mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-13 18:20:34 +05:00
415 lines
14 KiB
C++
415 lines
14 KiB
C++
// Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
//
|
|
|
|
// Author : Lioka RAZAFINDRAZAKA (CEA)
|
|
|
|
#include "SMESH_ControlPnt.hxx"
|
|
|
|
#include <BRepBndLib.hxx>
|
|
#include <BRepMesh_IncrementalMesh.hxx>
|
|
#include <BRep_Tool.hxx>
|
|
#include <Bnd_Box.hxx>
|
|
#include <GCPnts_UniformAbscissa.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <IntCurvesFace_Intersector.hxx>
|
|
#include <Poly_Array1OfTriangle.hxx>
|
|
#include <Poly_Triangle.hxx>
|
|
#include <Poly_Triangulation.hxx>
|
|
#include <Precision.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TopExp_Explorer.hxx>
|
|
#include <TopLoc_Location.hxx>
|
|
#include <TopoDS.hxx>
|
|
#include <TopoDS_Edge.hxx>
|
|
#include <TopoDS_Face.hxx>
|
|
#include <TopoDS_Iterator.hxx>
|
|
#include <TopoDS_Solid.hxx>
|
|
#include <gp_Ax3.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Lin.hxx>
|
|
#include <gp_Trsf.hxx>
|
|
#include <gp_Vec.hxx>
|
|
|
|
#include <set>
|
|
|
|
namespace SMESHUtils
|
|
{
|
|
// Some functions for surface sampling
|
|
void subdivideTriangle( const gp_Pnt& p1,
|
|
const gp_Pnt& p2,
|
|
const gp_Pnt& p3,
|
|
const double& theSize,
|
|
std::vector<ControlPnt>& thePoints );
|
|
|
|
std::vector<gp_Pnt> computePointsForSplitting( const gp_Pnt& p1,
|
|
const gp_Pnt& p2,
|
|
const gp_Pnt& p3 );
|
|
gp_Pnt tangencyPoint(const gp_Pnt& p1,
|
|
const gp_Pnt& p2,
|
|
const gp_Pnt& Center);
|
|
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Fills a vector of points from which a size map input file can be written
|
|
*/
|
|
//================================================================================
|
|
|
|
void SMESHUtils::createControlPoints( const TopoDS_Shape& theShape,
|
|
const double& theSize,
|
|
std::vector<ControlPnt>& thePoints )
|
|
{
|
|
if ( theShape.ShapeType() == TopAbs_VERTEX )
|
|
{
|
|
gp_Pnt aPnt = BRep_Tool::Pnt( TopoDS::Vertex(theShape) );
|
|
ControlPnt aControlPnt( aPnt, theSize );
|
|
thePoints.push_back( aControlPnt );
|
|
}
|
|
if ( theShape.ShapeType() == TopAbs_EDGE )
|
|
{
|
|
createPointsSampleFromEdge( TopoDS::Edge( theShape ), theSize, thePoints );
|
|
}
|
|
else if ( theShape.ShapeType() == TopAbs_WIRE )
|
|
{
|
|
TopExp_Explorer Ex;
|
|
for (Ex.Init(theShape,TopAbs_EDGE); Ex.More(); Ex.Next())
|
|
{
|
|
createPointsSampleFromEdge( TopoDS::Edge( Ex.Current() ), theSize, thePoints );
|
|
}
|
|
}
|
|
else if ( theShape.ShapeType() == TopAbs_FACE )
|
|
{
|
|
createPointsSampleFromFace( TopoDS::Face( theShape ), theSize, thePoints );
|
|
}
|
|
else if ( theShape.ShapeType() == TopAbs_SOLID )
|
|
{
|
|
createPointsSampleFromSolid( TopoDS::Solid( theShape ), theSize, thePoints );
|
|
}
|
|
else if ( theShape.ShapeType() == TopAbs_COMPOUND )
|
|
{
|
|
TopoDS_Iterator it( theShape );
|
|
for(; it.More(); it.Next())
|
|
{
|
|
createControlPoints( it.Value(), theSize, thePoints );
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Fills a vector of points with point samples approximately
|
|
* \brief spaced with a given size
|
|
*/
|
|
//================================================================================
|
|
|
|
void SMESHUtils::createPointsSampleFromEdge( const TopoDS_Edge& theEdge,
|
|
const double& theSize,
|
|
std::vector<ControlPnt>& thePoints )
|
|
{
|
|
double step = theSize;
|
|
double first, last;
|
|
Handle( Geom_Curve ) aCurve = BRep_Tool::Curve( theEdge, first, last );
|
|
GeomAdaptor_Curve C ( aCurve );
|
|
GCPnts_UniformAbscissa DiscretisationAlgo(C, step , first, last, Precision::Confusion());
|
|
int nbPoints = DiscretisationAlgo.NbPoints();
|
|
|
|
ControlPnt aPnt;
|
|
aPnt.SetSize(theSize);
|
|
|
|
for ( int i = 1; i <= nbPoints; i++ )
|
|
{
|
|
double param = DiscretisationAlgo.Parameter( i );
|
|
aCurve->D0( param, aPnt );
|
|
thePoints.push_back( aPnt );
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Fills a vector of points with point samples approximately
|
|
* \brief spaced with a given size
|
|
*/
|
|
//================================================================================
|
|
|
|
void SMESHUtils::createPointsSampleFromFace( const TopoDS_Face& theFace,
|
|
const double& theSize,
|
|
std::vector<ControlPnt>& thePoints )
|
|
{
|
|
BRepMesh_IncrementalMesh M(theFace, 0.01, Standard_True);
|
|
TopLoc_Location aLocation;
|
|
|
|
// Triangulate the face
|
|
Handle(Poly_Triangulation) aTri = BRep_Tool::Triangulation (theFace, aLocation);
|
|
|
|
// Get the transformation associated to the face location
|
|
gp_Trsf aTrsf = aLocation.Transformation();
|
|
|
|
// Get triangles
|
|
int nbTriangles = aTri->NbTriangles();
|
|
Poly_Array1OfTriangle triangles(1,nbTriangles);
|
|
triangles=aTri->Triangles();
|
|
|
|
// GetNodes
|
|
int nbNodes = aTri->NbNodes();
|
|
TColgp_Array1OfPnt nodes(1,nbNodes);
|
|
nodes = aTri->Nodes();
|
|
|
|
// Iterate on triangles and subdivide them
|
|
for(int i=1; i<=nbTriangles; i++)
|
|
{
|
|
Poly_Triangle aTriangle = triangles.Value(i);
|
|
gp_Pnt p1 = nodes.Value(aTriangle.Value(1));
|
|
gp_Pnt p2 = nodes.Value(aTriangle.Value(2));
|
|
gp_Pnt p3 = nodes.Value(aTriangle.Value(3));
|
|
|
|
p1.Transform(aTrsf);
|
|
p2.Transform(aTrsf);
|
|
p3.Transform(aTrsf);
|
|
|
|
subdivideTriangle(p1, p2, p3, theSize, thePoints);
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Fills a vector of points with point samples approximately
|
|
* \brief spaced with a given size
|
|
*/
|
|
//================================================================================
|
|
|
|
void SMESHUtils::createPointsSampleFromSolid( const TopoDS_Solid& theSolid,
|
|
const double& theSize,
|
|
std::vector<ControlPnt>& thePoints )
|
|
{
|
|
// Compute the bounding box
|
|
double Xmin, Ymin, Zmin, Xmax, Ymax, Zmax;
|
|
Bnd_Box B;
|
|
BRepBndLib::Add(theSolid, B);
|
|
B.Get(Xmin, Ymin, Zmin, Xmax, Ymax, Zmax);
|
|
|
|
// Create the points
|
|
double step = theSize;
|
|
|
|
for ( double x=Xmin; x-Xmax<Precision::Confusion(); x=x+step )
|
|
{
|
|
for ( double y=Ymin; y-Ymax<Precision::Confusion(); y=y+step )
|
|
{
|
|
// Step1 : generate the Zmin -> Zmax line
|
|
gp_Pnt startPnt(x, y, Zmin);
|
|
gp_Pnt endPnt(x, y, Zmax);
|
|
gp_Vec aVec(startPnt, endPnt);
|
|
gp_Lin aLine(startPnt, aVec);
|
|
double endParam = Zmax - Zmin;
|
|
|
|
// Step2 : for each face of theSolid:
|
|
std::set<double> intersections;
|
|
std::set<double>::iterator it = intersections.begin();
|
|
|
|
TopExp_Explorer Ex;
|
|
for (Ex.Init(theSolid,TopAbs_FACE); Ex.More(); Ex.Next())
|
|
{
|
|
// check if there is an intersection
|
|
IntCurvesFace_Intersector anIntersector(TopoDS::Face(Ex.Current()), Precision::Confusion());
|
|
anIntersector.Perform(aLine, 0, endParam);
|
|
|
|
// get the intersection's parameter and store it
|
|
int nbPoints = anIntersector.NbPnt();
|
|
for(int i = 0 ; i < nbPoints ; i++ )
|
|
{
|
|
it = intersections.insert( it, anIntersector.WParameter(i+1) );
|
|
}
|
|
}
|
|
// Step3 : go through the line chunk by chunk
|
|
if ( intersections.begin() != intersections.end() )
|
|
{
|
|
std::set<double>::iterator intersectionsIterator=intersections.begin();
|
|
double first = *intersectionsIterator;
|
|
intersectionsIterator++;
|
|
bool innerPoints = true;
|
|
for ( ; intersectionsIterator!=intersections.end() ; intersectionsIterator++ )
|
|
{
|
|
double second = *intersectionsIterator;
|
|
if ( innerPoints )
|
|
{
|
|
// If the last chunk was outside of the shape or this is the first chunk
|
|
// add the points in the range [first, second] to the points vector
|
|
double localStep = (second -first) / ceil( (second - first) / step );
|
|
for ( double z = Zmin + first; z < Zmin + second; z = z + localStep )
|
|
{
|
|
thePoints.push_back(ControlPnt( x, y, z, theSize ));
|
|
}
|
|
thePoints.push_back(ControlPnt( x, y, Zmin + second, theSize ));
|
|
}
|
|
first = second;
|
|
innerPoints = !innerPoints;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Subdivides a triangle until it reaches a certain size (recursive function)
|
|
*/
|
|
//================================================================================
|
|
|
|
void SMESHUtils::subdivideTriangle( const gp_Pnt& p1,
|
|
const gp_Pnt& p2,
|
|
const gp_Pnt& p3,
|
|
const double& theSize,
|
|
std::vector<ControlPnt>& thePoints)
|
|
{
|
|
// Size threshold to stop subdividing
|
|
// This value ensures that two control points are distant no more than 2*theSize
|
|
// as shown below
|
|
//
|
|
// The greater distance D of the mass center M to each Edge is 1/3 * Median
|
|
// and Median < sqrt(3/4) * a where a is the greater side (by using Apollonius' thorem).
|
|
// So D < 1/3 * sqrt(3/4) * a and if a < sqrt(3) * S then D < S/2
|
|
// and the distance between two mass centers of two neighbouring triangles
|
|
// sharing an edge is < 2 * 1/2 * S = S
|
|
// If the traingles share a Vertex and no Edge the distance of the mass centers
|
|
// to the Vertices is 2*D < S so the mass centers are distant of less than 2*S
|
|
|
|
double threshold = sqrt( 3. ) * theSize;
|
|
|
|
if ( (p1.Distance(p2) > threshold ||
|
|
p2.Distance(p3) > threshold ||
|
|
p3.Distance(p1) > threshold))
|
|
{
|
|
std::vector<gp_Pnt> midPoints = computePointsForSplitting(p1, p2, p3);
|
|
|
|
subdivideTriangle( midPoints[0], midPoints[1], midPoints[2], theSize, thePoints );
|
|
subdivideTriangle( midPoints[0], p2, midPoints[1], theSize, thePoints );
|
|
subdivideTriangle( midPoints[2], midPoints[1], p3, theSize, thePoints );
|
|
subdivideTriangle( p1, midPoints[0], midPoints[2], theSize, thePoints );
|
|
}
|
|
else
|
|
{
|
|
double x = (p1.X() + p2.X() + p3.X()) / 3 ;
|
|
double y = (p1.Y() + p2.Y() + p3.Y()) / 3 ;
|
|
double z = (p1.Z() + p2.Z() + p3.Z()) / 3 ;
|
|
|
|
ControlPnt massCenter( x ,y ,z, theSize );
|
|
thePoints.push_back( massCenter );
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Returns the appropriate points for splitting a triangle
|
|
* \brief the tangency points of the incircle are used in order to have mostly
|
|
* \brief well-shaped sub-triangles
|
|
*/
|
|
//================================================================================
|
|
|
|
std::vector<gp_Pnt> SMESHUtils::computePointsForSplitting( const gp_Pnt& p1,
|
|
const gp_Pnt& p2,
|
|
const gp_Pnt& p3 )
|
|
{
|
|
std::vector<gp_Pnt> midPoints;
|
|
//Change coordinates
|
|
gp_Trsf Trsf_1; // Identity transformation
|
|
gp_Ax3 reference_system(gp::Origin(), gp::DZ(), gp::DX()); // OXY
|
|
|
|
gp_Vec Vx(p1, p3);
|
|
gp_Vec Vaux(p1, p2);
|
|
gp_Dir Dx(Vx);
|
|
gp_Dir Daux(Vaux);
|
|
gp_Dir Dz = Dx.Crossed(Daux);
|
|
gp_Ax3 current_system(p1, Dz, Dx);
|
|
|
|
Trsf_1.SetTransformation( reference_system, current_system );
|
|
|
|
gp_Pnt A = p1.Transformed(Trsf_1);
|
|
gp_Pnt B = p2.Transformed(Trsf_1);
|
|
gp_Pnt C = p3.Transformed(Trsf_1);
|
|
|
|
double a = B.Distance(C) ;
|
|
double b = A.Distance(C) ;
|
|
double c = B.Distance(A) ;
|
|
|
|
// Incenter coordinates
|
|
// see http://mathworld.wolfram.com/Incenter.html
|
|
double Xi = ( b*B.X() + c*C.X() ) / ( a + b + c );
|
|
double Yi = ( b*B.Y() ) / ( a + b + c );
|
|
gp_Pnt Center(Xi, Yi, 0);
|
|
|
|
// Calculate the tangency points of the incircle
|
|
gp_Pnt T1 = tangencyPoint( A, B, Center);
|
|
gp_Pnt T2 = tangencyPoint( B, C, Center);
|
|
gp_Pnt T3 = tangencyPoint( C, A, Center);
|
|
|
|
gp_Pnt p1_2 = T1.Transformed(Trsf_1.Inverted());
|
|
gp_Pnt p2_3 = T2.Transformed(Trsf_1.Inverted());
|
|
gp_Pnt p3_1 = T3.Transformed(Trsf_1.Inverted());
|
|
|
|
midPoints.push_back(p1_2);
|
|
midPoints.push_back(p2_3);
|
|
midPoints.push_back(p3_1);
|
|
|
|
return midPoints;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Computes the tangency points of the circle of center Center with
|
|
* \brief the straight line (p1 p2)
|
|
*/
|
|
//================================================================================
|
|
|
|
gp_Pnt SMESHUtils::tangencyPoint(const gp_Pnt& p1,
|
|
const gp_Pnt& p2,
|
|
const gp_Pnt& Center)
|
|
{
|
|
double Xt = 0;
|
|
double Yt = 0;
|
|
|
|
// The tangency point is the intersection of the straight line (p1 p2)
|
|
// and the straight line (Center T) which is orthogonal to (p1 p2)
|
|
if ( fabs(p1.X() - p2.X()) <= Precision::Confusion() )
|
|
{
|
|
Xt=p1.X(); // T is on (p1 p2)
|
|
Yt=Center.Y(); // (Center T) is orthogonal to (p1 p2)
|
|
}
|
|
else if ( fabs(p1.Y() - p2.Y()) <= Precision::Confusion() )
|
|
{
|
|
Yt=p1.Y(); // T is on (p1 p2)
|
|
Xt=Center.X(); // (Center T) is orthogonal to (p1 p2)
|
|
}
|
|
else
|
|
{
|
|
// First straight line coefficients (equation y=a*x+b)
|
|
double a = (p2.Y() - p1.Y()) / (p2.X() - p1.X()) ;
|
|
double b = p1.Y() - a*p1.X(); // p1 is on this straight line
|
|
|
|
// Second straight line coefficients (equation y=c*x+d)
|
|
double c = -1 / a; // The 2 lines are orthogonal
|
|
double d = Center.Y() - c*Center.X(); // Center is on this straight line
|
|
|
|
Xt = (d - b) / (a - c);
|
|
Yt = a*Xt + b;
|
|
}
|
|
|
|
return gp_Pnt( Xt, Yt, 0 );
|
|
}
|