smesh/src/SMESH_SWIG/ex14_cyl1holed.py
2011-06-06 08:15:39 +00:00

141 lines
3.4 KiB
Python

# -*- coding: iso-8859-1 -*-
# Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE
#
# Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
# =======================================
#
from geompy import *
import smesh
# Geometrie
# =========
# Creer un cylindre avec un trou cylindrique excentre, decoupage en hexahedre et mailler.
# Donnees
# -------
# unite: millimetre
g_ox = 0
g_oy = 0
g_oz = 0
g_cyl_rayon = 1000
g_cyl_demiHauteur = 3000
g_trou_rayon = 5
g_trou_centre = 300
g_trim = 15000
# Construire le cylindre
# ----------------------
c_point = MakeVertex(g_ox, g_oy, g_oz-g_cyl_demiHauteur)
c_dir = MakeVectorDXDYDZ(0, 0, 1)
c_hauteur = 2*g_cyl_demiHauteur
c_cylindre = MakeCylinder(c_point, c_dir, g_cyl_rayon, c_hauteur)
# Trouer le cylindre par un minuscule cylindre excentre
# -----------------------------------------------------
t_hauteur = g_cyl_demiHauteur
t_point = MakeVertex(g_ox-g_trou_centre, g_oy, g_oz-t_hauteur)
t_trou = MakeCylinder(t_point, c_dir, g_trou_rayon, 2*t_hauteur)
t_piece = MakeCut(c_cylindre, t_trou)
# Geometrie hexahedrique
# ======================
# Decouper
# --------
h_outils = []
h_outils.append(MakePlane(t_point, MakeVectorDXDYDZ(1, 0, 0), g_trim))
h_outils.append(MakePlane(t_point, MakeVectorDXDYDZ(0, 1, 0), g_trim))
h_piece = MakePartition([t_piece], h_outils, [], [], ShapeType["SOLID"])
# Decouper pour les conditions locales
# ------------------------------------
l_outils = []
l_i = 1
l_n = 12
l_hauteur = c_hauteur/l_n
while l_i<l_n:
l_outils.append(MakePlane(MakeVertex(g_ox, g_oy, g_oz-g_cyl_demiHauteur+l_i*l_hauteur), c_dir, g_trim))
l_i = l_i+1
piece = MakePartition([h_piece], l_outils, [], [], ShapeType["SOLID"])
# Ajouter la piece dans l'etude
# -----------------------------
piece_id = addToStudy(piece, "ex14_cyl1holed")
# Maillage
# ========
smesh.SetCurrentStudy(salome.myStudy)
# Creer un maillage hexahedrique
# ------------------------------
hexa = smesh.Mesh(piece, "ex14_cyl1holed:hexa")
algo = hexa.Segment()
algo.NumberOfSegments(4)
hexa.Quadrangle()
hexa.Hexahedron()
# Poser les hypotheses locales
# ----------------------------
m_i = 0
m_n = 12
m_h = c_hauteur/m_n
m_d = [4, 6, 8, 10, 10, 9, 8, 7, 6, 5, 4, 3]
m_x = g_ox+g_cyl_rayon
m_y = g_oy
m_z = g_oz-g_cyl_demiHauteur+m_h/2
while m_i<m_n:
m_p = MakeVertex(m_x, m_y, m_z + m_i*m_h)
m_e = GetEdgeNearPoint(piece, m_p)
m_a = hexa.Segment(m_e)
m_a.NumberOfSegments(m_d[m_i])
m_a.Propagation()
m_i = m_i + 1
# Calculer le maillage
# --------------------
hexa.Compute()