdMeshers_FaceSidePtr botSide = quadList.front()->side[ QUAD_BOTTOM_SIDE ];
StdMeshers_FaceSidePtr topSide = quadList.back ()->side[ QUAD_TOP_SIDE ];
if ( botSide->NbEdges() == topSide->NbEdges() )
{
for ( int iE = 0; iE < botSide->NbEdges(); ++iE )
{
NSProjUtils::InsertAssociation( botSide->Edge( iE ),
topSide->Edge( iE ), shape2ShapeMap );
NSProjUtils::InsertAssociation( myHelper->IthVertex( 0, botSide->Edge( iE )),
myHelper->IthVertex( 0, topSide->Edge( iE )),
shape2ShapeMap );
}
}
else
{
TopoDS_Vertex vb, vt;
StdMeshers_FaceSidePtr sideB, sideT;
vb = myHelper->IthVertex( 0, botSide->Edge( 0 ));
vt = myHelper->IthVertex( 0, topSide->Edge( 0 ));
sideB = quadList.front()->side[ QUAD_LEFT_SIDE ];
sideT = quadList.back ()->side[ QUAD_LEFT_SIDE ];
if ( vb.IsSame( sideB->FirstVertex() ) &&
vt.IsSame( sideT->LastVertex() ))
{
NSProjUtils::InsertAssociation( botSide->Edge( 0 ),
topSide->Edge( 0 ), shape2ShapeMap );
NSProjUtils::InsertAssociation( vb, vt, shape2ShapeMap );
}
vb = myHelper->IthVertex( 1, botSide->Edge( botSide->NbEdges()-1 ));
vt = myHelper->IthVertex( 1, topSide->Edge( topSide->NbEdges()-1 ));
sideB = quadList.front()->side[ QUAD_RIGHT_SIDE ];
sideT = quadList.back ()->side[ QUAD_RIGHT_SIDE ];
if ( vb.IsSame( sideB->FirstVertex() ) &&
vt.IsSame( sideT->LastVertex() ))
{
NSProjUtils::InsertAssociation( botSide->Edge( botSide->NbEdges()-1 ),
topSide->Edge( topSide->NbEdges()-1 ),
shape2ShapeMap );
NSProjUtils::InsertAssociation( vb, vt, shape2ShapeMap );
}
}
}
// Find matching nodes of top and bottom faces
n2nMapPtr = & n2nMap;
if ( ! NSProjUtils::FindMatchingNodesOnFaces( thePrism.myBottom, myHelper->GetMesh(),
thePrism.myTop, myHelper->GetMesh(),
shape2ShapeMap, n2nMap ))
{
if ( sameTopo )
return toSM( error(TCom("Mesh on faces #") << botSM->GetId()
<<" and #"<< topSM->GetId() << " seems different" ));
else
return toSM( error(TCom("Topology of faces #") << botSM->GetId()
<<" and #"<< topSM->GetId() << " seems different" ));
}
}
// Fill myBotToColumnMap
int zSize = myBlock.VerticalSize();
TNodeNodeMap::const_iterator bN_tN = n2nMapPtr->begin();
for ( ; bN_tN != n2nMapPtr->end(); ++bN_tN )
{
const SMDS_MeshNode* botNode = bN_tN->first;
const SMDS_MeshNode* topNode = bN_tN->second;
if ( botNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE )
continue; // wall columns are contained in myBlock
// create node column
Prism_3D::TNode bN( botNode );
TNode2ColumnMap::iterator bN_col =
myBotToColumnMap.insert( make_pair ( bN, TNodeColumn() )).first;
TNodeColumn & column = bN_col->second;
column.resize( zSize );
column.front() = botNode;
column.back() = topNode;
}
return true;
}
//================================================================================
/*!
* \brief Remove faces from the top face and re-create them by projection from the bottom
* \retval bool - a success or not
*/
//================================================================================
bool StdMeshers_Prism_3D::projectBottomToTop( const gp_Trsf & bottomToTopTrsf,
const Prism_3D::TPrismTopo& thePrism )
{
if ( project2dMesh( thePrism.myBottom, thePrism.myTop ))
{
return true;
}
NSProjUtils::TNodeNodeMap& n2nMap =
(NSProjUtils::TNodeNodeMap&) TProjction2dAlgo::instance( this )->GetNodesMap();
n2nMap.clear();
myUseBlock = true;
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
SMESH_subMesh * botSM = myHelper->GetMesh()->GetSubMesh( thePrism.myBottom );
SMESH_subMesh * topSM = myHelper->GetMesh()->GetSubMesh( thePrism.myTop );
SMESHDS_SubMesh * botSMDS = botSM->GetSubMeshDS();
SMESHDS_SubMesh * topSMDS = topSM->GetSubMeshDS();
if ( topSMDS && topSMDS->NbElements() > 0 )
{
//topSM->ComputeStateEngine( SMESH_subMesh::CLEAN ); -- avoid propagation of events
for ( SMDS_ElemIteratorPtr eIt = topSMDS->GetElements(); eIt->more(); )
meshDS->RemoveFreeElement( eIt->next(), topSMDS, /*fromGroups=*/false );
for ( SMDS_NodeIteratorPtr nIt = topSMDS->GetNodes(); nIt->more(); )
meshDS->RemoveFreeNode( nIt->next(), topSMDS, /*fromGroups=*/false );
}
const TopoDS_Face& botFace = thePrism.myBottom; // oriented within
const TopoDS_Face& topFace = thePrism.myTop; // the 3D SHAPE
int topFaceID = meshDS->ShapeToIndex( thePrism.myTop );
SMESH_MesherHelper botHelper( *myHelper->GetMesh() );
botHelper.SetSubShape( botFace );
botHelper.ToFixNodeParameters( true );
bool checkUV;
SMESH_MesherHelper topHelper( *myHelper->GetMesh() );
topHelper.SetSubShape( topFace );
topHelper.ToFixNodeParameters( true );
double distXYZ[4], fixTol = 10 * topHelper.MaxTolerance( topFace );
// Fill myBotToColumnMap
int zSize = myBlock.VerticalSize();
Prism_3D::TNode prevTNode;
SMDS_NodeIteratorPtr nIt = botSMDS->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* botNode = nIt->next();
const SMDS_MeshNode* topNode = 0;
if ( botNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE )
continue; // strange
Prism_3D::TNode bN( botNode );
if ( bottomToTopTrsf.Form() == gp_Identity )
{
// compute bottom node params
gp_XYZ paramHint(-1,-1,-1);
if ( prevTNode.IsNeighbor( bN ))
{
paramHint = prevTNode.GetParams();
// double tol = 1e-2 * ( prevTNode.GetCoords() - bN.GetCoords() ).Modulus();
// myBlock.SetTolerance( Min( myBlock.GetTolerance(), tol ));
}
if ( !myBlock.ComputeParameters( bN.GetCoords(), bN.ChangeParams(),
ID_BOT_FACE, paramHint ))
return toSM( error(TCom("Can't compute normalized parameters for node ")
<< botNode->GetID() << " on the face #"<< botSM->GetId() ));
prevTNode = bN;
// compute top node coords
gp_XYZ topXYZ; gp_XY topUV;
if ( !myBlock.FacePoint( ID_TOP_FACE, bN.GetParams(), topXYZ ) ||
!myBlock.FaceUV ( ID_TOP_FACE, bN.GetParams(), topUV ))
return toSM( error(TCom("Can't compute coordinates "
"by normalized parameters on the face #")<< topSM->GetId() ));
topNode = meshDS->AddNode( topXYZ.X(),topXYZ.Y(),topXYZ.Z() );
meshDS->SetNodeOnFace( topNode, topFaceID, topUV.X(), topUV.Y() );
}
else // use bottomToTopTrsf
{
gp_XYZ coords = bN.GetCoords();
bottomToTopTrsf.Transforms( coords );
topNode = meshDS->AddNode( coords.X(), coords.Y(), coords.Z() );
gp_XY topUV = botHelper.GetNodeUV( botFace, botNode, 0, &checkUV );
meshDS->SetNodeOnFace( topNode, topFaceID, topUV.X(), topUV.Y() );
distXYZ[0] = -1;
if ( topHelper.CheckNodeUV( topFace, topNode, topUV, fixTol, /*force=*/false, distXYZ ) &&
distXYZ[0] > fixTol && distXYZ[0] < fixTol * 1e+3 )
meshDS->MoveNode( topNode, distXYZ[1], distXYZ[2], distXYZ[3] ); // transform can be inaccurate
}
// create node column
TNode2ColumnMap::iterator bN_col =
myBotToColumnMap.insert( make_pair ( bN, TNodeColumn() )).first;
TNodeColumn & column = bN_col->second;
column.resize( zSize );
column.front() = botNode;
column.back() = topNode;
n2nMap.insert( n2nMap.end(), make_pair( botNode, topNode ));
if ( _computeCanceled )
return toSM( error( SMESH_ComputeError::New(COMPERR_CANCELED)));
}
// Create top faces
const bool oldSetElemsOnShape = myHelper->SetElementsOnShape( false );
// care of orientation;
// if the bottom faces is orienetd OK then top faces must be reversed
bool reverseTop = true;
if ( myHelper->NbAncestors( botFace, *myBlock.Mesh(), TopAbs_SOLID ) > 1 )
reverseTop = ! myHelper->IsReversedSubMesh( botFace );
int iFrw, iRev, *iPtr = &( reverseTop ? iRev : iFrw );
// loop on bottom mesh faces
SMDS_ElemIteratorPtr faceIt = botSMDS->GetElements();
vector< const SMDS_MeshNode* > nodes;
while ( faceIt->more() )
{
const SMDS_MeshElement* face = faceIt->next();
if ( !face || face->GetType() != SMDSAbs_Face )
continue;
// find top node in columns for each bottom node
int nbNodes = face->NbCornerNodes();
nodes.resize( nbNodes );
for ( iFrw = 0, iRev = nbNodes-1; iFrw < nbNodes; ++iFrw, --iRev )
{
const SMDS_MeshNode* n = face->GetNode( *iPtr );
if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) {
TNode2ColumnMap::iterator bot_column = myBotToColumnMap.find( n );
if ( bot_column == myBotToColumnMap.end() )
return toSM( error(TCom("No nodes found above node ") << n->GetID() ));
nodes[ iFrw ] = bot_column->second.back();
}
else {
const TNodeColumn* column = myBlock.GetNodeColumn( n );
if ( !column )
return toSM( error(TCom("No side nodes found above node ") << n->GetID() ));
nodes[ iFrw ] = column->back();
}
}
SMDS_MeshElement* newFace = 0;
switch ( nbNodes ) {
case 3: {
newFace = myHelper->AddFace(nodes[0], nodes[1], nodes[2]);
break;
}
case 4: {
newFace = myHelper->AddFace( nodes[0], nodes[1], nodes[2], nodes[3] );
break;
}
default:
newFace = meshDS->AddPolygonalFace( nodes );
}
if ( newFace )
meshDS->SetMeshElementOnShape( newFace, topFaceID );
}
myHelper->SetElementsOnShape( oldSetElemsOnShape );
// Check the projected mesh
if ( thePrism.myNbEdgesInWires.size() > 1 && // there are holes
topHelper.IsDistorted2D( topSM, /*checkUV=*/false ))
{
SMESH_MeshEditor editor( topHelper.GetMesh() );
// smooth in 2D or 3D?
TopLoc_Location loc;
Handle(Geom_Surface) surface = BRep_Tool::Surface( topFace, loc );
bool isPlanar = GeomLib_IsPlanarSurface( surface ).IsPlanar();
bool isFixed = false;
set<const SMDS_MeshNode*> fixedNodes;
for ( int iAttemp = 0; !isFixed && iAttemp < 10; ++iAttemp )
{
TIDSortedElemSet faces;
for ( faceIt = topSMDS->GetElements(); faceIt->more(); )
faces.insert( faces.end(), faceIt->next() );
SMESH_MeshEditor::SmoothMethod algo =
iAttemp ? SMESH_MeshEditor::CENTROIDAL : SMESH_MeshEditor::LAPLACIAN;
// smoothing
editor.Smooth( faces, fixedNodes, algo, /*nbIterations=*/ 10,
/*theTgtAspectRatio=*/1.0, /*the2D=*/!isPlanar);
isFixed = !topHelper.IsDistorted2D( topSM, /*checkUV=*/true );
}
if ( !isFixed )
return toSM( error( TCom("Projection from face #") << botSM->GetId()
<< " to face #" << topSM->GetId()
<< " failed: inverted elements created"));
}
return true;
}
//=======================================================================
//function : getSweepTolerance
//purpose : Compute tolerance to pass to StdMeshers_Sweeper
//=======================================================================
double StdMeshers_Prism_3D::getSweepTolerance( const Prism_3D::TPrismTopo& thePrism )
{
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
SMESHDS_SubMesh * sm[2] = { meshDS->MeshElements( thePrism.myBottom ),
meshDS->MeshElements( thePrism.myTop ) };
double minDist = 1e100;
vector< SMESH_TNodeXYZ > nodes;
for ( int iSM = 0; iSM < 2; ++iSM )
{
if ( !sm[ iSM ]) continue;
SMDS_ElemIteratorPtr fIt = sm[ iSM ]->GetElements();
while ( fIt->more() )
{
const SMDS_MeshElement* face = fIt->next();
const int nbNodes = face->NbCornerNodes();
SMDS_ElemIteratorPtr nIt = face->nodesIterator();
nodes.resize( nbNodes + 1 );
for ( int iN = 0; iN < nbNodes; ++iN )
nodes[ iN ] = nIt->next();
nodes.back() = nodes[0];
// loop on links
double dist2;
for ( int iN = 0; iN < nbNodes; ++iN )
{
if ( nodes[ iN ]._node->GetPosition()->GetDim() < 2 &&
nodes[ iN+1 ]._node->GetPosition()->GetDim() < 2 )
{
// it's a boundary link; measure distance of other
// nodes to this link
gp_XYZ linkDir = nodes[ iN ] - nodes[ iN+1 ];
double linkLen = linkDir.Modulus();
bool isDegen = ( linkLen < numeric_limits<double>::min() );
if ( !isDegen ) linkDir /= linkLen;
for ( int iN2 = 0; iN2 < nbNodes; ++iN2 ) // loop on other nodes
{
if ( nodes[ iN2 ] == nodes[ iN ] ||
nodes[ iN2 ] == nodes[ iN+1 ]) continue;
if ( isDegen )
{
dist2 = ( nodes[ iN ] - nodes[ iN2 ]).SquareModulus();
}
else
{
dist2 = linkDir.CrossSquareMagnitude( nodes[ iN ] - nodes[ iN2 ]);
}
if ( dist2 > numeric_limits<double>::min() )
minDist = Min ( minDist, dist2 );
}
}
// measure length link
else if ( nodes[ iN ]._node < nodes[ iN+1 ]._node ) // not to measure same link twice
{
dist2 = ( nodes[ iN ] - nodes[ iN+1 ]).SquareModulus();
if ( dist2 > numeric_limits<double>::min() )
minDist = Min ( minDist, dist2 );
}
}
}
}
return 0.1 * Sqrt ( minDist );
}
//=======================================================================
//function : isSimpleQuad
//purpose : check if the bottom FACE is meshable with nice qudrangles,
// if so the block aproach can work rather fast.
// This is a temporary mean caused by problems in StdMeshers_Sweeper
//=======================================================================
bool StdMeshers_Prism_3D::isSimpleBottom( const Prism_3D::TPrismTopo& thePrism )
{
// analyse angles between edges
double nbConcaveAng = 0, nbConvexAng = 0;
TopoDS_Face reverseBottom = TopoDS::Face( thePrism.myBottom.Reversed() ); // see initPrism()
TopoDS_Vertex commonV;
const list< TopoDS_Edge >& botEdges = thePrism.myBottomEdges;
list< TopoDS_Edge >::const_iterator edge = botEdges.begin();
while ( edge != botEdges.end() )
{
if ( SMESH_Algo::isDegenerated( *edge ))
return false;
TopoDS_Edge e1 = *edge++;
TopoDS_Edge e2 = ( edge == botEdges.end() ? botEdges.front() : *edge );
if ( ! TopExp::CommonVertex( e1, e2, commonV ))
{
e2 = botEdges.front();
if ( ! TopExp::CommonVertex( e1, e2, commonV ))
break;
}
double angle = myHelper->GetAngle( e1, e2, reverseBottom, commonV );
if ( angle < -5 * M_PI/180 )
if ( ++nbConcaveAng > 1 )
return false;
if ( angle > 85 * M_PI/180 )
if ( ++nbConvexAng > 4 )
return false;
}
return true;
}
//=======================================================================
//function : project2dMesh
//purpose : Project mesh faces from a source FACE of one prism (theSrcFace)
// to a source FACE of another prism (theTgtFace)
//=======================================================================
bool StdMeshers_Prism_3D::project2dMesh(const TopoDS_Face& theSrcFace,
const TopoDS_Face& theTgtFace)
{
TProjction2dAlgo* projector2D = TProjction2dAlgo::instance( this );
projector2D->myHyp.SetSourceFace( theSrcFace );
bool ok = projector2D->Compute( *myHelper->GetMesh(), theTgtFace );
SMESH_subMesh* tgtSM = myHelper->GetMesh()->GetSubMesh( theTgtFace );
if ( !ok && tgtSM->GetSubMeshDS() ) {
//tgtSM->ComputeStateEngine( SMESH_subMesh::CLEAN ); -- avoid propagation of events
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
SMESHDS_SubMesh* tgtSMDS = tgtSM->GetSubMeshDS();
for ( SMDS_ElemIteratorPtr eIt = tgtSMDS->GetElements(); eIt->more(); )
meshDS->RemoveFreeElement( eIt->next(), tgtSMDS, /*fromGroups=*/false );
for ( SMDS_NodeIteratorPtr nIt = tgtSMDS->GetNodes(); nIt->more(); )
meshDS->RemoveFreeNode( nIt->next(), tgtSMDS, /*fromGroups=*/false );
}
tgtSM->ComputeStateEngine ( SMESH_subMesh::CHECK_COMPUTE_STATE );
tgtSM->ComputeSubMeshStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
return ok;
}
//================================================================================
/*!
* \brief Set projection coordinates of a node to a face and it's sub-shapes
* \param faceID - the face given by in-block ID
* \param params - node normalized parameters
* \retval bool - is a success
*/
//================================================================================
bool StdMeshers_Prism_3D::setFaceAndEdgesXYZ( const int faceID, const gp_XYZ& params, int z )
{
// find base and top edges of the face
enum { BASE = 0, TOP, LEFT, RIGHT };
vector< int > edgeVec; // 0-base, 1-top
SMESH_Block::GetFaceEdgesIDs( faceID, edgeVec );
myBlock.EdgePoint( edgeVec[ BASE ], params, myShapeXYZ[ edgeVec[ BASE ]]);
myBlock.EdgePoint( edgeVec[ TOP ], params, myShapeXYZ[ edgeVec[ TOP ]]);
SHOWYXZ("\nparams ", params);
SHOWYXZ("TOP is " <<edgeVec[ TOP ], myShapeXYZ[ edgeVec[ TOP]]);
SHOWYXZ("BASE is "<<edgeVec[ BASE], myShapeXYZ[ edgeVec[ BASE]]);
if ( faceID == SMESH_Block::ID_Fx0z || faceID == SMESH_Block::ID_Fx1z )
{
myBlock.EdgePoint( edgeVec[ LEFT ], params, myShapeXYZ[ edgeVec[ LEFT ]]);
myBlock.EdgePoint( edgeVec[ RIGHT ], params, myShapeXYZ[ edgeVec[ RIGHT ]]);
SHOWYXZ("VER "<<edgeVec[ LEFT], myShapeXYZ[ edgeVec[ LEFT]]);
SHOWYXZ("VER "<<edgeVec[ RIGHT], myShapeXYZ[ edgeVec[ RIGHT]]);
}
myBlock.FacePoint( faceID, params, myShapeXYZ[ faceID ]);
SHOWYXZ("FacePoint "<<faceID, myShapeXYZ[ faceID]);
return true;
}
//=======================================================================
//function : toSM
//purpose : If (!isOK), sets the error to a sub-mesh of a current SOLID
//=======================================================================
bool StdMeshers_Prism_3D::toSM( bool isOK )
{
if ( mySetErrorToSM &&
!isOK &&
myHelper &&
!myHelper->GetSubShape().IsNull() &&
myHelper->GetSubShape().ShapeType() == TopAbs_SOLID)
{
SMESH_subMesh* sm = myHelper->GetMesh()->GetSubMesh( myHelper->GetSubShape() );
sm->GetComputeError() = this->GetComputeError();
// clear error in order not to return it twice
_error = COMPERR_OK;
_comment.clear();
}
return isOK;
}
//=======================================================================
//function : shapeID
//purpose : Return index of a shape
//=======================================================================
int StdMeshers_Prism_3D::shapeID( const TopoDS_Shape& S )
{
if ( S.IsNull() ) return 0;
if ( !myHelper ) return -3;
return myHelper->GetMeshDS()->ShapeToIndex( S );
}
namespace // utils used by StdMeshers_Prism_3D::IsApplicable()
{
struct EdgeWithNeighbors
{
TopoDS_Edge _edge;
int _iL, _iR;
EdgeWithNeighbors(const TopoDS_Edge& E, int iE, int nbE, int shift = 0 ):
_edge( E ),
_iL( SMESH_MesherHelper::WrapIndex( iE-1, nbE ) + shift ),
_iR( SMESH_MesherHelper::WrapIndex( iE+1, nbE ) + shift )
{
}
EdgeWithNeighbors() {}
};
struct PrismSide
{
TopoDS_Face _face;
TopTools_IndexedMapOfShape *_faces; // pointer because its copy constructor is private
TopoDS_Edge _topEdge;
vector< EdgeWithNeighbors >*_edges;
int _iBotEdge;
vector< bool > _isCheckedEdge;
int _nbCheckedEdges; // nb of EDGEs whose location is defined
PrismSide *_leftSide;
PrismSide *_rightSide;
const TopoDS_Edge& Edge( int i ) const
{
return (*_edges)[ i ]._edge;
}
int FindEdge( const TopoDS_Edge& E ) const
{
for ( size_t i = 0; i < _edges->size(); ++i )
if ( E.IsSame( Edge( i ))) return i;
return -1;
}
bool IsSideFace( const TopoDS_Shape& face ) const
{
if ( _faces->Contains( face )) // avoid returning true for a prism top FACE
return ( !_face.IsNull() || !( face.IsSame( _faces->FindKey( _faces->Extent() ))));
return false;
}
};
//--------------------------------------------------------------------------------
/*!
* \brief Return ordered edges of a face
*/
bool getEdges( const TopoDS_Face& face,
vector< EdgeWithNeighbors > & edges,
const bool noHolesAllowed)
{
list< TopoDS_Edge > ee;
list< int > nbEdgesInWires;
int nbW = SMESH_Block::GetOrderedEdges( face, ee, nbEdgesInWires );
if ( nbW > 1 && noHolesAllowed )
return false;
int iE, nbTot = 0;
list< TopoDS_Edge >::iterator e = ee.begin();
list< int >::iterator nbE = nbEdgesInWires.begin();
for ( ; nbE != nbEdgesInWires.end(); ++nbE )
for ( iE = 0; iE < *nbE; ++e, ++iE )
if ( SMESH_Algo::isDegenerated( *e ))
{
e = --ee.erase( e );
--(*nbE);
--iE;
}
else
{
e->Orientation( TopAbs_FORWARD ); // for operator==() to work
}
edges.clear();
e = ee.begin();
for ( nbE = nbEdgesInWires.begin(); nbE != nbEdgesInWires.end(); ++nbE )
{
for ( iE = 0; iE < *nbE; ++e, ++iE )
edges.push_back( EdgeWithNeighbors( *e, iE, *nbE, nbTot ));
nbTot += *nbE;
}
return edges.size();
}
//--------------------------------------------------------------------------------
/*!
* \brief Return another faces sharing an edge
*/
const TopoDS_Shape & getAnotherFace( const TopoDS_Face& face,
const TopoDS_Edge& edge,
TopTools_IndexedDataMapOfShapeListOfShape& facesOfEdge)
{
TopTools_ListIteratorOfListOfShape faceIt( facesOfEdge.FindFromKey( edge ));
for ( ; faceIt.More(); faceIt.Next() )
if ( !face.IsSame( faceIt.Value() ))
return faceIt.Value();
return face;
}
}
//================================================================================
/*!
* \brief Return true if the algorithm can mesh this shape
* \param [in] aShape - shape to check
* \param [in] toCheckAll - if true, this check returns OK if all shapes are OK,
* else, returns OK if at least one shape is OK
*/
//================================================================================
bool StdMeshers_Prism_3D::IsApplicable(const TopoDS_Shape & shape, bool toCheckAll)
{
TopExp_Explorer sExp( shape, TopAbs_SOLID );
if ( !sExp.More() )
return false;
for ( ; sExp.More(); sExp.Next() )
{
// check nb shells
TopoDS_Shape shell;
TopExp_Explorer shExp( sExp.Current(), TopAbs_SHELL );
if ( shExp.More() ) {
shell = shExp.Current();
shExp.Next();
if ( shExp.More() )
shell.Nullify();
}
if ( shell.IsNull() ) {
if ( toCheckAll ) return false;
continue;
}
// get all faces
TopTools_IndexedMapOfShape allFaces;
TopExp::MapShapes( shell, TopAbs_FACE, allFaces );
if ( allFaces.Extent() < 3 ) {
if ( toCheckAll ) return false;
continue;
}
// is a box?
if ( allFaces.Extent() == 6 )
{
TopTools_IndexedMapOfOrientedShape map;
bool isBox = SMESH_Block::FindBlockShapes( TopoDS::Shell( shell ),
TopoDS_Vertex(), TopoDS_Vertex(), map );
if ( isBox ) {
if ( !toCheckAll ) return true;
continue;
}
}
#ifdef _DEBUG_
TopTools_IndexedMapOfShape allShapes;
TopExp::MapShapes( shape, allShapes );
#endif
TopTools_IndexedDataMapOfShapeListOfShape facesOfEdge;
TopTools_ListIteratorOfListOfShape faceIt;
TopExp::MapShapesAndAncestors( sExp.Current(), TopAbs_EDGE, TopAbs_FACE , facesOfEdge );
if ( facesOfEdge.IsEmpty() ) {
if ( toCheckAll ) return false;
continue;
}
typedef vector< EdgeWithNeighbors > TEdgeWithNeighborsVec;
vector< TEdgeWithNeighborsVec > faceEdgesVec( allFaces.Extent() + 1 );
TopTools_IndexedMapOfShape* facesOfSide = new TopTools_IndexedMapOfShape[ faceEdgesVec.size() ];
SMESHUtils::ArrayDeleter<TopTools_IndexedMapOfShape> delFacesOfSide( facesOfSide );
// try to use each face as a bottom one
bool prismDetected = false;
for ( int iF = 1; iF < allFaces.Extent() && !prismDetected; ++iF )
{
const TopoDS_Face& botF = TopoDS::Face( allFaces( iF ));
TEdgeWithNeighborsVec& botEdges = faceEdgesVec[ iF ];
if ( botEdges.empty() )
if ( !getEdges( botF, botEdges, /*noHoles=*/false ))
break;
if ( allFaces.Extent()-1 <= (int) botEdges.size() )
continue; // all faces are adjacent to botF - no top FACE
// init data of side FACEs
vector< PrismSide > sides( botEdges.size() );
for ( int iS = 0; iS < botEdges.size(); ++iS )
{
sides[ iS ]._topEdge = botEdges[ iS ]._edge;
sides[ iS ]._face = botF;
sides[ iS ]._leftSide = & sides[ botEdges[ iS ]._iR ];
sides[ iS ]._rightSide = & sides[ botEdges[ iS ]._iL ];
sides[ iS ]._faces = & facesOfSide[ iS ];
sides[ iS ]._faces->Clear();
}
bool isOK = true; // ok for a current botF
bool isAdvanced = true; // is new data found in a current loop
int nbFoundSideFaces = 0;
for ( int iLoop = 0; isOK && isAdvanced; ++iLoop )
{
isAdvanced = false;
for ( size_t iS = 0; iS < sides.size() && isOK; ++iS )
{
PrismSide& side = sides[ iS ];
if ( side._face.IsNull() )
continue; // probably the prism top face is the last of side._faces
if ( side._topEdge.IsNull() )
{
// find vertical EDGEs --- EGDEs shared with neighbor side FACEs
for ( int is2nd = 0; is2nd < 2 && isOK; ++is2nd ) // 2 adjacent neighbors
{
int di = is2nd ? 1 : -1;
const PrismSide* adjSide = is2nd ? side._rightSide : side._leftSide;
for ( size_t i = 1; i < side._edges->size(); ++i )
{
int iE = SMESH_MesherHelper::WrapIndex( i*di + side._iBotEdge, side._edges->size());
if ( side._isCheckedEdge[ iE ] ) continue;
const TopoDS_Edge& vertE = side.Edge( iE );
const TopoDS_Shape& neighborF = getAnotherFace( side._face, vertE, facesOfEdge );
bool isEdgeShared = adjSide->IsSideFace( neighborF );
if ( isEdgeShared )
{
isAdvanced = true;
side._isCheckedEdge[ iE ] = true;
side._nbCheckedEdges++;
int nbNotCheckedE = side._edges->size() - side._nbCheckedEdges;
if ( nbNotCheckedE == 1 )
break;
}
else
{
if ( i == 1 && iLoop == 0 ) isOK = false;
break;
}
}
}
// find a top EDGE
int nbNotCheckedE = side._edges->size() - side._nbCheckedEdges;
if ( nbNotCheckedE == 1 )
{
vector<bool>::iterator ii = std::find( side._isCheckedEdge.begin(),
side._isCheckedEdge.end(), false );
if ( ii != side._isCheckedEdge.end() )
{
size_t iE = std::distance( side._isCheckedEdge.begin(), ii );
side._topEdge = side.Edge( iE );
}
}
isOK = ( nbNotCheckedE >= 1 );
}
else //if ( !side._topEdge.IsNull() )
{
// get a next face of a side
const TopoDS_Shape& f = getAnotherFace( side._face, side._topEdge, facesOfEdge );
side._faces->Add( f );
bool stop = false;
if ( f.IsSame( side._face ) || // _topEdge is a seam
SMESH_MesherHelper::Count( f, TopAbs_WIRE, false ) != 1 )
{
stop = true;
}
else if ( side._leftSide != & side ) // not closed side face
{
if ( side._leftSide->_faces->Contains( f ))
{
stop = true; // probably f is the prism top face
side._leftSide->_face.Nullify();
side._leftSide->_topEdge.Nullify();
}
if ( side._rightSide->_faces->Contains( f ))
{
stop = true; // probably f is the prism top face
side._rightSide->_face.Nullify();
side._rightSide->_topEdge.Nullify();
}
}
if ( stop )
{
side._face.Nullify();
side._topEdge.Nullify();
continue;
}
side._face = TopoDS::Face( f );
int faceID = allFaces.FindIndex( side._face );
side._edges = & faceEdgesVec[ faceID ];
if ( side._edges->empty() )
if ( !getEdges( side._face, * side._edges, /*noHoles=*/true ))
break;
const int nbE = side._edges->size();
if ( nbE >= 4 )
{
isAdvanced = true;
++nbFoundSideFaces;
side._iBotEdge = side.FindEdge( side._topEdge );
side._isCheckedEdge.clear();
side._isCheckedEdge.resize( nbE, false );
side._isCheckedEdge[ side._iBotEdge ] = true;
side._nbCheckedEdges = 1; // bottom EDGE is known
}
side._topEdge.Nullify();
isOK = ( !side._edges->empty() || side._faces->Extent() > 1 );
} //if ( !side._topEdge.IsNull() )
} // loop on prism sides
if ( nbFoundSideFaces > allFaces.Extent() )
{
isOK = false;
}
if ( iLoop > allFaces.Extent() * 10 )
{
isOK = false;
#ifdef _DEBUG_
cerr << "BUG: infinite loop in StdMeshers_Prism_3D::IsApplicable()" << endl;
#endif
}
} // while isAdvanced
if ( isOK && sides[0]._faces->Extent() > 1 )
{
const int nbFaces = sides[0]._faces->Extent();
if ( botEdges.size() == 1 ) // cylinder
{
prismDetected = ( nbFaces == allFaces.Extent()-1 );
}
else
{
const TopoDS_Shape& topFace = sides[0]._faces->FindKey( nbFaces );
size_t iS;
for ( iS = 1; iS < sides.size(); ++iS )
if ( !sides[ iS ]._faces->Contains( topFace ))
break;
prismDetected = ( iS == sides.size() );
}
}
} // loop on allFaces
if ( !prismDetected && toCheckAll ) return false;
if ( prismDetected && !toCheckAll ) return true;
} // loop on solids
return toCheckAll;
}
namespace Prism_3D
{
//================================================================================
/*!
* \brief Return true if this node and other one belong to one face
*/
//================================================================================
bool Prism_3D::TNode::IsNeighbor( const Prism_3D::TNode& other ) const
{
if ( !other.myNode || !myNode ) return false;
SMDS_ElemIteratorPtr fIt = other.myNode->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
if ( fIt->next()->GetNodeIndex( myNode ) >= 0 )
return true;
return false;
}
//================================================================================
/*!
* \brief Prism initialization
*/
//================================================================================
void TPrismTopo::Clear()
{
myShape3D.Nullify();
myTop.Nullify();
myBottom.Nullify();
myWallQuads.clear();
myBottomEdges.clear();
myNbEdgesInWires.clear();
myWallQuads.clear();
}
//================================================================================
/*!
* \brief Set upside-down
*/
//================================================================================
void TPrismTopo::SetUpsideDown()
{
std::swap( myBottom, myTop );
myBottomEdges.clear();
std::reverse( myBottomEdges.begin(), myBottomEdges.end() );
for ( size_t i = 0; i < myWallQuads.size(); ++i )
{
myWallQuads[i].reverse();
TQuadList::iterator q = myWallQuads[i].begin();
for ( ; q != myWallQuads[i].end(); ++q )
{
(*q)->shift( 2, /*keepUnitOri=*/true );
}
myBottomEdges.push_back( myWallQuads[i].front()->side[ QUAD_BOTTOM_SIDE ].grid->Edge(0) );
}
}
} // namespace Prism_3D
//================================================================================
/*!
* \brief Constructor. Initialization is needed
*/
//================================================================================
StdMeshers_PrismAsBlock::StdMeshers_PrismAsBlock()
{
mySide = 0;
}
StdMeshers_PrismAsBlock::~StdMeshers_PrismAsBlock()
{
Clear();
}
void StdMeshers_PrismAsBlock::Clear()
{
myHelper = 0;
myShapeIDMap.Clear();
myError.reset();
if ( mySide ) {
delete mySide; mySide = 0;
}
myParam2ColumnMaps.clear();
myShapeIndex2ColumnMap.clear();
}
//=======================================================================
//function : initPrism
//purpose : Analyse shape geometry and mesh.
// If there are triangles on one of faces, it becomes 'bottom'.
// thePrism.myBottom can be already set up.
//=======================================================================
bool StdMeshers_Prism_3D::initPrism(Prism_3D::TPrismTopo& thePrism,
const TopoDS_Shape& theShape3D,
const bool selectBottom)
{
myHelper->SetSubShape( theShape3D );
SMESH_subMesh* mainSubMesh = myHelper->GetMesh()->GetSubMeshContaining( theShape3D );
if ( !mainSubMesh ) return toSM( error(COMPERR_BAD_INPUT_MESH,"Null submesh of shape3D"));
// detect not-quad FACE sub-meshes of the 3D SHAPE
list< SMESH_subMesh* > notQuadGeomSubMesh;
list< SMESH_subMesh* > notQuadElemSubMesh;
list< SMESH_subMesh* > meshedSubMesh;
int nbFaces = 0;
//
SMESH_subMesh* anyFaceSM = 0;
SMESH_subMeshIteratorPtr smIt = mainSubMesh->getDependsOnIterator(false,true);
while ( smIt->more() )
{
SMESH_subMesh* sm = smIt->next();
const TopoDS_Shape& face = sm->GetSubShape();
if ( face.ShapeType() > TopAbs_FACE ) break;
else if ( face.ShapeType() < TopAbs_FACE ) continue;
nbFaces++;
anyFaceSM = sm;
// is quadrangle FACE?
list< TopoDS_Edge > orderedEdges;
list< int > nbEdgesInWires;
int nbWires = SMESH_Block::GetOrderedEdges( TopoDS::Face( face ), orderedEdges,
nbEdgesInWires );
if ( nbWires != 1 || nbEdgesInWires.front() != 4 )
notQuadGeomSubMesh.push_back( sm );
// look for a not structured sub-mesh
if ( !sm->IsEmpty() )
{
meshedSubMesh.push_back( sm );
if ( !myHelper->IsSameElemGeometry( sm->GetSubMeshDS(), SMDSGeom_QUADRANGLE ) ||
!myHelper->IsStructured ( sm ))
notQuadElemSubMesh.push_back( sm );
}
}
int nbNotQuadMeshed = notQuadElemSubMesh.size();
int nbNotQuad = notQuadGeomSubMesh.size();
bool hasNotQuad = ( nbNotQuad || nbNotQuadMeshed );
// detect bad cases
if ( nbNotQuadMeshed > 2 )
{
return toSM( error(COMPERR_BAD_INPUT_MESH,
TCom("More than 2 faces with not quadrangle elements: ")
<<nbNotQuadMeshed));
}
if ( nbNotQuad > 2 || !thePrism.myBottom.IsNull() )
{
// Issue 0020843 - one of side FACEs is quasi-quadrilateral (not 4 EDGEs).
// Remove from notQuadGeomSubMesh faces meshed with regular grid
int nbQuasiQuads = removeQuasiQuads( notQuadGeomSubMesh, myHelper,
TQuadrangleAlgo::instance(this,myHelper) );
nbNotQuad -= nbQuasiQuads;
if ( nbNotQuad > 2 )
return toSM( error(COMPERR_BAD_SHAPE,
TCom("More than 2 not quadrilateral faces: ") <<nbNotQuad));
hasNotQuad = ( nbNotQuad || nbNotQuadMeshed );
}
// Analyse mesh and topology of FACEs: choose the bottom sub-mesh.
// If there are not quadrangle FACEs, they are top and bottom ones.
// Not quadrangle FACEs must be only on top and bottom.
SMESH_subMesh * botSM = 0;
SMESH_subMesh * topSM = 0;
if ( hasNotQuad ) // can choose a bottom FACE
{
if ( nbNotQuadMeshed > 0 ) botSM = notQuadElemSubMesh.front();
else botSM = notQuadGeomSubMesh.front();
if ( nbNotQuadMeshed > 1 ) topSM = notQuadElemSubMesh.back();
else if ( nbNotQuad > 1 ) topSM = notQuadGeomSubMesh.back();
if ( topSM == botSM ) {
if ( nbNotQuadMeshed > 1 ) topSM = notQuadElemSubMesh.front();
else topSM = notQuadGeomSubMesh.front();
}
// detect mesh triangles on wall FACEs
if ( nbNotQuad == 2 && nbNotQuadMeshed > 0 ) {
bool ok = false;
if ( nbNotQuadMeshed == 1 )
ok = ( find( notQuadGeomSubMesh.begin(),
notQuadGeomSubMesh.end(), botSM ) != notQuadGeomSubMesh.end() );
else
ok = ( notQuadGeomSubMesh == notQuadElemSubMesh );
if ( !ok )
return toSM( error(COMPERR_BAD_INPUT_MESH,
"Side face meshed with not quadrangle elements"));
}
}
thePrism.myNotQuadOnTop = ( nbNotQuadMeshed > 1 );
// use thePrism.myBottom
if ( !thePrism.myBottom.IsNull() )
{
if ( botSM ) { // <-- not quad geom or mesh on botSM
if ( ! botSM->GetSubShape().IsSame( thePrism.myBottom )) {
std::swap( botSM, topSM );
if ( !botSM || ! botSM->GetSubShape().IsSame( thePrism.myBottom )) {
if ( !selectBottom )
return toSM( error( COMPERR_BAD_INPUT_MESH,
"Incompatible non-structured sub-meshes"));
std::swap( botSM, topSM );
thePrism.myBottom = TopoDS::Face( botSM->GetSubShape() );
}
}
}
else if ( !selectBottom ) {
botSM = myHelper->GetMesh()->GetSubMesh( thePrism.myBottom );
}
}
if ( !botSM ) // find a proper bottom
{
bool savedSetErrorToSM = mySetErrorToSM;
mySetErrorToSM = false; // ingore errors in initPrism()
// search among meshed FACEs
list< SMESH_subMesh* >::iterator sm = meshedSubMesh.begin();
for ( ; !botSM && sm != meshedSubMesh.end(); ++sm )
{
thePrism.Clear();
botSM = *sm;
thePrism.myBottom = TopoDS::Face( botSM->GetSubShape() );
if ( !initPrism( thePrism, theShape3D, /*selectBottom=*/false ))
botSM = NULL;
}
// search among all FACEs
for ( TopExp_Explorer f( theShape3D, TopAbs_FACE ); !botSM && f.More(); f.Next() )
{
int minNbFaces = 2 + myHelper->Count( f.Current(), TopAbs_EDGE, false);
if ( nbFaces < minNbFaces) continue;
thePrism.Clear();
thePrism.myBottom = TopoDS::Face( f.Current() );
botSM = myHelper->GetMesh()->GetSubMesh( thePrism.myBottom );
if ( !initPrism( thePrism, theShape3D, /*selectBottom=*/false ))
botSM = NULL;
}
mySetErrorToSM = savedSetErrorToSM;
return botSM ? true : toSM( error( COMPERR_BAD_SHAPE ));
}
// find vertex 000 - the one with smallest coordinates (for easy DEBUG :-)
TopoDS_Vertex V000;
double minVal = DBL_MAX, minX, val;
for ( TopExp_Explorer exp( botSM->GetSubShape(), TopAbs_VERTEX );
exp.More(); exp.Next() )
{
const TopoDS_Vertex& v = TopoDS::Vertex( exp.Current() );
gp_Pnt P = BRep_Tool::Pnt( v );
val = P.X() + P.Y() + P.Z();
if ( val < minVal || ( val == minVal && P.X() < minX )) {
V000 = v;
minVal = val;
minX = P.X();
}
}
thePrism.myShape3D = theShape3D;
if ( thePrism.myBottom.IsNull() )
thePrism.myBottom = TopoDS::Face( botSM->GetSubShape() );
thePrism.myBottom.Orientation( myHelper->GetSubShapeOri( theShape3D, thePrism.myBottom ));
thePrism.myTop. Orientation( myHelper->GetSubShapeOri( theShape3D, thePrism.myTop ));
// Get ordered bottom edges
TopoDS_Face reverseBottom = // to have order of top EDGEs as in the top FACE
TopoDS::Face( thePrism.myBottom.Reversed() );
SMESH_Block::GetOrderedEdges( reverseBottom,
thePrism.myBottomEdges,
thePrism.myNbEdgesInWires, V000 );
// Get Wall faces corresponding to the ordered bottom edges and the top FACE
if ( !getWallFaces( thePrism, nbFaces )) // it also sets thePrism.myTop
return false; //toSM( error(COMPERR_BAD_SHAPE, "Can't find side faces"));
if ( topSM )
{
if ( !thePrism.myTop.IsSame( topSM->GetSubShape() ))
return toSM( error
(notQuadGeomSubMesh.empty() ? COMPERR_BAD_INPUT_MESH : COMPERR_BAD_SHAPE,
"Non-quadrilateral faces are not opposite"));
// check that the found top and bottom FACEs are opposite
list< TopoDS_Edge >::iterator edge = thePrism.myBottomEdges.begin();
for ( ; edge != thePrism.myBottomEdges.end(); ++edge )
if ( myHelper->IsSubShape( *edge, thePrism.myTop ))
return toSM( error
(notQuadGeomSubMesh.empty() ? COMPERR_BAD_INPUT_MESH : COMPERR_BAD_SHAPE,
"Non-quadrilateral faces are not opposite"));
}
if ( thePrism.myBottomEdges.size() > thePrism.myWallQuads.size() )
{
// composite bottom sides => set thePrism upside-down
thePrism.SetUpsideDown();
}
return true;
}
//================================================================================
/*!
* \brief Initialization.
* \param helper - helper loaded with mesh and 3D shape
* \param thePrism - a prism data
* \retval bool - false if a mesh or a shape are KO
*/
//================================================================================
bool StdMeshers_PrismAsBlock::Init(SMESH_MesherHelper* helper,
const Prism_3D::TPrismTopo& thePrism)
{
myHelper = helper;
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
SMESH_Mesh* mesh = myHelper->GetMesh();
if ( mySide ) {
delete mySide; mySide = 0;
}
vector< TSideFace* > sideFaces( NB_WALL_FACES, 0 );
vector< pair< double, double> > params( NB_WALL_FACES );
mySide = new TSideFace( *mesh, sideFaces, params );
SMESH_Block::init();
myShapeIDMap.Clear();
myShapeIndex2ColumnMap.clear();
int wallFaceIds[ NB_WALL_FACES ] = { // to walk around a block
SMESH_Block::ID_Fx0z, SMESH_Block::ID_F1yz,
SMESH_Block::ID_Fx1z, SMESH_Block::ID_F0yz
};
myError = SMESH_ComputeError::New();
myNotQuadOnTop = thePrism.myNotQuadOnTop;
// Find columns of wall nodes and calculate edges' lengths
// --------------------------------------------------------
myParam2ColumnMaps.clear();
myParam2ColumnMaps.resize( thePrism.myBottomEdges.size() ); // total nb edges
size_t iE, nbEdges = thePrism.myNbEdgesInWires.front(); // nb outer edges
vector< double > edgeLength( nbEdges );
multimap< double, int > len2edgeMap;
// for each EDGE: either split into several parts, or join with several next EDGEs
vector<int> nbSplitPerEdge( nbEdges, 0 );
vector<int> nbUnitePerEdge( nbEdges, 0 ); // -1 means "joined to a previous"
// consider continuous straight EDGEs as one side
const int nbSides = countNbSides( thePrism, nbUnitePerEdge, edgeLength );
list< TopoDS_Edge >::const_iterator edgeIt = thePrism.myBottomEdges.begin();
for ( iE = 0; iE < nbEdges; ++iE, ++edgeIt )
{
TParam2ColumnMap & faceColumns = myParam2ColumnMaps[ iE ];
Prism_3D::TQuadList::const_iterator quad = thePrism.myWallQuads[ iE ].begin();
for ( ; quad != thePrism.myWallQuads[ iE ].end(); ++quad )
{
const TopoDS_Edge& quadBot = (*quad)->side[ QUAD_BOTTOM_SIDE ].grid->Edge( 0 );
if ( !myHelper->LoadNodeColumns( faceColumns, (*quad)->face, quadBot, meshDS ))
return error(COMPERR_BAD_INPUT_MESH, TCom("Can't find regular quadrangle mesh ")
<< "on a side face #" << MeshDS()->ShapeToIndex( (*quad)->face ));
}
SHOWYXZ("\np1 F " <<iE, gpXYZ(faceColumns.begin()->second.front() ));
SHOWYXZ("p2 F " <<iE, gpXYZ(faceColumns.rbegin()->second.front() ));
SHOWYXZ("V First "<<iE, BRep_Tool::Pnt( TopExp::FirstVertex(*edgeIt,true )));
if ( nbSides < NB_WALL_FACES ) // fill map used to split faces
len2edgeMap.insert( make_pair( edgeLength[ iE ], iE )); // sort edges by length
}
// Load columns of internal edges (forming holes)
// and fill map ShapeIndex to TParam2ColumnMap for them
for ( ; edgeIt != thePrism.myBottomEdges.end() ; ++edgeIt, ++iE )
{
TParam2ColumnMap & faceColumns = myParam2ColumnMaps[ iE ];
Prism_3D::TQuadList::const_iterator quad = thePrism.myWallQuads[ iE ].begin();
for ( ; quad != thePrism.myWallQuads[ iE ].end(); ++quad )
{
const TopoDS_Edge& quadBot = (*quad)->side[ QUAD_BOTTOM_SIDE ].grid->Edge( 0 );
if ( !myHelper->LoadNodeColumns( faceColumns, (*quad)->face, quadBot, meshDS ))
return error(COMPERR_BAD_INPUT_MESH, TCom("Can't find regular quadrangle mesh ")
<< "on a side face #" << MeshDS()->ShapeToIndex( (*quad)->face ));
}
// edge columns
int id = MeshDS()->ShapeToIndex( *edgeIt );
bool isForward = true; // meaningless for intenal wires
myShapeIndex2ColumnMap[ id ] = make_pair( & faceColumns, isForward );
// columns for vertices
// 1
const SMDS_MeshNode* n0 = faceColumns.begin()->second.front();
id = n0->getshapeId();
myShapeIndex2ColumnMap[ id ] = make_pair( & faceColumns, isForward );
// 2
const SMDS_MeshNode* n1 = faceColumns.rbegin()->second.front();
id = n1->getshapeId();
myShapeIndex2ColumnMap[ id ] = make_pair( & faceColumns, isForward );
// SHOWYXZ("\np1 F " <<iE, gpXYZ(faceColumns.begin()->second.front() ));
// SHOWYXZ("p2 F " <<iE, gpXYZ(faceColumns.rbegin()->second.front() ));
// SHOWYXZ("V First "<<iE, BRep_Tool::Pnt( TopExp::FirstVertex(*edgeIt,true )));
}
// Create 4 wall faces of a block
// -------------------------------
if ( nbSides <= NB_WALL_FACES ) // ************* Split faces if necessary
{
if ( nbSides != NB_WALL_FACES ) // define how to split
{
if ( len2edgeMap.size() != nbEdges )
RETURN_BAD_RESULT("Uniqueness of edge lengths not assured");
multimap< double, int >::reverse_iterator maxLen_i = len2edgeMap.rbegin();
multimap< double, int >::reverse_iterator midLen_i = ++len2edgeMap.rbegin();
double maxLen = maxLen_i->first;
double midLen = ( len2edgeMap.size() == 1 ) ? 0 : midLen_i->first;
switch ( nbEdges ) {
case 1: // 0-th edge is split into 4 parts
nbSplitPerEdge[ 0 ] = 4;
break;
case 2: // either the longest edge is split into 3 parts, or both edges into halves
if ( maxLen / 3 > midLen / 2 ) {
nbSplitPerEdge[ maxLen_i->second ] = 3;
}
else {
nbSplitPerEdge[ maxLen_i->second ] = 2;
nbSplitPerEdge[ midLen_i->second ] = 2;
}
break;
case 3:
if ( nbSides == 2 )
// split longest into 3 parts
nbSplitPerEdge[ maxLen_i->second ] = 3;
else
// split longest into halves
nbSplitPerEdge[ maxLen_i->second ] = 2;
}
}
}
else // **************************** Unite faces
{
int nbExraFaces = nbSides - 4; // nb of faces to fuse
for ( iE = 0; iE < nbEdges; ++iE )
{
if ( nbUnitePerEdge[ iE ] < 0 )
continue;
// look for already united faces
for ( int i = iE; i < iE + nbExraFaces; ++i )
{
if ( nbUnitePerEdge[ i ] > 0 ) // a side including nbUnitePerEdge[i]+1 edge
nbExraFaces += nbUnitePerEdge[ i ];
nbUnitePerEdge[ i ] = -1;
}
nbUnitePerEdge[ iE ] = nbExraFaces;
break;
}
}
// Create TSideFace's
int iSide = 0;
list< TopoDS_Edge >::const_iterator botE = thePrism.myBottomEdges.begin();
for ( iE = 0; iE < nbEdges; ++iE, ++botE )
{
TFaceQuadStructPtr quad = thePrism.myWallQuads[ iE ].front();
const int nbSplit = nbSplitPerEdge[ iE ];
const int nbExraFaces = nbUnitePerEdge[ iE ] + 1;
if ( nbSplit > 0 ) // split
{
vector< double > params;
splitParams( nbSplit, &myParam2ColumnMaps[ iE ], params );
const bool isForward =
StdMeshers_PrismAsBlock::IsForwardEdge( myHelper->GetMeshDS(),
myParam2ColumnMaps[iE],
*botE, SMESH_Block::ID_Fx0z );
for ( int i = 0; i < nbSplit; ++i ) {
double f = ( isForward ? params[ i ] : params[ nbSplit - i-1 ]);
double l = ( isForward ? params[ i+1 ] : params[ nbSplit - i ]);
TSideFace* comp = new TSideFace( *mesh, wallFaceIds[ iSide ],
thePrism.myWallQuads[ iE ], *botE,
&myParam2ColumnMaps[ iE ], f, l );
mySide->SetComponent( iSide++, comp );
}
}
else if ( nbExraFaces > 1 ) // unite
{
double u0 = 0, sumLen = 0;
for ( int i = iE; i < iE + nbExraFaces; ++i )
sumLen += edgeLength[ i ];
vector< TSideFace* > components( nbExraFaces );
vector< pair< double, double> > params( nbExraFaces );
bool endReached = false;
for ( int i = 0; i < nbExraFaces; ++i, ++botE, ++iE )
{
if ( iE == nbEdges )
{
endReached = true;
botE = thePrism.myBottomEdges.begin();
iE = 0;
}
components[ i ] = new TSideFace( *mesh, wallFaceIds[ iSide ],
thePrism.myWallQuads[ iE ], *botE,
&myParam2ColumnMaps[ iE ]);
double u1 = u0 + edgeLength[ iE ] / sumLen;
params[ i ] = make_pair( u0 , u1 );
u0 = u1;
}
TSideFace* comp = new TSideFace( *mesh, components, params );
mySide->SetComponent( iSide++, comp );
if ( endReached )
break;
--iE; // for increment in an external loop on iE
--botE;
}
else if ( nbExraFaces < 0 ) // skip already united face
{
}
else // use as is
{
TSideFace* comp = new TSideFace( *mesh, wallFaceIds[ iSide ],
thePrism.myWallQuads[ iE ], *botE,
&myParam2ColumnMaps[ iE ]);
mySide->SetComponent( iSide++, comp );
}
}
// Fill geometry fields of SMESH_Block
// ------------------------------------
vector< int > botEdgeIdVec;
SMESH_Block::GetFaceEdgesIDs( ID_BOT_FACE, botEdgeIdVec );
bool isForward[NB_WALL_FACES] = { true, true, true, true };
Adaptor2d_Curve2d* botPcurves[NB_WALL_FACES];
Adaptor2d_Curve2d* topPcurves[NB_WALL_FACES];
for ( int iF = 0; iF < NB_WALL_FACES; ++iF )
{
TSideFace * sideFace = mySide->GetComponent( iF );
if ( !sideFace )
RETURN_BAD_RESULT("NULL TSideFace");
int fID = sideFace->FaceID(); // in-block ID
// fill myShapeIDMap
if ( sideFace->InsertSubShapes( myShapeIDMap ) != 8 &&
!sideFace->IsComplex())
MESSAGE( ": Warning : InsertSubShapes() < 8 on side " << iF );
// side faces geometry
Adaptor2d_Curve2d* pcurves[NB_WALL_FACES];
if ( !sideFace->GetPCurves( pcurves ))
RETURN_BAD_RESULT("TSideFace::GetPCurves() failed");
SMESH_Block::TFace& tFace = myFace[ fID - ID_FirstF ];
tFace.Set( fID, sideFace->Surface(), pcurves, isForward );
SHOWYXZ( endl<<"F "<< iF << " id " << fID << " FRW " << sideFace->IsForward(), sideFace->Value(0,0));
// edges 3D geometry
vector< int > edgeIdVec;
SMESH_Block::GetFaceEdgesIDs( fID, edgeIdVec );
for ( int isMax = 0; isMax < 2; ++isMax ) {
{
int eID = edgeIdVec[ isMax ];
SMESH_Block::TEdge& tEdge = myEdge[ eID - ID_FirstE ];
tEdge.Set( eID, sideFace->HorizCurve(isMax), true);
SHOWYXZ(eID<<" HOR"<<isMax<<"(0)", sideFace->HorizCurve(isMax)->Value(0));
SHOWYXZ(eID<<" HOR"<<isMax<<"(1)", sideFace->HorizCurve(isMax)->Value(1));
}
{
int eID = edgeIdVec[ isMax+2 ];
SMESH_Block::TEdge& tEdge = myEdge[ eID - ID_FirstE ];
tEdge.Set( eID, sideFace->VertiCurve(isMax), true);
SHOWYXZ(eID<<" VER"<<isMax<<"(0)", sideFace->VertiCurve(isMax)->Value(0));
SHOWYXZ(eID<<" VER"<<isMax<<"(1)", sideFace->VertiCurve(isMax)->Value(1));
// corner points
vector< int > vertexIdVec;
SMESH_Block::GetEdgeVertexIDs( eID, vertexIdVec );
myPnt[ vertexIdVec[0] - ID_FirstV ] = tEdge.GetCurve()->Value(0).XYZ();
myPnt[ vertexIdVec[1] - ID_FirstV ] = tEdge.GetCurve()->Value(1).XYZ();
}
}
// pcurves on horizontal faces
for ( iE = 0; iE < NB_WALL_FACES; ++iE ) {
if ( edgeIdVec[ BOTTOM_EDGE ] == botEdgeIdVec[ iE ] ) {
botPcurves[ iE ] = sideFace->HorizPCurve( false, thePrism.myBottom );
topPcurves[ iE ] = sideFace->HorizPCurve( true, thePrism.myTop );
break;
}
}
//sideFace->dumpNodes( 4 ); // debug
}
// horizontal faces geometry
{
SMESH_Block::TFace& tFace = myFace[ ID_BOT_FACE - ID_FirstF ];
tFace.Set( ID_BOT_FACE, new BRepAdaptor_Surface( thePrism.myBottom ), botPcurves, isForward );
SMESH_Block::Insert( thePrism.myBottom, ID_BOT_FACE, myShapeIDMap );
}
{
SMESH_Block::TFace& tFace = myFace[ ID_TOP_FACE - ID_FirstF ];
tFace.Set( ID_TOP_FACE, new BRepAdaptor_Surface( thePrism.myTop ), topPcurves, isForward );
SMESH_Block::Insert( thePrism.myTop, ID_TOP_FACE, myShapeIDMap );
}
//faceGridToPythonDump( SMESH_Block::ID_Fxy0, 50 );
//faceGridToPythonDump( SMESH_Block::ID_Fxy1 );
// Fill map ShapeIndex to TParam2ColumnMap
// ----------------------------------------
list< TSideFace* > fList;
list< TSideFace* >::iterator fListIt;
fList.push_back( mySide );
for ( fListIt = fList.begin(); fListIt != fList.end(); ++fListIt)
{
int nb = (*fListIt)->NbComponents();
for ( int i = 0; i < nb; ++i ) {
if ( TSideFace* comp = (*fListIt)->GetComponent( i ))
fList.push_back( comp );
}
if ( TParam2ColumnMap* cols = (*fListIt)->GetColumns()) {
// columns for a base edge
int id = MeshDS()->ShapeToIndex( (*fListIt)->BaseEdge() );
bool isForward = (*fListIt)->IsForward();
myShapeIndex2ColumnMap[ id ] = make_pair( cols, isForward );
// columns for vertices
const SMDS_MeshNode* n0 = cols->begin()->second.front();
id = n0->getshapeId();
myShapeIndex2ColumnMap[ id ] = make_pair( cols, isForward );
const SMDS_MeshNode* n1 = cols->rbegin()->second.front();
id = n1->getshapeId();
myShapeIndex2ColumnMap[ id ] = make_pair( cols, !isForward );
}
}
// #define SHOWYXZ(msg, xyz) { gp_Pnt p(xyz); cout << msg << " ("<< p.X() << "; " <<p.Y() << "; " <<p.Z() << ") " <<endl; }
// double _u[]={ 0.1, 0.1, 0.9, 0.9 };
// double _v[]={ 0.1, 0.9, 0.1, 0.9 };
// for ( int z = 0; z < 2; ++z )
// for ( int i = 0; i < 4; ++i )
// {
// //gp_XYZ testPar(0.25, 0.25, 0), testCoord;
// int iFace = (z ? ID_TOP_FACE : ID_BOT_FACE);
// gp_XYZ testPar(_u[i], _v[i], z), testCoord;
// if ( !FacePoint( iFace, testPar, testCoord ))
// RETURN_BAD_RESULT("TEST FacePoint() FAILED");
// SHOWYXZ("IN TEST PARAM" , testPar);
// SHOWYXZ("OUT TEST CORD" , testCoord);
// if ( !ComputeParameters( testCoord, testPar , iFace))
// RETURN_BAD_RESULT("TEST ComputeParameters() FAILED");
// SHOWYXZ("OUT TEST PARAM" , testPar);
// }
return true;
}
//================================================================================
/*!
* \brief Return pointer to column of nodes
* \param node - bottom node from which the returned column goes up
* \retval const TNodeColumn* - the found column
*/
//================================================================================
const TNodeColumn* StdMeshers_PrismAsBlock::GetNodeColumn(const SMDS_MeshNode* node) const
{
int sID = node->getshapeId();
map<int, pair< TParam2ColumnMap*, bool > >::const_iterator col_frw =
myShapeIndex2ColumnMap.find( sID );
if ( col_frw != myShapeIndex2ColumnMap.end() ) {
const TParam2ColumnMap* cols = col_frw->second.first;
TParam2ColumnIt u_col = cols->begin();
for ( ; u_col != cols->end(); ++u_col )
if ( u_col->second[ 0 ] == node )
return & u_col->second;
}
return 0;
}
//=======================================================================
//function : GetLayersTransformation
//purpose : Return transformations to get coordinates of nodes of each layer
// by nodes of the bottom. Layer is a set of nodes at a certain step
// from bottom to top.
// Transformation to get top node from bottom ones is computed
// only if the top FACE is not meshed.
//=======================================================================
bool StdMeshers_PrismAsBlock::GetLayersTransformation(vector<gp_Trsf> & trsf,
const Prism_3D::TPrismTopo& prism) const
{
const bool itTopMeshed = !SubMesh( ID_BOT_FACE )->IsEmpty();
const int zSize = VerticalSize();
if ( zSize < 3 && !itTopMeshed ) return true;
trsf.resize( zSize - 1 );
// Select some node columns by which we will define coordinate system of layers
vector< const TNodeColumn* > columns;
{
bool isReverse;
list< TopoDS_Edge >::const_iterator edgeIt = prism.myBottomEdges.begin();
for ( int iE = 0; iE < prism.myNbEdgesInWires.front(); ++iE, ++edgeIt )
{
if ( SMESH_Algo::isDegenerated( *edgeIt )) continue;
const TParam2ColumnMap* u2colMap =
GetParam2ColumnMap( MeshDS()->ShapeToIndex( *edgeIt ), isReverse );
if ( !u2colMap ) return false;
double f = u2colMap->begin()->first, l = u2colMap->rbegin()->first;
//isReverse = ( edgeIt->Orientation() == TopAbs_REVERSED );
//if ( isReverse ) swap ( f, l ); -- u2colMap takes orientation into account
const int nbCol = 5;
for ( int i = 0; i < nbCol; ++i )
{
double u = f + i/double(nbCol) * ( l - f );
const TNodeColumn* col = & getColumn( u2colMap, u )->second;
if ( columns.empty() || col != columns.back() )
columns.push_back( col );
}
}
}
// Find tolerance to check transformations
double tol2;
{
Bnd_B3d bndBox;
for ( int i = 0; i < columns.size(); ++i )
bndBox.Add( gpXYZ( columns[i]->front() ));
tol2 = bndBox.SquareExtent() * 1e-5;
}
// Compute transformations
int xCol = -1;
gp_Trsf fromCsZ, toCs0;
gp_Ax3 cs0 = getLayerCoordSys(0, columns, xCol );
//double dist0 = cs0.Location().Distance( gpXYZ( (*columns[0])[0]));
toCs0.SetTransformation( cs0 );
for ( int z = 1; z < zSize; ++z )
{
gp_Ax3 csZ = getLayerCoordSys(z, columns, xCol );
//double distZ = csZ.Location().Distance( gpXYZ( (*columns[0])[z]));
fromCsZ.SetTransformation( csZ );
fromCsZ.Invert();
gp_Trsf& t = trsf[ z-1 ];
t = fromCsZ * toCs0;
//t.SetScaleFactor( distZ/dist0 ); - it does not work properly, wrong base point
// check a transformation
for ( int i = 0; i < columns.size(); ++i )
{
gp_Pnt p0 = gpXYZ( (*columns[i])[0] );
gp_Pnt pz = gpXYZ( (*columns[i])[z] );
t.Transforms( p0.ChangeCoord() );
if ( p0.SquareDistance( pz ) > tol2 )
{
t = gp_Trsf();
return ( z == zSize - 1 ); // OK if fails only botton->top trsf
}
}
}
return true;
}
//================================================================================
/*!
* \brief Check curve orientation of a bootom edge
* \param meshDS - mesh DS
* \param columnsMap - node columns map of side face
* \param bottomEdge - the bootom edge
* \param sideFaceID - side face in-block ID
* \retval bool - true if orientation coinside with in-block forward orientation
*/
//================================================================================
bool StdMeshers_PrismAsBlock::IsForwardEdge(SMESHDS_Mesh* meshDS,
const TParam2ColumnMap& columnsMap,
const TopoDS_Edge & bottomEdge,
const int sideFaceID)
{
bool isForward = false;
if ( SMESH_MesherHelper::IsClosedEdge( bottomEdge ))
{
isForward = ( bottomEdge.Orientation() == TopAbs_FORWARD );
}
else
{
const TNodeColumn& firstCol = columnsMap.begin()->second;
const SMDS_MeshNode* bottomNode = firstCol[0];
TopoDS_Shape firstVertex = SMESH_MesherHelper::GetSubShapeByNode( bottomNode, meshDS );
isForward = ( firstVertex.IsSame( TopExp::FirstVertex( bottomEdge, true )));
}
// on 2 of 4 sides first vertex is end
if ( sideFaceID == ID_Fx1z || sideFaceID == ID_F0yz )
isForward = !isForward;
return isForward;
}
//=======================================================================
//function : faceGridToPythonDump
//purpose : Prints a script creating a normal grid on the prism side
//=======================================================================
void StdMeshers_PrismAsBlock::faceGridToPythonDump(const SMESH_Block::TShapeID face,
const int nb)
{
#ifdef _DEBUG_
gp_XYZ pOnF[6] = { gp_XYZ(0,0,0), gp_XYZ(0,0,1),
gp_XYZ(0,0,0), gp_XYZ(0,1,0),
gp_XYZ(0,0,0), gp_XYZ(1,0,0) };
gp_XYZ p2;
cout << "mesh = smesh.Mesh( 'Face " << face << "')" << endl;
SMESH_Block::TFace& f = myFace[ face - ID_FirstF ];
gp_XYZ params = pOnF[ face - ID_FirstF ];
//const int nb = 10; // nb face rows
for ( int j = 0; j <= nb; ++j )
{
params.SetCoord( f.GetVInd(), double( j )/ nb );
for ( int i = 0; i <= nb; ++i )
{
params.SetCoord( f.GetUInd(), double( i )/ nb );
gp_XYZ p = f.Point( params );
gp_XY uv = f.GetUV( params );
cout << "mesh.AddNode( " << p.X() << ", " << p.Y() << ", " << p.Z() << " )"
<< " # " << 1 + i + j * ( nb + 1 )
<< " ( " << i << ", " << j << " ) "
<< " UV( " << uv.X() << ", " << uv.Y() << " )" << endl;
ShellPoint( params, p2 );
double dist = ( p2 - p ).Modulus();
if ( dist > 1e-4 )
cout << "#### dist from ShellPoint " << dist
<< " (" << p2.X() << ", " << p2.Y() << ", " << p2.Z() << " ) " << endl;
}
}
for ( int j = 0; j < nb; ++j )
for ( int i = 0; i < nb; ++i )
{
int n = 1 + i + j * ( nb + 1 );
cout << "mesh.AddFace([ "
<< n << ", " << n+1 << ", "
<< n+nb+2 << ", " << n+nb+1 << "]) " << endl;
}
#endif
}
//================================================================================
/*!
* \brief Constructor
* \param faceID - in-block ID
* \param face - geom FACE
* \param baseEdge - EDGE proreply oriented in the bottom EDGE !!!
* \param columnsMap - map of node columns
* \param first - first normalized param
* \param last - last normalized param
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace::TSideFace(SMESH_Mesh& mesh,
const int faceID,
const Prism_3D::TQuadList& quadList,
const TopoDS_Edge& baseEdge,
TParam2ColumnMap* columnsMap,
const double first,
const double last):
myID( faceID ),
myParamToColumnMap( columnsMap ),
myHelper( mesh )
{
myParams.resize( 1 );
myParams[ 0 ] = make_pair( first, last );
mySurface = PSurface( new BRepAdaptor_Surface( quadList.front()->face ));
myBaseEdge = baseEdge;
myIsForward = StdMeshers_PrismAsBlock::IsForwardEdge( myHelper.GetMeshDS(),
*myParamToColumnMap,
myBaseEdge, myID );
myHelper.SetSubShape( quadList.front()->face );
if ( quadList.size() > 1 ) // side is vertically composite
{
// fill myShapeID2Surf map to enable finding a right surface by any sub-shape ID
SMESHDS_Mesh* meshDS = myHelper.GetMeshDS();
TopTools_IndexedDataMapOfShapeListOfShape subToFaces;
Prism_3D::TQuadList::const_iterator quad = quadList.begin();
for ( ; quad != quadList.end(); ++quad )
{
const TopoDS_Face& face = (*quad)->face;
TopExp::MapShapesAndAncestors( face, TopAbs_VERTEX, TopAbs_FACE, subToFaces );
TopExp::MapShapesAndAncestors( face, TopAbs_EDGE, TopAbs_FACE, subToFaces );
myShapeID2Surf.insert( make_pair( meshDS->ShapeToIndex( face ),
PSurface( new BRepAdaptor_Surface( face ))));
}
for ( int i = 1; i <= subToFaces.Extent(); ++i )
{
const TopoDS_Shape& sub = subToFaces.FindKey( i );
TopTools_ListOfShape& faces = subToFaces( i );
int subID = meshDS->ShapeToIndex( sub );
int faceID = meshDS->ShapeToIndex( faces.First() );
myShapeID2Surf.insert ( make_pair( subID, myShapeID2Surf[ faceID ]));
}
}
}
//================================================================================
/*!
* \brief Constructor of a complex side face
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace::
TSideFace(SMESH_Mesh& mesh,
const vector< TSideFace* >& components,
const vector< pair< double, double> > & params)
:myID( components[0] ? components[0]->myID : 0 ),
myParamToColumnMap( 0 ),
myParams( params ),
myIsForward( true ),
myComponents( components ),
myHelper( mesh )
{
if ( myID == ID_Fx1z || myID == ID_F0yz )
{
// reverse components
std::reverse( myComponents.begin(), myComponents.end() );
std::reverse( myParams.begin(), myParams.end() );
for ( size_t i = 0; i < myParams.size(); ++i )
{
const double f = myParams[i].first;
const double l = myParams[i].second;
myParams[i] = make_pair( 1. - l, 1. - f );
}
}
}
//================================================================================
/*!
* \brief Copy constructor
* \param other - other side
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace::TSideFace( const TSideFace& other ):
myID ( other.myID ),
myParamToColumnMap ( other.myParamToColumnMap ),
mySurface ( other.mySurface ),
myBaseEdge ( other.myBaseEdge ),
myShapeID2Surf ( other.myShapeID2Surf ),
myParams ( other.myParams ),
myIsForward ( other.myIsForward ),
myComponents ( other.myComponents.size() ),
myHelper ( *other.myHelper.GetMesh() )
{
for (int i = 0 ; i < myComponents.size(); ++i )
myComponents[ i ] = new TSideFace( *other.myComponents[ i ]);
}
//================================================================================
/*!
* \brief Deletes myComponents
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace::~TSideFace()
{
for (int i = 0 ; i < myComponents.size(); ++i )
if ( myComponents[ i ] )
delete myComponents[ i ];
}
//================================================================================
/*!
* \brief Return geometry of the vertical curve
* \param isMax - true means curve located closer to (1,1,1) block point
* \retval Adaptor3d_Curve* - curve adaptor
*/
//================================================================================
Adaptor3d_Curve* StdMeshers_PrismAsBlock::TSideFace::VertiCurve(const bool isMax) const
{
if ( !myComponents.empty() ) {
if ( isMax )
return myComponents.back()->VertiCurve(isMax);
else
return myComponents.front()->VertiCurve(isMax);
}
double f = myParams[0].first, l = myParams[0].second;
if ( !myIsForward ) std::swap( f, l );
return new TVerticalEdgeAdaptor( myParamToColumnMap, isMax ? l : f );
}
//================================================================================
/*!
* \brief Return geometry of the top or bottom curve
* \param isTop -
* \retval Adaptor3d_Curve* -
*/
//================================================================================
Adaptor3d_Curve* StdMeshers_PrismAsBlock::TSideFace::HorizCurve(const bool isTop) const
{
return new THorizontalEdgeAdaptor( this, isTop );
}
//================================================================================
/*!
* \brief Return pcurves
* \param pcurv - array of 4 pcurves
* \retval bool - is a success
*/
//================================================================================
bool StdMeshers_PrismAsBlock::TSideFace::GetPCurves(Adaptor2d_Curve2d* pcurv[4]) const
{
int iEdge[ 4 ] = { BOTTOM_EDGE, TOP_EDGE, V0_EDGE, V1_EDGE };
for ( int i = 0 ; i < 4 ; ++i ) {
Handle(Geom2d_Line) line;
switch ( iEdge[ i ] ) {
case TOP_EDGE:
line = new Geom2d_Line( gp_Pnt2d( 0, 1 ), gp::DX2d() ); break;
case BOTTOM_EDGE:
line = new Geom2d_Line( gp::Origin2d(), gp::DX2d() ); break;
case V0_EDGE:
line = new Geom2d_Line( gp::Origin2d(), gp::DY2d() ); break;
case V1_EDGE:
line = new Geom2d_Line( gp_Pnt2d( 1, 0 ), gp::DY2d() ); break;
}
pcurv[ i ] = new Geom2dAdaptor_Curve( line, 0, 1 );
}
return true;
}
//================================================================================
/*!
* \brief Returns geometry of pcurve on a horizontal face
* \param isTop - is top or bottom face
* \param horFace - a horizontal face
* \retval Adaptor2d_Curve2d* - curve adaptor
*/
//================================================================================
Adaptor2d_Curve2d*
StdMeshers_PrismAsBlock::TSideFace::HorizPCurve(const bool isTop,
const TopoDS_Face& horFace) const
{
return new TPCurveOnHorFaceAdaptor( this, isTop, horFace );
}
//================================================================================
/*!
* \brief Return a component corresponding to parameter
* \param U - parameter along a horizontal size
* \param localU - parameter along a horizontal size of a component
* \retval TSideFace* - found component
*/
//================================================================================
StdMeshers_PrismAsBlock::TSideFace*
StdMeshers_PrismAsBlock::TSideFace::GetComponent(const double U,double & localU) const
{
localU = U;
if ( myComponents.empty() )
return const_cast<TSideFace*>( this );
int i;
for ( i = 0; i < myComponents.size(); ++i )
if ( U < myParams[ i ].second )
break;
if ( i >= myComponents.size() )
i = myComponents.size() - 1;
double f = myParams[ i ].first, l = myParams[ i ].second;
localU = ( U - f ) / ( l - f );
return myComponents[ i ];
}
//================================================================================
/*!
* \brief Find node columns for a parameter
* \param U - parameter along a horizontal edge
* \param col1 - the 1st found column
* \param col2 - the 2nd found column
* \retval r - normalized position of U between the found columns
*/
//================================================================================
double StdMeshers_PrismAsBlock::TSideFace::GetColumns(const double U,
TParam2ColumnIt & col1,
TParam2ColumnIt & col2) const
{
double u = U, r = 0;
if ( !myComponents.empty() ) {
TSideFace * comp = GetComponent(U,u);
return comp->GetColumns( u, col1, col2 );
}
if ( !myIsForward )
u = 1 - u;
double f = myParams[0].first, l = myParams[0].second;
u = f + u * ( l - f );
col1 = col2 = getColumn( myParamToColumnMap, u );
if ( ++col2 == myParamToColumnMap->end() ) {
--col2;
r = 0.5;
}
else {
double uf = col1->first;
double ul = col2->first;
r = ( u - uf ) / ( ul - uf );
}
return r;
}
//================================================================================
/*!
* \brief Return all nodes at a given height together with their normalized parameters
* \param [in] Z - the height of interest
* \param [out] nodes - map of parameter to node
*/
//================================================================================
void StdMeshers_PrismAsBlock::
TSideFace::GetNodesAtZ(const int Z,
map<double, const SMDS_MeshNode* >& nodes ) const
{
if ( !myComponents.empty() )
{
double u0 = 0.;
for ( size_t i = 0; i < myComponents.size(); ++i )
{
map<double, const SMDS_MeshNode* > nn;
myComponents[i]->GetNodesAtZ( Z, nn );
map<double, const SMDS_MeshNode* >::iterator u2n = nn.begin();
if ( !nodes.empty() && nodes.rbegin()->second == u2n->second )
++u2n;
const double uRange = myParams[i].second - myParams[i].first;
for ( ; u2n != nn.end(); ++u2n )
nodes.insert( nodes.end(), make_pair( u0 + uRange * u2n->first, u2n->second ));
u0 += uRange;
}
}
else
{
double f = myParams[0].first, l = myParams[0].second;
if ( !myIsForward )
std::swap( f, l );
const double uRange = l - f;
if ( Abs( uRange ) < std::numeric_limits<double>::min() )
return;
TParam2ColumnIt u2col = getColumn( myParamToColumnMap, myParams[0].first + 1e-3 );
for ( ; u2col != myParamToColumnMap->end(); ++u2col )
if ( u2col->first > myParams[0].second + 1e-9 )
break;
else
nodes.insert( nodes.end(),
make_pair( ( u2col->first - f ) / uRange, u2col->second[ Z ] ));
}
}
//================================================================================
/*!
* \brief Return coordinates by normalized params
* \param U - horizontal param
* \param V - vertical param
* \retval gp_Pnt - result point
*/
//================================================================================
gp_Pnt StdMeshers_PrismAsBlock::TSideFace::Value(const Standard_Real U,
const Standard_Real V) const
{
if ( !myComponents.empty() ) {
double u;
TSideFace * comp = GetComponent(U,u);
return comp->Value( u, V );
}
TParam2ColumnIt u_col1, u_col2;
double vR, hR = GetColumns( U, u_col1, u_col2 );
const SMDS_MeshNode* nn[4];
// BEGIN issue 0020680: Bad cell created by Radial prism in center of torus
// Workaround for a wrongly located point returned by mySurface.Value() for
// UV located near boundary of BSpline surface.
// To bypass the problem, we take point from 3D curve of EDGE.
// It solves pb of the bloc_fiss_new.py
const double tol = 1e-3;
if ( V < tol || V+tol >= 1. )
{
nn[0] = V < tol ? u_col1->second.front() : u_col1->second.back();
nn[2] = V < tol ? u_col2->second.front() : u_col2->second.back();
TopoDS_Edge edge;
if ( V < tol )
{
edge = myBaseEdge;
}
else
{
TopoDS_Shape s = myHelper.GetSubShapeByNode( nn[0], myHelper.GetMeshDS() );
if ( s.ShapeType() != TopAbs_EDGE )
s = myHelper.GetSubShapeByNode( nn[2], myHelper.GetMeshDS() );
if ( !s.IsNull() && s.ShapeType() == TopAbs_EDGE )
edge = TopoDS::Edge( s );
}
if ( !edge.IsNull() )
{
double u1 = myHelper.GetNodeU( edge, nn[0], nn[2] );
double u3 = myHelper.GetNodeU( edge, nn[2], nn[0] );
double u = u1 * ( 1 - hR ) + u3 * hR;
TopLoc_Location loc; double f,l;
Handle(Geom_Curve) curve = BRep_Tool::Curve( edge,loc,f,l );
return curve->Value( u ).Transformed( loc );
}
}
// END issue 0020680: Bad cell created by Radial prism in center of torus
vR = getRAndNodes( & u_col1->second, V, nn[0], nn[1] );
vR = getRAndNodes( & u_col2->second, V, nn[2], nn[3] );
if ( !myShapeID2Surf.empty() ) // side is vertically composite
{
// find a FACE on which the 4 nodes lie
TSideFace* me = (TSideFace*) this;
int notFaceID1 = 0, notFaceID2 = 0;
for ( int i = 0; i < 4; ++i )
if ( nn[i]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) // node on FACE
{
me->mySurface = me->myShapeID2Surf[ nn[i]->getshapeId() ];
notFaceID2 = 0;
break;
}
else if ( notFaceID1 == 0 ) // node on EDGE or VERTEX
{
me->mySurface = me->myShapeID2Surf[ nn[i]->getshapeId() ];
notFaceID1 = nn[i]->getshapeId();
}
else if ( notFaceID1 != nn[i]->getshapeId() ) // node on other EDGE or VERTEX
{
if ( mySurface != me->myShapeID2Surf[ nn[i]->getshapeId() ])
notFaceID2 = nn[i]->getshapeId();
}
if ( notFaceID2 ) // no nodes of FACE and nodes are on different FACEs
{
SMESHDS_Mesh* meshDS = myHelper.GetMeshDS();
TopoDS_Shape face = myHelper.GetCommonAncestor( meshDS->IndexToShape( notFaceID1 ),
meshDS->IndexToShape( notFaceID2 ),
*myHelper.GetMesh(),
TopAbs_FACE );
if ( face.IsNull() )
throw SALOME_Exception("StdMeshers_PrismAsBlock::TSideFace::Value() face.IsNull()");
int faceID = meshDS->ShapeToIndex( face );
me->mySurface = me->myShapeID2Surf[ faceID ];
if ( !mySurface )
throw SALOME_Exception("StdMeshers_PrismAsBlock::TSideFace::Value() !mySurface");
}
}
((TSideFace*) this)->myHelper.SetSubShape( mySurface->Face() );
gp_XY uv1 = myHelper.GetNodeUV( mySurface->Face(), nn[0], nn[2]);
gp_XY uv2 = myHelper.GetNodeUV( mySurface->Face(), nn[1], nn[3]);
gp_XY uv12 = uv1 * ( 1 - vR ) + uv2 * vR;
gp_XY uv3 = myHelper.GetNodeUV( mySurface->Face(), nn[2], nn[0]);
gp_XY uv4 = myHelper.GetNodeUV( mySurface->Face(), nn[3], nn[1]);
gp_XY uv34 = uv3 * ( 1 - vR ) + uv4 * vR;
gp_XY uv = uv12 * ( 1 - hR ) + uv34 * hR;
gp_Pnt p = mySurface->Value( uv.X(), uv.Y() );
return p;
}
//================================================================================
/*!
* \brief Return boundary edge
* \param edge - edge index
* \retval TopoDS_Edge - found edge
*/
//================================================================================
TopoDS_Edge StdMeshers_PrismAsBlock::TSideFace::GetEdge(const int iEdge) const
{
if ( !myComponents.empty() ) {
switch ( iEdge ) {
case V0_EDGE : return myComponents.front()->GetEdge( iEdge );
case V1_EDGE : return myComponents.back() ->GetEdge( iEdge );
default: return TopoDS_Edge();
}
}
TopoDS_Shape edge;
const SMDS_MeshNode* node = 0;
SMESHDS_Mesh * meshDS = myHelper.GetMesh()->GetMeshDS();
TNodeColumn* column;
switch ( iEdge ) {
case TOP_EDGE:
case BOTTOM_EDGE:
column = & (( ++myParamToColumnMap->begin())->second );
node = ( iEdge == TOP_EDGE ) ? column->back() : column->front();
edge = myHelper.GetSubShapeByNode ( node, meshDS );
if ( edge.ShapeType() == TopAbs_VERTEX ) {
column = & ( myParamToColumnMap->begin()->second );
node = ( iEdge == TOP_EDGE ) ? column->back() : column->front();
}
break;
case V0_EDGE:
case V1_EDGE: {
bool back = ( iEdge == V1_EDGE );
if ( !myIsForward ) back = !back;
if ( back )
column = & ( myParamToColumnMap->rbegin()->second );
else
column = & ( myParamToColumnMap->begin()->second );
if ( column->size() > 0 )
edge = myHelper.GetSubShapeByNode( (*column)[ 1 ], meshDS );
if ( edge.IsNull() || edge.ShapeType() == TopAbs_VERTEX )
node = column->front();
break;
}
default:;
}
if ( !edge.IsNull() && edge.ShapeType() == TopAbs_EDGE )
return TopoDS::Edge( edge );
// find edge by 2 vertices
TopoDS_Shape V1 = edge;
TopoDS_Shape V2 = myHelper.GetSubShapeByNode( node, meshDS );
if ( !V2.IsNull() && V2.ShapeType() == TopAbs_VERTEX && !V2.IsSame( V1 ))
{
TopoDS_Shape ancestor = myHelper.GetCommonAncestor( V1, V2, *myHelper.GetMesh(), TopAbs_EDGE);
if ( !ancestor.IsNull() )
return TopoDS::Edge( ancestor );
}
return TopoDS_Edge();
}
//================================================================================
/*!
* \brief Fill block sub-shapes
* \param shapeMap - map to fill in
* \retval int - nb inserted sub-shapes
*/
//================================================================================
int StdMeshers_PrismAsBlock::TSideFace::InsertSubShapes(TBlockShapes& shapeMap) const
{
int nbInserted = 0;
// Insert edges
vector< int > edgeIdVec;
SMESH_Block::GetFaceEdgesIDs( myID, edgeIdVec );
for ( int i = BOTTOM_EDGE; i <=V1_EDGE ; ++i ) {
TopoDS_Edge e = GetEdge( i );
if ( !e.IsNull() ) {
nbInserted += SMESH_Block::Insert( e, edgeIdVec[ i ], shapeMap);
}
}
// Insert corner vertices
TParam2ColumnIt col1, col2 ;
vector< int > vertIdVec;
// from V0 column
SMESH_Block::GetEdgeVertexIDs( edgeIdVec[ V0_EDGE ], vertIdVec);
GetColumns(0, col1, col2 );
const SMDS_MeshNode* node0 = col1->second.front();
const SMDS_MeshNode* node1 = col1->second.back();
TopoDS_Shape v0 = myHelper.GetSubShapeByNode( node0, myHelper.GetMeshDS());
TopoDS_Shape v1 = myHelper.GetSubShapeByNode( node1, myHelper.GetMeshDS());
if ( v0.ShapeType() == TopAbs_VERTEX ) {
nbInserted += SMESH_Block::Insert( v0, vertIdVec[ 0 ], shapeMap);
}
if ( v1.ShapeType() == TopAbs_VERTEX ) {
nbInserted += SMESH_Block::Insert( v1, vertIdVec[ 1 ], shapeMap);
}
// from V1 column
SMESH_Block::GetEdgeVertexIDs( edgeIdVec[ V1_EDGE ], vertIdVec);
GetColumns(1, col1, col2 );
node0 = col2->second.front();
node1 = col2->second.back();
v0 = myHelper.GetSubShapeByNode( node0, myHelper.GetMeshDS());
v1 = myHelper.GetSubShapeByNode( node1, myHelper.GetMeshDS());
if ( v0.ShapeType() == TopAbs_VERTEX ) {
nbInserted += SMESH_Block::Insert( v0, vertIdVec[ 0 ], shapeMap);
}
if ( v1.ShapeType() == TopAbs_VERTEX ) {
nbInserted += SMESH_Block::Insert( v1, vertIdVec[ 1 ], shapeMap);
}
// TopoDS_Vertex V0, V1, Vcom;
// TopExp::Vertices( myBaseEdge, V0, V1, true );
// if ( !myIsForward ) std::swap( V0, V1 );
// // bottom vertex IDs
// SMESH_Block::GetEdgeVertexIDs( edgeIdVec[ _u0 ], vertIdVec);
// SMESH_Block::Insert( V0, vertIdVec[ 0 ], shapeMap);
// SMESH_Block::Insert( V1, vertIdVec[ 1 ], shapeMap);
// TopoDS_Edge sideEdge = GetEdge( V0_EDGE );
// if ( sideEdge.IsNull() || !TopExp::CommonVertex( botEdge, sideEdge, Vcom ))
// return false;
// // insert one side edge
// int edgeID;
// if ( Vcom.IsSame( V0 )) edgeID = edgeIdVec[ _v0 ];
// else edgeID = edgeIdVec[ _v1 ];
// SMESH_Block::Insert( sideEdge, edgeID, shapeMap);
// // top vertex of the side edge
// SMESH_Block::GetEdgeVertexIDs( edgeID, vertIdVec);
// TopoDS_Vertex Vtop = TopExp::FirstVertex( sideEdge );
// if ( Vcom.IsSame( Vtop ))
// Vtop = TopExp::LastVertex( sideEdge );
// SMESH_Block::Insert( Vtop, vertIdVec[ 1 ], shapeMap);
// // other side edge
// sideEdge = GetEdge( V1_EDGE );
// if ( sideEdge.IsNull() )
// return false;
// if ( edgeID = edgeIdVec[ _v1 ]) edgeID = edgeIdVec[ _v0 ];
// else edgeID = edgeIdVec[ _v1 ];
// SMESH_Block::Insert( sideEdge, edgeID, shapeMap);
// // top edge
// TopoDS_Edge topEdge = GetEdge( TOP_EDGE );
// SMESH_Block::Insert( topEdge, edgeIdVec[ _u1 ], shapeMap);
// // top vertex of the other side edge
// if ( !TopExp::CommonVertex( topEdge, sideEdge, Vcom ))
// return false;
// SMESH_Block::GetEdgeVertexIDs( edgeID, vertIdVec );
// SMESH_Block::Insert( Vcom, vertIdVec[ 1 ], shapeMap);
return nbInserted;
}
//================================================================================
/*!
* \brief Dump ids of nodes of sides
*/
//================================================================================
void StdMeshers_PrismAsBlock::TSideFace::dumpNodes(int nbNodes) const
{
#ifdef _DEBUG_
cout << endl << "NODES OF FACE "; SMESH_Block::DumpShapeID( myID, cout ) << endl;
THorizontalEdgeAdaptor* hSize0 = (THorizontalEdgeAdaptor*) HorizCurve(0);
cout << "Horiz side 0: "; hSize0->dumpNodes(nbNodes); cout << endl;
THorizontalEdgeAdaptor* hSize1 = (THorizontalEdgeAdaptor*) HorizCurve(1);
cout << "Horiz side 1: "; hSize1->dumpNodes(nbNodes); cout << endl;
TVerticalEdgeAdaptor* vSide0 = (TVerticalEdgeAdaptor*) VertiCurve(0);
cout << "Verti side 0: "; vSide0->dumpNodes(nbNodes); cout << endl;
TVerticalEdgeAdaptor* vSide1 = (TVerticalEdgeAdaptor*) VertiCurve(1);
cout << "Verti side 1: "; vSide1->dumpNodes(nbNodes); cout << endl;
delete hSize0; delete hSize1; delete vSide0; delete vSide1;
#endif
}
//================================================================================
/*!
* \brief Creates TVerticalEdgeAdaptor
* \param columnsMap - node column map
* \param parameter - normalized parameter
*/
//================================================================================
StdMeshers_PrismAsBlock::TVerticalEdgeAdaptor::
TVerticalEdgeAdaptor( const TParam2ColumnMap* columnsMap, const double parameter)
{
myNodeColumn = & getColumn( columnsMap, parameter )->second;
}
//================================================================================
/*!
* \brief Return coordinates for the given normalized parameter
* \param U - normalized parameter
* \retval gp_Pnt - coordinates
*/
//================================================================================
gp_Pnt StdMeshers_PrismAsBlock::TVerticalEdgeAdaptor::Value(const Standard_Real U) const
{
const SMDS_MeshNode* n1;
const SMDS_MeshNode* n2;
double r = getRAndNodes( myNodeColumn, U, n1, n2 );
return gpXYZ(n1) * ( 1 - r ) + gpXYZ(n2) * r;
}
//================================================================================
/*!
* \brief Dump ids of nodes
*/
//================================================================================
void StdMeshers_PrismAsBlock::TVerticalEdgeAdaptor::dumpNodes(int nbNodes) const
{
#ifdef _DEBUG_
for ( int i = 0; i < nbNodes && i < myNodeColumn->size(); ++i )
cout << (*myNodeColumn)[i]->GetID() << " ";
if ( nbNodes < myNodeColumn->size() )
cout << myNodeColumn->back()->GetID();
#endif
}
//================================================================================
/*!
* \brief Return coordinates for the given normalized parameter
* \param U - normalized parameter
* \retval gp_Pnt - coordinates
*/
//================================================================================
gp_Pnt StdMeshers_PrismAsBlock::THorizontalEdgeAdaptor::Value(const Standard_Real U) const
{
return mySide->TSideFace::Value( U, myV );
}
//================================================================================
/*!
* \brief Dump ids of <nbNodes> first nodes and the last one
*/
//================================================================================
void StdMeshers_PrismAsBlock::THorizontalEdgeAdaptor::dumpNodes(int nbNodes) const
{
#ifdef _DEBUG_
// Not bedugged code. Last node is sometimes incorrect
const TSideFace* side = mySide;
double u = 0;
if ( mySide->IsComplex() )
side = mySide->GetComponent(0,u);
TParam2ColumnIt col, col2;
TParam2ColumnMap* u2cols = side->GetColumns();
side->GetColumns( u , col, col2 );
int j, i = myV ? mySide->ColumnHeight()-1 : 0;
const SMDS_MeshNode* n = 0;
const SMDS_MeshNode* lastN
= side->IsForward() ? u2cols->rbegin()->second[ i ] : u2cols->begin()->second[ i ];
for ( j = 0; j < nbNodes && n != lastN; ++j )
{
n = col->second[ i ];
cout << n->GetID() << " ";
if ( side->IsForward() )
++col;
else
--col;
}
// last node
u = 1;
if ( mySide->IsComplex() )
side = mySide->GetComponent(1,u);
side->GetColumns( u , col, col2 );
if ( n != col->second[ i ] )
cout << col->second[ i ]->GetID();
#endif
}
//================================================================================
/*!
* \brief Costructor of TPCurveOnHorFaceAdaptor fills its map of
* normalized parameter to node UV on a horizontal face
* \param [in] sideFace - lateral prism side
* \param [in] isTop - is \a horFace top or bottom of the prism
* \param [in] horFace - top or bottom face of the prism
*/
//================================================================================
StdMeshers_PrismAsBlock::
TPCurveOnHorFaceAdaptor::TPCurveOnHorFaceAdaptor( const TSideFace* sideFace,
const bool isTop,
const TopoDS_Face& horFace)
{
if ( sideFace && !horFace.IsNull() )
{
//cout << "\n\t FACE " << sideFace->FaceID() << endl;
const int Z = isTop ? sideFace->ColumnHeight() - 1 : 0;
map<double, const SMDS_MeshNode* > u2nodes;
sideFace->GetNodesAtZ( Z, u2nodes );
if ( u2nodes.empty() )
return;
SMESH_MesherHelper helper( *sideFace->GetMesh() );
helper.SetSubShape( horFace );
bool okUV;
gp_XY uv;
double f,l;
Handle(Geom2d_Curve) C2d;
int edgeID = -1;
const double tol = 10 * helper.MaxTolerance( horFace );
const SMDS_MeshNode* prevNode = u2nodes.rbegin()->second;
map<double, const SMDS_MeshNode* >::iterator u2n = u2nodes.begin();
for ( ; u2n != u2nodes.end(); ++u2n )
{
const SMDS_MeshNode* n = u2n->second;
okUV = false;
if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_EDGE )
{
if ( n->getshapeId() != edgeID )
{
C2d.Nullify();
edgeID = n->getshapeId();
TopoDS_Shape S = helper.GetSubShapeByNode( n, helper.GetMeshDS() );
if ( !S.IsNull() && S.ShapeType() == TopAbs_EDGE )
{
C2d = BRep_Tool::CurveOnSurface( TopoDS::Edge( S ), horFace, f,l );
}
}
if ( !C2d.IsNull() )
{
double u = static_cast< const SMDS_EdgePosition* >( n->GetPosition() )->GetUParameter();
if ( f <= u && u <= l )
{
uv = C2d->Value( u ).XY();
okUV = helper.CheckNodeUV( horFace, n, uv, tol );
}
}
}
if ( !okUV )
uv = helper.GetNodeUV( horFace, n, prevNode, &okUV );
myUVmap.insert( myUVmap.end(), make_pair( u2n->first, uv ));
// cout << n->getshapeId() << " N " << n->GetID()
// << " \t" << uv.X() << ", " << uv.Y() << " \t" << u2n->first << endl;
prevNode = n;
}
}
}
//================================================================================
/*!
* \brief Return UV on pcurve for the given normalized parameter
* \param U - normalized parameter
* \retval gp_Pnt - coordinates
*/
//================================================================================
gp_Pnt2d StdMeshers_PrismAsBlock::TPCurveOnHorFaceAdaptor::Value(const Standard_Real U) const
{
map< double, gp_XY >::const_iterator i1 = myUVmap.upper_bound( U );
if ( i1 == myUVmap.end() )
return myUVmap.empty() ? gp_XY(0,0) : myUVmap.rbegin()->second;
if ( i1 == myUVmap.begin() )
return (*i1).second;
map< double, gp_XY >::const_iterator i2 = i1--;
double r = ( U - i1->first ) / ( i2->first - i1->first );
return i1->second * ( 1 - r ) + i2->second * r;
}
//================================================================================
/*!
* \brief Projects internal nodes using transformation found by boundary nodes
*/
//================================================================================
bool StdMeshers_Sweeper::projectIntPoints(const vector< gp_XYZ >& fromBndPoints,
const vector< gp_XYZ >& toBndPoints,
const vector< gp_XYZ >& fromIntPoints,
vector< gp_XYZ >& toIntPoints,
NSProjUtils::TrsfFinder3D& trsf,
vector< gp_XYZ > * bndError)
{
// find transformation
if ( trsf.IsIdentity() && !trsf.Solve( fromBndPoints, toBndPoints ))
return false;
// compute internal points using the found trsf
for ( size_t iP = 0; iP < fromIntPoints.size(); ++iP )
{
toIntPoints[ iP ] = trsf.Transform( fromIntPoints[ iP ]);
}
// compute boundary error
if ( bndError )
{
bndError->resize( fromBndPoints.size() );
gp_XYZ fromTrsf;
for ( size_t iP = 0; iP < fromBndPoints.size(); ++iP )
{
fromTrsf = trsf.Transform( fromBndPoints[ iP ] );
(*bndError)[ iP ] = toBndPoints[ iP ] - fromTrsf;
}
}
return true;
}
//================================================================================
/*!
* \brief Add boundary error to ineternal points
*/
//================================================================================
void StdMeshers_Sweeper::applyBoundaryError(const vector< gp_XYZ >& bndPoints,
const vector< gp_XYZ >& bndError1,
const vector< gp_XYZ >& bndError2,
const double r,
vector< gp_XYZ >& intPoints,
vector< double >& int2BndDist)
{
// fix each internal point
const double eps = 1e-100;
for ( size_t iP = 0; iP < intPoints.size(); ++iP )
{
gp_XYZ & intPnt = intPoints[ iP ];
// compute distance from intPnt to each boundary node
double int2BndDistSum = 0;
for ( size_t iBnd = 0; iBnd < bndPoints.size(); ++iBnd )
{
int2BndDist[ iBnd ] = 1 / (( intPnt - bndPoints[ iBnd ]).SquareModulus() + eps );
int2BndDistSum += int2BndDist[ iBnd ];
}
// apply bndError
for ( size_t iBnd = 0; iBnd < bndPoints.size(); ++iBnd )
{
intPnt += bndError1[ iBnd ] * ( 1 - r ) * int2BndDist[ iBnd ] / int2BndDistSum;
intPnt += bndError2[ iBnd ] * r * int2BndDist[ iBnd ] / int2BndDistSum;
}
}
}
//================================================================================
/*!
* \brief Creates internal nodes of the prism
*/
//================================================================================
bool StdMeshers_Sweeper::ComputeNodes( SMESH_MesherHelper& helper,
const double tol,
const bool allowHighBndError)
{
const size_t zSize = myBndColumns[0]->size();
const size_t zSrc = 0, zTgt = zSize-1;
if ( zSize < 3 ) return true;
vector< vector< gp_XYZ > > intPntsOfLayer( zSize ); // node coodinates to compute
// set coordinates of src and tgt nodes
for ( size_t z = 0; z < intPntsOfLayer.size(); ++z )
intPntsOfLayer[ z ].resize( myIntColumns.size() );
for ( size_t iP = 0; iP < myIntColumns.size(); ++iP )
{
intPntsOfLayer[ zSrc ][ iP ] = intPoint( iP, zSrc );
intPntsOfLayer[ zTgt ][ iP ] = intPoint( iP, zTgt );
}
// compute coordinates of internal nodes by projecting (transfroming) src and tgt
// nodes towards the central layer
vector< NSProjUtils::TrsfFinder3D > trsfOfLayer( zSize );
vector< vector< gp_XYZ > > bndError( zSize );
// boundary points used to compute an affine transformation from a layer to a next one
vector< gp_XYZ > fromSrcBndPnts( myBndColumns.size() ), fromTgtBndPnts( myBndColumns.size() );
vector< gp_XYZ > toSrcBndPnts ( myBndColumns.size() ), toTgtBndPnts ( myBndColumns.size() );
for ( size_t iP = 0; iP < myBndColumns.size(); ++iP )
{
fromSrcBndPnts[ iP ] = bndPoint( iP, zSrc );
fromTgtBndPnts[ iP ] = bndPoint( iP, zTgt );
}
size_t zS = zSrc + 1;
size_t zT = zTgt - 1;
for ( ; zS < zT; ++zS, --zT ) // vertical loop on layers
{
for ( size_t iP = 0; iP < myBndColumns.size(); ++iP )
{
toSrcBndPnts[ iP ] = bndPoint( iP, zS );
toTgtBndPnts[ iP ] = bndPoint( iP, zT );
}
if (! projectIntPoints( fromSrcBndPnts, toSrcBndPnts,
intPntsOfLayer[ zS-1 ], intPntsOfLayer[ zS ],
trsfOfLayer [ zS-1 ], & bndError[ zS-1 ]))
return false;
if (! projectIntPoints( fromTgtBndPnts, toTgtBndPnts,
intPntsOfLayer[ zT+1 ], intPntsOfLayer[ zT ],
trsfOfLayer [ zT+1 ], & bndError[ zT+1 ]))
return false;
// if ( zT == zTgt - 1 )
// {
// for ( size_t iP = 0; iP < myBndColumns.size(); ++iP )
// {
// gp_XYZ fromTrsf = trsfOfLayer [ zT+1].Transform( fromTgtBndPnts[ iP ] );
// cout << "mesh.AddNode( "
// << fromTrsf.X() << ", "
// << fromTrsf.Y() << ", "
// << fromTrsf.Z() << ") " << endl;
// }
// for ( size_t iP = 0; iP < myIntColumns.size(); ++iP )
// cout << "mesh.AddNode( "
// << intPntsOfLayer[ zT ][ iP ].X() << ", "
// << intPntsOfLayer[ zT ][ iP ].Y() << ", "
// << intPntsOfLayer[ zT ][ iP ].Z() << ") " << endl;
// }
fromTgtBndPnts.swap( toTgtBndPnts );
fromSrcBndPnts.swap( toSrcBndPnts );
}
// Compute two projections of internal points to the central layer
// in order to evaluate an error of internal points
bool centerIntErrorIsSmall;
vector< gp_XYZ > centerSrcIntPnts( myIntColumns.size() );
vector< gp_XYZ > centerTgtIntPnts( myIntColumns.size() );
for ( size_t iP = 0; iP < myBndColumns.size(); ++iP )
{
toSrcBndPnts[ iP ] = bndPoint( iP, zS );
toTgtBndPnts[ iP ] = bndPoint( iP, zT );
}
if (! projectIntPoints( fromSrcBndPnts, toSrcBndPnts,
intPntsOfLayer[ zS-1 ], centerSrcIntPnts,
trsfOfLayer [ zS-1 ], & bndError[ zS-1 ]))
return false;
if (! projectIntPoints( fromTgtBndPnts, toTgtBndPnts,
intPntsOfLayer[ zT+1 ], centerTgtIntPnts,
trsfOfLayer [ zT+1 ], & bndError[ zT+1 ]))
return false;
// evaluate an error of internal points on the central layer
centerIntErrorIsSmall = true;
if ( zS == zT ) // odd zSize
{
for ( size_t iP = 0; ( iP < myIntColumns.size() && centerIntErrorIsSmall ); ++iP )
centerIntErrorIsSmall =
(centerSrcIntPnts[ iP ] - centerTgtIntPnts[ iP ]).SquareModulus() < tol*tol;
}
else // even zSize
{
for ( size_t iP = 0; ( iP < myIntColumns.size() && centerIntErrorIsSmall ); ++iP )
centerIntErrorIsSmall =
(intPntsOfLayer[ zS-1 ][ iP ] - centerTgtIntPnts[ iP ]).SquareModulus() < tol*tol;
}
// Evaluate an error of boundary points
bool bndErrorIsSmall = true;
for ( size_t iP = 0; ( iP < myBndColumns.size() && bndErrorIsSmall ); ++iP )
{
double sumError = 0;
for ( size_t z = 1; z < zS; ++z ) // loop on layers
sumError += ( bndError[ z-1 ][ iP ].Modulus() +
bndError[ zSize-z ][ iP ].Modulus() );
bndErrorIsSmall = ( sumError < tol );
}
if ( !bndErrorIsSmall && !allowHighBndError )
return false;
// compute final points on the central layer
std::vector< double > int2BndDist( myBndColumns.size() ); // work array of applyBoundaryError()
double r = zS / ( zSize - 1.);
if ( zS == zT )
{
for ( size_t iP = 0; iP < myIntColumns.size(); ++iP )
{
intPntsOfLayer[ zS ][ iP ] =
( 1 - r ) * centerSrcIntPnts[ iP ] + r * centerTgtIntPnts[ iP ];
}
if ( !bndErrorIsSmall )
{
applyBoundaryError( toSrcBndPnts, bndError[ zS-1 ], bndError[ zS+1 ], r,
intPntsOfLayer[ zS ], int2BndDist );
}
}
else
{
for ( size_t iP = 0; iP < myIntColumns.size(); ++iP )
{
intPntsOfLayer[ zS ][ iP ] =
r * intPntsOfLayer[ zS ][ iP ] + ( 1 - r ) * centerSrcIntPnts[ iP ];
intPntsOfLayer[ zT ][ iP ] =
r * intPntsOfLayer[ zT ][ iP ] + ( 1 - r ) * centerTgtIntPnts[ iP ];
}
if ( !bndErrorIsSmall )
{
applyBoundaryError( toSrcBndPnts, bndError[ zS-1 ], bndError[ zS+1 ], r,
intPntsOfLayer[ zS ], int2BndDist );
applyBoundaryError( toTgtBndPnts, bndError[ zT+1 ], bndError[ zT-1 ], r,
intPntsOfLayer[ zT ], int2BndDist );
}
}
//centerIntErrorIsSmall = true;
//bndErrorIsSmall = true;
if ( !centerIntErrorIsSmall )
{
// Compensate the central error; continue adding projection
// by going from central layer to the source and target ones
vector< gp_XYZ >& fromSrcIntPnts = centerSrcIntPnts;
vector< gp_XYZ >& fromTgtIntPnts = centerTgtIntPnts;
vector< gp_XYZ > toSrcIntPnts( myIntColumns.size() );
vector< gp_XYZ > toTgtIntPnts( myIntColumns.size() );
vector< gp_XYZ > srcBndError( myBndColumns.size() );
vector< gp_XYZ > tgtBndError( myBndColumns.size() );
fromTgtBndPnts.swap( toTgtBndPnts );
fromSrcBndPnts.swap( toSrcBndPnts );
for ( ++zS, --zT; zS < zTgt; ++zS, --zT ) // vertical loop on layers
{
// invert transformation
if ( !trsfOfLayer[ zS+1 ].Invert() )
trsfOfLayer[ zS+1 ] = NSProjUtils::TrsfFinder3D(); // to recompute
if ( !trsfOfLayer[ zT-1 ].Invert() )
trsfOfLayer[ zT-1 ] = NSProjUtils::TrsfFinder3D();
// project internal nodes and compute bnd error
for ( size_t iP = 0; iP < myBndColumns.size(); ++iP )
{
toSrcBndPnts[ iP ] = bndPoint( iP, zS );
toTgtBndPnts[ iP ] = bndPoint( iP, zT );
}
projectIntPoints( fromSrcBndPnts, toSrcBndPnts,
fromSrcIntPnts, toSrcIntPnts,
trsfOfLayer[ zS+1 ], & srcBndError );
projectIntPoints( fromTgtBndPnts, toTgtBndPnts,
fromTgtIntPnts, toTgtIntPnts,
trsfOfLayer[ zT-1 ], & tgtBndError );
// if ( zS == zTgt - 1 )
// {
// cout << "mesh2 = smesh.Mesh()" << endl;
// for ( size_t iP = 0; iP < myBndColumns.size(); ++iP )
// {
// gp_XYZ fromTrsf = trsfOfLayer [ zS+1].Transform( fromSrcBndPnts[ iP ] );
// cout << "mesh2.AddNode( "
// << fromTrsf.X() << ", "
// << fromTrsf.Y() << ", "
// << fromTrsf.Z() << ") " << endl;
// }
// for ( size_t iP = 0; iP < myIntColumns.size(); ++iP )
// cout << "mesh2.AddNode( "
// << toSrcIntPnts[ iP ].X() << ", "
// << toSrcIntPnts[ iP ].Y() << ", "
// << toSrcIntPnts[ iP ].Z() << ") " << endl;
// }
// sum up 2 projections
r = zS / ( zSize - 1.);
vector< gp_XYZ >& zSIntPnts = intPntsOfLayer[ zS ];
vector< gp_XYZ >& zTIntPnts = intPntsOfLayer[ zT ];
for ( size_t iP = 0; iP < myIntColumns.size(); ++iP )
{
zSIntPnts[ iP ] = r * zSIntPnts[ iP ] + ( 1 - r ) * toSrcIntPnts[ iP ];
zTIntPnts[ iP ] = r * zTIntPnts[ iP ] + ( 1 - r ) * toTgtIntPnts[ iP ];
}
// compensate bnd error
if ( !bndErrorIsSmall )
{
applyBoundaryError( toSrcBndPnts, srcBndError, bndError[ zS+1 ], r,
intPntsOfLayer[ zS ], int2BndDist );
applyBoundaryError( toTgtBndPnts, tgtBndError, bndError[ zT-1 ], r,
intPntsOfLayer[ zT ], int2BndDist );
}
fromSrcBndPnts.swap( toSrcBndPnts );
fromSrcIntPnts.swap( toSrcIntPnts );
fromTgtBndPnts.swap( toTgtBndPnts );
fromTgtIntPnts.swap( toTgtIntPnts );
}
} // if ( !centerIntErrorIsSmall )
else if ( !bndErrorIsSmall )
{
zS = zSrc + 1;
zT = zTgt - 1;
for ( ; zS < zT; ++zS, --zT ) // vertical loop on layers
{
for ( size_t iP = 0; iP < myBndColumns.size(); ++iP )
{
toSrcBndPnts[ iP ] = bndPoint( iP, zS );
toTgtBndPnts[ iP ] = bndPoint( iP, zT );
}
// compensate bnd error
applyBoundaryError( toSrcBndPnts, bndError[ zS-1 ], bndError[ zS-1 ], 0.5,
intPntsOfLayer[ zS ], int2BndDist );
applyBoundaryError( toTgtBndPnts, bndError[ zT+1 ], bndError[ zT+1 ], 0.5,
intPntsOfLayer[ zT ], int2BndDist );
}
}
// cout << "centerIntErrorIsSmall = " << centerIntErrorIsSmall<< endl;
// cout << "bndErrorIsSmall = " << bndErrorIsSmall<< endl;
// Create nodes
for ( size_t iP = 0; iP < myIntColumns.size(); ++iP )
{
vector< const SMDS_MeshNode* > & nodeCol = *myIntColumns[ iP ];
for ( size_t z = zSrc + 1; z < zTgt; ++z ) // vertical loop on layers
{
const gp_XYZ & xyz = intPntsOfLayer[ z ][ iP ];
if ( !( nodeCol[ z ] = helper.AddNode( xyz.X(), xyz.Y(), xyz.Z() )))
return false;
}
}
return true;
}