smesh/src/StdMeshers/StdMeshers_MEFISTO_2D.cxx

879 lines
27 KiB
C++

// Copyright (C) 2007-2014 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementaion of SMESH idl descriptions
// File : StdMeshers_MEFISTO_2D.cxx
// Moved here from SMESH_MEFISTO_2D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
//
#include "StdMeshers_MEFISTO_2D.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "StdMeshers_LengthFromEdges.hxx"
#include "StdMeshers_MaxElementArea.hxx"
#include "StdMeshers_ViscousLayers2D.hxx"
#include "utilities.h"
#include "Rn.h"
#include "aptrte.h"
#include <BRepGProp.hxx>
#include <BRepTools.hxx>
#include <BRep_Tool.hxx>
#include <GProp_GProps.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Precision.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Iterator.hxx>
#include <TopoDS_Wire.hxx>
#include <gp_Pnt2d.hxx>
using namespace std;
#ifdef _DEBUG_
//#define DUMP_POINTS // to print coordinates of MEFISTO input
#endif
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_MEFISTO_2D::StdMeshers_MEFISTO_2D(int hypId, int studyId, SMESH_Gen * gen):
SMESH_2D_Algo(hypId, studyId, gen)
{
MESSAGE("StdMeshers_MEFISTO_2D::StdMeshers_MEFISTO_2D");
_name = "MEFISTO_2D";
_shapeType = (1 << TopAbs_FACE);
_compatibleHypothesis.push_back("MaxElementArea");
_compatibleHypothesis.push_back("LengthFromEdges");
_compatibleHypothesis.push_back("ViscousLayers2D");
_edgeLength = 0;
_maxElementArea = 0;
_hypMaxElementArea = NULL;
_hypLengthFromEdges = NULL;
_helper = 0;
}
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_MEFISTO_2D::~StdMeshers_MEFISTO_2D()
{
MESSAGE("StdMeshers_MEFISTO_2D::~StdMeshers_MEFISTO_2D");
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_MEFISTO_2D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
_hypMaxElementArea = NULL;
_hypLengthFromEdges = NULL;
_edgeLength = 0;
_maxElementArea = 0;
if ( !error( StdMeshers_ViscousLayers2D::CheckHypothesis( aMesh, aShape, aStatus )))
return false;
list <const SMESHDS_Hypothesis * >::const_iterator itl;
const SMESHDS_Hypothesis *theHyp;
const list <const SMESHDS_Hypothesis * >&hyps = GetUsedHypothesis(aMesh, aShape);
int nbHyp = hyps.size();
if (!nbHyp)
{
aStatus = SMESH_Hypothesis::HYP_OK; //SMESH_Hypothesis::HYP_MISSING;
return true; // (PAL13464) can work with no hypothesis, LengthFromEdges is default one
}
itl = hyps.begin();
theHyp = (*itl); // use only the first hypothesis
string hypName = theHyp->GetName();
bool isOk = false;
if (hypName == "MaxElementArea")
{
_hypMaxElementArea = static_cast<const StdMeshers_MaxElementArea *>(theHyp);
ASSERT(_hypMaxElementArea);
_maxElementArea = _hypMaxElementArea->GetMaxArea();
isOk = true;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "LengthFromEdges")
{
_hypLengthFromEdges = static_cast<const StdMeshers_LengthFromEdges *>(theHyp);
ASSERT(_hypLengthFromEdges);
isOk = true;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else
aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE;
if (isOk)
{
isOk = false;
if (_maxElementArea > 0)
{
//_edgeLength = 2 * sqrt(_maxElementArea); // triangles : minorant
_edgeLength = sqrt(2. * _maxElementArea/sqrt(3.0));
isOk = true;
}
else
isOk = (_hypLengthFromEdges != NULL); // **** check mode
if (!isOk)
aStatus = SMESH_Hypothesis::HYP_BAD_PARAMETER;
}
return isOk;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_MEFISTO_2D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape)
{
MESSAGE("StdMeshers_MEFISTO_2D::Compute");
TopoDS_Face F = TopoDS::Face(aShape.Oriented(TopAbs_FORWARD));
// helper builds quadratic mesh if necessary
SMESH_MesherHelper helper(aMesh);
_helper = &helper;
_quadraticMesh = _helper->IsQuadraticSubMesh(aShape);
const bool skipMediumNodes = _quadraticMesh;
// build viscous layers if required
SMESH_ProxyMesh::Ptr proxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F );
if ( !proxyMesh )
return false;
// get all edges of a face
TError problem;
TWireVector wires =
StdMeshers_FaceSide::GetFaceWires( F, aMesh, skipMediumNodes, problem, proxyMesh );
int nbWires = wires.size();
if ( problem && !problem->IsOK() ) return error( problem );
if ( nbWires == 0 ) return error( "Problem in StdMeshers_FaceSide::GetFaceWires()");
if ( wires[0]->NbSegments() < 3 ) // ex: a circle with 2 segments
return error(COMPERR_BAD_INPUT_MESH,
SMESH_Comment("Too few segments: ")<<wires[0]->NbSegments());
// compute average edge length
if (!_hypMaxElementArea)
{
_edgeLength = 0;
int nbSegments = 0;
for ( int iW = 0; iW < nbWires; ++iW )
{
StdMeshers_FaceSidePtr wire = wires[ iW ];
_edgeLength += wire->Length();
nbSegments += wire->NbSegments();
}
if ( nbSegments )
_edgeLength /= nbSegments;
}
if (/*_hypLengthFromEdges &&*/ _edgeLength < DBL_MIN )
_edgeLength = 100;
Z nblf; //nombre de lignes fermees (enveloppe en tete)
Z *nudslf = NULL; //numero du dernier sommet de chaque ligne fermee
R2 *uvslf = NULL;
Z nbpti = 0; //nombre points internes futurs sommets de la triangulation
R2 *uvpti = NULL;
Z nbst;
R2 *uvst = NULL;
Z nbt;
Z *nust = NULL;
Z ierr = 0;
Z nutysu = 1; // 1: il existe un fonction areteideale_()
// Z nutysu=0; // 0: on utilise aretmx
R aretmx = _edgeLength; // longueur max aretes future triangulation
if ( _hypMaxElementArea )
aretmx *= 1.5;
nblf = nbWires;
nudslf = new Z[1 + nblf];
nudslf[0] = 0;
int iw = 1;
int nbpnt = 0;
// count nb of input points
for ( int iW = 0; iW < nbWires; ++iW )
{
nbpnt += wires[iW]->NbPoints() - 1;
nudslf[iw++] = nbpnt;
}
uvslf = new R2[nudslf[nblf]];
double scalex, scaley;
ComputeScaleOnFace(aMesh, F, scalex, scaley);
// correspondence mefisto index --> Nodes
vector< const SMDS_MeshNode*> mefistoToDS(nbpnt, (const SMDS_MeshNode*)0);
bool isOk = false;
// fill input points UV
if ( LoadPoints(wires, uvslf, mefistoToDS, scalex, scaley) )
{
// Compute
aptrte(nutysu, aretmx,
nblf, nudslf, uvslf, nbpti, uvpti, nbst, uvst, nbt, nust, ierr);
if (ierr == 0)
{
MESSAGE("... End Triangulation Generated Triangle Number " << nbt);
MESSAGE(" Node Number " << nbst);
StoreResult(nbst, uvst, nbt, nust, mefistoToDS, scalex, scaley);
isOk = true;
}
else
{
error(ierr,"Error in Triangulation (aptrte())");
}
}
if (nudslf != NULL) delete[]nudslf;
if (uvslf != NULL) delete[]uvslf;
if (uvst != NULL) delete[]uvst;
if (nust != NULL) delete[]nust;
return isOk;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_MEFISTO_2D::Evaluate(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap)
{
MESSAGE("StdMeshers_MEFISTO_2D::Evaluate");
TopoDS_Face F = TopoDS::Face(aShape.Oriented(TopAbs_FORWARD));
double aLen = 0.0;
int NbSeg = 0;
bool IsQuadratic = false;
bool IsFirst = true;
TopExp_Explorer exp(F,TopAbs_EDGE);
for(; exp.More(); exp.Next()) {
TopoDS_Edge E = TopoDS::Edge(exp.Current());
MapShapeNbElemsItr anIt = aResMap.find( aMesh.GetSubMesh(E) );
if( anIt == aResMap.end() ) continue;
std::vector<int> aVec = (*anIt).second;
int nbe = Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
NbSeg += nbe;
if(IsFirst) {
IsQuadratic = ( aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge] );
IsFirst = false;
}
double a,b;
TopLoc_Location L;
Handle(Geom_Curve) C = BRep_Tool::Curve(E,L,a,b);
gp_Pnt P1;
C->D0(a,P1);
double dp = (b-a)/nbe;
for(int i=1; i<=nbe; i++) {
gp_Pnt P2;
C->D0(a+i*dp,P2);
aLen += P1.Distance(P2);
P1 = P2;
}
}
if(NbSeg<1) {
std::vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aResVec));
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,
"Submesh can not be evaluated",this));
return false;
}
aLen = aLen/NbSeg; // middle length
_edgeLength = Precision::Infinite();
double tmpLength = Min( _edgeLength, aLen );
GProp_GProps G;
BRepGProp::SurfaceProperties(aShape,G);
double anArea = G.Mass();
int nbFaces = Precision::IsInfinite( tmpLength ) ? 0 :
(int)( anArea/(tmpLength*tmpLength*sqrt(3.)/4) );
int nbNodes = (int) ( nbFaces*3 - (NbSeg-1)*2 ) / 6;
std::vector<int> aVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
if(IsQuadratic) {
aVec[SMDSEntity_Quad_Triangle] = nbFaces;
aVec[SMDSEntity_Node] = (int)( nbNodes + nbFaces*3 - (NbSeg-1) );
}
else {
aVec[SMDSEntity_Node] = nbNodes;
aVec[SMDSEntity_Triangle] = nbFaces;
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aVec));
return true;
}
//=======================================================================
//function : fixOverlappedLinkUV
//purpose : prevent failure due to overlapped adjacent links
//=======================================================================
static bool fixOverlappedLinkUV( R2& uv0, const R2& uv1, const R2& uv2 )
{
gp_XY v1( uv0.x - uv1.x, uv0.y - uv1.y );
gp_XY v2( uv2.x - uv1.x, uv2.y - uv1.y );
double tol2 = DBL_MIN * DBL_MIN;
double sqMod1 = v1.SquareModulus();
if ( sqMod1 <= tol2 ) return false;
double sqMod2 = v2.SquareModulus();
if ( sqMod2 <= tol2 ) return false;
double dot = v1*v2;
// check sinus >= 1.e-3
const double minSin = 1.e-3;
if ( dot > 0 && 1 - dot * dot / ( sqMod1 * sqMod2 ) < minSin * minSin ) {
MESSAGE(" ___ FIX UV ____" << uv0.x << " " << uv0.y);
v1.SetCoord( -v1.Y(), v1.X() );
double delta = sqrt( sqMod1 ) * minSin;
if ( v1.X() < 0 )
uv0.x -= delta;
else
uv0.x += delta;
if ( v1.Y() < 0 )
uv0.y -= delta;
else
uv0.y += delta;
// #ifdef _DEBUG_
// MESSAGE(" -> " << uv0.x << " " << uv0.y << " ");
// MESSAGE("v1( " << v1.X() << " " << v1.Y() << " ) " <<
// "v2( " << v2.X() << " " << v2.Y() << " ) ");
// MESSAGE("SIN: " << sqrt(1 - dot * dot / (sqMod1 * sqMod2)));
// v1.SetCoord( uv0.x - uv1.x, uv0.y - uv1.y );
// v2.SetCoord( uv2.x - uv1.x, uv2.y - uv1.y );
// gp_XY v3( uv2.x - uv0.x, uv2.y - uv0.y );
// sqMod1 = v1.SquareModulus();
// sqMod2 = v2.SquareModulus();
// dot = v1*v2;
// double sin = sqrt(1 - dot * dot / (sqMod1 * sqMod2));
// MESSAGE("NEW SIN: " << sin);
// #endif
return true;
}
return false;
}
//=======================================================================
//function : fixCommonVertexUV
//purpose :
//=======================================================================
static bool fixCommonVertexUV (R2 & theUV,
const TopoDS_Vertex& theV,
const TopoDS_Face& theF,
const TopTools_IndexedDataMapOfShapeListOfShape & theVWMap,
SMESH_Mesh & theMesh,
const double theScaleX,
const double theScaleY,
const bool theCreateQuadratic)
{
if( !theVWMap.Contains( theV )) return false;
// check if there is another wire sharing theV
const TopTools_ListOfShape& WList = theVWMap.FindFromKey( theV );
TopTools_ListIteratorOfListOfShape aWIt;
TopTools_MapOfShape aWires;
for ( aWIt.Initialize( WList ); aWIt.More(); aWIt.Next() )
aWires.Add( aWIt.Value() );
if ( aWires.Extent() < 2 ) return false;
TopoDS_Shape anOuterWire = BRepTools::OuterWire(theF);
TopoDS_Shape anInnerWire;
for ( aWIt.Initialize( WList ); aWIt.More() && anInnerWire.IsNull(); aWIt.Next() )
if ( !anOuterWire.IsSame( aWIt.Value() ))
anInnerWire = aWIt.Value();
TopTools_ListOfShape EList;
list< double > UList;
// find edges of theW sharing theV
// and find 2d normal to them at theV
gp_Vec2d N(0.,0.);
TopoDS_Iterator itE( anInnerWire );
for ( ; itE.More(); itE.Next() )
{
const TopoDS_Edge& E = TopoDS::Edge( itE.Value() );
TopoDS_Iterator itV( E );
for ( ; itV.More(); itV.Next() )
{
const TopoDS_Vertex & V = TopoDS::Vertex( itV.Value() );
if ( !V.IsSame( theV ))
continue;
EList.Append( E );
Standard_Real u = BRep_Tool::Parameter( V, E );
UList.push_back( u );
double f, l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, theF, f, l);
gp_Vec2d d1;
gp_Pnt2d p;
C2d->D1( u, p, d1 );
gp_Vec2d n( d1.Y() * theScaleX, -d1.X() * theScaleY);
if ( E.Orientation() == TopAbs_REVERSED )
n.Reverse();
N += n.Normalized();
}
}
// define step size by which to move theUV
gp_Pnt2d nextUV; // uv of next node on edge, most distant of the four
gp_Pnt2d thisUV( theUV.x, theUV.y );
double maxDist = -DBL_MAX;
TopTools_ListIteratorOfListOfShape aEIt (EList);
list< double >::iterator aUIt = UList.begin();
for ( ; aEIt.More(); aEIt.Next(), aUIt++ )
{
const TopoDS_Edge& E = TopoDS::Edge( aEIt.Value() );
double f, l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, theF, f, l);
double umin = DBL_MAX, umax = -DBL_MAX;
SMDS_NodeIteratorPtr nIt = theMesh.GetSubMesh(E)->GetSubMeshDS()->GetNodes();
if ( !nIt->more() ) // no nodes on edge, only on vertices
{
umin = l;
umax = f;
}
else {
while ( nIt->more() ) {
const SMDS_MeshNode* node = nIt->next();
// check if node is medium
if ( theCreateQuadratic && SMESH_MesherHelper::IsMedium( node, SMDSAbs_Edge ))
continue;
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(node->GetPosition());
double u = epos->GetUParameter();
if ( u < umin )
umin = u;
if ( u > umax )
umax = u;
}
}
bool isFirstCommon = ( *aUIt == f );
gp_Pnt2d uv = C2d->Value( isFirstCommon ? umin : umax );
double dist = thisUV.SquareDistance( uv );
if ( dist > maxDist ) {
maxDist = dist;
nextUV = uv;
}
}
R2 uv0, uv1, uv2;
uv0.x = thisUV.X(); uv0.y = thisUV.Y();
uv1.x = nextUV.X(); uv1.y = nextUV.Y();
uv2.x = thisUV.X(); uv2.y = thisUV.Y();
uv1.x *= theScaleX; uv1.y *= theScaleY;
if ( fixOverlappedLinkUV( uv0, uv1, uv2 ))
{
double step = thisUV.Distance( gp_Pnt2d( uv0.x, uv0.y ));
// move theUV along the normal by the step
N *= step;
MESSAGE("--fixCommonVertexUV move(" << theUV.x << " " << theUV.x
<< ") by (" << N.X() << " " << N.Y() << ")"
<< endl << "--- MAX DIST " << maxDist);
theUV.x += N.X();
theUV.y += N.Y();
return true;
}
return false;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_MEFISTO_2D::LoadPoints(TWireVector & wires,
R2 * uvslf,
vector<const SMDS_MeshNode*>& mefistoToDS,
double scalex,
double scaley)
{
// to avoid passing same uv points for a vertex common to 2 wires
TopoDS_Face F;
TopTools_IndexedDataMapOfShapeListOfShape VWMap;
if ( wires.size() > 1 )
{
F = TopoDS::Face( _helper->GetSubShape() );
TopExp::MapShapesAndAncestors( F, TopAbs_VERTEX, TopAbs_WIRE, VWMap );
int nbVertices = 0;
for ( int iW = 0; iW < wires.size(); ++iW )
nbVertices += wires[ iW ]->NbEdges();
if ( nbVertices == VWMap.Extent() )
VWMap.Clear(); // wires have no common vertices
}
int m = 0;
for ( int iW = 0; iW < wires.size(); ++iW )
{
const vector<UVPtStruct>& uvPtVec = wires[ iW ]->GetUVPtStruct();
if ( uvPtVec.size() != wires[ iW ]->NbPoints() ) {
return error(COMPERR_BAD_INPUT_MESH,SMESH_Comment("Unexpected nb of points on wire ")
<< iW << ": " << uvPtVec.size()<<" != "<<wires[ iW ]->NbPoints()
<< ", probably because of invalid node parameters on geom edges");
}
if ( m + uvPtVec.size()-1 > mefistoToDS.size() ) {
MESSAGE("Wrong mefistoToDS.size: "<<mefistoToDS.size()<<" < "<<m + uvPtVec.size()-1);
return error("Internal error");
}
list< int > mOnVertex;
vector<UVPtStruct>::const_iterator uvPt = uvPtVec.begin();
for ( ++uvPt; uvPt != uvPtVec.end(); ++uvPt )
{
// bind mefisto ID to node
mefistoToDS[m] = uvPt->node;
// set UV
uvslf[m].x = uvPt->u * scalex;
uvslf[m].y = uvPt->v * scaley;
switch ( uvPt->node->GetPosition()->GetTypeOfPosition())
{
case SMDS_TOP_VERTEX:
mOnVertex.push_back( m );
break;
case SMDS_TOP_EDGE:
// In order to detect degenerated faces easily, we replace
// nodes on a degenerated edge by node on the vertex of that edge
if ( _helper->IsDegenShape( uvPt->node->getshapeId() ))
{
int edgeID = uvPt->node->getshapeId();
SMESH_subMesh* edgeSM = _helper->GetMesh()->GetSubMeshContaining( edgeID );
SMESH_subMeshIteratorPtr smIt = edgeSM->getDependsOnIterator( /*includeSelf=*/0,
/*complexShapeFirst=*/0);
if ( smIt->more() )
{
SMESH_subMesh* vertexSM = smIt->next();
SMDS_NodeIteratorPtr nIt = vertexSM->GetSubMeshDS()->GetNodes();
if ( nIt->more() )
mefistoToDS[m] = nIt->next();
}
}
break;
default:;
}
m++;
}
int mFirst = mOnVertex.front(), mLast = m - 1;
list< int >::iterator mIt = mOnVertex.begin();
for ( ; mIt != mOnVertex.end(); ++mIt)
{
int m = *mIt;
if ( iW && !VWMap.IsEmpty()) { // except outer wire
// avoid passing same uv point for a vertex common to 2 wires
int vID = mefistoToDS[m]->getshapeId();
TopoDS_Vertex V = TopoDS::Vertex( _helper->GetMeshDS()->IndexToShape( vID ));
if ( fixCommonVertexUV( uvslf[m], V, F, VWMap, *_helper->GetMesh(),
scalex, scaley, _quadraticMesh )) {
myNodesOnCommonV.push_back( mefistoToDS[m] );
continue;
}
}
// prevent failure on overlapped adjacent links,
// check only links ending in vertex nodes
int mB = m - 1, mA = m + 1; // indices Before and After
if ( mB < mFirst ) mB = mLast;
if ( mA > mLast ) mA = mFirst;
fixOverlappedLinkUV (uvslf[ mB ], uvslf[ m ], uvslf[ mA ]);
}
}
#ifdef DUMP_POINTS
cout << "MEFISTO INPUT************" << endl;
for ( int i =0; i < m; ++i )
cout << i << ": \t" << uvslf[i].x << ", " << uvslf[i].y
<< " Node " << mefistoToDS[i]->GetID()<< endl;
#endif
return true;
}
//=============================================================================
/*!
*
*/
//=============================================================================
void StdMeshers_MEFISTO_2D::ComputeScaleOnFace(SMESH_Mesh & aMesh,
const TopoDS_Face & aFace,
double & scalex,
double & scaley)
{
TopoDS_Wire W = BRepTools::OuterWire(aFace);
double xmin = 1.e300; // min & max of face 2D parametric coord.
double xmax = -1.e300;
double ymin = 1.e300;
double ymax = -1.e300;
int nbp = 23;
scalex = 1;
scaley = 1;
TopExp_Explorer wexp(W, TopAbs_EDGE);
for ( ; wexp.More(); wexp.Next())
{
const TopoDS_Edge & E = TopoDS::Edge( wexp.Current() );
double f, l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, aFace, f, l);
if ( C2d.IsNull() ) continue;
double du = (l - f) / double (nbp);
for (int i = 0; i <= nbp; i++)
{
double param = f + double (i) * du;
gp_Pnt2d p = C2d->Value(param);
if (p.X() < xmin)
xmin = p.X();
if (p.X() > xmax)
xmax = p.X();
if (p.Y() < ymin)
ymin = p.Y();
if (p.Y() > ymax)
ymax = p.Y();
// MESSAGE(" "<< f<<" "<<l<<" "<<param<<" "<<xmin<<" "<<xmax<<" "<<ymin<<" "<<ymax);
}
}
// SCRUTE(xmin);
// SCRUTE(xmax);
// SCRUTE(ymin);
// SCRUTE(ymax);
double xmoy = (xmax + xmin) / 2.;
double ymoy = (ymax + ymin) / 2.;
double xsize = xmax - xmin;
double ysize = ymax - ymin;
TopLoc_Location L;
Handle(Geom_Surface) S = BRep_Tool::Surface(aFace,L); // 3D surface
double length_x = 0;
double length_y = 0;
gp_Pnt PX0 = S->Value(xmin, ymoy);
gp_Pnt PY0 = S->Value(xmoy, ymin);
double dx = xsize / double (nbp);
double dy = ysize / double (nbp);
for (int i = 1; i <= nbp; i++)
{
double x = xmin + double (i) * dx;
gp_Pnt PX = S->Value(x, ymoy);
double y = ymin + double (i) * dy;
gp_Pnt PY = S->Value(xmoy, y);
length_x += PX.Distance(PX0);
length_y += PY.Distance(PY0);
PX0 = PX;
PY0 = PY;
}
scalex = length_x / xsize;
scaley = length_y / ysize;
// SCRUTE(xsize);
// SCRUTE(ysize);
double xyratio = xsize*scalex/(ysize*scaley);
const double maxratio = 1.e2;
//SCRUTE(xyratio);
if (xyratio > maxratio) {
SCRUTE( scaley );
scaley *= xyratio / maxratio;
SCRUTE( scaley );
}
else if (xyratio < 1./maxratio) {
SCRUTE( scalex );
scalex *= 1 / xyratio / maxratio;
SCRUTE( scalex );
}
ASSERT(scalex);
ASSERT(scaley);
}
// namespace
// {
// bool isDegenTria( const SMDS_MeshNode * nn[3] )
// {
// SMESH_TNodeXYZ p1( nn[0] );
// SMESH_TNodeXYZ p2( nn[1] );
// SMESH_TNodeXYZ p3( nn[2] );
// gp_XYZ vec1 = p2 - p1;
// gp_XYZ vec2 = p3 - p1;
// gp_XYZ cross = vec1 ^ vec2;
// const double eps = 1e-100;
// return ( fabs( cross.X() ) < eps &&
// fabs( cross.Y() ) < eps &&
// fabs( cross.Z() ) < eps );
// }
// }
//=============================================================================
/*!
*
*/
//=============================================================================
void StdMeshers_MEFISTO_2D::StoreResult(Z nbst, R2 * uvst, Z nbt, Z * nust,
vector< const SMDS_MeshNode*>&mefistoToDS,
double scalex, double scaley)
{
_helper->SetElementsOnShape( true );
TopoDS_Face F = TopoDS::Face( _helper->GetSubShape() );
Handle(Geom_Surface) S = BRep_Tool::Surface( F );
//const size_t nbInputNodes = mefistoToDS.size();
Z n = mefistoToDS.size(); // nb input points
mefistoToDS.resize( nbst );
for ( ; n < nbst; n++)
{
if (!mefistoToDS[n])
{
double u = uvst[n][0] / scalex;
double v = uvst[n][1] / scaley;
gp_Pnt P = S->Value(u, v);
mefistoToDS[n] = _helper->AddNode( P.X(), P.Y(), P.Z(), 0, u, v );
}
}
Z m = 0;
// triangle points must be in trigonometric order if face is Forward
// else they must be put clockwise
int i1 = 1, i2 = 2;
if ( F.Orientation() != TopAbs_FORWARD )
std::swap( i1, i2 );
const SMDS_MeshNode * nn[3];
for (n = 1; n <= nbt; n++)
{
// const bool allNodesAreOld = ( nust[m + 0] <= nbInputNodes &&
// nust[m + 1] <= nbInputNodes &&
// nust[m + 2] <= nbInputNodes );
nn[ 0 ] = mefistoToDS[ nust[m++] - 1 ];
nn[ 1 ] = mefistoToDS[ nust[m++] - 1 ];
nn[ 2 ] = mefistoToDS[ nust[m++] - 1 ];
m++;
// avoid creating degenetrated faces
bool isDegen = ( _helper->HasDegeneratedEdges() &&
( nn[0] == nn[1] || nn[1] == nn[2] || nn[2] == nn[0] ));
// It was an attemp to fix a problem of a zero area face whose all nodes
// are on one staight EDGE. But omitting this face makes a hole in the mesh :(
// if ( !isDegen && allNodesAreOld )
// isDegen = isDegenTria( nn );
if ( !isDegen )
_helper->AddFace( nn[0], nn[i1], nn[i2] );
}
// remove bad elements built on vertices shared by wires
list<const SMDS_MeshNode*>::iterator itN = myNodesOnCommonV.begin();
for ( ; itN != myNodesOnCommonV.end(); itN++ )
{
const SMDS_MeshNode* node = *itN;
SMDS_ElemIteratorPtr invElemIt = node->GetInverseElementIterator();
while ( invElemIt->more() )
{
const SMDS_MeshElement* elem = invElemIt->next();
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
int nbSame = 0;
while ( itN->more() )
if ( itN->next() == node)
nbSame++;
if (nbSame > 1) {
MESSAGE( "RM bad element " << elem->GetID());
_helper->GetMeshDS()->RemoveElement( elem );
}
}
}
}