smesh/src/DriverCGNS/DriverCGNS_Read.cxx
2012-06-05 12:18:07 +00:00

1196 lines
43 KiB
C++

// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : DriverCGNS_Read.cxx
// Created : Thu Jun 30 10:33:31 2011
// Author : Edward AGAPOV (eap)
#include "DriverCGNS_Read.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESHDS_Group.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_Comment.hxx"
#include <gp_XYZ.hxx>
#include <cgnslib.h>
#include <map>
#if CGNS_VERSION < 3100
# define cgsize_t int
#endif
#define NB_ZONE_SIZE_VAL 9
#define CGNS_NAME_SIZE 33
#define CGNS_STRUCT_RANGE_SZ 6
using namespace std;
namespace
{
//================================================================================
/*!
* \brief Data of a zone
*/
struct TZoneData
{
int _id;
int _nodeIdShift; // nb nodes in previously read zones
int _elemIdShift; // nb faces in previously read zones
int _nbNodes, _nbElems;
int _meshDim;
int _sizeX, _sizeY, _sizeZ, _nbCells; // structured
cgsize_t _sizes[NB_ZONE_SIZE_VAL];
CGNS_ENUMT(ZoneType_t) _type;
map< int, int > _nodeReplacementMap;/* key: id of node to replace (in this zone),
value: id of node to replace by (in another zone)
id values include _nodeIdShift of the zones */
void SetSizeAndDim( cgsize_t* sizes, int meshDim )
{
_meshDim = meshDim;
memcpy( _sizes, sizes, NB_ZONE_SIZE_VAL*sizeof(cgsize_t));
_sizeX = _sizes[0];
_sizeY = _meshDim > 1 ? _sizes[1] : 0;
_sizeZ = _meshDim > 2 ? _sizes[2] : 0;
_nbCells = (_sizeX - 1) * ( _meshDim > 1 ? _sizeY : 1 ) * ( _meshDim > 2 ? _sizeZ : 1 );
}
bool IsStructured() const { return ( _type == CGNS_ENUMV( Structured )); }
int IndexSize() const { return IsStructured() ? _meshDim : 1; }
string ReadZonesConnection(int file, int base, const map< string, TZoneData >& zonesByName);
void ReplaceNodes( cgsize_t* ids, int nbIds, int idShift = 0 ) const;
// Methods for a structured zone
int NodeID( int i, int j, int k = 1 ) const
{
return _nodeIdShift + (k-1)*_sizeX*_sizeY + (j-1)*_sizeX + i;
}
int NodeID( const gp_XYZ& ijk ) const
{
return NodeID( int(ijk.X()), int(ijk.Y()), int(ijk.Z()));
}
void CellNodes( int i, int j, int k, cgsize_t* ids ) const
{
ids[0] = NodeID( i , j , k );
ids[1] = NodeID( i , j+1, k );
ids[2] = NodeID( i+1, j+1, k );
ids[3] = NodeID( i+1, j , k );
ids[4] = NodeID( i , j , k+1);
ids[5] = NodeID( i , j+1, k+1);
ids[6] = NodeID( i+1, j+1, k+1);
ids[7] = NodeID( i+1, j , k+1);
}
void CellNodes( int i, int j, cgsize_t* ids ) const
{
ids[0] = NodeID( i , j );
ids[1] = NodeID( i , j+1 );
ids[2] = NodeID( i+1, j+1 );
ids[3] = NodeID( i+1, j );
}
void IFaceNodes( int i, int j, int k, cgsize_t* ids ) const // face perpendiculaire to X (3D)
{
ids[0] = NodeID( i, j, k );
ids[1] = ids[0] + _sizeX*( i==_sizeX ? 1 : _sizeY );
ids[2] = ids[0] + _sizeX*( _sizeY + 1 );
ids[3] = ids[0] + _sizeX*( i==_sizeX ? _sizeY : 1 );
}
void JFaceNodes( int i, int j, int k, cgsize_t* ids ) const
{
ids[0] = NodeID( i, j, k );
ids[1] = ids[0] + ( j==_sizeY ? _sizeX*_sizeY : 1);
ids[2] = ids[0] + _sizeX*_sizeY + 1;
ids[3] = ids[0] + ( j==_sizeY ? 1 : _sizeX*_sizeY);
}
void KFaceNodes( int i, int j, int k, cgsize_t* ids ) const
{
ids[0] = NodeID( i, j, k );
ids[1] = ids[0] + ( k==_sizeZ ? 1 : _sizeX);
ids[2] = ids[0] + _sizeX + 1;
ids[3] = ids[0] + ( k==_sizeZ ? _sizeX : 1);
}
void IEdgeNodes( int i, int j, int k, cgsize_t* ids ) const // edge perpendiculaire to X (2D)
{
ids[0] = NodeID( i, j, 0 );
ids[1] = ids[0] + _sizeX;
}
void JEdgeNodes( int i, int j, int k, cgsize_t* ids ) const
{
ids[0] = NodeID( i, j, 0 );
ids[1] = ids[0] + 1;
}
#define gpXYZ2IJK(METHOD) \
void METHOD( const gp_XYZ& ijk, cgsize_t* ids ) const { \
METHOD( int(ijk.X()), int(ijk.Y()), int(ijk.Z()), ids); \
}
gpXYZ2IJK( IFaceNodes )
gpXYZ2IJK( JFaceNodes )
gpXYZ2IJK( KFaceNodes )
gpXYZ2IJK( IEdgeNodes )
gpXYZ2IJK( JEdgeNodes )
};
//================================================================================
/*!
* \brief Iterator over nodes of the structired grid using FORTRAN multidimensional
* array ordering.
*/
class TPointRangeIterator
{
int _beg[3], _end[3], _cur[3], _dir[3], _dim;
bool _more;
public:
TPointRangeIterator( const cgsize_t* range, int dim ):_dim(dim)
{
_more = false;
for ( int i = 0; i < dim; ++i )
{
_beg[i] = range[i];
_end[i] = range[i+dim];
_dir[i] = _end[i] < _beg[i] ? -1 : 1;
_end[i] += _dir[i];
_cur[i] = _beg[i];
if ( _end[i] - _beg[i] )
_more = true;
}
// for ( int i = dim; i < 3; ++i )
// _cur[i] = _beg[i] = _end[i] = _dir[i] = 0;
}
bool More() const
{
return _more;
}
gp_XYZ Next()
{
gp_XYZ res( _cur[0], _cur[1], _cur[2] );
for ( int i = 0; i < _dim; ++i )
{
_cur[i] += _dir[i];
if ( _cur[i]*_dir[i] < _end[i]*_dir[i] )
break;
if ( i+1 < _dim )
_cur[i] = _beg[i];
else
_more = false;
}
return res;
}
size_t Size() const
{
size_t size = 1;
for ( int i = 0; i < _dim; ++i )
size *= _dir[i]*(_end[i]-_beg[i]);
return size;
}
gp_XYZ Begin() const { return gp_XYZ( _beg[0], _beg[1], _beg[2] ); }
//gp_XYZ End() const { return gp_XYZ( _end[0]-1, _end[1]-1, _end[2]-1 ); }
};
//================================================================================
/*!
* \brief Reads zone interface connectivity
* \param file - file to read
* \param base - base to read
* \param zone - zone to replace nodes in
* \param zonesByName - TZoneData by name
* \retval string - warning message
*
* see // http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/cnct.html
*/
//================================================================================
string TZoneData::ReadZonesConnection( int file,
int base,
const map< string, TZoneData >& zonesByName)
{
string error;
char connectName[ CGNS_NAME_SIZE ], donorName [ CGNS_NAME_SIZE ];
// ----------------------------
// read zone 1 to 1 interfaces
// ----------------------------
if ( IsStructured() )
{
int nb1to1 = 0;
if ( cg_n1to1 ( file, base, _id, &nb1to1) == CG_OK )
{
cgsize_t range[CGNS_STRUCT_RANGE_SZ], donorRange[CGNS_STRUCT_RANGE_SZ];
int transform[3] = {0,0,0};
for ( int I = 1; I <= nb1to1; ++I )
{
if ( cg_1to1_read(file, base, _id, I, connectName,
donorName, range, donorRange, transform) == CG_OK )
{
map< string, TZoneData>::const_iterator n_z = zonesByName.find( donorName );
if ( n_z == zonesByName.end() )
continue; // donor zone not yet read
const TZoneData& zone2 = n_z->second;
// set up matrix to transform ijk of the zone to ijk of the zone2
gp_Mat T;
for ( int i = 0; i < _meshDim; ++i )
if ( transform[i] )
{
int row = Abs(transform[i]);
int col = i+1;
int val = transform[i] > 0 ? +1 : -1;
T( row, col ) = val;
}
// fill nodeReplacementMap
TPointRangeIterator rangeIt1( range, _meshDim );
TPointRangeIterator rangeIt2( donorRange, _meshDim );
gp_XYZ begin1 = rangeIt1.Begin(), begin2 = rangeIt2.Begin(), index1, index2;
if ( &zone2 == this )
{
// not to read twice the same interface with self
TPointRangeIterator rangeIt1bis( range, _meshDim );
if ( rangeIt1bis.More() )
{
index1 = rangeIt1bis.Next();
index2 = T * ( index1 - begin1 ) + begin2;
int node1 = NodeID( index1 );
int node2 = zone2.NodeID( index2 );
if ( _nodeReplacementMap.count( node2 ) &&
_nodeReplacementMap[ node2 ] == node1 )
continue; // this interface already read
}
}
while ( rangeIt1.More() )
{
index1 = rangeIt1.Next();
index2 = T * ( index1 - begin1 ) + begin2;
int node1 = NodeID( index1 );
int node2 = zone2.NodeID( index2 );
_nodeReplacementMap.insert( make_pair( node1, node2 ));
}
}
else
{
error = cg_get_error();
}
}
}
else
{
error = cg_get_error();
}
}
// ---------------------------------
// read general zone connectivities
// ---------------------------------
int nbConn = 0;
if ( cg_nconns( file, base, _id, &nbConn) == CG_OK )
{
cgsize_t nb, donorNb;
CGNS_ENUMT(GridLocation_t) location;
CGNS_ENUMT(GridConnectivityType_t) connectType;
CGNS_ENUMT(PointSetType_t) ptype, donorPtype;
CGNS_ENUMT(ZoneType_t) donorZonetype;
CGNS_ENUMT(DataType_t) donorDatatype;
for ( int I = 1; I <= nbConn; ++I )
{
if ( cg_conn_info(file, base, _id, I, connectName, &location, &connectType,
&ptype, &nb, donorName, &donorZonetype, &donorPtype,
&donorDatatype, &donorNb ) == CG_OK )
{
if ( location != CGNS_ENUMV( Vertex ))
continue; // we do not support cell-to-cell connectivity
if ( ptype != CGNS_ENUMV( PointList ) &&
ptype != CGNS_ENUMV( PointRange ))
continue;
if ( donorPtype != CGNS_ENUMV( PointList ) &&
donorPtype != CGNS_ENUMV( PointRange ))
continue;
map< string, TZoneData>::const_iterator n_z = zonesByName.find( donorName );
if ( n_z == zonesByName.end() )
continue; // donor zone not yet read
const TZoneData& zone2 = n_z->second;
vector< cgsize_t > ids( nb * IndexSize() );
vector< cgsize_t > donorIds( donorNb * zone2.IndexSize() );
if (cg_conn_read ( file, base, _id, I,
&ids[0], CGNS_ENUMV(Integer), &donorIds[0]) == CG_OK )
{
for ( int isThisZone = 0; isThisZone < 2; ++isThisZone )
{
const TZoneData& zone = isThisZone ? *this : zone2;
CGNS_ENUMT(PointSetType_t) type = isThisZone ? ptype : donorPtype;
vector< cgsize_t >& points = isThisZone ? ids : donorIds;
if ( type == CGNS_ENUMV( PointRange ))
{
TPointRangeIterator rangeIt( &points[0], zone._meshDim );
points.clear();
while ( rangeIt.More() )
points.push_back ( NodeID( rangeIt.Next() ));
}
else if ( zone.IsStructured() )
{
vector< cgsize_t > resIDs; resIDs.reserve( points.size() / IndexSize() );
for ( size_t i = 0; i < points.size(); i += IndexSize() )
resIDs.push_back( zone.NodeID( points[i+0], points[i+1], points[i+2] ));
resIDs.swap( points );
}
else if ( zone._nodeIdShift > 0 )
{
for ( size_t i = 0; i < points.size(); ++i )
points[i] += zone._nodeIdShift;
}
}
for ( size_t i = 0; i < ids.size() && i < donorIds.size(); ++i )
_nodeReplacementMap.insert( make_pair( ids[i], donorIds[i] ));
}
else
{
error = cg_get_error();
}
}
else
{
error = cg_get_error();
}
}
}
else
{
error = cg_get_error();
}
return error;
}
//================================================================================
/*!
* \brief Replaces node ids according to nodeReplacementMap to take into account
* connection of zones
*/
//================================================================================
void TZoneData::ReplaceNodes( cgsize_t* ids, int nbIds, int idShift/* = 0*/ ) const
{
if ( !_nodeReplacementMap.empty() )
{
map< int, int >::const_iterator it, end = _nodeReplacementMap.end();
for ( size_t i = 0; i < nbIds; ++i )
if (( it = _nodeReplacementMap.find( ids[i] + idShift)) != end )
ids[i] = it->second;
else
ids[i] += idShift;
}
else if ( idShift )
{
for ( size_t i = 0; i < nbIds; ++i )
ids[i] += idShift;
}
}
//================================================================================
/*!
* \brief functions adding an element of a particular type
*/
SMDS_MeshElement* add_0D(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->Add0DElementWithID( ids[0], ID );
}
SMDS_MeshElement* add_BAR_2(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddEdgeWithID( ids[0], ids[1], ID );
}
SMDS_MeshElement* add_BAR_3(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddEdgeWithID( ids[0], ids[1], ids[2], ID );
}
SMDS_MeshElement* add_TRI_3(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddFaceWithID( ids[0], ids[2], ids[1], ID );
}
SMDS_MeshElement* add_TRI_6(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddFaceWithID( ids[0], ids[2], ids[1], ids[5], ids[4], ids[3], ID );
}
SMDS_MeshElement* add_QUAD_4(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddFaceWithID( ids[0], ids[3], ids[2], ids[1], ID );
}
SMDS_MeshElement* add_QUAD_8(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddFaceWithID( ids[0],ids[3],ids[2],ids[1],ids[7],ids[6],ids[5],ids[4], ID );
}
SMDS_MeshElement* add_QUAD_9(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddFaceWithID( ids[0],ids[3],ids[2],ids[1],ids[7],ids[6],ids[5],ids[4],ids[8], ID);
}
SMDS_MeshElement* add_TETRA_4(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddVolumeWithID( ids[0], ids[2], ids[1], ids[3], ID );
}
SMDS_MeshElement* add_TETRA_10(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddVolumeWithID( ids[0],ids[2],ids[1],ids[3],ids[6],
ids[5],ids[4],ids[7],ids[9],ids[8], ID );
}
SMDS_MeshElement* add_PYRA_5(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddVolumeWithID( ids[0],ids[3],ids[2],ids[1],ids[4],ID );
}
SMDS_MeshElement* add_PYRA_13(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddVolumeWithID( ids[0],ids[3],ids[2],ids[1],ids[4],ids[8],ids[7],
ids[6],ids[5],ids[9],ids[12],ids[11],ids[10], ID );
}
SMDS_MeshElement* add_PENTA_6(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddVolumeWithID( ids[0],ids[2],ids[1],ids[3],ids[5],ids[4], ID );
}
SMDS_MeshElement* add_PENTA_15(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddVolumeWithID( ids[0],ids[2],ids[1],ids[3],ids[5],ids[4],ids[8],ids[7],
ids[6],ids[9],ids[11],ids[10],ids[14],ids[13],ids[12], ID );
}
SMDS_MeshElement* add_HEXA_8(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddVolumeWithID( ids[0],ids[3],ids[2],ids[1],ids[4],ids[7],ids[6],ids[5], ID );
}
SMDS_MeshElement* add_HEXA_20(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddVolumeWithID( ids[0],ids[3],ids[2],ids[1],ids[4],ids[7],ids[6],
ids[5],ids[11],ids[10],ids[9],ids[8],ids[12],ids[15],
ids[14],ids[13],ids[19],ids[18],ids[17],ids[16], ID );
}
SMDS_MeshElement* add_HEXA_27(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
return mesh->AddVolumeWithID( ids[0],ids[3],ids[2],ids[1],ids[4],ids[7],ids[6],
ids[5],ids[11],ids[10],ids[9],ids[8],ids[12],ids[15],
ids[14],ids[13],ids[19],ids[18],ids[17],ids[16],
ids[20],ids[24],ids[23],ids[22],ids[21],ids[25],ids[26], ID );
}
SMDS_MeshElement* add_NGON(cgsize_t* ids, SMESHDS_Mesh* mesh, int ID)
{
vector<int> idVec( ids[0] );
for ( int i = 0; i < ids[0]; ++i )
idVec[ i ] = (int) ids[ i + 1];
return mesh->AddPolygonalFaceWithID( idVec, ID );
}
typedef SMDS_MeshElement* (* PAddElemFun) (cgsize_t* ids, SMESHDS_Mesh* mesh, int ID);
//================================================================================
/*!
* \brief Return an array of functions each adding an element of a particular type
*/
//================================================================================
PAddElemFun* getAddElemFunTable()
{
static vector< PAddElemFun > funVec;
if ( funVec.empty() )
{
funVec.resize( NofValidElementTypes, (PAddElemFun)0 );
funVec[ CGNS_ENUMV( NODE )] = add_0D ;
funVec[ CGNS_ENUMV( BAR_2 )] = add_BAR_2 ;
funVec[ CGNS_ENUMV( BAR_3 )] = add_BAR_3 ;
funVec[ CGNS_ENUMV( TRI_3 )] = add_TRI_3 ;
funVec[ CGNS_ENUMV( TRI_6 )] = add_TRI_6 ;
funVec[ CGNS_ENUMV( QUAD_4 )] = add_QUAD_4 ;
funVec[ CGNS_ENUMV( QUAD_8 )] = add_QUAD_8 ;
funVec[ CGNS_ENUMV( QUAD_9 )] = add_QUAD_9 ;
funVec[ CGNS_ENUMV( TETRA_4 )] = add_TETRA_4 ;
funVec[ CGNS_ENUMV( TETRA_10 )] = add_TETRA_10;
funVec[ CGNS_ENUMV( PYRA_5 )] = add_PYRA_5 ;
funVec[ CGNS_ENUMV( PYRA_13 )] = add_PYRA_13 ;
funVec[ CGNS_ENUMV( PYRA_14 )] = add_PYRA_13 ;
funVec[ CGNS_ENUMV( PENTA_6 )] = add_PENTA_6 ;
funVec[ CGNS_ENUMV( PENTA_15 )] = add_PENTA_15;
funVec[ CGNS_ENUMV( PENTA_18 )] = add_PENTA_15;
funVec[ CGNS_ENUMV( HEXA_8 )] = add_HEXA_8 ;
funVec[ CGNS_ENUMV( HEXA_20 )] = add_HEXA_20 ;
funVec[ CGNS_ENUMV( HEXA_27 )] = add_HEXA_27 ;
funVec[ CGNS_ENUMV( NGON_n )] = add_NGON ;
}
return &funVec[0];
}
//================================================================================
/*!
* \brief Finds an existing boundary element
*/
//================================================================================
const SMDS_MeshElement* findElement(const cgsize_t* nodeIDs,
const int nbNodes,
const SMESHDS_Mesh* mesh)
{
const SMDS_MeshNode* nn[4]; // look for quad4 or seg2
if (( nn[0] = mesh->FindNode( nodeIDs[0] )))
{
SMDSAbs_ElementType eType = nbNodes==4 ? SMDSAbs_Face : SMDSAbs_Edge;
SMDS_ElemIteratorPtr eIt = nn[0]->GetInverseElementIterator( eType );
if ( eIt->more() )
for ( int i = 1; i < nbNodes; ++i )
nn[i] = mesh->FindNode( nodeIDs[i] );
while ( eIt->more() )
{
const SMDS_MeshElement* e = eIt->next();
if ( e->NbNodes() == nbNodes )
{
bool elemOK = true;
for ( int i = 1; i < nbNodes && elemOK; ++i )
elemOK = ( e->GetNodeIndex( nn[i] ) >= 0 );
if ( elemOK )
return e;
}
}
}
return 0;
}
} // namespace
//================================================================================
/*!
* \brief Perform reading a myMeshId-th mesh
*/
//================================================================================
Driver_Mesh::Status DriverCGNS_Read::Perform()
{
myErrorMessages.clear();
Status aResult;
if (( aResult = open() ) != DRS_OK )
return aResult;
// read nb of meshes (CGNSBase_t)
if ( myMeshId < 0 || myMeshId >= GetNbMeshes(aResult))
return addMessage( SMESH_Comment("Invalid mesh index :") << myMeshId );
// read a name and a dimension of the mesh
const int cgnsBase = myMeshId + 1;
char meshName[CGNS_NAME_SIZE];
int meshDim, spaceDim;
if ( cg_base_read( _fn, cgnsBase, meshName, &meshDim, &spaceDim) != CG_OK )
return addMessage( cg_get_error() );
if ( spaceDim < 1 || spaceDim > 3 )
return addMessage( SMESH_Comment("Invalid space dimension: ") << spaceDim
<< " in mesh '" << meshName << "'");
myMeshName = meshName;
// read nb of domains (Zone_t) in the mesh
int nbZones = 0;
if ( cg_nzones (_fn, cgnsBase, &nbZones) != CG_OK )
return addMessage( cg_get_error() );
if ( nbZones < 1 )
return addMessage( SMESH_Comment("Empty mesh: '") << meshName << "'");
// read the domains (zones)
// ------------------------
map< string, TZoneData > zonesByName;
char name[CGNS_NAME_SIZE];
cgsize_t sizes[NB_ZONE_SIZE_VAL];
memset(sizes, 0, NB_ZONE_SIZE_VAL * sizeof(cgsize_t));
const SMDS_MeshInfo& meshInfo = myMesh->GetMeshInfo();
int groupID = myMesh->GetGroups().size();
for ( int iZone = 1; iZone <= nbZones; ++iZone )
{
// size and name of a zone
if ( cg_zone_read( _fn, cgnsBase, iZone, name, sizes) != CG_OK) {
addMessage( cg_get_error() );
continue;
}
TZoneData& zone = zonesByName[ name ];
zone._id = iZone;
zone._nodeIdShift = meshInfo.NbNodes();
zone._elemIdShift = meshInfo.NbElements();
zone.SetSizeAndDim( sizes, meshDim );
// mesh type of the zone
if ( cg_zone_type ( _fn, cgnsBase, iZone, &zone._type) != CG_OK) {
addMessage( cg_get_error() );
continue;
}
switch ( zone._type )
{
case CGNS_ENUMV( Unstructured ):
case CGNS_ENUMV( Structured ):
break;
case CGNS_ENUMV( ZoneTypeNull ):
addMessage( "Meshes with ZoneTypeNull are not supported");
continue;
case CGNS_ENUMV( ZoneTypeUserDefined ):
addMessage( "Meshes with ZoneTypeUserDefined are not supported");
continue;
default:
addMessage( "Unknown ZoneType_t");
continue;
}
// -----------
// Read nodes
// -----------
if ( cg_ncoords( _fn, cgnsBase, iZone, &spaceDim) != CG_OK ) {
addMessage( cg_get_error() );
continue;
}
if ( spaceDim < 1 ) {
addMessage( SMESH_Comment("No coordinates defined in zone ")
<< iZone << " of Mesh " << myMeshId );
continue;
}
// read coordinates
cgsize_t rmin[3] = {1,1,1}; // range of nodes to read
cgsize_t rmax[3] = {1,1,1};
int nbNodes = rmax[0] = zone._sizes[0];
if ( zone.IsStructured())
for ( int i = 1; i < meshDim; ++i )
nbNodes *= rmax[i] = zone._sizes[i];
vector<double> coords[3];
for ( int c = 1; c <= spaceDim; ++c)
{
coords[c-1].resize( nbNodes );
CGNS_ENUMV( DataType_t ) type;
if ( cg_coord_info( _fn, cgnsBase, iZone, c, &type, name) != CG_OK ||
cg_coord_read( _fn, cgnsBase, iZone, name, CGNS_ENUMV(RealDouble),
rmin, rmax, (void*)&(coords[c-1][0])) != CG_OK)
{
addMessage( cg_get_error() );
coords[c-1].clear();
break;
}
}
if ( coords[ spaceDim-1 ].empty() )
continue; // there was an error while reading coordinates
// fill coords with zero if spaceDim < 3
for ( int c = 2; c <= 3; ++c)
if ( coords[ c-1 ].empty() )
coords[ c-1 ].resize( nbNodes, 0.0 );
// create nodes
try {
for ( int i = 0; i < nbNodes; ++i )
myMesh->AddNodeWithID( coords[0][i], coords[1][i], coords[2][i], i+1+zone._nodeIdShift );
}
catch ( std::exception& exc ) // expect std::bad_alloc
{
addMessage( exc.what() );
break;
}
// Read connectivity between zones. Nodes of the zone interface will be
// replaced withing the zones read later
string err = zone.ReadZonesConnection( _fn, cgnsBase, zonesByName );
if ( !err.empty() )
addMessage( err );
// --------------
// Read elements
// --------------
if ( zone.IsStructured())
{
int nbI = zone._sizeX - 1, nbJ = zone._sizeY - 1, nbK = zone._sizeZ - 1;
cgsize_t nID[8];
if ( meshDim > 2 && nbK > 0 )
{
for ( int k = 1; k <= nbK; ++k )
for ( int j = 1; j <= nbJ; ++j )
for ( int i = 1; i <= nbI; ++i )
{
zone.CellNodes( i, j, k, nID );
zone.ReplaceNodes( nID, 8 );
myMesh->AddVolumeWithID(nID[0],nID[1],nID[2],nID[3],nID[4],nID[5],nID[6],nID[7],
meshInfo.NbElements()+1);
}
}
else if ( meshDim > 1 && nbJ > 0 )
{
for ( int j = 1; j <= nbJ; ++j )
for ( int i = 1; i <= nbI; ++i )
{
zone.CellNodes( i, j, nID );
zone.ReplaceNodes( nID, 4 );
myMesh->AddFaceWithID(nID[0],nID[1],nID[2],nID[3], meshInfo.NbElements()+1);
}
}
else if ( meshDim > 0 && nbI > 0 )
{
nID[0] = zone.NodeID( 1, 0, 0 );
for ( int i = 1; i <= nbI; ++i, ++nID[0] )
{
nID[1] = nID[0]+1;
zone.ReplaceNodes( nID, 2 );
myMesh->AddEdgeWithID(nID[0],nID[1], meshInfo.NbElements()+1);
}
}
}
else
{
// elements can be stored in different sections each dedicated to one element type
int nbSections = 0;
if ( cg_nsections( _fn, cgnsBase, iZone, &nbSections) != CG_OK)
{
addMessage( cg_get_error() );
continue;
}
PAddElemFun* addElemFuns = getAddElemFunTable(), curAddElemFun = 0;
int nbNotSuppElem = 0; // nb elements of not supported types
bool polyhedError = false; // error at polyhedron creation
// read element data
CGNS_ENUMT( ElementType_t ) elemType;
cgsize_t start, end; // range of ids of elements of a zone
cgsize_t eDataSize = 0;
int nbBnd, parent_flag;
for ( int iSec = 1; iSec <= nbSections; ++iSec )
{
if ( cg_section_read( _fn, cgnsBase, iZone, iSec, name, &elemType,
&start, &end, &nbBnd, &parent_flag) != CG_OK ||
cg_ElementDataSize( _fn, cgnsBase, iZone, iSec, &eDataSize ) != CG_OK )
{
addMessage( cg_get_error() );
continue;
}
vector< cgsize_t > elemData( eDataSize );
if ( cg_elements_read( _fn, cgnsBase, iZone, iSec, &elemData[0], NULL ) != CG_OK )
{
addMessage( cg_get_error() );
continue;
}
// store elements
int pos = 0, cgnsNbNodes = 0, elemID = start + zone._elemIdShift;
cg_npe( elemType, &cgnsNbNodes ); // get nb nodes by element type
curAddElemFun = addElemFuns[ elemType ];
SMDS_MeshElement* newElem = 0;
const SMDS_MeshElement* face;
while ( pos < eDataSize )
{
CGNS_ENUMT( ElementType_t ) currentType = elemType;
if ( currentType == CGNS_ENUMV( MIXED )) {
//ElementConnectivity = Etype1, Node11, Node21, ... NodeN1,
// Etype2, Node12, Node22, ... NodeN2,
// ...
// EtypeM, Node1M, Node2M, ... NodeNM
currentType = (CGNS_ENUMT(ElementType_t)) elemData[ pos++ ];
cg_npe( currentType, &cgnsNbNodes );
curAddElemFun = addElemFuns[ currentType ];
}
if ( cgnsNbNodes < 1 ) // poly elements
{
if ( currentType == CGNS_ENUMV( NFACE_n )) // polyhedron
{
//ElementConnectivity = Nfaces1, Face11, Face21, ... FaceN1,
// Nfaces2, Face12, Face22, ... FaceN2,
// ...
// NfacesM, Face1M, Face2M, ... FaceNM
const int nbFaces = elemData[ pos++ ];
vector<int> quantities( nbFaces );
vector<const SMDS_MeshNode*> nodes, faceNodes;
nodes.reserve( nbFaces * 4 );
for ( int iF = 0; iF < nbFaces; ++iF )
{
const int faceID = std::abs( elemData[ pos++ ]) + zone._elemIdShift;
if (( face = myMesh->FindElement( faceID )) && face->GetType() == SMDSAbs_Face )
{
const bool reverse = ( elemData[ pos-1 ] < 0 );
const int iQuad = face->IsQuadratic() ? 1 : 0;
SMDS_ElemIteratorPtr nIter = face->interlacedNodesElemIterator();
faceNodes.assign( SMDS_MeshElement::iterator( nIter ),
SMDS_MeshElement::iterator());
if ( iQuad && reverse )
nodes.push_back( faceNodes[0] );
if ( reverse )
nodes.insert( nodes.end(), faceNodes.rbegin(), faceNodes.rend() - iQuad );
else
nodes.insert( nodes.end(), faceNodes.begin(), faceNodes.end() );
quantities[ iF ] = face->NbNodes();
}
else {
polyhedError = true;
break;
}
}
if ( quantities.back() )
{
myMesh->AddPolyhedralVolumeWithID( nodes, quantities, elemID );
}
}
else if ( currentType == CGNS_ENUMV( NGON_n )) // polygon
{
// ElementConnectivity = Nnodes1, Node11, Node21, ... NodeN1,
// Nnodes2, Node12, Node22, ... NodeN2,
// ...
// NnodesM, Node1M, Node2M, ... NodeNM
const int nbNodes = elemData[ pos ];
zone.ReplaceNodes( &elemData[pos+1], nbNodes, zone._nodeIdShift );
newElem = add_NGON( &elemData[pos ], myMesh, elemID );
pos += nbNodes + 1;
}
}
else // standard elements
{
zone.ReplaceNodes( &elemData[pos], cgnsNbNodes, zone._nodeIdShift );
newElem = curAddElemFun( &elemData[pos], myMesh, elemID );
pos += cgnsNbNodes;
nbNotSuppElem += int( newElem && newElem->NbNodes() != cgnsNbNodes );
}
elemID++;
} // loop on elemData
} // loop on cgns sections
if ( nbNotSuppElem > 0 )
addMessage( SMESH_Comment(nbNotSuppElem) << " elements of not supported types"
<< " have beem converted to close types");
if ( polyhedError )
addMessage( "Some polyhedral elements have been skipped due to internal(?) errors" );
} // reading unstructured elements
zone._nbNodes = meshInfo.NbNodes() - zone._nodeIdShift;
zone._nbElems = meshInfo.NbElements() - zone._elemIdShift;
// -------------------------------------------
// Read Boundary Conditions into SMESH groups
// -------------------------------------------
int nbBC = 0;
if ( cg_nbocos( _fn, cgnsBase, iZone, &nbBC) == CG_OK )
{
CGNS_ENUMT( BCType_t ) bcType;
CGNS_ENUMT( PointSetType_t ) psType;
CGNS_ENUMT( DataType_t ) normDataType;
cgsize_t nbPnt, normFlag;
int normIndex[3], nbDS;
for ( int iBC = 1; iBC <= nbBC; ++iBC )
{
if ( cg_boco_info( _fn, cgnsBase, iZone, iBC, name, &bcType, &psType,
&nbPnt, normIndex, &normFlag, &normDataType, &nbDS ) != CG_OK )
{
addMessage( cg_get_error() );
continue;
}
vector< cgsize_t > ids( nbPnt * zone.IndexSize() );
CGNS_ENUMT( GridLocation_t ) location;
if ( cg_boco_read( _fn, cgnsBase, iZone, iBC, &ids[0], NULL ) != CG_OK ||
cg_boco_gridlocation_read( _fn, cgnsBase, iZone, iBC, &location) != CG_OK )
{
addMessage( cg_get_error() );
continue;
}
SMDSAbs_ElementType elemType = SMDSAbs_All;
switch ( location ) {
case CGNS_ENUMV( Vertex ): elemType = SMDSAbs_Node; break;
case CGNS_ENUMV( FaceCenter ): elemType = SMDSAbs_Face; break;
case CGNS_ENUMV( IFaceCenter ): elemType = SMDSAbs_Face; break;
case CGNS_ENUMV( JFaceCenter ): elemType = SMDSAbs_Face; break;
case CGNS_ENUMV( KFaceCenter ): elemType = SMDSAbs_Face; break;
case CGNS_ENUMV( EdgeCenter ): elemType = SMDSAbs_Edge; break;
default:;
}
SMESHDS_Group* group = new SMESHDS_Group ( groupID++, myMesh, elemType );
myMesh->AddGroup( group );
SMESH_Comment groupName( name ); groupName << " " << cg_BCTypeName( bcType );
group->SetStoreName( groupName.c_str() );
SMDS_MeshGroup& groupDS = group->SMDSGroup();
if ( elemType == SMDSAbs_Node )
{
if ( zone.IsStructured() )
{
vector< cgsize_t > nodeIds;
if ( psType == CGNS_ENUMV( PointRange ))
{
// nodes are given as (ijkMin, ijkMax)
TPointRangeIterator idIt( & ids[0], meshDim );
nodeIds.reserve( idIt.Size() );
while ( idIt.More() )
nodeIds.push_back( zone.NodeID( idIt.Next() ));
}
else
{
// nodes are given as (ijk1, ijk2, ..., ijkN)
nodeIds.reserve( ids.size() / meshDim );
for ( size_t i = 0; i < ids.size(); i += meshDim )
nodeIds.push_back( zone.NodeID( ids[i], ids[i+1], ids[i+2] ));
}
ids.swap( nodeIds );
}
else if ( zone._nodeIdShift )
{
for ( size_t i = 0; i < ids.size(); ++i )
ids[i] += zone._nodeIdShift;
}
zone.ReplaceNodes( &ids[0], ids.size() );
for ( size_t i = 0; i < ids.size(); ++i )
if ( const SMDS_MeshNode* n = myMesh->FindNode( ids[i] ))
groupDS.Add( n );
}
else // BC applied to elements
{
if ( zone.IsStructured() )
{
int axis = 0; // axis perpendiculaire to which boundary elements are oriented
if ( ids.size() >= meshDim * 2 )
{
for ( ; axis < meshDim; ++axis )
if ( ids[axis] - ids[axis+meshDim] == 0 )
break;
}
else
{
for ( ; axis < meshDim; ++axis )
if ( normIndex[axis] != 0 )
break;
}
if ( axis == meshDim )
{
addMessage( SMESH_Comment("Invalid NormalIndex in BC ") << name );
continue;
}
const int nbElemNodesByDim[] = { 1, 2, 4, 8 };
const int nbElemNodes = nbElemNodesByDim[ meshDim ];
if ( psType == CGNS_ENUMV( PointRange ) ||
psType == CGNS_ENUMV( ElementRange ))
{
// elements are given as (ijkMin, ijkMax)
typedef void (TZoneData::*PGetNodesFun)( const gp_XYZ& ijk, cgsize_t* ids ) const;
PGetNodesFun getNodesFun = 0;
if ( elemType == SMDSAbs_Face && meshDim == 3 )
switch ( axis ) {
case 0: getNodesFun = & TZoneData::IFaceNodes;
case 1: getNodesFun = & TZoneData::JFaceNodes;
case 2: getNodesFun = & TZoneData::KFaceNodes;
}
else if ( elemType == SMDSAbs_Edge && meshDim == 2 )
switch ( axis ) {
case 0: getNodesFun = & TZoneData::IEdgeNodes;
case 1: getNodesFun = & TZoneData::JEdgeNodes;
}
if ( !getNodesFun )
{
addMessage( SMESH_Comment("Unsupported BC location in BC ") << name
<< " " << cg_GridLocationName( location )
<< " in " << meshDim << " mesh");
continue;
}
TPointRangeIterator rangeIt( & ids[0], meshDim );
vector< cgsize_t > elemNodeIds( rangeIt.Size() * nbElemNodes );
for ( int i = 0; rangeIt.More(); i+= nbElemNodes )
(zone.*getNodesFun)( rangeIt.Next(), &elemNodeIds[i] );
ids.swap( elemNodeIds );
}
else
{
// elements are given as (ijk1, ijk2, ..., ijkN)
typedef void (TZoneData::*PGetNodesFun)( int i, int j, int k, cgsize_t* ids ) const;
PGetNodesFun getNodesFun = 0;
if ( elemType == SMDSAbs_Face )
switch ( axis ) {
case 0: getNodesFun = & TZoneData::IFaceNodes;
case 1: getNodesFun = & TZoneData::JFaceNodes;
case 2: getNodesFun = & TZoneData::KFaceNodes;
}
else if ( elemType == SMDSAbs_Edge && meshDim == 2 )
switch ( axis ) {
case 0: getNodesFun = & TZoneData::IEdgeNodes;
case 1: getNodesFun = & TZoneData::JEdgeNodes;
}
if ( !getNodesFun )
{
addMessage( SMESH_Comment("Unsupported BC location in BC ") << name
<< " " << cg_GridLocationName( location )
<< " in " << meshDim << " mesh");
continue;
}
vector< cgsize_t > elemNodeIds( ids.size()/meshDim * nbElemNodes );
for ( size_t i = 0, j = 0; i < ids.size(); i += meshDim, j += nbElemNodes )
(zone.*getNodesFun)( ids[i], ids[i+1], ids[i+2], &elemNodeIds[j] );
ids.swap( elemNodeIds );
}
zone.ReplaceNodes( &ids[0], ids.size() );
PAddElemFun addElemFun = 0;
switch ( meshDim ) {
case 1: addElemFun = & add_BAR_2;
case 2: addElemFun = & add_QUAD_4;
case 3: addElemFun = & add_HEXA_8;
}
int elemID = meshInfo.NbElements();
const SMDS_MeshElement* elem = 0;
for ( size_t i = 0; i < ids.size(); i += nbElemNodes )
{
if ( iZone == 1 || !( elem = findElement( &ids[i], nbElemNodes, myMesh )))
elem = addElemFun( &ids[i], myMesh, ++elemID );
groupDS.Add( elem );
}
}
else // unstructured zone
{
if ( zone._elemIdShift )
for ( size_t i = 0; i < ids.size(); ++i )
ids[i] += zone._elemIdShift;
if ( psType == CGNS_ENUMV( PointRange ) && ids.size() == 2 )
{
for ( size_t i = ids[0]; i <= ids[1]; ++i )
if ( const SMDS_MeshElement* e = myMesh->FindElement( i ))
groupDS.Add( e );
}
else
{
for ( size_t i = 0; i < ids.size(); ++i )
if ( const SMDS_MeshElement* e = myMesh->FindElement( ids[i] ))
groupDS.Add( e );
}
}
} // end "BC applied to elements"
// to have group type according to a real elem type
group->SetType( groupDS.GetType() );
} // loop on BCs of the zone
}
else
{
addMessage( cg_get_error() );
}
} // loop on the zones of a mesh
// ------------------------------------------------------------------------
// Make groups for multiple zones and remove free nodes at zone interfaces
// ------------------------------------------------------------------------
map< string, TZoneData >::iterator nameZoneIt = zonesByName.begin();
for ( ; nameZoneIt != zonesByName.end(); ++nameZoneIt )
{
TZoneData& zone = nameZoneIt->second;
if ( zone._nbElems == 0 ) continue;
if ( zone._nbElems == meshInfo.NbElements() ) break; // there is only one non-empty zone
// make a group
SMDSAbs_ElementType elemType = myMesh->GetElementType( zone._elemIdShift + 1,
/*iselem=*/true );
SMESHDS_Group* group = new SMESHDS_Group ( groupID++, myMesh, elemType );
myMesh->AddGroup( group );
group->SetStoreName( nameZoneIt->first.c_str() );
SMDS_MeshGroup& groupDS = group->SMDSGroup();
for ( int i = 1; i <= zone._nbElems; ++i )
if ( const SMDS_MeshElement* e = myMesh->FindElement( i + zone._elemIdShift ))
groupDS.Add( e );
// remove free nodes
map< int, int >::iterator nnRmKeepIt = zone._nodeReplacementMap.begin();
for ( ; nnRmKeepIt != zone._nodeReplacementMap.end(); ++nnRmKeepIt )
if ( const SMDS_MeshNode* n = myMesh->FindNode( nnRmKeepIt->first ))
if ( n->NbInverseElements() == 0 )
myMesh->RemoveFreeNode( n, (SMESHDS_SubMesh *)0, /*fromGroups=*/false );
}
aResult = myErrorMessages.empty() ? DRS_OK : DRS_WARN_SKIP_ELEM;
return aResult;
}
//================================================================================
/*!
* \brief Constructor
*/
//================================================================================
DriverCGNS_Read::DriverCGNS_Read()
{
_fn = -1;
}
//================================================================================
/*!
* \brief Close the cgns file at destruction
*/
//================================================================================
DriverCGNS_Read::~DriverCGNS_Read()
{
if ( _fn > 0 )
cg_close( _fn );
}
//================================================================================
/*!
* \brief Opens myFile
*/
//================================================================================
Driver_Mesh::Status DriverCGNS_Read::open()
{
if ( _fn < 0 )
{
#ifdef CG_MODE_READ
int res = cg_open(myFile.c_str(), CG_MODE_READ, &_fn);
#else
int res = cg_open(myFile.c_str(), MODE_READ, &_fn);
#endif
if ( res != CG_OK)
{
addMessage( cg_get_error(), /*fatal = */true );
}
}
return _fn >= 0 ? DRS_OK : DRS_FAIL;
}
//================================================================================
/*!
* \brief Reads nb of meshes in myFile
*/
//================================================================================
int DriverCGNS_Read::GetNbMeshes(Status& theStatus)
{
if (( theStatus = open()) != DRS_OK )
return 0;
int nbases = 0;
if(cg_nbases( _fn, &nbases) != CG_OK)
theStatus = addMessage( cg_get_error(), /*fatal = */true );
return nbases;
}